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ABSTRACT 

Reactive distillation (RD) is an attractive way of improving process economics by 

combining distillation and reaction, especially for equilibrium limited reactions such 

as esterification. Two of the most studied esterification reactions via RD in the 

literature are methyl acetate synthesis and ethyl acetate synthesis. The ideal 

performance of the RD column would be to achieve almost complete conversion of 

both reactants while at the same time producing pure esters as distillate. From 

literature it was found that unlike other RD systems such as MTBE and ETBE, it is 

impossible to achieve ideal performance with normal double feed configuration, 

though the achieve conversion and purity of these systems are higher than the 

conventional method of reaction followed by separation. This is du,e to the formation 

of azeotropes between reaction products and reactant, which in tuin hinders the 

achievement of complete conversion and producing pure esters as di~tillate. 

Researchers had successfully exploit the mixture properties of methyl acetate system 

and device a RD configuration known as reactive-extractive distillation (RED) 

column that ultimately overcomes the azeotropic conditions in a single column and 

hence able to achieve ideal performance for this system. However, the conditions in 

ethyl acetate RD column do not allow us to exploit the mixture properties and 

furthermore the presence of four azeotropes as compared to two azeotropes in methyl 

acetate system complicates the separation process in ethyl acetate RD column. 

Thus in this study attention were given to improve the ethyl acetate RD column 

performance. Initially, simulation model for esterification of acetic acid by ethanol in 

a RD column was developed and verified against equivalent experimental work and 

published simulation results. Upon confirming the applicability of the simulation 

model, the effects of changing various operating and design parameters on the column 

performance were studied in order to explore the possibility of improving the column 

performance. Through this analysis it is evident that the column performance could 

not be enhanced significantly due to formation of azeotropes between reaction 

products and reactant for nearly equal product split at both end of the column. 
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Finally a new configuration that involves the introduction of extractive zones below 

ethanol feed point and above acetic acid feed point with extraneous component as an 

extractive agent in the system in order to break one of the azeotropes between product 

and reactant, thus allowing the attainment of higher conversion and purity was 

proposed. With this configuration the column performance was significantly 

improved. 
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ABSTRAK 

Penyulingan bertindakbalas berperingkat merupakan suatu penyelesaian atraktif 

untuk meningkatkan ekonomi process dengan menggabungkan penyuligan and tindak 

balas kimia dalam satu unit operasi, terutarnanya bagi tindak balas kimia yang 

mempunyai keseimbangan terhad seperti untuk penghasilan ester. Tindak balas ester 

yang di beri tumpuan menerusi penyulingan bertindak balas ialah penghasilan metil 

acetat dan etil acetat. Performasi ideal turus penyulingan bertindak balas adalah untuk 

mencapai penukaran sepenuh bahan mentah tindak balas dan penghasilan produk 

yang mempunyai kepekatan tinggi. Dari hasil kajian lain, di dapati tidak seperti turus 

penyuling seperti MTBE dan ETBE, adalah sukar untuk mencapai performasi ideal 

dengan menggunakan konfugarsi normal, walaupun penukaran bahan mentah dan 

kepekatan produk adalah tinggi berbanding dengan cara penghasilan konvensi iaitu 

tindak balas kimia di ikuti penyulingan berperingkat. Ini adalah di sebabkan formasi 

"azeotropes" di antara produk dan bahan mentah tindak balas yang akhimya 

menghalang pencapaian penukaran sepenuhnya dan penhasilan pruduk dengan 

kepekatan tinngi. 

Para pengkaji telah berjaya mengeksplotasi ciri-ciri carnpuran system metil acetat dan 

menghasilkan konfigurasi turus penyulingan tindak balas berperingkat yang di kenali 

sebagai turus penyulingan bertindak balas dan ekstrak yang marnpu mengatasi 

keadaan "azeotrope" dan seterusnya dapat mencapai performasi ideal. Walau 

bagaimanapun, ciri - ciri carnpuran system etil acetat tidak mengizinkan kerana 

kehadiran empat "azeotropes" berbanding dua "azeotropes" dalarn system etil acetat 

menyukarkan proses penyulingan dalarn turus penyulingan bertindak bals 

berperingkat. 
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Dengan itu dalam kajian ini keutamaan di berikan untuk memajukan performasi 

penyulingan tindak balas berperingkat etil acetal. Langkah pertama ialah dengan 

membangunkan modal simulasi untul proses esterifikasi acetic asid dengan etanol 

dalam turus penyulingan bertindak balas berperingkat dan di bandingkan dengan kerja 

eksperimen dan keputusan - keputusan simulasi yang standingnya. Selepas 

memastikan kebolehgunaan modal simulasi yang di bangunkan, kesan penukaran 

parameter - parameter proses and design terhadap perfromasi turus di lakukan untuk 

mengkaji samada perfomasi tums dapat di tingkatkan. Melalui analisis, adalah 

terbukti bahawa adalah sukar untuk meningkatkan performasi turus secara mendadak 

kerana formasi "azeotropes" di antara produk tindak balas dan bahan mentah tindak 

balas menyekat peformasi turus. 

Akhimya, konfigurasi baru yang melibatkan pengenalan zon ekstraktasi di bawah 

suapan ethanol dan di atas suapan acetic asid dengan pengenalan komponen lain 

sebagai agen extraktasi untuk memecahkan "azeotropes", dan seterusnya 

membenarkan pencapaian penukaran dan kepekatan tinggi di cadangkan. Dengan 

konfigurasi ini, performasi turus penyulingan bertindakbals berperingkat dapat di 

tingkatkan. 
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CHAPTER I INTRODUCTION 

Reactive distillation is a combination of reaction and separation m a single unit 

operation. It has captured the imagination of many researchers due to the 

demonstrated potential over the conventional method of processing. There are two 

major benefits of the reactive distillation operation. First, the in-situ removal of 

product from the reaction zone causes equilibrium-limited reactions to be shifted 

forward by LeChatelier's principle, thus allowing higher conversion. Second the 

improved selectivity due to removal of products from the reaction zone. 

The advantage of reactive distillation method over conventional method of a reactor 

followed by a distillation column is best explained as follows: 

Consider a reversible reaction scheme: 

A+B ( ) C+D 

Where the volatility of the components follow the sequence A, C, D and B. To obtain 

the products of reaction, traditional method of processing involves a reactor followed 

by a sequence of distillation column (as shown in Figure 1.1 (a)). The mixture of A 

and B is fed to the reactor, where the reaction takes place in the presence of catalyst 

and reaches equilibrium. A distillation train is required to separate products C and D. 

The unreacted components, A and B, are recycled back to the reactor. The separation 

process would be much more complex if one or more azetropes present in the mixture 

that leaves reactor. 

The alternative configuration, reactive distillation is shown in Figure 1.1 (b). It 

consists of reactive section in the middle with non-reactive rectifying and stripping 

sections at the top and bottom respectively. Liquid rich in A is fed to a stage between 

the top and middle section of the column. Vapor rich in B is fed to a stage between 

the middle and the bottom section of the column. In reactive section, reactant B is 

absorbed into the liquid phase where the reaction takes place with reactant A. 
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a) Conventional process b) Reactive Distillation 

Figure 1.1: Processing schemes for a reaction sequence A + B .-.. C + D where C and D are both desired products. 

(a) Typical configuration of a conventional process consisting of a reactor followed by a distillation train. (b) The reactive distillation 

configuration. The components A, C, D and B have increasing boiling points. Grid lines indicate the reactive sections. Adapted from 

Stichlmair and Frey (1999). 
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Products are separated in situ, driving the equilibrium to the right and preventing 

undesired side reactions between the reactants and the product. The task of rectifying 

section is to recover reactant A from the product stream C. In the stripping section, 

the reactant B is stripped from the product stream D. In a way, reactant A and B are 

recycled back to the reaction section. 

For a properly designed reactive distillation column, virtually I 00 % conversion can 

be achieved (Taylor and Krishna, 2000). There have been a number of systems that 

has met commercial success with reactive distillation technology such as synthesis of 

methyl acetate, methyl ethyl tertiary ether, ethyl tertiary butyl ether and ethylene 

glycol. For the systems mentioned nearly I 00 % conversion of the reactant could be 

achieved in a single column. Since 1921, ethyl acetate system has been considered to 

be suitable for reactive distillation process and significant publications focusing on 

simulation, control, design and experimental work have been reported. However up to 

date there is no reported commercial application of reactive distillation technology for 

ethyl acetate system. It also should be noted that non-of the published results reported 

high conversion and purity of both reactants in a single column. 

Apart from increased conversion and selectivity the following benefits could also be 

realized (Tuchlenski et. al.,2001; Taylor and Krishna, 2000) : 

1. Simplification or elimination of the separation system that can lead to significant 

capital savings. 

2. Significant reduction on catalyst requirement for the same degree conversion. 

3. Reactive distillation can avoid the formation of azeotropes. The condition in the 

column could allow the azeotropes to be 'reacted away' in a single column. 

4. Reduction in by-product formation by eliminating side reactions through 

instantaneous separation of products of reaction. 

5. In the case of exothermic reaction, the heat of reaction can be utilized to provide 

heat of vaporization and reduce the re-boiler duty. Thus this provides heat 

integration benefits in reactive distillation process. 
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6. A simple and reliable temperature control can be achieved, since the maximum 

temperature in the reaction zone is limited to the boiling point of the reaction 

mixture. This avoids the formation of hot spot formation on the catalyst and the 

temperature control is relatively simple as compare to conventional reactor 

systems. 

In order to apply reactive distillation technology in industrial scale, there are a number 

of constraints have to be fulfilled (Tuchlenski et. al.,200 I; Taylor and Krishna, 2000): 

I. The reagents and products must have suitable volatility to maintain high 

concentration of reactants and low concentrations of products in the reaction zone. 

2. Chemical reaction has to take place entirely in the liquid phase, as wet catalysts 

pellets are available in liquid phase only. 

3. Residence time for the reaction should not be too long. If the residence time too 

long, a large column size and large hold-ups will be needed. Thus it is more 

economic to use reactor-separator scheme. 

4. Process condition for reaction and separation must be close in order to realize 

reactive distillation process. In some processes the optimum conditions of 

temperature and pressure for distillation may be far from optimal for reaction and 

vice versa. 

In spite of the constraints, the advantages gained by utilizing reactive distillation have 

motivated a renewed interest in the use of it for the production of important chemicals 

(Agreda et al., 1990). Amount of publications and patents on this technology was 

reported to have increased rapidly since 1971 (Doherty, 2000). However, the 

interactions between the simultaneous reaction and distillation introduces a much 

more complex behavior compared to the use of conventional reactors and ordinary 

distillation columns, leading to challenging problems in the design, operation and 

control of reactive distillation column. 
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The selected system for reactive distillation process in this research is ethyl acetate 

synthesis. Ethyl acetate is an industrially important bulk chemical used primarily as a 

solvent in the paints, coating and inks industry. Consumption of ethyl acetate as an 

industrial solvent has increased in recent years, due in the main to it being preferred to 

Hazardous Atmospheric Pollutants such as methyl ethyl ketone (MEK) and methyl 

isobutyl ketone (MIBK). The following table shows historical data on the demand of 

ethyl acetate from 1997 through 2003. 

Table 1.1: Data on Demand of Ethyl Acetate from 1997 to 2003 

Year Demand Price (USD) 

(Millions of pounds (Cent per pound) 

per year, ethyl acetate) 

1997 200 59 

1998 186 59 

1999 157 62 

2000 176 62 

2001 159 62 

2002 152 62 

2003 170 62 

As shown in table 1.1, the demand has fallen during the first five years, averaging a 

decline of five percent per year. However, in the last two years the demand for ethyl 

acetate has risen again due to the reason mentioned above. In addition, recent increase 

in the usage of ethyl acetate in coating industry is contributed by increasing 

price of methyl ethyl ketone (MEK). Price per kg of methyl ethyl ketone (MEK) is 

RM 5 .05/kg as compared to the price of ethyl acetate, which is RM 3 .60/kg. Since 

ethyl acetate possesses the same function as methyl ethyl ketone it is being preferred 

over methyl ethyl ketone in the coating industry. Therefore, for the forecast period 

through 2006, demand is estimated to be 3.4 percent per year. 
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1.2 OBJECTIVES of RESEARCH 

The main objective of this research project is to develop a validated mathematical 

model capable of describing ethyl acetate reactive distillation process. The research is 

aimed at fulfilling the following objectives: 

l. To develop a simulation model for ethyl acetate reactive distillation column 

2. To verify and validate the proposed simulation model 

3. To analyze the impact of changing various process and design parameters on 

the column performance. 

4. To introduce a new configuration that could significantly improve the column 

performance. 

1.3 SCOPE of RESEARCH 

The scope of research focuses on systematic approach to develop a reliable 

mathematical model that could represent ethyl acetate reactive distillation column. 

Suitable algorithm is proposed in order to solve the resulting mathematical model and 

then the simulation results are compared against equivalent experimental work and 

established simulation results available in literature. Upon validating the model, 

parametric analysis is carried out to determine the optimum input conditions that 

could give the best column performance. Two criteria are used to measure the column 

performance, namely conversion and ethyl acetate product purity. Finally attempt is 

made to further enhance the performance of the column by exploring different type of 

column configuration. 
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1.4 PROBLEM STATEMENT 

Though ethyl acetate system is suitable for reactive distillation process; it is not 

attractive for commercialization due to its failure to operate at or near its ideal 

condition. Most of the modeling works on ethyl acetate reactive distillation column 

available in the literature emphasis on model development followed by simulation by 

using various solution strategies in order to determine the validity of the model 

(Alejski et al. 1988; Simandl J. and Svrcek, 1991; Bogacki et al., 1989). Apart from 

that interest also was shown in the control of ethyl acetate reactive distillation column 

(Nishith and Daoutidis, 2001). While, Huseyin and Mahmut, 2001 studied the effects 

of liquid phase activity model on the simulation of ethyl acetate reactive distillation 

column. 

From the past work it is evident that there was not many attempt made to 

systematically analyze the factors that hinder the performance of ethyl acetate reactive 

distillation column. In the present study, parametric study is carried out to understand 

the behavior of the system under various operating and design parameters. Some of 

the parameters studied are: 

• Reflux ratio at constant overhead 

• Feed tray location 

• Number of stages 

• Damkohler number 

• Pressure 

Through parametric analysis, the system limitations are understood well and optimum 

conditions for maximum performance is obtained. Based on this analysis attempt can 

be made to device a new configuration that could ultimately improve the column 

performance. 
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2.1 Introduction 

The early used of reactive distillation could be traced back since the 1920s'. The 

earliest literatures in the area consist of several patents registered to Backhaus in 

1921, 1922 and 1923a,b based on esterification processes using homogenous 

catalysts. Meanwhile, among the earliest journal articles on the subject was published 

by Keyes (1932), Leyes and Othmer (1945 a, b), Schniep eta!. (1945) and Berman et 

a!. (1948). These publications too, deal mainly with homogeneous self-catalyzed 

reactions such as esterifications, trans-esterifications and hydrolysis processes with 

the main objectives of obtaining steady state numerical solutions. 

Despite of the various demonstrated potential of reactive distillation, research on this 

area ceased for quite a long time until a breakthrough was made in the field of 

combined process mathematical model simulation and design in the early 1970s' and 

the wide usage of computers among process designers. These have led to a renewed 

interest in the subjects (Doherty and Malone, 2001 ). 

Following the development, the study has expanded to cover more systems and these 

were reported in journal papers and patents. The most classic success story for the 

application of reactive distillation is the Eastman Chemical Company's process for 

producing methyl acetate. The process was a radical departure from the traditional 

technology that had earlier been a genuine economic success for over 15 years. A 

hybrid reactive distillation device was able to replace an entire flow-sheet consisting 

of 11 major units plus all the heat exchangers, control systems, pumps, intermediate 

storage tanks and others (Doherty and Malone 2000). Besides synthesis of Methyl 

acetate, the synthesis of methyl ethyl tertiary butyl (MTBE), ethyl tertiary butyl ether 

(ETBE) and tertiary amyl methyl ether (TAME) have also met with commercial 

success. 
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The study of process modeling for reactive distillation is nom1ally carried out in one 

of the two different approaches (Buzad & Doherty, 1994) i.e., simulation and design. 

In simulation the input and operating variables of a process are specified and the task 

is to solve for the resulting outputs. In design the input and selected output variables 

are specified and the task is to determine the optimal process configuration and the 

optimal design parameters that achieve the given product specification. 

In the present study, simulation approach was employed to model ethyl acetate 

reactive distillation column and ethyl acetate reactive-extractive distillation column. 

Detailed simulation model was derived and verified against published simulation 

results and experimental work. Upon validating the model, parametric analysis was 

carried out to determine optimal column performance and also to analyse factors that 

impede the performance of the column. Based on the analysis, several improvements 

are proposed for enhancing the performance of ethyl acetate reactive distillation 

colurrm. 
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2.2 Synthesis of Ethyl Acetate 

There are various synthesis routes to produce ethyl acetate as depicted in Figure 2.1. 

However, most commercial production uses the esterification route of acetic acid with 

ethanol and this is the selected route chosen for the present work. This is also in view 

of it presenting the opportunity for the application of reactive distillation process. The 

reagents and products in this reaction have suitable volatilities in the reaction zone 

and the process condition, namely temperature and pressure, of this route suited well 

for the application of reactive distillation process. 

OXIDATION 

Ethylene 

OXIDATION 

HYDRATION 

Acetic 
Acid 

Ethanol 

TISCHENKO 

DIRECT 
ADDITION 

ESTERI
FICATION 

Figure 2.1: Routes To Ethyl Acetate Production (Red Lines Indicate The Selected 

Route In This Research Project). 

Synthesis of ethyl acetate via reactive distillation is carried out by reacting acetic acid 

with ethanol. The above esterification reaction can be carried out with or without the 

presence of catalyst. Suzuki et al. (1971), Komatsu (1977), Izarraraz et al. (1980), 

Chang and Seader (1988), Alejski et al. (1988), Bogacki et al, (1989) and Simandl & 

Svrcek, (1991) discussed in detail the ethyl acetate synthesis using reactive distillation 

without the use of catalyst. While Chang and Seader (1988) present a good discussion 

on the features and the disadvantages of the above system. 

ETHYL 
ATE 
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Significant improvements in terms of conversion and product purity can be attained 

when the esterification reaction in the column is carried out with the presence of 

homogeneous sulfuric acid catalyst (Nishith and Daoutidis, 2001; Huseiyn & 

Mahmut, 2001). Features of homogenous catalytic ethyl acetate system are discussed 

by referring to the work ofNishith and Daotidis, (2001) and Yeong et al. (2003) in the 

following section. 

2.2.1 Non-Catalytic Synthesis of Ethyl Acetate via Reactive Distillation 

Alejski et al. (1988) theoretically studied the esterification of acetic acid with ethanol 

to produce ethyl acetate and water using un-catalytic second order reversible reaction 

kinetics. The column specifications and input condition used in their study is shown in 

the Figure 2.2. There are 8 theoretical stages, all at 1 atmosphere, inclusive re-boiler 

and condenser. The feed rate is 0.2584 mol/min, with a liquid distillate of 0.0425 

mol/min, giving a bottom of 0.2159 mol/min. The feed is preheated to its bubble point 

at feed tray pressure and the reflux ratio used is 2.1. The feed is fed to sixth stage 

from the top and has the following mol fraction composition: acetic acid (z 1)= 0.2559, 

ethanol (z2) = 0.6159, ethyl acetate (z3) = 0.0539 and water (Zi) = 0.0743. Holdup 

volumes are 0.6 and 0.4 dm3, respectively, for re-boiler and in each of the stages ( 1 to 

7). The simulation result obtained for the column is shown in Table 2.1. 
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Table 2.1: Simulation Results For Un-Catalytic Ethyl Acetate Reactive Distillation 

Column By Alejski Et AI., (1988) 

Alejski (1988) 

Quantity Units Top Bottom 

ComQosition 

Acetic acid (Ac) 0.001 0.1450 

Ethanol (Et) 0.5430 0.4710 

Ethyl Acetate (Ea) 0.4130 0.1440 

Water (W) 0.0430 0.2400 

Temperature K 345.6 351.2 

Product flow mol /min 0.0425 0.2159 

Et conversion mole% 20.13 

Ac conversion mole% 47.95 

Ea purity mole% 41.29 

Reflux flow mol/min 0.0893 
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Boiling liquid feed 
Stage 3 at I atm 
flowrate 0.2584 mol min- 1 

t---

Mole fraction 
Acetic acid - 0.2559 
Ethanol- 0.6159 
Ethyl acetate - 0.0539 
Water- 0.0743 

Reflux 
ratio- 2.1 

Stage 8 

13 

Stage 1 

Distillate 

0.0425 mol min-

Bottoms 

Figure 2.2: Typical Reactive Distillation Column Configuration And Specifications 

For Single Feed Un-Catalytic Ethyl Acetate Synthesis (Komatsu 1977) 

The un-catalytic ethyl acetate reactive distillation column proposed by Alejski et a!. 

(1988) has its limitations. Firstly, the achieved conversion of the column is 47.95 

percent with respect to the limiting reactant i.e., acetic acid, which is found to be 

considerably lower than the equilibrium conversion i.e., 66 percent. Secondly, the 

achieved purity of ethyl acetate in the distillate is 41.30 percent and this is considered 

very low. The purity is even lower than the lighter binary azeotrope composition i.e., 

54 % for ethanol-ethyl acetate azeotrope, which is supposed to be the purity limit for 

the top product composition of the column. 
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The main contributing factor for the poor performance of the column was mainly 

argued on the absence of catalyst to speed up the reaction in the column, which in tum 

severely limits the conversion. Even using an excess of ethanol by a ratio of 2.4, 

failed to drive the limiting reactant i.e., acetic acid, towards complete conversion. 

Unfortunately, the authors did not explore other configurations or alternatives that 

could possibly boost the performance of the column in terms of the achieved 

conversion and the ethyl acetate purity. Attention was given only on the numerical 

solution method for the mathematical model developed for the column shown in 

Figure 2.1. In addition the author did not mentioned or analysed the factor that limits 

the performance of this column. 

2.2.2 Catalytic Synthesis of Ethyl Acetate via Reactive Distillation 

Nishith and Daotidis, (2001) proposed a configuration, which feeds the two reactants 

i.e., ethanol and acetic acid, at two different feed locations i.e., above and below the 

reaction section and using sulfuric acid as the catalyst for the esterification reaction. 

They reported a higher conversion for the reaction and higher ethyl acetate purity were 

attained, as a result of doing so. From the comparison made on the two rate equations 

used for the non-catalytic and catalytic reaction as shown below, it is clearly evident 

that the catalytic reaction has a significantly higher rate of reaction and this has 

contributed to the superior performance attained by the configuration. 

Rate equation for the catalytic reaction (Alejski & Duprat, 1996): 

r = k1CACB - k11Kc CcCo (moVsec m3
) 

where 

k1 = ( 4.195Ck + 0.08815) exp ( -6500.1 /T) 

Kc = 7.558- 0.012T 

(m3 /mol sec) and 

k1 =reaction rate constant (m3/(mol sec)) 

C = concentration of reactant/product 

R = rate of reaction (mol/sec m3
) 

Ck = Catalyst Concentration 

T = Temperature (K) 

Kc = constant of reaction equilibrium 
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Rate equation for the non-catalytic reaction (Arnikar et al., 1970): 

On stages without catalyst a simpler rate equation is used: 

r = k1CACB - k2CcCo (mol/sec m3
) 

where 

k1 = 0.485 exp (-7186!f) 

k2 = 0.123 exp (-7186/T) 

(m3 /mol sec) and 

(m3 /mol sec) 

k1 =forward reaction rate constant (m3/(rnol sec)) 

k2 =reverse reaction rate constant (m3/(mol sec)) 

Figure 2.3 depicts the double feed catalytic ethyl acetate reactive distillation 

configuration as used by Nishith and Daoutidis, (2001) in their study. The column 

consists of 13 stages inclusive of the condenser and re-boiler. Acetic acid in saturated 

liquid form is fed into the column at stage 4, with a flow-rate of 414-mol minr1, 

while ethanol is fed at stage 11 in saturated vapor form with a flow-rate of 411.9-mol 

minl-1. The column pressure is maintained at I atm and the reflux ratio used is 2.023. 

