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ABSTRACT 

Electrical load forecast is an important part of the power system energy management 

system. Reliable load forecast technique will help the electric utility to make unit 

commitment decisions, reduce spinning reserve capacity, and schedule device 

maintenance plan properly. Thus, besides being a key element in reducing the 

generation cost, power load forecast is an essential procedure in enhancing the 

reliability of the power systems. Generally speaking, power systems worldwide are 

using load forecast as an essential part of off-line network analysis. This is in order 

to determine the status of the system, and the necessity to implement corrective 

actions, such as load shedding, power purchases or using peaking units. 

Short term load forecast (STLF), in terms of one-hour ahead, 24-hours ahead, and 

168-hours ahead is a necessary daily task for power dispatch. Its accuracy will 

significantly affect the cost of generation and the reliability of the system. The 

majority of the single variable based techniques are using autoregressive-moving 

average (ARMA) model to solve the STLF problem. 

In this thesis, a new AR algorithm especially designed for long data records as a 

solution to STLF problem is proposed. The proposed AR-based algorithm divides 

long data record into short segments and searches for the AR coefficients that 

simultaneously model the data with the least means squared errors. In order to verify 

the proposed algorithm as a solution to STLF problem, its performance is compared 

with other AR-based algorithms, like Burg and the seasonal Box-Jenkins ARIMA 

(SARIMA). In addition to the parametric algorithms, the comparison is extended 

towards artificial neural networks (ANN). Three years data power demand record 

collected by NEMMCO in four Australian states, NSW, QLD, SA, and VIC, 

between the beginning of 2005 and the end of 2007 are used for the comparison. The 

results show the potential of the proposed algorithm as a reliable solution to STLF. 
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ABSTRAK 

Ramalan beban elektrik adalah sebahagian daripada pengurusan tenaga sistem kuasa 

yang sangat penting. Teknik ramalan beban dipercayai boleh membantu utiliti 

elektrik untuk membuat keputusan komitmen unit, mengurangkan keupayaan 

simpanan, dan menjadualkan pelan penyelenggaraan peranti dengan betul. Maka, 

selain menjadi satu elemen penting dalam mengurangkan kos penjanaan, mendayai 

ramalan beban adalah satu prosedur penting dalam mempertingkatkan 

kebolehpercayaan sistem-sistem tenaga. Umumnya, sistem-sistem tenaga dunia 

menggunakan ramalan beban ini sebahagian daripada analisis rangkaian luar talian. 

Ini merupakan suatu tahap dimana status system dapat ditentukan, dan keperluan 

untuk melaksanakan tindakan pembetulan, seperti beban gugur, kuasa membeli atau 

menggunakan unit-unit puncak. 

Ramalan beban tempoh singkat (STLF), dalam soal satu jam di hadapan, 24-jam 

di hadapan, dan 168-jam di hadapan adalah satu tugas seharian yang perlu untuk 

penghantaran kuasa. Ketepatannya akan nyata sekali menjejaskan kos generasi dan 

kebolehpercayaan sistem. Majoriti pembolehubah tunggal berpengkalan oleh teknik

teknik dengan menggunakan model purata bergerak autoregresif (ARMA) untuk 

menyelesaikan masalah STLF. 

Dalam tesis ini algoritma AR yang baharu dicadangkan sebagai satu penyelesaian 

bagi STLF terutama untuk jangka masa rekod data yang panjang. Algoritma 

berdasarkan AR mencadangkan membahagikan rekod data yang panjang kepada 

segmen-segmen yang pendek, seterusnya mencari pekali-pekali AR yang serentak 

serta mengaplikasikan data dengan cara yang paling kurang kesilapan-kesilapan. 

Untuk mengesahkan algoritma yang dicadangkan sebagai satu penyelesaian bagi 

masalah STLF, prestasinya dibandingkan dengan algoritma yang berdasarkan AR 

yang lain, seperti Burg dan Box- Jenkins ARJMA yang bermusim (SARIMA). 

Tambahan kepada algoritma berparameter, perbandingan diperluaskan lagi kepada 

j aringan saraf tiruan (ANN). Tiga tahun rekod permintaan kuasa data dikumpul oleh 
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NEMMCO dalam empat negeri-negeri di Australia, iaitu NSW, QLD, SA, dan VIC, 

antara permulaan tahun 2005 dan penghujung tahun 2007 digunakan untuk tujuan 

perbandingan. Keputusan menunjukkan potensi algoritma yang dicadangkan 

bersesuaian sebagai satu penyelesaian yang boleh dipercayai untuk menyelesaikan 

masalah STLF. 
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CHAPTER I 

INTRODUCTION 

Electrical load forecast is an important part of the power system energy management 

system. Reliable load forecast technique will help the electric utility to make unit 

commitment decisions, reduce spinning reserve capacity, and schedule device 

maintenance plan properly. Thus, besides being a key element in reducing the 

generation cost, power load forecast is an essential procedure in enhancing the 

reliability of the power systems. Generally speaking, power systems worldwide are 

using the load forecast as an essential part of off-line network analysis. This is in 

order to determine the status of the system, and the necessity to implement 

corrective actions, such as load shedding, power purchases or using peaking units. 

1.1 The Problem 

Short term load forecast (STLF), in terms of one-hour ahead, 24-hours ahead, and 

168-hours ahead is a necessary daily task for power dispatch. Its accuracy will 

significantly affect the cost of generation and the reliability of the system. Under 

forecast of STLF leads to insufficient reserve capacity preparation, and consequently 

increases the operating cost by using expensive peaking units. On the other hand, 

over forecast of STLF leads to unnecessarily large reserve capacity, which also 

means high operating cost. It is estimated in the British power system that every 1% 

increase in the forecasting error will lead to an increase in the operating costs by 

about 10 million pounds yearly [1, 2]. 

In addition to the STLF, which is the major issue being addressed in, this thesis, 

the medium term load forecast (MTLF) is necessary for scheduling of fuel supply 

and maintenance operation [3, 4]; and the long-term load forecast (LTLF) is 
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important for system planning in order to meet the expected long-term growth in 

demand [5-8]. 

1.2 The STLF Techniques 

Many techniques have been proposed for STLF solution over the last three decades, 

with different degrees of accuracy. The majority of these techniques are based on the 

time series modeling [9-15], exponential smoothing [16-21], and artificial 

neural networks [ANN] [22-36]. Generally speaking, the implemented STLF 

techniques are either based on a single variable, which is the historical record of the 

power load, or a combination of the weather variable with the power load, in what is 

called the multivariate approach. The majority of the single variable based 

techniques are using autoregressive moving average (ARMA) model [37-41] and 

Kalman filter [ 41-44] to solve the STLF problem. On the other hand, the 

multivariate STLF techniques are mainly based on ANN, genetic algorithms, and 

Fuzzy logic [ 45-51] or combinations between them, like ANN-Fuzzy [31, 52-61] or 

ANN-GA [58, 58, 62, 63, 63, 64]. Combinations between ANN, GA, Fuzzy logic 

and ARMA are also used to solve the STLF problem [65-70]. 

Owing to the importance of ARMA for the STLF, a large number of estimation 

methods for ARMA model parameters have been proposed over the last 40 years. 

ARMA model has more degrees of freedom than the autoregressive, so greater 

latitude in its ability to generate diverse time-series shapes is therefore expected of 

its estimators. Unfortunately, this is not always the case, because of the nonlinear 

nature requirement of the algorithms that must simultaneously estimate the moving 

average and autoregressive parameters of the ARMA model. 

Indeed, all existing solutions to this problem appear to suffer from one or more 

drawbacks, as explained briefly in the followings: 

• Several methods may end up in a hard failure mode. This means that the 

identification algorithm may return an invalid model or the algorithm cannot 

be carried out to completion because as a result of a step during its execution, 
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a parameter set outside the class of permissible ones arises for which no 

provisions have been adopted. This may happen for moment fitting 

procedures, as well as to methods that first estimate the AR parameters and 

then the MA. 

• Maximum-likelihood methods that depend on search over the parameter 

space involve significant computations and are not guaranteed to converge, 

or they may converge to the wrong solution. 

Finally, some methods may be inaccurate (e. g., significantly biased) in finite 

samples. This is the case with Durbin's two stage least-squares method [71-

73], and with the approximate subspace methods that enforce positivity of 

the estimated MA spectrum based on [74]. 

This type of drawback also affects the methods based on higher order statistics 

[75, 76], which usually need large data samples to achieve satisfactory STLF 

accuracy. 

1.3 Research Objectives 

There are three main objectives in this research. The objectives are as follows: 

• To provide adequate analysis to describe the data using graphical methods. 

Before trying to implement and forecast a given time-series, it is desirable to 

have a preliminary observation at the data. The aim is to determine the 

optimum parameters of the designed model. 

• To design and develop the methodology and algorithm for the model that can 

represent the data generating process. The research work concentrates on 

univariate model (UM), which the historical data are the only input to the 

model algorithm. 

• To forecast the future values of the given data-series. The forecasting process 

implements the obtained filter coefficients generated by the estimation 

process. The forecast experiment is done by offline computation and the 

validation with the actual out-of-sample data is measured by mean absolute 

percentage error (MAPE). 
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1.4 Research Contributions 

Though the all-pole models have less degree of freedom than ARMA, they exhibit 

major advantages. First of all, in some applications the physical process by which a 

signal is generated will result in an all-pole (AR) signal. However, even in those 

applications for which it may not be possible to justify all-pole models, one often 

finds an all-pole model being used. One reason for this is that all-pole models have 

been found to provide a sufficiently accurate representation for many different types 

of signals in many different applications. Another reason for the popularity is the 

special structure, which leads to fast and efficient algorithms for finding the all-pole 

parameters especially in case of short data records. However, in long data records, as 

is the case with most power load time series, the required number of all-pole 

coefficients dramatically increases making most of all-pole algorithm less efficient 

in estimating their values and accordingly less accurate in modeling the power load 

data for proper solution ofSTLF. 

ln this thesis, a new AR algorithm particularly designed for long data records as a 

solution to STLF problem is proposed. This algorithm is inspired by a multiple array 

snapshots for direction of arrival estimation technique [73]. The proposed 

AR-based algorithm divides long data record into short segments then searches for 

the AR coefficients that simultaneously model the data with the least means squared 

errors. 

In order to verify the proposed algorithm as a solution to STLF problem, its 

performance is compared other with other AR-based algorithms, like Burg [77, 78] 

and the Modified Covariance (MCOV) [73, 79], as well as with Durbin's as ARMA

based algorithm [73, 74]. The proposed algorithm is also compared with recent 

model based methods suggested by Box-Jenkins [80-82], and artificial neural 

networks (ANN) [81, 83, 84]. 

Three years data load demand record collected by NEMMCO in four Australian 
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states, NSW, QLD, SA, and VIC, between the beginning of 2005 and the end of 

2007, are used for the comparison. The algorithms are run with raw data and with 

differenced data. The results show the potential of the proposed algorithm as a 

reliable solution to STLF. 

1.5 Organization of Thesis 

To make the representation clear, this thesis is organized as follows: 

Chapter two reviews the stochastic models of time-series and outlines the 

backgrounds of AR-based algorithms such as Burg and the modified covariance, as 

well as ARMA-based algorithms such as Box-Jenkins and Durbin. 

Chapter three explains thoroughly the proposed Modified Forward Backward Linear 

Prediction (MFBLP) algorithm, and finds the optimum number of segments (Q) as 

well as the predictor order (L). 

In Chapter four, the major characteristics of the four Australian power load time 

series (NSW, QLD, SA, and VIC) are addressed. The daily, weekly, and seasonal 

patterns are investigated, and the differencing scheme as a way to mitigate the 

patterns is described. 

In Chapter five, the performance of MFBLP is compared with AR Burg, Box

Jenkins SARIMA and Artificial Neural Network (ANN) in terms of hourly, daily 

and one week-ahead forecasts. The comparisons are carried out with raw data as 

well as with differenced data. Sorted data in seasonal form are also considered for 

the performance of the different algorithms. 

Chapter six concludes the thesis and highlights the major contributions, in addition 

to suggestions for future work. 
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CHAPTER2 

LITERATURE REVIEW: PRINCIPLES OF SHORT TERM 

LOAD FORECASTING 

In this chapter a summary of the recently proposed techniques for power load 

forecast is presented. The main difference between the used techniques for power 

load forecast is the type of the used variables. The variables for power load forecast 

are historical load, metrological conditions, seasonal effects (daily and weekly 

cycles), special events (holidays, weekends, etc) and other random variables. 

Though the difference in nature and the type of the used variables, the ultimate goal 

of the proposed algorithms is to produce better estimation of the power load. 

