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Abstract 

The Navier-Stokes equations together with the continuity equation are one of the long 

standing problems in mathematical physics. They form a system of nonlinear partial 

differential equations that describe the fluid flow phenomena, whether laminar or 

turbulent. The nonlinearity of the equations is obscure which defies all conventional 

methods of analytical solution to the differential equations. The analytical methods 

are found to be very important to model physical phenomena. They form basic 

understanding of the phenomena at different circumstances, at least qualitatively. In 

addition to their physics, the analytical methods are also useful to find and extend the 

class of existence, uniqueness and regularity in the pure mathematics sense. 

This thesis introduces new analytical methods of finding solutions of the 

incompressible Navier-Stokes equations. The work is based on the criteria of well­

posed problem which is then solved by the proposed special classes of the solution 

either qualitatively or quantitatively. 

Firstly, general qualitative properties of solutions to the three-dimensional 

incompressible flows are presented. The method rs performed from the 

implementation of vector analysis into the energy equation with the consideration of 

zero rate energy. Trivial solution is obtained from any initial-boundary value 

problems. For the cases of non trivial solution, the analyticity of the solutions is 

assumed to investigate the triviality at intersection regions. Some physical 

consequences due to violation of the trivial solutions are also performed with the 

application of the vorticity equations, which are related to the onset of turbulence. 

Therefore, non trivial solutions will also represent turbulence whether they have 

singularity or not. 

This hypothesis is supplemented by investigation on the solution in the special 

classes of v = v x <I> and v = V<I> + V x <I> of the three-dimensional incompressible 

Navier-Stokes equations. Analysis is taken using the vorticity equations rather than 

the original Navier Stokes equations based on qualitative mathematical work. Results 
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show that the corresponding problem admits a unique and regular solution because the 

original problems can be transformed to class of linear parabolic and elliptic 

equations. 

The first analytical solution is then produced using the four components coordinate 

transformation .; = kx + ly + mz- ct. While, the second solution is produced using the 

three components coordinate transformation .; = ly + mz- ct . Velocity vector in the 

solutions is based on the relation v =Vet>+ v x ct> where <t> is a potential function that is 

defined as <l>=P(x,~)R(~). The potential function is firstly substituted into the 

continuity equation. The solution for R is produced using a certain mathematical 

condition and the resultant expression is used sequentially in the Navier-Stokes 

equations to reduce the problem to the class of nonlinear ordinary differential 

equations in P terms. Here, more general solutions are also obtained based on the 

particular solutions of P . The two solutions are based on a zero and constant pressure 

gradients which are given to illustrate the applicability of the method. 

The third analytical solution utilises a potential function m the form 

ct> = P(x,y,q)R(y)s(.;) with the application of the transformed coordinate ~ = kz- dt). 

In this solution, the pressure term is presented in a general functional form. The 

solutions for R and S are obtained by imposing a certain mathematical condition. 

General solutions are then obtained based on the particular solutions of P where the 

equation is reduced to the form of linear differential equation. A method for finding 

closed-form solutions for general linear differential equations is proposed and 

uniqueness of the solution is proved and regularised. 

The fourth analytical solution is derived using the vorticity equation. The solution 

is produced by implementing a potential function in the form ct> = P(x,y,,;)R(y)s(.;) 

with the application of the transformed coordinate ~ = kz- c; (t) . The pressure is then 

solved by applying the velocity vector into the Navier-Stokes equations to complete 

the solutions. Two examples are given to illustrate the applicability of the theorem. 

The uniqueness of the solution is also proved. 

Validation against two laminar flow experiments and three different turbulent flow 

cases including numerical case are carried out and reported in this work. The flow 

cases used in the validation are laminar jet flow, turbulent jet flow, boundary layer 

flow, turbulent channel flow and combustion. Generally, the solution is able to follow 
viii 



the trends in the corresponding cases. Although the analytical solution is derived for 

non-reacting flows, it proved capable of reproducing trends of cases including 

combustion. 
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Abstrak 

Persamaan-persamaan Navier-Stokes bersama persamaan keselanjaraan adalah salah 

satu persoalaan dalam bidang fizik matematik. Persamaan-persamaan ini merupakan 

persamaan pembezaan separa non-linear yang digunakan untuk menjelaskan 

fenomena berkenaan dengan mekanik bendalir sama ada dalam keadaan lamina atau 

bergelora. Oleh kerana persamaan-persamaan tersebut mempunyai ciri-ciri non-linear 

yang tinggi, maka kaedah-kaedah analitis yang biasa digunakan untuk mendapatkan 

penyelesaian tidak berkesan. Walaubagaimanapun kaedah-kaedah analitis ini adalah 

penting untuk mendapat gambaran dan persefahaman yang jelas terhadap fenomena 

fizikal mekanik bendalir. Kaedah-kaedah analitis ini mejadi asas kepada 

persefahaman dalam pelbagai keadaan secara kualitatif. Selain itu, kaedah-kaedah 

analitis ini juga amat berguna untuk mendapatkan dan melanjutkan kelas perwujudan, 

keunikan dan keteraturan ilmu matematik yang terhasil dari persamaan-persamaan 

Navier-Stokes. 

Thesis in memperkenalkan kaedah analitis yang baru untuk mencari penyelesaian 

kepada persamaan-persamaan Navier-Stokes dalam keadaan aliran bendalir yang 

tidak bermampat. Penyelidikan ini menggunakan hypothesis bahawa terdapat 

kewujudan penyelesaian kepada persamaan-persamaan Navier-Stokes. Seterusnya 

penyelesaian ini dicari dengan menggunakan kelas-kelas matematik yang khas yang 

diajukan secara kualitatif mahupun kuantitatif. Kelas-kelas inilah yang diperkenalkan 

dalam penyelidikan ini. 

Pertama, ciri-ciri penyelesaian yang kualitatif kepada persamaan-persamaan 

Navier-Stokes dalam tiga dimensi dengan keadaan aliran tak bermampat 

dibentangkan. Kaedah ini merangkumi penggunaan analisa vektor dalam persamaan 

tenaga di mana kadar tenaga dianggap sifar. Penyelesaian ringkas boleh dihasilkan 

dari mana-mana masalah matematik yang mempunyai nilai awal batasnya. Bagi 

penyelesaian yang kompleks, penyelesaian yang ringkas boleh didapati daripada 

bahagian-bahagian persamaan yang tertentu. Walaubagaimanapun terdapat beberapa 
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masalah fizikal yang timbul dalam usaha mencari penyelesaian ringkas. Masalah­

masalah ini boleh diatasi dengan menggunakan persamaan-persamaan pusaran yang 

berkaitan dengan permulaan fenomena pergeloraan. Oleh kerana itu, penyelesaian 

kompleks juga memberi penjelasan kepada pergeloraan bendalir sama ada kewujudan 

singulariti atau tidak. 

Hipothesis ini dikukuhkan dengan menyelidik penyelesaian pada kelas-kelas khas 

iaitu, V = V x <P dan V = V<P + V x <P dalam persamaan-persamaan N avier-Stokes dalam 

tiga-dimensi bagi keadaan aliran bendalir yang tidak bermampat. Analisa diambil dari 

persamaan-persamaan pusaran berbanding dengan persamaan-persamaan Navier­

Stokes yang asal yang berdasarkan analisa matematik secara kualitatif. Keputusan 

yang didapati menunjukkan bahawa penyelesaiannya adalah unik dan teratur. Ini 

adalah kerana, persamaan-persamaan asal Navier-Stokes boleh ditransformasikan 

kepada kelas persamaan linear parabola dan ellispsis. 

Dengan itu, maka penyelesaian analitis yang pertama boleh didapati dengan 

menggunakan transformasi em pat koordinat komponen vector .; = kx + ly + mz- ct . 

Manakala, penyelesaian yang kedua boleh didapati menggunakan transformasi tiga 

koordinat komponen vector .; = ly + mz- ct . Vektor halaju yang diperolehi daripada 

penyelesaian berasaskan persamaan v = V<P + v x <P di mana <P adalah fungsi potensi 

yang boleh dijelaskan dalam bentuk <l>=P(x,<;')R(<;'). Fungsi potensi ini digantikan 

dalam persamaan keselanjaraan terlebih dahulu. Penyelesaian untuk R dihasilkan 

dengan menggunakan keadaan matematik yang tertentu dan persamaan yang didapati 

dari keputusannya digunakan secara berturutan dalam persamaan-persamaan Navier­

Stokes untuk meringkaskan masalahnya kepada kelas persamaan pembezaan 

nonlinear dalam bentuk P. Di sini, penyelesaian yang lebih am boleh didapati 

berasaskan penyelesaian tertentu P. Kedua-dua penyelesaian ini adalah berasaskan 

kecerunan tekanan bersamaan dengan sifar atau dengan kecerunan tekanan yang 

mempunyai nilai tetap. Ini menunjukkan bahawa kaedah ini amat berkesan. 

Penyelesaian analitis yang ketiga pula menggunakan fungsi potensi dalam bentuk 

<P = P(x,y,.;)R(y)s(.;) dengan penggunaan transformasi koordinat <;' = kz -<;(t). 

Menggunakan penyelesaian ini, tekanan dipaparkan dalam bentuk fungsi yang am. 

Penyelesaian untuk R dan S dihasilkan dengan menggunakan keadaan matematik yang 

tertentu. Dengan itu, maka penyelesaian am didapatkan berasaskan penyelesaian 
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tertentu P di mana persamaannya diringkaskan kepada bentuk persamaan perbezaaan 

linear. Maka ini adalah satu kaedah untuk mencari penyelesaian dalam bentuk tertutup 

untuk persamaan pembezaan am. Selain itu, dengan kaedah ini keunikan dan 

keteraturan penyelesaian juga boleh dibuktikan. 

Penyelesaian analitis yang keempat dilanjutkan dari persamaaan pusaran. 

Penyelesaian ini dihasilkan dengan menggunakan fungsi potensi dalam bentuk 

<I>=P(x,y,,;)R(y)s(,;) dengan koordinat yang telah dijalankan transformasi 

.; = kz- q (t) . Tekanan pula diselesaikan dengan menggunakan vector halaju dalam 

persamaan Navier-Stokes untuk menyempurnakan penyelesaiannya. Dua contoh telah 

digunakan untuk membuktikan kebolehgunaan theorem ini. Keunikan penyelesaian 

ini juga telah dibuktikan. 

Sebagai pengesahan kepada penyelesaian yang dihasilkan melalui teknik ini, 

keputusan dari dua eksperimen aliran lamina, tiga eksperimen aliran bergolak dan 

penyelesaian numerikal telah dibandingkan dengan penyelesaian analitis yang 

dihasilkan. Kes aliran yang digunakan untuk tujuan pengesahan adalah aliran jet 

lamina, aliran jet dengan pergolakan, aliran lapisan batas dan kajian pembakaran. 

Secara arnnya, penyelesaian analitis yang dihasilkan menepati keputusan kes-kes 

tersebut. Walaupun penyelesaian ini dihasilkan untuk aliran yang tidak 

bertindakbalas, penyelesaian ini telah membuktikan bahawa ia juga boleh digunakan 

untuk kes-kes seperti kajian pembakaran. 
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1.1 Background 

Chapter 1 

Introduction 

The importance of the Navier Stokes equations comes from their wide application for 

different kind of flows, ranging from thin films to large scale atmospheric even 

cosmic flows. However, Navier-Stokes equations are nonlinear in nature and it is 

difficult to solve these equations analytically. In order to perform this task, some 

simplifications are elucidated, such as linearisation or assumptions of weak 

nonlinearity, small fluctuations, discretisation, etc. 

Despite the concentrated research on the Navier Stokes equations, their universal 

solution is not achieved. The full solution of the three-dimensional Navier-Stokes 

equations remains one of the open problems in mathematical physics. Computational 

Fluid Dynamics (CFD) approaches discretise the equations and solve them 

numerically. Although such numerical methods are successful, they are still expensive 

and there must be approximation errors associated with them. 

The development of high speed computers eventually makes discretisation 

methods more advance than the others and it enables the numerical treatment of 

turbulent flow. Solution of turbulent flows mainly depends on solving the Navier 

Stokes equations and using ad-hoc models to close the solution. The numerical 

approaches are Reynolds Averaged Navier Stokes (RANS) which provides averaged 

solution of the flow, Large Eddy Simulation (LES) which solves the big scales and 

model the small ones and Direct Numerical Simulations (DNS) which solve all the 

flow scales. With respect to the computational cost, DNS is the most expensive model 

and it is still limited to small scale research problems. LES guarantees more 

economical computational time as compared to DNS and the results are not much 

different than DNS results when appropriate subgrid scale (SGS) models are used [1]. 

The cost of computation depends also on the dimension of the case and on the 



coupling with other equation as well, like in turbulent reacting flow. Hence, a better 

understanding of the corresponding phenomena is still needed since those models do 

not provide accurate prediction for complex flows [2]. 

There are numerous researches concentrating on formulating efficient numerical 

schemes in solving Navier-Stokes equations, such as the recent work as described by 

[3] and [ 4]. However, the computational costs are still expensive for handling accurate 

numerical simulations except for simple problems in engineering limited to small 

scale problems, concerning that full solution must describe the evolution of the 

physics in pointwise. Besides, numerical solutions have well-known weakness in 

boundary layer regimes near solid boundaries and interface of turbulent-nonturbulent 

regimes in which weak solutions are not unique [5]. It is known that in fmite time 

interval, the solution of the Navier-Stokes equations may either blown up or split up, 

losing its regularity, and beginning to form branches [6,7]. In particular, numerical 

iterations also make the blow up investigation difficult due to the rapid numerical 

fluctuations [8]. In fact, depending on the values of the relevant parameters, a 

stationary boundary value problem can have a unique solution, several solutions, or 

even no solutions at all. 

One of the important problems in the theory of partial differential equations 

(PDEs) is fmding and studying classes of integrable equations which have explicit 

solutions, specially, closed form solutions. After the Blasius famous work on the 

exact solution for the two-dimensional (2D) boundary layer equations proposed by 

Prandtl, similarity solutions oflinear and nonlinear boundary-value problems became 

more common in the literature. The work for fmding solutions of ordinary differential 

equations (ODEs) and partial differential equations by symmetry reductions date back 

to the famous Sophus Lie works. 

However, the progress achieved in existence-uniqueness-regularity theory for the 

Navier-Stokes equations somehow causes explicit solutions slowly losing their 

important role. The efforts are facing some difficulties, especially in higher 

dimension. The existence and uniqueness classes for the Navier-Stokes equations are 

harder to see and difficult to prove [9]. For instance, there are several fundamental 

open problems on them. 
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For many cases which the heroic attempt on rigorous mathematical works remains 

elusive, the exact solutions give the promising way to detect significant features of 

nonstationary and singular evolution, such as gas dynamics spherical waves and 

shockwave phenomena. Therefore, it was not surprising that the Navier-Stokes 

equations are among the first applications of fresh ideas and new developed methods 

of the exact explicit integration [10]. 

However, it is important mentioning what is meant here by exact solutions. One 

well known definition of exact solution is to detect the explicit solutions expressed in 

terms of elementary or, at least, known functions of mathematical physics. Exact 

solutions may also be defmed as functions generated from some ordinary differential 

equations or from reduced partial differential equations which order is lower than the 

original problems. 

Since the difficulty to find rigorous proof of existence, regularity and uniqueness 

of a certain class of differential equations is overcome by exact solutions, most likely 

they will continue to play a decisive role. They always provide us with fundamental 

patterns in order to generate more physically reasonable solutions, such as specific 

asymptotics. Also, exact solutions of nonlinear models are significant in the theory of 

nonlinear evolution equations. Exact solutions are often demanded in the development 

general existence-uniqueness and asymptotic theory. The role of exact solution in 

revealing an optimal description of local and global existence functional classes, 

uniqueness classes and generic asymptotic behavior is an inevitable fact as shown in 

many examples of nonlinear models [11]. 

Their specific space-time structure sometimes gives hindsight of some crucial 

features in order to develop the new methods and tools, which are required for 

constructing general solutions. In the theory of parabolic reaction-diffusion equations, 

there exist well known cases where the method of nonlinear transformation 

determines the correct rescaled variables. In this case, exact solutions give guidance in 

terms of which the maximum principle can be applied to extend regularity properties 

to more general ones [12]. 

Therefore, the problem of searching the classes of exact solutions of the full 

Navier-Stokes equations is highly demanding from a practical viewpoint, as has been 

described in the literature [13]. Exact solutions also facilitate a theoretical 

understanding, paving the way to global solutions. They may help explain the issue of 
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global smoothness in time [14]. The solutions may be examined as models for 

turbulence [15]. The specific example of this is a particular vortex solution, which is 

significant in the development ofturbulence theories [16]. 

Unfortunately, only a few analytical works are present in the literatures. Some of 

them are investigated by different researchers independently as collected over the 

range ofreferences [17,18,19]. As in most cases, exact solutions are examined only in 

the special conditions which the nonlinearity are weakened or even removed from the 

analysis. The type of the simplified analysis is steady and unsteady Couette and 

Poiseuille flows which nonlinear terms remove permanently [20]. The other less 

known example is Beltrami flows where the nonlinear terms are nonzero in the 

Navier-Stokes equations but fade in the vorticity equations [21]. 

More sophisticated analysis of the Navier-Stokes equations is also conducted and 

gives more insight to the problems. One of them is the transformation ofthe Navier­

Stokes equations to the Schrodinger equation, performed by application of the Riccati 

equation [22]. It has good prospects since the Schrodinger equation is linear and has 

well defmed solutions. The method of Lie group theory is also applied in order to 

transform the original partial differential equations into ordinary differential systems 

[23]. It is concluded that an approximate series solution is obtained. The same route is 

taken by Meleshko [24] and by Thailert [25], in transforming the Navier-Stokes 

equations to solvable linear systems. On the other hand, less popular methods, such as 

the Hodograph-Legendre transformation, have also been applied to reduce the original 

problem to one more tractable, and thus closer to the goal of obtaining analytical 

solutions [26]. The method of introducing special solutions for velocity has also been 

investigated [27,28]. 

