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Abstrak

Loji penyejukan gas (RGP) menghadapi cabaran-cabaran operasi melalui tiga cara iaitu:
1) di aliran masuk, gas mentah berbilang aliran dicampur-aduk hingga menyebabkan
naik-turun dalam kadar aliran dan kandungan gas; 2) di dalam RGP, penutupan tidak
berjadual sering terjadi akibat kepincangan peralatan; 3) di hiliran, kualiti produk yang
ketat dikuatkuasakan oleh pelanggan-pelanggannya. Dari sudut perniagaan, RGP
menandatangani pelbagai perjanjian dengan pengeluar-pengeluar gas mentah, Harga gas
mentah berubah bergantung kepada kualiti gas dan tempoh kontrak. Harga-harga gas asli
cecair yakni etana, propana, butana dan hasil pemeluwapan diapung kepada nilai-nilai
pasaran. Sebaliknya, harga gas asli ditentukan oleh kerajaan,

Cabaran-cabaran ini memaksa RGP untuk meningkatkan kecekapan dan seterusnya
mempertahankan keuntungan. Satu bidang yang dikenalpasti dalam peningkatan
kecekapan ialah semasa perancangan pengendalian. Perancangan sebegini
mengemukakan masalah penjadualan jangka pendek dan selanjar di mana sasaran-sasaran
dilaksanakan secara langsung oleh alat-alat kawalan regulatori, Walaupun amalan ini
diterimapakai sekarang, faedah ekonomi boleh dipertingkatkan dengan kekerapan
penilaian semula sasaran-sasaran loji melalui pengoptimuman masa-nyata (RTO). Oleh
kerana penjadualan diusahakan pada skala masa yang lebih panjang (hari-minggu)
berbanding dengan RTO (jam-hari) dan kawalan (saat-minit), integrasi ketiga-tigﬁ lapisan
automasi ini adalah sukar. |

Tesis ini mencadangkan satu rangkakerja yang menyepadukan penjadualan dan RTO
untuk RGP. Pada lapisan atas, satu model dinamik RGP dikemukakan kepada tiga jenis
masalah penjadualan yakni aliran masuk, beban, dan mod. Penjadualan alirar masuk
merujuk kepada pencampuran pecahan-pecahan tertentu gas mentah yang reﬂdah dan
tinggi dengan kandungan hidrokarbon pada kadar loji biasa iaitu 280 tan/jam.
Penjadualan beban merujuk kepada mempelbagaikan kadar aliran gas mentah rendah
kandungan hidrokarbon sebanyak +30 tan/jam. Penjadualan mod merujuki kepada
mengubah mod pengendalian loji daripada gas asli kepada gas asli cecair, dan sebhliknya.

Sasaran-sasaran daripada lapisan penjadualan dinamik dihulurkan kepadaé lapisan
RTO berkeadaan mantap. Ketidakseragaman antara model dan loji dikurangkani dengan

cara menggantikan nilai-nilai pembolehubah utama antara model berdinamik dan model
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berkeadaan mantap. Trajektori-trajektori optimum diperolehi menggunakan algoritma
pemprograman kuadratik berjujukan dengan kekangan. Trajektori-trajektori ini
dilaksanakan secara berasingan oleh skim kawalan ramalan bermodei (MPC) dan alat-alat
kawalan berkadar-kamiran (PI) untuk perbandingan. Lapan kajian kes bagi setiap masalah

penjadualan dipersembah untuk menunjukkan kemujaraban teknik yang dicadangkan.
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Abstract

A refrigerated gas plant (RGP) faces operational challenges on three fronts namely: 1) at
inlet, multiple feed gas streams are mixed causing fluctuation in flow and composition;
2) within RGP, unscheduled shutdowns due to equipment malfunction often occur; 3) at
outlet, strict product specifications are enforced by its customers. In business aspect, RGP
enters into diverse agreements with producers. Prices of feed gas vary depending upon
quality of gas and tenure of contracts. Prices of liquids namely ethane, propane, butane
and condensates are floated to market values. In contrast, price of sales gas is tightly
regulated by government.

These challenges forces RGP to improve its efficiency in order to sustain profitability.
An identified area of improvement is during operational planning. This type of planning
poses a short-term and continuous scheduling problem in which preconfigured setpoints
are directly implemented by regulatory controllers. While this practice is currently
accepted, economic benefits can be further realized by frequent reevaluation of plant
states through real-time optimization (RTO). Since scheduling is performed at a much
larger time-scale (days-weeks) as compared with RTO (hours-days) and control (seconds-
minutes), integration of these three automation layers is difficult.

This thesis proposes an integrated framework of scheduling and RTO of the RGP. At
top layer, a dynamic model of RGP is subjected to three types of scheduling problems
namely input, load, and mode. Input scheduling refers to mixing of certain fractions of
lean and rich feed gas streams at normal plant load of 280 ton/h. Load scheduling refers
to varying flow rate of lean feed gas stream by *30 ton/h. Mode scheduling refers to
change of plant operating mode from sales gas to natural gas liquids, and vice-versa.
Setpoints from dynamic scheduling layer are passed to steady-state RTO layer. Modeling
mismatch is minimized by rigorously exchanging values of key variables between
dynamic and steady-state models. Optimal trajectories of setpoints are obtained using
sequential quadratic programming algorithm with constraints. These trajectories are
disjointedly implemented by mode! predictive control scheme and proportidnal-integral
controllers for comparison. Eight case studies for each scheduling problem are performed

to illustrate efficacy of the proposed approach.
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CHAPTER 1
INTRODUCTION

1.1  Overview

Planning is a prerequisite for completing work on time. An old adage “If you fail to
plan, you plan to fail” is useful and still valid. There are three levels of planning
namely strategic, tactical and operational. Planning differs from forecasting in the
sense that the former largely relies on facts and contractual agreements whereas the
latter involves an element of speculation. Strategic planning deals with process of
making major business decisions such as contractual agreement, joint venture, merger
and acquisition. The time horizon varies from months to years. Tactical planning is a
company-wide strategy that set operating performance targets, and coordinates
manufacture, sales and distribution of products. These activities take weeks to months
of planning. Operational planning, often called scheduling, is a plantwide strategy that
decides on timing of certain activities and processing of specific raw materials in
order to cope with demands. This type of planning can be executed within days to

weeks.

The relatively shorter timeframe of scheduling makes it a good candidate for
integration with lower levels of decision-making tasks. Economic benefits are
enormous depending on the levels of integration and types of industry. For a very
large plant, integration of planning, scheduling and control strategies can increase
profitability to as high as US$10 for every ton of feed (Shobrys and White, 2000).
Previous efforts on integration are limited due to five technical limitations namely:
1) immature capabilities on analytical techniques, 2) relatively slow computer speed,
3) underdeveloped system of information management, 4) unfriendly user interface,
and 5) difficult connectivity between applications. Despite all of these, the economic
incentive is large enough to generate strong research interests for studying integration

of some, if not all, layers of process automation hierarchy.




1.2 Motivation

The current work is motivated by the ultimate desire of process systems engineering
researchers to integrate all levels of plant automation (Figure 1.1) as a single-level
control (Tousain, 2002). With the measurement and actuation processes denoted as
level 0, the remaining levels are: 1) regulatory control, 2) advanced process control
(APC), 3) real-time optimization (RTO) and 4) enterprise resource planning {ERP).
Early emphasis was given to integration of regulatory control and APC due to
proximity of their respective time scales as well as potential benefits in economics
and plant stability. Here, an APC strategy called model predictive control (MPC)
scheme overtakes all control calculations and passes optimal targets to regulatory
controllers for implementation. Direct execution of targets from an MPC scheme to
control valves is currently prohibited due to safety and reliability concerns (Tatjewski,

2008).