The liquid holdup in the condenser and the trays is 4.4108 x 104 mol, whilst the 

holdup in there-boiler is 1.4703 x 105 mol. 

Table 2.2 display the results obtained from the simulation study conducted. Based on 

the results, it can be easily concluded that the configuration proposed by them is 

attractive. Not only the conversion attained is higher than the equilibrium conversion 

of any conventional reactor, the ethyl acetate purity produced was found to be higher 

than the azeotropic composition, which normally present the limit of purity that could 

be achieved under conventional distillation. An interesting feature of the proposed 

configuration which was highlighted as the reason that had led to the superior 

performance is the fact that it has the ability to distribute the reaction throughout all 

the stages in the column, which is characteristically different from the single feed 

column, in which most of the reaction occurs in the re-boiler. 
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Saturated liquid at 1 
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Figure 2.3: Typical Reactive Distillation Column Configuration And Specifications 

For Double Feed Catalytic Ethyl Acetate Synthesis (Nishith & Daoutidis 2001) 
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Table 2.2: Simulation Results For Catalytic Ethyl Acetate Reactive Distillation 

Column By Nishith And Daotidis, (2001 ). 

Nishith & Daoutidis (200 I) 

Quantity Units Top Bottom 

ComQosition 

Acetic acid (Ac) 0.003 0.2100 

Ethanol (Et) 0.080 0.1400 

Ethyl Acetate (Ea) 0.650 0.1300 

Water(W) 0.240 0.5200 

Temperature K - -

Product flow mol /min 400.8 425.1 

Et conversion mole% 76.8 

Ea purity mole% 65.0 

Reflux flow mol/min 810.6 

Despite the promising outcome from the study, they have overlooked several 

operational facts. Firstly the introduction of catalyst throughout the column promotes 

reverse reaction in the zone located above the acetic acid feed point. This is expected 

due to low concentration of reactants causes reverse reaction to dominate. This has 

impeded the potential of increasing the column performance further. A parametric 

analysis, which could have been useful in order to gain some insight, was not 

conducted. 
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Though the achieved conversion and purity obtained were above the equilibrium 

conversion and azeotropic compositions respectively, it is still considered to be far 

from the performance that would be considered as attractive for the application of the 

technology. 

2.2.3 Production of High Purity Ethyl Acetate 

Yeong et al. (2003) published a paper, which concentrates on enhancing the 

performance of catalytic ethyl acetate reactive distillation column proposed by Nishith 

and Daotidis (2001). Their focal argument on Nishith and Daotidis (2001) work was 

that the configuration failed to produce high purity ethyl acetate in distillate (only 65 

mol%), which requires further purification and bottom product stream consists of all 

four components in the system, thus, it will be very difficult for further treatment of 

this stream. 

The conceptual design of the configuration proposed by Yeong et al. (2003) is 

depicted in Figure 2.4 below and Table 2.3 shows the design and operating conditions 

of the proposed design. The column consists of 29 stages inclusive condenser and re

boiler. Acetic acid (fresh and recycled) is fed into the column at stage 10, while fresh 

ethanol is fed into the column at stage 28. Reflux ratio is 2.613 andre-boiler duty is 

1643.5 kW. As compared to the work of Nishith and Daotidis (2001), additionally 

this column consists of decanter and bottoms recycle stream, which is directed 

towards fresh acetic acid feed. Therefore undoubtedly this recycle stream is rich in 

acetic acid. As in this study the input flow-rates and kinetic model for the chemical 

reaction is taken from the work of Alejski and Duprat (1996), which also used by 

Nishith and Daotidis (2001). The four components system of Figure 2.4 was 

rigorously simulated using the Aspen Plus® process simulation package. 
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A decanter is included in the design because it is desired to have liquid phase splitting 

in the decanter into an organic phase and an aqueous phase. The entire aqueous phase 

stream is drawn from the system for further waste water treatment. A part of organic 

phase is refluxed back to the column as an entrainer to keep acetic acid down the 

column. The rest of the organic phase is taken out as ethyl acetate product stream. 

Unlike other paper in literature, which did not consider the treatment of bottom 

stream, the bottom stream in this proposed design is recycled and mixed with fresh 

acetic acid feed. 

_Ion Vanor 
Fres h Acetic Acid / Feed 
5.65 moVs 
Hac = 0.952 
HzO = 0.048 

Fresh Ethanol 
Feed 
6.865<"m=ovil.s:-+-----l 
EtoH = 0.822 
H20= 0.17 

Organic 

I Reflux 

Organic Product 

Bottom Recycle Flow I molls 

Aquc;p us Product 

Figure 2.4: Conceptual Design Of Ethyl Acetate Reactive Distillation Column 

Proposed By Yeong Et AI. 2003. 
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Table 2.3: Reactive Distillation Column Design and Operating Condition 

(Y eong et. al.) 

Ethyl Acetate Reactive Distillation 

Total Number of Stages 

Number of stages in rectifying section 

Number of stages in reactive section 

Fresh acetic acid feed flow-rate (molls) 

Recycle acetic acid feed flow-rate (molls) 

Fresh ethanol feed flow rate (molls) 

Bottoms recycle flow-rate (molls) 

Organic reflux flow-rate (molls) 

Acetic acid feed location 

Fresh ethanol feed location 

Re-boiler duty (kW) 

Specifications 

29 

9 

20 

5.65 

6.65 

6.865 

32.71 

10 

28 

1643.5 
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Figure 2.5 below summarizes the simulation results of the proposed configuration by 

Yeong et. a!. (2003 ). 

Fresh Acetic Acid 
Feed 
5.65 moVs 
Hac= 0.952 

Top Vapor 
45 2229 molls 
Hac= 0.005 wt% 

H20= 0.048 
32.7079 

Aqueo us Product 

molls I Decanter 

5.678 8 moVs 

Fresh Ethanol 
Feed 
6.865;=--m-:-ov,.s=---tt------1 

EtoH = 0.822 
H20= 0.17 

Hac= 
EtOH 

Organi EtAC 
Reflux 

H20= 

Organic Product Hac= 5.9 E-5 
6.8362 moVs EtOH = 0.0295 

EtAC = 0.7762 
H20= 0.1943 

Hac= 0.9113 
EtOH = 0.0119 
EtAC = 0.0206 
H20= 0.0562 

Bottom Recycle Flow I moVs 

2.8 E-5 
= 0.0112 
= 0.0127 
0.9761 

Figure 2.5: Simulation Results Of Ethyl Acetate Reactive Distillation Column 

Proposed By Yeong Et AI. 2003 

The ethyl acetate product purity achieved via this configuration is 77.62 mol% that is 

only marginally improved as compared to configuration proposed by Nishith and 

Daotidis (200 1 ), which gives ethyl acetate purity of 65 mol%. Meanwhile the 

achieved conversion with respect to acetic acid is 83%, which is higher than 

conversion achieved in configuration proposed by Nishith and Daotidis (2001) 

(76.8%). An interesting feature of this column is the recycle of bottom stream, which 

is rich in acetic acid thus eliminating the need for further separation of the bottom 

stream to recover reactant acetic acid. The column is design in such a way that the 

bottoms stream is reach in acetic acid. This is achieved in this study by manipulating 

the product distribution ratio (distillate/bottom). The author maintain high product 
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take off at distillate, thus forcing lighter components (ethyl acetate, ethanol and water) 

to concentrate in the overhead leaving heavier component acetic acid which has 

highest relative volatility amongst the components in the system as bottom. Since the 

product take off favors at distillate the re-boiler duty expectedly higher as compared 

to configuration proposed by Nishith and Daotidis (2001). Despite the advantage of 

recovering valuable reactant from the bottom stream, this configuration suffers lost of 

product ethyl acetate via aqueous stream from the decanter, relatively higher re-boiler 

duty needed to perform the separation and ethyl acetate product purity is still not good 

enough for industrial specification. 

Unlike other literatures on this topic, the authors have conducted detailed parametric 

analysis for the proposed configuration in order to gain some insight and to explore 

the potential of improving the performance of the proposed design. The parameters 

studied are: 

1. Effect of fresh acetic acid feed and the total number of stages 

2. Effect of the locations of acetic acid and ethanol feed stages 

3. Effect of the bottom recycle flow-rate 

4. Effect of organic reflux flow-rate 

5. Effect of tray efficiency 

6. Effect of water flow rate in the overall system 

From the analysis carried out, the authors concluded that it is impossible to improve 

performance of the process in a single reactive distillation column. Finally, the 

authors proposed a new configuration with additional stripping column and two 

recycle streams. The stripping column's function is to further purify ethyl acetate 

product of the organic distillate stream. Though this configuration could give better 

results in terms of ethyl acetate product purity, it has failed to achieve reactive 

distillation process objectives, which is to produce high purity product and conversion 

in a single column. Therefore, this study will attempt to achieve these process 

objectives. 
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2.3 Modeling and Simulation of Ethyl Acetate Reactive Distillation Column 

There were two approaches reported in literature, used to model reactive distillation 

column. Firstly, the equilibrium stage model, which was introduced by Grosser et al. 

( 1987), Alejski and Duprat (I 996) and Basualdo and Scenna ( 1995). Later, a more 

rigorous approach known as the none-equilibrium stage model (NEQ), was introduced 

by Kreul et al. (1998). The none-equilibrium stage model has some advantages over 

the equilibrium model, which is more commonly used. However, due to its 

complexity, many researchers have preferred the equilibrium stage model to be used 

for their study. In this section, the work done by Chang and Seader ( 1988) using the 

equilibrium stage model approach for ethyl acetate reactive distillation is reviewed. 

This is then followed by a review on the works using the none-equilibrium stage 

model. 

2.3.1 Equilibrium Stage Modeling 

Chang and Seader, (1988) described ethyl acetate reactive distillation column based 

on equilibrium stage model. In this method the vapor and liquid streams leaving the 

stage are assumed to be in equilibrium with each other. Each stage is described 

using the well established MESH (material balance, vapor liquid equilibrium 

equations, mole fraction summations and heat balance) equations for distillation. In 

addition, the reaction equation(s) is incorporated and integrated to the equilibrium 

stage model to represent the reaction(s) taking place at each stage. A complete 

separation process is modeled as a sequence of these equilibrium stages. In order to 

reduce the complexity of the model used, several assumptions were made and these 

among others consist of: 

1. The process is treated as in physical equilibrium (vapor and liquid leaving any 

stage are in equilibrium) with kinetically controlled reaction, 

2. Constant enthalpy per(at each) stage which allows enthalpy (derivatives or terms) 

to be excluded from the model, 

3. Constant liquid holdup on the trays, which allows molar derivative, to be excluded 

from the model, 

4. Ideal vapor phase system since the vapor phase non-ideality is less significance in 

esterification process due to modest operating pressure, 
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5. The reaction occurs only m the liquid phase and the liquid at each stage is 

perfectly mixed, 

6. Vapor molar holdup and vapor phase chemical reactions are neglected, 

7. Adiabatic operation and no heat lost to the surrounding, 

8. Heat of mixing on each of the stage is negligible. 

One of the major advantages of this approach lies in its' simplicity in the modeling 

part. It is an extension of conventional distillation modeling and anyone with a priori 

knowledge in conventional distillation could model the reactive distillation process 

easily. Though the modeling is quite straightforward, it has been proven that the 

approach is capable of representing experimental data closely for an ethyl acetate 

reactive distillation system (Chang and Seader, 1988). Other works on ethyl acetate 

reactive distillation were also carried out based on equilibrium stage modeling and the 

results obtained were favorable in terms of model validity (Simandl and Syrcek, 1991; 

Bogacki eta!., 1989; Alejski eta!., 1988; Alejski and Duprat, 1996). Thus it can be 

concluded that the equilibrium stage model is a very good pragmatic approach 

suitable particularly in the early stage of distillation process development. 

On the contrary, the shortcomings of equilibrium stage models are: 

• Deeper insight into reactive distillation process would not be possible as 

column properties such as hardware design information are not included in the 

modeling equations. 

• For some cases such as ethylene glycol system it has been proven that 

equilibrium stage model is less sensitive to disturbance as compared to none

equilibrium model (Baur et a!., 2001 ). This may cause problem if the model is 

used for control studies. 
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2.3.2 None Equilibrium (NEQ) Stage Modeling 

The none-equilibrium stage model for reactive distillation uses the rate-based 

approach in developing the equations for representing distillation process (Taylor and 

Krishna, 2000). Deriving and solving the sets of equations using the none-equilibrium 

stage model is not as straightforward as using the equilibrium stage model. In NEQ 

model, hardware design information must be specified so that mass transfer 

coefficients, interfacial areas, liquid holdup, hydrodynamics of trays and energy 

holdup could be calculated. The NEQ model requires thermodynamic properties, not 

only for calculating the phase equilibrium but also for calculating the driving force for 

mass transfer and in reactive distillation the thermodynamics properties is useful for 

taking into account the effect of non-ideal component behaviour in the calculation of 

reaction rates and chemical equilibrium constants. In addition, physical properties 

such as surface tension, diffusion coefficients and viscosity for calculating the mass 

and heat transfer coefficients and interfacial areas are required. Thus, separate 

modeling strategies need to be employed for reactive distillation using homogeneous 

and heterogeneous catalyst (Taylor and Krishna, 2000). 

The main advantage of none equilibrium modeling lies in its ability to consider all 

factors involved in the model development process. This, in tum, allows for more 

accurate representation of the reactive distillation system. Such close representation to 

real system would be beneficial especially in control studies. 

Nevertheless, the none-equilibrium stage model has significant shortcomings, which 

have deterred its application. This is mainly due to the absence of single general 

approach to derive the NEQ model for reactive distillation. There have been various 

approach and assumptions reported in the literature, thus creating a dilemma in terms 

of which approach to be used. 
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2.4 Thermodynamics of Ethyl Acetate System 

In reactive distillation, as in conventional distillation, knowledge of the vapor liquid 

equilibrium is vital. When this equilibrium is superimposed on a chemical reaction, 

the concentration curve in a distillation column is appreciably influenced (Tuchlenski 

et al., 2001). Since reaction in reactive distillation process is assumed to occur in 

liquid phase only, detail treatment of liquid phase non-ideality is important. This is 

accounted in thermodynamics using the liquid phase activity coefficient. There are 

various thermodynamic models available for calculating the liquid phase activity 

coefficients. 

Huseyin and Mahmut, (2001) made a comparison study on the effect of the liquid 

phase activity model on the simulation of ethyl acetate production by reactive 

distillation. In their study, detail equilibrium stage model representing the 25 stages 

double feed catalytic ethyl acetate reactive distillation was firstly developed. The 

model was then simulated using four different liquid phase activity models namely; 

UNIQUAC, modified UNIFAC Dortmund, modified UNIFAC Lynbgy and an 

empirical method developed by Komatsu et. al., 1977. The effects of reflux ratio on 

these models were also studied. It was found that at low reflux ratios, the 

discrepancies between the results from the various models were as high as 10 percent, 

whereas at high reflux ratios and with low conversion, the results became increasingly 

closer. The highest conversion was obtained from the UNIQUAC model with the 

other models estimations being more or less similar. On the other hand, the 

temperature profiles in the column were almost similar for the two versions of the 

UNIFAC models but the empirical model gave a significantly different temperature 

profile. They concluded that the empirical method is the more reliable for predicting 

activity coefficients, as it is detetmined through experimental method. But they did 

mention that only comparing experimental and simulation results could select the 

most suitable method. Their studies are continuing for this purpose 
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In summary, the work has highlighted the importance of selecting suitable liquid 

phase activity coefficient model for the simulation of ethyl acetate reactive distillation 

column. The effects on important perfonnance parameters such as conversion, 

product purity and product distribution ratios were clearly shown with the purpose of 

cautioning future research work on the careful attention needed for the selection of 

liquid phase activity model. Nevertheless, the main lacking factor in this work is the 

failure of the author to compare the simulation results against any experimental work 

for validation. Also, the attempt on parametric study only focuses on reflux ratio, 

while leaving the other parameters of equally importance not studied. 

2.5 Computer Simulation of Reactive Distillation Column. 

Since the advent of digital computers, study on reactive distillation focused mainly on 

mathematical model development and its solution. In most of the solution procedures, 

the mathematics involved solving simultaneously sets of non-linear algebraic 

equations. Numerical methods were used as it was almost impossible to obtain the 

analytical solutions. Various algorithms suitable for implementation on digital 

computers for rigorously solving the mass and energy balance and the equilibrium 

state for multistage reactive distillation process have been reported (Jelinek and 

Hlavacek, 1976 ; Komatsu and Holland, 1977 ; Chang and Seader, 1988, Alejski et 

al., 1988 ; Bogacki et al., 1989; Simandl and Svrcek, 1991). Column of realistic 

complexity can be simulated, which among others include the effects of tray 

hydraulics and the mass transfer between liquid and vapor and between fluid and solid 

catalyst (Taylor and Krishna, 2000). Several commercial process modeling packages 

that includes all these effects for simulating steady state reactive distillation column 

have been introduced such as DESIGNER and RADFRAC (Juhaini et. a!, 1999; 

Taylor and Krishna, 2000). 

Typically, a simulation of reactive distillation column would requires specification to 

be given on the feed composition and quality, the column pressure, the reflux and 

reboil ratios, the total number of stages, the feed plate location and the liquid-phase 

holdups on each stage. The resulting composition profiles could then be determined 

using the simulation model. In the following sections, discussion is made on the 

various solution algorithm reported in literature for solving reactive distillation 

modeling equations. 
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2.5.1 Equation Tearing Procedures 

Equation tearing procedures involve dividing the model equations into groups to be 

solved separately (Taylor and Krishna, 2000). Two such equation-tearing procedures 

are the bubble point method (BP) and the multi-theta method. Suzuki et al. (1971) 

applied BP method to solve modeling equations for ethyl acetate synthesis, and 

compared their results against experimental work. Komatsu and Holland (1977), on 

the other hand, used the multi-theta method on a case study involving esterification of 

acetic acid using reactive distillation. 

The methods that fell under this category seemed to be quite straightforward, but it 

will fail to converge under the circumstances where the boiling points between the 

components are too large or when the kinetics are too complex, and the liquid solution 

are highly non-ideal. 

2.5.2 Relaxation Method 

Most of the methods proposed in this section are very sensitive to initial estimations. 

In the case where the starting data are estimated with great errors, there will be serious 

problems with the convergence of these methods. To overcome the drawback, 

relaxation method was proposed. This method involves writing the MESH equations 

in unsteady state form and integrating them numerically until a steady state solution is 

achieved (Henley and Seader, 1981 ). In a way, the approach resembles closely to the 

dynamic model. Bogacki et al., (1989) used this method for simulating esterification 

of acetic acid and compared their results against the numerical results obtained by 

Komatsu (1977). They used Adarns-Moulton numerical integration method to 

integrate a simplified dynamic model, neglecting the enthalpy balance, until a steady 

state solution was obtained. Yang et al., (2001) too applied this method to obtain a 

steady state solution for an ETBE reactive distillation column. The obtained 

simulation results were found to be in good agreement with an experimental work. 

Although this method seems to be attractive, the major disadvantage is mainly due to 

its slow convergence in arriving to the solution, which at times can be extremely time 

demanding. 
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2.5.3 Minimization Method 

The method involves minimizing the sum squares of non-linear functions without 

calculating the derivatives (Powell, I 965). Similar to the relaxation method, it is 

useful for systems where it is difficult to predict the initial guest values for component 

compositions and temperature profile at the beginning stage of the simulation. Alejski 

et a!. (1988) used this method for ethyl acetate synthesis and compared their results 

against the experimental work of Komatsu (1977). They claimed that this algorithm 

was able to produce more precise results than the earlier algorithms discussed in this 

work. 

Similar to the relaxation method, the major disadvantage of this method is the lengthy 

time required to arrive at the solution. Therefore, applying it to a complex system may 

not be suitable. 

2.5.4 Homotopy Continuation Method 

The method is employed most oftenly for solving problems that are considered to be 

extremely difficult to solve with other methods such as Newton's method which 

requires solving large and complex partial differential system and due to its sensitivity 

to initial assumptions. For a detailed discussion on the method, reference could be 

made to the article written by Waybum and Seader (1987). Chang and Seader (1988) 

employed this method successfully for reactive distillation process involving the 

esterification of acetic acid with ethanol to produce ethyl acetate. An important 

feature worth highlighting for the method is its ability to detect the presence of 

multiple steady states in reactive distillation system (Pisarenko et. a!., 1993). Other 

application in reactive distillation system reported involves the use of the method for 

parametric sensitivity study (Sneesby et. a!., 1997). 
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2.6 Designs and Analysis of Ethyl Acetate Reactive Distillation Column 

Simulation and process design of reactive distillation operations involves two 

different types of calculation approach. In the case of process design, parameters such 

as the number of stages, the operational reflux ratio, the size of reaction section 

integrated within the distillation column which reflects the residence time for reaction, 

the temperature and pressure of the operation and the feed location(s) are among the 

critical parameters that need to be determined. While, simulation would normally 

takes place after the specifications for the above parameters have been made to the 

mathematical model used to represent the process. Due to the complexity encountered 

as a result of the integration between distillation and reactor design, a single 

comprehensive and globally accepted design method for reactive distillation is yet to 

be developed. On the contrary, the works related simulation, were published more 

widely based on several systems and using various modeling approaches. 

While most reactive distillation process model was derived based on the EQ stage 

model, recent developments have opened up the possibility of using NEQ model for 

design and simulation of reactive distillation (Taylor and Krishna, 2000). Since this 

research work focused mainly on modeling and simulation of reactive distillation 

column, comprehensive review on the topic of process design will not be covered 

here. Instead, attempt is made to cover the subject with direct reference to the ethyl 

acetate system, which is used as the system in this research. This will provide good 

initial picture on the limitations and feasible separation modes for the system studied 

in this research project. 

There have been reasonable amount of publications made on the design and analysis 

of ethyl acetate reactive distillation with most of them focusing on the various process 

alternatives for ethyl acetate synthesis and the feasibility of using reactive distillation 

column. Before developing design models for reactive distillation, Barbosa and 

Doherty (1988) studied the influence of chemical reactions on vapor liquid equilibria. 

According to them, the understanding of the above fundamental is essential for 

satisfactory design and synthesis of reactive distillation columns. They analysed the 

effects of chemical reaction on vapor liquid equilibria by observing the reactive phase 

diagrams representing the system under study. They presented a general algorithm for 

developing these phase diagrams for ideal and non-ideal systems. In developing the 



CHAPTER 2 LITERATURE REVIEW 31 
--------------------------------------------------------

algorithm, they have assumed the components relative volatility within the system to 

be constant and the reactions have reached its equilibrium. Using a quaternary non

ideal system i.e., acetic acid-ethanol-ethyl acetate-water, they showed through their 

calculation that reactive azeotropes do not exist for this mixture. They also stressed 

the importance of getting the right thermochemical data for predicting correctly the 

behavior of the system as otherwise it will affects not only the type of distillation 

sequence that is needed in order to meet the product specifications, but it also gives 

rise to completely different physical situation such as existence of reactive azeotropes. 