The lack of development in analytical analysis to solve fluid dynamics problems is 

not without reason. In the past, analytical analysis was used in order to obtain closed­

form solutions, which many of them form our basic intuition of fluid phenomena. 

This aspect is now considered as somewhat obsolete by the enormous increase in 

capacities of numerical computing. Up to this point, many of fluid flow problems are 

not yet solved by closed form solutions, also most of interesting and important 

problems are either unsolvable or only tractable to numerical simulation after some 

appropriate evaluation from analytical solutions. It is known that for some time the 

development of the capabilities of numerical computations will depend on, or at least, 
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connected to the development of analytical methods. Analytical methods are expected 

to generate simpler, adequate and significant models important to numerical 

simulation and very efficient for the stiff and numerically difficult problems [5]. 

One example for the controlling perturbation quantities is such as Mach number 

for small parameter, or for a large parameter such as the Reynolds number, which is 

important for the asymptotic modeling. If the Navier-Stokes equations describing a 

precise flow problem can be expressed in elementary function from analytical 

methods, then the full solutions may be generalised. At least if such that one of the 

parameters or variables is known to be small or large, then, general solutions can be 

approached by perturbation quantities. Solutions will approach a limit as the 

perturbation quantity approaches zero or infmity and thus resulted in asymptotic 

functions. The result can often be improved by expanding in a series of successive 

approximations from the first term of which is the limiting solution as an asymptotic 

series or expansion [29]. 

1.2 Problem Statements 

The global in time continuation to the three-dimensional incompressible Navier­

Stokes equations remains the major unsolved problem in the mathematical fluid 

mechanics. At the physical viewpoint, the debate is as if such singularity exist, it will 

be associated to turbulence by provoking that we have anything regular in two­

dimensional flow cases, which turbulence is three-dimensional phenomena. This 

hypothesis, however, have problems since it is witnessed that all turbulence is 

bounded in nature. This issue somehow drives qualitative mathematical analysis of 

the viscous incompressible flows toward the enormous development, but only a little 

interest pointed to the analytical methods which provide a quantitative understanding. 

Therefore, fmding the appropriate methods for analytical treatment of the full set 

of incompressible Navier-Stokes equations is very important task from theoretical and 

practical point of view. Specifically, at the theoretical side, the results then can be 

extended to set and justifY the posedness problems (existence-uniqueness-regularity) 

of fluid dynamics. 
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1.3 Research Objectives 

The main objective of this research is to fmd classes of exact solutions to the three­

dimensional incompressible Navier-Stokes Equations. Related matters as the physical 

and mathematical theory of the solutions are also developed. Second, the physical 

theory of the incompressible Navier-Stokes equations is investigated to provide the 

transition to turbulence as well as mathematical theory of the rigorous solutions. 

Since, the exact solutions are expected to provide fast calculations and models 

important to numerical methods, the generating solutions are then validated with the 

existing experimental and n umerical data from the literatures. The validated cases 

include laminar and turbulent jet flows, turbulent boundary layer flows, turbulent 

channel flow and also trivial cases including combustion. 

1.4 Scope ofWorks 

The scope of the current investigation is to solve the three-dimensional 

incompressible Navier-Stokes equations and continuity equation by self developed 

analytical techniques. This current research is conducted by implementing the 

classical Cartesian coordinate system. However, the novel techniques developed in 

this research are also applicable to any coordinate systems. The phenomenological 

issue related to the turbulence is also addressed following four preliminary validating 

processes which are discussed in a concise manner for each case. 

1.5 Research Methodology and Work Outline 

The work is divided in two parts. First, the contribution is to the abstract analysis on 

the physical and mathematical theory to the incompressible Navier-Stokes equations. 

As for the physical theory, the elementary vectorial analysis is implemented to a 

simple energy equation. The divergence theorem will generate trivial results for 

general situations which the violation of the triviality is lead to a possible onset of 

turbulence due to energy accumulation and dissipation. For the mathematical theory, 

the analysis is stressed on the rigorous proof on the existence and uniqueness of the 

proposed classes of the solutions. The original problem is mapped into different 

parameter space which is linear, the remappmg process also leads to the linear 
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differential equations which have well defined proof for existence, regularity and 

uniqueness of the solutions. 

Second, a special class of solutions to the three-dimensional incompressible Navier 

Stokes equations is investigated further. A potential function and a transformed 

coordinate are proposed, and the three equations are altered into simpler equations in 

terms of the potential function and the transformed coordinates. The proposed class of 

solutions is first substituted to the continuity equation and the resultant expression is 

employed sequentially into the Navier-Stokes system to find full solutions. Then, 

particular analytical solutions are obtained and extended to the more general form. 

This work is continued to a nontrivial coordinate relation with respect to time. It 

will serve to the more general function, which analysis in time coordinate can be 

chosen as any function whether describing blown up solutions or not. The extended 

analysis to general functional relation due to pressure gradient is also performed. The 

procedure is also developed in a sense that only one spatial and time coordinate 

transformed to a single coordinate which is supplemented by a new proposed method 

to find closed-form solutions for general second order ordinary differential equations. 

It is interesting to mention that solutions of the vorticity equations drive towards 

the collection of exact solutions to the Navier-Stokes equations. The vorticity 

representation is reasonable and physically clear, at least for incompressible flows 

[30,31]. The advantage to consider vorticity equations is its capability to remove 

pressure relation due to vector identity. The pressure hessian then can be calculated 

from the divergence operation after velocity relation is obtained. The method for 

finding particular solutions is also more developed in this section if the derivation is 

brought into the first order differential equations. Finally, preliminary validation work 

is conducted to test the applicability of the solutions. 

1.6 Thesis Outline 

This thesis consists of six chapters with references. This chapter (chapter 1) presents 

outline about the importance contribution of analytical research, especially exact 

solutions to fluid dynamics. The problem statements concerning to the specific area 

are explained briefly. The research objectives then proposed followed by 

methodology and scope of works including work outline. 
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Chapter 2 deals with the literature reviews of the previous researches related to this 

work. Firstly, some aspects of exact solutions in the fluid dynamics research are 

reviewed extensively. The subject then followed by the review of turbulent flows 

which is arranged such that it is clear as to what, why and how analytical research will 

significantly contributes to resolve turbulent flow problems. 

Chapter 3 is deals with the contribution to the theory of solutions to the three­

dimensional incompressible Navier-Stokes equations. The contributions are in the 

abstract analysis which the results represent physical and mathematical properties 

with respects to the proposed classes of the solution. 

Chapter 4 deals with the contributions to the methods of generating exact solutions to 

the three-dimensional incompressible Navier-Stokes equations with respect to the 

proposed class of the solution. Analysis is divided into four sections based on the 

generality of the problems. Each section reveals its own specific problems and 

difficulties concerning to the coordinate transformations, pressure and time relations. 

Chapter 5 deals with the validation cases of the solution. The validation cases are 

laminar and turbulent flows including combustion. Each case is discussed concisely 

from physical point of view. 

Chapter 6 deals with the summary of works and discussion about the possible future 

works which relevant to the general problems of fluid dynamics research. 
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Chapter 2 

Literature Reviews 

2.1 Some Aspects ofExact Solutions 

The closed form solutions of the integrable systems, even with infinite number of 

degrees of freedom, always show regular and organised behavior. Solitons in the 

systems described the Korteweg de Vries and SchrOdinger equations [32,33] are the 

outstanding examples. This kind of solution is interpreted as a mutual interaction 

among their nonlinearity such that the solution becomes perfectly regular. Also, the 

Burgers equation which integrable and shows random behaviour only under influence 

of random force [34]. These examples reveal the behavior of nonlinear systems to 

random forcing and should be distinguished from problems involving self excitation 

turbulence. The Navier-Stokes equations at a certain large Reynolds number have the 

property to initiate a randomisation, which are not fully understood. There is no 

universal agreement of what is inside turbulent flows. It can be stated almost 

everything including the direct experimental results of numerical and laboratory, 

which can be obtained from the first principles, the Navier-Stokes equations. 

The theory of the Navier-Stokes equations constitutes a central problem in recent 

development of mathematical physics. These equations are physically well accepted 

model for description of most fluid flow phenomena and much effort has been placed 

by mathematicians, physicists, engineers, meteorologists and others. However, many 

problems are still waiting to be mathematically and physically resolved at the front of 

science. On the mathematical side, the Navier-Stokes equations are model for the 

investigation of nonlinear phenomena and nonlinear equations which are not well­

developed enough [35]. The Navier-Stokes equations and the related Euler equations 

issue problems in nonlinear analysis, well-posedness and nonlinear dynamics. 
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One of the main issues is an analytical treatment of the corresponding fluid 

equations which relates to the attempt of generating function appear in the solutions. 

Such analytical solutions are usually represented by elementary functions known to 

mathematical physics. Elementary functions arise from many resources, in most cases 

they appeared naturally as a result of the solutions of linear ordinary differential 

equations. This is true, for example, of first order equations, where exponential 

functions describe the essential decaying nature near the infmity. Such nature can also 

be described by the Bessel function and the hyperbolic function that occurs in more 

complex equations. In fluid dynamics, this situation always arises at a slight comer 

where the equations are elliptic, as for the biconvex airfoil [36]. When the problem is 

confidently described as the correct diagnosis, it may be possible to render the 

solution uniformly valid simply by replacing the exponential functions with near­

integral powers. In inverse coordinate expansions for viscous flow, these seem often 

to be required to ensure exponential decay of velocity. 

On the other hand, it may be found that the straightforward solutions represented 

by elementary functions are not uniformly valid throughout the flow field. The best 

known example is separated viscous flow at moderate Reynolds numbers, where 

viscous motion fails near the surface. It is widely interpreted that the kinetic energy is 

not enough to overcome friction and adverse pressure gradient. This is usually 

supplemented by the boundary layer approximation from the modified Navier-Stokes 

equations. Not only does the fust approximation breaks down locally in such cases, 

but the difficulty is embedded in higher approximations such that in the region of non­

uniformity the solution grows worse rather than better [5,37]. In other problems their 

source is even more obscure and these somehow belongs to the analysis of singular 

problems. 

However, because the solution is affected by a change of coordinates, the question 

was implicit when it is observed that investigations of the 'Semi-infinite flat plate are 

carried out in other coordinate systems rather than the traditional Cartesian 

coordinates. Suppose that the entire boundary layer analysis is repeated in a different 

coordinate system, that is, the Navier-Stokes equations are written in the new system, 

the stream function and coordinate normal to the surface are modified by a certain 

well defmed factor. Physically, the resulting boundary layer equation should be 

solved subject to zero velocity at the surface and matching with the basic inviscid 
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flow in outer layer. It will be found that although the boundary layer is invariant, the 

outer layer region is not, so that it represents an altered flow field. Different 

coordinate systems yield boundary layer solutions that are identical at the surface and 

differ only negligibly within the boundary layer. It shows that the skin friction is 

invariant but may differ significantly outside the considered boundary layer. 

The search for special coordinates was inspired by the fact that if certain nonlinear 

partial differential equations are approximated by different equations or even set of 

equations, the solution then is the exact solution of the original equation mapped to 

different coordinates [26,38]. This, together with other considerations already 

mentioned, suggested that special coordinates may be preferable for some physical 

cases when the full Navier-Stokes equations are used, and this has been seen to be 

true. 

For boundary layer solution, it has been customary to disregard the solution 

outside the boundary layer region, where it can be replaced by the matched function 

of inviscid flow [39]. However, it may not be necessary to repeat the boundary layer 

solution when the coordinates are changed. The advantage of the changes can be 

investigated by seeking a special coordinates system in which the boundary layer 

solution attaches to the outer flow. When any convenient solutions are calculated in 

any coordinate systems, its counterpart in any other system is given by a simple rule. 

The transformations used in the methods suffer despite the evident utility from the 

objection that they must usually be applied arbitrarily and blindly, with no 

understanding of the mechanism involved. It also may not be sufficient when neither 

the nature nor the location of the singularity that limits solutions is known. It also 

goes without saying that one does not always achieve such significant improvement as 

in the preceding examples. With further insight into the source of blow up, the 

equations can be processed more rationally and more successfully. Thus preliminary 

knowledge of the location of the singularity may be considered, though not its 

character. It often happens in mechanics that a power series expansion having 

physical significance only for positive real values of the perturbation quantity is 

restricted by a singularity elsewhere in the complex plane, usually on the negative 

axis, and if the variables have been chosen in the most natural way. This situation 

exists may be known from fundamental considerations, or be suggested by a rational 

fraction as in [40], or merely be suspected. 
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Singularity problems also arise frequently in fluid mechanics, since they have been 

studied increasingly in recent literature as the requisite mathematical techniques were 

developed [29,41]. Understanding is gained into even some classical problems by 

recognising their singular nature. These efforts are largely devoted to the rigorous 

proof of the existence and uniqueness of the solutions. Mathematical justification of 

these procedures is fairly complete in two-dimensional cases, but still open for three­

dimensional cases. Therefore no precise statements can be made as to when the 

solutions can be applied, as to which is preferable in a given problem, or as to how 

analytical methods are related to each other. Nevertheless, in some cases, ordinary 

differential equations can be adopted as simple models to demonstrate the important 

points [35]. The nonlinear term in Burger equation for example, lead to produce 

regions of steepened velocity gradients, which implies to a transfer of excitation from 

large scale to the small scale of the velocity field. The velocity field is reduced to a 

sparse collection of shocks, with smooth and simple variation between fronts if the 

Reynolds number is high. This feature make Burgers' equation a valuable tool. 

However bad the solution is, various technological and complex fluid flow 

problems are resolved via massive computations and often ad hoc arguments to lead 

to their results. However, only a few works are conducted to justify the assumptions 

on mathematical arguments. It is very important that a rational, consistent, approach 

be developed to ensure its validity. Obviously, until this problem is settled, the value 

of the results of such a computation may be questioned. In fact, it is necessary to 

understand that actually the numerical methods and exact solutions both are useful 

and complementary. 

Aside from any physical considerations, fluid flow phenomena are most inherently 

three dimensional and time dependent. Thus, an enormous amount of information is 

required to completely describe such flows. Fortunately, it usually require something 

less than a complete time history over all spatial coordinates for every flow property. 

Thus, for a given flow conditions, the following question must be issued. Given a set 

of initial and boundary conditions, how do the physically meaningful properties ofthe 

flow predicted. What properties of a given flow are meaningful is generally dictated 

by the application. However, for the simplest applications, it may require only the 

skin friction and heat-transfer coefficients [43]. 
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Though we have a set of deterministic differential equations for describing fluid 

flow phenomena, believed consist of all of turbulence known to experiments, most of 

our understanding about turbulent flows were gained from the observations of 

controlled numerical and physical experiments. There is only a little attempt of 

theoretical analysis of the Navier-Stokes equations in turbulence. However, there are 

several routes to do this indirectly or by using of the Navier-Stokes equations and 

their consequences. In the sense that manipulating the Navier-Stokes equations and 

their consequences will enable us to recognise the dynamically important quantities 

and physical processes involved. In other words, the modified Navier-Stokes 

equations and their consequences describe what quantities and relations should be 

studied. So far this can be done mostly experimentally, but this kind of guiding should 

also be useful theoretically [44]. 

More complex phenomenological considerations might require detailed knowledge 

of energy spectra, turbulence fluctuation magnitudes and scales. Certainly, it should 

be expected that the complexity of the mathematics needed for a given application to 

increase as the amount of required flow field detail increases. On the other hand, ifthe 

only required property is skin friction for an attached flow, a simple mixing-length 

model may suffice [45]. Such models are well developed and can be implemented 

with very little specialised knowledge. 

Generally, all flows of practical engineering interest are turbulent. Thus, once the 

question of how much detail needed is answered, the level of complexity of the model 

follows. In the spirit of Prandtl, Taylor and Von Karman, the engineers will mostly 

prefer to use simple approach to reach their practical results. Phenomenologically, 

turbulence is characterised by the presence of a large range of excited length and time 

scales. The irregular properties of turbulence are strongly opposed to laminar motion, 

because the flow moves in smooth laminae, or layers. 

2.2 Challenges of Turbulent Flows 

Any turbulent flow is maintained by an external source of energy produced by one or 

more mechanisms [ 46]. The mechanisms in maintaining and sustaining turbulence are 

observed to be strongly related to the way of laminar and transitional flows become 
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turbulent. Apart from instabilities, turbulent flows can be produced by brute forces, or 

by applying external force of both in real experimental set up and in computations by 

adding some forcing in the right hand side of the Navier-Stokes equations. For 

example, one of the simplest kinds of turbulent flow, quasi homogeneous and 

isotropic, can be generated by moving a grid through a fluid medium or using a grid 

in a wind tunnel [47], oscillating them in a water tank, or forcing turbulent motion by 

electromagnetic forces, like in plasma, liquid metals or even electrolytes [48]. A 

similar aspect of turbulent flow can be numerically produced by adding random or 

deterministic forces which acting to the right hand side of the Navier-Stokes 

equations. An important point is that the nature of additional force is secondary in 

establishing and sustaining a turbulent flow, which means that the Reynolds number 

is sufficient to create turbulent flows. In addition, the additional force would likely be 

in the large scales. 