ERP

Real-time
Optimization

Advanced Process Control

Figure 1.1: Plant automation pyramid

Integration of MPC and RTO brings in additional benefits to process industries.
This approach entails combining process modeling, process control and plantwide

economic optimization into a single platform. Operational disturbances are handled




by MPC whereas external disturbances such as market swing are taken care of by
RTO in a unified way. If both MPC and RTO are to be solved simultaneously, the
resulting problem is a dynamic optimization problem. For a relatively difficult process
involving a two-phase reactor such as the Tennessee Eastman challenge (Downs and
Vogel, 1993), the dynamic optimization problem can be transformed into a large-scale
nonlinear programming and solved using standard solvers such as Sparse Nonlinear
OPTimizer (SNOPT) or Interior-Point OPTimizer (IPOPT). However, for a highly
nonlinear and much larger-scale problem, the simultaneous approach may face
computational intractability. For industrial cases such as natural gas processing, a
formulation of static RTO problem is more practical because a gas processing plant is

essentially intended to operate in steady states.

At the ERP level, integration of production planning and scheduling is a popular
subject in operations research field. The emphasis is on logistics and distributions,
which typically involve linear and steady-state models (Grossmann, 2005). At
planning sublevel, a so-called master problem is formulated for supply chain
management based on a big-bucker time grid (e.g., 1 week). Targets from the master
problem are processed at the more detailed scheduling sublevel based on a small-
bucket time grid (e.g., 1-hour). A link between planning and scheduling is made
through constraints on production resources, operational events, raw materials and
market demands (Amaro and Barbosa-Povoa, 2008; Maravelias and Sung, 2009).
These constraints are used for enforcing production targets at the end of a schedulin.g
horizon (e.g., 1 week) in each planning period. The scheduling decisions are
performed repeatedly when a new set of targets are specified at each subsequent

planning period until the end of a planning horizon (e.g., 1 month).

Currently, the production targets are implemented using MPC schemes and/or
regulatory controllers. This top-down approach is hierarchical in the sense that
production targets are executed sequentially with manual feedbacks from operation
personnel. The feedbacks are important to ascertain whether operating setpoints that
are determined at the end of a scheduling horizon are practical based on some
heuristics and/or design specifications. It is also important to ensure that the operating
setpoints such as flow rates, temperatures and pressures are globally optimal. The

optimal setpoints can only be determined by executing an RTO procedure based on




scheduling decisions. If scheduling and RTO problems are solved simultaneously,
tremendous benefits in the range of 0.10-0.15 US$/barrel for a typical refinery can be
achieved (Moro, 2003). However, several challenges must be overcome in order to

solve an integrated problem of this magnitude.

1.3 [Issues with Integrated Framework of Scheduling and RTO

A scheduling problem is typically formulated as a mixed integer programming (MIP)
problem due to presence of binary decision variables. On the other hand, an RTO
problem can be formulated as either a steady-state or dynamic optimization problem.
If the latter approach is selected, the integrated framework of scheduling and RTO
leads to a mixed integer dynamic optimization (MIDO) problem. A strategy to solve a
small MIDO problem has been demonstrated in, for example, calculations of optimal
grade transition policies and control configurations for a continuous polymerization
reactor (Chatzidoukas et al., 2003). Here, the MIDO problem is transformed into a
mixed integer linear programming (MILP) problem that is solved using standard

methods such as generalized Benders decomposition.

In a nutshell, the production targets at the end of a scheduling horizon are not
implemented immediately. They are passed down to the RTO layer for online
optimization of operating setpoints. This sequential approach links production and
economic objectives as well as plant operations through a nonlinear first-principle
model of an operating unit. In other words, the optimization is performed locally at an
individual unit instead of globally at plantwide scale. It should be noted that a typical
plant comprises several large and small operating units. The objectives of these
individual units are often cohﬂicting. A set of solutions to multiple MILP problems
based on several single units can thus result in suboptimal solutions or infeasible

operations for the entire plant (Pinto et al., 2000).

To overcome this issue, the production targets must be implemented based on an
integrated framework of scheduling and RTO with the latter being performed using a
plantwide model that constitutes the entire network of individual units. However,
applicability of this strategy to a large-scale integrated plant is hindered with the

following limitations:




1. Difficulties in developing rigorous dynamic models of large process units: A
rigorous first-principle dynamic model for a large unit is difficult to develop.
In fact, some of the operating units such as liquefied natural gas (LNG) heat
exchangers, polymerization reactors and fluid catalytic crackers are process
specific, It is also common for these units to adopt proprietary technologies
from third parties and thus making them more expensive to be modeled. On
the other hand, even if dynamic models of these units are available in open
literature, customization of these units to suit the current process is generally

required.

2. Difficult connectivity among various applications and dynamic models of
large individual units into a single process flowsheet: There are two aspects on
this issue. First, a simulation platform may be useful for modeling the
processes but it may be lacking an optimization routine. As a result, another
application from a different platform is required for this purpose. The second
aspect relates to integration of various dynamic models of small, medium and
large process units into a single flowsheet. In many cases, some medium and
large operating units have to be modeled in a different software environment
due to the following factors: 1) unavailability of built-in models in the current
platform, 2) the requirement of more rigorous models for certain units like air
coolers and shell-and-tube heat exchangers, and 3) the need for employing
different thermodynamic property packages for different processes. The
connectivity issue must be resolved a priori before solving any global

optimization problem at the RTO level.

3. High computational load in executing an online optimization procedure,
especially for large-scale nonlinear problems: In literature, it is common to
solve MIDO problems based on mathematical programming approaches. Here,
the first-principle dynamic models are used for estimating process parameters
and calculating optimal targets of the plant. For process industries, the
dynamic models normally take the form of stiff and high order differential
algebraic equations (DAEs), As the number of DAEs increases to a certain

extent, the computational load may increase exponentially depending on:




1) degrees of nonlinearity of the models, and 2) techniques used for speeding
up the convergence rate. This situation renders the optimization problems
intractable and therefore preventing the implementation of optimal targets at

the control level.

4. Concerns on model and process uncertainties: In process industries,
uncertainties can be instigated from various sources. As such, a suitable
classification of uncertainties was proposed by Pistikopoulos (1995) as
follows: 1) model-inherent uncertainty such as physical properties, kinetic
constants and mass/heat transfer coefficients, 2) process-inherent uncertainty
such as flow rate, temperature, pressure, steam quality and processing time,
3) external uncertainty such as feed stream availability, product demands,
prices of feed stocks and products as well as environmental factors, and
4) discrete uncertainty such as equipment availability and absence of operation
personnel. These aspects of uncertainties are often left out during a
deterministic optimization procedure, which only considers known

parameters.

1.4 Thesis Objectives and Outline

The main goal of this thesis is to provide a means for an integrated framework of
scheduling and RTO. Out of the four technical limitations discussed in Section 1.3,
the current integrated approach attempts to address the first three. To overcome the
first two limitations, rigorous steady-state and dynamic first-principle models of all
process units are developed in a single HYSYS simulation platform. The dynamic
model is built on top of the high-fidelity steady-state model. Dimensions of operating
units are specified mostly based on information retrieved from Mechanical
Engineering Handbooks and Technical Datasheets of the actual plant. Mismatch
between the steady-state and dynamic models is minimized by sufficiently
transferring values of key variables. This approach eliminates potential errors that
could arise from transferring data manually. Communication between different

simulation packages is executed via component object module (COM) technology.




Another issue that hinders the adoption of integrated approach of scheduling and
RTO is computing speed when handling online calculations. This is true, especially
for large-scale mixed-integer and nonlinear optimization problems. To circumvent
this issue, the scheduling problem is formulated as a continuous instead of a batch
decision-making process. This way, no discrete variables are involved to give rise to
the MIP problem. Hence the scheduling problem can be formulated as a nonlinear
programming (NLP) problem. To further reduce uncertainty during data reconciliation
step, the scheduling decisions are initially executed using a dynamic model. Thus,
setpoints are updated based on the future plant responses. These setpoints are

optimized at the RTO level prior to actual implementation.