One important finding discovered from their research is that for constant volatility 

systems, they were able to show the conditions under which the reactive azeotropes 

could form. According to them, the reactive azeotropes could only occur if the 

volatility of both reactants is either higher or lower than the volatility of the products. 

However, it was proven later that the observation does not hold for non-constant 

volatility systems (Song et. a! 1995). 

To effectively visualise phase behavior, Barbosa and Doherty (1988), later introduced 

the use of residue curves maps. They defined a new set of transformed composition 

variables, which ultimately ease the representation and calculation of phase behavior. 

These residue curve maps explicitly show the existence of distillation boundaries, a 

concept that is important not only for the synthesis of distillation columns but also for 

the design of simple reactive distillation columns; since these distillation boundaries 

limit the range for feasible product specifications as a result of separating the mixture 

system. However, allowing the components in the mixture to react could modify the 

distillation boundaries to an extent that it either could eliminate the existing 

boundaries or create new ones. An interesting feature of this phenomenon is that 

through proper maneuvering by introducing reaction into the system could avoid the 

formation of azeotropes, which have been known to limit separation ability of any 

distillation process. According to them, for any binary and ternary mixtures 

undergoing instantaneous chemical reaction, non-reactive azeotropes do not present as 

products of the distillation since the components always reacted away from the 

azeotropes' composition. 
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Using MTBE system as an example, they demonstrated the outcome above. They 

calculated the residue curve map for both reactive and non-reactive mixture of 

isobutene-methanol-MTBE and the diagrams obtained for the non-reactive system are 

shown in Figure 2.6 below. It clearly shows the existence of a distillation boundary, 

which extends from the binary azeotropes of isobutene-methanol to the binary 

azeotropes of methanol-MTBE. In contrast, the reactive system as represented in 

Figure 2.7, shows that the non-reactive azeotropes have been eliminated. Since the 

reaction is in chemical equilibrium, binary azeotropes of isobutene-methanol react 

instantly to form MTBE. Meanwhile, binary azeotrpes of MTBE-methanol is 

impossible to form, as MTBE react to isobutene and methanol. Therefore we cannot 

have a binary mixture of isobutene-methanol and MTBE-methanol. 
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Figure 2.6: Residue Curve For The Non-Reactive System Isobutene-Methanol-MTBE 
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Figure 2. 7: Residue Curve For The Reactive System Isobutene-Methanoi-MTBE 

Analysis made by them on four-component reactive mixtures, showed that for some 

system, the presence of reaction does not necessarily eliminates all the non-reactive 

azeotropes. They studied the mixture of ethyl acetate-ethanol-water-acetic acid system 

that undergoes liquid phase reaction. Under the non-reactive mixture, four azeotropes 

were known to be present. It was observed that the presence of reactions only 

eliminate two of the non-reactive azeotropes i.e., a ternary azeotropes of ethyl 

acetate-ethanol-water and a binary azeotropes of ethyl acetate-water. While the binary 

azeotropes of ethanol-water and ethanol-ethyl acetate still exist in the system. This 

could be explained from the fact that the mixture of ethanol-water or ethanol-ethyl 

acetate does not react with each other even in the presence of catalyst. Therefore, 

these azeotropes could still be obtained as the products of the reactive distillation. 

Thus, the use of residue curve maps during synthesis and design of reactive 

distillation process could predict its potential advantages if any, in comparison to the 

conventional arrangement consisting of reactor followed by distillation. 
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In an accompanying paper, Barbosa and Doherty ( 1988c) used the set of transformed 

composition variables to derive design equations for a single feed column for 

calculating minimum reflux ratios for reactive distillation column. They showed that 

the equations developed were relatively similar to the corresponding equations for 

conventional distillation with additionally reaction term was introduced in the 

equations. The design equation for stripping section of single feed reactive distillation 

column derived by Barbosa and Doherty (1988c) given by: 

where 

dX' 

dh' 

s 

s· + I 

i = 1, ....... , c-1 

i? k 

X;'= stripping section transformed liquid composition variable of component i 

Y;' = stripping section transformed vapor composition variable of component i 

X8' = transformed bottoms composition 

h' = stripping section continuous plate number 

s • =modified reboil ratio for platen 

c = number of components 

k = reference component 

The design equation for rectifying section of single feed reactive distillation column 

proposed by Barbosa and Doherty (1988c) given by: 

where 

dX/ 

dh' 

• r +I 1 
=X/ __..:...-.--=-y/ + -.-y D 

r r 

i = 1, ....... , c-1 

i? k 

X;'= rectifying section transformed liquid composition variable of component i 

Y;' = rectifying section transformed vapor composition variable of component i 

X0 ' = transformed distillate composition 

h' = reactifying section continuous plate number 
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r· =modified reflux ratio for platen 

c = number of components 

k = reference component 

35 

Initial condition for integration of set of differential equations for stripping section is 

taken as bottoms composition while initial composition for set of differential 

equations for rectifying section is taken as distillate composition. 

Defining equation for transformed liquid and vapor phase composition, modified 

reboil ratio and reflux ratio can be referred to paper published by Barbosa and 

Doherty ( 1988c). Based on the above equations for stripping section and rectifying 

section which are functions of reboil ratio and reflux ratio respectively, they 

determined a feasible design by integrating numerically the equations beginning from 

the desired product composition. To illustrate their design procedure, an ideal 

quaternary system was selected, which undergo an equilibrium reaction type: -

A+B C+D 

The order of the components relative volatility by decreasing volatility is C > A > B > 

D. They concluded that if the resulting rectifying and stripping trajectories for the 

specified reflux ratio from the integration of above equations intersect, as shown in 

Figure 2.8 (a), then the prop?sed column is feasible. However, if the rectifying and 

stripping trajectories for the specified reflux ratio did not intersect as shown in Figure 

2.8{b), then the proposed column will not be able to produce the desired products. For 

a special case where rectifying and stripping trajectories for specified reflux ratio just 

touch each other as shown in Figure 2.8(c), an infinite number of trays are required to 

realize the separation. Thus it represents minimum reflux condition. 
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Figure 2.8(a): Feasible Separation Composition Profiles For The Reactive Distillation 

Of A Four Component Ideal System As A Function Of The Reflux Ratio (Barbosa & 

Doherty, 1988c). 
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Figure 2.8(b): Unfeasible Separation Composition Profiles For The Reactive 

Distillation Of A Four Component Ideal System As A Function Of Reflux Ratio 

(Barbosa & Doherty, 1988c). 
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Figure 2.8( c): Minimum Reflux Composition Profiles For The Reactive Distillation 

Of A Four Component Ideal System As A Function Of Reflux Ratio (Barbosa & 

Doherty, 1988c). 

In the accompanying paper Barbosa and Doherty (1988d) extended the methodology 

of single feed column as described above to double feed columns to study the column 

feasibility and to calculate the minimum reflux ratio. They illustrated the procedure 

using esterification processes. Production of methyl acetate was first considered 

followed then by the production of ethyl acetate. Ideally, the production of these 

esters using reactive distillation would consists of a single column to which acetic 

acid and alcohol feeds, enter at the upper and lower sections of the reaction zone 

respectively with a feed ratio of near unity. The products obtained from the column 

then should ideally be the ester as the distillate and water as the bottom product. 

However, their analysis on the systems showed that the column would be feasible 

only if the combinations of the feed ratios (h) are well above unity. For the 

esterification of methanol and acetic acid to produce methyl acetate, the F R must be at 

least above 3 whereas for the esterification of ethanol and acetic acid to produce ethyl 
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acetate, the FR must be at least 7. From such finding, they suggested that one of the 

ways to do with single reactive distillation column is to isolate only one of the 

products from the esterification reaction i.e., the esters as one of the distillation 

product, leaving a binary mixture of the other product together with one of the 

reactants i.e., the acetic acid, as the other distillation product. Their design calculation 

shows that for methyl acetate system, to obtain the desired separation (pure methyl 

acetate as distillate and binary mixture of water and acetic acid), approximately 18 

trays were needed for the stripping section, 31 trays for the middle section located 

between the subsequent feeds and 8 trays for the rectifying section. On the other hand, 

for ethyl acetate system, in order to obtain pure ethyl acetate as distillate and binary 

mixture of water and acetic acid as bottoms, approximately 20 trays were needed for 

the stripping section, I 01 trays in the middle section and 5 trays in the rectifying 

section. It could easily be seen that enormous number of trays was needed to facilitate 

the reaction and separation for the ethyl acetate system. They have not provided any 

explanation for this difference though. However, the present study will attempt to 

explain this phenomenon. The authors also proposed two other process configurations 

as alternatives for the esterification processes but unfortunately did not present the 

results. 

2.7 Overall Comment 

There are various routes to produce ethyl acetate. However, the most suitable route 

for the application of reactive distillation process is by esterification reaction of acetic 

acid with ethanol. The catalytic ethyl acetate reactive distillation seems to be more 

promising in terms of performance (Nishith and Daotidis, 2001) as compared the non

catalytic ethyl acetate reactive distillation column (Komatsu, 1977). However the 

drawbacks of the design proposed by Nishith and Daotidis (2001) are 1) the top 

product purity is not high enough (only 65mol%) which requires further purification 

and 2) the bottom product stream consists all for components in the system, thus, it 

will be very difficult for further treatment of this stream. 
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Yeong et. al., (2003), alleviate this condition by introducing a new configuration, 

which involves recycle of bottom stream that is reach in acetic acid as a make up for 

fresh acetic acid introduced into the column. But this configuration also failed to 

improve the ethyl acetate product purity significantly. Finally, they had to introduce 

additional stripping column and recycle stream in order to achieve high ethyl acetate 

product purity. Initial idea of producing high purity product and conversion in a single 

column was not be able to achieve by these authors. Past research work failed to 

consider the possibilities of incorporating extractive section in the ethyl acetate 

reactive distillation column in order to overcome the limitation that exist in the 

column. However in this research work this is considered heavily in order to achieve 

superior performance in a single column. From the author's point of view previous 

work have failed to consider this as an alternative due to lack of parametric studies 

conducted on ethyl acetate reactive distillation column which is important to identify 

improvements. 

Modeling of the reactive distillation column is better described using the equilibrium 

stage (EQ) method due its simplicity in comparison to the non-equilibrium (NEQ) 

method which requires significant amount of information which at times may not be 

available due to lack of fundamental studies to determine some of the required data. 

In addition, the accuracy obtained using the equilibrium stage (EQ) method was found 

to be acceptable. The use of proper liquid phase activity coefficients in the reactive 

distillation model are important in order to account for non-ideality in the liquid phase 

which existed in most of the system encountered. Of all the methods available for 

determining activity coefficient, empirical method was found to be the best method as 

the coefficients were determined based on experiment. 

Upon various computer simulation method proposed in the literature, relaxation 

method was found to be less sensitive to the initial estimation required. Thus it is most 

suitable method for initial stage of process development. Simulation and design 

calculations are different types of calculations. Simulation study could give more 

insight on the behavior of the system in study as compared to design approach as via 

simulation the output response can be obtained immediately and analysis can be done. 
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3.1 Introduction 

This chapter begins with a brief introduction, which then moves into the concept of 

modeling process applied in Process Systems Engineering. Based on this modeling 

concept, the mathematical model for ethyl acetate reactive distillation column is 

developed. 

In the process of building a model, real world problems are translated into equivalent 

mathematical formulations from which it is solved and then attempt is made to 

interpret the results, which provides the insight into the behavior of the real system. A 

model should resemble certain characteristics of the actual system. Those actual 

characteristics could include: 

• correct response direction of the outputs as the inputs change; 

• valid structure which correctly represents the connection between the 

inputs, outputs and internal variables; 

• correct short and long term behavior of the model. 

This overall process is represented schematically in Figure 3.1, which shows the four 

key steps in the overall modeling process (Law Averill M., 2000). 

Real World 1 Mathematical r-1---+ Mathematical ~ Problem Problem Solution Interpretation 

4 

Figure 3.1: Real World Modeling Process 

Each of the steps in Figure 3.1 has a very important role in the model building 

process. In step 1, the real world problem is translated into mathematical terms. Once 

the mathematical description of the real world system has been generated, it is then 

necessary to solve it for the unknown value of the variables representing the system 

(step 2). Step 3 of the process involves testing or validating the model to check 

whether it has been correctly implemented and to ensure that the model imitates the 

real world problem at a sufficient accuracy required. Once the model is verified and 

validated, the model can then be used for the intended purpose (step 4). 
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Model application areas in Process Systems Engineering are wide and the list of 

application is almost endless. However, it can be categorized into several well-defined 

areas. These are outlined in Table 3 .I, which sets out the typical application area and 

the aims of the modeling. 
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Table 3.1: Typical Application Area And The Aim Of The Modeling 

(Law Averill M., 2000) 

Application Area 

Process Design 

Process Control 

Trouble-shooting 

Process safety 

Operator training 

Environmental 

impact 

Model use and aim 

Feasibility analysis of novel design 

Technical, economic, environmental assessment 

Effects of process parameter changes on process performance 

Optimization using structural and parametric changes 

Analysis process interactions 

Waste minimization in design 

Examining regulatory and control strategies 

Analyzing dynamics for set point changes and disturbances 

Optimal control strategies for batch operations 

Optimal control for multi-product operations 

Optimal start-up and shutdown policies 

Identifying likely causes for quality problems 

Identifying likely causes for process deviations 

Detection of hazardous operating regimes 

Estimation of accidental release events 

Estimation of effects from release scenario 

Start up and shut down for normal operations 

Emergency response training 

Routine operations training 

Quantifying emission rates for a specific design 

Dispersion predictions for air and water releases 

Characterizing social and economic impact 

Estimating acute accident effects (fire, explosion) 
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Table above clearly shows the wide range of applications of model and hence the 

importance of process modeling on the modem design, optimization and operation of 

the process systems. For this research project, developed model is utilized for process 

design study with the aim of analyzing the effects of changing process parameters on 

the column performance. 

3.2 Modeling 

In this section, mathematical model will be developed specifically for homogeneously 

catalyst ethyl acetate reactive distillation column. Figure 3.3 shows the schematic 

representation of reactive distillation column used as the basis for model development 

in this study. In deriving the mathematical model, several assumptions were made. 

Although the assumptions could slightly affect the accuracy of the model, the decision 

was consciously made in order to make the model more effective for simulation. The 

set of assumptions made are as follows: 

1. The process is treated as in physical equilibrium (vapor and liquid leaving any 

stage are in equilibrium) with kinetically controlled reaction. 

2. Constant enthalpy per stage which allows enthalpy derivatives to be excluded in 

the model 

3. Constant liquid holdup on the trays, which allows molar derivative, excluded in 

the model. 

4. Ideal vapor phase since the vapor phase non-ideality is known to be less 

significant in esterification process as the column pressure is moderate (1 - 4 

atm). 

5. The reaction occurs only in the liquid phase, with each stage acting as a perfectly 

mixed CSTR reactor. 

6. Vapor molar holdup and vapor phase chemical reactions were neglected. 

7. Adiabatic operation and no heat losses to surrounding. 

8. Heat of mixing at each stage considered negligible. 
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3.2.1 Equilibrium Stage Modeling 

A schematic diagram of an equilibrium stage is shown in Figure 3.2. 

Vapor 

Heat Loss, Q 

CH_,COOH + C2U,OH = CH~COOC1H, + H10 
(A) (B) (C) (D) 

Figure 3.2: Vapor And Liquid Flow In Equilibrium Stage, J 

As depicted in the figure above, vapor from the stage below and liquid from the stage 

above are brought into contact on the stage together with any fresh or recycled feeds. 

The vapor and liquid leaving the stage are assumed to be in equilibrium with each 

other. A complete separation process is modeled as a consequence of N of these 

equilibrium stages, as shown in Figure 3.3. The equations used to model these 

equilibrium stages are known as the MESH equations (Material balance, Equilibrium 

relationship, Summation (constraint equation) and Heat (energy) balance). 

Additionally, the molar change in number of moles of component due to the 

proceeding reaction is considered in material balance equations. 
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Figure 3.3: Schematic Representation ofMulti-Stage Reactive Distillation Column 

The solution of these sets of equations formed the basis of the rigorous model for the 

analysis of staged separation processes (Sinnott, 1998). 
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3.2.2 The MESH Equations 

Steady state solution for reactive distillation modeling can be obtained by solving the 

modified MESH equations for distillation taking into account of the reaction in each 

of the individual stages. In the proposed modeling work, the modified MESH 

equations which, includes the equations that represent chemical reaction, are written 

in the unsteady state format. By integrating these equations numerically, steady state 

solutions were obtained. This method of solution is known as the relaxation method, 

which is normally used for dynamic model. 

Figure 3.4 illustrates the flowchart of systematic modeling procedure for the 

simulation of the reactive distillation column. The flowchart below can be divided 

into two main stages. Stage one involves the model derivation whereby mathematical 

model for each of the individual component using MESH equation is developed. 

Meanwhile stage 2 involves simulation and solution of the mathematical model. In 

this stage attempt is made to solve the resulting model equations using appropriate 

solution technique and consequently the results are analyse by comparing it with an 

equivalent experimental work. 
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MODELING OF REACTIVE 
DISTILLATION COLUMN 

Material Energy VLE Summation 
Balance Balance Models Equations 

Stage I 

------l- - -·-·-·-·-·~· -. . -.-.- -.- -·-·-·-·-·- -·-·-·-·-·-·-·- -·-·-·-·- -·---·-·-·-·-

1 
Enthalpy Calculation l 

Vapor & Liquid 
Flows 

I Kinetic Model 

Activity Fugacity Vapor 
Coefficient Coefficient Pressure 

~ Model Model Expression 
Equilibrium 
Stage Model 

/ 
Bubble Point Calculation 

Stage 2 Stage Temperature, Liquid and Vapor Composition 

Figure 3.4: Modeling Flowchart for Reactive Distillation Column Simulation 
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3.3 Material Balance 

In this section, the material balance for all the equilibrium stages including condenser 

and re-boiler is presented. The terms accounting for the reaction are incorporated to 

the mass balance equations for all stages in the ethyl acetate reactive distillation 

column in view of the possibility of reaction taking place outside the center section 

containing catalyst. To solve the material balance equation across the condenser, re

boiler and all the stages, the corresponding liquid, vapor and feed flow within the 

individual stages are required. These flows can be determined by solving the energy 

balance and the overall material balance equations simultaneously. The derivation of 

the energy balance equations is shown in the next section. 

In deriving the material balance equations, the following definitions are useful m 

understanding and clarifying the derivation: 

• Liquid hold up on stage j, hp; is defined as the molar quantity of liquid 

mixture held at a specified constant value on stage}. 

• Rj.t is the number of moles generated or disappear through reaction for 

component ion stage}. 

• Symbols X;j, Yij and Z;j are the mole fraction of component i in liquid flow 

L1, vapor flow V; and feed flow FJ respectively. 

• The v,,; term is the stoichiometric coefficient of component i for reaction r. 

• The equilibrium stages are numbered downwards from the top of the 

column i.e., the total condenser is assigned as stage 1 while the re-boiler is 

assigned as stage N. 

All the material balance equations i.e., overall and component balances, are derived 

from the basic equations shown below for overall mass balance and component mass 

balance respectively. Since the method for solution used is relaxation method, the 

equations are developed in the unsteady state form and where necessary the 

derivatives term are reduced to zero depending on the assumption made earlier in this 

section. 
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The unsteady state overall mass balance on a typical stage j with specific reaction Rj 

and liquid holdup hpj is written as follows: 

dhp/dt = Rate of total material (molar) change on stage j [mol/min] 

=[Total molar flowrate change] + [Rate of moles change by reaction] 

= (Flow in) - (Flow out) + 

The unsteady state component i material balance on a typical stage j with specific 

reaction Rj and liquid holdup hpj is given by: 

dhp/dt = Rate of total material (molar) change of component i on stage j [mol/min] 

=[Molar flowrate change]i.j + [Rate of moles change by reaction] i.j 

= (Flow in) i.j -(Flow out) i.j + VirRij 

3.3.1 Material Balance across Condenser 

The overall and component material balances across the condenser (total condenser) 

are derived based on Figure 3.5 below: 

Stage 1 

Xi,I Lo 

Figure 3.5: Schematic Representation of Stage I (Total Condenser) 
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The overall material balance across the total condenser is given as 

(3.1) 

Due to the constant molar holdup assumption, equation 3.1 reduces to: 

(3.2) 

where 

V 2 = Vapor flow into condenser from stage 2 

L 1 = Reflux flow rate 

Lo = Distillate flow rate 

I:R; 1 =net rate of change in the number of moles in the mixture due to participation 

in chemical reaction 

Reflux Ratio 

Reflux ratio is defined as the ratio of the reflux L 1 to the distillate Lo. Reflux is the 

liquid being returned to the column from condenser. 

(3.3) 

where 

RR = Reflux Ratio 

Introducing equation 3.3 into equation 3.2 will produce 

0 = V 2 - L0 (RR + 1) + LR; 1 (3.4) 

The component material balance across the condenser is expressed as follows: 

d{hp1x;)/dt = Y2 Yi,2 - Lo (RR + l)x;,J + R;1 (3.5) 

where 

R; 1 =change in the number of moles of component ion stage j in the mixture 

due to participation in chemical reaction 
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Due to constant molar holdup assumption, equation 3.5 could be reduced to 

(hp1)d(x;)/dt = V2 Yi.2 - Lo (RR + l)xi.l + R;1 (3.6) 

3.3.2 Material Balance across Re-boiler 

The overall and component material balance across the re-boiler {partial re-boiler) are 

derived based on Figure 3.6 below: 

Xi,N-1 LN-1 

Xi,N ,LN = B 

Figure 3.6: Schematic Representation of Stage N (partial Re-boiler) 

Overall material balance across there-boiler could be expressed as: 

dhpN/dt = LN-1 - LN- VN + 2:R;N 

0 = LN-1 - LN - v N + LRiN 

Re-boil ratio 

From the definition of the re-boil ratio: 

(3.7) 

(3.8) 

(3.9) 
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Using the definition shown in equation 3.9, the equation 3.8 can be simplify as 

follows: 

0 = LN-1- B (1 + S) + LR;N 

where 

B = Bottoms flow-rate 

S = Re-boil ratio 

(3.10) 

Based on the overall material balance, the component material balance is derived as 

follows: 

(3.11) 

(3.12) 

3.3.3 Material Balance on each of the Equilibrium Stage 

Material balance across the total condenser and the partial re-boiler has been derived 

in the preceding sections. In this section, the material balance across each of the 

individual equilibrium stage (tray) in the reactive distillation column is treated. Figure 

3. 7 below shows the schematic diagram representing the individual stages in the 

reactive distillation column. 

Lj-1 v J 

Xij-1 Yij 

Fi Stage j 
Zij hp; R; 

L· J 

Vj+1 

Yij+1 
Xij 

, 
Figure 3.7: Schematic Representation of an Equilibrium Stage 



CHAPTER 3 THEORY 54 ---------------------------------------------------------

The overall material balance for the equilibrium stage j is; 

Due to constant molar holdup assumption, Equation 3.13 reduces to: 

where 

Fj =Total feed flow rate to stage j 

The component material balance for the equilibrium stage j is given by: 

d(hpj)xijldt = Fj + Lj-l + Yj+l- Lj- Yj + Rij 

(hpj)dxijldt = Fj + Lj-l + Yj+l- Lj- Yj + Rij 

In the stages where no feed is introduced, the term Fj reduces to zero. 