Another important point is that the forcing does not have to be random. Even if a 

turbulent flow is produced by random forcing, the primary role of such forcing is to 

supply energy to the flow and to trigger the intrinsic mechanisms of self 

randomisation of turbulent flow [49]. This is apparently to be a reason to differentiate 

turbulent flows, the one which occur naturally and the other generated by external 

random or deterministic source. They share similar qualitative properties and also 

quantitatively similar in several aspects. It is already observed that the flow produced 

by deterministic forces in the right hand side of the Navier-Stokes equations is not 

random for small Reynolds number. For the flow produced by random forcing, though 

random, it is in many aspects not the actual turbulence meaning that it is rather trivial, 

and there is mostly no interaction between its modes, in the sense of Fourier analysis. 

It is not caused by the state of transition from laminar to turbulent flow. This problem 

is related to the old philosophical question on whether flows become or whether they 

are just turbulent. It can be from any initial state including a turbulent one, such as 

random initial conditions in direct numerical simulations of the Navier-Stokes 

equations [50]. 

Turbulent flows always occur when the Reynolds number is large. Careful analysis 

of solutions to the Navier-Stokes equations of its boundary layer forms shows that 

turbulence develops instability of laminar flow. To analyse the stability of laminar 

flows, virtually all methods begin by linearising the equations of motion [51]. Even 
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though some results can be obtained in predicting the instabilities which lead to 

turbulence with linear theories, the inherent nonlinearity of the Navier-Stokes 

equation most likely precludes an analytical description of the actual transition 

process. For viscous fluid, the instabilities result from interaction between nonlinear 

inertial terms and viscous terms of the Navier-Stokes equations. The process is very 

complex because it is rotational, three dimensional and time dependent. The nature of 

turbulence strong rotational behavior is closely correlated with its three­

dimensionality. 

Turbulence also consists of a wide spectrum of scales ranging from largest to 

smallest. In order to visualise a turbulent flow with a spectrum of scales we often refer 

to turbulent eddies. A turbulent eddy can be thought of as a local swirling motion 

whose characteristic dimension is the local turbulence scale. Eddies overlap in space, 

large ones carrying smaller ones. Thus, turbulent flows are always dissipative. It is 

also observed that the most important feature of turbulent flows from an engineering 

point of view is the enhanced diffusivity. Turbulent diffusion greatly enhances the 

transfer of mass, momentum and energy. Apparent stresses often develop in turbulent 

flows that are several orders of magnitude larger than in corresponding laminar flows 

[45]. 

The nonlinearity of the Navier-Stokes equation leads to interactions between 

fluctuations of different spectrums and directions. The scale of turbulent flows usually 

spread all the way from a largest comparable to the width of the flow to a smallest 

driven by viscous energy dissipation. The process that drives the flows over a wide 

range of scale is called vortex stretching [5]. Turbulent flow produces and distributes 

energy if the vortex elements are oriented in a direction in which the mean velocity 

gradients can stretch them. The wavelengths which are comparable enough to the 

mean flow width interact most strongly with the mean flow. The larger scale of 

turbulent motion carries most of energy and responsible for the enhanced diffusivity 

and increasing stresses. 

The process of vorticity generation is not just a creation ofthe velocity derivatives. 

It also includes the presence of small scale structure which the inevitable process of 

vortex stretching tilted and folded because of the cascading process. The strain rate 

builts up together with limitations on the large scale will leads to the formation of the 

small scale structure. The definition of small scales above has some consequences. 
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For example, since the velocity at the large scale is determined by vorticity, the 

production of vorticity goes back in generating velocity. Since, the velocity is a 

function of the strain, hence, that production of strain also goes back on the velocity. 

Therefore, from the physical viewpoint it seems inconvenience to treat the small 

scales as a kind of passive objects swept by the large scales. Similarly it seems 

impossible to eliminate the small scales as is done in many theories reducing their 

reaction back to some eddy viscosity or similar things only [52]. It is also noted that it 

creates some large scale velocity due to nonlocal relations of small scale vorticity and 

strain. This and other aspects of nonlocality contradict the idea of cascade in physical 

space, which is local by definition [53]. According to the above arguments it looks 

that the energy is transferred not necessarily through a multistep cascade process. 

Instead, there is also an energy transfer in both directions, whereas the dissipation 

always occurs in small scales. 

In this case, the larger eddies stretch the vortex elements in random way, which 

comprise of smaller eddies and cascading energy to them. The special interesting 

feature of a turbulent shear flow is the way large bodies of fluid moving across the 

flow, also injects smaller scale disturbances to it. The presence of larger eddies near 

the interface of turbulent region and non turbulent fluid can strongly change the 

interface. In addition to migrating across the flow, they have a lifetime so long that 

persist for distances as much as 30 times the width of the flow [5]. Therefore, the 

turbulent stresses at a certain position will depend on the upstream evolution and 

cannot be determined uniquely by local strain rate as known in laminar flow. 

They are recognised as random fields of vorticity with substantial vortex stretching 

and a production of enstrophy by inertial nonlinear process dissipated by viscosity. 

Also, an important process is the production of strain as explained before. Both are 

the results of accumulation process of the velocity derivatives in turbulent flows, and 

consist of one of the most important dynamical properties of turbulence. The 

production of strain is strongly related to the dissipation process of turbulent flows 

and the amplification of vorticity, is interacted with dissipation. It is known that 

random potential flows are not turbulence and it is not difficult to observe vorticity 

dynamics of the three-dimensional turbulent flows, which can be seen from the direct 

numerical simulations of the Navier-Stokes equations [54]. In fact, the classification 

of two dimensional chaotic flows with many degrees of freedom as turbulence could 
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be questionable. The mam objection is that the two dimensional flows lack the 

mechanism of vorticity and strain amplification. 

The association with the rate of strain tensor which is represented by vortex 

compressing or the generation of negative enstrophy makes the amplification to the 

rate of enstrophy generation become positive [55]. However, the non viscous rate of 

enstrophy generation also comprise of a term representing the interaction between 

vorticity and the pressure. Stretching of vortex is required to maintain the fluctuating 

vorticity in a turbulent flow [56]. It is known that the largest deviation from Gaussian 

distribution is present at the smallest distances between two points or small scale. The 

velocity derivative is more intermittent than the field of velocity itself. One of the 

possible reasons for this is in the different nature of nonlinearity at the level of 

velocity field, i.e. in the Navier-Stokes equations and, may be, in the equation for 

vorticity. Namely, the nonlinearity in the Navier-Stokes equations contains a potential 

part and this can be included in the pressure hessian [57]. It is noteworthy to stress 

that there might not be such reduction of nonlinearity on vorticity scale. Therefore, 

intermittency can be considered as a product of the nonlinearity. 

The mathematical theory is fairly complete in two dimensional case but not in 

three dimensional or more. This inherent three dimensionality means that there may 

not be sufficient two dimensional models of the original problem and this is one of the 

reasons turbulence remains the most unsolved scientific problem of the mathematical 

physics. The time dependent property of turbulent flow is the main cause of its 

intractability. Even, many consider that the complexity is beyond the mere 

introduction of an additional dimension. Turbulence is characterised by random 

fluctuations thus obviating a deterministic approach to the problem and many people 

use statistical methods. On the other hand, this aspect is not really a problem from the 

engineer's view. 

While the mean parameter of the nonlinear term in the energy equation is 

vanishing, the nonlinearity is generating vorticity and strain in physical space as the 

mean enstrophy and strain are strictly positive. It is reasonable and justified from the 

physical viewpoint to relate the velocity derivatives with small scales and can be 

immediately seen that three dimensional turbulent flows have a natural tendency to 

create small scales. The velocity field and its energy generating in the process of the 

production of velocity derivatives is the one which is related to the small scales. This 
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process is what can be called as energy transfer from large to small scales in physical 

space. Indeed, as mentioned earlier, two large nearby eddies can dissipate energy 

directly by encountering each other on a very small scale [58]. 

Since there is no precise conclusion in defming the meaning of the term scales, 

then the meaning of the term cascade which is associated with the spectral energy 

transfer suffer ambiguity. The common viewpoint is that, the small scales are always 

related with the velocity derivatives. Thus, it is reasonable to consider this field as the 

one representing the small scales of turbulent flows. The dissipation is related to the 

symmetric part of the velocity derivative which represents the rate of strain, while 

vorticity is related to the anti symmetric part. Meanwhile, the large scales are 

naturally characterised by the velocity field itself. This is also justified because the 

sustaining turbulent flows requires energy input into the flow, the power input 

associated with this force is the velocity field [46]. Even if we had a complete time 

history of a turbulent flow, we would usually integrate the flow properties of interest 

over time to extract time averages. 

However, the technique of time averaging that lead to statistical correlations in the 

equations of motion cannot be determined a priori. This is the classical closure 

problem. In principle, the time dependent, three dimensional Navier-Stokes equation 

contains all of the physics of a given turbulent flow. That is true from the fact that 

turbulence is a continuum phenomenon. In fact, it is observed that the smallest scales 

in turbulent flows are far larger than molecular length scale. Nevertheless, the 

smallest scales of turbulence are still extremely small. They are generally many orders 

of magnitude smaller than the largest scales of turbulence, the latter being of the same 

order of magnitude as the dimension of the object about which the fluid is flowing. 

Furthermore, the ratio of the smallest to largest scales decreases rapidly as the 

Reynolds number increases. To make an accurate numerical simulation (a full time 

dependent three dimensional solution) of a turbulent flow, all physically relevant 

scales must be resolved. 

Nevertheless, it is possible to generate fully resolved solutions at moderate 

Reynolds numbers through direct numerical simulations (DNS) of the Navier-Stokes 

equations. Following a goal to reveal complete time history of turbulent flows, only 

solutions to the full set of the Navier-Stokes equation will be convenient. The 

accepted solutions require a highly accurate numerical solver and could require the 
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use of subtle transform techniques, not to mention vast computer resources. At this 

point, the Navier-Stokes equations most possibly contain more than any 

approximations of the dimensions of attractors and anything which belongs to the 

reduction into the dynamical systems. This is not clear, since the Navier-Stokes 

equations are a gradient expansion from the classical kinetic theory. Therefore, in 

principle, higher order terms may become dominant in regions with large velocity 

gradients. Even though the Navier-Stokes equations have a limited kinetic foundation 

[59], they are generally believed to be adequate describing most of the continuum 

flows. However, the standpoint of continuum mechanics can be taken at the very 

beginning. In the case of the related problem between the stress and the rate of strain 

in the fluid flow, the Newtonian fluid is the one in which this relation is linear. There 

exists large empirical evidence that the Navier-Stokes equations are valid, at least, at 

all known practical Reynolds numbers, hence continuum mechanics is also eligible. 

This also covers the possibility that in special conditions, where the strain rate is 

extremely large, the Newtonian fluids become non-Newtonian, in which the analysis 

is shifted to variable viscosity [60]. 

The most well-known qualitative properties turbulent flows are similar and they 

also generate the idea of qualitative universality of turbulent flows. The concept of 

qualitative universality is not just an obscured idea. These qualitative features of 

turbulent flows are universal for all turbulent flows arising in qualitatively many 

routes and circumstances and generally characterise turbulent flows in a unified view. 

There are also universal quantitative properties which are specific for a special class 

of turbulent flows. Many quantitative properties most possibly will widely vary with 

the range of scales of interest. The properties of the large scales depend on the 

mechanisms related to the turbulence excitations which are quantitatively not 

universal, though they are qualitatively universal. It is the small scale turbulence 

which, since Kolmogorov, is believed to hold some universal properties that are 

independent of the large scale flow structures [61]. This point of view is not accepted 

universally. 

The issue of the existence of universal properties is one of several debated 

controversies in the turbulence problems. This includes the meaning of the term 

universality. For example, one issue discusses the invariance of some properties of a 

particular turbulent flow at large enough Reynolds numbers. Another issue is 
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concerned with the universality of scaling properties of small scale turbulent flows, 

which has remained to be one of the most active targets of inquiry. The scaling 

property of turbulent flows which is derived from the first principle is one of the most 

popular objectives of fluid dynamics research. Scaling and other phenomenological 

aspects are extensively reviewed in literatures [62]. 

The nonlinearity of the Navier-Stokes equations is the most frequently pointed out 

as the main source. The nonlinearity of the Navier-Stokes equations is obscure, thus 

not like nonlinear problems that are completely integrable. The famous example is 

systems which have solitons or solitary waves as a solution. In these systems, the 

many degrees of freedom are so coupled that they do not show any chaotic and 

irregular behavior, also they are entirely organised and regular [34]. It is unfortunate 

that the coherent structures in turbulent flows for example, fall to be treated and 

viewed in a similar way. The nonlinearity of the Navier-Stokes is also responsible for 

the difficulties in the closure problem in turbulence modeling which is associated with 

decomposition, such as the Reynolds decomposition of the velocity into the mean and 

the fluctuations, or similar decompositions into resolved and unresolved scales related 

with large eddy simulations (LES) [61]. The main question is the mean field or 

resolved scales contain seed of the fluctuations or in unresolved scales due to the 

nonlinearity of the Navier-Stokes equations have to be cleared. A similar problem 

exists for the advection-diffusion equation representing the dynamics of a passive 

scalar in some flow fields [63]. But this equation is linear. The problem occurs due to 

the multiplicative operation of the velocity field, since velocity enters this equation as 

its coefficients. 

It is widely known that the large scale evolution will depends on the fluctuations or 

unresolved scales in the time and space domain. Therefore, the considered problem 

cannot be described properly by passive scalar. This means that in turbulent flows, the 

localised independent relation such as stress-strain relation, can not exist, even though 

eddy viscosity and eddy diffusivity are considerably implemented as an 

approximation for describing the reaction back of fluctuations on the mean flow [43]. 

The fact that the eddy viscosity and eddy diffusivity are flow dependent is just another 

expression to represent the strong coupling between the large and the small scales 

[64]. 
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This in turn means that the large scales and the small scales as should be strongly 

coupled, as indeed is the case. This coupling is in two directions, which means that 

the small scales cannot be consider as passive to the large scales and the small scales 

react back in due to the nonlocality. Somehow such relation in the case of a passive 

object is detected in a turbulent flow [65]. The coupling of large and small scales 

which is related to decomposition of turbulent flows and in the closure problems 

occurs frequently. The relation between the fluctuations and the mean flow is not 

localised in space time, it is a functional [66]. From the mathematical point of view, a 

process is called local if all the terms in the governing equations are differential. 

When the equations consist of integral terms, the process is non local. It is already 

defmed that the Navier-Stokes equations are classified as integra differential in the 

velocity and represent non local processes. The problem is strongly associated to the 

decompositions, for example, replacing pressure term by a local quantity may not turn 

the problem into an integrable system. However, the reason for the formation of 

singularity in fmite time in such models is that the scheme in the integrable models is 

fixed in space, whereas in a real turbulent flow it is oriented randomly in space and 

time [67]. This means that nonlocality due to pressure is substantial for self sustaining 

turbulence. 

Physically, it is satisfactory to state that the nonlocality is because of the presence 

of long range forces due to pressure [16]. Since the pressure is nonlocal due to 

nonlocality of the integral operator, the pressure is then defined in each space point by 

the velocity in the whole flow field, which is related also to the nonlocality in time. 

Nonlocality cannot be easily dropped by implementing the curl operator to the 

Navier-Stokes equations which eliminate the pressure gradient term and producing 

vorticity equations. The situation is that the vorticity is nonlocal in vorticity equations, 

since it borrows the strain rate due to the nonlocality of the operator. The whole flow 

field is defmed in each space point by the vorticity and boundary conditions on 

velocity. 

A related aspect is that the acceleration which is a kind of small scale quantity is 

dominated by pressure gradient [68]. The vorticity equations including enstrophy are 

nonlocal in vorticity, they consist of the strain rate tensor and the nonlocal interaction 

exists between vorticity and the strain rate itself. Also, in compressible flows there is 

no such relatively simple relation between pressure and velocity gradient, but the 
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vorticity-strain relation remains the same [69]. The nonlocality is also observed for 

the strain rate, dissipation and for the third order quantities. An essential aspect is that 

the dynamics of nonlocality due to pressure hessian can be viewed as interaction 

between vorticity and pressure and between strain and pressure. The production of 

enstrophy describes nonlocal aspects of vortex stretching process. 

Transitions from one flow to another with increasing Reynolds number are 

observed to be a representation of structural evolutions of the mathematical objects 

called phase flow and attractors through bifurcations [70]. However, weak turbulent 

flows do not fit easily in this conjecture. Weak turbulent flows contain continuous 

transition from laminar flow into turbulent as result of the process called entrainment. 

The processes by which the transition to turbulence are quite diverse, all known 

quantitative properties of many turbulent flows may appear to be weakly dependent 

either on the initial conditions or on the history and particular way of their creation, 

like the flows can be started from rest or from the other flows. Even though, the 

quantitative properties of turbulent flows could depends on the nature of their 

transition, it is well known that the qualitative properties of turbulent flows remain the 

same. 

There is variety of processes by which the transition phenomena to turbulent flows 

is due to the details of instability [71]. Many flows, such as internal flows, boundary 

layers, jets, shear flows are easily affected by external noise and excitation. There are 

substantial differences in the instability of turbulent shear flows which consists of free 

and wall bounded flow, thermal convection, vortex breakdown, surface and internal 

waves as the major phenomena [72,73,74,75,76]. It is important to note that such 

differences also exist for the same geometry, which displays interesting variety of 

transitional behaviour. The unique route could depend on initial conditions, external 

disturbances, external force, time history and other details. This difference is 

practically observed at the initial state of the linear instability, where the nonlinear 

stages are less sensitive to such details. 