2.1 Background 

Power load forecast for the STLF is an essential process in electrical power system 

operation and planning. Many economic implications of power utility, such as 

economic scheduling of generating capacity, scheduling of fuel purchases, security 

analysis, planning of energy transactions, short term maintenance scheduling, and 

dispatching of generating units are mainly operated based on accurate load 

forecasting. Hence, many approaches and methods have been suggested and applied 

to improve the forecast accuracy. Higher forecast accuracy keeps the utilities 

operation production cost at minimum level and maintains the energy system supply 

reliability [37, 85, 86]. 

One main aspect that plays an important role in determining the STLF models is the 

type of variables used. The historical variables for any STLF models can be 
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classified into several types namely; historical load, meteorological condition, 

seasonal effects (daily and weekly cycles), special events and other random 

variables [ 42, 87, 88]. 

The STLF procedures and relationships of the variables used have been discussed 

[I] and can be divided into three broad groups: 

• Load models using no weather data 

• Weather load models 

• Composite load forecasting models. 

The methods which use no weather information, essentially extrapolate the past load 

behavior [89]. Previously a wide variety of models have been developed which 

emphasize the probabilistic features of the STLF. The stochastic process with a 

Kalman filter algorithm [ 42, 43], and autoregressive moving average (ARMA) 

models [37, 38, 90] had shown that the STLF model is developed by using only 

historical load data. These stochastic models are based on determining the linear and 

nonlinear filter which could have generated the results of load demand. The methods 

show a relatively good in forecast results, thus it become one of the practical 

approach since then. Others had discussed the methods with regression techniques 

[49, 91-94] and an enhanced of time series approaches [15, 95, 96]. 

Load models which use weather variables are largely reported in the literature. The 

methods can be classified into several techniques such as expert system based 

algorithm [54, 97-100], rule-based algorithm [7, 60, 101], regression-based approach 

[92, 93], adaptive STLF by using Kalman filter and exponentially weighted 

recursive-least-squares [42, 102, 103], and priority vector based technique [104, 

1 05]. These previously discussed techniques utilize weather variables in developing 

the STLF models with encouraging results. The advent of fast computational process 

in the 90s had guided many researchers to broaden up the investigation of STLF. 

The most accepted approach in the study is Artificial Intelligence (AI). Large 

number of literatures has been reported of using this approach to STLF problem. By 
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utilizing the historical and weather data, many of the researchers used Artificial 

Neural Network (ANN) to develop their STLF models [26-28, 32, 33, 83, 84, 106]. 

Other than ANN approach, Fuzzy Logic (FL) [45, 50, 107-109], Genetic Algorithm 

(GA) [62-64], combined approach of ANN-Fuzzy [58-60, 110, Ill], ANN-ARIMA 

[112], ANN-GA [58, 62, 63] and Regression-Fuzzy [47, 49, 91] are also well 

accepted by the previous researchers. The mentioned approaches had shown an 

improvised results and the results been compared to others previous approaches. 

However some aspects of future works can still be considered to implement the 

develop models in STLF. 

So far, there is no single model or algorithm that is superior for all utilities [I, 79, 

81, 82, 113-115]. The reason is that utility service areas vary in deferent mixtures of 

industrial, commercial, and residential customers. They also vary in geographic, 

climatologic, economic, and social characteristics. Selecting the most suitable 

algorithm by a utility can be done by testing the algorithms on real data. 

2.2 Recent Methods of STLF 

Due to the importance of load forecast to the utilities, recently numerous methods 

tor power load forecast have been suggested. These methods can generally be 

classified into four categories, i.e. time series, linear and non-linear regression, 

expert system and neural network. The earlier suggested methods mainly try to 

develop the algorithm or model based on the past historical load demand data. Such 

models can then be used to estimate the future load prediction. 

2.2.1 Time Series Model 

One of the most practical and commonly used models for the load forecast is the 

time series model. Several related studies have been reported earlier by Box and 

Jenkins [80], then the finding continuously accepted by the researchers and shown 

that the results have improved significantly [15, 116-118]. The most fundamental 

time series models are the autoregressive (AR) model and the autoregressive moving 
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average (ARMA) model. In the AR model, the desired forecast load value is 

generally expressed as a linear combination of n previous load values and a noise 

term. Meanwhile, in the ARMA model, the desired forecast load value is generally 

expressed as a linear combination of n previous load values and m previous noise 

terms. However, the weather and other variables such as economic index, population 

index value, and etc, are not considered as a model inputs. Therefore, these methods 

could provide the practical model since other variables such as weather variables are 

quite inaccurate. 

2.2.2 Regression Model 

The building procedure of a regression model is to express the forecast load as a 

function of its influencing factors, such as previous load values, weather data and so 

on. Generally, the building procedure and the form of nonlinear regression models 

are much complex than linear ones [94, 119, 120]. In fact, heavy statistical analysis 

for model identification and parameter estimation is needed in the building process 

[119, 121]. 

2.2.3 Expert System 

Generally for the expert system method, the system operator is treated as an expert 

person in the load forecast activities. The expert person must be very experienced in 

this particular area. A forecast model is developed for the prediction based on the 

experience of this expert person. There is no clear or direct algorithm form for the 

forecast model developed by this expert person. The related studies were suggested 

and proposed by [97, 98, 102, 122, 123]. 

2.2.4 Neural Network 

Recently, neural network (NN) has been widely accepted in the area of the load 

torecast. The method ofNN can develop a forecast model through a training process 

to a historic data. Such a training process enables the neural system to capture the 

complex and nonlinear load weather relationships that are not easily analyzed by 

9 



using conventional methods. The trained NN model can then be used to perform the 

task of load forecast. Based on the structure of the NN and the learning algorithm, 

various NN models for load forecast are suggested and proposed. For example, for 

the feed-forward NN networks with the back-propagation learning algorithm method 

can be found from [36, 62, 68], recurrent neural networks [32, 33, 124]. Several 

models developed by using hybrid method such as [68, 123, 125-127]. 

2.3 Summary 

Since in power systems the next days' power generation must be scheduled every 

day, day-ahead short-term load forecasting (STLF) is a necessary daily task for 

utilities system planning. Its accuracy affects the production operational cost and 

reliability of the system. Under forecast of STLF leads to insufficient reserve 

capacity preparation and, in tum, increases the operating cost by using expensive 

peaking units. On the other hand, over forecast of STLF leads to the unnecessarily 

large reserve capacity, which is also related to higher production operational cost. In 

spite of the numerous literatures on STLF, the research work in this area is still a 

challenge to the electrical engineering researchers because of its high complexity. 

The estimation of the future load demand with the help of historical data is still 

challenging until now. Especially, when solving for the future load demand for the 

holidays, days with extreme weather and other anomalous days. With the 

development of a new method of modified backward forward linear prediction 

(MFBLP) algorithms; it is expected that the STLF issues could be tackled and 

potentially will improve the forecast error results. 
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CHAPTER3 

STOCHASTIC MODELS FOR POWER LOAD FORECAST 

ln some applications, it is necessary to develop models for random processes. 

Examples include signals whose time evolution is affected or driven by random or 

unknown factors, as is the case for power load forecasting. Models for random 

processes differ from those for deterministic signals in the characteristics of the 

signal that is used as input to the system. Whereas for deterministic signals the input 

signal is usually a unit sample, for random process the input signal must be a 

random process. Typically, this input will be taken to be unit variance white noise. 

3.1 Autoregressive Moving Average (ARMA) Models 

A time-series model that approximates many discrete-time stochastic processes 

encountered in practice is presented by the filter linear difference equation of 

complex coefficients, and it is given by 

p q 

x(n) =-2>P(k)x(n- k) + "f.bq(k)u(n- k) 
k=l k=O 

00 
(3.1) 

= "f.h(k)u(n-k) 
k=O 

In which x(n) is the output sequence of a causal filter (h(k) = 0 fork< 0) that models 

the observed data and u(n) is an input driving white noise sequence. Eq. (3.1) 

determines the auto-regressive moving average (ARMA) model for the time-series 

x(n). 
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The ap(k) parameters form the autoregressive portion of the ARMA model. The bp(k) 

parameters form the moving average portion of the ARMA model. Thus, a wide 

sense stationary ARMA(p,q) process may be generated by filtering the unit variance 

white noise u(n) with a causal linear shift-invariant filter havingp poles and q zeros, 

and it is described as 

(3.2) 

Therefore, a random process x(n) may be modeled as an ARMA(p,q) process using 

the model shown in Figure 3.1, where u(n) is unit variance white noise. 

u(n) H(z)= Bq(z) 
A/z) 

x(n) 

Figure 3.1 Modeling a random process x(n) as the response of a linear shift

invariant filter to unit variance white noise. 

IfEq. (3.1) is multiplied by x*(n-m) and the expectation taken, the result is known as 

Yule-Walker equation [74], given as, 

" rx(k) + 'f.a/l)rx(k -I)= cq(k) (3.3) 
1~1 

Where rx(k) is the autocorrelation sequence (ACS) of x(n) and the sequence cq(k) is 

the convolution of bq(k) and h • ( -k) 

q-k 

cq(k) = bq(k) *h. ( -k) = 'f.bq(l + k)h.(l) (3.4) 
1~0 
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Since h(n) is assumed to be causal, then cq(k) = 0 fork> q and the Yule-Walker 

equations for k > q are a function only of the coefficients ap(k), 

p 

r,(k)+ L,aP(l)r,(k-1)=0 ; k > q (3.5) 
1~1 

The auto-regressive parameters of an ARMA model are related by a set of linear 

equations to the autocorrelation sequence. Expressing (3.5) in matrix form for 

k = q+ 1, q+2, ... , q+p, hence 

r,(q) rx(q+1) rJq- p+1 aP(I) r,(q + 1) 

r,(q + 1) rx(q) rJq- p+2) aP(2) r,(q+2) 
(3.6) = 

r,(q+ p-1) r,(q+p-2) r,(q) aP(p) rx(q+ p) 

Which is a set of p linear equations in the p unknowns, ap(k).These equations are 

referred to as the Modified Yule-Walker's equations. 

Once the coefficients ap(k) have been determined, the next step is to find the MA 

coefficients, bq(k). An MA(q) process may be generated by filtering unit variance 

white noise u(n) with an FIR filter [112, 117, 128] of order q as follows: 

q 

x(n)= LA(k)u(n-k) (3.7) 
k~O 

The Yule-Walker equations relating the ACS to the filter coefficients bq(k) are 

q-lkl 
rx(k) = bq(k)*b;(-k) = L b/1 +lklb;(l) (3.8) 

1=0 

Note that, unlike the case for an auto-regressive process, these equations are 

nonlinear in model coefficients bq(k). Therefore, even if the ACS were known 
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exactly, finding the coefficients bq(k) may be diflicult. Instead of attempting to solve 

the Yule-Walker equations directly, another approach is to perform a spectral 

factorization of the power spectrum Px(z). Specifically, since the autocorrelation of 

an MA(q) process is equal to zero for lkl>q, the power spectrum is a polynomial of 

the form 

q 

P,(z) = ~>x(k)z-k = O"~Q( z }Q' (1 I z') (3.9) 
k=-q 

Where Q(z) is a minimum phase polynomial of a degree q. 0"
0 

=bq(O) and Q(z) is the 

minimum phase version of Bq(z) that is formed by replacing each zero of bq(z) that 

lies outside the unit circle with one that lies inside the unit circle at the conjugate 

reciprocal location [74]. Thus, given the autocorrelation sequence ofMA(q) process, 

the model for x(n) could be determined. 

From the autocorrelation sequence rx(k) where for the polynomial Px(z) and factor it 

into a product of a minimum phase polynomial, Q(z), and a maximum phase 

polynomial Q'(llz*). The process x(n) may then be modeled as the input of the 

minimum phase FIR filter and the formulation is given by 

q 

H(z) = u 0Q(z) = u 0 Lq(k)z-k (3.10) 
k=O 

As an alternative to spectral factorization, a moving average model for a process 

x(n) may also be developed using Durbin's method [74]. This approach begins by 

finding a high-order all pole models Ap(z) for the moving average process. Then by 

considering the coefficients of the all-pole model ap(k) to be a new "data set", the 

coeflicients of a qth-order moving average model are determined by finding a qth

order all-pole model for the sequence ap(k). Once the high-order all-pole model for 

x(n) has been found, it is then necessary to estimate the MA coefficients bq(k) from 

all-pole coefficients ap(k). Thus, the equation becomes 
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l 
A (z)~--=------

P Bq(z) bq(O)+ "f.b,/k)z-k 

(3.11) 

k=l 

Then l!Bq(z) represents a qth-order all-pole model for the "data" a(k). The 

coefficients of the all-pole model for a(k) are taken as the coefficients of the moving 

average model. Typically, the model order p is chosen so that it is at least four times 

the order q of the moving average process [72]. 