The RTO procedure employs a steady-state model in order to significantly reduce
computational load. Optimal setpoints are obtained by maximizing a profit function,
which is subjected to steady-state model convergence and operational constraints. A
solution is obtained using a standard sequential quadratic programming (SQP)
algorithm. The optimal setpoints are enforced on another dynamic model (a virtual
plant), which is kept at the state prior to scheduling. The implementation of these
setpoints is performed disjointedly using HYSY'S built-in regulatory contr;)llers or an
external MPC scheme. In this work, MPC actions are calculated using Model
Predictive Control Toolbox in MATLAB. The MPC moves are passed to a HYSYS
spreadsheet via COM link. For parameter estimation, process outputs from the

dynamic model are forwarded to MATLAB in a similar manner.

To demonstrate the efficacy of the proposed integrated approach, a fairly large-
scale integrated plant in the form of a refrigerated gas plant (RGP) is used as a test
bed. The RGP is made out of three LNG heat exchangers, a propane-refrigerated
cooler, two flash separators, a 40-tray distillation column, a packed-bed absorber, a
Joule-Thompson valve, a mechanically-linked turboexpander-compressor, iwo
centrifugal pumps, a booster compressor and an air-fan cooler. The dynamic model of
RGP containing 770 stiff DAEs is subjected to three cases of scheduling problems
namely: 1) mode, 2) load, and 3) input. Each case is further divided into several sub-

cases as illustrated in Figure 1.2. In total, twenty-four case studies are conducted.
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Figure 1.2: Flowchart of case studies for three scheduling problems. Each problem is
divided into two cases and each case is further divided into four sub-cases. Nofte:
SG=sales gas; NGLs=natural gas liquids; Mix A-B denotes mixing of 130 and 150
ton/h of feed gas streams A and B, respectively; Mix A-C denotes mixing of 180 and
100 ton/h of feed gas streams A and C, respectively.

Following the introductory remarks, the remaining discussions of this thesis are

organized as follows:

. Chapter 2 presents reviews of past work on ERP, RTO and MPC as well as
integration between different levels of plant automation. The current
research work deals with operational planning, which is also known as
scheduling. In normal situation, scheduling targets are executed by MPC
schemes and/or regulatory controllers. However, it is more beneficial if
scheduling can be integrated with RTO before implementation of targets.
Integration of scheduling and RTO is difficult due to multi-temporal scales
of the two problems. A proposed approach to the integrated framework is

the main subject of this thesis.

. To illustrate efficacy of this concept, a refrigerated gas plant (RGP) is used
as a test bed. The RGP is essentially a combination of two major units of a
gas processing plant {GPP) namely low temperature separation unit (LTSU)
and sales gas compression unit (SGCU) as shown in Figure 1.3. The main

product is sales gas containing mostly methane and traces of ethane. Quality




of sales gas is strictly upheld according to product specifications. MPC
and/or regulatory controllers are employed to sustain production of sales gas
and maintain stability of plant. The by-products are natural gas liquids
consisting of ethane, propane, butane and condensates. Natural gas liquids
are forwarded to product recovery unit (PRU) for further processing into
individual hydrocarbon components. Developments of RGP steady-state and

dynamic models as well as control schemes are presented in Chapter 3.

In Chapter 4, an RTO procedure is discussed and a case study is presented.
A steady-state RGP model is used for this purpose due to highly complex
and nonlinear nature of the process. An economic parameter in the form of
RGP profit is chosen as an objective function. The optimization goal is to
maximize profit, which is defined as revenues less expenses. Revenues are
drawn from values of sales gas and natural gas liquids. Expenses are
incurred due to costs of feed gas and utilities especially on refrigeration
cooler duty, demethanizer reboiler duty, compressor fuel gas consumption,
turboexpander-compressor maintenance and electricity usage on pumping
actions. The RTO case study centers on balancing flow rates of feed gas
streams A, B and C. Feed gas stream A is the leanest in terms of
hydrocarbon gross heating value whereas feed gas streams B and C are rich
and richest, respectively. Carbon dioxide content also varies with increasing
level from feed gas stream A to C. Maximization of profit is carried out by
manipulating ten optimization variables subject to thirty-four constraints on
operational parameters. The case study serves as a basis for a subsequent

discussion on integrated framework of scheduling and RTO.
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Chapter 5 presents the main work of this thesis. Here, a procedure for the
proposed integration of scheduling and RTO is elucidated. The proposed
integrated framework is applied to three scheduling problems. Problem I is
scheduling of RGP operatiorial mode from natural gas liquids to sales gas
(Case A), and vice-versa (Case B). Mode scheduling is important for RGP
to manage production subject to present conditions at both sides of its
boundary. Problem II involves varying RGP load by + 30 ton/h from a
normal plant load of 280 ton/h (Cases C and D). Load scheduling is often
carried out due to the following reasons: 1) section cleanups, 2) unscheduled
equipment shutdown or simply malfunction, 3) low supply of feed gas from
producers, and 4) abnormally high demand of sales gas from customers.
Problem III deals with mixing specific amounts of lean and rich feed gas
streams at the normal load. This case, termed input scheduling, gives RGP
an option to explore whether it is beneficial to process rich feed gas streams
given operational and contractual constraints. Input scheduling case in this
chapter differs from that in Chapter 4, in which RGP can freely choose the
combination and quantity of feed gas streams to be processed. In Chapter 5,
mixing of feed gas streams A and B (Case E) as well as feed gas streams A
and C (Case F) are pre-specified according to a priori agreement between

RGP and producers.

In Chapter 6, four major contributions of this thesis work are highlighted.
The contributions are: 1) development of steady-state and dynamic models
of RGP on a single HYSYS platform to be used as test beds for the proposed
integrated approach, 2) systematic identification of the dynamic model of
RGP using step and pseudo-random binary sequence (PRBS) input signals
to be deployed in MPC scheme, 3) RTO assessment of profit margin by
forcing RGP to consider processing additional feed gas streams, and most
importantly, 4) proposition of an integrated framework of scheduling and
RTO with realistic applications on three scheduling problems namely mode,
load and input. Efficacy of the proposed approach is revealed by comparing

relative profit margins and case-average profit values of all case studies. In
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addition, potential solutions to the challenges faced in the current work are

recommended as future research avenues.

Finally, three appendices are included at the end of this thesis to show Peng-
Robinson thermodynamic equations of state used in modeling the
hydrocarbon properties (Appendix A), values of optimization and constraint
variables for Cases A to F (Appendix B), and a list of publications related to
this work (Appendix C).




CHAPTER 2
LITERATURE REVIEW

2.1 Plant Automation

Plant automation refers to a series of activities that are planned and executed in order
to meet business and engineering objectives. Previously, plant automation is classified
into five levels namely: 1) regulatory control, 2) advanced process control (APC),
3) real-time optimization (RTO), 4) production scheduling, and 5) production
planning. In a very recent literature (Harjunkoski et al., 2009), production planning
and production scheduling levels have been grouped together as part of a single
enterprise resource planning (ERP) level whereas the rest are kept as standalone
levels. This decision is made due to time-scale: 1) similarities in executing tasks at the
highest level, and 2) dissimilarities in carrying out activities at the other levels. The
subject of plant automation has received great interest from process systems
engineering (PSE) community. Its ultimate aim is to achieve full integration of all

levels of plant automation into a single one (Tousain, 2002).

Execution of the multi-temporal activities in a single integrated framework is a
daunting challenge. Among major challenges that must be addressed are (Grossmann,

2005):

1. The modeling challenge: Traditionally, problems at various levels of plant
automation are solved based on different modeling approaches. At the top
level, steady-state business and plant conditions are assumed. Linear process
models are commonly employed for simplicity. Often, mixed integer problems
are formulated due to presence of discrete variables in the decision-making
processes. At the bottom level, linear or nonlinear dynamic models are used to
address the highly transient processes. Hence an effective modeling technique,
possibly, based on a hybrid system of mathematical programming and logic is

required to encapsulate all types of process complexity.