3.3.4 Kinetic Model Formulation 

(3. 13) 

(3.14) 

(3 .15) 

(3.16) 

Generally there are two types of catalytic reactions that can be carried out in the 

reactive distillation column, namely the homogenous catalyst reaction and the 

heterogeneous catalyst reaction. In the homogenous catalyst reaction, liquid catalyst is 

added to the system. While in the heterogeneous catalyst reaction, packed solid 

catalyst is placed in the center section of the column. In the study, attention is given to 

the homogeneous catalysed reaction due to the unavailability of sufficient reaction 

kinetics data for heterogeneously catalysed reaction. In the preceding section, the 

reactive distillation model is derived based on homogeneous catalysed reaction. The 

kinetic model and the rate expression for homogenously catalysed ethyl acetate 

reaction are described next. 
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The esterification of acetic acid and ethanol could be represented by the following 

stoichiometric equation: 

(A) 

A= Acetic Acid 

8 =Ethanol 

C = Ethyl Acetate 

D= Water 

(B) 

-+-

(C) (D) 

The products of the reaction are ethyl acetate and water. Since this is a reversible 

reaction, under allowable condition, the ethyl acetate can react with water to 

reproduce acetic acid and ethanol. Using sulfuric acid as the homogenous catalyst, the 

rate of reaction can be significantly increased. Two different kinetic equations are 

used in the computations for each of the equilibrium stage i.e., with and without the 

catalyst. 

For the system with sulfuric acid as the catalyst, the rate of reaction can be expressed 

as follows: 

. 3 
- k11'Kc CcCo (mol/sec m ) (3.17) 

where 

k1 = (4.195Ck + 0.08815) exp (-6500.1/T) (m3 /mol sec) (3.18) 

and 

Kc = 7.558- 0.012T (3.19) 



~C~H~A=P~T~E~R~3 ________________ ~T=H~E~O~R~Y ____________________ 56 

where 

k1 =reaction rate constant (m3/(mol sec)) 

C = concentration of reactant! product 

R = rate of reaction (mol/sec m3
) 

Ck =Catalyst concentration (vol%) 

T = Temperature (K) 

Kc = constant of reaction equilibrium 

The catalyst concentration in equation 3.18 is assumed to be 0.4 vol%, the same as 

that in Nishith and Daotidis (2001), Alejski and Duprat, 1996, Huseyin okur and 

Mahmut Bayramoglu, 2001 and Yong et al., 2003. For the purpose of standardization 

with other work this value is fixed throughout this study. Since this catalyst 

concentration is quite low, it can be neglected in the calculation of vapor liquid 

equilibrium and assumed to be withdrawn from the column bottoms. 

However, without the catalyst, simpler rate equations are used: 

(3.20) 

where 

k1 = 0.485 exp ( -7186/T) (m3 /mol sec) (3.21) 

k2 = 0.123 exp ( -7186/T) (m3 /mol sec) (3.22) 

k1 =forward reaction rate constant (m3/(mol sec)) 

k2 =reverse reaction rate constant (m3/(mol sec)) 

All the constants for the above equations were obtained from the derived experimental 

data. For the catalysed reaction, the data were obtained form the work of Alejski et al. 

(1989), while for the un-catalysed reaction the data were obtained from the 

experimental work of Arnikar et al. (1970). 
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The concentrations in equation 3.17 and 3.20 can be expressed in tenns of liquid 

compositions as follows: 

Cj; = PiXji 

where 

Cj; = Concentration of component i on stage j (mol!m3
) 

Pi =Molar density of the liquid phase on stage j 

Xji = liquid phase composition of component i on stage j 

By combining equations 3.17 and 3.23, the following equation is obtained 

Similarly, combining equations 3.20 and 3.23 led to the equation below; 

(3.23) 

(3.24) 

(3.25) 

The amount of reactant disappeared or product generated (in moles) for each 

component as a result of the reaction is given by the following equation; 

Rj; = Mj .vr,i· rj; (i = component I ,2,3, ... ) 

where 

(3.26) 

Rj; = volume of component i generated or disappeared due to the reaction on 

stage j (m3
) 

r =rate of reaction as calculated from the two respective rate equations 

(moles/ sec.m3
) 

Mj =volumetric holdup (m3
) on stage j 

vr,i =stoichiometric coefficient of component i for the reaction. (-v for reactant 

and +v for product) 
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The principal reaction in the system is given below; 

-+ -
(A) (B) (C) (D) 

Component stoichiometric coefficients v,; are: 

vr,a = -1 [forward reaction with respect to acetic acid (A)] 

Vr,b = -1 [forward reaction with respect to ethanol (B)] 

Vr.a = 1 [reverse reaction reaction with respect to ethyl acetate (C)] 

vr.d = -1 [reverse reaction with respect to water (D)] 

Thus Vr,T = L Vr,i = ( -1) + ( -1) + 1 + 1 = 0 

The above equation indicates that the net rate of change in the total number of moles 

in the mixture is zero. Therefore, the total number of moles on each of the equilibrium 

stage is constant. The term L:Rij (net rate of change in number of moles) in total mass 

balance equation is equal to zero. 

Substituting Equation 3.24 into Equation 3.26 gives the number of moles generated or 

disappeared on each stage for the catalysed reaction. 

(3.27) 

Similarly, substituting Equation 3.25 into Equation 3.26 gives the number of moles 

generated or disappeared on each stage for the uncatalysed reaction. 

(3.28) 

Equations 3.27 and 3.28 are the two equations used m the simulation model to 

account for chemical reaction on each of the stage. 
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3.3.5 Damkohler Number for Homogenous Reaction 

For a continuous flow reactor, the general definition of Damkohler number (Da) given 

by Fogler ( 1992), with reactant A taken as reference for the reaction, is; 

Da= Rate of consumotion of A bv reaction 

Rate oftransoort of A bv convection 

Damkohler number provide quick estimation on the degree of conversion that can be 

achieved in a continuous flow reactor e.g. in continuous stirred tank reactor (CSTR). 

For a first order reaction, the Damkohler number become dimensionless. However, 

for second and higher order reaction, the Damkohler number will have an appropriate 

unit as could be shown from it's definition. The significance of the Damkohler 

number is that it provides a quick indication on the conversion of a reaction in any 

continuous reactor. It is vital to know the values of the respective Damkohler number 

that reflects high or low conversion. Normally a value of Da = O.I or less will give 

less than I 0 % conversion and a value of Da = I 0.0 or greater will usually give 

conversion more than 90 %. 

For homogenously catalysed reactive distillation process, the Damkohler number is 

defined as a parameter that represents the measure of the rate of reaction relative to 

the product removal. According to Chen et al. (2000) and Venimadhavan et a!. 

(I 994), the Damkohler Number is defined as a dimensionless ratio of a characteristic 

liquid residence time (HTR I F) to the characteristic reaction time (1/kr,ref) as shown in 

the equation below; 

Da = (HTR I F) I (IIkr,rer) = Hl kr,rerf F (3.29) 

where Hl is the total reactive liquid holdup (mol) in the column, F is the total feed to 

the system and kr,ref (s.1
) is the reference forward rate constant for homogeneous 

pseudo-first order system. The reference forward rate constant kr,ref has the units of 

sec·' or hr·' regardless of the order of the reaction thus giving an advantage to the use 

of simple universal definition for the dimensionless Damkohler number for all 

reaction orders (Chen et. a!., 2000; Venimadhavan et. a!., I994). kr,ref is evaluated at 
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a reference temperature, e.g. the boiling point of the most volatile components in the 

system. In the case considered for the study performed, ethyl acetate is taken as the 

reference. 

For homogeneously catalysed reactive distillation, a small value of Damkohler 

number implies one or more of the following conditions; a slow forward rate, a small 

liquid stage holdup, or a large feed flow-rate. According to Venimadhavan et al. 

(1994) and Chen et al. (2000), the reference rate constant is calculated as a fixed 

value. Therefore, changes in the Damkohler number imply changes in the liquid 

holdup on each of the reactive stage, assuming that the feed flow-rate is kept fixed 

throughout the operation. In general, when Darnkohler number is smaller than 1, the 

process behaves as a non-reactive or normal distillation i.e., theoretically negligible 

amount of liquid holdup and no liquid phase reaction occurs. On the contrary, when 

the Darnkohler number is much greater than 1, the process is said to have reached the 

equilibrium reactive limit for the reaction. 

It should be noted that there is an optimum value for the Darnkohler number for any 

specific reactive distillation system. As mentioned earlier, a large value of the 

Darnkohler number implies large amount of liquid holdup on each stages. Therefore, 

the Darnkohler number needs to be varied within such limit that represent a realistic 

liquid holdup, which according to Chen et al. (2000) is approximately in the range of 

0.5 to 2 m3
. The optimum Damkohler number is not the same for all reactive 

distillation systems because it also depends on the value of the reference rate constant 

(calculated by equation 3.29) for any specified system. 
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In view of the fixed reference rate constant and the feed flow-rate used for the 

operation of the reactive distillation, the changes in the Damkohler number is only 

subjected to the variation made in the liquid holdup at each of the stages. For the case 

of ethyl acetate system, H/ (shown in Equation 3.29) represent the total holdup in 

the system, as reaction occurs throughout the column. Equation 3.29 can be 

rearranged as follows: 

hpt = Da . F I kr,rcf 

where 

hpt = Total liquid phase hold up in the system 

F = Total feed rate into the system 

kr,rer = k, . Pr = [(4.195Ck + 0.08815) exp ( -6500.1/T)) . p, {sec-1
) 

where 

(3.30) 

(3.31) 

p, = Liquid phase molar density of the lowest boiling pure component in the 

system at reference temperature 

The lowest boiling point component in the system studied is ethyl acetate. Therefore, 

the reference value used for T in Equation 3.30 refers to the boiling point of ethyl 

acetate, 350.25K. The reference molar density used is 1.6907 x 104
, which is molar 

density of the reference component ethyl acetate. Replacing these values into equation 

3.30 gives: 

kr,rer = (1.7662 exp (-6500.1/T)). 1.6907 x 104 = 2.6018 x 104 (sec-1
) (3.32) 

and replacing equation 3.32 into 3.30 gives 

hpt = 3843.5(Da. F) (3.33) 

In the simulation model used for the present study, equation 3.33 is used to calculate 

the total holdup in the system by specifying the Damkohler number (input variable). 

By treating Darnkohler number as one of the input variable, it would be easier to 

study the impact of varying Darnkohler number on the performance of the ethyl 

acetate reactive distillation column. 
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3.4 Energy Balance 

The energy balance equations are derived in this section for each of the equilibrium 

stage in the column. The combinations of energy balance and overall material balance 

equations are then used in the developed simulation model to calculate liquid and 

vapor flow-rates throughout the column. Figure 3.8 illustrates the schematic diagram 

used for the derivation of the energy balance. It should be noted that the heat of 

reaction is not included in the energy balance equation because the enthalpies used in 

the equations to be derived, referred to the component's elemental state. Therefore the 

heat of reaction is accounted for automatically and no separate term is needed. 

Lj.l y. 
J 

Xij·l Yij 
Hj-IL Hv 

J 

Fi Stage j 
Zij hp; R; 

L-] Vi 
Xij Yij 
HL Hj-1 

v 
J 

Figure 3.8: Schematic Representation of an Equilibrium Stage for Deriving 

Energy Balance Equation 

The enthalpy balance across stage j on figure 3.8 is given by; 

d(hpjHj)/dt = Lj.,H\, + Yj+l Hv j+l + F;Hzj- Lj HL i- Vi Hv i (j=2,3, .... ,N-1) 

(3.34) 

where 

HL i =molar enthalpy of liquid phase on stage j (cal/mol) 

Hv i =molar enthalpy of vapor phase on stage j (cal mol) 

Hzj =molar enthalpy of feed introduced into stage j (cal/mol) 
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The equation is applicable only from stage 2 to stage N-1, excluding the condenser 

and reboiler. For stages without feed stream, the equation reduces to: 

(3.35) 

For condenser (j=l) and re-boiler (j=N) the following expressiOns are used for 

representing the energy balance on these stages: 

Energy Balance across condenser (stage I): 

(3.36) 

where 

= Condenser hear duty (cal) 

Energy Balance across reboiler (stage I): 

(3.37) 

where 

= Reboiler heat duty (cal) (3.38) 

Due to the assumptions of constant enthalpy and constant liquid hold-up, all the 

derivatives terms in the equations above are reduced to zero. The molar enthalpies for 

the liquid and vapor phase are calculated based on methods described next. 
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3.4.1 Enthalpy Calculation 

The enthalpy of vapor phase for a component at ideal gas state is given by 

h;/ v = i o Cpv 
0 dt (cal/mol) (3.39) 

where 

h;/ v = Vapor phase partial molar enthalpy of component i on stage j 

Cpv =Vapor phase heat capacity at constant pressure (cal/mol.K) 

T =Temperature (K) 

As shown in the equation, the enthalpy of the component is calculated based on zero 

enthalpy as the reference state. This justifies the exclusion of enthalpy of reaction in 

the energy balance equation derived earlier. 

Integrating equation 3.39lead to the molar enthalpy equation below; 

hij 0 v=cli *T+c2d2 *T"2+c3d3 *T"3+c4d 4 *T" 4 (i = comp a,b,c, ... ) 

(3.40) 

where 

cl, c2, c3, c4 =Heat capacity coefficients 

The respective heat capacity coefficients for all the components are given in Table 3.2 

below. 

Table 3.2: Coefficients For Molar Enthalpy Equation. 

Component c1 c2 c3 C4 

Acetic acid 14.6392 0.2299e-1 -0.1022e-4 0.2589e-8 

Ethanol 14.0485 0.2153e-1 -0.4607e-5 -0.4607e-8 

Ethyl acetate 24.9082 0.3329e-1 0.7317e-6 -0.1247e-7 

Water 7.9857 0.4633e-3 0.1403e-5 -0.6578e-9 
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With the assumptions of ideal gas law vapor enthalpy of the mixture of four 

components becomes: 

Hv="(y··h·o) j L__ IJ IJ V 

where 

H/ =Molar enthalpy of vapor stream leaving stage j 

Yij = vapor composition of component i on stage j 

The liquid phase enthalpy is given by the following equation: 

where 

Aij = heat of vaporization of component i on stage j 

HiL =Molar enthalpy of liquid stream leaving stage j 

Xij = liquid phase composition of component i on stage j 

The heat of vaporization is calculated using the following relationship: 

Aij = BiRT/'2 I (Tj + Ci)"2 (i = component a,b,c, ... ) 

where 

R 

Ti 

Bi and Ci 

=gas constant, (1.987 cal/moi.K) 

= Stage j temperature, (K) 

=Constants used in Antoine equations (refer to Table 3.3) 

(3.41) 

(3.42) 

(3.43) 
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Table 3.3: Constants for Antoine Equation 

Component Ai Bi ci P c (psi a) 

Acetic acid 7.20359 7376.157 410.1814 839.1 

Ethanol 7.43437 6162.36 359.3826 925.3 

Ethyl acetate 6.3307 5440.049 373.48 556 

Water 6.53247 7173.79 389.4747 3206.7 

3.5 Vapor Liquid Equilibrium 

Mixture of ethyl acetate-ethanol-water-acetic acid is considered to be highly non-ideal 

in the liquid phase, due to the presence of polar molecules. Therefore, it is necessary 

to give a careful attention to the thermodynamics correlation selected to compute the 

vapor liquid equilibrium of the system. Figure 3.9 below represents the state of vapor 

and liquid in equilibrium as a function of physical properties of vapor and liquid 

respectively. 

Vapor: f(T,P,yJ 

------t-------1t---------t--------- -----~ ---- --
_______ Liquid: f(T,P,y) ____ _ 

Figure 3.9: Schematic Representation of State of Vapor Liquid Equilibrium 
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To account for non-ideal behaviour, the phase equilibrium is described using activity 

coefficients for liquid phase and fugacity coefficients for the vapor phase. Vapor 

liquid equilibrium relationship is given by the equation; 

(i = component 1,2,3, ... ) (3.44) 

where 

y; =Vapor phase composition of component i 

x; = Liquid phase composition of component i 

y; = Liquid phase activity coefficient of component i 

<p; = Vapor phase fugacity coefficient of component i 

P =Total pressure of the system 

Pt = Saturated vapor pressure of component i 

Since the ethyl acetate reactive distillation column operates at modest pressure, the 

vapor phase non-ideality can be neglected. Therefore, vapor phase fugacity coefficient 

in Equation 3.44 is equal to 1 and equation 3.44 reduces to: 

(i = component 1,2,3, ... ) (3.45) 

If we assume that y = 1, equation 3.45 reduces to the familiar relation known as 

Raoult's law for ideal solution and the phase equilibrium calculation would be 

considerably simpler. However such an approximation would not represent the real 

condition and will affect the simulation results. 
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3.5.1 Vapor Pressure Calculation 

The saturated vapor pressure of the components m a system that are required for 

calculating the vapor liquid equilibrium (VLE) can be detennined from the Antoine's 

equation. In the equation, the component-saturated vapor pressure is a function of 

temperature only. The Antoine equation used for calculation of saturation pressure Pt 
at given temperature T is given by 

In P;0 I P c = A; - 8; I (T; + C;) (3.46) 

where 

Pt = vapor pressure, psia 

P c,i = Critical pressure of component i, psi a 

T; =Temperature, °F 

A; , 8; and C; are the Antoine equation constants for component i. The constants for 

each of the component in the system is tabulated below: 

Table 3.4: Constants for Antoine Equation 

Component A; 8; C; Pc(psia) 

Acetic acid 7.20359 7376.157 410.1814 839.1 

Ethanol 7.43437 6162.36 359.3826 925.3 

Ethyl acetate 6.3307 5440.049 373.48 556 

Water 6.53247 7173.79 389.4747 3206.7 
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3.5.2 Activity coefficient Model 

Accurate prediction of liquid phase activity is vital as non-ideality in the liquid phase 

is relatively more significant even at low pressure. There were various models to 

predict liquid phase activity coefficient and they include empirical and semi

theoretical model such as Margules, Van Laar, Wilson, NRTL, UNIQUAC and 

UNIFAC. However, the most reliable method for predicting liquid phase activity 

coefficient is the empirical model derived based on experimental data. 

For the mixture of ethyl acetate-ethanol-water-acetic acid used in the simulation of the 

reactive distillation in study, the empirical model developed by Suzuki et a!. (1977) to 

determine the liquid activity coefficients is used. For the process improvement 

purposes later in the study, a different method is used to predict the liquid activity 

coefficient model, namely UNIF AC model as this method is deem to be suitable for 

the configuration to be proposed. In the proceeding sections, the model development 

for the empirical and UNIF AC model is described. 

3.5.2.1 Empirical Model- Suzuki et al.(1977 ) 

Empirical model to determine liquid phase activity coefficient for the mixture of ethyl 

acetate-ethanol-water-acetic acid is given below. 

The activity coefficients are given by the equation; 

log 1 o Ya = ( ( a 1 * xb ( iT) A 2 ) + (a 2 * Xc ( iT) A 2 ) + (a 3 * Xct ( iT) A 2 ) + 

a 4 * xb (iT) * Xc (iT) ) 

(a 6 * Xc (iT) * Xct (iT) ) 

(a8*xa(iT)*xc(iT)A2) 

+ 

+ 

+ 

(aS*xb(iT)*xct(iT)) 

(a7*xa(iT)*xb(iT)A2) 

(a9*xa(iT)*Xct(iT)A2) 

+ 

+ 

+ 

(a10*xa(iT)*xb(iT)*xc(iT)) +(a11*xb(iT)*xc(iT)*Xct(iT)) 

+(a12*xc(iT)*Xct(iT)*xa(iT) )+(a13*Xct(iT)*xa(iT)*xb(iT)) 

+ (a 14 * xb (iT) * Xc (iT) A 2) + (a 15 * xb (iT) * Xct (iT) A 2) + 

(a 16 * Xc ( iT) * Xct ( iT) A 2 ) ) (3 .48) 

** Remaining activity are obtained by rotating the subscripts on the x 's as follows: 

a b d c 
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a I, a2, a3, ............ , a 16 are constants which are given in the table below: 

Table 3.5:Empirical Model (Suzuki) Model Constants Values 

Acetic Acid (a) Ethanol (b) Ethyl Acetate (c) Water (d) 

al -0.554296 0.581778 0.688636 -0.060136 

a2 -0.103685 -0.257329 0.375534 1.865750 

a3 -0.324357 0.209245 0.024303 0.229575 

a4 -2.013350 -0.314853 1.778630 0.468416 

a5 -0.705455 -0.562636 1.275480 0.355191 

a6 -2.253620 0.451732 0.696279 1.511000 

a7 0.837926 -0.115411 0.936722 -0.059968 

aS 0.434061 0.074053 0.717779 -3.159970 

a9 0.523760 0.069531 0.449357 0.067399 

alO 3.354000 -0.409472 1.129140 1.037910 

all -3.253310 -0.369985 -2.110990 -1.922250 

al2 5.903290 -0.082339 0.746905 -0.755731 

al3 -0.534056 0.187010 1.449790 0.941858 

al4 -0.452660 0.192416 -1.642680 -1.365870 

al5 0.197296 1.092470 0.120436 0.365254 

al6 0.014715 -0.172565 0.330018 -2.1381180 
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3.5.2.2 Activity Coefficient Model- The UNIFAC Method 

In the absence of reliable vapour liquid equilibrium experimental data or model, the 

liquid phase activity coefficients could be estimated by treating the solution as a 

mixture of functional groups instead of molecules, particularly in the presence of 

polar components. The UNIFAC (UNIQUAC Functional-group Activity Coefficients) 

group-contribution method, introduced by Fredenslund et al. ( 1977) is used in the 

study. The UNIF AC method is known to have several advantages over the other 

group contribution methods in the sense that (i) the parameters are essentially 

independent of temperature; (ii) the size and binary interaction parameters are 

available for a wide range of functional groups types; (iii) the predictions is reliable 

over a temperature range of 275 K to 425 K and for a pressure range of up to several 

atmosphere; and (iv) the extensive comparisons with experimental data are available. 

The UNIF AC method, develop by Fredenslund et al. (1977) is similar in concept to 

the ASOG method, but it is based on the UNIQUAC equation 

(3.49) 

where the superscript C refers to the combinatorial part of the activity coefficient and 

the superscript R refers to the residual part of the activity coefficient. 

The combinatorial part of the activity coefficient is computed using the following 

expression 

c <I> z (} <I>. 
lny. =In--' +-q In-' +I.--' L .x./. 

I 2 I <I> I 1 1 1 
X; ; X; 

(3.50) 

where 

(3.51) 

(3 .52) 

(3.53) 
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x; =mole fraction of component i in the mixture 

vk; = count of the kth group in component I 

Rk =a measure of Vander Waals volume ratio for group k 

Qk = a measure of Van der Waals area ratio for group k 

(3.54) 

(3.55) 
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Group parameters Rk and Qk are obtained from Vander Waals group volume Vwk and 

surface area Awk given by Bondi (1968) 

R=~ 
k 15.17 

Qk- A.,k 
- 2.5 X J09 

(3.56) 

(3.57) 

The number 15.17 and 2.5 x I 09 are normalization factors recommended by Abrams 

and Prausnitz.(1975). Values ofRk and Qk are given in the appendix I. The residual 

part of the activity coefficient is computed as follows 

(3.58) 

where the summation are over all groups, and 

r, = activity coefficient for group kin the mixture 

r,.; =activity coefficient for group kin pure component i 

The activity coefficient r, is computed as follows 
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where the summation are over all groups, and 

T m = Xm Qml? nXn Qn. area fraction of group m 

Xm = ? J x1 Vm/? n ? 1 x1 Vnj. mole fraction of group m in the mixture 

? mn = exp (-amnl 1) 

{amn} =set of group interaction parameters, amn ? anm 

The activity coefficient In Q; is computed as follows 

Inrki =Qk[1-In(L0.,;!fl.,k)- L.,ci~Iflkm ) 
m m ml.Jium 

n 

where the summation are all groups in component i, and 

T mi = Xm; Qm I? n Xn; Qn. area fraction of group m in component i 

Xm; = vmJI? n Vn;. mole fraction of group min component i 

(3.59) 

(3.60) 

(3 .61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 
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Values for the group-interaction parameters amn must be evaluated from experimental 

phase-equilibrium data. Sets of values of anm and amn taken from the work of 

Fredenslund eta!. (1977) and are presented in appendix 1. 
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3.6 Summation Equations 

In each stage of the reactive distillation column, the component liquid and vapor 

compositions must sum up to unity. These constraints are included in the stage-to

stage calculation so that the stage vapor and liquid compositions are validated and can 

be confidently used by other associated model equations. Equations for these 

summation equations are explained below. 