3.2 The Autoregressive (AR) Models 

A wide-sense stationary autoregressive process of order p is a special case of an 

ARMA(p,q) process in which q = 0. An AR(p) process may be generated by filtering 

unit variance white noise, u(n) with an all-pole filter of the form 

H (z) = __ P_,bq_(O_) __ 

1 + ~_>P(k)z-k 
k=l 

(3.12) 

Just as with ARMA process, the autocorrelation sequence of an AR process satisfies 

the Yule-Walker equations 

(3.13) 

Writing these equations in a matrix form for k =1,2, ... , p, using the conjugate 

symmetry of rxx(k), we have 
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rx(O) r;(l) r;(2) r;(p -1) aP(1) rx(l) 

r,(1) rx(O) r;(l) r;cp-2) aP(2) rJ2) 

r,(2) rx(l) rx(O) r; (p -3) aP(3) = rx(3) (2.14) 

r,(p -1) rx(p-2) rxCp- 3) rx(O) aP(p) rx(P) 

Therefore, given the autocorrelation r,(k) fork =0,1, .. , p we may solve (3.14) for 

the AR coefficients. These equations may be solved recursively using Levinson

Durbin Recursion [71, 72, 129] which led to a number of important discoveries 

including the lattice filter structure. 

3.3 Lattice Methods for AR Modeling 

A close relationship exists between a linear prediction filter and an AR process. If 

the random process x(n) is generated as an AR(p) process and the order of the linear 

predictor m = p, then the predictor coefficients will be identical to the AR 

parameters. This relationship is exploited by several algorithms in finding the AR 

coefficients through linear prediction [130]. 

Consider the forward linear prediction estimate 

p 

£1 (n) =-l:a: (k)x(n- k) (3.15) 
k=l 

of the sample x(n), where a~ (k) is the forward linear prediction coefficients at time 

index, k. The hat 1\ is used to denote an estimate and the superscript f is used to 

denote that this is a forward estimate. The prediction is forward in the sense that the 

estimate at time index n is based on p samples indexed earlier in time. The complex 

forward linear prediction error is 
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e~(n) = x(n) -x; (n) (3.16) 

The Eq. (3 .16) has a real variance 

(3.17) 

Where E {.} denotes the expected value. 

In similar way to forward prediction a backward linear prediction error estimate 

p 

x~(n) =-2>~(k)x(n +k) (3.18) 
k=l 

may also be formed, in which a~(k) is the backward linear prediction coefficient at 

time index, k. A superscript b is used to tag elements associated with the backward 

linear prediction estimate. The prediction is backward in the sense that the estimate 

at time index n is based on m samples indexed later in time. The backward linear 

prediction error is 

e~(n) = x(n- m) -x~(n- m) (3.19) 

The Eq. (3.19) has the real variance of 

(3.20) 

If the Levinson-Durbin recursiOn [71, 72, 131] is substituted for a£(k) or 

at (k)=a£* (k) in the Eq. (3.15) and (3.18) for the forward and backward linear 

prediction errors, then it is simple to see that 
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ej+l (n) == ej (n) + r j+le~ (n -1) 

e.b +I ( n) == eb ( n - 1) + 1' e1
1 ( n) 

I J J+l 

(3.21) 

Since the lattice filter provides an alternative parameterization of the all-pole filter, 

i.e., in terms of its reflection coefficients, formulating the all-pole signal modeling 

problem as one of finding the reflection coefficients that minimize some error may 

also be considered. In the following section two such lattice methods for signal 

modeling including Burg's method, and the modified covariance method are 

observed. 

3.3.1 Burg's Method 

Previously, Burg developed a method for spectrum estimation known as maximum 

entropy method [78]. As part of this method, which involves finding an all-pole 

model for the data, he proposed that the reflection coefficients be computed 

sequentially by minimizing the mean-square of the forward and backward prediction 

error [78, 132]. 

(3.22) 

Now, the value of the reflection coefficients r~b may be found, which minimizes 

c·Jb by setting the derivates of cjb with respect to ( rf) * equal to zero as follows: 
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a . sf"= a . E[I{Ief(n)l2 +je)Cnll'}j 
a(r:') a(r:') "=J (3.23) 

=E[~{ef(nJ[eJ 1 (n-IJ]' +[eJ(nJ]' e{1(nl}j=o 

Substituting the error update equations for ef (n) and [e5Cnl r , which are similar to 

those given for ef+1(n) and [e5+1(n)]* in (3.21), and solving for r? we find that the 

value of r? that minimizes sf' is 

N 

2L>J_1 (n)[ e~_1 (n -1) J 
rJ" = ---;-c-"'"="-; ______ _ 

1 

f{fef_~(n)f 2 +fe;_l(n-1)1'} 
n=J 

(3.24) 

It is important to indicate that sequentially minimizing &: by using Burg's method 

guarantee that the reflection coefficients are bounded by one in magnitude and thus, 

the AR model is stable. 

3.3.2 The Modified Covariance Method 

In the previous section, Burg recursion which finds the reflection coefficients for an 

AR model by sequentially minimizing the mean of the squared forward and 

backward prediction errors is described. In this section, the modified covariance 

method or forward-backward algorithm for AR signal modeling is observed. As with 

Burg algorithm, the modified covariance method minimizes the mean of the squares 

of the forward and backward prediction errors, 

(3.25) 
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The difference, however, between the two approaches is that, in the modified 

covariance method, the minimization is not performed sequentially. In other words, 

for a pth-order model, the modified covariance method finds the set of reflection 

coefficients or, equivalently, the set of transversal filter coefficients ap(k), that 

jb 
mmimize & p . 

jb . jb 
To find the filter coefficients that minimizes & P the denvates of 5 P with respect 

* to a P (l) equal to zero for l = 1, 2, .. . ,pare set. Since 

p 

e~(n)=x(n)+ Ia~(k)x(n-k) (3.26) 
k~I 

and 

p 

e!(n) = x(n- p) + Ia~*(k)x(n- p +k) (3.27) 
k~l 

then 

(3.28) 

Substituting Eq. (3.26) and (3.27) into (3.28) and simplifying, the normal equations 

for the modified covariance method are given by 

p 

L [rx(l, k) + r,(p- k, p -l)ja~ (k) = -[rx(l,O) + r,(p, p-I)]; l = 1, ... , p (3.29) 
k=i 
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where 

N 

1~(/,k) = Ix(n -k)x'(n -I) (3.30) 
n=p 

For the modified covariance error, the orthogonality condition in (3.28) to express 

jb 
5 p is used as follows 

(3.31) 

f b 
Substituting the expression given in Eq. (3.26) and (3.27) for e p (n) and ep (n) and 

simplifying, gives 

p 

s;b =rx(O,O)+rx(p,p)+ Ia(k)[rx(O,k)+rx(p,p-k)] (3.32) 
k=l 

One of the properties of the modified covanance method is that the reflection 

coefficients are not guaranteed to be less than one in magnitude. As a result, it is 

possible for this method to produce an unstable model. 

3.4 Box-Jenkins ARIMA Method 

The autoregressive integrated movmg average (ARIMA) or often called the 

Box-Jenkins method is a univariate approach which is built on the premise that 

knowledge of past values of a time series is sufficient to make forecasts of the 

variable. Briefly, Box-Jenkins method involves the following steps: 

Step one is a model identification one, involves the companson of estimated 

autocorrelation functions (ACF) and partial autocorrelation functions (P ACF) of 

known ARIMA processes. Given a class of ARIMA models from step one; their 
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parameters are to be estimated from the historical senes usmg nonlinear least 

squares. In step three a diagnostic checks are applied to determine any possible 

inadequacies in the model, and the process is repeated if any are found. Finally, 

having arrived at an adequate model, "optimal" forecasts are generated by recursive 

calculation. This algorithm is given in details in [21, 80-82, 95, 116, 133]. 

Generally speaking, Box-Jenkins' ARMA method can only be used with stationary 

time series. In practice many time series are non-stationary including the power load 

data series. Consequently, one possible way of handling non-stationary series is to 

apply differencing to the data, so as to make them stationary. The first differences, 

namely x(n)- x(n -1) = (1- B)x(n), may themselves be differenced to give second 

differences and so on. The dth differences may be written as (1- B)d x(n), where B 

is backward shift operator, such that Bx(n) = x(n -1). If the raw data series is 

differenced d times before fitting an ARMA (p,q) process, the model is said to be an 

ARIMA (p,d,q) process; where the letter 'I' in the acronym stands for integrated and 

d denotes the number of differences. However, Box-Jenkins' ARMA (ARIMA) will 

be revisited in Chapter 4 for more detailed explanation. 

3.5 Conclusion 

In this chapter, the foundations of stochastic models for data series are lied out. The 

auto regressive moving average (ARMA) as a general model for time-series, is 

discussed. The major drawbacks of ARMA which mainly come for the necessity for 

nonlinear solutions of the moving average part, are outlined. Durbin's ARMA and 

Box-Jenkins ARMA are explained as possible solutions to ARMA coefficients. In 

the second part of this chapter, the autoregressive model is outlined and its 

relationship with the lattice structure is explained. Burg is thoroughly outlined, since 

it is widely used for power load demand time-series and it will be used later for the 

comparison with the proposed algorithm. The modified covariance as AR-based 

algorithm is also explained and its form of least squares solution to the filter 

coefficients is outlined. This will help deriving the proposed algorithm in Chapter 4. 
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CHAPTER4 

A MODIFIED FORWARD BACKWARD LINEAR PREDICTION 

(MFBLP) ALGORITHM 

4.1 Introduction 

One of the short term load forecast (STLF) methods that received significant 

attention in literature is the autoregressive-moving average (ARMA). Because of the 

nonlinear nature required for ARMA's algorithms, all existing solutions to this 

problem appear to suffer from one or more drawbacks, as explained briefly in the 

following: 

Several methods may end up in a hard failure mode. This means that the 

identification algorithm may return an invalid model or the algorithm cannot 

be carried out to completion because, as a result of a step during its 

execution, a parameter set outside the class of permissible ones arises for 

which no provisions have been adopted. This may happen for moment fitting 

procedures, as well as the methods that first estimate the AR parameters and 

then the MA. 

• Maximum-likelihood methods that depend on search over the parameter 

space involve significant computations and are not guaranteed to converge, 

or they may converge to the wrong solution. 

Finally, some methods may be inaccurate (e. g., significantly biased) in finite 

23 



samples. This is the case of with Durbin's two stage least-squares method 

[71-73], and with the approximate subspace methods that enforce positivity 

ofthe estimated MA spectrum based on [74]. 

Though the all-pole models have less degree of freedom than ARMA, they have 

attracted the attention for their linear nature and their efficient solution to STLF 

problem especially in short data records. However, in long data records, as it is the 

case with the most of power loads time series, the required number of all-pole 

coefficients dramatically increases making most of the known algorithms less 

efficient in estimating their values and accordingly less accurate in modeling the 

power load data. 

In this chapter an AR algorithm designed for long data records is proposed. The 

algorithm divides the data record into segments and searches for AR coefficients 

that simultaneously model all of them with least means squared errors. 

4.2 Modified Forward-Backward Linear Prediction (MFBLP) Algorithm 

Assume them-points data sequences x(l), x(2), ... , x(m) are to be used to estimate 

the p-th AR parameters. Since, with AR algorithms the order of the model is 

proportional to the length of data record [73, 134, 135]. In order to avoid using large 

orders with long data records (as in the thesis, three years hourly data), it is 

considered that the segmentation of the m-points data sequence into Q segments of 

N samples each. 

Assume one segment of data out of the available Q segments. Because forward and 

backward linear predictions have similar statistical information [73], it seems 

reasonable to combine the linear prediction error statistics of both directions in order 

to generate more error points. The net result should be an improved estimate of the 

auto-regressive parameters. 
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Therefore, the matrix form of (N-p) forward and the (N-p) backward linear 

prediction samples representing the Q segments and N samples are formulated by 

the following steps of equations, and it is given by 

Where 

x(p -1) 

x(p) 

x(p- 2) 

x(p -1) 

x(m-2) x(m-3) 

x(O) 

x(1) 

x(m- p -1) 

z{ (q) = [x(p + k -I) x(p + k- 2) · · · x(k)Y 

Where k = 0, I, 2, ... , m-p-I. 