2. The multiscale optimization challenge: For an integrated problem of two

similar levels, a feasible but not necessarily an optimal solution can be
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obtained through functional, spatial and/or temporal decompositions.
However, coordination of various activities across all levels of plant
automation results in a very large-scale optimization problem. Given the first
modeling challenge, an efficient optimization method is réquired to solve the
multiscale integrated problem of all levels. The solution time horizons for each
of these levels vary as follows: planning (weeks to years), scheduling (days to
weeks), RTO (hours to days), APC (minutes to hours) and regulatory control

(seconds to minutes).

3. The uncertainty challenge: Uncertainty is a critical issue in plant automation.
The nature of uncertainties varies dramatically from the highest decision-
making level to the lowest implementation level. For example, at the ERP
level, uncertainties may arise from order cancellations, processing times or
equipment reliability/availability. At the RTO level, uncertainties may take
place in the forms of measurement, process, model and market variations. At
the APC and regulatory control levels, uncertainties may occur due to random
disturbances. A meaningful stochastic technique based on heuristics and meta-

heuristics is required to address these issues in a unified way.

4. The computational challenge: Depending on how the above three challenges
are addressed, the large-scale optimization problem may become intractable
due to very high computational load. A feasible and optimal solution may not
be found in time for execution at the lower levels. This challenge needs to be
tackled from two aspects namely: 1) development of an efficacious algorithm,
and 2) overcoming hardware limitations. Both aspects are intertwined in the
sense that the latter may become a non-issue if the former is very efficient in
solving the optimization problem, or the former may be overlooked if a super

computing architecture is available.

Based on the aforementioned challenges, previous and on-going research works focus
on integrating two decision-making levels at a time. The existing frameworks can be
classified into: 1) higher-level integration, and 2) lower-level integration. All two

integrated frameworks share more or less similar challenges.
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2.1.1  Integration at Higher Decision-making Levels

Enterprise resource planning (ERP), often called supply chain management (SCM),
involves planning and scheduling activities for the whole plant. As such, ERP deals
with key business decisions for activities such as marketing, sales, distribution and
transportation as well as top-level engineering decisions for activities like production
and storage. In reality, business decisions take the longest time to execute due to,
among others, lengthy contract negotiations and procurement processes as well as
environmental, safety, social and, to some extent, political considerations. The time
horizons are on the order of months to years for strategic planning, weeks to months
for tactical planning and days to wecks for operational planning. Strategic planning is
a highly business-driven activity and thus will not be covered in this thesis. On the
other hand, tactical and operational planning deal with mostly engineering-oriented
activities that are tightly related to plant processes. In literature, these activities are

referred to as production planning and scheduling, respectively.

Production planning and scheduling have been interesting subjects in operations
research (OR) and process systems engineering (PSE). Excellent reviews on this
subject have been published by Floudas and Lin (2004), Shah (2005) and Mendez et
al. (2006). In general, planning and scheduling deal with the timely allotment of
company/plant resources to execute a set of tasks. In the context of PSE community,
planning and scheduling refer to specific strategies of assigning equipment, exploiting
utilities and managing manpower to perform processing tasks required to manufacture

single or multiple products.

In typical OR literature (Stadtler, 2005; Varma et al., 2007), planning and
scheduling are treated as independent entities due to their dissimilar time scales and
complexity levels. The separate treatment of planning and scheduling often leads to
inefficient allocation of resources. For example, Shah (2005) highlighted that:
1) stock levels in the entire plant are typically in the range of 30-90% of annual
demand, 2) supply chain cycle times, defined as time-elapsed between materials
entering a plant as feedstock and leaving it as products, can vary from 1000-8000
hours, and 3) less than 10% of fine chemical and pharmaceutical intermediates that

are being processed ends up as final products.
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There are strong overlaps within both planning and scheduling activities. As such,
an integration of planning and scheduling into a large-scale problem makes sense
(Figure 2.1). The integrated framework can enhance plant profitability and reduce
capital expenditure associated with maintaining inventories. For examples, Exxon
Chemicals estimated 2% annual reduction in operating costs and another 20%
reduction in inventory and, similarly, Du Pont reported a reduction of inventory-
related working capital from US$160 million to US$95 million for a polymer facility
(Shobrys and White, 2002).

Planning

A

A 4

Scheduling

F

RTO

APC

1

Regulatory Control

Plant

Figure 2.1: Integrated planning and scheduling

Realizing a huge potential for the integrated framework of planning and
scheduling, many researchers and practitioners started to work in this emerging area.
Modeling approaches and solution strategies for the integrated framework have been
discussed by Bassett et al. (1996), Kallrath (2000, 2002), Grossmann and co-workers
(2002, 2005) as well as Maravelias and Sung (2009). Early attempts to formulate this
problem are based on a simultaneous modeling approach with applications in
multipurpose batch plants (Birewar and Grossmann, 1990; Shah and Pantelides,
1991). It should be noted, however, that the simultancous approach could potentially

result in an intractable optimization problem. Thus, Papageorgiou and Pantelides
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(1996) proposed a mathematical formulation and a two-stage decomposition approach
with applications on batch and semicontinuous plants. The higher level problem is
solved cyclically in order to choose a planning campaign whereas the lower level
problem is used to generate scheduling operations iteratively, At each iteration, an

integer cut is added to avoid a repeat solution of the same planning campaign.

Alternatively, a full-space approach is proposed for solving the integrated
planning and scheduling problem for an oil refinery (Pinto et al., 2000), a hydrogen
supply network (van den Heever and Grossmann, 2003), petroleum and petrochemical
plants (Kelly, 2004) and a fruit packaging plant (Blanco et al., 2005). In general, links
between planning and scheduling problems are made through constraints. This means
that, at the upper sublevel, production targets in each planning period is tied up to the
orders at the end of the relevant scheduling horizon. At the lower sublevel, a detailed
scheduling model that incorporates resource constraints and production costs is used.
Lagrangian relaxation is applied to a master problem in order to separate soft from

hard constraints resulting in the formation of more tractable subproblems.

The above approaches require detailed scheduling formulation for the whole time
horizon and thus significantly increases computation load. A more efficient approach
is based on a rolling horizon scheme (Dimitriadis et al., 1997). Here, detailed
scheduling models are employed in the first few periods because production targets
are implemented exactly. Aggregate models are used for the later periods when
targets are updated as the horizon rolls. Lin et al. (2002) discussed a three-level
integrated model for multi-stage production scheduling of a multiproduct batch plants.
At the first level, length of rolling horizon is optimized based on certain production
targets. At the second level, a short-term scheduling model is formulated based on
customer orders, inventories and processing recipes. Finally, the scheduling model is
solved by iteratively maximizing throughput of specified products. A doWnside of the
rolling horizon approach is that global optimality cannot be guaranteed for the entire

scheduling operations.
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2.1.2  Integration at Lower Decision-making Levels

The decisions related to the operation of a process plant are typically made at three
different levels. At the highest level, production planning and scheduling provide
coordination of activities over a long time horizon (weeks to months). At the lowest
level, APC handles setpoint tracking and disturbance rejection by optimally adjusting
plant inputs over a short time scale (minutes to hours). A well-known strategy to
establish a link between the highest and lowest level of decision making is RTO. The
RTO system optimizes plant economics over a medium time scale (hours to days).
Efforts to integrate RTO and MPC (Figure 2.2) have been long carried out by the PSE

community.
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Figure 2.2: Integration of RTO and MPC

This idea was first realized by Cutler and Perry (1983) who proposed a
hierarchical approach of RTO and APC. Here, online optimization was performed
based on a steady-state plant model and the resulting optimal targets were passed to
the controllers for execution at the actual plant. The authors argued that an economic
benefit in the range of 6-10% of a given process value could have been achieved via

online optimization. As compared with the traditional offline procedure, this approach
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provides improvements in abilities: 1) to know the current plant state precisely, 2) to
operate the plant at or near constraints, and 3) to obtain direct feedback on the validity
of the predictions. A major drawback for this hierarchical approach is the low

frequency of RTO sampling time.