It is quite common to confront the traditional statistical and the deterministic or 

structural approaches in turbulence research. However, contrasting the terms 

deterministic and random has lost most of its meaning or at least become blurred with 

the developments in deterministic chaos. It is noteworthy to mention that simple 

systems governed by a deterministic nonlinear equations, shows irregular, random and 
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stochastic behaviour [77]. The problem of turbulence was known long before the 

construction of chaos theories. Since Leray, there is no universal agreement whether 

turbulence is a breakdown of the Navier-Stokes equations [78]. 

In turn, one of the outstanding problems in mathematical physics is whether the 

Navier-Stokes equations at large Reynolds numbers develop a genuine singularity in 

finite time. Note that there is some analytical and numerical evidence that, at least for 

Euler equations, this may be true [79,80]. Also, it seems a justified view that the 

presence of singularities will develop topological defect and dissipation for the 

Navier-Stokes equations. Their existence is influenced at the dissipation scales and is 

perhaps the source of small scale intermittency [78]. Such reaction back is reasonable 

due to the direct coupling between large and small scales. Near singular objects 

related with non-integer values of the energy spectrum scaling exponents are 

investigated to be closely associated with some structures and with intermittency of 

turbulent flows [81,82]. In most cases, the near singular objects may be among the 

source of intermittency. The problem with two dimensional turbulence is that 

everything is found regular, but there is still intermittency and near Gaussian 

behavior. However, non Gaussian property is strong at the level of velocity 

derivatives of a second order [83]. Therefore, the possibility of singularity formations 

in three dimensions is not always the cause for intermittency in three-dimensional 

turbulent flows. 

The important point is that investigating the behavior of a simplified equation will 

not solve the problem. Even any particular solutions from analytical methods may 

have only little contribution to the understanding of the basic properties of turbulent 

flows. Consequently, nothing less than by understanding the global behaviour of 

solutions of the Navier-Stokes equations would seem to be convenient to explain the 

phenomenon of turbulence [54]. The problem is to solve the constitutive equations 

with subject to the initial and boundary conditions. The task is difficult because our 

ability to tackle nonlinear problem i.e. very high dimension and complicated structure 

of the underlying attractors is still in the early development. 

As a summary, turbulence consists of many physical natures which seem to be 

difficult to solve. Turbulence also seems to have qualitative universal feature for 

many cases. The understanding is still not clear whether this feature is strongly related 

to the variety of the large scale dynamics of turbulent flows. Note that this 
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justification mostly comes from experimental evident, because the development of 

numerical and mathematical analysis of the Navier-Stokes equations is still not 

sufficient to tackle phenomenological problems. On the theoretical side, once the 

problem of singularity is settled, mathematical analysis will at one big step forward to 

reveal the secret of turbulence orchestrated by the Navier-Stokes equations. 
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Chapter 3 

Contributions to the Theory of Solutions: The Physical and 

Mathematical Aspects of the Incompressible Navier-Stokes 

Equations 

As they are well defmed, the incompressible Navier-Stokes equations with continuity 

equations are presumed to embody all of the physics inherent in all fluid flow 

phenomena, or more specifically, laminar and turbulent viscous incompressible fluid 

flows. It is known that the Navier-Stokes equations are typically a problem of non­

integrable systems, whose any global unique solutions may not exist. 

The existence oftime periodic solution to the Navier-Stokes equations is proved in 

the whole space [84]. Then, more generally, strong solvability of the Navier-Stokes 

equations is investigated [85]. It is proved that there exists essentially only one 

maximal strong solution and that various concepts of generalised solutions coincide. 

Some criteria on certain components of gradient velocity are given to ensure global 

smoothness in time [14,86]. Considerable effort is spent to reduce the analysis to 

make it more tractable, like partial regularity of the nonstationary Navier-Stokes 

equations in Ox[O,T] where the regularity of suitable weak solutions is proven for 

large lxl [87]. It is also mentioned that their result also holds near the boundary. The 

more general regularity concept with simplified problem is investigated in [88] which 

states that w satisfies either wE L00 (lit 2 
X ( 0, T)) or Vw E L" ( 0, T; L" (lit 3 )) with 

lfp+3f2q=lf2 and q':?.3 for some T>O then u is regular on [O,T]. Similar 

investigation is performed for thin three-dimensional flows [89]. 
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3.1 Triviality in Boundary Value Problems 

Global in time continuation still remains the unsolved problem in mathematical fluid 

mechanics [89,90]. The question arises as if such singularities exist, they might be 

related to turbulence by invoking that we have global smooth solution for two­

dimensional flows, and turbulence is three-dimensional phenomena. This hypothesis, 

however, has serious difficulties as the observed phenomenon is so far bounded in 

nature. 

Therefore, the argument that turbulent solutions should have no singularities is 

supported in this work based on the triviality of the solution for simple energy 

equation. Analysis of global trivial solutions is important from mathematical and 

physical aspects, it has wide application due to its correlation with many areas where 

some hierarchical solutions are needed to be arranged [15,26,38]. Classical procedure 

of vector identities is implemented for producing trivial solutions. Violation from 

trivial solutions is also investigated. Investigation of nontrivial solutions is related to 

the rate of energy generated or destroyed. The assumed nontrivial solution from the 

Navier-Stokes equations is performed by the utilisation of the vorticity equations 

which is related to the onset of turbulence due to energy accumulations. 

3.1.1 Boundary Value Problems 

Let 8 be the region of interest as described in fig. 3 .1. It is supposed that the 

associated problem is a connected, bounded region in three-dimensional domain. 

Moreover, let 8;,i=l, ... ,m, be sub regions characterised by simple boundaries and 

8a;,i=l, ... ,n be the sub regions where boundaries are not simple. This means that the 

considered boundary 88; and 88a; are defmed as regular and irregular surfaces 

respectively. 
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Fig. 3.1 Region and sub regions of interest 

Thus, the boundary-value problem is determined as follows; given density p > 0 

such that velocity V is real vector field consists of< u, v, w > components and p is real 

scalar field defined in every region 3i,i = 1, ... ,m, and Sai•i = 1, ... ,n which fulfill, 

av - -- 1- -2-
-+V·VV=--Vp+vV V at p 

Y'·V=O 

(3.la) 

(3.1 b) 

with boundary and initial conditions V = v(x,y,z,O) on 831 or asal· The previous 

problem also denotes kinematic viscosity v > 0, V=<ajax,aj&y,ajaz> and ~ is the 

unit vector normal to the surfaces s parallel to the velocity. It will be demonstrated 

that if the nonzero divergence condition in (3.la) due to the production term in the 

control volume is implemented, the boundary value problem does not have any trivial 

solutions. It is very important consequence since the nonzero divergence in the 

continuity equation has wide applications, for example, combustion problems. 

It is noted that the previous boundaries are characterised by the Cartesian 

coordinates and only applied to few simple applications. For this reason it is important 

to prove that the associated problem can be extended to general coordinates for non­

simple boundaries. The general coordinates are also defined in si,i = 1, ... ,m and 
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B0 ;,i=l, ... ,n such that general solution is mapped to the general coordinates in the 

same regions. The mathematical formulation of the associated general coordinates is, 

,; =,;(x,y,z,t) (3.2a) 

T] = ry(x,y,z,t) (3.2b) 

s =q(x,y,z,t) (3.2c) 

r=r(t) (3.2d) 

such that,;, ry, q and rare continuous in B;,i=l, ... ,m and S 0 ;,i=l, ... ,n.lt is also 

important to note that the boundary conditions considered in (3.1) are also applied to 

the general coordinates. 

3.1.2 The Existence ofTrivial Solutions 

In this section, some important properties of the solution of (3.la- b) are investigated 

in order to prove the triviality of the solutions with respect to the boundary value 

considered. The energy rate is defmed as a product of static pressure p and flow rate 

V across control surface. Direction of velocity is parallel to the unit normal control 

surface n. It is supposed that the region s be the associated problem and consists of 

i parts of region with simple and non simple boundaries. Therefore, the assumed zero 

energy rate, E can be written as, 

BE - -2 --=pAV+l.pV AV=O at 2 (3.3) 

Consequently, the divergence theorem can be applied to the whole region of interest 

as, 

(3.4a) 

By using vector identity, V · ( f "F)= fV · F + F · V f, hence, it is identified, 

<fj>s(pv·n+tpv2v ·n)ds = ffJ=:(pv-v +V·Vp+~pv2v-v +~pv .vv2 )ds = o (3.4b) 

28 



~fff ( - - - - 1 -2- - 1 - --2) L. B p'V·V+V·'Vp+-pV 'V·V+-pV·'VV d3=0 
i~l 2 2 

(3.4c) 

Suppose that the rate of energy is zero everywhere, then, equation (3.4c) is 

automatically satisfied. The first and third terms of energy rate are always zero 

according to continuity. Therefore, since p and V are nonzero, then Vp and VV 

must be zero. Thus, the following trivial solution is defined, 

p = constant and V = constant (3.4d) 

It is noted that equation (3.4d) will also satisfY the continuity and incompressible 

Navier-Stokes equations. This is one of the interpretations of equation (3.4c). 

However, it is interesting to consider more general conditions in which (3.4c) will 

be satisfied. Consider the function not zero for whole infmite boundaries, 

F =f fft (pv .r; +V·Vp+2.pv2v.v +2.pv .vv2 )ds1dm+ 
m 4 2 2 

f fffQ (pv·V+V·Vp+2.pv
2
V·V+2.pv.vv2 )d3a1dn 

n - 0 1 2 2 

(3.5a) 

It is possible that n « m , and without losing a generality take n = 1 , such that by 

dividing procedure the following expression is produced from equation (3.5a), 

z=g(n)+ L h(m)z(m)dm (3.5b) 

where, 

g(n) = JffQ (pv .v + v. Vp+2.pv2v. v +2.pv. vv2 )dsa1 
-~ 2 2 

h(m)z(m)= JJJ,JpV·V+V·Vp+±pv
2
V·V+±pv.vv

2
)ds1 • 

Note that z in the left hand side is same as right hand side. By taking 

j=Lh(m)z(m)dm, where z<:;j, and performing differentiation of j, the following 

inequality is produced, 

j' = h(m)z(m) <;, h( m )j(m) (3.5c) 

By multiplying (3.5c) by exp(-J h(m)dm), and applying the identity [91] to obtain, 
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j'exp(-I h(m)dm )-h(m )j(m )exp(-I h(m )dm) S 0 

Therefore, the following result is yielded by integration, 

j S cexp(f h( m )dm) (3.5d) 

with c being an arbitrary constant. Since j sF, it is proved that zero value for F is 

very special case for condition that energy rate is not zero everywhere. Moreover, the 

consideration can be changed to j s z and F s j, by the same procedure in (3.5a -

3.5d), to obtain the inequality cexp(I h(m)dm) s j. It can be concluded that the special 

condition still holds and case for zero energy rate everywhere is more plausible. 

Therefore, the above derivation can be stated in the following lemma, 

Lemma 1: There exist p and vas solutions to the continuity and incompressible 

Navier-Stokes equations such that the rate of energy in the whole domain of 

S;,i=l, ... ,m and S0 ;,i=l, ... ,n with respect to the initial and boundary conditions 

V = v(x,y,z,O) on 831 or 8301 , is equal to zero. The solutions then are, 

p = constant and V = constant 

It is obvious that the above trivial solution will only be valid in special cases. The 

violation of the condition described in lemma 1 is strongly related to the Navier­

Stokes equations which can be correlated to the onset of turbulence as explained in 

section 3.1.4. In this case, the analyticity is implemented in order to generalize 

solutions to the limit of or near to triviality in some sharing regions. Hence, another 

interesting result is produced, 

Proposition 1: Any nontrivial solutions are analytic in regions S; and S
0
;. 

Furthermore, in the intersection region such that s, n 3
0

; is strictly held, function 

f(x) is considered. Suppose that f(x) is at least twice differentiable and convergence 

to the some constant value B in certain location which is related to lemma 1. 
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According to the property of analytic function, it is reasonable to assume that if f( x) 

is convergent in some point y which is close enough to x then some value B' will be 

generated such that B',., B. Therefore, for p and V with associated boundary 

conditions, it is proper to consider sub region '¥ in E; n Ea; such that x s; '¥ s; y where 

'¥-+ x E E; and '¥-+ y E Ea; . Then, according to the analyticity property of p and V , it 

is reasonable to conclude that p and V in '¥ are equal to B' and C' where B',., B and 

c•,.,c in E;,i=l, ... ,m and Ea;,i=l, ... ,n. Therewith, the following statement is 

produced, 

Lemma 2: Given any nontrivial solutions such that p > 0 and JJvJJ > 0, can be applied 

to A, where A is a boundary of E; and also becomes at least one sub region or part 

ofEa;• where p and V are trivial. The corresponding solution can be interchanged at 

the boundary such that there exist 

p,., constant and V ,., constant 

in A. 

It is interesting to note that shock wave and laminar-turbulence interface problems 

might be described by this condition since they are considered as a discontinuity jump 

between two regions separated by boundary conditions. 

3 .1.3 Triviality in General Coordinates 

First, it is observed that equation (3.1) in general coordinate (3.2) will satisfY the 

energy conditions (3.4) in the whole domain. Then, by utilising lemma 1, the 

following result is produced, 

p = constant and V = constant 

in E;,i=l, ... ,m and Ea;.i=l, ... ,n. Then, proposition above is used to observe that pts 

analytic with its derivatives in E;,i=l, ... ,m and 3
01

,i=l, ... ,n. Sub regions ls;ks;m in 
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Si,i=I, ... ,m and I~l~m in sai,i=l, ... ,n arenowconsidered. Thereexistsomeregions 

that !~k~m and I~l~m are intersect such that Sinsai· Ifthe solution is nontrivial 

in Si,i=l, ... ,m or Sai,i=!, ... ,n, then it is analytic due to proposition 1. As a 

consequence, the following result is also obtained at the boundary, 

p "' constant and V "' constant 

Therefore, the following theorem is just already proved, 

Theorem 1: Any solutions for boundary value problems of the continuity and 

incompressible Navier-Stokes equations that satisfY the condition of zero rate energy 

is trivial, i.e. p = constant and V = constant. 

3.1.4 A Possible Route to Turbulence 

It is more reliable to study the fluid motion using vorticity [29,41]. Taking curl 

operation to the Navier-Stokes equations, the following vorticity equations are 

obtained, 

a(i) - -- - -- -2-
-+V·'\l(i) =(i)·'\lV +v'll (i) 
at (3.6) 

where m = Vx V and m =< (i)x,(i)y,(i)z >.Note that the pressure term in (3.1a) is vanished 

by the curl procedure and equations (3.6) also satisfY continuity equation for 

incompressible flow, v · V = 0 • It is supposed that there exists a potential function ct> 

such that the velocity vector can be expressed as, 

V = Vxct> (3.7) 

Therefore, the vorticity can also be expressed by the potential function ct> as, 

(3.8) 

Note that equation (3.6) has some solutions for certain boundary and initial 

conditions. Therefore, any solutions of (3.6) will produce velocity field in the 

following form, 

(3.9) 
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Hence, by substituting (3.9) into the Navier-Stokes equations, then the solution for p 

is non-trivial, thus, the above derivation can be concluded as in the following, 

Proposition 2: Boundary value problems of nonstationary three-dimensional 

incompressible flows admit non trivial solutions 

Note that the problem considered here strictly obeys the Navier-Stokes equations, 

so violation from condition explained before, i.e. p =constant and V =constant are 

very possible. Suppose that due to relation (3.3), the energy rate is produced if the 

condition violated, it is plausible that the excess energy will be distributed to the 

whole domain, then the observed parameters will also deviate from trivial conditions. 

Furthermore, the case considered here strictly admits continuity in the form of 

velocity divergence, meaning that if in some cases velocity divergence is not zero, 

triviality in p and V will be more difficult to obtain. 

Corollary 1: Any non trivial solution for boundary value problems of the continuity 

and incompressible Navier-Stokes equations is a possible onset of turbulence. 

which is also stated by Adomian [92] 

3.2 The Mathematical Theory 

Apart from the mathematical analysis, it is known that the solution of the Navier­

Stokes equations on the corresponding domain with periodic boundary conditions has 

global regularity, as long as there is control on the size of initial data and the forcing 

term. Also, the Navier-Stokes equations are modified in a lengthy work of [93] to find 

the interior regularity and to ensure the uniqueness of the solutions. However, it is 

possible to generate the existence theorem from explicit solutions like numerical 

methods [94] to provide, by strict solution, a rigorous a posteriori analysis of the 

existence of the steady solutions. 

Therefore, it is clear that although it is promising to overcome the problem of 

nonlinear differential equations by fmding class of exact solution [95], it is important 

to give the foundations of the analytical solutions to explore their global properties, 
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like one might fmd possible local singularity for this particular class of the solutions 

[96]. Therefore, this section provides analysis of analytical solutions which are 

detailed in section 4.4. Analysis is carried out in vorticity equations rather than in the 

Navier-Stokes equations by considering that solutions will fulfill certain conditions 

that satisfy the Navier-Stokes equations [41]. Additional assumption for the pressure 

condition is not necessary since it will vanish through the curl procedure. The 

obtained solution is then substituted back to the original Navier-Stokes equations and 

the pressure relation is also obtained. In this work, a potential function is proposed to 

form the special classes of solution. 