The summation equation for liquid composition i on stage j is given as: 

J, X ij = 1.0 
i=l 

(3.50) 

While the summation equation for vapor composition i on stage j is given as: 

J. y ij = 1.0 
i=l 

where c is the total number of components. 

3.7 Simulation and Solution Strategy 

(3.51) 

In simulation, the input and operating variables of a process are specified and the task 

is to solve for the resulting outputs. The obtained results are then compared to 

experimental or established data published, in order to measure how well the model 

compliment with the real world situation. On the contrary, in design, the input and 

selected output variables are specified and the task is to determine the optimal process 

configuration and the optimal design parameters that could deliver the given product 

specifications. Figure 3.10 shows the summary flowchart of the steps or procedures 

taken in simulation of ethyl acetate reactive distillation column simulation. 
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Problem Formulation and Study plan 

Development of Mathematical 
Modeling 

Computational Tool 
Identification 

Algorithm & Computer 
Program Development 

Results Analysis 

No 

Figure 3.10: Procedure for Reactive Distillation Process Simulation 
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3.7.1 Simulation Procedures 

Step 1: Data Collection 

76 

This is the initial step employed in the simulation of ethyl acetate reactive distillation 

column. All the necessary information regarding modeling and simulation are 

gathered from reliable sources. Important information includes kinetic model, vapor 

liquid equilibrium (VLE) model, equilibrium stage model, and the associated MESH 

equations. Once the necessary models have been determined, data related to these 

models such as parameters for VLE models, Antoine constants, components physical 

properties, components critical properties, components thermodynamics data 

properties and enthalpy data are gathered. In addition, column specifications such as 

configuration, feed specifications and input conditions are also determined in this 

step. Typical data and column configuration used in this study is shown in Figure 

3.11. It should be noted that the same configuration shown in Figure 3.11 was used in 

the experimental work of Komatsu et al. (1977). 

Step 2: Mathematical Model Development 

Following to the above step, the mathematical model based on MESH equations are 

then developed. In deriving the model equations, all the assumptions involved for 

modeling and simulation are taken into account. In addition the strategy for solving 

the reactive distillation modeling equations is also identified. The resulting modeling 

equations in this study contain sets of differential-algebraic equations (DAE). Several 

numerical integration methods such as classical 41
h order Runge-Kutta method, 

Adams method and Stiff Adams method and Stiff method based on backward 

differentiation formula (Gear, 2002) are available to solve differential-algebraic 

equations. 
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Boiling liquid feed 
Stage 3 at I atm --------.t 
flowrate 0.2584 mol min·' 
Mole fraction 
Acetic acid- 0.2559 
Ethanol - 0.6159 
Ethyl acetate- 0.0539 
Water-0.0743 

Reflux 
ratio- 2.1 

Stage 8 

Stage 1 

Distillate 

0.0425 mol min-I 

Bottoms 

Figure 3.11: Typical Reactive Distillation Column Configuration And Specifications 

For Single Feed Un-Catalytic Ethyl Acetate Synthesis (Komatsu 1977) 

Step 3: Computational Tool Identification 

As the modeling equations involve sets of highly nonlinear differential and algebraic 

equations (DAE), the solution requires high-speed digital computer simulation. The 

solver can be a developed computer program or suitable available commercial 

software. In this study computer program is preferred over commercial software due 

to its flexibility and the developed computer source code can be extended for 

dynamics and control studies. 

The simulation model was developed using MA TLAB ™ which requires 

programming to be done for the mathematical model developed. MATLAB ™ is the 

main software used throughout this study to model and simulate ethyl acetate reactive 

distillation column. MA TLAB ™ integrates computation, visualization and 

programming in an easy-to-use environment. MATLAB ™ is distinguished by its 
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ability to perform all the simulation calculations in matrix form, its large library for 

built in functions, its strong structural language and its rich graphical visualization 

tools (Constantinides, 1999). For this study, the built in functions such as ODE and 

non-linear algebraic equations solvers were able to reduce the programming effort 

significantly. 

Step 4: Algorithm and Program Development 

Prior to the development of solution algorithm, suitable methods need to be identified 

in order to solve the steady state equilibrium stage model. Some of the approaches 

are: 

• Bubble point method 

• Modified newton's method 

• Relaxation method 

• Minimization method 

• Inside-out method 

• Homotopy continuation method 

In this study, relaxation method was employed to obtain the steady state solution. As 

most of the methods listed above are very sensitive to initial estimations, relaxation 

method was chosen. Convergence has been the main problem with the other methods 

especially when the starting data was estimated with great errors. In addition, the 

method could be used also to study the dynamic behavior of the system. 

Relaxation method involves writing the MESH equations in the unsteady-state form 

and integrating them numerically until a stable solution which represents the steady 

state solution is found (Komatsu, 1977; Jelinek and Hlavacek, 1976). In this method, 

the time derivatives in the modeling equations need not be set to zero. Thereby the 

modeling equations consists of large combination of complex nonlinear differential 

and algebraic equations (DAEs) that necessitates a numerical solution in order to 

obtain the steady state solution. 

The algorithm for solving sets of differential and algebraic equations (DAEs) for the 

proposed reactive distillation column is shown in Figure 3.12. Based on the algorithm, 
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the programmmg code for the system has been developed successfully. The 

developed main programming and subroutines were carefully tested and debugged in 

order to correct logic error. Continuous modifications were then made on the 

programming code to improve the smoothness of the program. 

The sets of differential and algebraic equations (DAEs) used for the model have 

resulted in stiff equations. The suitable method for solving such system of stiff 

differential and algebraic equations (DAEs) was found to be the implicit, multi-step of 

varying order method. The MATLAB™ built in function i.e., ODE15, was chosen in 

view of its capability of solving large systems of stiff differential and algebraic 

equations (DAEs). The MATLAB ™ ordinary differential equations (ODE) solver 

solves the sets of differential and algebraic equations (DAEs) described in the 

MA TLAB TM function file, which gives the modeling equations in MATLAB TM 

language from time To to Tfinat from the given initial conditions. 
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Specify all column specifications and 
read all the required constants and 

L 
Initialize liquid composition and initial 
guesses of temperatures on all stages 

~ 
Calculate vapor composition and 
temperature throughout column by bubble 
noint calculation 

.!. 
Calculate liquid and vapor 
enthalpy throughout column 

+ Go back to step 3 
Calculate liquid and vapor and repeat for 
flowrates throughout column the next step in 

! 
Calculate aU derivatives of the component 
continuity equations for aU components on aU 

+ 
Integrate all ODEs (using 
implicit, multistep of varying 
nrciP.r) 

Check if the 
NO 

percent relative 
error is below or 
equal to 0.1% 

YES 

Stop integration, plot and print 
out output values 

Figure 3.12: Algorithm For Solving Differential And Algebraic Equations From The 

Proposed Reactive Distillation Mathematical Model. 
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The following give the algorithm for solving sets of differential and algebraic 

equations (DAEs) (Chen et al., 2000), which is thoroughly translated into the 

programming codes for the reactive distillation simulation: 

1. Specify all the specifications for the reactive distillation column in 

consideration and read all the constants and parameters related to model 

equations. 

2. Initialize liquid compositions X;j for the column or use last converged 

simulation results. 

3. Calculate vapor compositions Yij and temperature Tj on stage j through bubble 

point flash calculation. 

4. Calculate liquid enthalpy and vapor enthalpy on stage j. 

5. Calculate liquid and vapor rates throughout the column. 

6. Calculate all the mass balance derivatives, and then calculate the residual from 

average of the absolute value of all derivatives. 

7. Check if the residual is less than the specified error tolerance (e.g. 1.0 x 104
). 

If yes, converged steady state solution is obtained, then go to next step. If no, 

predict next X;j by calling the integration routine, then got to step 3. 

8. Stop integration, plot and print the output values such as liquid and vapor 

phase composition values, temperature profiles of the column and etc. 

Step 5: Simulation study and model validation 

After satisfactorily generating the MA TLAB ™ programming codes, the reactive 

distillation model is simulated by executing the codes in MA TLAB TM environment. 

Initially the simulation model was verified with published experimental work using 

similar operating environment. This is followed with further verification against other 

published simulations results. Upon satisfactory results, the simulation model is then 

experimented with various conditions to obtain the behaviour of the system. If for 

some reasons the results are not found to be satisfactory, the mathematical model 

developed in Step 2 is revised and the following steps in Figure 3.12 need to be 

repeated. 
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Step 6: Result analysis 

Finally, the results obtained from the simulation using different operating conditions 

are analyzed by means of plotting graphs and compared with other established results 

available in the literature. In this study, separate chapter is allocated to study the 

behavior of the system at various sets of input conditions and the impact on the 

performance of the column. 

3. 7.2 Column Initialisation 

Before starting the simulation, the model equations describing the reactive distillation 

process must be first initialised, otherwise the simulation will fail to converge. The 

initial values that have to be specified to the simulation program consist of the liquid 

compositions and the temperatures for all the stages inside the column. With these 

values, the corresponding vapor compositions and stage temperature can be calculated 

through bubble point calculation. In addition, with these initial values, all the 

associated models equations can be initialised prior to starting the iteration. 

In the present work, column initialization is relatively simple as the solution method 

employed in the simulation is capable of handling even wild initial guesses. However, 

it should be noted that the penalty associated with inappropriate guess is longer 

computing time required for convergence. Therefore, it is advisable to set realistic 

initial guess for simulation purpose. Initial guess for compositions on all stages are set 

equivalent to the feed compositions introduced to the system and the temperatures are 

set equivalent to the feed temperature. 

Besides good initial estimation, the chosen numerical method based on backward 

differentiation formula is very efficient and greatly help the convergence and reduce 

the simulation time. 
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3.7.3 Bubble Point Calculation 

In the reactive distillation simulation, bubble point calculation is vital as it provides 

the temperatures and the liquid and vapor phase compositions throughout the column. 

With the given system pressure and the initial liquid compositions, the temperature 

and vapor compositions is calculated through the bubble point calculation. The 

temperature and vapor compositions obtained are then used in the material and energy 

balance calculation. The vapor and liquid flows are determined by solving the total 

material balance and the energy balance simultaneously. The kinetic model included 

in the material balance will further update the liquid composition until steady state is 

achieved. The vapor liquid equilibrium model accounting for the non-ideality in liquid 

phase and the vapor pressure calculation are made with reference to the stage 

temperature and are included in the bubble point calculation. All the calculations are 

performed within the constraint of the summations equations. 

In simulation, the stage-wise bubble point calculations were performed as describe 

above to obtain the temperature and composition profiles. The algorithm below is 

employed for performing the stage-wise bubble point calculation (Doherty and 

Malone, 2001): 

1. Specify P and Xij· 

2. Guess T. 

3. Calculate Pt (T) from the Antoine equation (3.46). 

4. Calculate Yij (T,x), from the empirical activity model equation (3.48) or 

UNIF AC equation. 

5. Calculate Yij from equation (3.45). 

r. 

6. If J. y ij = 1.0 is sufficiently close to unity, then stop iteration. 
•=I 

Otherwise, adjust the T and return to step 3. 

This is an iterative procedure whereby MA TLAB TM built in function, FZERO was 

used and has significantly ease the calculation procedure. 
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4.1 Introduction 

The developed simulation model described in the previous chapter is implemented in 

MATLAB TM environment to obtain a steady state solution. The results obtained are 

compared against equivalent experimental and simulation works in order to determine 

how far the model reconciles with published results. The established experimental 

work reported by Komatsu (1977) was used as one of the reference. The result of his 

experimental work is shown in Table 4.1 for a single feed un-catalytic reactive 

distillation column. A reported simulation work by Alejski et al. (1988) was used as 

another source of reference whereby they have also used similar configuration as 

proposed by Komatsu (1977). 

To further confirm the validity of the developed simulation model, comparison was 

then made against a more complex model developed by Nishith and Daoutidis (2001) 

in which they proposed a double feed catalytic reactive distillation column. The 

simulation result of their study is shown in Table 4.2. There were some distinct 

differences between their configuration as opposed to those proposed by Komatsu 

( 1977) and these distinctions will be elaborated in the following sections. 

---- -- --------
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Table 4.1: Experimental And Simulation Results Of Single Feed Un-Catalytic Ethyl 

Acetate Reactive Distillation Column (Komatsu, 1977). 

Simulation Model ExQerimental Work 

Quantity Units Alejski, 1988 (Komatsu, 1977} 

Top Bottom Top Bottom 

Com12osition 

Acetic acid (Ac) 0.001 0.1450 0.001 0.22 

Ethanol (Et) 0.5430 0.4710 0.65 0.38 

Ethyl Acetate (Ea) 0.4130 0.1440 0.29 0.04 

Water (W). 0.0430 0.2400 0.059 0.36 

Temperature K 345.6 351.2 - -

Product flow mol /min 0.0425 0.2159 - -

Et conversion mole% 20.13 -

Ac conversion mole% 47.95 -

Ea purity mole% 41.29 -

Reflux flow mol/min 0.0893 

Table 4.2: Simulation Results Of Double Feed Catalytic Ethyl Acetate Reactive 

Distillation Column (Nishith And Daoutidis, 2001). 

Nishith & Daoutidis (200 1} 

Quantity Units Top Bottom 

ComQosition 

Acetic acid (Ac) 0.003 0.2100 

Ethanol (Et) 0.080 0.1400 

Ethyl Acetate (Ea) 0.650 0.1300 

Water (W) 0.240 0.5200 

Temperature K - -

Product flow mol /min 400.8 425.1 

Et conversion mole% 76.8 

Ea purity mole% 65.0 

Reflux flow mol/min 810.6 
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Boiling liquid feed 
Stage 3 at 1 atm ________ .,.. 
flowrate 0.2584 mol min-1 1--------

Mole fraction 
Acetic acid - 0.2559 
Ethanol - 0.6159 
Ethyl acetate- 0.0539 
Water- 0.0743 

Reflux 
ratio- 2.1 

Stage 8 

Stage 1 

Distillate 

0.0425 mol min-I 

Bottoms 

Figure 4.1: Typical Reactive Distillation Column Configuration And Specifications 

For Single Feed Un-Catalytic Ethyl Acetate Synthesis (Komatsu 

1977). 

4.2 Simulation of Single Feed Un-catalytic Reactive Distillation (Configuration I) 

Figure 4.1 above depicts a single feed un-catalytic ethyl acetate reactive distillation 

column configuration used by Komatsu in his experimental work. The column 

consists of 8 stages inclusive of condenser and re-boiler. Saturated liquid is fed into 

the column at tray 3, with a flow-rate of 0.2584-mol min1- 1
• Stoichiometric excess of 

ethanol is used in the feed stream with a ratio of 2.41 ethanol to acetic acid. 

The column pressure is 1 atm and the reflux ratio is set at 2.1. Liquid holdup in the 

condenser and trays is 0.4 liters whereas holdup in the re-boiler is 0.6 liters. Table 4.3 

below summarises the first simulation basis used for the un-catalytic ethyl acetate 

reactive distillation column. 
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Table 4.3: Feed Specifications, Column Configuration and Operating Conditions used 

as Simulation Basis 1 

Quantity Units 

Feed Flowrate 

Feed Phase 

mol min-• 

Feed Temperature 

Feed Pressure 

Feed Stage 

Feed Composition 

Acetic acid (Ac) 

Ethanol (Et) 

Ethyl Acetate (Ea) 

Water(W) 

K 

atm 

Number of Stages, N 

Column Pressure, P atm 

Liquid Holdup 

Condenser, Tray liter 

Re-boiler liter 

Reflux Ratio, r 

Re-boiler Ratio, rb 

Bottom Flow, B mol min-1 

Specifications 

0.2584 

Saturated Liquid 

355.29 

1.00 

3 

0.2559 

0.6159 

0.0539 

0.0743 

8 

1.00 

0.4 

0.6 

2.1 

0.5891 

0.2159 
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4.2.1 Results and Comparison 

Table 4.4 summarises the steady state simulation results of the proposed model for 

un-catalytic ethyl acetate reactive distillation column in comparison to the published 

experimental data by Komatsu (1977) and the simulation work by Alejski (1988). 

Table 4.4: Simulation Results For Un-Catalytic Ethyl Acetate Reactive Distillation 

Column. 

Pro12osed Model Simulation Model Ex12erimental 

(Alejski, 1988) Work (Komatsu, 

Quantity Units 1977) 

Top Bottom Top Bottom Top Bottom 

Com12osition 

Acetic acid (Ac) 0.0022 0.1686 0.001 0.1450 0.001 0.22 

Ethanol (Et) 0.5359 0.4949 0.5430 0.4710 0.65 0.38 

Ethyl Acetate (Ea) 0.4257 0.1183 0.4130 0.1440 0.30 0.04 

Water (W) 0.0361 0.2182 0.0430 0.2400 0.059 0.36 

Temperature K 339.23 354.17 345.7 351.2 - -

Product flow mol /min 0.0420 0.2164 0.0425 0.2159 - -

Et conversion mole% 18.56 20.13 -

Ac conversion mole% 44.67 47.95 

-
Ea purity mole% 42.57 41.29 

-

Reflux flow moUmin 0.0881 0.0893 
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It should be noted that the reaction in the column for the above result is for un

catalysed reaction. The reaction rate model as proposed by Komatsu ( 1977) for un

catalysed reaction in liquid phase was used in the simulation developed. Figure 4.2 

and 4.3 shows comparison of the concentration and temperature profiles along the 

column against the work of Alejski et al. (1988) using minimization method 

respectively. 
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0.6 

6 
Stage No. 

Figure 4.2: Comparison of the Proposed Method and Minimization Method 

Concentration Profiles in the Liquid Phase 

8 

~.~------~-------37-------~-------7------~6~------~------~ 
Stage No. 

Figure 4.3: Comparison of the Proposed Method and Minimization Method 

Temperature Profile 
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As presented in the Table 4.4, Figure 4.2 and 4.3, comparison with the results 

obtained from the minimization method used by Alejski et al. (1988) against the 

simulation results from the study demonstrates a good agreement, which proves the 

validity of the proposed model and method. Alejski et al. (1988) did not include heat 

balance in his modeling work though, whereas in this study heat balance was included 

in the modeling process. This difference in the modeling has caused some slight 

deviations between these two studies. However, some slight significant deviations 

were observed between the simulated results and the experimental result of Komatsu 

( 1977) though the profile was found to be almost similar. This could be caused by the 

inadequacy in the vapor liquid equilibrium model and the kinetic data used for the 

multi-component system. In addition, the model simplifications, which among others 

neglected the column hydraulics and the plate efficiencies, could further caused the 

model to deviate. 

Overall, in view of the reasonably good agreement obtained between all the results, it 

was concluded that the developed simulation model in the study could be used for 

further analysis. A point to note is that the consistency showed by the two simulation 

results and the experimental result, indicating low achieved conversion and product 

purity obtained for the above un-catalysed reactive distillation configuration. Based 

on careful observation it was found that the main reasons for this deficiency are: I) 

both reactants were introduced in liquid phase at same feed point, thus, countercurrent 

contact between reactants acetic acid and ethanol is reduced as ethanol which is 

lighter than acetic acid bound to evaporate from the feed point to stages above that 

has lower concentration of acetic acid, 2) catalysts were not presents in the column, 3) 

formation of azeotropes between reactants and products. In the lower portion of the 

column ethanol formed a.'l azeotrope with water and washed out from the bottoms 

stream and above the feed point formation of azetrope between ethyl acetate-ethanol

water results in reactant, ethanol washed out in distillate stream as well and 4) 

insufficient number of trays for reaction and separation purposes causes the 

conversion and achieved purity to be much lower than those attained using the 

conventional reactor and distillation arrangement. 



No. xAc Xet 

I 0.0022 0.5362 

2 0.0260 0.6557 

3 0.1810 0.5942 

4 0.1660 0.5708 

5 0.1532 0.5545 

6 0.1421 0.5443 

7 0.1437 0.5356 

8 0.1685 0.4949 

Table 4.5: Simulation Results for Configuration 1 

Tj 

(K) 

T]Ac Vj Lj 

Xetac Xw (mol min-I) yAc yet yetac yw mol min-I Mol min-I 

0.4254 0.0362 339.24 O.OOOI44 0.0000 0.3959 0.5925 0.0115 0.04I75 0.08769 

0.2393 0.0790 345.48 -0.000482 0.0011 0.534I 0.4275 0.0373 0.12945 0.08482 

0.1303 0.0945 352.02 -0.005558 0.0208 0.6180 0.2989 0.0623 0.12658 0.3444I 

0.1517 0.1114 351.38 -0.004757 0.0172 0.5763 0.3362 0.0703 0.12776 0.34497 

0,1645 0.1278 351.07 -0.004176 0.0147 0.5505 0.3560 0.0788 0.12833 0.34525 

0.1669 0.1467 351.16 -0.003786 0.0131 0.5390 0.3574 0.0905 0.12861 0.34512 

0.1552 0.1745 351.89 -0.003644 0.0125 0.5410 0.3348 0.1117 0.12847 0.34427 

0.1186 0.2180 354.16 -0.007279 0.0201 0.5461 0.2756 0.1582 0.12762 0.21664 

/~ 
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Although the conversion and product purity were found to be unattractive for reactive 

distillation to be employed for such production, the early intention is to make 

comparison between the result of the simulation model developed against published 

work for validation purposes and only such results were found available in literature. 

Such exercise provides the confidence for further study to be conducted using the 

developed simulation model especially in varying the various designs and operating 

parameters to investigate potential improvements that could be introduced. These 

present the next part of the research work. 

4.3 Simulation of Double Feed Catalytic Reactive Distillation (Configuration 2) 

Nishith and Daoutidis, (200 1) proposed a double feed catalytic ethyl acetate reactive 

distillation configuration. The reported advantage of this configuration is that the 

performance of the column in terms of conversion and product purity was found to 

more superior than the earlier configuration. Basically, they proposed a configuration 

that involves feeding the two reactants in countercurrent direction and using 

homogeneous catalyst to aid the reaction that finally allows the attainment of higher 

conversion and purity. 

Using the model developed, changes were made to the earlier configuration in order 

to simulate a reactive distillation configuration similar to those proposed by Nishith 

and Daoutidis, (2001), in view of its promising potential for undertaking further study 

for the ethyl acetate reactive distillation column. In addition, the results published by 

them are used to further confirm the validity of the developed simulation model for 

the present study. 
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/ 

Acetic Acid feed: 
Saturated liquid at 1 atm, 
Stage 4 
Flowrate- 414 mol m • -1 m 

Ethanol feed: 
Saturated vapor at 1 atm, 
Stage 11 
Flowrate - 411.9 m o1 min- 1 

' 

' 

./ 

I s tage I
Condenser Total 

Distillate - 400.8 mol/min 

No. of stages- 13 

Column Pressure -1 atm 

Reflux Ratio- 2. 023 

Reboiler Duty - 6 . 868 x 1 06 call min 

Holdup stage 1-1 

Holdup stage 13 

Sta 
Partial 

2-4.4108 x 104 mol 

- 1.4703 x 105 mol 

ge 13-
Reboiler 

Bottoms- 425.1 mol/min 

Figure 4.4: Typical Reactive Distillation Column Configuration And Specifications 

For Double Feed Catalytic Ethyl Acetate Synthesis (Nishith & Daoutidis 2001) 

Figure 4.4 above depicts the double feed catalytic ethyl acetate reactive distillation 

column configuration used by Nishith and Daoutidis, (2001) in their simulation work. 