The RTO sampling time may be as fast as hours or as slow as days depending on:
1) sensitivity of spot-market prices of feedstock and products, 2) settling time of the
entire plant, and 3) the inconsistency between the underlying process models of RTO
and APC. The first reason actually depends on the terms and conditions in the
contractual agreement between plant and its customers. On one hand, prices of
feedstock and products might have been agreed upon long-term basis; hence
insensitive to market conditions. On the other hand, prices of products such as oil
derivatives (naphtha, gasoline, kerosene), natural gas liquids (ethane, propane, butane)
and chemicals (methanol, MTBE, PVC) are subject to daily revisions. In this case, it
may be more meaningful to perform RTO calculations once a day or whenever price

updates are available,

While the first reason involves business decisions, the last two reasons are caused
by technical limitations. The second reason is due to a requirement that the plant must
be near a steady state before an RTO procedure, which comprises data reconciliation,
parameter estimation and optimization, can be triggered (Darby and White, 1988). In
practice, a plant settling time may vary remarkably from one to another. For example,
a crude distillation unit takes 1-2 hours to settle (Basak et al., 2002) while others like
a propane-propylene splitter requires 2-3 days to reach a new steady state once it is

perturbed (Alsop and Ferrer, 2006).

A plant could also be in a highly transient state due to, among others, the presence
of random disturbances. In this situation, it is difficult to perform data reconciliation
because of potentially large plant-model mismatch. One way to reduce the gap
between the low frequency RTO procedure and the fast APC executiQn time is
through a two-stage APC structure (Ying and Joseph, 1999). The upper APC stage
computes setpoints for control variables by solving a constrained linear oﬁ quadratic
optimization problem based on economic information and constraints fron‘i the RTO

level. The setpoints are passed to the lower APC stage for calculating opfimal input
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moves that are subsequently sent to the plant. As compared to the hierarchical
approach, an integrated framework of steady-state RTO and a two-stage dynamic

MPC structure is more superior in the following issues:

. Setpoints can be updated faster after a disturbance enters the plant

. Inconsistency between nonlinear steady-state RTO model and dynamic APC
model is significantly reduced

J Instability that results from large setpoint changes is avoided

o Distribution of offsets is explicitly controlled and optimized

In an industrial application, Zanin et al. (2000, 2002) reported the formulation,
solution and implementation of a one-layer RTO-APC scheme for a fluidized-bed
catalytic cracker unit of a PetroBras plant in Brazil. The unit had seven process inputs
and six outputs. Maximization of liquefied petroleum gas (LPG) throughput was used
as an economic criterion subject to input and output bounds. The authors found out
that tremendous economic performance was achieved for the integrated scheme as
compared with conventional scheme in which setpoints were chosen based on
experience. From simulation studies, the one-layer scheme was also determined to

outperform the two-layer RTO-APC approach.

For more demanding applications, RTO and APC strategies can be executed
dynamically at a fast sampling rate and thus avoiding the issue of inconsistencies
between process models. This type of integrated framework of RTO-APC gives rise
to a dynamic optimization problem. In a pioneering work, Helbig et al. (2000)
attempted to solve this problem simultancously and repetitively at each control
interval. This strategy corresponds to a single-level optimal control problem. For
large-scale and highly nonlinear processes, this strategy faces computational
difficulties in finding feasible solutions within a reasonable control interval. The
computational load issue is compounded by uncertainties in process model, time-
varying disturbance and unknown initial conditions. The issue of uncertainties may be
alleviated by updating process model with current measurements of process variables.
However, some important variables such as temperature and pressure in the middle of

a distillation column are only measured sparingly or not at all due to cost savings. As
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such, suitable estimation techniques like extended Kalman filter (EKF) may be
employed for state and disturbance updates (Lee and Ricker, 1994).

In a related work, Kadam et al. (2002) employed a multirate EKF for estimation of
state variables and parameters in a two-level strategy of integrated framework of RTO
and MPC. This problem may be viewed as a quasi dynamic optimization problem
because RTO calculation is performed at a much lower frequency as compared with
MPC calculation. At the higher level, RTO is subjected to external disturbances such
as economic factors and environmental conditions whereas MPC is subjected to
operational disturbances at the lower level. The decision for triggering RTO
calculation is made at a time-scale separation block connecting these two levels. The

trigger is based on sensitivity analysis of the optimal reference trajectories.

To be more systematic on the triggering mechanism, Srinivasan et al. (2003)
proposed a tracking scheme that is derived from necessary conditions of optimality
(NCQO). This NCO-tracking scheme relies on a solution model that is used to
manipulate inputs. The solution model is obtained by dissecting optimal input profiles
and relating these profiles to various parts of the NCO. Throughout the solution
horizon, optimal input profiles are typically discontinuous from one interval to the
next at the so-called switching times. However, they are continuous and differentiable
within one or more intervals called arcs (Bryson and Ho, 1975). To leverage on these
properties within the arcs, Schlegel and Marquardt (2004) proposed a method that
automatically detects the switching times. The optimal solution is found in three steps

namely:

1. parameterization of input variables using a discretized B-spline representation
or, more recently, using a wavelet transformation technique (Schlegel and

Marquardt, 2006),

2. reformulation of the integrated dynamic optimization problem as muiti-stage

NLP problem, with each stage corresponds to a potential arc, and
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3. solution of the NLP problem using SNOPT, which is an efficient active-set
SQP algorithm (Gill et al., 1998, 2005) and LIMEX as a numerical integrator
(Schlegel et al., 2004).

The NLP problem can also be treated with a barrier or an interior-point method.
Here, differential state variables, algebraic state variables and manipulated variables
are grouped as unknown variables (Kameswaran and Biegler, 2006). These bound
constraints are replaced by two logarithmic terms comprising differences between the
unknown variables and their respective lower bounds as well as differences between
the unknown variables and their respective upper bounds. Each logarithmic term is
multiplied by a nonnegative barrier parameter. These logarithmic barrier terms are
added to the NLP objective function. The augmented objective function and Karush-
Kuhn-Tucker (KKT) conditions are discretized using the method of orthogonal
collocation over finite elements. They are then solved simultaneously subject to a set

of equality constraints.

A local solution is found within an interior point of the specified lower and upper
bounds of the unknown variables. The local solution converges to that of the original
NLP problem as the barrier parameter approaches zero (Forsgren et al., 2002). An
efficient barrier-method solver called Interior-Point OPTimizer (IPOPT) has been
developed by Wachter (2002) and later improved by Wachter and Biegler (2006).
Efficacy of the barrier method has been illustrated in many industrial case studies
such as low-density polyethylene (LDPE) process at high pressure and temperature
(Cervantes et al., 2002), Tennessee Eastman challenge (Jockenhovel et al., 2003), and
polymerization in CSTR with recycle loop (Lang and Biegler, 2007).

2.1.3 Integration between Top and Middle Decision-making Levels

In addition to the integrated frameworks discussed above, integration of scheduling
and RTO can bring further economic benefits to the plant (Figure 2.3). However, only
a few researchers have published work in this subject (Nystrom et al., 2006; Terrazas-
Moreno et al., 2008; Prata et al., 2008). The main reason is due to difficulties in

combining different modeling approaches that are formulated from scheduling and
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RTO problems. The integrated model can be massive and lead to computationally

intractable solution strategies.

Recall that scheduling is a decision-making process that answers the collective
questions of when, where and how to make and deliver a series of products (Floudas
and Lin, 2004). The scheduling constraints are typically delivery times, limited
resources in terms of raw materials and équipment utilization, and different
processing recipes. It is normal that a scheduling problem involves discrete decisions
in, for example, equipment assignments and task allocations. Therefore, most
scheduling problems are often formulated as MIP. On the other hand, RTO is
concerned with minimizing or maximizing an economic objective function that is
directly related to a rigorous steady-state plant model. Constraints on economic and
operational parameters are common. Steady-state RTO problems can be formulated as
NLP and solved using efficient SQP algorithms based on active-set or barrier

methods.
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Figure 2.3: Integrated scheduling and RTO

There are cases, for example in polymerization processes, where RTO problems

are formulated using dynamic process models. This type of RTO problem is referred
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to as a dynamic optimization problem. If scheduling and dynamic RTO are integrated,
a mixed integer dynamic optimization (MIDO) problem arises. The MIDO problem is
mostly non-convex and thus may become intractable for large-scale nonlinear
processes. A pioneering attempt on this subject can be seen in Tousain (2002), and
subsequently, in Tousain and Bosgra (2006). The authors studied MIDO problems on
an HDPE production plant. In an iterative approach, the scheduling problem was
formulated as MILP and solved with branch and bound method using GAMS/CPLEX
solver. The highly nonlinear dynamic optimization problem was solved using SQP

algorithm developed by van der Schot et al. (1999).