(4.1) 

(4.2) 

(4.3) 

The linear predicted array outputs corresponding to the forward data matrix D~ ( q) , 

can be described as 

w; (q) = [x(p) x(p + 1) ... .xcm -l)Y (4.4) 

The similar approach from the above forward linear prediction, the (m-p) sub vectors 

in the backward direction is drawn as follows 
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x'(p-l) x'(p-2) x' (0) 

D~(q)= 
x' (p) x'(p-1) x' (1) 

(4o5) 

x'(m-2) x'(m-3) x'(m-p-l) 

(406) 

Where 

x: (t) = [x' (k + 1) x' (k + 2) .. 0 x' (k + Ll (4o7) 

k = 0, I, 2, 0 0 0 , m-p-10 

The predicted array outputs corresponding to the backward data matrix D~(t), are 

gtven as 

(4o8) 

Therefore, with the combination of forward and backward linear predicted algorithm 

the MFBLP data matrix can be described as 
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x(p -1) x(p- 2) x(O) 

x(p) x(p -1) x(1) 

oJb = 
x(p- 2) x(p- 3) x(m- p -1) 

x* (1) x* (2) x*(p) (4.9) 

x* (2) x* (3) x* (p + 1) 

x*(m- p) x* (m- p + 1) x*(m-1) 

Assume that wfb is the desired response at the predictor output of the oJb , which 

can be defined as 

wfb = [x(p) x(p + 1) ··· x(m -1) .X* (1) .X* (2) ···.X* (m- p -I)Y (4.10) 

With the f, matrix for the MFBLP prediction coefficients, where f, is given by 

( 4.11) 

Hence the MFBLP model can be written in matrix form as 

( 4.12) 

For the simplicity, the Eq. (4.12) can be reduced to 

Df=w (4.13) 

Where D is the data series, f is the predicted coefficients and w is the predicted 

response (signal). 
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The (N-p) forward and the (N-p) backward linear prediction formulation in Eq. 

( 4.13) associated with the Q-segments of data series can be redefined as 

(3.14) 

Where the 2 x ( N - p) forward-backward linear prediction data matrix is given by 

x(p -1) x(p -2) x(O) 

x(p) x(p-l) x(l) 

D == 
x(p-2) x(p -3) x(m- p-l) 

q x* (1) x* (2) x*(p) (3.15) 

x* (2) x* (3) x*(p+l) 

x*(m-p) x*(m-p+l) x*(m-l) 

Let w denotes the desired response at the predictor output, given by 

wq == [x(p) x(p + 1) ... x(m -1) x*(l) x*(2) ... x*(m- p -1)j" (3.16) 

Therefore, the coefficients of MFBLP algorithm is described as 

(3.17) 

By forming the data matrix Dq in corresponds to each data segment, Q, and 

arranging the resultant matrices in the following form 
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(3.18) 

The corresponding predicted vector to matrix D is defined as 

w== (3.19) 

Hence, the Eq. ( 4.17), ( 4.18) and ( 4.19) can be rewritten and summarized as, 

Df=w (3.20) 

A well known criterion called the Least-Squares, will be used to obtain a solution to 

Eq. (4.20) for the predictor coefficient vector f. This solution will guarantee the 

minimum sum of squared values ofthe predicted errors [51, 136, 137]. Since the 

number of the predicted values has been significantly increased by segmentation of 

the data, then it is expected that the least-squares solution for the predictor 

coefficients will provide effective solution to power load forecast. 
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4.3 The Least-Squares Solution 

The general least squares will be used here to obtain a solution to Eq. (4.20) for the 

predictor coefficient vector f. This solution will guarantee the minimum sum of the 

squared values of the predicted errors. 

According to the Eq. ( 4.20), the linear predicted errors or the residuals of estimation 

are given by 

e=w-Df (4.21) 

and the sum of squared errors, is 

(4.22) 

By substituting Eq. (4.20) into Eq. (4.22), the dependence of the sum of squared 

errors on the predictor coefficients, can be expressed as follows 

(4.23) 

Now, by differentiating Eq. (4.23) with respect to the f, the gradient vector can be 

expressed as 

(4.24) 

As it is clear the sum of squared errors reaches its minimum value when the gradient 

vector is zero. Then from Eq. (4.24), the formulation can immediately deduce to 

(4.25) 
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Thus, the predictor coefficients that give the least squares errors are obtained as a 

solution to Eq. (4.25). However, this solution is unique only when the matrix D is 

full rank. When this condition is satisfied the matrix DHD is nonsingular and the 

solution is unique, given as 

(4.26) 

Thus the predictor coefficients that give the least squares errors are obtained as a 

solution to Eq. (4.26). However, this solution is unique only when the nullity of the 

matrix D is zero [138]. The nullity of a matrix denoted as null (.) is defined as the 

dimension of the matrix null space. In other words, the least-squares solution is 

unique when the matrix D is of full rank. When this condition is satisfied, the p-by-p 

matrix D"D is nonsingular and the solution is unique, given as 

f=(DHntnHw 

f=D#w 

Where D" is called the pseudo-inverse of the matrix D, and it is given by 

(4.27) 

(4.28) 

In some particular conditions, it may be facing with the data matrix D that has 

linearly dependent columns; meaning that there is no longer null (D) = 0. 

Consequently, then it will create a new situation where the decision has to be made; 

on which of an infinite number of possible solutions to work with for the described 

least squares solution. This issue can be solved by developing a general definition of 

a pseudo-inverse that guarantees a unique least-squares solution even with 

null (D) ;zEl [138). The general pseudo-inverse solution is unique in that it is the only 

solution that satisfies two requirements: 

• It produces the minimum prediction errors or estimation residuals, and 

• It has the smallest Euclidean norm possible. 
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4.4 Summary of the MFBLP Algorithm 

A brief summary of the MFBLP algorithm applied to power load demand data is as 

follows: 

I. The power load demand data x(1), x(2), .. . , x(n) is formed. 

2. The data series is segmented into Q segments and N number of samples for 

each segments as indicated in Eq. ( 4.18). 

3. From the data matrix, the optimum number for Q and N are obtained. 

4. The estimation data matrix (in-sample data) is then estimated. 

5. Finally, the value of fL are calculated using Eq. (4.21). 

4.5 The Optimum Length of the Data Segments and Predictor Order 

In this section we will try to find the best values for Q, N, and L. Three years data 

load demand record collected by NEMMCO in NSW, Australia, between the 

beginning of 2005 and the end of 2007, is used for our study. The first two years 

hourly data (17520 samples) are used for model extraction and the remaining year of 

data is used for model validation. The mean average peak error (MAPE) is used as a 

metric indicate the accuracy ofthe model in predicting data. 

In the first experiment, the two years 17520 data samples are segmented into Q 

segments of different lengths N. The different arrangements of Q and N are shown 

in Table 4.1. 
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Table 4.1 Q and N for the NSW two-year hourly load demand data 

8760 

3504 

1752 

730 

48 365 

Next, the predictor order (L) is varied from 0.1 N to 0.25N and the best order of the 

MFBLP predictor is defined. As indicator of performance, the MAPE value is 

calculated for each L over the validation year of data. Since the MAPE values are 

function of the leading forecast time, they are calculated with three different leading 

times over the validation year of data: 

I) I hour ahead, 

2) one day ahead, and 

3) one week ahead. 

The results are included in Tables 4.2, 4.3, and 4.4. Table 4.2 shows the MAPE 

values of MFBLP algorithm as a function of L in case of 1 hour ahead forecast. The 

MAPE values are calculated from 350 x 24 data samples over the validation year. 
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Table 4.2 The MAPE values of the MFBLP as a function of Lin 1-hour ahead 

forecast 

1.16 

1.19 0.88 

1.21 1.18 1.07 0.89 

1.20 1.18 1.05 0.85 

1.19 1.05 0.83 

In Table 4.3, we have the MAPE values calculated with one day leading time (24 

hours ahead forecast) over the 350 days of the validation year. 

Table 4.3 The MAPE values ofthe MFBLP as a function ofL in 24 hours-ahead 

forecast 

The results in Table 4.4 shows MAPE values of the MFBLP calculated with one 

weak leading time (168 hours ahead) over the 50 weeks of the validation year. 
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Table 4.4 The MAPE values of the MFBLP as a function of Lin 168 hours-ahead 

forecast 

4.75 4.51 

4.68 4.62 4.42 

4.66 4.62 4.40 

The results in Table 4.2 to 4.4 indicate clearly that the MFBLP is reaching its best 

performance when L = 0.25N. Now, if we look into the 0.25N columns in 

Tables 4.2, 4.3, and 4.4, we can easily find that the MFBLP is achieving its best 

performance with the 5th segmentation, namely when Q = 48 and N = 365. Having 

obtained the best values for Q and N at L = 0.25N, would the MFBLP algorithm 

show any further improvement with increased L? In order to answer this question, L 

is varied over the range from O.lN to 0.65N and the MAPE values are calculated and 

depicted in Figure 4.1. 
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Figure 4.1 MAPE values of the MFBLP algorithm as a function of predictor order 

Figure 4.1 shows clearly that the MFBLP is achieving its best performance for 

L = 0.25N. For higher values than L = 0.25N, the algorithm is showing a relatively 

constant behavior till L = 0.55N, where it starts to show some signs of deterioration 

with increased L. Thus, we chose L = 0.25N as the best value for the predictor order. 

In the second experiment, the computational time of the MFBLP is found for the 

different segmentation schemes. The algorithm is written in MATLAB 7.2 and run 

on Pentium 4 machine. L is considered to be 0.25N and N = 17520 samples (two 

years). The results are shown in Table 4.5. 
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Table 4.5 The computational time of the MFBLP algorithm with L = 0.25N and 

N = 17520 samples as a function of the different segmentations 

Segmentation 3 

Segmentation 4 

The results in Table 4.5 show clearly that Segmentation-S is g1vmg the least 

computational time for the MFBLP algorithm. This will add another important 

factor to the smallest MAPE value which obtained in the first experiment, in order to 

consider Segmentation-S as the best one for the MFBLP algorithm. 

Based on the obtained results in the two above experiments it is found that the 

MFBLP is achieving its optimum performance in terms ofMAPE and computational 

time with Q = 48 (in case of 17520 data samples) and L = 0.25N. 

4.6 Conclusion 

In this chapter, the proposed MFBLP algorithm is thoroughly described as a solution 

to power load forecast problem, and its optimum parameters are experimentally 

obtained. The algorithm is based on the segmentation of the power load demand data 

samples into Q segments and finding the forward back linear prediction data matrix 

for each segment. From the Q data matrices an overall matrix is obtained and the 

least squares criterion is used to find the predictor coefficients. Three years data load 

demand record collected by NEMMCO in NSW, Australia, between the beginning 

of 2005 and the end of 2007, is used to find the best values for the number of 
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segments (Q) and predictor order (L) as a function of segment length (N). Two 

metrics are used as performance indicators of the MFBLP, which are the MAPE and 

the computational time. The results shows that the best value of Q with two years 

data samples (17520 samples) is 48 and the best value for the predictor order as a 

function of segment length is 0.25N. 
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CHAPTERS 

POWER LOAD TIME SERIES: CHARACTERISTICS AND 

PROCESSING 

5.1 Introduction 

In general, power load time series is a complex type of signals. In this chapter we 

address the major characteristics of the power load time series concentrating on the 

periodical or seasonal behavior of the signal. The redundancy issue is also addressed 

and the differencing techniques to reduce redundancy in the signal are discussed. 

Real power load demand time series are collected by the National Electricity Market 

Management Company Ltd (NEMMCO) in four Australian states and used for this 

study. The data is an hourly one collected over the duration of three years in the 

regions of New South Wales (NSW), Queensland (QLD), South Australia (SA) and 

Victoria (VIC). 

5.2 Analyzing the Seasonal Behavior of the Power Load Time Series 

In this section, the daily, the weekly, and the seasonal periodic behaviors of the 

hourly power load time series of the four Australian states, are addressed and 

thoroughly analyzed. Two years of hourly data collected over the years 2005 and 

2006 is used for this study. 
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5.2.1 New South Wales (NSW) 

In order to show the seasonal periodic behavior of NS W power load time series, the 

two years data is shown Figures 5 .1. 
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Figure 5.1 Two years of hourly power load demand ofNSW 

To show the weekly and daily periodic patterns, respectively, three weeks of data are 

depicted in Figure 5.2 and seven days in Figure 5.3. 
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Figure 5.2 Three weeks of hourly power load demand ofNSW 
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Figure 5.3 Seven days of hourly power load demand ofNSW 
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As shown in Figure 5.1, 5.2 and 5.3, the power load time series of NSW exhibits 

well-defined daily, weekly and seasonal patterns. Figure 5.1 shows different 

dynamic range for the summer and winter patterns from fall and spring. The reason 

is directly related to the higher rates of power consumption, in terms of heating and 

cooling, during winter and summer than in spring and fall. Figure 5.1 also shows 

that the base load is around 6000MW and the peak load is about 13000MW. This 

means that the dynamic range of NSW power load demand is approximately 

7000MW, indicating high level of fluctuation. 