The column consists of 13 stages inclusive of the condenser and re-boiler. Acetic acid 
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in saturated liquid form is fed into the column at tray 4, with a flow-rate of 4 I 4 mol 

min r', while ethanol is fed at tray I I in saturated vapor fonn with a flow-rate of 

411.9 mol min 1- 1
_ The column pressure is I atm and the reflux ratio is set at 2.023. 

Liquid holdup in the condenser and trays is 4.4 I 08 x 104 mol, whereas holdup in the 

re- boiler is 1.4703 x 105 moL Table 4.6 summarises the simulation basis for the 

double feed catalytic ethyl acetate reactive distillation column. 

4.3.1 Simulation Results and Comparison 

Table 4.6 summarizes the steady state simulation results obtained from the simulation 

model for the double feed catalytic ethyl acetate reactive distillation column. For the 

purpose of comparison, the published simulation results from Nishith and Daoutidis 

(2001) are also presented in Table 4.7. 
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Table 4.6: Feed Specifications, Column Configuration and Operating Conditions used 

as Simulation Basis 2 

Quantity Units 
Specifications 

Feed 1 Flowrate mol min"' 414 
Feed 1 Phase Saturated Liquid 

Feed 2 Flowrate mol min-1 411.9 
Feed 2 Phase Saturated Vapor 

Feed 1 Temperature K 391.8 
Feed 1 Pressure atm 1.00 
Feed 1 Stage 4 

Feed 2 Temperature K 351.4 
Feed 2 Pressure atm 1.00 
Feed 2 Stage 11 

Feed 1 ComQosition 
Acetic acid (Ac) 1 
Ethanol (Et) 0 
Ethyl Acetate (Ea) 0 
Water(W) 0 

Feed 2 ComQosition 
Acetic acid (Ac) 0 
Ethanol (Et) 1 
Ethyl Acetate (Ea) 0 
Water (W) 0 

Number of Stages, N 13 
Column Pressure, P atm 1.00 
Liguid HolduQ 
Condenser, Tray mol 4.4108 X 104 

Re-boiler mol 1.4703 X 105 

Reflux Ratio, r 2.023 
Re-boiler Heat Duty, rb 6.868 x 106 cal/min 
Bottom Flow, B mol min"1 425.1 
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Table 4.7: Simulation Results For Catalytic Double Feed Ethyl Acetate Reactive 

Distillation Column. 

Proposed Model Nishith & Daoutidis (200 1) 

Quantity Units Top Bottom Top Bottom 

Composition 

Acetic acid (Ac) 0.019 0.2231 0.003 0.2100 

Ethanol (Et) 0.1318 0.1123 0.080 0.1400 

Ethyl Acetate (Ea) 0.6820 0.0896 0.650 0.1300 

Water (W) 0.1672 0.5749 0.240 0.5200 

Temperature K 343.73 364.92 - -

Product flow mol /min 400.8 425.1 400.8 425.1 

Et conversion mole% 75.6 76.8 

Ea purity mole% 68.2 65.0 

Reflux flow mol/min 810.7 810.6 

Table 4.8 shows the detailed simulation results obtained from the steady state 

simulation of the catalytic double feed ethyl acetate reactive distillation column. 



------------------------------------------------------------

Table 4.8: Simulation Results for Configuration 2- Double Feed Catalytic Eth~l Acetate Reactive Distillation Column 
Tj T]Ac Vj Lj 

No. XAc xet Xetac Xw (K) (molmin-1) yAc Yet yetac yw mol min-1 Mol min-1 

1 0.0190 0.1317 0.6820 0.1672 343.73 10.448 0.0009 0.1575 0.7855 0.0561 400.8 810.76 

2 0.1171 0.1170 0.4190 0.3470 351.54 19.914 0.0104 0.1231 0.6907 0.1759 1211.5 773.73 

3 0.2739 0.0773 0.2347 0.4142 357.27 9.1181 0.0578 0.0962 0.5345 0.3115 1174.4 766.59 

4 0.5302 0.0449 0.1356 0.2894 354.69 -11.545 0.1525 0.0622 0.4221 0.3632 1167.4 1132.6 

5 0.5106 0.0483 0.1327 0.3085 355.43 -12.521 0.1484 0.0676 0.4063 0.3776 1119.3 1131.8 

6 0.4821 0.0584 0.1311 0.3284 356.22 -16.304 0.1395 0.0823 0.3924 0.3858 1118.5 1131.0 

7 0.4419 0.0760 0.1299 0.3523 357.17 -22.646 0.1251 0.1072 0.3764 0.3914 1117.8 1130.6 

8 0.3891 0.1032 0.1281 0.3797 358.27 -31.483 0.1045 0.1452 0.3550 0.3954 1117.4 1130.8 

9 0.3258 0.1444 0.1239 0.4059 359.27 -42.395 0.0793 0.2009 0.3249 0.3950 1117.6 1132.0 

10 0.2571 0.2069 0.1146 0.4213 359.76 -53.813 0.0535 0.2803 0.2826 0.3854 1118.8 1134.0 

11 0.1905 0.3025 0.0964 0.4106 359.28 -62.681 0.0325 0.3914 0.2249 0.3512 1120.8 1135.0 

12 0.1764 0.2052 0.1070 0.5114 362.01 -33.031 0.0335 0.2791 0.2379 0.4495 709.58 1136.9 

13 0.2234 0.1122 0.0896 0.5749 364.91 -64.468 0.0577 0.1702 0.2080 0.5641 711.75 425.1 