3.2.1 Triviality in V=Vx<t> and V=V<I>+Vx<t> Classes ofSolutions 

Consider equations (3.6), (3.7) and (3.8). Thus, the vorticity can be defined explicitly 

as, 

(3.10a) 

(3.1 Ob) 

(3.1 Oc) 

Substitute equation (3.10a- c) into the vorticity equations (3.6) will yield a system of 

equations, 

In x direction; 

(3.11a) 
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In y direction; 

a(<Dy,-<Dzz-<Dxx+<Dxy} I }. a(<D,,-<Dzz-<Dxx+<Dxy} a(<Dy,-<Dzz-<Dxx+<Dxy} 
---'--_.:.::______:::.,__...c:____::'-.!..+ \ <[> y - <[> Z + { <[> Z - <[>X}---'--_.:.::.______::'-:--__ '--'._ 

at ax ay 

1 }a(<Dy,-<Dzz-<Dxx+<Dxy} 1 }a{<Dz-<Dx} 1 . }a{<D,-<Dx} 
+\<[>X - <[> y \ <[> xy - <[> yy - <[> zz + <[> XZ + \ <[> yz - <[> zz - <[>XX + <[> xy --'---":---"-'-

az ax ay 

1 } a{<D, -<Dx} a2(<D"' -<Dzz -<Dxx +<Dxy} a2(<D"' -<Dzz -<Dxx +<Dxr} 
+\<!>XZ-<!>XX-<DJY+<Dyz +V 2 +V 2 az ax ay 

(3.11b) 

In z direction; 

a(<D.,-<D_u-<D;y+<Dyz} I }a(<Dxz-<Dxx-<D;y+<Dy,} a(<Dxz-<Dxx-<Dyy+<Dy,} 
--"-----,------'-"---"---"-+ \ <!> y - <!> Z + {<!> Z- <!>X}--"-----,------'-'--'--'-

& & ~ 

I }a(<D.,-<1>-"'-<DYY+<D"'} I }a(<Dx-<Dy} I }a(<Dx-<Dy} + \<Dx- <!> y \<!> xy- <!> yy- <!> zz + <!> xz + \<!> yz- <!> zz- <!> x< + <!> -'Y --'--____:_-'-
& & ~ 

I }a(<Dx-<Dy} a
2

(<Dxz-<Dxx-<Dyy+<Dy,} a2(<D.,-<Dxx-<D;y+<Dyz} 
+\<Dxz-<Dxx-<D;y+<Dyz +V 2 +O 2 

& & ~ 

(3.llc) 

By taking sum of equation (3.11a- c), the following linear equation is produced 

with 

ar - -2 
-+AVT'=vV r 
ilt 

(3.12) 

A3 = {<t>x -<PY}. Therefore, the corresponding problem falls into a category of linear 

parabolic (for r) and elliptic (for <P) differential equations. Since the assumption of 

regular boundary is held, construction of weak solution in L2 and strong solution in 

LP can be developed more easily as explained in the next section. 

However, a more general solution can be developed using, 

v = V<f> + v X <f> (3.13) 

Similar expression in (3.12) can be obtained by the same procedure as above with the 

additional terms resulting from the assumption of the vortex stretch added to the right 

hand side of(3.11), 
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for x direction : 

(3.14a) 

for y direction : 

(3.14b) 

for z direction : 

(3.14c) 

Thus, according to the differentiation rule, by assuming that the above equation is 

equal to, 

~ <l>"'Y- <l>xyy- <!>xu + <!>.., H <l>x + <l>y -<I> z l + ~ <!> Y.)Z - <!> J"Z -<l>xxy + <1>-'YY H <llx + <!> y -<I> z l (3.15) 

for all direction, so zero result will be observed. Then, because of (3.13), components 

of equation (3.12) are redefmed as r=2{<llxy+<llxz+<l>yz}, A 1 ={<l>x+<l>y-<l>z}, 

Equation (3.12) can be transformed further by taking x = lnA1 , y = lnA2 , z = lnA3 , 

to give, 

(3.16) 

which becomes a linear parabolic equation with respect to A; , so that the initial value 

problems of (3.16) will have generalised unique solution [29]. Hence, if r(A;) is 

held, then r(A;) will admit general classical solution and have global regularity for 

weak solution in L2 and strong solution in LP with the assumption of regular boundary 

[97]. With this result, r can be rewritten in terms of the potential function, <1> as, 

(3.17) 

and may be investigated by nonlinear analysis which depends on the solution of 

r(A;). However, it is interesting to note that trivial form of linear differential 

36 



equations can be generated from (3.17). Transforming back f(A;) in their original 

form (x,y,z,t) redefmes (3.17) as, 

r = z{<I>xy +<l>xz +<l>yz} = q(x,y,z,t) (3.18) 

Note that previous analysis shows that q(x,y,z,t) satisfies global regularity in (3.16) 

and that equation (3.18) falls into the category of nonhomogenous linear hyperbolic 

equations. 

3.2.2 Theory of Solutions 

This section is concentrated on the existence and uniqueness of the classical, weak 

and strong solutions. The analysis is based on the maximum principle of the linear 

parabolic equation in (3.16), which is implemented to determine L"' norm estimate 

and comparison principle, which will be applied in theorems 2 to 8 [97]. 

Theorem 2: Let A1 2 0 and bounded in !.1, r E C2 satisfy equation (3.16). Then, 

supr(A 1,t) :s; supr +(A 1,t) 
n an 

Proof: Consider the existence of point (A~,t0 ) at an such that, 

r( A~,t0 ) = supr( A 1,t) > 0 
an 

The maximum principle asserts the following condition, 

ar(A~,t0 ) _ ( ) -2 ( ) 
--''--'-------'--> 0 Vf A 0 t0 = 0 \7 r A 0 t0 < 0 at ' 1 ' ' 1' -

Then equation (3 .16) will result in, 

ar(A0 t0
) 

_ _.:
1 '---'-+A2 Vr(A0 t0 )-vA2V2r(A0 t0 )> 0 - at 1 1 ' 1 1 ' -

(3.19a) 

(3.19b) 

(3.19c) 

and (3.19a) is valid. Let g=e/3' with {3?:. 0 and gEC2
, substituting into (3.16) will 

result in, 

Then, for any constant s > 0, 

L(f +sg) = Lf +sLg?:. 0 
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According to the above equation and (3.19a), the following inequality is produced, 

s~p[ r(A j•t )+sg( A j•t )] :o; s~[ r( A j,t)+sg(A j,t)l (3.19e) 

Let s ~ o , thus theorem 1 is proved. 

Therefore, an additional result can also be concluded as below, 

Theorem 3: Suppose that A j;;::: 0 and bounded in n, r, ,r 2 e C2 satisfies Lf1 :o; Lf 2 in 

n with r,(A~,t0 ):o;r2 (A~,t0 ) at an. Then r,(A,t):o;r2 (A,t) inn. 

By theorem 2, the initial-boundary value r(A~,t0 ) can be chosen to ensure the a priori 

bound for solutions of (3 .17), theorem 3 also ensures that r 3 = r 1 - r 2 :o; o . Hence the 

existence and uniqueness of classical solutions for (3.16) are proved. 

The L2 theory of equation (3.16) can be stated in the following [97], 

Theorem 4: For r e L2 
( n), the initial-boundary value problem of (3.16) admits at 

most one weak solution. 

Proof: 

(Uniqueness). Let r, and f 2 be weak solutions of initial-boundary value problem 

ff ar3 2 - 2- -
Jt9+Aj9'Vf3 -vAj 'Vf3 · \19dQdt= 0 

OxT 

Choosing 9 = r 3 and the maximum principle reveals 

ff 8~3 f 3 +AJf3W3dOdt= ff vA]Jw3 J
2

dQdt:o;O 
iliT iliT 

Poincare inequality is then implemented to obtain 

fJ vA]rjdndt ::s: o 
QxT 

(3.20a) 

(3.20b) 

(3.20c) 

Therefore, r 3 = 0 and r, = f 2 in n which ensure the uniqueness of weak solutions. 

(Existence). Considering, 
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Jf ( ~~ r +A]rw}-asdndt = Jf ( vA]Iwf)e-asdndt, s EOxT (3.20d) 
O.xT D.xT 

The right hand side is equal to, 

and (3.20d) will change as follows, 

Jf ( ~~ r +A ;rw} -as dOdt 2 a fJ ( vA] lwf )e -as dOdt (3 .20f) 
OxT OxT 

Poincare inequality in the form, 

fJ (vA]r2 )e-asdndt ~ M fJ ( vA] lwf)e-asdndt 
OxT OxT 

will take us to, 

a fJ ( vA]Iwf)e-asdndt+ ~ Jf (vA]r2 )e-asdndt ~ Jf ( ~~ f+A]rw -vA]Iwl2 
}-asdndt 

O.xT QxT OxT 

(3.20g) 

Therefore, there exist, 

(3.20h) 

as weak solutions to the initial-boundary value problem of(3.16). 

The existence and uniqueness of solutions with intermediate regularity is based on 

the LP theory as follows, 

Theorem 5: For [ELP(n), the initial-boundary value problem of (3.16) admits a 

unique strong solution 1 E w}·1 (n)nw;·1 (n). 

Proof: Multiplying both sides of equation (3.16) by !r!r-z r and integrating over n 

and T as, 

fJ ~!r!P-2 r+A)r!r!P-zfu"dndt= Jf vA]\1(-
2
rV2fdOdt (3.21a) 

lliT lliT 

Integrating by parts over spatial coordinate to yield, 

~ Jf a!~lp dndt+ ~ Jf A]v!r!P dndt= 4(p;I) If vA]Iv(!rl%-1r Jdndt (3.21b) 
OxT OxT p OxT 
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Multiplying by e-rs as in theorem 3, and by similar procedure the following result is 

obtained, 

(3.21c) 

Thus, suppose that r 1,f2 EW}J(n)nw;·1(n) are strong solutions, and based on the 

estimate of the maximum principle and Poincare inequality, the following is obtained, 

(3.21d) 

Setting r 3 = r 1 - r 2 = 0 then r 1 = r 2 and uniqueness is also proved. 

Equation (3.18) is easier to be analysed since q(x,y,z,t) is proved to be bounded. 

Here the existence and uniqueness of the regular solutions of (3.18) will be 

demonstrated. 

Theorem 6: Let q be bounded, the boundary value problem (3.18) admits a unique 

classical solution. 

The proof is similar that of theorem 2. 

Theorem 7: For any q E L2 
( n) and bounded, the boundary value problem (3.18) 

admits at most one solution. 

Proof: Multiplying (3.18) by .9, then there exists a unique <'!l E H 1 (n) such that, 

fv<'ll· vsdn = f qsdn, v s E H1 
( n) (3.22) 

n n 

This shows the existence of the weak solutions of boundary value problem of(3.18). 

Theorem 8: For any qE rP(n), equation (3.18) admits a unique strong solution 
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Proof: The proof here is different than that of theorem 5 since it is guaranteed that 

q E LP ( n) is bounded. Multiplying (3 .18) by lq:,IP-2 <ll and the relation over n is, 

fi<lllp-2 <llV2<lldn = f ql<lllp <lldn (3.23a) 
n n 

Integrating, 

(3.23b) 

By Poincare inequality, Holder inequality and Young inequality, equation (3.23b) will 

transform to, 

~ llqiiF(n) ll<llllf;/n) (3.23c) 

~sflq:,IP dnu-lf(p-1) flqlp dn 
n n 

where C is constant in Poincare inequality and s is constant in Young inequality, and 

the above result leads to, 

(3.23d) 

Let <ll 1,<ll2 EW
2·P(n)nw1·P(n) and set <ll3 =<ll1 -<ll2 then the estimate (3.23d) will 

ensure the uniqueness of strong solutions. This proves the theorem. 

Hence, the initial-boundary value problem of (3.16) and (3.18) proves have 

generalised unique solution. If l(A;) is held, then r(A;) will admit general classical 

solution and will have global regularity for weak solution in L2 and strong solution in 

LP with the assumption of regular boundary. 
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Chapter 4 

Contributions on the Exact Solutions to the Three-Dimensional 

Incompressible Navier-Stokes Equations 

In this section, the contribution to the exact solutions and their properties explained. 

Unlike in chapter 3, the problems of existence, uniqueness and regularised solution 

are explained more explicitly using the closed-form solution. This approach is 

advantageous since the behavior of a mathematical system can easily be described by 

simulations as well as by a qualitative well-posed problem that is given by exact 

solution. 

The Navier-Stokes equations together with the continuity, basically have many 

classes of solution since they are nonlinear. The most trivial solutions are zero and 

constants which have already extensively been explained with their consequences in 

the previous section. In this chapter, more complex solutions are generated based on 

the decomposition of the potential function <I> , coordinate transformation, time 

relation and pressure gradient. 

The subject is divided into four sections, the first is by utilising a four components 

coordinate transformation and no decomposition in the potential function. The 

formulation is applied either for zero, constant and variable pressure gradient. The 

second section is by using a three components coordinate transformation with 

decomposition of the potential function into two variables applied to zero and 

constant pressure gradient. The third is by implementing two components coordinate 

transformation with functional time. The potential function is decomposed into three 

variables and the formulation is applied to variable pressure gradient. The vorticity 

equations are implemented in the fourth section. In this case, the potential function is 

also decomposed into three variables together with two components coordinate 

transformation and functional time. 
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4.1 Analytical Solution with Four Components Coordinate 
Transformation 

The three-dimensional incompressible Navier Stokes equations IS expanded m 

Cartesian form from (3.1a) as, 

At x-direction: 

At y-direction: 

At z-direction: 

The continuity equation is written as, 

au av aw 
-+-+-=0 
ax ay az 

(4.la) 

(4.1b) 

(4.1c) 

(4.ld) 

The three velocity components are interlinked and coupled together such as the 

velocity magnitude in vertical sum can be written as, llvll = ( u2 + v2 + w2 )l/2 
• 

Consider a potential function <!> , so that its derivatives are the velocity 

components which are expressed in vectorial form as, 

- - -
V = V<l>+Vx<l> (4.2a) 

where V =< 8/Bx,B/By,B/Bz >. The spatial coordinates are transformed into a single 

coordinate through the following transform function, 

!; = kx+ly+mz-ct (4.2b) 

where k, l, m and c are constants. The velocity components in equation (4.2a) can 

be rewritten including the new coordinate. Then, substituting to the Navier-Stokes 

equations and adding them all to give, 

a2<I> a2<I> 8<1> C0 ap a3<P 
-Ao ae +Eo ae a,;=---;; a,; +Dov ae (4.3) 

where Ai, Bi, Ci and Di are constants. If the pressure gradient term is dropped, and the 

equation is integrated once, solution for a<t>ja.; is obtained. By performing integration 

once more, the expression for <1> is produced with different constant coefficients as 

[35], 

(4.4) 
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Thus, by implementing coordinate relation ( 4.2b) we arrive at explicit analytical 

solution. 

Now equation (4.3) is recalled back for pressure gradient case, 

82<I> 82<I> iJ<I> C iJP 83<I> 
-Ao 8!;2 +Eo 81;2 a;; =- ; a;;+ Dov ae 

and can be written with consideration of constant and variable pressure gradient. 

Implementing Q = 8<I>/ a;; and taking Q- Ao = R will result in a shorter expression as, 
Bo 

(4.5a) 

Integrating once will yield, 

oR = ____!!r1_ Ji2 + C0 f op dl; 
81; 2D0v p 

4 
81; 

(4.5b) 

Therefore, the problem falls into the class of Riccati equation. By applying 

R =-
2

gv 
84 

, equation ( 4.5) will transform to second order linear equation, 
b s 

82S =-(2D0vJ as -[Co fop d!;Js 
ae B0 4 

8!; p 
4 

81; 
(4.6) 

The closed-form solution of (4.6) is obtained by decomposing to be a system of 

differential equation of second and first order which will be extensively discussed in 

the section 4.3. By transforming back to R and rearranging Q= R+ Ao , the solution 
Bo 

for Q is produced and so is for potential function. Therefore, an explicit analytical 

solution is produced using equation ( 4.2a- b). 

4.2 Analytical Solution with Three Components Coordinate 
Trans formation 

In this section, three components coordinate transformation with decomposition of the 

potential function into two variables are applied to zero and constant pressure 

gradient. 
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4.2.1 The Role ofPotential Function 

Consider a potential function <D , so that the velocity components are the derivatives 

of the function and can be expressed as V = V<D + v x <D • Therefore, the velocity 

components are expressed as follows, 

a<D a<D a<D a<D a<D a<D a<D a<D a<D u=-+---, v=-+---, and w=-+-·--
~ ~ & ~ & ~ & ~ ~ 

(4.7a) 

The spatial coordinates are transformed into a single coordinate through the following 

transformation, 

.!; = ly+ mz-ct (4.7b) 

The above transformation is similar to that given by Mohyuddin et. al. [26]. Velocity 

components in equation ( 4. 7a) can now be rewritten using the new coordinate, 

a<D a<D a<D a<D a<D a<D 
u=a;+(!-m)i5f, v={l+m)i5f-8;' and w=a;+(m-l)i5f (4.8) 

The first step in the derivation is to rewrite the continuity equation in the new 

notation. Using the velocity components in the new coordinate in equation (4.7b), the 

continuity equation can be expressed in simpler form. 

The potential function is assumed to take the following particular form, which will 

satisfy the continuity and Navier-Stokes equations, 

<D=P(x,i;)R(i;) (4.9a) 

Substituting equation ( 4.9a) into the continuity equation will g1ve the following 

expression, 

RPxx +A2 Iq.; +B2PR;;.; +2D2 P.;R.; = 0 (4.9b) 

where A2 ,B2 and D2 are some constants due to the transformation coordinate. 