In another work, Chatzidoukas et al. (2003) studied integrated scheduling and
optimal grade transition for a catalytic gas-phase polyolefin fludized bed reactor.
Modeling was carried out under gPROMS environment. Production and transition
stages are ftreated separately, thus forming master and primal subproblems,
respectively. The master subproblem was formulated as MILP and solved using
GAMS/CPLEX algorithm based on Bender decomposition method. The primal

subproblem was solved using gOPT optimizer.

2.2 Concluding Remarks

This chapter provides a critical review of relevant work on integration of levels in
process automation hierarchy. A full integration of all levels into a single-level
control is the ultimate objective of PSE researchers. As such, an area such as
integrated framework of planning and scheduling that traditionally belongs to OR
domain is currently being pursued. The objective, however, is difficult to realize due

to multi-temporal nature of the activities at each of these levels.

Advances in mathematical modeling and large-scale solution techniques as well as
information and communication technology give optimism that the single-level
control objective can be achieved in the near future. Parts of the work with practical
examples are already published in literature. Lately, the subject of an integrated RTO-
MPC scheme receives notable attention. Much of the work in this area revolves
around dynamic optimization of reaction or distillation processes of a small plant. It

appears that plantwide applications have yet to be demonstrated in literature. The
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main reason could be due to difficulty in developing and integrating dynamic models

of large equipment in a single flowsheet.

More recently, integration of scheduling and RTO problems becomes a popular
research topic in PSE. Due to presence of binary variables in scheduling decisions and
use of dynamic models in RTO, the integrated problem gives rise to a MIDO problem.
The solution to the MIDO problem may be computationally intractable when handling
complex equipment such as liquefied natural gas (LNG) heat exchangers, fluidized-
bed catalytic cracker and reactive distillation column. This difficulty could be
alleviated with the use of a steady-state RTO model. If the needs for having binary
variables are removed in the scheduling problems, the integrated scheduling-RTO
framework can be formulated as a large-scale NLP problem. This type of problem can

be solved using a standard SQP algorithm.

PUSAT SUMBER MAKLUMAY
(DITVRRSITT YEXNOLOGE PETRONAS



CHAPTER 3
RGP MODELING AND CONTROL

3.1 Introduction

Simulation based on first-principle steady-state and dynamic models have been
recognized as a valuable tool in engineering. Its usage becomes more widespread as
personal computers become more powerful. In general, simulation methods are
divided into two broad categories: 1) equation oriented, and 2) modular approaches.
Notable examples of equation oriented simulators are DIVA (Holl et al., 1988; Kroner
et al., 1990) and DYNSIM (Sorensen et al., 1990; Gani et al., 1992; Perregaard et al,
1992). Both simulators contain standard thermodynamic correlations and physical

properties that can be employed to develop steady-state and dynamic models.

The open-form approach offers more robust models. However, this is achieved at
the expense of ease-of-use since users need to be technically adept in writing and
solving mathematical models. Steady-state models involve solution of a problem
comprising mainly algebraic equations. Dynamic models include presence of
temporal but not spatial element; hence gives rise to a problem of ordinary differential
equations. Since thermodynamic relations contain algebraic equations, dynamic

models deal with a problem of differential-algebraic equations.

Another modeling approach is close-form modular simulation, which is more
attractive for industrial practitioners. This approach entails attachment of one solved
flowsheet to another. In the latest generation of commercial simulators like HYSYS,
AspenPlus and iCON, unsolved flowsheets may be linked up and solved through both
forward and backward calculations. Two major advantages of using the modular

approach are:

1. Reduces modeling time and efforts: Prebuilt objects of logical operations
and major equipment are readily available. Almost no mathematical
modeling effort is required. However, users need to have good knowledge
in engineering subjects such as thermodynamics, reaction engineering, as

well as transport and separation processes.
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2. Shorter on-the-job training period: Young engineers have learned to use
commercial simulators at the university level, especially in executing their
final year projects. Once they become familiar with plant operations, these
engineers will be able to develop steady-state and dynamic models using

available plant information.

Successful industrial applications on using dynamic models for control purposes
are aplenty. Schad (1998) and Altena et al. (1998) used PROSIM to pre-estimate
process gains for developing multivariable control of a turboexpander plant. More
recently, Alsop and Ferrer (2006) successfully employed a dynamic model of
propane/propylene splitter in HYSYS to skip plant step testing completely. DMCPlus
was used to design and implement the model predictive control (MPC) schemes in the
real plant. Several refinery cases are also available. For examples, Mantelli et al.
(2005) and Pannocchia et al. (2006) designed MPC schemes for crude distillation unit

and vacuum distillation unit based on dynamic simulation models.

The aforementioned works provide evidence that first-principle dynamic models
can be utilized as an alternative to running plant test. A dynamic model may be
considered as a virtual plant for step testing purposes. This way, traditional practice of
conducting step test on actual plant may be reduced or totally circumvented. Worries
about product quality giveaways and/or off-specifications may be alleviated. In

addition, dynamic models may also be utilized to train personnel and troubleshoot

plant problems offline.

In subsequent sections, developments of steady-state and dynamic models of a
refrigerated gas plant (RGP) are discussed. Steady-state model of RGP is validated
against actual plant data. The steady-state model is used as a basis for developing a
dynamic model, which serves as a virtual plant throughout this work. Major control
philosophies are presented independently according to their purposes. Developmeht of

an APC strategy in the form of MPC scheme is also discussed.
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3.2 Process Description

Key operating values are calibrated with the data collected from a real gas processing
plant (Figure 3.1). Feeds to the RGP come from three main streams A, B and C.
Another feed gas stream D is also available at a much smaller quantity. The feed gas
compositions vary as listed in Table 3.1. The values fall within the approximate range

of typical natural gas compositions found across the world (NaturalGas.Org).
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Figure 3.1: Process flow diagram of RGP. E=heat transfer equipment (non-fired);
S=separator; K T=turboexpander; K=compressor; P=pump; C=column; J-T=Joule-
Thompson valve

Table 3.1: Compositions of feed gas streams

Component A B C D

Methane 0.8865 0.7587 0.6797 0.7604

Ethane 0.0622 0.0836 0.1056 0.1581
Propane 0.0286 0.0535 0.0905 0.0441
i-Butane 0.0102 0.0097 0.0302 0.0080
n- Butane 0.0059 0.0194 0.0402 0.0051
i-Pentane 0.0003 0.0058 0.0121 0.0000
n-Pentane 0.0002 0.0068 0.0101 0.0000
n-Hexane 0.0001 0.0002 0.0028 0.0000
Nitrogen 0.0039 0.0043 0.0012 0.0177

Carbon Dioxide 0.0020 0.0580 0.0276 0.0066

Water, sulfur and mercury are assumed to be absent when feed gas streams enter

the RGP. In other words, all feed gas streams are assumed to be sweet, dry gas with
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varying richness and carbon dioxide levels. At normal operation, the RGP processes
mixed feed gas at a plant throughput of 280 ton/h. Feed gas at 20 °C and 60 bar is
cooled by exchanging heat with sales gas in three coldboxes (E-101, E-103, E-105), a
propane refrigeration cooler (E-102) and an air cooler (E-106). To enhance vapor-
liquid separation, feed gas is flashed in two stages. Most vapor is expanded in
turboexpander (KT-101) whereas some in Joule-Thompson valve depending on
throughput level. Liquids are fed to various stages of a demethanizer (C-101). Top
product of demethanizer and that from expansion process are sent to an absorber in
gas subcooled process (GSP) unit to improve recovery of natural gas liquids. Bottom
product of demethanizer is further processed to separate the liquids into ethane,
propane, butane and condensates. Top product of absorber containing sales gas is

recompressed twice to meet minimum specification of 30 bar.