5.2.2 Queensland (QLD) 

In similar way to above NSW results, Figures 5.4, 5.5 and 5.6 shows the different 

forms of seasonality in QLD power load data series. 
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Figure 5.4 Two years of hourly power load demand ofQLD 
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Figure 5.5 Three weeks of hourly power load demand ofQLD 
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Figure 5.6 Seven days of hourly power load demand of QLD 
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Figure 5.4 shows the seasonal behavior of the QLD power load data series. Because 

of the less extreme whether in comparison to NSW, the QLD time series is showing 

similar behavior for winter, spring, and fall and slightly higher pattern for summer. 

This makes the dynamic range ofQLD time series less than NSW. From Figure 5.4, 

it is evident that the base load is around 4500MW and the peak load is almost 

8000MW, making the dynamic range of approximately 3500MW. The shown daily 

and weekly pattern in Figures 5.5 and 5.6, respectively, are similar to NSW. The 

patterns are uniform in their periodic behavior with slight changes over the 

weekends. 

5.2.3 South Australia (SA) 

Figures 5. 7, 5.8 and 5.9 show, respectively, the power demand over two years, three 

weeks and seven days. 
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Figure 5. 7 Two years of hourly power load demand of SA 
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Figure 5.8 Three weeks ofhourly power load demand of SA 
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Figure 5.9 Seven days of hourly power load demand of SA 
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Figure 5.7 shows clearly the impact of the extreme weather in SA on the power load 

demand. The seasonal behavior of the data is clear but with considerable amount of 

irregularities, making load forecast in SA much more difficult than in NSW and 

QLD. This high level of seasonal fluctuation, find its way to the weekly patterns in 

Figure 5.8 through less similarity factor over the considered three weeks. Figure 5.9 

shows that the irregularities with SA data are not confined to the weekend but 

extend through the weekdays. 

5.2.4 Victoria (VIC) 

Figures 5.1 0, 5.11 and 5.12 show the power load demand in VIC for the duration of 

two years, three weeks and seven days, respectively. 
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Figure 5.10 Two years of hourly power load demand of VIC 
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Figure 5.11 Three weeks ofhourlypower load demand ofVIC 
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Figure 5.12 Seven days of hourly power load demand of VIC 
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As shown in Figure 5.1 0, 5.11 and 5.12, the power load time senes for VIC is 

showing annual, weekly, and daily periodic behavior in similar way to the other 

states. The periodic patterns are well-defined except for some irregularities during 

summer time. The power load demand in VIC is almost similar to the QLD and the 

dynamic range is approximately 4500 MW. 

5.3 Demand Curves Affected by the Anomalous Day 

During anomalous days the majority of industries and commercial activities are 

significantly reduced, if not totally ceased. This produces large drop in power 

consumption which may initiates different forms of variation in the load demand 

time series. For example, the New Year day initiates a particular pattern of variation 

over the first week of the year different from the ordinary weeks. The same can be 

said about Australia day, Anzac day and Queen's Birthday. 

Figures 5.13 to 5.16 illustrate a few examples of the demand curves during 

anomalous days. 
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Figure 5.13 The load demand over the days of the week of year 2006 in NSW, 

initiated by the New Year day 
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It is clear trom Figure 5.13, that the New Year day affects the power load demand 

not only over the following days, but also over the preceding days. For instance, the 

day before the New Year day shows power load of 11000 MW, which exceeds the 

average value of that day by approximately, 2000MW. It is also clear that the effect 

of this anomalous day propagates through the following days generating totally 

different pattern of variation from the rest of the year. 

The special pattern of variation, generated by the Anzac day over one week is shown 

in Figure 5.14. 
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Figure 5.14 The initiated load demand by Anzac day in QLD over one week 

in April2005 

Figure 5.14 shows clearly the different pattern form ordinary weeks, because of 

Anzac day. In similar way to New Year day, the effect of the Anzac day is 

propagating backward and forward affecting the load demand in both sides. The 

weekly patterns of other anomalous days, Australia day and Queen's Birthday, are 

shown, respectively, in Figures 5.15, and 5.16. 
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Figure 5.15 The initiated load demand by Australia day in SA over one week 

in January 2005 
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Figure 5.16 The VIC load demand curves for one week during the Queen's Birthday 

in June 2005 
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5.4 Data Processing for Redundancy Reduction 

Due to the daily and weekly seasonal behaviors of the power load demand, the data 

is showing great amount of interdependency, which makes it highly redundant. 

Since, the building up suitable model that fits the data record is in the process and, 

the redundancy from the data before constructing the model is removed in order to 

avoid model overload. Many techniques for redundancy mitigation in time series 

were proposed over the last few decades, with different degrees of efficiency [13, 

14, 37, 80, 139-141]. However, one of the best and most used techniques is the 

differencing [1, 80, 81]. 

In this section, the differencing technique is outlined through Box-Jenkins ARIMA 

and the seasonal ARIMA (SARIMA) algorithms. 

5.4.1 Box-Jenkins ARIMA Algorithm 

Consider the power load time-series x(1),x(2), .. . ,x(n). The first differencing (1-th 

difference) ofthe data is given as 

x(n)- x(n- k) (5.1) 

Where k is a lag parameter. 

The Eq. (5.1) may further difference in order to produce the d order of differencing 

(d-th difference). The Equation (5.1) may rewritten as 

x(n)- x(n- k) = (1- B)x(n) (5.2) 

Where B is backward shift operator, such that Bx(n) = x(n -1). 
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The d-th differences may be written as (1- 8)'1 x(n), where k = I. If the original raw 

data series is differenced d times before fitting an ARMA (p, q) process, then the 

model for the original un-differenced series is said to be an ARIMA (p, d, q) process 

where d denotes the number of differences taken. 

Generally, the ARMA (p, q) may be written as 

1/J(B)x(n) = B(B)a(n) (5.3) 

Where 1/J(B),B(B) are the polynomials in B of finite order p, q, respectively. From 

Eq. (5.2) and (5.3), it is generalized that an ARIMA model can be represented by 

1/J(B)(l- B)d x(n) = B(B)a(n) (5.4) 

When fitting AR and MA models, the main difficulty is assessing the order of the 

process, rather than estimating the coefficients. Moreover, with ARIMA models, 

there is an additional problem in choosing the required order of differencing such as 

the value of d. Some formal procedures are available, including testing for the 

presence of a unit root [142-144]. However, many literatures simply difference the 

series until the autocorrelation value declines to zero. First-order differencing is 

usually adequate for non-seasonal series, albeit the second-order differencing is 

occasionally needed. Once the redundancy in the data series has been removed, an 

ARMA model can be fitted to the differenced data in the usual manner. 

5.4.2 Box-Jenkins SARIMA processes 

The seasonal ARIMA abbreviated SARIMA model can be obtained as a 

generalization of Eq. (5.4). 
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Suppose the seasonal period iss. Then we may denote Bs as the operator such that 

x(n)- x(n- s) = (1- Bs)x(n) (5.5) 

A seasonal autoregressive term, for example, is one where x(n) depends linearly on 

xn-s. A SARIMA model with non-seasonal terms of order (p, d, q) and seasonal 

terms of order (P, D, Q) is abbreviated as SARIMA (p,d,q) x (P,D,Q)s model and 

can be represented by 

(5.6) 

where ¢,()are the polynomials in Bs of order P, Q, respectively. 

In order to remove the redundancy and the seasonal in the data series, we apply first 

order seasonal differencing technique. The seasonal parameters are 

S I = 24 and S2 = 168. Thus the seasonal first and second differencing can be written 

as 

x(n)- x(n- 24) = (1- B 24 )x(n) (5.7) 

and, 

x(n)- x(n -168) = (1- B168 )x(n) (5.8) 

Since the data series need to apply for double differencing, thus the SARIMA model 

is now multiplicative. Hence, we can represent the multiplicative SARIMA as 

(5.9) 

The autocorrelation functions of the raw time series of the four Australian states and 

the autocorrelation functions of the processed data according to Eq. 5.9, are shown 

in Figures 5.17, 5.18, 5.19, and 5.20. 
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Figure 5.17 The ACF ofNSW time series: a) ACF of raw data, 

b) ACF of processed data 
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b) ACF of processed data 
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It is quite clear from the tlgures above that processing the power load time series 

according to Eq. (5.9) will signitlcantly reduce the level of redundancy in the signal. 

The fast decaying ACF in the figures above indicates the adequateness of the 

differencing order in Eq. (5.9) in removing most of the redundancy in the original 

data of the four Australian states. This makes the data in the required form to be 

used with SARIMA algorithm. 

In addition to the seasonal differencing in Eq. (5.9), the implementation of 

non-seasonal difference may lead to some improvement in ACF. The additional 

non-seasonal differencing order to Eq. (5.9) is suggested by different 

studies [81, 82]. 

The implementation of one non-seasonal difference with s = 1 into Eq. (5.9), makes 

the multiplicative SARIMA of the form 

Accordingly, when fitting SARIMA models, one must first choose suitable values 

for the seasonal and non-seasonal differencing schemes. 
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5.5 Summary 

The seasonal behavior of the power load data series in NSW, QLD, SA, and VIC is 

addressed and extensively analyzed. The four data series are showing daily, weekly 

and annual patterns. The daily and the weekly patterns are clearly defined in the four 

states, whereas the annual pattern is highly dependent on the seasonal changes in the 

state. The impact of the anomalous days on the weekly daily and weekly patterns is 

also studied. 

The amount of redundancy in the considered time series is also addressed and the 

differencing technique as efficient way to reduce it is discussed. In the last part of 

this chapter, SARIMA algorithm based on seasonal and non-seasonal differencing 

schemes is introduced and made ready for the comparison with the proposed 

MFBLP algorithm in Chapter 6. 
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CHAPTER6 

RESULTS AND DISCUSSION 

To verify the performance of the MFBLP as a solution to STLF problem, the 

performance is obtained and compared with other parametric techniques, like Burg, 

and Box-Jenkins SARIMA and with nonparametric techniques, like artificial neural 

network (ANN). The optimum parameters for the MFBLP, Burg, Box-Jenkins and 

ANN are obtained and it is discussed in the section 6.3. 

Three years data load demand record collected by NEMMCO in four Australian 

states, NSW, QLD, SA, and VIC, between the beginning of 2005 and the end of 

2007, is used for our study. The first two years hourly data (17520 samples) are used 

for model extraction with the three parametric techniques and for learning phase for 

the ANN. The remaining one year of data is used for validation. The three years 

data is used without any form of manipulation, no exceptions, no corrections for 

anomalous day, vacation periods or cold snaps or unexpected events or weather. In 

addition, there are no supplementary subjective adjustments by the control operator 

or any other expert. 

The algorithms are run with raw data and with differenced (differencing) data. The 

parametric algorithms and the ANN technique are all written in MA TLAB 7.2 and 

run on Pentium 4 machine. 

60 



6.1 Metrics of Performance 

Before the study of the performance of the different algorithms and techniques is 

initiated, it is necessary to define carefully the used metrics of performance. There 

are many statistical techniques that describe how well a model fits a given sample of 

data or how well it extrapolates the data. The first type of error is called the residue 

error of the model or the goodness-of-fit and the second type is called the 

extrapolation error or out-of-sample. The commonly used metric to indicate these 

different types of error is the mean-squared error or mean absolute percentage error 

(MAPE) [39, 145, 146]. 

The error in fitting data sample y(n) or forecasting it, is given by 

e(n) = y(n)- y(n) (6.1) 

where j!(n) is the forecast or fitting of y(n). The mean error (ME) value of the 

function in Eq. (6.1) calculated from N samples, is given as 

1 N 
ME=- :Le(n) 

N n=l 

The mean absolute error (MAE) is given by 

1 N 

MAE=- Lie(n)l 
N n=l 

The mean squared error (MSE) is given by 

1 N 2 
MSE =-Lie(n)l 

N n=l 
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The mean forecast error in Eq. (6.2) is sometimes called the bias of the estimator and 

if it is of zero value the estimator is called unbiased. On the other hand, the mean 

squared error in Eq. (6.4) is called the variance of the algorithm. The smaller the 

bias and the variance values of estimator, the better is its performance. However, 

estimators with zero variance when N approaches infinity is called consistent 

estimators and those of nonzero variance for infinite number of samples are called 

inconsistent [ 14 7, 148]. 