Let Pxx = -A21h, then the last two terms will produce the following equation, 

R;;;; f>;; 
-=C2 -=C3 , orR;;;; =C3R;; 
R;; P 

(4.9c) 

where C1 and C2 are constants. Therefore, the relation aPja.; can be taken equal to 

C3P , and the general solution for R can be written as [98], 

R=rp(i;)f -
1
-, exr[f C,dc!;Jd.; 

<rp(i;) < 
(4.9d) 

where rp(i;) is taken as a particular solution of R. 
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The second step in the derivation is to apply equation (4.7a) to velocity in the x­

direction in the Navier-Stokes equations, 

-----(!-m)-+ -+(!-m)- --+(!-m)- +I (!+m)--- --+(1-m)-a
2

<!> a
2

<!> ( a<l> 3<1> )( a
2

<1> a2<!> ) ( a<!> a<!>) ( a2<1> a2<!>) 
a~ax ae ax a~ ax2 axa~ a~ ax axa~ ae 

+m -+(m-1)- --+(1-m)- = ( 
3<1> 3<1> )( a2<1> az<!>) 
ax a~ axa~ ae 

v -+(!-m)-- +v/2 --+(l-m)- +vm3 --+(l-m)-( 
a3<!> a3<!> ) ( a3<!> a3<!>) ( a2<!> a3<!>) 
ax3 ax2a~ axae ae axae a~ 3 

( 4.10a) 

It is noted that equation (4.10a) is performed by dropping the pressure gradient; 

however, the case of constant pressure gradient will produce similar solutions to that 

of a zero pressure gradient by employing the same methods. The potential function 

( 4.9a) is substituted in the above equation, and the equation can be rewritten as 

follows, 

(4.10b) 

The next step is to repeat the procedure applied to the x-velocity equation, but this 

time to the velocity in the y direction will yield the following, 

( 4.11) 

The same procedure is applied to the z velocity equation, giving, 

GzPxxx +bzPxxPx +c2PxxP+d2Pxx +e2P} + f 2PxP + g2Px +~P2 +i2P = 0 (4.12) 

Thus equations ( 4.1 Ob ), ( 4.11) and ( 4.12) can be combined into a single equation, 

( 4.13) 

index) are constants with respect to the x axis, but several are ~ dependent as they 

are solution of continuity equation. Therefore the derivation above can be stated by 

the following lemma. 

Lemma 3: Let <P be a differentiable potential function that is defined as a product of 

P( x,~) and R( ~), and that relates the velocity vector as V = V<P + V x <P over x and ~, 

where ~ is transformed coordinate defined in (4. 7b). The potential function satisfies 
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continuity equation with the condition that Pxx = -A2 P~~, where A2 is constant, and 

reduces the Navier-Stokes equations in thefollowingform 

where a3 , b3 , c3 , d3 , e3 , f3,and g3 are constants with respect to the x axis. 

4.2.2. Solutions for P 

In this section, the solution of equations (4.13) is investigated starting with a 

particular solution and then extending to more general solutions. It will be shown that 

the determination of general solutions is related to the obtained particular solutions. It 

is known that a particular class of the solution of nonlinear differential equations can 

be obtained by several procedures [99 - 101 ], so two examples of particular analytical 

solutions of equation (4.13) will be obtained by different procedures. Integrating 

equation ( 4.13) once yields, 

a4P xxpx + b4P} + c4P] P + d4P; + e4P] P + f 4PxP2 + g4PxP + h4P3 + i4P2 + j 4 = 0 ( 4.14a) 

Introducing Q = Px , the equation above will then transform to, 

Then, it is not difficult to verifY that Q gives a trivial solution, 

(4.14c) 

This will produce a solution for P as follows, 

(4.14d) 

For the other procedure, the function Q = Px may be directly employed in equation 

(4.13)to give, 

2 8
2
Q 2 8Q 8Q 8Q 2 2 . (4 15 ) a3Q -
2 
+~Q -+c3 -QP+d3Q-+e3Q +f3QP+g3Q+~P +13P=O . a 

8P 8P 8P 8P 

Differentiating equation (4.15a) twice with respect to P will result in the following 

equation, 

Note that the differentiation procedure is valid based on the relation of integral and 

differential equations [102]. Grouping and integrating twice with respect to P will 

lead to the following expression, 
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P =a e"'P +c e-d,P +e 
X 7 7 7 (4.15c) 

Setting P =In G, equation ( 4.15c) transforms to, 

G b 
_x =aG+__!_+e 
G ' G 7 

( 4.15d) 

Therefore, the solution of P can be obtained easily, 

(
b -c ex) P = a9 ln 9 

, 
9 + constant 

e -1 
(4.15e) 

This is similar to the work ofNugroho et al. [103]. However, equation (4.15b) can 

be performed by setting Qx = N and Q, = N 8N/8Q, which will give a similar result as 

equation ( 4.15e ). Therefore, the solution procedures produce the following statement, 

Corollary 2: P = a6e ,x + constant and P = a9 ln 9 9 + constant are examples of b (b -c ex) 
e' -1 

the exact solution of equation (4.13). 

Following the method used in the potential function, the above solutions ( 4.14d) and 

( 4.15e) will be considered as particular solutions of equation ( 4.13). Letting U be the 

particular solution of(4.13) and W be the other solution will generate a more general 

solution for (4.13) in the following form, 

P=U+W ( 4.16) 

Note that the situation is almost hopeless if the general solution is taken as a product 

of two respective particular solutions i.e. P = uw . Therefore, based on ( 4.16), 

equation ( 4.13) is decomposed by substitution into, 

a3U, + a,W, +h3U xxUx + b3U xxWx + b3U,Wxx +b3WxxWx + c3U ,U + c3U ,W + c3UWxx + c,WxxW + d3U xx 

+d,Wxx + ep; + 2ep,Wx + e3W,' + J;up + J,U,W + j,UW, + J,W,W + gp, + g3W, + h,U' + 2h,UW 

+h,W 2 +i,U +i3W = 0 

( 4.17) 

Some ofthe terms above will vanish automatically since they satisfy equation (4.13). 

Then, the only terms left are, 

(4.18) 

The solutions can be found by linear operator analysis to be W,, + 'i ( x) Wx + 12 ( x) W = 0 

since the function u is known. Therefore, equation ( 4.18) has a general solution as 

follows [98], 
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W = ry(x )J - 1
- 2 exr[-J lj ( x )dx]dx 

xry(x) x 
( 4.19) 

where ry(x) is a particular solution of(4.19) which is clearly dependent on u. 

Therefore, according to the solution of continuity, a full solution in terms of the 

potential function is, 

(4.20) 

By implementing the coordinate relation ( 4. 7b) the explicit analytical solution is 

obtained. Note that the solution for constant pressure gradient is similar to that for 

zero pressure gradient because there will be a constant term in (4.10b), (4.11) and 

(4.12), and can be expressed as the same polynomial in (4.13). It is interesting to note 

that more general solutions to ( 4.13) can be found by substituting additional terms 

which then resemble the following 

P=U+W+ ....... . ( 4.21) 

Therefore, the main theorem ofthis work can be constructed as follows 

Theorem 9: Take V as a velocity vector that satisfies the continuity and the Navier­

Stokes equations over x and ~, where the transformed coordinate ~ is defined as 

~ = ly+ mz-<;t, where l,m and <; are constants. The velocity vector is proposed to be in 

the form V = V<l> + V x <l>, where the potential function <1> is defined as a product of 

P(x,~)and R(~). If P satisfies the condition Pxx =-A2P;;• where A2 is a constant, then 

there exist U(x,nand W(x,~) as particular solutions for equation (4.13) and 11(~) as 

a particular solution for equation (4.9c). They form the potential function as 

<1> = { U(x,~) +W( x,~)+ ...... }{11(n f~ 11 (~)2 exr[f/3d~ Jd~} + constant 

4.2.3 Implementation of the Method 

Two examples are shown in this section to illustrate the applicability of the Theorem. 

By considering equation ( 4.9d), it is not hard to see that if C4 is a particular solution 

for R , then the general solution for R is C5 exp( C3~). 
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The first example can be constructed directly by considering one of the particular 

solutions in the corollary, a, In( b,- c,ex J as P . The solution then becomes, 
ex -1 

(4.22) 

The second example comes from the function U = a6i,x in corollary which is a 

particular solution for P . By rearranging equation ( 4.18) in more regular form, then 

the following expressions are obtained, 

(4.23) 

By substituting the particular solution U = a6i'x , it is clear that r1 and r2 are constants. 

Equation ( 4.18) then has the solution W = a10iwx which can also be the solution for P . 

By induction, the other terms can also be generated. Therefore, the expression for the 

potential function is as follows, 

(4.24) 

Thus, by implementing V=V<D+Vx<D to (4.22) and (4.24), the explicit expression for 

velocity vectors is produced as the solutions to the continuity and three-dimensional 

Navier-Stokes equations. 

4.3 Analytical Solution with Two Components Coordinate 
Transformation 

In this section, two components coordinate transformation with functional time is 

implemented. The potential function is decomposed into three variables and the 

formulation is applied to variable pressure gradient. 

4.3.1 Method ofthe Solution 

A transformed coordinate with a nontrivial relation with respect to time is applied, 

~=kz-;(t) (4.25a) 

where k is a constant. The coordinate transformation above implements the 

functional form of time instead oflinear relation as in section 4.2. Therefore, velocity 

components in equation ( 4. 7a) can now be rewritten using the new coordinate, 
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8<I> 8<I> a<P 8<I> a<P 8<I> 8<I> 8<I> a<P 
u=-+--k- v=-+k--- and w=k-+---

ax ay a.; ' ay a.; ax ' a.; ax ay 
(4.25b) 

The potential function is assumed to take the following particular form, which will 

satisfy the continuity and Navier-Stokes equations, 

<P = P(x,y,.;)R(y)s(.;) (4.26) 

Therefore, the following theorem is produced from the problem statement above, 

Theorem 10: Given V is a velocity vector that satisfies the continuity and the Navier­

Stokes equations over x, y and .; , where the transformed coordinate .; is defined as 

.;=kz-q(t), where k is a constant. The velocity vector is proposed to be in theform 

v = V<P + V x <P, where the potential function <P is defined as a product of 

P(x,y,.;), R(y) and s(.;). Jf P satisfies the condition Pxx + PYY = -k2 ~;;, then the Navier-

Stokes equations are reduced to the following equation including general pressure 

gradient y3 

The continuity equation is also reduced to 

Ryy+2l1(y)Ry-C6R=0 and S;g;g+C7l2 (,;)s4 +C8S=O 

where C6 ,C7 , and C8 are constants and a3 , b3 , c3 , d3 , e3 , f3, g3 , h3 , i3 and i3 are y and .; 

dependents. Let the condition b3PxxPx +c3PxxP+e3P) + f3PxP+fh,P2 = 0 be fulfilled. 

Therefore, there exist x(x) and A(x) as particular solutions of P(x,y,.;) such that the 

potential function can be written as, 

<P = lx(x)J [-
1
- 2 e-f.a,dxJ Ja,dx x(x)j4y3dx]dx+ A( x)J -

1
- 2 exp[-J r1 ( x)dx]dx+ ....... ! 

X x(x) X XA(x) X 

{ a(y) L a(~)2 exp[-L 2/1 (y)dy }oj{/3(.;) L /3(~)2 exp[-J/7 /2 (.;)d.;}.; }+canst 

with a(y) and f3(.;)as particular solutions of R(y) and s(.;), respectively. 

ProofofTheorem 10: 

Substituting equation (4.26) into continuity equation will g1ve the following 

express10n, 

RSPXX + RSPYY +k2RSP;g;g +PSRYY +2PyRyS+k2 PRS;g;g +2kP;gRS;g = 0 
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Let the condition Pxx + PYY = -k2 P~~ be fullfilled, then dividing the above equation by 

PRS and rearranging will produce, 

---12::.. + 2 2...2::. = - k2 __!iS_ + 2k _i___li_ = c R PR ( S PSJ 
R PR S PS 6 (4.27b) 

where C6 is constant. By taking the relations Pyj P and PdP equal to 11 (y) and /2 (g), 

respectively, the following can be written, 

Ryy + 211 (y)Ry -C6R = 0 and S4~ +C7 /2 (g)Ss +C8S = 0 (4.27c) 

where C7 and C8 are constants. The general solution for R and s can be written as 

[98], 

R = a(y)J -
1
- 2 exp[-J 2/1 (y)dy]dy,andS = f3(g)J -

1
- 2 exp[-J Ci2 (g)dg]dg (4.27d) 

Ya(y) Y < f3(g) < 

where a(y) and f3(g) are taken as particular solutions of R(y) and s(g), 

respectively. 

Lemma 4: Let ci> be a differentiable potential function that is defined as a product of 

P(x,y,g), R(y) ands(g) that relates the velocity vector as V =Vel>+ Vxel> over x, y and 

g, where g is a transformed coordinate defined in (4.25a). The potential function 

satisfies continuity equation with the condition that Pxx + PYY = -k2 P~~, where k is a 

constant, and reduces the Navier-Stokes equations in the following form 
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It is noted that the Navier-Stokes equations are written by performing the pressure 

gradient as a functional in y1 ( x, y,~), where the subscript i is the index. The potential 

function ( 4.26) is substituted in the above equation, and the equation can be rewritten 

as follows, 

a0P xxx +b0 Pxxpx + c0PxxP+ d0 Pxx + e0 P; + foPxP+ g0P, +h0P2 + i0P = j 0 y0 (x,y,~) ( 4.28b) 

The next step is to repeat the procedure applied to the x velocity equation, but this 

time to the velocity in the y direction, which will yield the following, 

(4.29) 

The same procedure is applied to the z velocity equation, giving, 

a2Pxxx +b2Pxxpx + c2PxxP+ d2Pxx + e2P; + f2PxP+ g2Px + ~p2 + i2P = hY2 (x,y,.;') ( 4.30) 

Thus, equations (4.28b), (4.29) and (4.30) can be combined into a single equation, 

It is noticed that a1 , b1 , c1 , d1 , e1 , /; , g1 , h, , i1 and j 1 (where the subscript i is the constant 

index) are some constants with respect to the x axis, but y and .; dependent as they 

are solution of continuity equation. This proves lemma 4. 

It is known that a particular class of the solution of nonlinear differential equations 

can be obtained by several procedures [99- 101]. Let the nonlinear terms in (4.31) 

satisfy the following condition, 

(4.32a) 

Introducing Q = P, , the equation above will then transform to, 

28Q BQ 2 
b3Q -+c3Q-P+f3QP+~P =0 

BP BP 
(4.32b) 

Then, it is not hard to verify that Q gives a trivial solution, 

(4.32c) 

This can be substituted to the remaining terms of(4.31) to yield, 

(4.33a) 

Therefore, a general solution for (4.33a) is obtained as, 

(4.33b) 
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where x(x) is a particular solution of (4.33a). The non homogenous term of (4.33b) 

will make the explicit result is harder to be evaluated. The first and second derivatives 

of P are in the following, 

(4.33c) 

(4.33d) 

Note that the second and the third terms of ( 4.33d) are canceled. Substituting ( 4.33c) 

and ( 4.33d) into ( 4.33a) to produce, 

f [ 
I -J a6dxf J a6dx . ] I -J a6dxf J a6dx . 

( asxxx + bsxx + CsX) X 7e < / < X14Y3dx dx+(bs -a6 )xe < /, X14Y3dx 

+asi4Y3 = hY3 

(4.33e) 

The first three terms are vanish since x is a particular solution of ( 4.33a). Therefore, 

by taking a6 = b5 and )4 = h , then it is proved that the general solution ( 4.33b) satisfy 
as 

the corresponding second order differential equation ( 4.33a). 

Following the method used in the R and s, the above solution (4.33b) will be 

considered as a particular solution of equation ( 4.31 ). Letting U be the particular 

solution of ( 4.31) and w be the other solution will generate a more general solution 

for (4.31) in the following form, 

P=U+W (4.34) 

Therefore, based on (4.34), equation (4.31) is decomposed by substitution into, 

a,Uxxx + a,Wxxx + b,U xxux + b,Uxxwx + b,UXWXX +b,W,Wx + c,U ,U + c,U xxw + c,uw, + c,WXXW + d,U XX 

+d,Wxx + e,u; + 2e,UXWX + e,Wx' + fPP + I,UxW + J,UWX + J,WXW + g,Ux + g,Wx + h,U2 + 2h,UW 

+h,W2 + i,U + i,W = j,y, 

(4.35a) 

Some terms above will vanish automatically since they satisfy (4.31), then, by 

implementing the same procedure as before, the only terms left are, 

(4.35b) 

The solutions can be found by linear operator analysis to be W"'+lj(x)Wx+r2 (x)W=O 

since the function u is known. 
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Different from equation (4.33a), the closed form solution oif(4.35b) is much more 

difficult to obtain because it strongly depends on the functions 'i and r2 • In this work, 
I 

the method to obtain the solution is proposed and developed by using additional 

functions which can be calculated based on arbitrary function taken from 'i . 