3.3 Modeling

The refrigerated gas plant (RGP) is simulated under HYSYS 2006 CP5 (6729)
environment. Thermodynamic properties of the vapors and liquids are estimated by
the Peng-Robinson equation of state (Appendix A). Feed gas components in Table 3.1
are entered individually with their respective compositions even though hydrocarbons
heavier than pentane are grouped as condensates. In other words, there is no

hypothetical component listed in the simulation model.

3.3.1  Steady-state Modeling

Simulation work starts with steady-state model development. In general, unit
operations and streams are installed in HYSYS process flow diagram (PFD) from left
to right and bottom upwards as shown in Figure 3.1. Accuracy of the simulation
model is generally good. Simulated values of key process conditions closely resemble
(around 95%) those of the normal operating conditions as shown in Table 3.2. Two
largest deviations from normality are observed at coldbox E-101 side draw no. 3
(SD3) outlet temperature and air cooler E-106 inlet temperature with corresponding
values of 19.5 and 11.6%. The former is attributed to the removal of ethane product
stream from the model. In actual plant, this stream absorbs heat brought into coldbox
E-101 by the feed gas and thereby reduces the SD3 outlet temperature. The other

large deviation is caused by omission of booster compressor R-151, which was
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decommissioned for economic reasons. As a result, outlet of compressor K-101,
which is the inlet to coldbox E-106, undergoes a small expansion process at the
bypass valve causing its temperature and pressure to drop a little when compared

against plant data.

In steady-state modeling, three coldboxes (E-101, E-103 and E-105) are simulated
as liquefied natural gas (LNG) heat exchangers. In coldbox E-101, the hot side is feed
gas stream and the cold sides are sales gas and SD3 streams. In coldbox E-103, the
hot side is processed gas stream and the three cold sides are the sales gas, side draw
no. 1 (SD1) and side draw no. 2 (SD2) streams. In coldbox E-105, only two streams
are involved in the heat exchange. The hot and cold sides are processed gas and sales
gas streams, respectively. Effectiveness of the coldboxes may be assessed by

observing their respective hot and cold composite curves (Figure 3.2).

The large initial gaps between the hot and cold composite curves illustrate the
tremendous amount of heat that is exchanged in the first two coldboxes. Except for
coldbox E-105, the gaps in coldboxes E-101 and E-103 narrow down to above 0.2 °C
towards the end of the process rendering these coldboxes effectively utilized. In
simulation of all three coldboxes, no temperature cross phenomenon is observed. The
log mean temperature differences are 1.7, 18.0 and 16.7 °C for coldboxes E-101,
E-103 and E-105, respectively. On the other hand, the propane refrigeration cooler
E-102 and the air-cooler E-106 are modeled as simple chillers with ‘Direct Q” heat
duty. This simplification is necessary in order to reduce the computational load at the

dynamic modeling stage later.

Modeling of demethanizer C-101 requires special attention because it is the main
fractionator in RGP. The actual column comprises 40 valve trays and 3 chimney trays.
However, the chimney trays are ignored in simulation since their purpose is only to
collect liquids resulting in zero separation efficiency. The bottom of demethanizer C-
101 is heated by low-low pressure steam on the shell side of a thermosiphon reboiler

E-104. The reboiler is simulated as a simple heater with ‘Direct Q* duty source.
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Table 3.2: Steady-state specifications and normal operating conditions (NOC) around

major equipment

Equipment Variable Unit | Simulation NOC Deviation
(%o)
E-101 FG T;, °C 19.7 20.7 4.8
FG Tout °’C -26.9 -26.9 0
SG Tin °C -46.8* -49.7 5.8
SG Tou °C 19.5 19.5 0
SD3 Tout °C 13.5% 11.3 19.5
FG Pi, barg 56.0 56.0 0
FG AP barg 0.632 0.632 0
SG AP barg 0.733 0.733 0
E-102 FG Toum °C -34.9 -37.0 5.7
FG AP barg 0.5 NA NA
S-101 AP barg 0 0 0
E-103 PG Tou °C -534 -52.1 2.5
SD1 Tou °C -36.3 -36.3 0
SD2 Tout °C -35.0 -34.1 2.6
SG Tout °C -47.1% -49.7 52
PG AP barg 1.08 1.08 0
SD1 AP barg 0 NA NA
SD2 AP barg 0 NA NA
SG AP barg 0.80 NA NA
S-102 AP barg 0 0 0
KT-101 Tout °C -87.3% -88.6 1.5
Pin barg 53.8% 55.0 2.2
Pout barg 20.9 21.0 0.5
K-101 Pin barg 19.0* 19.3 1.6
Pout barg 22.7* 22.8 0.4
C-101 Tiop °C -90.1% -86.7 39
Thot °C 27.3*% 28.3 3.5
Prop barg 20.5 20.5 0
Pyt barg 22.0 NA NA
T35 °C 5.3 53 0
SD1 rate ton/h 30.0 NA NA
SD2 rate ton/h 3.3 NA NA
SD3 rate ton/h 9.1 NA NA
K-102 Pout barg 32.9 33.6 2.1
E-106 Tin °C 69.5% 62.3 11.6
Tout °C 43.0 43.2 0.5

Note: * represents the flowsheet simulated values. NOC = normal operating condition
based on average plant data after Ethane Extraction Improvement project (22-23 August
2005). NA = not applicable/available; FG = feed gas; SG = sales gas; PG = processed gas;

SD = side draw; AP = pressure drop; T55 = demethanizer tray 35 temperature.
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Feeds to demethanizer C-101 come from three major sources at various locations

of the column. They are:

1. Absorber C-102 bottom entering at tray 1.
2. Condensed liquid from separator no. 2 (S-102) entering at tray 7.
3. Condensed liquid from separator no. 1 (S-101) entering at tray 21.

Besides the above feed sources, internal liquids at trays 14, 21 and 32 are drawn off
and returned at the same locations after being reboiled at coldboxes E-101 and E-103.
These side draws serve two purposes: 1) to reduce methane losses at the bottom of
demethanizer C-101, and 2) to cool the feed gas and processed gas. The temperature
profile inside demethanizer C-101 is quite steep ranging from about -90 at the top to
above 25 °C at the reboiler. The simulated values closely resemble plant data as
illustrated in Figure 3.3. Internal pressure gradient is assumed lincar from 20.5 (top)

to 22.0 barg (bottom) because only one point (top pressure) is available for validation.

20 A

=20 4

-40 4

Temperature (°C)

-60 §

-80 1

707 T PR S
o 5 10 15 20 25 30 35 40 45

Tray Number

Figure 3.3: Temperature profile of demethanizer C-101. Square markers denote plant
data. Solid line represents simulated values

Absorber C-102 is initially simulated as a 7-tray column for simplicity. Other
specifications are top and bottom pressures at 20.8 and 20.9 barg, respectively. Liquid
at bottom of absorber C-102 is refluxed to top of demethanizer C-101. On the
contrary, vapor stream (overhead) leaving top of demethanizer C-101 is forwarded to

bottom of absorber C-102. This looping condition increases modeling complexity
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since absorber C-102 is acting like a condenser to demethanizer C-101. As a solution,
a ‘Recycle’ operator is added to demethanizer C-101 overhead in order to solve both

demethanizer C-101 and absorber C-102 flowsheets, simultaneously.

There are five turbo machineries simulated for RGP model. Two are combined as
a turboexpander-compressor (KT/K-101). Major function of turboexpander KT-101
is to expand processed gas isentropically. As a result, the processed gas temperature
and pressure reduce drastically by about 36 °C and 33 barg, respectively. The
turboexpander KT-101 outlet is a two phase stream with 11% condensed liquid. It
flows to the bottom section of absorber C-102 in order to enhance recovery of natural
gas liquids. Energy produced from the processed gas expansion is utilized to drive

shaft of the booster compressor K-101.