The relative forecast error in percentage is given by 

e(n) = (y(n)- jl(n))x 100% 
y(n) 

= e(n) xlOO% 
y(n) 

The mean percent forecast error (MPE) is given by 

1 N 

MPE=- Le(n) 
N n=l 

Accordingly, the mean absolute percent forecast error (MAPE) is given as 

1 N 

MAP£=-Lie(n)l 
N n=l 

(6.7) 

(6.8) 

(6.9) 

Practically, the MAPE values are widely used in the literature of power load forecast 

to indicate the performance ofthe different techniques [115, 149, 69, 88, 150, 151]. 

In this chapter we continue with this trend and use MAPE values for performance 

assessment. 
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6.2 Forecast Horizons of Forecast 

Forecast horizon is the period for which a forecast is conducted. The forecast 

horizon is also called as forecast period or forecast steps ahead. In the chapter and in 

similar way to chapter 2, three forecast horizons are considered, namely I hour, 

24 hours and 168 hours. Commonly, this span of horizon is referred to as short term 

load forecast. In the most of forecast studies, researchers addressed the first two 

horizons [ 68, 81, 116] of forecast and some of them extended towards 48 hours 

[82, 95]. In this study, the horizon of forecast from one or two days to one-week or 

168 hours forecast is extended. This would benefit more the utilities' planner in 

arranging the power generation optimally. In practice the load system planner uses 

these forecast values in advance to plan for power plants output and to avoid 

unstable system at the load distribution site [ 45, 64, 150]. 

[n the first part of this study, the performance of the proposed MFBLP with the four 

Australian data series is explored. The performance of the MFBLP is assessed with 

raw and differenced data and the algorithm is implemented with the shown 

parameters in Table 6.1. 

Table 6.1 Data specification and the MFBLP parameters 

Estimation data 

Validation data 

Number of segments (Q) 

Length of the segment (N) 

Order of the filter (L) 
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Table 6.1 depicts the data specification and the proposed MFBLP parameters. The 

estimation data are applied to determine the model coefficients. Number of data 

samples is about two years which are 17520 hourly data samples. The data are 

gathered between January 2, 2005 and December 31, 2006. Validation data samples 

are consider unknown to the model. There is no attempt to smooth the data that has 

been done except the data differencing. The validation data are set to be 

out-of-sample and the number of data samples is about one year. The validation data 

are also hourly data samples which was collected between January 1, 2007 and 

December 31, 2007. Meanwhile, number of segments, Q, length of the segments, N, 

and order of the filter, L, are set to be 48, 365 and 90 respectively. 

6.3 The Performance of the MFBLP Algorithm with Raw and Differenced 

Data 

As indicated previously, the difference values between the predicted future data 

sample and its actual value is referred to as forecast error. The MAPE metric 

estimated from the predicted data samples over the horizon of prediction is used to 

indicate the accuracy of the forecast technique. 

In the first part of this experiment the four states raw data are implemented with the 

MFBLP algorithm. Three forecast horizons 1, 24 and 168-hours are considered and 

the predicted samples for each horizon are calculated and validated over the entire 

year of 2007. The error is calculated by comparing the actual load data and the 

predicted one over the different spans offorecast. 

In the second part of this experiment, the performance of the proposed algorithm is 

investigated with the time differenced data. Data differencing schemes of 

order 1 (d = 1) with 1-hour ahead forecast and of order 24 (d = 24) with one-day 

ahead forecast and of order 168 ( d = 168) with one-week ahead forecast. 
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To make it easy to compare, the results for the raw and differenced data are 

combined together in the same graphs and tables. First, the MFBLP is run for 1-hour 

forecast with the raw and the differenced data of NSW, QLD, SA, and VIC. The 

percentage error samples over the validation year for the four Australian states are 

shown in Figures 6.1, 6.2, 6.3, and 6.4. The 1-hour MAPE value, defined as MAPE 

value estimated from one data sample, is used to indicate the performance in case of 

!-hour ahead forecast. 

It is clear from Figure 6.l(a) that the MFBLP manages to forecast the load over the 

majority of the hours of the validation year with considerably low error (:=::1.0%). 

It is also clear that with some data points the forecast is poor so the error is high. 

This is mainly because of the anomalous days. Figure 6.1 (b) shows that the 

differencing is not of significant effect on the MFBLP performance. The reason is 

that the forward and backward sub vectors used in the data matrix D, act as data 

decorrelator removing considerable part of its redundancy [73]. 
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Figure 6.1 The MAPE values of the MFBLP algorithm in 1-hour forecast horizon 

for NSW. a) Raw data, b) Differenced data with d = 1, d =24, and d = 168 
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Figure 6.2 The MAPE values of the MFBLP algorithm in !-hour forecast horizon 

for QLD. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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It is quite clear from Figure 6.2, that the MFBLP is performing better with QLD 

time series than in NSW. The reason is the less harsh weather in QLD, which leads 

to less fluctuating data. 

Figure 6.3( a) shows that the extreme weather in SA, makes the forecast error of the 

MFBLP higher than in NSW and QLD ( ""1.5%). The little effect of the differencing 

scheme on the performance of the MFBLP algorithm is also evident in Figure 6.3(b). 
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Figure 6.3 The MAPE values of the MFBLP algorithm in 1-hour forecast horizon 

for SA. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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Figure 6.4 The MAPE values of the MFBLP algorithm in 1-hour forecast horizon 

for VIC. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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Figure 6.4 shows that the proposed algorithm is capable of forecasting the 1-hour 

ahead in VIC with reasonable 1-hour MAPE values ( ~ .0%). 

To gain more insight into the results, the overall MAPE value for the proposed 

algorithm is calculated from the 8760 samples over the year of validation. The 

results for the four data series are shown in Table 6.2 for the raw and the differenced 

data. 

Table 6.2 The MAPE values of the MFBLP in !-hour forecast scheme 

Type of data 

0.78 0.82 

0.75 0.79 

The results in Table 6.2 indicate clearly the accuracy of the proposed MFBLP 

algorithm in forecasting the data samples. The results also show great amount of 

independency of the MFBLP from the nature of the power load time series. As 

indicated before, differencing has no considerable effect on the proposed algorithm. 

Table 6.2 reflects this fact through approximately similar MAPE values between the 

raw and the differenced data. 
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In the second step of this experiment, the forecast level of difficulty is enhanced by 

extending the forecast horizon from 1-hour to 24-hours. The time differencing 

scheme of the same order number d = 1, d = 24, and d = 168 is performed. 

Figures 6.5, 6.6, 6.7, and 6.8 are showing the performance of the MFBLP over the 

days of the validation year for both raw and differenced data. MAPE values 

estimated from 24 error samples are used to indicate the performance. This form of 

MAPE is referred to as 24-MAPE values, and given as 

I 24 

24-MAPE = -I[e(n)[ 
24 n=l 

(6.1 0) 
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Figure 6.5 The MAPE values of the MFBLP algorithm in 24-hours forecast horizon 

for NSW. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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Figure 6.6 The MAPE values of the MFBLP algorithm in 24-hours forecast horizon 

for QLD. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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Figure 6.7 The MAPE values of the MFBLP algorithm in 24-hours forecast horizon 

for SA. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 

75 



" , 

20 

18 

16 

14 

~ 12 

1:: 
~ 10 

20 

18 

16 

14 

~ 
~ 12 

Days 

(a) 

Days 

(b) 

Figure 6.8 The MAPE values of the MFBLP algorithm in 24-hours forecast horizon 

for VIC. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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The results in Figures 6.5, 6.6, 6.7 and 6.8 indicate the capability of the proposed 

algorithm to extend its good estimation towards one-day ahead forecast. The results 

shows that the MFBLP has managed to keep its 24-hours MAPE values, in average, 

below 3.5 % for the raw data and below 3.2 for the differenced data. This fact is 

verified through the calculation of MAPE values over the days of the year. The 

results are shown in Table 6.3 for the different data series. 

Table 6.3 The MAPE values of the MFBLP in 24-hours forecast scheme 

Type of data 

3.2 3.03 3.36 3.07 

3.13 2.95 3.32 3.01 

In the third part of this experiment, the forecast horizon to 168 hours or one week 

ahead is extended. The performance is indicated through the calculation of the 

MAPE values over the 168 hours of each week. This form of MAPE is referred as 

168-MAPE values and it is obtained as 

1 168 

168- MAPE = -~]e(n)l 
168 n=l 

(6.11) 

The 168-MAPE values calculated over the 50 weeks of the year are shown in 

Figures 6.9, 6.1 0, 6.11, and 6.12 for both raw and differenced data. 
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Figure 6.9 The MAPE values ofthe MFBLP algorithm in 168-hours forecast 

horizon for NSW. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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Figure 6.10 The MAPE values of the MFBLP algorithm in 168-hours forecast 

horizon for QLD. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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Figure 6.11 The MAPE values of the MFBLP algorithm in 168-hours forecast 

horizon for SA. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 

80 



15 

r frf [! rfrr I 
0oUUUUUUUU~l0~~~15~LL2LOLLLL2~5WUUUJUOUUUU35~~~40~~4~5LLLW50 

15r 

[ 
10 15 20 

Weeks 

(a) 

25 
Weeks 

(b) 

rrfl rrfrrr ' 
30 35 40 45 50 

Figure 6.12 The MAPE values of the MFBLP algorithm in 168-hours forecast 

horizon for VIC. a) Raw data, b) Differenced data with d = 1, d = 24, and d = 168 
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The results in Figures 6.9, 6.10, 6.11, and 6.12 show the reliable performance ofthe 

MFBLP algorithm in one-week ahead forecast. The algorithm 168-MAPE values are 

kept below 5% over the most of the 50 weeks of the validation year. As indicated 

before, differencing has no big impact on the performance of the MFBLP. This is 

again, because of the implicit decorrelation effect of the forward and backward 

subsectors, used in the data matrix D. 

To gain more insight into the overall performances, we find the MAPE values over 

the 50 weeks. The results are shown for the four data series in Table 6.4. 

Table 6.4 The MAPE values ofthe MFBLP in 168-hours forecast scheme 

MAPE values 

Type of data 

3.75 4.78 4.12 

4.42 3.58 4.69 4.05 

The MAPE values in Table 6.4 are another indication of the acceptable performance 

of the proposed MFBLP algorithm in solving the STLF in one-week horizon of 

forecast. 

82 



ln the second experiment, the performance of proposed MFBLP algorithm is 

compared with Burg and SARIMA as parametric techniques and with the ANN as 

nonparametric technique. 

For Burg's method, it is implemented with order of L = 0.2N, as it is recommended 

by the most of literatures in area of forecasting [77, 135]. Box-Jenkins SARIMA 

model is implemented with the parameters and estimated using the generalized 

squares method. The values of the estimated parameters are shown in Table 6.5. 

Table 6.5 Estimated parameters coefficients for Box-Jenkins SARIMA model 

t/Jl ;:: 0.752 ¢2 :::: 0.026 ¢3 ;:: 0.027 

01 ::: 0.938 02 ;:: 0.611 03 ;:: 0.826 

Based on the values given in Table 6.5 the Box-Jenkins SARIMA model becomes 

0.752(1- B)0.026(1- B24 )0.027(1- B 168 )x(n) = 
0.938(1- B)0.611(1- B24 )0.826(1- B168 )a(n) 

(6.12) 

The ANN as representative of nonparametric techniques is implemented and briefly 

describe as follows: 

For an overview of this field, we refer to, for example [ 152]. ANN is usually used 

as nonlinear function predictors. They map an input space for the present and past 

values of the time series onto an output space or future values. The ANN in the 

thesis will be of the following feed-forward type. 

Xn = f(xn_I'···,Xn-m) 

= b0 + tb; tanh( a;0 + fuaijxn-J J (6.13) 
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Where tanh is the tangent hyperbolicus function. It is a nonlinear transformation, 

with a sigmoid shape. The inputs are xn-j, with} running over an index set of not 

necessarily sequential positive integers (n denotes the largest lag in the model). 

These inputs form the so-called input layer. In the second layer, which is referred to 

as the hidden layer, there are m nonlinear processing units. These units transform the 

inputs, by means of the multiplicative weights aij , the additive weights aio and the 

sigmoid functions. A weighted sum, with weights bi , over the outputs of these 

hidden units plus a shift, b0 , produces the final output. The network parameters are 

estimated by minimizing the error function 

M 

L:[fcxn-1' .. ·,xn-n,)- xn f (6.14) 
n==m+1 

where N is the number of elements in the estimation set. This error function takes all 

input vectors of the estimation set into account. It takes, of course, several passages 

over the estimation set to obtain reasonable values for the parameters aij and bi. 

More discussion of the method can be referred from the Appendix C. 