Assuming that a particular solution of (4.35b) is written as A(x), substituting the 

assumed solution into (4.35b) to produce, 

(4.36a) 

Multiplying by a function A-( x) and take another function r, ( x) from ( 4.36a) such that 
I 

the equation above can be written as, 

A-A,, +(A-r. -r, )A, +r,A, + A-r2 A = 0 

Equation (4.36b) is decomposed to a system of two differential equations, 

A-A,, +(A-r. -r,)A, = -D and r,A, + A-r2 A = D 

Solutions of the above equations are defined as, 

Note that the solutions of A in equation (4.36d) are equal, 

Differentiating the above equation once yield, 

(4.36b) 

(4.36c) 

(4.36d) 

(4.36e) 

(4.36f) 

J r'dx(D) J ar'dx(DJ I By taking B ~ L e /'--;_;- -;; dx = L e x r, r
3 

dx, then r3 and a form the relation 

below, 

~'3 ~'3 ) A- A-r,2 _x +r1--=K(x and --.!.+-=K(x) 
~ A- A- ~ 

Equation ( 4.36g) will give the solutions for r3 and A- as, 

S x-'idx e, 

f 1 J ndx 
-e' dx 

xA 
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S Kdx 

ex 
A-=----;--

f r2 sK.dx -e' dx 
X r3 I 

(4.36g) 

(4.36h) 



Let a= r3 and equating the above solutions, the expression of r3 can be determined 

as, 

( J 
J 'JY2 dx J 1 + r2 - ,]:;7 ~dx 

r3=--e 2 ex 
lj 

( 4.36i) 

where x is taken as an arbitrary function. Now equation (4.36t) is considered in B 

form, 

(4.36j) 

Therefore, D is also defmed by solving (4.36j) as, 

[ 
-J (Jcr,_2__r1)dxl 

D = -r3 exp L e x r, " dx (4.36k) 

By considering (4.36d), thus the particular solution of (4.35b) is obtained in closed 

form. Therefore, equation (4.35b) has a general solution as follows [98], 

W = A(x)J -
1
- 2 exp[-J r, (x)dx]dx 

xA(x) x 
(4.37) 

It is interesting to note that more general solutions of ( 4.31) can be extended by 

substituting additional terms which then resemble the following, 

P=U+W+ ....... . (4.38) 

Therefore, according to the solution of continuity, a full solution in terms of the 

potential function is, 

<P J x(x)J [-1
-

2 
e-La,dxf Ja,dx f3(x)hy3dx]dx+ A(x)J - 1

-
2 

exp[-J r1 (x)dx]dx+ ....... ) 1 X x(x) x XA(x) X 

{a(y)f - 1
- 2 exp[-f 2/1 (y)dy]dy}{f3(n f - 1

- 2 exp[-J C7l2 (c;)dc;]dc;}+const 
Ya(y) Y ~ f3(c;) s 

(4.39) 

This completes the proof of theorem 10. 

Therefore, by using the relations ( 4.25a) and ( 4.25b ), the exact solution for the 

three-dimensional incompressible Navier-Stokes equations is obtained. 
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4.3.2 Uniqueness and Regularised Solution 

Note that equations (4.27c), (4.33a) and (4.35b) are second order linear differential 

equations, thus, by applying boundary and initial conditions, the uniqueness of the 

solutions in L2 and LP can be ensured [97]. 

Corollary 3: The boundary value problem of equations (4.2;7), (4.33a) and (4.35b) 

satisfYing the continuity and the incompressible three-dimensional Navier-Stokes 

equations is unique. 

The generality of q(t) can cause the obtained solutions to develop singularity and 

destroy uniqueness [7]. The boundary value problem (4.27c), (4.33a) and (4.35b) then 
i 

become unstable and does not depend on Cauchy data an'ymore. The expression 

q(t) = - 1
- can surely make the solution blows up at t = T, where T is a constant that 

T-t 

depends on the initial condition. The derivative a;jat enters as a coefficient with 

respect to x in (4.28a). Ifthe particular solution of(4.31) is described by exponential, 

it depicts P ~ oo as t ~ T . Hence, it needs some regularisation procedure. 

The regularisation procedure that is proposed here depends on fmding an 

approximation expression for v. If v in a blow up solution of the Navier-Stokes 

equations as t ~ T, then the modified regularised solution can be written as, 

( 4.40a) 

where A3 is a very small number. Integrate ( 4.40a) with respect to v , the expression 
I 

for the modified solution is written as follows, 

(4.40b) 

I 

where B3 isanarbitrarysmallnumber, M=~B3V +Bi-2B3 and N=(- v -[1-B3J)
2 

V+A3 V+A3 

The modified equation ( 4.40b) is finite as t ~ T and the rigBt hand side converges to 

v with the controllable error, A3 In(v + A3 )+J_ M (1- _ A3 Jdv. 
v N V+A3 
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4.4 Analytical Solution to the Vorticity Equations 

It is reasonable to investigate the Navier-Stokes equations in terms of vorticity 

equations [29,41]. The second term of (4.2a) will contribute to the irrotationality of 

the flows and may be related to the vorticity in the system or generated at the 

boundary. Vorticity is a flow parameter which doesn't propagate instantly, this is a 

main reason of seeing vorticity as a fundamental quantity of fluid flows. 

4.4.1 Exact Solutions 

The velocity function in ( 4.2a) that satisfies the Navier-Stokes equations and the 

velocity components in ( 4.25b) are recalled, 

V = V'<IJ + '\7 X <IJ 

O<D O<D a<P O<D a<P O<D O<D O<D a<P u=-+--k- v=-+k--- and w=k-+---
ax cy a~ ' cy a~ ax ' a~ ax ay 

The coordinate transformation in ( 4.25a) is also recalled, 

~ = kz-dt) 

Taking curl operation to the Navier Stokes equations, the following vorticity 

equations are obtained, 

am - -- - -- -2-
-+V·V'm=m·V'V+vV' m at (4.41a) 

with m=VxV and m=<mx,my,mz >.The vorticity components are distributed in three 

dimensions, mx=mx(x,y,z,t), my=my(x,y,z,t) and mz=mz(x,y,z,t). Note that the 

pressure term in the Navier-Stokes equations is vanished by curl procedure. It is not 

hard to see that vorticity components will satisfY, 

a2<P a2<P 2 a2<P a2<P a2<P 2 a2<P a2<P a2<P 
m =-----k -+k-- m =k---k ---+--,and 

X axcy cy2 ae axa~ ' y cya~ ae ax2 axcy 

a2<P a2<P a2<P a2<P 
OJ =k------+k--

z axa~ ax2 cy2 aya~ 
(4.41b) 

The potential function is assumed to take the following particular form, which will 

satisfY the continuity and vorticity equations, 

<IJ = P(x,y,~)R(y)S(~) (4.42) 

Therefore, the following theorem is produced from the problem statement above, 
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Theorem 11: Given Vis a velocity vector that satisfies the continuity and the vorticity 

equations over x, y and ,; , where the transformed coordinate ,; is defined as 

,; = kz-q(t), where k is a constant. The velocity vector is proposed to be in the form 

V = V<I> + V x <I>, where the potential function <I> is defined as a product of 

P(x,y,,;), R(y)and s(,;). Then there exist U(x,y,,;)and W(x,y,,;) as particular 

solutions for the reduced vorticity equation 

general solutions for the reduced continuity equation 

They form a potential function as 

l-J [(J t,(y)dy)]dyf J [(J t,(y)dy)l'y l 
<I>={U(x,y,,;)+W(x,y,,;)+ ..... } e Y Y / 9er Y I dy 

l ,-f,[ (i;,{'l" )}' f, c,)[(i;,{'l"') }' J< l 
with respect to x axis. The potential function then generates the velocity vector such 

that there exists a static pressure p which fulfills the following Navier-Stokes 

equations 

av - -- 1- -z­
-+V·VV=-..,--Vp+vV V at p 

where p is a constant fluid density. The resulting velocity vector V and static 

pressure p appear as the solutions of the continuity and the three-dimensional 

incompressible Navier-Stokes equations. 

Proof of theorem 11: 

Substituting equation (4.42) into continuity equation ..yill giVe the following 

expresswn, 

RSPXX +RSPYY +k2 RSP~~ +PSRyy +2PYRYS+k2 PRS~~ +2k
2 P~RS~ = 0 (4.43) 
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Lemma 5: Let P,R and s in (4.43) are separable, then R and s are becoming 

solutions of the first order linear differential equations as, 

where C9 and C10 are constants. 

Proof: Dividing equation (4.43) by PRS and rearranging will produce the 

following equation, 

p P p, R PR S PS 
--""-+__!:!.+ k2 ...li. = _ ___![__22..2.. = k2 ...li.+ 2k...l.__l_+ t (y ,;) = l (y) ( 4.44a) 

P P P R PR S PS 3 
' 

4 

Taking, the first relation in the right hand side, 

py 
Rw +2pRY +14 (y)R = 0 (4.44b) 

Let ( 2; 1 = 14 (y) then (4.44b) can be written as, 

(4.44c) 

Integrating the above equation once to yield the first order relation, 

( 4.44d) 

The next step is taking the second relation of ( 4.44a) as, 

P; s4s + 27 s4 +15 (,;)s = o ( 4.44e) 

where 15 (,;) is taken as 13 (y,s);t4 (y). By the same procedure, the above equation is 
k 

reduced into, 

( 4.44±) 

Therefore, the general solutions for R and s can be written as [98], 

(4.44g) 

where C9 and C10 are integration constants. This proves lemma 5. 

Thus, R and s can be substituted to the potential function ( 4.42) to produce the 

following statement, 
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Lemma 6: Let <l> be a differentiable potential function that is defined as a product of 

P(x,y,.;), R(y) and s(.;) that relates the velocity vector as V = V<l>+ Vx<l> over x, y and 

.; , where .; is transformed coordinate defined in (4.25a). The potential function 

satisfies continuity equation with the condition and reduces the Vorticity equations in 

the following form 

where a3 , b3 , c3 , d3 , e3 , f 3 , g3 , h3 , i3 and j 3 are constants with respect to the x axis. 

Proof: Furthermore, the derivation is to apply equation ( 4.41 b) into vorticity 

equations in x component, 

_a,~+ a, a
3

<t> +a, e a3
<t> _a, k a

3
<I> +(a<t> + a<t> -k a<t>)( a

3
<t> _ a3

<t> -k2 a3
<t> +k a

3
<t> J 

at axaya~ at ()y2a~ at ae at axae ax ay a~ iJx2ay axay2 axae ax2a~ 

( 
a<t> a<t> a<t> ) ( a3 

<I> a3 
<I> 2 a3 

<I> a3 
<I> J 

+ ay +k~-a; iJx()y2- ()y3 -k ayae +k axaya~ 

+(ka<t> + a<t>- a<t>)(k~-k aJ<t> -e aJ<t> +k2 a3q, J= 
a~ ax ay axaya~ ai a~ ae axae 

( 
a4q, a4<t> 2 a4q, a4q, J ( a4q, a4q, z a4q, a4q, J 

v ax3ay- ax2ay2 -k ax2ae +k iJx3a~ +v ax()y3- al -k ay2ae +k ax()y2a~ 

+v(k2 a4q, k2~-k4 a4q, +k3 a4q, J 
axaya~ 2 ()y2a~ 2 a~ 4 axa~ 3 

(4.45a) 

The potential function (4.42) is substituted in the above equation, and the equation 

can be rewritten as, 

(4.45b) 

The next step now is to repeat the procedure applied to the x component of the 

vorticity equation, but this time to the vorticity in the y component, will yield the 

following, 

(4.46) 

The same procedure is applied to the z component of the vorticity equation, giving, 

( 4.47) 

Substituting equations (4.45b) and (4.46) into (4.47) to eliminate P 2 and P as 

follows, 
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(4.48) 

constant index) are some constants with respect to the x axis, but several are y and c; 

dependent as they are solution of continuity equation. This proves lemma 6. 

Letting u be the known particular solution of (4.48) and w be the other solution 

will generate a more general solution for (4.48) in the following form, 

P=U+W (4.49) 

Therefore, based on ( 4.49), equation ( 4.48) is decomposed by substitution into, 

a3Uxnx + a3W =x + b3U =Ux + b3U =Wx + b,UxWxxx + b3WxxxWx + c3U xxxU + c,U xxxW + c3UW"'" + c3WxxxW 

+d,U XXX+ d,Wxxx + e,U xxux + e,U xxwx + e,UXWXX + e,WXXWX + j,Uxxu + j,Uxxw + j,UWXX + j,Wxxw 

+g,U xx + g3Wxx + h,U; + 2h,UxWx + h,W} + i,Up + i,UxW + i,UWx + i3 WxW + J,Ux + j 3Wx = 0 

(4.50) 

Some terms above will vanish automatically since they satisfy (4.48), then, the only 

terms left are, 

a3Wxxxx + b3UxxxWx + b3UxWxxx + b3WxxxWx + c3U =W + c3UW = + c3WxxxW + d3Wxxx + e3UxxWx + e3UxWxx 

+e3WxxWx + j,U xxW + j,UWxx + j,WxxW + g3Wxx + h,U; + 2h,UxWx + h,W} + i3UxW + i3UWx + i3WxW 

+j3Wx = 0 

( 4.51) 

It is interesting to note that more general solutions to (4.48) can be found by 

substituting additional terms which then resemble the following, 

P=U+W+ ....... . (4.52) 

Therefore, according to the solution of continuity, a full solution in terms of the 

potential function is, 

l-J [(J i.(y)dy)]dyf f [(J l,(y)dy)l"y l 
<P={U(x,y,c;)+W(x,y,c;)+ ..... } e y y / 9e' y J dy 

( ,-JJ(J;,(<)'< )}< f, c,)r(l,wl•< )}< d() 
(4.53) 

By implementing the coordinate relation (4.25a) the exact solution is obtained. 

Now the resulting velocity vectors can be produced by applying equation (4.2a). 

Then, substituting the velocity vectors into the Navier-Stokes equations to obtain the 

pressure. This completes the proof of theorem 11. 

However, the pressure relation can also be applied to the modified Navier-Stokes 

equations 
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I -2 -- -­
-V p=-V'V·V'V 
p 

(4.54) 

The other terms are dropped by the continuity equation. It can easily be noticed that 

by substituting the known expressions of the previous result for velocity, equation 

( 4.54) becomes a linear partial differential equation and the pressure relation is also 

solved by this procedure. 

4.4.2 Implementation of the Theorem 

One of the crucial problems in the theory of differential equations is finding and 

studying classes of important equations that are integrable in closed form and, in 

particular, possess explicit solutions. It is known that a particular class of the solution 

of nonlinear differential equations can be obtained by several :procedures. Introducing 

Q = Px , equation ( 4.48) will then transform to, 

(aQ)3 2 aQ 82
Q 3 8

3
Q 2(8Q)2 

3 82Q ·(aQ)2 2 82Q a3Q - + a4Q --2 + a3Q -3 + b3Q - + b3Q -2 + c3QP, - + c3Q P-2 
8P 8P 8P 8P 8P 8P 8P 8P 

(8Q)2 
2 82Q 8Q 8Q 2 . . 

+d3Q 8P + d3Q 8P2 + hQP 8P + g3Q 8P + f%Q + z3QP + hQ = 0 

(4.55) 

Considering the following polynomial Q and substitute into (4.55), 

(4.56a) 

If the coefficients in (4.56a) are taken as arbitrary values, the111 the following system is 

produced from (4.55), 

Q = px = asP2 +bsP+cs 

a6P4 + b6P3 + c6P2 + d6 P + e6 = 0 
(4.56b) 

For more general solution, equation (4.49) is substituted into (4.48) and will 

generate the relation below, 

a3Wxxxx + ~W xxxWx + c3W xxxW + r1 (x)Wxxx + e3WxxWx + f 3WxxW +r2 (x )W ±x + h3W} + i3WxW 

+r3 (x)Wx = 0 
(4.57a) 

where k1 ( x), k2 (x) and k3 ( x) are clearly dependent on u ·, By applying the same 

method, the corresponding equation is then, 

Wx = n] (X) W2 + n2 (X) w + n3 (X) 

n4 ( x)W4 + n5 (x)W 3 + n6 (x)W 2 +n7 (x)W + n8 (x
1
) = 0 

(4.57b) 
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Lemma 7: Let equation (4.57b) be rearranged into a single polynomial differential 

equation of fourth order, 

Wx = n9 (x)W 4 + n10 (x)W3 + nn (x)W 2 + n12 (x)W 

The above equation has a solution expressed as, 

l 

-n!O ±[ n{o -4~ ( nll -?) r 
2~ 

where H(x) is an arbitrary function. The term q(x) depends on ~(x),n10 (x),nn (x) 

and n12 (x), which is defined as a solution of second order polynomial differential 

equation. 

Proof: Now equation ( 4.57b) is considered, by eliminating n3 (x), then a single 

equation is produced, 

Wx = n9 (x)W 4 + n10 (x)W 3 + nn (x)W 2 + n12 (x)W 

Let W = F(x)H(x), then (4.58a) will become, 

HFx + HxF = ~ ( x)H4 F4 + n10 (x)H 3 F3 + nn (x)H 2 F2 + lltl (x)HF 

Factoring the right side of(4.58b) as, 

HFx + HxF = { F + ht}{~H4 F3 +( n10 H3
- n9H

4h1 )F2 +( nnH2 -n10H\ + n9H 4h1
2 )F} 

(4.58a) 

(4.58b) 

+{[ht + h2 ][ -n9H
4ht2 +( n10 H3 + ~H4h2 )ht + n~H] +[ -nnH2 -n10 H3hz -~H41Ji]ht }F ( 4.58c) 

+{ +[ _ n1~H Jilt }F 
Let the solution of (4.58c) taken as F=-h1(x)=hz(x)then the equation above 

becomes, 

(4.58d) 

Take the first term on the right side as nnH2 + n10H 3 hz + ~H4 hi = q( x), where q(x) is an 

arbitrary function. Thus, the solution for n2 can be generated easily as, 
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I 

-n!O ±[ n1
2
o -4~ ( ~~ -?) T 

2~ 
( 4.58e) 

Equation (4.58d) is rearranged to be, 

~x = ! Jzi + ( n12 - i ) ~ (4.58±) 

Let ~=Is (x)s1 (x), thus the above equation becomes, 

(4.58g) 

The same procedure is applied and (4.58g) is factorised to be, 

slfsx +s1xh3 = { [ h3 + h4 J[! s? h3] + [ ( n12 - i }I - ! s? h4] h3} (4.58h) 

Take the solution of (4.58h) as Is= -h4 and perform ( n12 - ~ } 1-! s?h4 = s2 (x), 

where s2 (x) will be determined later. Equation ( 4.58h) thus becomes, 

(4.58i) 

It is not hard to see that the expression below, 

(4.58j) 

is solution of ( 4.58i). Let 1ne = f !.l..dx, then ( 4.58j) will transformed to second order 
X sl 

polynomial differential. Solving for s2 ( x) in ( 4.58j) will make h4 is represented by 

H(x), q(x) and s1 (x) as, 

h 1 -J n, 2dxf ( q J n12dx) dx --eX -n ex 
~- H H2 12 s1 x 

(4.58k) 

where H ( x) and s1 ( x) are arbitrary functions. Thus, ~ is also defined as, 

( 4.581) 

Substituting back to (4.58e), the expression for q(x)can also be obtained as a solution 

of second order polynomial differential equation. Therefore, the solution of w is, 
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I 

W =I?_ (x)H(x) = 
-n10 ± [ nfo - 4~ ( n11 - --ffi-J Y 

2~ 
(4.58m) 

This proves lemma 7. 