CHAPTER 4 MODEL VALIDA TON 99 
~~~~----------------~----~~-----------------------

Table 4.9: Vapor-liquid equilibrium data for the proposed study 

K-values 

Stage Acetic Acid Ethanol Ethyl Acetate Water 

0.048313 1.195684 1.151670 0.335364 

2 0.088531 1.052101 1.648838 0.506798 

3 0.210947 1.244717 2.278016 0.752055 

4 0.287712 1.385242 3.113254 1.255298 

5 0.290717 1.400551 3.062816 1.224250 

6 0.289440 1.407955 2.993719 1.174836 

7 0.283002 1.410681 2.897600 1.111174 

8 0.268556 1.407253 2.771802 1.041183 

9 0.243261 1.391395 2.622625 0.972985 

10 0.208130 1.354754 2.465888 0.910324 

11 0.170599 1.293897 2.333150 0.855357 

12 0.189961 1.360280 2.222783 0.878951 

13 0.258250 1.516900 2.322724 0.981316 

Considering the column involves multiple feeds, the zones are defined as follows: The 

column section located below the lower feed is termed as the stripping section, whilst 

thai located above the upper feed is termed as the rectifying section. The column 

section located between the upper and the lower feeds is termed as the reaction active 

zone. 

For an ideal column performance, it is expected that a near complete conversion from 

the reaction is achieved and the two product that emerge from the distillation column 

consist of only the products from the reaction i.e. pure ethyl acetate at the top of the 

column and pure water at the bottom of the column. However in practice, such 

condition is not achievable due to the presence of substantial amount of water in the 

upper half of the column and the non-ideal behavior of the mixture, which hinders the 

achievement of complete conversion by enhancing the reverse reaction. 



CHAPTER4 MODEL VALIDA TON 100 
-----------------------------------------------------------------

The achieved conversion in the simulation conducted is 75.60%, which is found to be 

higher than equilibrium conversion for the conventional arrangement of reactor 

followed by a separator. While the product purity achieved is 68.2% and this is higher 

than the azeotropic composition. The order of volatility for the components involved 

in the system in the decreasing sequence is ethyl acetate, ethanol, water and acetic 

acid. K value's of each component is given in Table 4.9. Considering these data and 

the result obtained from the simulation, it can be deduced that most of the reaction 

took place in the middle section of the column. Acetic acid is the least volatile 

component in the system, with K values much smaller than other components. 

Therefore it tends to flow down the column from the feed point with little 

vapourisation taking place, and thus hardly present in the rectifying zone. On the 

other hand, ethanol as reactant, which has significantly higher K value, is distributed 

more evenly along the column. Therefore, it can be observed that the production rate 

of ethyl acetate is positive in the middle and stripping section of the column while the 

deficiency of the reactant acetic acid in the rectifying section results in negative 

production rate of ethyl acetate. 

Figure 4.5 shows the respective maximum concentration values for the reactants at the 

respective feed points. Acetic acid concentration depletes as it moves down the 

column whereas ethanol concentration depletes as it moves up the column. This is 

expected as much of the reactants were consumed as the reaction proceeds. Ethanol 

feed moves up the column mainly in the vapor phase. It is absorbed by the down

coming liquid phase, which is rich in acetic acid, and consequently reaction takes 

place. As the products are formed, ethyl acetate is stripped from the liquid phase and 

travel with the vapour phase to the top of the column. Water moves along with acetic 

acid in the liquid phase down the column. As shown in the same graph, the 

concentration of acetic acid is much higher when compared to ethanol in the middle 

section of the column. This tends to limit the reaction achieved in the zone. This 

suggests loading of excess ethanol would be favorable. This aspect will be further 

explored in a parametric analysis conducted later in the study. 
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The temperature profile along the column is shown in Figure 4.6. The temperature 

profile of the column is far from linear, with one temperature jump at feed point 

between stage 3 and 4 and temperature drop at ethanol feed point between stage I 0 

and II. As expected, the temperature increases in the descending direction of the 

column, which in tum helps to increase the rate of reaction down the column. 

Figure 4.7 shows the steady state reaction rate profile for the configuration. As shown 

in the graph in the first 3 stages from the top of the column, the reaction rates are 

negative as reverse reaction is prevalent in this zone. Low concentration of both the 

reactants, ethanol and acetic acid, couple with high concentration of products in these 

stages has led to the situation. This significantly affects the performance of the 

column in terms of conversion and product purity. 
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Temperature Profile along the column . I 
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Comparison on the developed simulation model against the simulation work of 

Nishith and Daoutidis, (2001) was made based on focal output variables from the 

simulation. The comparison is presented in Table 4. 7. As indicated, the simulation 

results of this study are consistent with the simulation results from Nishith & 

Daoutidis (200 1 ). 
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4.4 Overall Conclusion. 

The validity of the developed mathematical model has been proven in this section for 

configuration 1 and configuration 2, by comparing the results obtained against 

experimental and complex simulation results published in the literature. The 

agreement between them was found to be reasonably well. Though there were slight 

deviations, it was justifiable. Amongst others that could course this observation are 

due to model simplifications, choice of physiochemical properties and reaction kinetic 

data. However, the consistency showed by the simulation results of this study for both 

configurations as compared to published results gives confidence to utilize this model 

for further studies, especially in the area of parametric analysis, control and safety. 

For the current study, the developed model is used for parametric analysis only, which 

will be discussed in the proceeding chapters. 

While attempting to explain the behavior of the process, impeding factors that retard 

the column performance to operate at or near its ideal condition have been outlined. 

This could be useful for the process enhancement study, which will be conducted later 

in this research work. The following are the main contributing factors for under 

performance of ethyl acetate reactive distillation column in general: 

• Lack of reactant acetic acid above the feed point promotes reverse reaction 

• Formation of azeotropes between ethyl acetate-ethanol-water in the section 

above acetic acid feed point results in reactant ethanol being washed out from 

the column via distillate 

• Formation of azeotropes between ethanol-water in the stripping section of the 

column results in reactant ethanol being washed out from the bottoms stream 

In the following chapter, parametric analysis will be conducted in order to explore the 

possibilities to alleviate the above-mentioned limitations. 
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S.llntroduction 

Reactive distillation column behaves significantly different from the conventional 

distillation columns due to the simultaneous interaction between the chemical 

reactions and the vapor liquid equilibria. The effects of key design and operating 

variables are discussed with reference to the double feed catalytic ethyl acetate 

reactive distillation column described earlier. The results are compared against a 

stipulated base case as shown in Figure 5.1, in order to understand the behavior of the 

system under various operating condition. The selected parameters used for the 

column's performance measurement are conversion and the overhead ethyl acetate 

product purity. Conversion is selected in view of the ability to indicate the extent of 

reactants consumption in producing specified amount of product whilst the product 

purity is selected due to the ability to indicate the degree of separation efficiency for 

the column. 
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Acetic Acid feed: 
Saturated liquid at 1 atm, 
Stage 4 
Flowrate- 412.95 m ol min-1 

Ethanol feed: 
Saturated vapor at 1 atm, 
Stage 11 
Flowrate- 412.95 m ol min-1 

' 

" 

./ 

,/ s 
Total 

tage 1-
Condenser 

Distillate - 403.2 mol/min 

No. ofstages-13 

Column Pressure- 1 atm 

Reflux Ratio- 2.02 3 

Reboiler Duty- 6.8 68 x 106 cal/min 

Holdup stage 1-12 -4.4108x 104 mol 

Holdup stage 13 - 1 .4703 x 105 mol 

Sta ge 13-
Reboiler Partial 

Bottoms- 422.7 mol/min 

Figure 5.1: Base Case Reactive Distillation Column Configuration And Specifications 

For Double Feed Catalytic Ethyl Acetate Synthesis. 
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5.2 Base Case Configuration 

Figure 5.1 depicts the configuration and the operating parameters used for the base 

case simulation. The column consists of 13 stages inclusive of condenser and re

boiler. Acetic acid in saturated liquid form is fed into the column at tray 4, with a 

flow-rate of 412.95mol mini·', while ethanol is fed at tray 11 in saturated vapor form 

with a flow-rate of 412.95mol mini·'. The column pressure is 1 atm and the reflux 

ratio is 2.023. Liquid holdup in the condenser and trays is 4.4108 x 104 mol, whereas 

holdup in the re- boiler is 1.4703 x 105 mol. In this configuration, a homogenous 

catalyst i.e., sulfuric acid is used and it is introduced into the column at stage 4 

together with acetic acid feed. Sulfuric acid is a non-volatile component thus will flow 

down the column from the feed point to the reboiler. Thus its presence on the first 

three stages located above the feed point could be assumed to be negligible. As a 

consequence, it is reasonable to assume that the reaction within the three top stages 

proceed without catalyst aid thus having significantly slower rate of reaction. 

5.2.1 Simulation Results of Base Case 

Two of the important output variables are used for comparison study in the parametric 

analysis. They are overall conversion and overhead ethyl acetate purity, which signify 

the overall performance of the column. Basically, in parametric analysis, variation is 

made on selected input variables, one at a time, with changes ranged within a certain 

specified limit from the base case value. The simulation results for the achieved 

conversion and the top ethyl acetate purity are then compared against the base case 

values in order to measure changes in the performance of the column. This will 

provide an. indication whether such changes in the input variable would favour a 

better performance or vice versa. In the following section the effects of key design 

variables on the performance of ethyl acetate reactive distillation column is discussed. 

Table 5.1 summarizes the simulation results of base case configuration. 
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Table 5.1: Simulation Results Of Base Case Configuration. 

Configuration 3 

Quantity Units Top Bottom 

ComQosition 

Acetic acid (Ac) 0.006 0.1924 

Ethanol (Et) 0.0719 0.1293 

Ethyl Acetate (Ea) 0.7229 0.0895 

Water (W) 0.1995 0.5887 

Temperature K 346.46 365.05 

Product flow mol /min 403.2 422.7 

Overall conversion mole% 79.7 

Ea purity mole% 72.3 

Reflux flow mol/min 815.6 

5.3 Effects of changes in Number of Stages 

The ethyl acetate reactive distillation column is divided into three distinct zones as 

shown in Figure 5.1. The effects of varying the number of stages in each zone to the 

column performance are considered. For the analysis, the Damkohler number for the 

system is fixed at the base case value in order to study the effect of the number of 

stages alone on the column performance. 
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5.3.1 Variation in Number of Stages for the Rectifying Zone 
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Figure 5.2a: Effects Of Variation In Number Of Rectifying Stages On Product Purity 

Of Ethyl Acetate Reactive Distillation Column. 
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In this case, the number of stages in rectifying zone is varied while the other input 

parameters are kept fixed at the base case value. Ideally, the rectifying zone of the 

ethyl acetate reactive distillation column is expected to remove the heavy components 

from the rising vapor stream to give pure ethyl acetate distillate, to recycle the heavier 

un-reacted reactants back to the main reaction zone and to remove ethyl acetate from 

the reaction zone to maintain favorable reaction conditions. However, in practice, this 

is almost impossible to achieve mainly because the esterification reaction still takes 

place in the rectifying zone. Since the acetic acid has a low relative volatility 

compared to the other components in the system, it will have the tendency to flow 

down the column from its feed point. Thus only small amount is expected to be in the 

rectifying zone. Given the high concentration of ethyl acetate present in the rectifying 

zone, it then encourages the reverse reaction, which in tum reproduces the acetic acid 

reactant. This negative production rate of ethyl acetate increases as the number of 

stages is increased in the zone, thus lowering the column conversion and affecting the 

product purity. Another undesirable effect of increasing the number of rectifying 

stages is the lost of ethanol reactant in the distillate, which also affects the conversion 

achieved to a certain extent and the ethyl acetate purity. 

5.3.2Variation in the Number of Stages in the Reaction Zone 

Figure 5.3 shows the simulation results for the ethyl acetate column where the number 

of reactive stages was varied. As shown in the figure, the conversion and the ethyl 

acetate distillate purity was found to improve with increasing number of stages in the 

reaction zone. 

The function of reactive zone is simply to provide a site for main reaction to proceed. 

In this case, all other variables including the number of separation stages in the 

rectifying and stripping zone, the reflux ratio, the reboiler duty and the feed 

conditions were fixed at the base case values. By adding stages in the reaction zone 

provides more sites for the esterification reaction to take place and in tum improves 

the conversion and the purity of the ethyl acetate distillate. Besides that, with 

increasing number of stages in the reaction zone, the separations of the reaction 

products become sharper as a consequence of the additional stages available for 

separation in the system. However, it should be noted that increasing the number of 
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stages beyond a certain limit i.e., twenty for the system studied, would only lead to 

diminishing improvement in the column performance. 
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Figure 5.3: Effects Of Changes In Number Of Reactive Stages On Ethyl Acetate 

Reactive Distillation Column Performance. 

5.3.3 Variation in the Number of Stages in Stripping Zone 

In this case, the number of stages in the stripping zone was manipulated while 

keeping the number of stages in the other zones constant. The outcome on the 

important variables as a result of the changes made in the number of stages in the 

stripping zone is shown in Figure 5.4. As shown in the figure, the conversion and the 

ethyl acetate overhead purity increase as a result of increasing the number of stages in 

the stripping zone. 

Theoretically, the stripping zone in the ethyl acetate reactive distillation column has 

the following functions: 1) Removal of the heavy reaction product from the reaction 

zone to maintain favorable reaction conditions, 2) Prevent losses of ethanol to the 

bottom product by vaporizing and recycling it back to the reaction zone, 3) Prevent 

loses of ethyl acetate to the bottom product, 4) Provides a medium for forward 

reaction to proceed. As a result, increasing the number of stages in the stripping zone 

leads to favorable effect on the column performance. The separation becomes sharper 

and the conversion increases. Hence the ethyl acetate distillate purity also increases. 

However, it was noted that an increase in number of stages in the stripping zone 
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beyond a certain limit i.e., above 14 stages for this case, would only lead to 

diminishing improvement in the column performance. This is to be expected because 

increase in stripping stages results in more acetic acid, which is heaviest component in 

the system being discarded from the column via bottom stream. As a consequence, the 

column suffers lost of reactant acetic acid which in tum reduces the conversion of the 

column. 
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5.4 Effects of Changes in Pressure 

In conventional distillation, the operating pressure of a column is normally set 

through an economic rationalization of heat transfer costs and the value of improved 

separation (via increasing relative volatility with reducing pressure) (Kister, 1992). 

However in reactive distillation the choice of operating pressure is made complicated 

by the indirect effects of pressure on the reaction equilibrium constant and the rate 

constant for kinetically controlled reaction via changing phase equilibrium 

temperatures. Increasing the pressure raises the boiling point temperatures along the 

column and these results in increase in forward reaction constant and decrease in 

reaction equilibrium constant (for exothermic reaction) and vice versa for decrease in 

pressure. In both cases one gives a favorable effect on conversion while the other 

produces an unfavorable effect on conversion. As a result of this interaction between 

the two parameters (forward reaction constant and reaction equilibrium constant), it is 

expected that there will be an optimal pressure for the system. This is clearly depicted 

in Figure 5.5, which indicates the presence of an optimum pressure with respect to 

ethyl acetate purity and the conversion when the parametric analysis was conducted 

on column pressure. The optimal pressure was found to be at I atmosphere. Any value 

that is higher or lower than this pressure results in decline in the ethyl acetate distillate 

purity and the conversion of the reactants. 
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Figure 5.5: Effects of changes in Column Operating Pressure on Ethyl Acetate 

Reactive Distillation Column performance. 
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5.5 Effect of Changes in Damkohler Number 

In this part, the effect of Damkohler Number (Da) on the performance of the ethyl 

acetate reactive distillation column is analyzed. As explained in chapter 3, for a 

homogeneous reactive distillation column, the Damkohler number is defined as a 

parameter that represents the measure of the rate of reaction relative to the product 

removal. The kinetic effect in the system is analyzed using the parameter. In principal, 

small value of Da corresponds to a state where little or no reaction takes place and the 

system is controlled by the phase equilibrium. On the contrary, a large value 

corresponds to a state where the reaction is closely approaching the reaction 

equilibrium. In the developed simulation model, Da number is taken as an input 

variable and it determines the extent of liquid holdup on each stage. Therefore, Da is 

varied at the cost of liquid stage holdup. As the Da increases, the liquid holdup on 

each stage increases as well. It should be noted that the Da could also vary at the cost 

of greater catalyst concentration or higher temperature but for the purpose of the study 

the two are kept constant. 

As depicted in Figure 5.6, at small Da value, the conversion and the ethyl acetate 

purity are low. Insufficient liquid holdup on each stage results in low conversion of 

reactants towards products and hence the achieved purity is low as well. As the Da 

value increases, the conversion and the ethyl acetate distillate purity also increase due 

to larger holdup on the stages which promotes higher conversion and hence, 

increasing the ethyl acetate distillate purity. Nevertheless, it is observed that the 

conversion and the ethyl acetate product purity reach a plateau at Da value above 40. 

Therefore, it could be said that the reactive system has reached its reaction 

equilibrium limit. 

Further increase in Da would not lead to any significant effect on the column 

performance. Operating the column above its optimum Da (Da=40) would not be 

economical, as it requires larger holdup with no significant effect on the column 

performance. 
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Figure 5.6: Effects of variation in Damkohler number on Ethyl Acetate Reactive 

Distillation Column performance. 

5.6 Effect of Changes in Reflux Ratio at Constant Product Take Off 

In this part of the work, the overhead product rate is fixed while the changes of the 

important column variables are investigated as a function of reflux ratio. Changing 

the reflux ratio will directly affect the internal liquid and vapour circulation inside the 

column. Changes in the reflux ratio are made accordingly i.e., -10%, -5%, +5% and 

+I 0% from the base case value. With the product rates fixed, the degree of separation 

is determined by the reflux ratio. Among the important variables looked at for 

evaluating the column performance as a result of changing the reflux ratio are the 

ethyl acetate purity, the reboiler duty, the conversion and, the condenser and reboiler 

temperature. 

Figure 5.7 shows the plots of conversion and ethyl acetate purity against the reflux 

ratio at constant overhead product rate. The condenser and reboiler duties vary 

considerably as expected due to the variation of condensation and boil-up rates as the 

reflux ratio changes. Higher reflux ratio lead to increases in the energy requirement 

but at the same time increases the internal liquid and vapor rates throughout the 

column, which causes better separation and higher product purity. Nevertheless, for 

the case studied, the product compositions were found not to vary greatly at the 

distillate and bottoms when the changes in reflux ratio were made beyond the base 
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case value. Accordingly the temperatures at the condenser and reboiler only vary 

slightly. 

The total reaction rate and hence conversion were tound to decrease with increasing 

reflux ratio. This phenomenon is due to high recycle rate of reaction products back 

into the- column, which favours the reverse reaction and in tum reducing the total 

conversion of the system. As expected, the observation was reversed when decreasing 

the reflux ratio. 
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Figure 5.7: Effects of changes in Reflux ratio at constant product take off on Ethyl 

Acetate Reactive Distillation Column performance. 

5.7 Effect of Excess Ethanol Feed. 

As discussed in the earlier chapter, one of the possible factor that limits the achieved 

conversion and purity of the base case configuration is the lack of ethanol presence in 

the internal liquid flow, which in tum limits the reaction rate along the column and 

hence the product purity and conversion. Initially as shown in 5.8, as the percentage 

excess of ethanol is increased, the changes on the conversion and the ethyl acetate 

product purity are found to be rather small until the percentage excess of the ethanol 

feed reached 50%, at which the changes magnitude suddenly become more 

significant. 
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Figure 5.8: Effects of Stoichiometric excess of ethanol on Ethyl Acetate Reactive 

Distillation Column performance. 

Excess of ethanol increases the concentration of ethanol in the liquid phase, which in 

turn results in higher reaction rate along the column, thus converting more reactants 

into products. By feeding excess ethanol into the column it is possible to completely 

exhaust acetic acid in the column and this would ease downstream separation of 

products from the reactants. However as shown in the graph, extremely large excess 

of ethanol is needed to achieve this condition. Increasing percent excess of ethanol 

above the optimum, results in gradual deterioration of product quality at distillate. 

This is to be expected, as the extra ethanol buildup in the rectifying zone tends to 

dilute the ethyl acetate in the distillate. 



CHAPTER 5 PARAMETRIC ANALYSIS 118 ---------------------------------------------------------

5.8 Effects of Excess Acetic Acid 
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Figure 5.9: Effects of Stoichiometric excess of acetic acid on Ethyl Acetate Reactive 

Distillation Column performance. 

Figure 5.9 shows the effect of increasing the percent excess of acetic acid on the 

ethanol conversion and the ethyl acetate distillate purity. The changes in the ethyl 

acetate purity is observed to initially increase in relatively small value until the 

percent excess of acetic acid feed approach 20 percent. Above this point, the ethyl 

acetate purity started to decline significantly due to the dilution of ethyl acetate 

distillate product by water produced from the reaction. Thus feeding the column with 

excess acetic acid resulted in high accumulation of water in the top portion of the 

column, as the acetic acid, which is the heaviest component in the system, tends to 

move downwards causing the operation temperature at the lower part of the column to 

increase. Subsequently, water is forced to move upward, being a lighter component, 

and fill up the upper section of the column thus causing the operating temperature at 

the upper section to also increase. Consequently, this reduces the product purity in the 

distillate. 
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5.9 Effect of Changing Feed Location 

The column configuration used in the study is a multiple feed column. In the base 

case, the acetic acid in the form of saturated liquid is fed at stage 4 while ethanol in 

the form of saturated vapor, is fed at stage II. The column section located below the 

lower feed is termed as the stripping section and that above the upper feed is termed 

as the rectifying section. The column section between the feeds is termed as the 

reaction zone. The countercurrent flow of the reactants causes the contact between 

them and thus leading to reaction on these stages. In addition, the zone also serves as 

a separation zone in view of the vapour-liquid contact that took place leading to 

separation of the components. The two feeds should be located in sufficient distance 

in order to enable sufficient contact to take place. 

In the following analysis, feed locations are varied in order to study the impact on the 

column performance. It should be noted that the total number of stages are maintain 

as in the base case for this analysis. Initially, the distance between the feeds is moved 

closer to tray 5 and I 0 (case study I). Next, the distance is then move further to tray 3 

and tray I2 (case study 2). Later, the feed points are moved one stage above to stage 3 

and stage IO (case study 3) before finally, the feed points are moved one stage below 

to stage 5 and stage 12 (case study 4) respectively. The simulation results for each of 

the case considered are discussed in the following sections. 

5.9.1 Case Study 1 

In this case study, the acetic acid and ethanol feeds locations are moved one stage 

closer to stage 5 and stage IO respectively. As a result the distance for the 

countercurrent flow become shorter, which in tum reduces the reaction active zone. 

The results are shown in Figure 5.1 0. Both the conversion and the ethyl acetate 

distillate purity decline as compared to the base case results. Since the mole fraction 

of reactants in the rectifying section is low, the reaction rate in the rectifying section 

as depicted in Figure 5.II, is found to be negative which indicates that the reverse 

reaction is favoured. While, low concentration of ethanol in the stripping zone reduces 

the reaction rate (Figure 5.1I) in this portion of column as compared to base case 

values. Therefore the total production rate of ethyl acetate decreases. This is 

indicated by the value of overall conversion, which is lower than initial specifications. 

Since the feeds are brought closer, the rectifying and stripping trays become more 
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which results in better separation of light and heavy components in the system. Most 

of the light components, ethanol and ethyl acetate are concentrated in the distillate 

with less heavy components compared to initial specification. Meanwhile most of the 

acetic acid and water, which are heavy components, concentrate in the bottoms. 

Though the separation is enhanced the product purity is lower compared to the base 

case as a result of the decline in the conversion of reactants. 
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Column performance. 
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Comparison of Reaction Rate Profile of Base Case and 
Case Study 1 
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and Case Study I 

5.9.2 Case Study 2 

In the second case, acetic acid is fed at stage 3 while ethanol is fed at stage 12. This 

resulted in the increase of reaction active zone from 8 stages to I 0 stages. As 

indicated in Figure 5.12, both conversion and product purity reduce as a result of the 

change made to the two feed locations. Acetic acid as expected flow downwards as it 

is the heaviest component in the system thus appearing more in the lower section of 

the column. Once the acetic acid feed stage is move upwards to stage 3, the mole 

fractions of the acetic acid in the upper portion increases as compared. to the base 

case, thus causing the forward reaction of the esterification reaction to increase in 

rectifying section as depicted in Figure 5.13. However as depicted in Figure 5.14 

deficiency in ethanol composition in the middle section of the column results in low 

reaction throughout the reactive section (Figure 5.13). Whereas at stripping section of 

the column due to inefficiency in stripping process results in high concentration of 

ethanol (figure 5.14) and this in tum increase the reaction rate at stripping section of 

the column (Figure 5.13). In overall the conversion of the reactant is lower compared 

to base case due to decline in reaction rate at reaction zone (Figure 5.13 ). As depicted 

in Figure 5.14 ethyl acetate product purity also declined due to shorter rectifying and 

stripping zone as compared to base case, which results in inefficient separation 

process. 
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Effects Of Changes in Feed Tray Location 
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Figure 5.12: Effects of Feed Tray Location on Ethyl Acetate Reactive Distillation 

Column performance. 
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Comparison of Ethanol and Ethyl Acetate Composition of Base Case 
and Case Study 2 
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Figure 5.14: Comparison of Ethanol and Ethyl Acetate Composition along the 

Column of Base Case and Case Study 2 

5.9.3 Case Study 3 
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Column performance. 
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In case study 3 the feed point of acetic acid and ethanol are moved one stage above to 

tray 3 and tray 10 respectively. Total reactive stages are maintained with this 

configuration while rectifying zone become shorter and stripping zone is longer. As 

depicted in the Figure 5.15 the conversion of the system is improved by 4 percent. 

The product purity also increases with this configuration. As acetic acid feed point 

moved upwards the concentration of this reactant increases compared to base case 

whereby deficiency in acetic acid (Figure 5.17) in rectifying section of base case 

cause negative production rate of ethyl acetate, whereas, for this setup high 

concentration of acetic acid in rectifying section (Figure 5.17) enhance forward 

reaction rate to produce ethyl acetate. Comparison of reaction rate profile along the 

column is depicted in figure 5.16. Besides that, as ethanol distributed evenly 

throughout the column (5.17) and the tendency of acetic acid to flow down the 

column due to its low K value, results in better reaction rate throughout the column. 

The temperature of reboiler is at maximum compared to other case due to 

improvement in stripping process as a result of increase in stripping stages. 

Inefficiency in rectifying section leaves more unreacted acetic acid in the distillate but 

it is not significant. In overall the column performance of this configuration is more 

favorable compared to other configurations. 

5.9.4 Case Study 4 
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For case study 4 the feed points of acetic acid and ethanol are moved one stage below 

respectively. As shown in figure 5.18, the conversion and ethyl acetate product purity 

of the system decline as compared to base case values. The separation become sharper 

in rectifying section as the number of tray increase and the concentration of acetic 

acid are low compared to base case (Figure 5.20). Though ethanol concentration is 

higher in this zone it does not compensate for the deficiency in acetic acid and in turn 

reduces reaction rate in rectifying section as depicted in Figure 5.19. As shown in 

figure 5.20, from the acetic acid feed point to the bottom of the column the 

concentration of acetic acid is high, while reactant ethanol is low in concentration in 

the middle portion of the column due to inefficient stripping process. This contributes 

in low reaction rate in reaction zone (Figure 5.19). High concentration of ethanol and 

acetic acid in stripping zone increases production rate of ethyl acetate, however in 

overall the conversion of reactants are very low compared to base case. 

5.10 Concluding Remarks 

The effects of key operating and design variables on the column performance have 

been analysed in this chapter. The selected column performance indicators are overall 

conversion and overhead ethyl acetate product purity. The design and operating 

variables considered in parametric analysis are: 

o Effects of changes in number of rectifying stages 

o Effects of changes in number of reactive stages 

o Effects of changes in number of stripping stages 

o Effects of changes in pressure 

o Effects of changes in Darnkohler Number 

o Effects of changes in reflux ratio at constant product take off 

o Effects of excess ethanol feed 

o Effect of excess acetic acid feed 

o Effect of changing feed location 

Simultaneous optimization of all variables IS considered in order to gam deeper 

insight on the impact of independent changes of each of the variables on the column 

performance. Through this study insignificant variables can be screened out easily and 

significant variables can be identified for overall optimization. However overall 

optimization was not considered as it is beyond the scope of this research work. 
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Furthermore optimization study could only give best set of parameters to operate the 

column but it would not be able to alleviate the limitations (i.e. existence of 

azeotropes) exist in the system under consideration. 

Table 5.2: Optimal Condition for Independent Changes in Number of Stages 

Base Case Rectifying Reactive Stripping 

Optimal Value Optimal Value Optimal Value 

Total rectifying 2 2 .. 

stages - • -; ., 
Total reactive 8 20 c 

stages 

Total stripping 1 
.. - 14 .. 

stages ... .. . . 
' •i" 

Overall 79.7 79.7 80.2 81.8 

Conversion 

Distillate Ethyl 72.3 72.3 72.4 77.7 

Acetate Purity 

Table 5.3: Result summary for feed location changes of double feed catalytic ethyl 

acetate reactive distillation column 

Base Case Study Case Study Case Study Case Study 

Case 1 2 3 4 

Total rectifying 2 3 1 1 3 

stages 

Total reactive 8 6 10 8 8 

stages 

Total stripping 1 2 0 2 0 

stages 

Overall 79.7 78.5 78.1 80.4 77.6 

Conversion(%) 

Distillate Ethyl 72.3 71.9 70.1 73.5 69.7 

Acetate Purity(%) 
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Table 5.2 presents the optimal condition and performance indicator values for 

independent changes in number of three distinctive stages of double feed catalytic 

ethyl acetate reactive distillation column. As shown in Table 5.2, independent changes 

in number of stages do not result in significant improvement in the column 

performance. Meanwhile Table 5.3 presents summary of results for changes in feed 

location of the column. There is improvement in column performance when the acetic 

acid and ethanol feed points are located at stage 3 and stage 10 respectively. However, 

as for the case of changes in number of stages, only marginal improvement was 

noticed for changes in feed location. For changes in pressure, Damkohler Number, 

reflux ratio, ethanol flow-rate and acetic acid flow-rate the results obtained are not 

attractive as well. The improvement in terms of product purity and conversion are 

only marginal for these cases. 

From this analysis the behavior and limitations of double feed catalytic ethyl acetate 

reactive distillation column is well understood. This analysis could be a good platform 

for process enhancement study that will be considered in the next chapter. 
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6.llntroduction 

In the previous chapter, parametric analysis was carried out in order to study the 

effect of design and operating variables on the ethyl acetate reactive distillation 

system. Through the analysis, it is evident that it is not possible to enhance the 

process performance significantly in order to produce high conversion and high purity 

separation. The main constrains that have Jed to the failure of the system consists of 

the followings; 

1.) Close relative volatility of ethanol and water in the stripping zone results 

in reactant ethanol being washed away into the bottom stream. Therefore 

not all of the ethanol could react with the acetic acid to produce ethyl 

acetate product. 

2.) Close relative volatilities of ethyl acetate, ethanol and water and due to the 

formation of azeotropes in the rectifying zone causing difficult separation 

in order to obtain high purity ethyl acetate at distillate. 

In the parametric analysis, one of the main alternatives considered is to completely 

exhaust one of the reactants i.e., acetic acid by feeding excess ethanol. In doing so, the 

need for separation of acetic acid from water could be avoided. However, the system 

will still have to deal with the excess ethanol, which appears in the distillate thus 

affecting the purity of ethyl acetate. The above principal is used in conventional 