84 



In the first part of this experiment, the MFBLP is compared with Burg, SARlMA, 

and ANN using the raw data of the four Australian states. The results are shown in 

terms ofMAPE values in Tables 6.6, 6.7, 6.8, and 6.9. 

Table 6.6 The performance of the different techniques with the raw data ofNSW 

MAPE 
Forecast horizon 

3.42 4.82 

4.80 12.28 7.56 

Table 6.7 The performance of the different techniques with the raw data ofQLD 

MAPE 
Forecast horizon 

1.12 2.72 0.89 

3.31 6.15 4.72 

3.95 11.78 7.43 

85 



Table 6.8 The performance of the different techniques with the raw data of SA 

MAPE 
Forecast horizon 

3.23 1.86 

3.85 6.87 4.97 

4.78 5.35 12.98 7.96 

Table 6.9 The performance of the different techniques with the raw data of VIC 

MAPE 
Forecast horizon 

3.38 6.15 4.81 
~-- -- --- - -+------1--....._ ___ -1-----..-....J.----'----I 

4.12 4.33 12.15 7.42 

The results in Tables 6.6, 6.7, 6.8, and 6.9, show clearly the better performance of 

the proposed MFBLP algorithm to Burg, SARIMA, and ANN with the raw data of 

the four Australian states over the three horizons of forecast. With the four time 

series and over the three horizons of forecast, the proposed MFLP algorithm is 

showing the smallest MAPE values among the considered techniques. With the 

!-hour leading time forecast, the ANN shows comparable results to the MFBLP in 

the four states followed by Burg and SARIMA. But, with the 24-hours and 

168-hours of forecast horizons, the ANN deteriorates faster than Burg which 
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occupies the second place after the proposed MFBLP. SARIMA is performing the 

worst especially with the third range of forecast, where it shows considerably high 

values of MAPE. This is mainly because of the seasonality of the raw data in the 

four Australian states. 

In the second part of this experiment, the performances of the different algorithms 

are tested with differenced data. Three differencing schemes of d1 = 1, d2 = 24, and 

d3 = 168 are sequentially implemented on the four time series of the data in order to 

mitigate, respectively, the hourly, the daily, and the weekly patterns. The results are 

shown in Tables 6.1 0, 6.11, 6.12, and 6.13. 

Table 6.10 The performance of the different techniques with the differenced 

(differencing) data ofNSW 

MAPE 
Forecast horizon 

0.87 

3.32 

4.42 4.68 6.26 
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Table 6.11 The performance of the different techniques with the differenced 

(differencing) data of QLD 

MAPE 

Forecast horizon 

0.81 

3.27 

3.75 

Table 6.12 The performance of the different techniques with the differenced 

(differencing) data of SA 

MAPE 

Forecast horizon 

1.01 

3.42 

4.69 4.86 
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Table 6.13 The performance of the different techniques with the differenced 

(differencing) data of VIC 

MAPE 

Forecast horizon 

0.83 0.94 

3.30 

4.23 6.25 

lt is obvious from the results in Tables 6.1 0, 6.11, 6.12, and 6.13 that reducing the 

hourly, the daily, and weekly patterns through sequential differencing, has resulted 

in better performance by the four considered techniques. However, the degree of 

improvement varies from one technique to another. The main beneficiary of the data 

differencing scheme is the SARIMA, which achieves about 50% improvement in its 

performance and instead of occupying the last place in this comparison it moves 

forward to the third place leading the ANN technique. The MFBLP and Burg 

algorithms and to some extend the ANN technique, benefit from data differencing 

by about 10% over their performance with the raw data. This simply means that 

data differencing is not as important to the MFBLP, Burg, and the ANN as it is to 

SARIMA. This is because SARIMA is derived based on underlying principal of 

pattern free data. It is also worth mentioning that with differenced data the 

considered algorithms are showing more independent behavior of the degree of 

fluctuation in the original data. This is evident from their relatively similar MAPE 

values for the four Australian data series. 
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In the third experiment, the algorithms are tested with seasonally sorted data. The 

reason is to mitigate the seasonal pattern of the data series. To achieve this goal the 

four Australian power load demand time series, namely, NSW, QLD, SA, and VIC, 

are sorted according to the seasons of the Australian year, as shown in Table 6.14. 

Table 6.14 The date for the seasons in Australia 

Seasons Duration of time 

December 23 to March 22 

The 17520 hourly data samples over the years 2005 and 2007 (modeling years) are 

sorted into four groups of seasonal data, each of two similar seasons. This means 

that the summer group data samples are composed of summer 2005 and summer 

2006. The group data samples are the same for the other seasons. By simple 

calculation we find the number of hourly data samples used to extract the coefficient 

of the different parametric algorithm and also to train the ANN. The calculation of 

hourly data samples are as follows: 

(90 days+ 90 days) x 24 hours= 4320 samples 

The four groups of data over the years 2005 and 2006 are used to forecast their 

counterpart groups in the validation year 2007. For instance, the 4320 data samples 

of the summer of2005 and the summer of2006 are used to forecast the data over the 

summer of the validation year 2007. The same applies to other seasonal data groups. 

The MFBLP is implemented with Q = 10, N = 432, and L = 108. Burg and 

SARIMA, are implemented with their optimum order [77, 82, 95, 114]. 
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ln this experiment, the MFBLP is compared with Burg, SARlMA, and ANN using 

the four groups of raw seasonal data. The results for the seasons forecasting ofNSW 

are shown in terms ofMAPE values in Tables 6.15, 6.16, 6.17, and 6.18. 

Table 6.15 The performance of the different techniques with the 

summer data ofNSW 

MAPE 

Forecast horizon 

1.32 2.54 

3.65 6.52 

4.65 4.95 13.24 

Table 6.16 The performance of the different techniques with the 

fall data ofNSW 

MAPE 

Forecast horizon 

4.62 
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Table 6.17 The performance of the different techniques with the 

winter data ofNSW 

MAPE 

Forecast horizon 

168-hours 4.78 13.21 

Table 6.18 The performance of the different techniques with the 

spring data ofNSW 

MAPE 

Forecast horizon 
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Next, in Tables 6.19, 6.20, 6.21, and 6.22 the performance of the different 

techniques with seasonally sorted QLD data. 

Table 6.19 The performance of the different techniques with the 

summer data of QLD 

MAPE 

Forecast horizon 

2.51 

·168-h:ours 4.22 13.11 

Table 6.20 The performance of the different techniques with the 

fall data ofQLD 

MAPE 

Forecast horizon 

3.72 3.85 
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Table 6.21 The performance of the different techniques with the 

winter data of QLD 

MAPE 

Forecast horizon 

0.98 

4.12 12.95 

Table 6.22 The performance of the different techniques with the 

spring data of QLD 

MAPE 

Forecast horizon 

l:68-hol:lrs 3.87 9.98 9.78 
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Then, the experiments are done for the season's data samples of SA. The results for 

the seasonally sorted SA data are shown in Tables 6.23, 6.24, 6.25, and 6.26 

Table 6.23 The performance of the different techniques with the 

summer data of SA 

MAPE 

Forecast horizon 

14.45 

Table 6.24 The performance of the different techniques with the 

fall data of SA 

MAPE 

Forecast horizon 

6.21 
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Table 6.25 The performance of the different techniques with the 

winter data of SA 

MAPE 

Forecast horizon 

6.55 

13.52 

Table 6.26 The performance of the different techniques with the 

spring data of SA 

MAPE 

Forecast horizon 

1.12 

3.55 6.21 

l6!S· ho11rs 10.12 
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Subsequently, the experiments are done for the season's data samples of VIC. The 

forecast results for the seasonally sorted VIC data are shown in Tables 6.27, 6.28, 

6.29, and 6.30. 

Table 6.27 The performance of the different techniques with the 

summer data of VIC 

MAPE 

Forecast horizon 

2.53 

6.49 

4.32 4.59 14.04 

Table 6.28 The performance of the different techniques with the 

fall data of VIC 

MAPE 

Forecast horizon 
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Table 6.29 The performance of the different techniques with the 

winter data of VIC 

MAPE 

Forecast horizon 

2.87 2.69 

6.49 6.45 

Table 6.30 The performance of the different techniques with the 

spring data of VIC 

MAPE 

Forecast horizon 

4.26 9.93 

Tables from 6.15 to 6.30 illustrate the MAPE values for the different algorithms 

with seasonally sorted data. Generally speaking, the MFBLP and Burg are showing 

small improvement or deterioration over their MAPE values with unsorted data. The 

reason is the little data samples used to find the parameters of the autoregressive 
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model (only 4320) and accordingly the less used predictor order. This clearly 

indicates that if we had more data than two years, the MFBLP and Burg would have 

come with better results for the sorted data over the unsorted. The improvement 

achieved by SARIMA with the sorted data is far less than MFBLP and Burg. The 

reason is the insufficient data used to estimate the parameters of the autoregressive 

and the moving average of SARIMA. Since the number of SARIMA coefficients is 

more than MFBLP and Burg, the data shortage because of seasonal sorting is much 

severe with SARIMA. ANN is showing deterioration in its performance with the 

sorted data. The reason is insufficient data for the learning process of the neural 

network. In general, sorting the power load data will lead to improvement in the 

performance of the forecast techniques, if sufficient data is used. 

6.4 Conclusion 

In this chapter, the results for the forecast models are presented. The forecast 

performances of the MFBLP, Burg, Box-Jenkins SARIMA, and ANN are 

investigated. Two-year hourly data collected from the Australian states, NSW, QLD, 

SA, and VIC are used to estimate the autoregressive model coefficients of the 

MFBLP and Burg algorithms and the autoregressive-moving average models for 

SARIMA. The same data is used to train the neural network. One-year data is used 

for validation. 

In the first experiment, the algorithms are run with the raw two-year modeling data. 

The results indicate better performance by the proposed technique MFBLP over the 

rest. The algorithm shows less MAPE values maintained over the four power load 

time-series of the Australian states. 

In the second experiment, the performances are tested with differenced data in order 

to mitigate the seasonality. The results show clearly that the beneficiary of the 

differencing scheme is SARIMA. The MFBLP, Burg and ANN, are not showing 

that amount of dependency on the differencing scheme as SARIMA. The reason in 
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case of the MFBLP algorithm is the implicit decorrelation effect of usmg 

forward-backward data subsectors in constructing the data matrix D. 

In the third experiment, the performances are tested with seasonally sorted data. The 

results show, no significant improvement for all algorithms. The reason IS 

insufficient data to extract the autoregressive model for MFBLP and Burg 

algorithms and the autoregressive-moving average coefficients for SARIMA. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

A novel algorithm, MFBLP, tor autoregressive model estimation is proposed as 

a solution to STLF problem. The proposed algorithm divides the power load long 

data record into Q shorter segments of N length each, then uses the least squares 

criterion to solve for the best AR coefficients. Three years of load demand records 

collected by NEMMCO-Australia in NSW, QLD, SA, and VIC, between 

the beginning of 2005 and the end of 2007, were used to find the optimum 

parameters of the MFBLP, and to verify its solution to the STLF problem. 

The results show that the best value of Q with two years data samples 

( 17520 samples) is 48 and the best value for the predictor order (L) as a function of 

segment length (N) is 0.25N. 

In order to verify the performance of the MFBLP algorithm as a solution 

to the STLF problem, it was compared with other parametric-based algorithms, 

like Burg and SARIMA, and with non parametric technique, like ANN. Hourly data 

of a two year period collected from the Australian states, NSW, QLD, SA, and VIC 

were used to estimate the autoregressive model coefficients of the MFBLP and Burg 

algorithms, and the autoregressive moving average models for SARIMA. The same 

data were used to train the neural network. One-year data were used for validation. 

In the first experiment, the algorithms were tested with raw data. The results indicate 

better performance by the proposed technique MFBLP over Burg, SARIMA and 
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ANN. The algorithm shows less MAPE values maintained over the four power load 

time-series of the Australian states. The performance of the MFBLP was verified 

with three horizons of forecast, namely, 1-hour, 24-hour and 168-hour, and was 

found to give a better forecast than the other algorithms. 

ln the second experiment, the performances were tested with differenced data in 

order to mitigate the seasonality. The results show that the MFBLP was not 

benefiting too much out of data differencing. The reason is the implicit 

decorrelation effect of using forward-backward data subsectors in constructing the 

data matrix D of the proposed MFBLP. 

fn the third experiment, the performances were tested with seasonally sorted data. 

The results show no significant improvement for all algorithms. The reason is due to 

insufficient data to extract the autoregressive model for MFBLP and Burg 

algorithms, and the autoregressive moving average coefficients for SARIMA. 