Lemma 7 is also applied for (4.56b), and the solution of P is obtained in a 

functional series. It is interesting to note that higher order polynomial equations can 

also be produced by the proposed procedure through factoring their polynomials and 

integrating their terms as the keystones. 

It is not hard to see that equation ( 4.55) also admits the condition, Q = Px = a7 P+b7 

and has a simple solution as, 

(4.59) 

Therefore, with lemma 7, the following statement is produced, 

Theorem 12: (Uniqueness) The initial boundary value problem of (4.1), (4.2a) and 

(4.25a) has unique point values. 

Proof of theorem 12: 

By applying the velocity vector ( 4.2a) and the reverse transformation ( 4.25a), 

combining all parts of the potential function and substituting the initial boundary 

values in the resulting potential function, the solution constants can be obtained. Note 

that the resulting velocity vector must be the same for the corresponding potential 

function from (4.581) and (4.59) to ensure uniqueness. By substituting arbitrary values 

t*, y* and z* in the solution, a unique value for x* is found [104]. The process then 

can be repeated by induction to find any other unique points. This completes the proof 

oftheorem 12. 
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Chapter 5 

Preliminary Validation Cases of the Analytical Solution 

The analytical solution is validated at early stage and the validation cases are 

presented in this chapter. Following the analysis in the previous chapter, the explicit 

solutions in the proposed class of the respective potential function can vary. Thus, the 

applicability of a particular function as a solution might be valid for only certain 

cases. For example, if ~ =a7eh,r +c7e-d,r +e7 in (4.15c) is considered, solution for P 

will be, 

P = a In 9 9 +canst (
b -c ex] 

9 ex -1 (5.1) 

which is then substituted into the potential function (4.9a). 

If the case of decayed velocity of a nozzle exit is considered, then the velocity in x 

direction parallel to the flow inlet can be approximated as u- tanh(x). Note that the 

other terms in y and z axis are considered as constants as a consequence of the 

boundary conditions if the described solution is to be at the centerline of the system. 

The redecomposition of the potential function will also contribute to different 

forms of explicit solutions. As obvious examples, equation (4.22) and (4.24) can be 

arranged differently as other solutions from the Navier-Stokes equations by 

implementing, 

Applying the same procedure will lead to different solutions as follows, 

<P = {c5 exp(C3~)}{ a9 ln( b9e~~;x J} +constant (5.2) 

and 

(5.3) 
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The first terms in (5.2) and (5.3) can also be replaced by trigonometric functions by 

reexamining the solutions of continuity equations. In each validation case, different 

types of solutions are chosen based on the systems considered in the case. 

There is also an interesting aspect of the solution concerning the initial value 

problems. The rich structure of the coordinate transformation of time q(t) allows the 

investigation of several conditions. For example, by taking q(t) =at, the solution will 

not blow up as the constant a is positive value greater than zero. The other condition 

q(t) =___!!__,will also be smooth for a> 0 and T > 0. For negative value of a, the first 
t-T 

case will blow up at t = oo , but in the second case, blow up can be at very short time 

t = T. This, however, is more on the mathematical problems of the solutions and will 

not be considered in the validations. 

5.1 Laminar Flow Cases 

The first validation case is the laminar free jet experiment of Symons and Labus 

[105]. A jet is the flow generated by a continuous source of momentum. The 

Reynolds number of a jet can be conveniently defined as Re = u,D , where u, is jet 
v 

velocity, D is jet diameter and v is kinematic viscosity of the fluid. The prescribed 

data is the normalised downstream velocity. Fig. 5.1 shows a comparison between 

calculated centerline downstream velocity using the analytical solution and measured 

velocity. As shown, the analytical solution could reproduce the decay of the measured 

downstream velocity with longitudinal distance from the nozzle. In the figure, both 

experimental data and analytical calculations are normalised. It is observed that the 

comparison for higher velocity (lower figure) is more accurate. It may be due to the 

characteristic of the solution itself. Analytical solutions are obtained through the 

simple coordinate transformation. By dimensional analysis, it is clear that 

contributions of viscous terms are weakened for higher Reynolds number as described 

below, 

au +U.VU = -VP+-
1
-V2U 

8ry Re 
(5.4) 

with O=Wt, ry=O/L, U=u/W and Re=WLfv. 
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Figure 5.1: Decaying velocity along downstream direction produced by analytical solution (solid line) 

and the experimental [105] data (points). 
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More comparison of the velocity profile is shown in Fig. 5.2. The transverse 

velocity is the one used for comparison here. The calculated values follow the same 

trend as the measured ones with high accuracy. However, for some points far from 

centerline there are slight deviations which can be attributed to the vortex formation 

around the longitudinal axis immediately when the flow jets out of the nozzle exit. 
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Figure 5.2: Gaussian velocity along transversal distance produced by analytical solution (solid line) and 

the experimental [105] data (points). 
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The other similar experiment used for validation is the larhinar free jet of Eappen 
! 

[106]. Fig. 5.3 shows a comparison of the velocity profile calculated using the 

analytical solution predictions with the measured values. The inlet boundary condition 

is based on parabolic velocity profile to match the experimentkl set up. Different from 

the decay velocity, comparisons for transverse velocity profile show that calculation 

for higher velocity (lower figure) is less accurate than the other. This might happen 

due to the vortex formation of the flow as it leaves the nozzl~. The vortex formation 

has a general tendency to produce and accumulate the eddies along the longitudinal 

direction. The process is happen through entrainment which draws the material 

outside into the jet. 
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Figure 5.3: Velocity profile in transverse coordinate performed by analytical solution (solid line) and 

the experimental [I 06] data (points). 
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5.2 Turbulent Flow Cases 

The third validation case is a water jet of diameter D = 10 c~ and discharge velocity 

10,20 and 30 m/s [107]. Fig. 5.4 shows the measured radial profile ofthe normalised 

time-mean axial velocity at transversal locations for the turbulent round jet. It is seen 

that the streamwise velocity profile is similar to that of the l~minar cases and can be 
I 

well approximated by a half-Gaussian distribution. 
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Figure 5.4: Turbulent velocity profile along transversal direction produced by analytical solution (solid 

line) and the experimental [107] data (points). 

In Fig. 5.5, the calculated centerline velocity variation for the round turbulent jet is 

plotted against the measured values. The experimental results show clearly the 

existence of a potential core for about three diameters fro1Jl the source, and the 
i 

predicted variation confirms the experimental observation well. Previous 

experimental and analytical transverse velocity [108,109] shows similar trends to the 

case under discussion. In their work it could be seen that the transverse variation is 
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similar, the data at different sections lie nicely onto one curve and can be well­

approximated by the Gaussian distribution. 
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Figure 5.5: Turbulent decay velocity along downstream direction produced by analytical solution (solid 

line) and the experimental data (points) [107] 

It is well known that turbulent flows are much more complicated than laminar 

flows, and thus some naYve prediction approaches will fail for turbulent flows even if 

they were successful for simple laminar flows. Therefore, the analytical solution 

needed to go through a second stage of validation against turbulent flow cases. The 

first turbulent flow case chosen for this validation stage is a boundary layer in 

atmospheric flow experiment of Farrel and Iyengar [110]. In their experiment, data 

were produced in a 1.7 m wide, 1.8 m high and 16 m long test section of the St. 

Anthony Falls Laboratory tunnel. The experimental technique was based on the use of 

quarter-elliptic, constant-wedge angle spires with height of 1.2 m and a castellated 

barrier wall to produce the necessary initial momentum defect in the poundary layer, 

followed by a fetch of roughness elements representative of th~ terrain under 
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consideration. Fig. 5.6 gives a comparison of the calculated boundary layer velocity 

profile produced by the analytical solution and the measured profile from the 

experiment. The analytical results are in good agreement with the experimental data. 

Note that analytical solution described here is similar to the famous Blasius solution 

for boundary layer flows. Blasius solution for rectangular coordinate follows, 

2/"'+ if"= 0 (5.5) 

where all parameters above are non dimensional. Equation (5.5) is a class of quasi 

linear differential equation and similar to (4.13) for in its asymptotic limit and its 

solutions resemble previous solutions, thus it is not surprising that analytical solutions 

performed here can describe boundary layer flows . 
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Figure 5.6. Trend of boundary layer velocity profile produced by analytical solution (solid line) and 

measured [110] values (points). 
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5.3 Combustion Case 

The next challenging case used for validation in this stage is the recently published 

combustion experiment due to Cuoci et al. [111]. The fuel is fed in a central tube (3.2 

mm internal diameter and 1.6 mm wall thickness), centered in a 15 em x 15 em square 

test section, 1m long, with flat Pyrex windows on the four sides. The fuel molar 

composition is 39.7% CO, 29.9 H2, 29.7 N2 and 0.70 CH4• Ammonia was added in 

different amounts up to 1.64%; in the absence of ammonia, methane was not included 

in the fuel mixture. The average fuel flow velocity was 54.6 m/s with a resulting 

Reynolds number of ~8500; the inlet flow air velocity was 2.4 m/s. The inlet 

temperature of both streams is ~300K. Several radial profiles of velocity, temperature 

and species concentrations are available at different distances from the fuel inlet. 

As shown in fig. 5.7, the analytical solution could reproduce the velocity change 

throughout the axial line with good agreement with the measured values. Detailed 

analysis for this case needs other equations (energy, species and thermodynamic state) 

to be solved simultaneously in order to describe turbulent-reaction interactions 

properly. This is of course a very challenging task and less tractable by considering 

that full mathematical theory for the Navier-Stokes equations is not yet complete. 

However, the comparison here is to show the potential of the simple analytical 

solution to tackle complex cases. 
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Figure 5. 7: Measured mean axial velocity along flame centre line (points) [ 111] against the analytical 

solution (solid line) 

5.4 Numerical Case 

The next complex case is a comparison of the analytical solution against a numerical 

work in plane channel flow of Lammers et al. [112]. The numerical investigation 

presented here is using lattice boltzmann kinetic scheme, which discretise Boltzmann 

equation and then sum particles up to the hydrodynamics limits. Similar to the 

previous experimental cases, the analytical solution is found able to follow the non 

dimensional mean velocity profile. As shown in fig. 5.8, the deviation is obviously 

found in the generating zone which might be due to the raising of the reaction back 

the small scales to the more big ones. The result is also depicting the great potentiality 

of the analytical solution in tackling complex cases. 
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Chapter 6 

Conclusions and Future Work 

6.1 Main Conclusions 

As a concluding remark, it is proved that the boundary value problems admit trivial 

solution only with special condition of zero rate of energy in the whole domain. The 

analyticity of the solutions can also be used to investigate the property of sharing 

regions which states that the solutions tend to be a constant value. A violation to this 

condition is observed to become a possible source of turbulence. Therefore, if 

turbulence is produced by generation of energy following the problem investigated 

here, it is reasonable to conclude that turbulent solutions may come from the 

boundary value problems of the Navier-Stokes equations as was stated previously in 

[92] as well. 

It is concluded that the classes of solution V = V' x <ll and V = V'<ll + V' x <ll will 

transform the Navier-Stokes equations into the class of linear elliptic differential 

equations when analysis is conducted in vorticity form. An analysis of linear 

differential equations can be utilised to show that the solutions eXJist for at least 

1EL2 (I1~_3) and 1EH1(IIe) in (o,r) which imply <PEH3 (~3 ) to ensure the 

regularity. Moreover, the uniqueness problem is also solved. Therefore, based on the 

condition discussed in [41], the class of the above solutions will also satisfY the 

Navier-Stokes equations. It is also important to mention here that the situation in 

v = V<ll + v x <ll is weaker than in v = V' x <ll since it needs further assumption to become 

(3.13). 

Analytical solutions of the three-dimensional incompressible Navier-Stokes 

equations are introduced in this thesis. First solution is derived using a four coordinate 

transformation without decomposition of potential function. The problem was reduced 

to the class ofRiccati equation and had a well defined solution. 
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Second solution is derived using a potential function and a transformed coordinate in 

the form <P = P(x,,;)R(,;). Since the explicit solution for R is obtained through the 

continuity equation, the potential function is then substituted into the Navier Stokes 

equations to reduce it to a class of nonlinear ordinary differential equations. Two 

different particular analytical solutions of P could be derived. The solutions for P for 

a zero pressure gradient case and for a constant pressure gradient case are found to be 

mathematically similar. The solution could be extended to a more general one based 

on the given particular solutions. 

Third solution was obtained using similar procedure applied to a more general 

decomposition of potential function <P=P(x,y,,;)R(y)s(,;) in the Navier-Stokes and 

vorticity equations. The explicit solutions for R and S are obtained through the 

continuity equation. The potential function is then substituted into the Navier-Stokes 

equations to reduce it to a class of nonlinear ordinary differential equation in term of 

P, where the pressure term is represented as a general functional form. General 

solution for P is derived based on the known particular solution by using the novel 

method for finding closed-form solutions of linear differential equations. The solution 

was regularised and proved to be unique. 

Fourth solution was obtained using the vorticity equations where the 

decomposition of potential function <P = P(x,y,,;)R(y)s(,;) was also implemented. The 

problem then reduced to the polynomial equations which were solved by the novel 

method. The pressure relation was solved by applying the velocity vector into the 

Navier-Stokes equations to complete the solutions. The solution was also proved to be 

unique. 

As for the coordinate transformation, selection of variables in the potential 

function can be interchanged from the beginning. Instead of using the coordinate 

relation (2b) and potential function (4a), the following expression can be used, 

<P=P(y,,;)R(,;), ,;=lx+mz-~t, ,;=lz+mx-~t or <P=P(z,,;)R(,;), ,;=lx+my-~t, 

,;=ly+mx-~t (6.1) 

and 

<P = P(,;,y,z)R(y)S(z),,; = kx-;(t) or <P = P(x,,;,z)R(,;)s(z), ,; = ky-;(t) (6.2) 
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In particular, it is reasonable that other classes of nontrivial exact solutions may still 

be developed from the original Navier-Stokes equations by more complex procedures, 

to shed more light on the properties ofthe exact solutions [10]. The generality of q(t) 

will make the obtained solutions open for further investigations. 

The basic analytical framework for turbulent free jets, boundary layer, channel 

flow and combustion has also been presented. The governing equations based on the 

exact solutions to the incompressible Navier-Stokes equations are developed. It gives 

hindsight that turbulence closure can be achieved either by modeling and exact 

solutions. Although there are different characteristic properties of flows, the 

predictions are shown to be in excellent agreement with experimental and numerical 

data. In fact, based on this physical insight, most of the characteristic properties could 

have been deduced by a priori reasoning alone within general equations of fluid 

dynamics. 

6.2 Future Work 

The contributions of analytical methods to fluid dynamics research are impressive. 

Most of prior analysis and development are largely based on simplified equations 

such as two dimensional Navier-Stokes equations or linear advection and diffusion 

equations. The progress in nonlinear analysis has contributed a new trend in 

mathematics and physics. Unfortunately, this field is not famous research area and it 

should be brought together from diverse disciplines and with diverse viewpoints and 

new ideas can therefore be tested in a better way. For example, it is not clear whether 

exact solutions will alone be able to explain the formation of singularity in the Euler 

and Navier-Stokes equations. However, the future of research in deriving exact 

solutions of fluid dynamics equations appears to be promising. The greatest strength 

of exact solution is the simplicity of the function which then allows rapid calculations 

to the flow under studies. Exploiting this strength and using it to examine turbulent 

flows such as those discussed in chapter 5 appeared to be efficient in describing the 

flows. The diverse areas in the turbulent flows i.e. flow control, high-speed 

compressible flows, aeroelastic and reacting flows will likely see significant progress 

in the next future. The fast current progress in computer hardware will also give the 

additional stimulus to the need for exact solutions in order to test highly efficient 
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numerical codes. Exact solutions can be used to improve statistical samples, and to 

consider a wide range of other physical parameters. 

Hence, the future research of the exact solutions to the Navier-Stokes equations 

should be put in the following purpose, 

(i) To regularise the Navier-Stokes equations, in the' sense that the method 

should transform the Navier-Stokes equations from nonintegrable into 

integrable class and to show the singularity character which is possible in 

the equations, at least for incompressible cases. 

(ii) To expand the analysis to the universal properties of turbulence known to 

experiments. Universal structure is connected to. the small scale which 
' 

contains the significant dynamics of turbulent flows. The analysis should 

interpret the Kolmogorov theory and related to the solutions of the Navier­

Stokes equations. 

(iii) To use the analytical solutions as a base to help evaluating the numerical 

codes. They should also be used to improve/explain the numerical schemes 

and relate them with other parameters such as pertt;trbation and asymptotic 
! 

analysis. 

As the flow geometries become more complex, the analytical methods used in 

fluid dynamics research will have to evolve more. Engineers of computational fluid 

dynamics have much experience with complex geometries, and much can be learned 

about techniques from them. However, the significantly hightr accuracy required by 

exact solutions must be kept in mind. Nonlinear methods of analysis and development 

are likely to prove very productive but still have to be developed more to reveal the 

secret of the Navier-Stokes equations. 
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