method of producing ethyl acetate where excess ethanol is used to push the 

conversion of the limiting reactant i.e., acetic acid, fully. 

A more favorable case would be to achieve full conversion for both reactants, though 

it may not be possible, in order to completely avoid the need to separate the reactants 

from the products. Therefore, in this chapter, a modified configuration known as 

reactive extractive distillation is introduced which could potentially make the 

breakthrough needed to deliver higher conversion and at the same time producing 

higher ethyl acetate purity. 
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6.2 Reactive Extractive Distillation 

In this section, the discussion is focused on the development of a modified 

configuration for esterification reaction of acetic acid with ethanol to produce ethyl 

acetate via reactive distillation process. The major goal for the development of this 

configuration is to improve the conversion of both reactants i.e., acetic acid and 

ethanol, for a single pass through the column while at the same time, achieving 

significantly higher product purity. 

As mentioned in the introduction section of this chapter one of the major contributing 

factor for low conversion in the normal reactive distillation column is due to the close 

relative volatility between ethanol and water which results in reactant ethanol being 

washed out with water in the bottoms stream and hence lowering the overall 

conversion of the system. This suggests, lifting up more ethanol in the vapor form, 

would enhance overall conversion in the system, as the availability of reactant ethanol 

in the reactive zone can be increased. In the development of a new configuration, this 

factor is heavily considered. In addition, the ethanol-water mixture coming out 

through the bottom stream of the column would pose a difficult separation problem 

given that they formed an azeotrope. Conventional distillation scheme uses either 

pressure manipulation to vary the boiling points and composition of the azeotrope, or 

extractive agents to remove the water from ethanol by extractive distillation process. 

The two options, however, require additional distillation columns and recycle streams. 

Using the conventional reactive distillation, it was also discovered earlier that 

producing a pure ethyl acetate distillate was not possible. Close relative volatility 

between ethyl acetate, ethanol and water in the zone above the acetic acid feed couple 

with low concentration of reactant in rectifying zone, which promotes reverse 

reaction, limits the separation efficiency and achieved conversion of this column 

respectively. Hence obtaining pure ethyl acetate distillate is not possible. Distillate 

that consists of ethyl acetate, ethanol and water requires additional complex 

separation scheme to obtain pure ethyl acetate. One of the possibilities is by utilising 

extractive distillation process to separate mixture of ethyl acetate-ethanol-water, 

which in tum will lead to increase in capital and operating cost. 
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A possibility to avoid the use of additional separation column to cater for the 

separation needed between ethanol and water is by combining the reactive and 

extractive distillation in a single column. In doing so, it is expected that higher 

conversion and distillate purity could be achieved. The modified configuration 

introduced here is termed as the reactive-extractive distillation column. 

One of the classic success stories of the use of reactive-extractive distillation process 

is the synthesis of Methyl Acetate (Agreda & Partin, 1990). Using the new 

configuration, a better conversion and separation performance was achieved as 

compared to conventional reactive distillation column. In the system that consists of 

methyl acetate-methanol-water-acetic acid, the extractive action was used to break the 

azeotropes between methanol-methyl acetate and methyl acetate-water and in turn 

results in the achievement of higher purity methyl acetate distillate in a single column. 

The authors were able to achieve this by utilizing one of the remarkable aspect of the 

system i.e., using the acetic acid reactant as the entrainer, which breaks the two 

azeotropes, which are methyl acetate-methanol, and methyl acetate-water that was 

formed in the system. Figure 6.1 below illustrates the methyl acetate reactive 

extractive distillation column as proposed by Agreda & Partin (1990). 
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Figure 6.1: The Methyl Acetate Reactive Extractive Distillation Column 
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Agreda & Partin (1990) showed that using the configuration; complete reaction of the 

reactants was achieved while at the same time able to separate the products of the 

reaction i.e., methyl acetate and water, completely in a single column. The presence of 

the extraction zone in the column has drastically improved the column performance 

without which such ideal performance would be impossible to achieve. 

In the configuration, acetic acid is fed few trays above the reaction zone to allow for it 

to come in contact with the azeotropes formed i.e., methyl acetate-methanol and 

methyl acetate-water, and thus breaking them. This section is termed as the extraction 

zone. In the reaction zone, the reaction is aided by a heterogeneous catalyst, which 

significantly enhances the reaction rate between acetic acid and methanol. In the 

rectifying zone, methanol and water is further separated from methyl acetate to 

produce pure methyl acetate distillate whilst in the stripping zone, the methyl acetate 
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and methanol are stripped from the liquid phase thus leaving water to be produced as 

the bottom stream. 

The reactive-extractive distillation configuration as shown in Figure 6.1 for methyl 

acetate system would not be suitable for the ethyl acetate system investigated in the 

study. The main reason is because the ethyl acetate system is found to be more 

complex as compared to the methyl acetate system due to the presence of four 

azeotropes. Thus a single extractive zone located at the top portion of the column will 

not be sufficient to break the azeotropes. In addition, one of the azeotropes i.e., 

ethanol-water, actually forms in the bottom section of the column. Another 

shortcoming is that none of the components in the ethyl acetate system could be 

utilised as the extractive agent to break all the azeotropes formed in the system. 

Therefore a completely different reactive-extractive-distillation configuration is 

needed if the use of such configuration is to be considered for the synthesis of ethyl 

acetate reactive distillation column. 

6.2.1 Proposed Ethyl Acetate Reactive Extractive Distillation Column 

In developing the alternative reactive-extractive distillation for ethyl acetate synthesis, 

the following have to be considered: 

• extractive zone above acetic acid feed, 

• extractive zone below ethanol feed and, 

• suitabl~ extractive agent. 

Considering the above factors, the configuration as shown in Figure 6.2 is proposed. 

There are four distinctive zones in this configuration, namely; 1) rectifying zone, 2) 

extractive zone 1, 3) reaction active zone and 4) extractive zone 2. Out of many 

potential extractive agents for the ethanol-water, ethyl acetate-ethanol-water, ethyl 

acetate-water and ethyl acetate-ethanol separation, ethylene glycol was selected for 

the study in view of it, I) being suitable extractive agent to break different types of 

azeotropes exist in the system {ethylene glycol suitable to break azeotropes of ethanol 

and also ethyl acetate), thus requiring only one common extractive agent to break 

different types of azeotropes exist in the system and 2) only requiring relatively 

simple distillation for recovery of the extractive agent. 



CHAPTER6 PROCESS ENHANCEMENT 135 -----------------------------------------------------------------

As a result of applying the proposed configuration, it is expected that pure ethyl 

acetate could be produced as the overhead product of the column while water and 

ethylene glycol are produced as the bottom product of the column. 

Acetic Acid 

Ethanol 

Rectifying 
Zone 

Extractive 
Zone I 

Reaction 
Active Zone 

Extractive 
Zone 2 

Water 
Extractive agent 

Ethyl Acetate 

Extractive agent 

Extractive agent 

Figure 6.2: Conceptual Diagram Of The Ethyl Acetate Countercurrent Reactive 

Extractive Distillation Column 

As depicted in Figure 6.2, the main objectives of proposing the column configuration 

is to ultimately achieve as close as possible to I 00% conversion of both reactants in a 

single column and at the same time producing high purity distillate. Simulation study 

on the above configuration for ethyl acetate reactive-extractive distillation column is 

carried out in the following sections in order to determine how far this configuration 

could achieve the set objectives. 
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6.3 Simulation Study 

The simulation model developed for the conventional reactive distillation column in 

chapter 3 and chapter 4 was modified to suite the new reactive-extractive distillation 

configuration. The major differences of this configuration as compared to the 

conventional double feed reactive distillation column are; 

1) additional component, ethylene glycol is incorporated as an extractive agent 

for the system, 

2) additional feed streams namely the extractive agent introduced to the column 

is added. 

The said changes require a number of modifications to be made to the simulation 

model. One of the major changes made in the simulation model is the Vapour-Liquid

Equilibrium (VLE) relation used as the system now involves five-component mixture. 

UNIF AC model was used for the VLE relations, as it is the most reliable model to 

predict VLE behavior of uncommon system. Discussion on the UNIF AC VLE model 

has been covered in Chapter 3. 

Prior to simulate proposed ethyl acetate reactive extractive distillation column shown 

in Figure 6.2, base case configuration simulation, conventional ethyl acetate reactive 

distillation column is established first. This configuration would be a platform for 

comparison of simulation results of ethyl acetate reactive extractive distillation 

column. 
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6.3.1 Base Case Configuration - Ethyl Acetate Reactive Distillation Column 

A simulation on the conventional reactive distillation column using empirical and 

UNIFAC vapor liquid equilibrium model was conducted. The configuration is 

simulated with two different vapor liquid equilibrium models in order to show 

closeness of simulation results when different vapor liquid equilibrium models are 

used .. Once the results imminence between UNIF AC and empirical model is proven, 

UNIF AC model can be confidently used for new configuration that will be introduced 

in the later part of this chapter. Results description of this simulation is based on 

UNIF AC model, as this is used as base case or comparison purpose for new 

configuration that is introduced to enhance the ethyl acetate reactive distillation 

performance. 

The conventional configuration and operating parameters of ethyl acetate reactive 

distillation column is shown in Figure 6.3. The column consists of 50 stages inclusive 

of one total condenser and one partial re-boiler. Reflux ratio and re-boiler duty are 3.0 

and 8.3 x I 06 caVmin respectively. Damkohler number is set at 80 with holdup in the 

individual stages is set at 5.7461 x 104 mol. Flow-rate of reactants ethanol and acetic 

acid are 351 mol/min·' respectively. Reactant, acetic acid fed into the column in 

saturated liquid form at stage 4, whereas ethanol fed into the column in saturated 

vapor form at stage 40. Column operating pressure is I atmosphere and reactants 

introduced to the column at same pressure. Product take off are set to be equal at both 

distillate and bottom. It should be noted that there are vast changes in the column 

design specification as compared to configuration used in parametric analysis (chapter 

5) in order to observe the performance of the column in more favorable condition 

(more number of stages and higher liquid holdup), towards conversion and purity. The 

Damkohler number as mentioned earlier is set at 80, which implies higher total liquid 

holdup on the stages. This modification was made deliberately in order to provide 

higher residence time for reaction and hence to obtain better conversion. If the 

number of stages were maintained as in previous chapter (figure 5.1 ), the liquid 

holdup on each of the stage would be very high. 
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However, practically it is not realistic to have too large liquid holdup on the stages 

(realistic liquid holdup on the stages between 0.5 to 2.0 m\ as this will impose 

design and operating problem (Chen et a!, 2000). Therefore to maintain realistic 

holdup, number of stages were increased as such the holdup on each of the trays are 

around I. 75m3
. As a result of this distribution, total number stages increased to 50 

stages for Damkohler number of 80. 

Acetic Acid feed: 
Saturated liquid at 1 atm, 
Stage 5 
Flowrate- 351 mol m • -1 

m 

Ethanol feed: 
Saturated v-apor at 
Stage 40 
Flowrate- 351 mo 

1 atm, 

1 min·' 

r 

' 

Bottoms 

' 

./ 

I" Stage 1 

Distillate 

No. of stages -50 
Column Pres sure- 1 atm 

-3.0 Reflux Ratio 
Reboiler Du ty- 8.3 x ](/' cal!min 

1-49-5.7461 x 104 mol 
50-7.8215 x 1rJ mol 

Holdup stage 
Holdup sta)!e 

Stage 50 

Figure 6.3: The Double Feed Reactive Distillation Column Configuration And 

Specifications For Ethyl Acetate Synthesis 
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6.3.1.1 Simulation Results 

Table 6.1 compares the steady state simulation results of the base case configuration 

(catalytic double feed ethyl acetate reactive distillation column) shown in figure 6.3 

using UNIF AC and empirical model. 

Table 6.1: Simulation Results Of Base Case Configuration (Catalytic Double Feed 

Ethyl Acetate Reactive Distillation Column). 

Distillate Bottom 

Quantity Units UNIFAC Empirical UNIFAC Emperical 

VLEModel VLEModel VLE Model VLEModel 

Com~osition 

Acetic acid (Ac) 0.0055 0.0004 0.1592 0.1349 

Ethanol (Et) 0.0632 0.0858 0.1114 0.0547 

Ethyl Acetate (Ea) 0.7752 0.8567 0.0753 0.0284 

Water (W) 0.1561 0.0572 0.6540 0.7819 

Temperature K 345.17 342.49 353.18 371.51 

Product flow mol/min 335.85 340.66 366.16 361.36 

Et conversion mole% 82.3 86 - -

Ea purity mole% 77.52 85.67 7.53 2.84 

Reflux flow mol/min 1010 1022 - -
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As shown in the Table 6.1, the results of both models UNIFAC and empirical are in 

good agreement. The deviations between both results are less than I 0%. Thus, 

UNIFAC model can be confidently used for simulation ethyl acetate reactive 

distillation column. 

Figure 6.4, 6.5 and 6.6 show the liquid phase concentration profile, the temperature 

profile and the reaction rate profile along the column respectively for the steady state 

simulation using UNIF AC vapor liquid equilibrium model of the configuration shown 

in Figure 6.3. 
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As depicted in Table 6.1, the achieved conversion of the system is 82.3 % and the 

product purity (ethyl acetate) in the distillate is 77.52% when the product take off rate 

is set to be nearly equal at distillate and bottoms. (Though the achieved conversion 

and product purity improved as compared to the configuration used in parametric 

analysis (Figure 5.1 ), this configuration failed to achieved process objectives of 

reactive distillation column, which is almost complete conversion of reactants and 

pure ethyl acetate in the distillate. The limitations of the system as discussed earlier in 

this chapter, prevail given that there are vast modification in the specifications and 

design parameters introduced for the base case configuration. 

Figure 6.4 shows that the ethanol fed into the system at stage 40, being washed away 

by water through the bottom stream in view of its close relative volatility to water. 

This hinders the performance of the column by limiting the achieved conversion of 

the system as lesser amount of ethanol could make their way up the column to the 

reaction active zone. In the region above the acetic acid feed, the formation of three 

binary and a ternary azeotropes between ethyl acetate, ethanol and water, limits the 

achieved ethyl acetate distillate purity. Therefore, the conventional reactive 

distillation would not be able to separate these components to obtain pure ethyl 

acetate in the distillate. Steady state temperature profile in Figure 6.5 shows sudden 

drop in temperature at ethanol feed point. This is due to the introduction of low 

boiling reactants in large quantity into the column couple with the high concentration 

of low boiling component i.e., ethanol. At this point also, it is noted that the reaction 

rate is at maximum due to high concentration of ethanol in liquid phase at this point 

driving the reaction positively. It is noted that the reaction rate declines above and 

below the feed point of ethanol. Insufficient ethanol in the liquid phase is the direct 

cause of this trend. While there is sudden increase in temperature in acetic acid feed 

point due to introduction of high boiler acetic acid in large quantity at saturated liquid 

condition into the column. Acute drop in reaction rate at acetic acid feed point is due 

to high concentration reaction products and lack of ethanol in this region of the 

column. On top of that, catalytic reaction starts from here, high concentration of 

product enhance negative reaction rate in this region of the column. Slight jump in 

reaction rate is observed in re-boiler due to high acetic acid this part of the column. 
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In overall, it would not be possible to achieve ideal performance using any normal 

reactive distillation configuration. The impeding factors highlighted above for the 

conventional reactive distillation configuration clearly limits the performance of the 

column even with larger column. Other alternatives need to be considered in order to 

enhance the performance of the column. 

6.3.2 Simulation of Ethyl Acetate Reactive-Extractive Distillation Column 

As discussed earlier, ideal performance of reactive distillation column would be to 

achieve high conversion of reactants and at the same time, producing high product 

purity. In the case of ethyl acetate synthesis studied in this work, the performance is 

measured by looking at the ethyl acetate distillate purity and the conversion of 

reactants acetic acid and ethanol. If the objectives of achieving almost complete 

conversion of both reactants (>95%) while at the same time producing high ethyl 

acetate distillate purity (>95%) are achieved, complex downstream separation could 

be avoided. The only separation to be considered is the separation of the bottoms 

product, which would be water and the extractive agent i.e., ethylene glycol, for 

recycling purposes. This separation is relatively simple and straightforward using 

ordinary distillation. Based on the proposed configuration, simulation study is carried 

out in the following sections and the applicability of the developed model in 

simulation environment is analysed. This is then followed by comparison of the 

results obtained with the conventional reactive distillation column, simulated earlier. 

Figure 6.7 below, schematically presents the double feed ethyl acetate reactive

extractive distillation configuration and simulation specifications. 
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Figure 6.7: The Double Feed Reactive Extractive Distillation Column Configuration 

And Specifications For Ethyl Acetate Synthesis. 

The column configuration above is exactly same as conventional reactive distillation 

configuration proposed earlier in this chapter (figure 6.3), with additional two 

extractive agent feed points for this configuration. The main objective of this section 

is to study the behaviour of the column with the addition of extractive agent in the 

system. As depicted in figure 6. 7, extractive agent is fed into the column at stage 2 



CHAPTER 6 PROCESS ENHANCEMENT 145 ---------------------------------------------------------

and stage 41. The feed location is detennined based on simulation trial and error 

procedure in which these locations give better results as compared to other locations. 

6.3.2.1 Simulation Results of Ethyl Acetate Reactive Extractive Distillation 

Column 

Table 6.2 summarises the steady state simulation results of the proposed configuration 

i.e., the catalytic double feed ethyl acetate reactive extractive distillation column. 

Table 6.2: Simulation Results For Catalytic Double Feed Ethyl Acetate Reactive 

Extractive Distillation Column. 

Quantity Units Distillate Bottom 

Composition 

Acetic acid (Ac) 0.0006 0.0052 

Ethanol (Et) 0.0083 0.0030 

Ethyl Acetate (Ea) 0.9815 0.0002 

Water (W) 0.0096 0.2724 

Ethylene Glycol (Eg) 0.0000 0.7192 

Temperature K 350.71 405.33 

Product flow mol/min 350.52 1251.5 

Et conversion mole% 98.07 98.07 

Ea purity mole% 98.15 0.02 

Reflux flow mol/min 1051.6 

Figure 6.8, 6.9 and 6.10 display the liquid phase concentration profile, the 

temperature profile and the reaction rate profile along the column respectively. 
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Figure 6.9: Steady State Temperature Profile Along The Column 
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As depicted in Table 6.2 and Figures 6.8, 6.9 and 6.1 0, synthesis of ethyl acetate in 

reactive extractive distillation configuration as proposed above gives favorable results 

in terms of both process objectives i.e., conversion and product purity. By utilising the 

proposed configuration, the achieved product purity is 98 %, which is significantly 

higher compared to the purity that can be achieved using conventional reactive 

distillation configuration. The achieved conversion of equi-molar reactants fed to the 

system is 98 % as well, which is impossible to achieve in conventional ethyl acetate 

reactive distillation system. Ethylene glycol, which is fed at two locations in the 

column, plays an important role to boost the overall performance of the column. 

Extractive agent, ethylene glycol fed to the column at stage 2 creates a favorable 

condition for the separation of close boiling components. Ethyl acetate, 

which is the lightest amongst the components in the system, is separated from the 

ethanol and water. Ethyl acetate goes overhead by the presence of ethylene glycol, 

whereas ethanol and water descend down the column with the extractive agent, 

ethylene glycol. In the rectification zone, ethylene glycol and to a lesser extent, 

ethanol, water and acetic acid is separated from ethyl acetate. 
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The temperature profile along column is depicted in figure 6.9. There are two

temperature jump at upper half of the column, namely extractive agent feed point I 

and acetic acid feed point. Understandably, this is due to introduction of high boiling 

components, acetic acid and ethylene glycol into the system. High concentration of 

acetic acid, ethylene glycol and water in the reaction active zone results in increasing 

temperature trend in this part of the column. However sudden drop in temperature was 

noted at ethanol feed point due to introduction of low boiling point component, 

ethanol into the system. At extractive agent feed point 2, again drastic temperature 

change was noted due to introduction of ethylene glycol in the system. From this 

point onwards, steep temperature profile is noted due to high concentration of high 

boiling component ethylene glycol in this zone. 

In the reaction active zone from acetic acid and sulfuric acid feed point to ethanol 

feed point most of the reaction takes place here. Descending acetic acid and ascending 

ethanol from the respective feed points, creates a favorable condition in this portion of 

the column for reaction to take place. Active reaction rate in this zone exhaust most of 

the reactants in this zone itself. Since catalyst present in the bottom half of the column 

(feed point 2 and below) as well, reaction is still active in this zone. However it 

declines as it moves down the column as most of the reactants exhausted in the 

reactive zone. But presence of reaction in this zone supports the conversion in the 

column as it converts un-reacted reactants from the reaction active zone. 

Extractive zone 2, located below reaction active zone, plays the same role as 

extractive zone I. Extractive agent, ethylene glycol is added one tray below the 

ethanol feed. Presence of ethylene glycol prevents the formation of azeotropes 

between ethanol and water in the bottom half of the column as encountered in the 

conventional reactive distillation column, which significantly limits the performance 

of the column. By introducing ethylene glycol, more ethanol could be lifted up to 

participate in the reaction within the reaction active zone and hence increasing the 

overall conversion of the system. The product take off rate is set to be equally 

between distillate and bottoms. It should be noted that the re-boiler heat requirement 

for base case configuration is higher as compared to reactive extractive distillation 

configuration. Additional feed stream, ethylene glycol fed in the bottom portion 
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reduces the L/Y ratio in the column thus lower amount of re-boiler duty is required to 

achieved nearly the same product take off as conventional column. 

Half of the formed reaction product is available in distillate (98 % ethyl acetate) and 

the remaining half is available in the bottoms (98 % water formed goes to the 

bottoms). This shows that the separation efficiency of the system is good. The 

extractive agent i.e., ethylene glycol, fed to the system is taken off together with the 

other components in the bottom stream as it is the heaviest component in the system. 

Significant improvements have been achieved by using reactive extractive distillation 

configuration for the synthesis of ethyl acetate as compared to the conventional 

reactive distillation configuration. In the following section comparison between these 

two configurations is made. 
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6.4 Comparison between Conventional Reactive Distillation Column and 

Reactive Extractive Distillation Column 

I) Comparison of Column Operating Parameters 

Table 6.3: Feed Specifications, Column Configuration and Operating Conditions used 

for Conventional Reactive Distillation Column and Extractive Distillation Column. 

Specifications Specifications 

Conventional Reactive Reactive Extractive 

Quantity Units Distillation Column Distillation Column 

Feed Flowrate 1 mol min- 1 351 351 

Feed Flowrate 2 mol min-1 351 351 

Ex. Agent 1 Flow rate mol min- 1 - 400 

Ex. Agent 2 Flow rate mol min- 1 - 500 

Feed 1 Stage 5 5 

Feed 2 Stage 40 40 

Ex. Agent 1 Feed Stage - 2 

Ex. Agent 2 Feed Stage - 41 

Feed 1 ComQosition 

Acetic acid (Ac) 1 1 

Ethanol (Et) 0 0 

Ethyl Acetate (Ea) 0 0 

Water(W) 0 0 

Feed 2 ComQosition 

Acetic acid (Ac) 0 0 

Ethanol (Et) 1 1 

Ethyl Acetate (Ea) 0 0 

Water(W) 0 0 
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Number of Stages, N so so 
Column Pressure, P atm I 1 

Liguid Holdu~ 

Condenser, Tray liter 5. 7461 x HI mol 5. 7461 x HI mol 

Re-boiler liter 7.8215x HI mol 7.8215 x HI mol 

Reflux Ratio, r 3.0 3.0 

Re-boiler Duty, Qrb cal/ min 8.3 x lfl callmin 6.32 x HI cal/min 

Bottom Flow, B mol min-1 

2) Comparison of Results 

Table 6.4: Comparison Of Steady State Simulation Results Of Conventional Reactive 

Distillation Column And Reactive Extractive Distillation Column 

Distillate Bottom 

Quantity Units Conventional Reactive Conventional Reactive 

Reactive extractive Reactive extractive 

Distillation Distillation Distillation Distillation 

Com~osition 

Acetic acid (Ac) o.ooss 0.0006 0.1S92 O.OOS2 

Ethanol (Et) 0.0632 0.0083 0.1114 0.0030 

Ethyl Acetate (Ea) 0.77S2 0.981S 0.07S3 0.0002 

Water (W) O.IS61 0.0096 0.6S40 0.2724 

Ethylene Glycol (Eg) - 0.0000 - 0.7192 

Temperature K 34S.17 3S0.71 3S3.18 40S.33 

Product flow mol/min 33S.8S 3SO.S2 366.16 12Sl.S 
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Et conversion mole 0/o 82.3 98.07 - 98.07 

Ea purity mole% 77.52 98.15 7.53 0.02 

Reflux flow moVmin 1010 1051.6 - -

As shown in Table 6.3, the column specifications and the input parameters are exactly 

the same for both configurations except for the 2 additional input streams for the 

extractive agent in the reactive extractive distillation configuration. 

Table 6.4 compares the steady state simulation results of conventional ethyl acetate 

reactive distillation column and ethyl acetate reactive extractive distillation column 

proposed in this study. It is evident that there are significant improvements in terms 

of conversion and product (ethyl acetate) purity with new configuration (reactive 

extractive distillation column) proposed in this study. 

Conventional reactive distillation configuration (figure 6.3) failed to separate the 

reactants and products of reaction efficiently in the column especially in the zone 

identified as susceptible for azeotrope formation (i.e. above acetic acid feed point and 

below ethanol feed point). Due to inefficient separation most of the reactants are 

washed away in distillate and bottoms of the column, thus the achieved conversion of 

the system is low even with more number of stages and higher residence time for 

reaction. On the other hand, reactive extractive distillation configuration (figure 6.7) 

proposed in this study was able to perform better in terms of achieved conversion and 

purity in a single column due to introduction of two extractive sections in the column. 

Presence of ethylene glycol in these zones prevents formation of azeotropes through 

extractive action, which ensures more of the valuable reactant being pushed to 

reactive active zone and avoid lost of reactants with product of reaction through 

distillate and bottoms stream. In addition, extractive action above acetic acid feed 

point ensures high ethyl acetate product purity obtained from the distillate by breaking 

the azeotropes formed in this section of the column. 

J 
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In overall by the introduction of extractive action m the column more favorable 

results were obtained as compared to equivalent conventional ethyl acetate reactive 

distillation configuration. 
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7.1 Conclusions 

Ethyl Acetate is an important industrial solvent, which requires relatively complicated 

processing particularly the separation process in order to produce it. There are various 

routes to produce ethyl acetate, but the most preferred route is via the esterification 

reaction of acetic acid and ethanol. The reaction system involved is found to be 

suitable for the application of reactive distillation process. However, it is not 

commercially attractive in view of the low conversion and ethyl acetate purity 

attainable using the option. 

Previous work by other authors on ethyl acetate reactive distillation scheme has been 

the motivating factor for this research study. Un-catalytic ethyl acetate reactive 

distillation column proposed by Komatsu, (1977) and Alejski, (1988), has failed to 

push the conversion beyond its normal equilibrium limit and to produce ethyl acetate 

with a purity over the azeotropic composition limit. Meanwhile, the double feed 

catalytic ethyl acetate reactive distillation column as proposed by Nishith and 

Daotidis, (2001) managed to improve the performance of the column significantly but 

the scheme fails to produce high purity ethyl acetate as a product and completely 

convenrt all the reactants introduced to the system which would ideal case of reactive 

distillation column. This research study has explored the possibilities to improve the 

performance of the ethyl acetate reactive distillation column. 

A steady state simulation model for ethyl acetate reactive distillation column was 

developed at the earlier part of the research work. Appropriate kinetic and vapor 

liquid equilibrium model were incorporated into the proposed model taking into 

account the non-idealities, particularly in the liquid phase. The simulation model 

developed was based on equilibrium stage model where liquid and vapor phases were 

assumed to be in phase equilibrium. 
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The resulting simulation model consists of large combination of complex nonlinear 

differential and algebraic equations (DAEs) that necessitates a numerical solution in 

order to obtain steady state solution. The suitable method for solving system of stiff 

differential and algebraic equations (DAEs) is found to be implicit, multi-step of 

varying order based on relaxation method. Matlab built in function ODE15s was used 

to solve these stiff differential and algebraic equations. The solution strategy 

employed was found to be efficient and robust for arbitrary initialisation though the 

convergence was considered slow especially when approaching the solution. The 

simulation results of this study were found to be comparable with other equivalent 

simulation work and experimental work. 

In order to study the impact of important input parameters on the column 

performance, parametric analysis was carried out. The performance of the column 

was measured by 

looking at overall conversion and ethyl acetate purity at distillate. Through parametric 

analysis, it was learned that the performance of the column could not be enhance 

significantly and thus requiring a completely different configuration. 

A new configuration was proposed for the synthesis of ethyl acetate via reactive 

distillation. The scheme is called reactive-extractive distillation in view of the use of 

extractive agent for the purpose of breaking the azeotropes formed by the components 

in the system and thus aiding the separation to produce pure ethyl acetate. Two 

extractive sections couple with extraneous extractive agent were added in the existing 

conventional reactive distillation column. Through this configuration, performance of 

the column was enhanced significantly as compared to the conventional reactive 

distillation configuration. The achieved ethyl acetate purity at distillate was 98 percent 

and the total conversion for equi-molar feed was 98 percent as well. 
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It is hoped that this research study has open up a possibility tor commercialisation of 

ethyl acetate reactive distillation process as the product purity and conversion 

achieved through the configuration proposed is considered attractive. In addition, by 

utilising the proposed configuration, significant cost saving can be achieved as the 

three unit operations required in the conventional process could be combined into a 

single unit. Meanwhile parametric analysis carried out earlier in this research work 

has been able to explain some of the factors that limit the performance of 

conventional reactive distillation column for synthesis of ethyl acetate. 

7.2 Future Work 

This research work has open up several opportunities for further study. The following 

issues are proposed for future work in modeling and simulation of ethyl acetate 

reactive distillation column. 

7.2.1 Simulation of heterogeneous ethyl acetate reactive distillation column 

Synthesis of ethyl acetate via reactive distillation process can be carried out with 

heterogeneous catalyst as well. The advantages of using heterogeneous catalyst in 

reactive distillation process is that reactive zone can be localize and hence unwanted 

reverse reaction can be avoided. Besides, the homogeneous catalysed reactions also 

are less favored owing to the operational problems of the separation and reuse of the 

catalyst. Reaction kinetics data are available for the esterification of ethanol and 

acetic acid to produce ethyl acetate and water (Geert Hangx, 2001). The suitable 

catalyst for this process is the cation exchange resins Purolite CT179. Simulation 

model used in the current work can be modified to account for heterogeneous reaction 

and comparison can be made on the effects of heterogeneous and homogenous 

catalyst on the performance of the reactive distillation column. 
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7.2.2 Experiments to compliment the simulation results 

The best way to answer a simulation design is to do an experiment. Reactive 

extractive distillation column for the synthesis of ethyl acetate proposed in this 

research work does not have any other sources for comparison purposes, as this is the 

first of its kind. Therefore to compliment the simulation results obtained in this study, 

experiment work need to be carried out on this configuration. 

7.2.3 Implementation of side reaction in kinetic model 

The kinetic model used in the modeling equations can be expanded to account side 

reaction in order to obtain greater accuracy of the simulation results. The main side 

reaction for the synthesis of ethyl acetate is the dimerisation of acetic acid in the 

vapor phase. Appropriate kinetic equations need to be found for this reaction and can 

be included in the existing simulation model of this study. 

7.2.4 Development of non-equilibrium stage model 

The equilibrium stage model used in this research work is a very good pragmatic 

approach suitable particularly in the early stage process development such as the case 

of ethyl acetate reactive extractive distillation column simulation design. In the 

advance stage of development of this process, researchers can use the non-equilibrium 

stage model, which accounts for interaction phenomena (e.g. diffusional and direct 

reaction mass transfer interaction) and also hydraulic aspects of the column (e.g. 

description of residence time distribution and mixing). Through this model, detail 

column behavior can be understood. 

7.2.5 Design and operating parameters optimization of reactive distillation 

column 

In the parametric analysis carried out in chapter 5, it was noted that not all of the 

column operating and design parameters have significant impact on the column 

performance. Insignificant design and operating parameters can be screened out and 

future research work can consider of overall design and operating parameters 

optimization. This is to ensure that the basic configuration of the reactive distillation 

column is optimized in the first place before control study is to be performed. 
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Appendix 

UNIFAC Model Parameters Values 

-CH3 -CH2 -COOH -OH -COOCH3 

R 0.9011 0.6744 1.3013 1.0000 1.9031 0.9200 

Q 0.8480 0.5400 1.2240 1.2000 1.7280 1.4000 

0 0 986.5 1313 232.1 663.5 

0 0 986.5 1313 232.1 663.5 

-COOH 156.4 156.4 0 353.5 101.1 199.0 

-OH 300.0 300.0 -299.1 0 72.87 -14.09 

114.8 114.8 245.4 200.8 0 660.2 

315.3 315.3 -151.0 -66.17 -256.30 0 