This establishes the MFBLP as one of the best known algorithms for short term 

power load forecast. The improvement over other widely used algorithms in terms of 

few percent less in MAPE values could save large amount of money in operating 

power stations worldwide. 

7.2 Summary of the Main Contribution 

The main contribution of the research reported in this thesis is the development 

of the proposed method that is applicable for both raw and differencing data, 

to forecast the future power demand. It has been proven that from the experimental 

works, the MFBLP algorithm shows outstanding results. The method is assessed by 

applying the Australian states power demand data to the experimental works. 

Subsequently, ascertains the forecast results were ascertained from the proposed 

method. All states forecast results obtained are reasonably low errors. 

The experimental forecast results are also in comparison to earlier widely used 
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methods in STLF. From the comparison, MFBLP algorithm performs significantly 

better than the other methods. 

The development of the MFBLP method is very important in finding solution 

to the STLF problem. It provides a new approach in forecasting future load demand. 

One of the advantages of the MFBLP algorithm is such that it only requires 

single input to implement the forecast model. Furthermore, the algorithm is able 

to solve forecast problems by using the raw data. 

In the thesis, an alternative method to STLF problem has been 

successfully developed. The MFBLP algorithm has shown a reasonably good 

forecast result. The overall forecast MAPE values are reduced to some degree in 

comparison to earlier widely used methods. Hence, in the long-run the improvement 

of MAPE can contribute in saving the operational cost of the utilities. As stated in 

the literature [2] that 1% of the forecast accuracy constitutes to 10 million pounds in 

operating cost per annum. 

7.3 Recommendations for Future Work 

The most significant areas for further research are listed as the followings: 

1. The proposed MFBLP algorithm is only tested with Australian data, and it is 

required to test it with other utility load demand systems of different nature. 

11. Because of its efficiency in modeling the data with autoregressive model, the 

MFBLP can be used to extract the AR parameters of ARMA model. This 

will enhance the ARMA-based STLF solutions in terms of lower MAPE 

values. 

111. Performance evaluation of the MFBLP algorithms with longer forecast 

horizon of than 168 hours is needed. This form of forecast is called long term 

load forecast (LTLF), and is useful for planning of utilities infrastructure 
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such as building a new power plant or purchasing a new generator to cater 

for the increase of power load demand. 

1v. The performance of the MFBLP was tested with raw data without any form 

of data filtering or classification in terms of weekends, public holidays or 

festival days. It is expected that data filtering will mitigate the variation in 

the data and makes forecast more accurate. Thus, the performance of the 

MFBLP with filtered data is required. 
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APPENDIX A 

DATA FILES 

This appendix provides a description of data files that have been used in the 

simulation works. There are four set of data series and the filename data in the 

extension of .mat are depicted in Table A.l. 

Table A. I The data filename that are used to upload all data at the MA TLAB 

workspace. 

Region Filename 

NSW nsw24odd 05to07.mat 

QLD qld24odd 05to07.mat 

SA sa24odd 05to07.mat 

VIC vic24odd 05to07.mat 

In the Table A.2 depicts the details of the main data file that has been described in 

Table A. I. Each of the data file in the Table A.l consist of three sets of data. 

Table A.2 Three sets of data series that are applied in the simulation works. 

Filename Total Data Data Size Estimation Data Data Size Validation Data Data Size 

nsw24odd 05to07.mat nsw24odd 26280xl nsw24odd series I 17520xl nsw24odd 07 8400xl 

qld24odd 05to07.mat nsw24odd 26280xl qld24odd series I 17520xl lqld24odd 07 8400x1 

sa24odd 05to07 .mat nsw24odd 26280xl sa24odd series I 17520x1 sa24odd 07 8400xl 

vic24odd 05to07.mat nsw24odd 26280xl vi c24odd series I 17520xl vic24odd 07 8400xl 
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APPENDIXB 

AUTOCORRELATION FUNCTION (ACF) PLOTS 

B.1 Autocorrelation Function (ACF) plots for the Eq. ( 4.9) 
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8.2 Autocorrelation Function (ACF) plots for the Eq. (4.10) 
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B.3 The first 200 samples Autocorrelation Function (ACF) plots for the Eq. (4.1 0) 
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APPENDIXC 

ARTIFICIAL NEURAL NETWORK (ANN) 

For an overview of this field, we refer to, for example [ 152]. A recent review of their 

use in forecasting is that of [153]. In time series analysis, neural networks are 

usually used as nonlinear function predictors. They map an input space for the 

present and past values of the time series onto an output space or future values. The 

ANN in the thesis will be of the following feed-forward type: 

in= J(xn-i'"',Xn-m) 

= h0 + thi tanh( ai0 + ~aijxn-J J (C.l) 

Where tanh is the tangent hyperbolicus function. It is a nonlinear transformation, 

with a sigmoid shape. The inputs are xn-1 , with j running over an index set of not 

necessarily sequential positive integers (n denotes the largest lag in the model). 

These inputs form the so-called input layer. In the second layer, which is referred to 

as the hidden layer, there are m nonlinear processing units. These units transform the 

inputs, by means of the multiplicative weights aij, the additive weights ai0 and the 

sigmoid functions. A weighted sum, with weights hi , over the outputs of these 

hidden units plus a shift, h0 , produces the final output. The network parameters are 

estimated by minimizing the error function 

M 

·~]f(xn-1,. .. ,Xn-m)- xJ (C.2) 
n=m+l 

where N is the number of elements in the estimation set. This error function takes all 

input vectors of the estimation set into account. It takes, of course, several passages 

over the estimation set to obtain reasonable values for the parameters aij and hi . 
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0.1 Raw data 

tic 

clear 

clc 

%Setting Parameter, Q,m. 

APPENDIXD 

MATLAB FILES 

Q=; m=;%<===============SPECIFIED 

Q*M=17520 

mm=m; 

load ;%Load data 

LF _168step=[]; 

AL_all=[]; 

res=[]; 

UPdL=[]; 

result=[]; 

SEGMENTATION 

start_pred=input('Enter start week/day/hour number==> '); 

end_pred=input('Enter end week/day/hour number==>'); 

L=input('Enter # of order==> ');%Order of coefficients 

nsw24odd _series 1 =nsw24odd _series 1 '; 

SIZE, 

%w=50,168(168 steps ahead): w=350,24(24 steps ahead): w=8400,1(1 step ahead) 

step_ahead=;%<============ CHANGE HERE 

for w=start_pred:l :end_pred%<======= 50 for 168: 350 for 24: 8400 for 1. 

tic 

ssize_start=l +(step_ahead*(w-1)); 

ssize _end=17520+(step_ahead*(w-l )); 

h1 =nsw24odd _series 1 (ssize _ start:ssize _end); 

y=reshape(hl,m,Q)';%<======SEGMENTATION DATA Q=, M=, 

u =m-L; 
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%%ESTIMATION 

D = zeros(2*(m-L),L);%Preallocate to improve speed 

dfb = zeros(2*(m-L),1); 

% disp([ 1week no 1 num2str(w) 1==>1 ]);%<=====DISPLAY CURRENT WEEK# 

disp([1day no 1 num2str(w) 1==>1 ]);%<======DISPLAY CURRENT DAY# 

%disp([1hour no 1 num2str(w) 1==>1 ]);%<======DISPLAY CURRENT HOUR# 

for q = 1 :Q 

y1 = y(q,:); 

for r =l:u, 

for c = 1 :L, 

Df(r,c) = y1(1,L-c+r ); 

df = y1(L+l:m).'; 

Db(r,c) = conj(y1(1,c+r)); 

db = yl (1 :m-L)'; 

end 

Dfb =[Df;Db]; 

fb = -[df;db]; 

end 

D = [D;Dfb]; 

dfb = [dfb;fb]; 

end 

D(l :2*(m-L),:)=[]; 

dfb(1:2*(m-L),:) = []; 

f = pinv(D)*dfb; 

f = [ 1 ;conj(f)]; 

f( l )=[]; 

sample _load=(Q*m)+(step _ ahead*(w-1 ));%2*365*24 

ss=(sample _load+step _ ahead)+(step _ ahead*(w-1 )+ 1 );%2*365*24 

SL=nsw24odd _series 1 ( ssize _ start:sample _load); 

file=nsw24odd _series 1 ;%Call file for validation with actual load 
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estimation time=toc 

o/o===================FORECASTrNG====~==========~=======~~=-

for step=1:step_ahead;%<=== STEP AHEAD/FORECAST HORIZONS 1/241168. 

s=(Q*m)+step-1; 

PdL=SL(s:-1 :(s-L+ 1 ))*-f;% 

PdL=round(PdL);% 

SL=[SL(1:(Q*m)+step-1) PdL]; 

%pause 

%UPdL=SL;%updated predicted diffload 

res=[ res PdL]; 

end 

%result=[result;res]; 

AL _168=nsw24odd _series 1 (ssize _end+ 1 :ssize _ end+(step _ahead)); 

%Display actual load 

AL_all = [AL_aii;AL_l68]; 

end 

AL_all = AL_all'; 

AL=reshape(AL_all, I ,(step _ahead*(w-start _pred+ I))); 

er=AL-res; 

err=(abs(AL-res)./ AL)* I 00; 

err_ mape _all =mean( err); 

toe 

Time=toc 
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0.2 DitTerencing Data 

tic 

clear 

clc 

%Setting Parameter, Q,m. 

Q=; m=;%<===============SPECIFIED 

Q*M=17520 

mm=rn; 

load ;%Load data 

LF _168step=[]; 

AL all=[]; 

res=[]; 

UPdL=[]; 

result=[]; 

SEGMENTATION 

start _pred=input('Enter start week/day/hour number==> '); 

end_pred=input('Enter end week/day/hour number==>'); 

L=input('Enter #of order==> ');%Order of coefficients 

nsw24odd _series I =nsw24odd _series 1 '; 

SIZE, 

%w=50,168(168 steps ahead): w=350,24(24 steps ahead): w=8400,1(1 step ahead) 

step_ ahead=;%<============ CHANGE HERE 

tor w=start_pred:l:end_pred%<======= 50 for 168: 350 for 24: 8400 for I. 

tic 

ssize_start=1 +(step_ahead*(w-1 )); 

ssize _ end=17520+(step_ahead*(w-l )); 

hl =d1d24dl68(ssize _start:ssize_end); 

y=reshape(h1,m,Q)';%<=======SEGMENTATION DATA Q=, M=, 

u = m-L; 

o/o%ESTIMA TION============================================ 

0 = zeros(2*(m-L),L);%Preallocate to improve speed 

dtb = zeros(2*(m-L), 1 ); 
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%disp(['week no' num2str(w) '==>' ]);%<==DISPLAY CURRENT WEEK# 

%disp(['day no' num2str(w) '==>' ]);%<======DISPLAY CURRENT DAY# 

disp(['hour no 'num2str(w) '==>' ]);%<======DISPLAY CURRENT HOUR# 

torq = 1:Q 

yl = y(q,:); 

for r =l:u, 

for c =I :L, 

Df(r,c) =y1(1,L-c+r); 

df =y1(L+l:m).'; 

Db(r,c) = conj(y1(1,c+r)); 

db = yl (1 :m-L)'; 

end 

Dfb =[Df;Db]; 

tb = -[df;db]; 

end 

D = [D;Dfb]; 

dfb = [dfb;fb]; 

end 

D( I :2*(m-L),:)=[]; 

dfb(1:2*(m-L),:) = []; 

f = pinv(D)*dfb; 

f = [l;conj(f)]; 

f( 1 )=[]; 

sample _load=(Q*m)+(step _ ahead*(w-1 ));%2*365*24 

ss=(sample _load+step _ ahead)+(step _ ahead*(w-1 )+ 1 );%2*365*24 

SL=d 1 d24d 168(ssize _ start:sample _load); 

file=nsw24odd _series 1 ;%Call file for validation with actual load 

estimation time=toc 

o/o===================FORECAST~G=========================== 

for step=l:step_ahead;%<=== STEP AHEAD/FORECAST HORIZONS 1/24/168. 

s=(Q*m)+step-1; 

PdL=SL(s:-1 :(s-L+ 1 ))*-f;% 
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PdL=round(PdL);% 

SL=[SL(1 :(Q*m)+step-1) PdL]; 

res=[ res PdL]; 

end 

AL_168=nsw24odd_series1(ssize _end+ 1 + 193:ssize _end+ 193+(step _ahead)); 

'%Display actual load============================================= 

AL_all = [AL_ali;AL_168]; 

end 

res2=res'; 

AL_all = AL_all'; 

AL=reshape(AL _all, 1 ,(step _ahead*(w-start _pred+ 1 ))); 

AL=AL'; 

res fload=[]; 

toe 

Time=toc 
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