To be realistic, about 20% energy loss is estimated in this mechanical process.
This is carried out by setting booster compressor K-101 duty to be 80% that of
turboexpander KT-101 in HYSYS ‘Set’ operator. Booster compressor K-101
discharges sales gas stream at 22.7 barg. Sales gas pressure is further increased to
32.9 barg at another compressor K-102 in order to meet pipeline specification. The
remaining turbo machineries are demethanizer bottom pump P-101 and absorber
bottom pump P-102. Both pumps are assumed to work at 75% efficiency
adiabatically. Outlet stream pressure of pumps P-101 and P-102 are specified as 30.1
and 24.9 barg, respectively.

During steady-state model development, there are three main concerns that require

special attention:

1. Inadequate capacity of demethanizer reboiler E-104
2. Dry ice formation at top of absorber C-102
3. Temperature crosses at coldboxes E-101, E-103, E-105

The first concern relate to composition of feed gas streams. The higher the content of
natural gas liquids in feed gas streams, the more energy is required to reboil the
bottom of demethanizer C-101. As a result, reboiler E-104 outlet temperature will

decrease at excessive presence of natural gas liquids if the steam flow rate (HYSYS



35

‘Direct Q” duty) remains constant. The second concern relates to amount of carbon
dioxide in feed gas streams. Dry ice (solid carbon dioxide) formation is favored at
high carbon dioxide level and subzero temperature. This is undesirable because dry
ice can clog packings of absorber C-102 and layers inside coldboxes E-101, E-103
and E-105. If this happens, C-102 absorption capacity will decrease due to reduction
in the mass transfer area. Similarly, heat transfer areas of the coldboxes will be
reduced rendering them ineffective. The most critical part within RGP is the top feed
of absorber C-102 since it is the coldest stream (about -101 °C) in the plant. However,
no formation of dry ice is detected here by HYSYS built-in ‘Carbon Dioxide Freeze
Out’ utility.

Temperature cross is another major concern because it can take place in any one
of the three coldboxes E-101, E-103 and E-105. Temperature cross occurs when the
hot pinch temperature is lower than the cold pinch temperature. This condition entails
the transfer of heat from the cold stream to the hot stream, which violates the second
law of thermodynamics. One way to circumvent this situation is to specify a minimum
difference of 5 °C between the cold and hot pinch temperatures. If this approach is

inadequate, flow rates of by-passed streams should be reduced.

3.3.2 Dynamic Modeling

Once a high fidelity steady-state model is set up, three additional steps are required to
be taken in order to prepare the model for dynamic simulation. These steps are:
1) sizing of unit operations, 2) specification of pressure or flow condition at boundary
streams, and 3) installation of controller. As a first step, all unit operations need to be
sized accordingly. If plant data are available, these values are used for sizing
information. This is preferable in order to produce a more realistic dynamic model. In
some circumstances, the plant data are missing or outdated due to ongoing
rejuvenation and revamp projects. In HYSYS, an alternative sizing procedure may be
used. Vessels such as condensers, separators and reboilers should be able to hold 5-15
minutes of liquid accumulation. The vessel volumes may be quickly estimated by

dividing the steady-state values of the entering liquid flow rates from the holdup time.
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For a column, only the internal section needs te be sized. This is accomplished by
specifying the tray/packing type and dimensions. Types of trays available in HYSYS
are sieve, valve, bubble cap, chimney and sump. Tray must be specified with at least
the following dimensions: 1) tray diameter, 2) tray spacing, 3) weir length, and
4) weir height. For a packed column, there are a number of packing types to choose
from. Most of the packing comes with the pre-specified properties such as void
fraction and surface area. The minimum dimension need to be entered is the packing
volume or packing height and column diameter. Design specifications for
demethanizer C-101 and absorber C-102 are presented in Tables 3.3 and 3.4,

respectively.

Table 3.3: Sizing of demethanizer C-101 column and reboiler E-104

Parameter Value
Tray Space (m) 0.550
Tray Diameter (m) 2.450
Tray Type Valve
Tray efficiency (%) 90
Weir Height (mm) 48
Weir Length (m) 2.009
Flow Paths 2
Weeping Factor 1.000
Tray Thickness (mm) 3.175
Foaming Factor 1
Maximum Pressure Drop (mm of liquid)  152.4
Maximum Flooding (%) 85
Valve Material Density (kg/m3 ) 8220
Valve Material Thickness (mm) 1.524
Hole Area (% of active area) 153
Valve Orifice Type Straight
Valve Design Method Glitsch
Side Weir Type Straight
Maximum Weir Loading (m*/h-m) 89.42
Downcomer Volume (m3) 0.3019
Downcomer Type Vertical
Downcomer Clearance (mm) 38

Max Downcomer Backup (%) 50

Side Downcomer Top Width (mm) 304.8
Side Downcomer Bottom Width (mm) 304.8
Center Downcomer Top Width (mm) 330.2
Center Downcomer Bottom Width (mm)  330.2
Reboiler Diameter (m) 3.5
Reboiler Length (m) 9.3
Reboiler Orientation Horizontal
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Table 3.4: Sizing of absorber C-102 column

Section 1 2 3 4 5
Internal Type Chimney Packed Packed Chimney  Sump
Cascade Cascade
Packing Type - MiniRing MiniRing (Metal, - -
(Metal) No. 3 Random) No. 2

Height (m) 0.6 1.829 3.657 0.765 4.304
Diameter (m) 32 3.2 3.2 3.2 3.2
Weir Height (mm) 227.2 - - 227.2 -
Weir Length (m) 2.56 - - 2.56 -

For heat exchangers, each holdup system is sized with a k-value. This value is a
constant representing the inverse resistance to flow as shown in Equation 3.1

(Aspentech, 2006):

F=kvJAP G.1)

where,

F=flow rate
k = conductance or reciprocal of resistance

AP = frictional pressure loss, which is pressure drop minus static head

The k-value may be calculated by HYSYS using the converged solution of the steady-
state model. For practical purposes, only one heat transfer zone is required for
refrigeration cooler E-102 and the air-cooler E-106. Refrigeration cooler E-102 is
initially supplied with the duty obtained from stcady-state model. During simulation,
this duty varies in order to meet controller TC-101 setpoint. Air cooler E-106 is
equipped with two fans. Each fan is designed to handle 3600 actual m*/h of air at
maximum speed of 60 rpm. Air enters cooler E-106 at 28 °C and atmospheric
condition. Internally, air cooler E-106 is configured with two tube rows and two
passes that can deliver 500 kW/°C of convective heat transfer capacity (U4 value).

Additional specifications for coolers E-102 and E-106 are presented in Table 3.5.
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Table 3.5: Sizing of refrigeration cooler E-102 and air cooler E-106

E-102 E-106
Zones 1 -
Volume (m®) 17 430
k-value 1.544 3.503

Simulation of coldboxes E-101, E-103 and E-105 is more challenging as they are
modeled as LNG heat exchangers. Sizing is required for each zone and layer. A zone
refers to horizontal segmentation of a coldbox. Higher number of zones increases
modeling accuracy at the expense of higher computational effort. Similarly, a layer
refers to vertical segmentation of a coldbox. Each layer carries fluids only from one
stream. Thus number of layers is equal to number of streams entering or leaving the
coldboxes. Mixing of fluids across layers is prohibited to preserve composition of
individual streams. The allowable modes of heat transfer are through conduction
between layers and convection by fins. For practical purposes, number of zones in the
coldboxes is limited to three. In each zone, geometry, metal properties and a few sets
of layers are specified according to mechanical design databook of the actual plant
(Table 3.6). On each layer, plate and fin properties are entered as default values. The
UA values are taken as constants from steady-state model, and specified in each zone
and layer. The k-values are initialized from steady-state model and then modiﬁed to

minimize error between actual plant and simulated data.

Equipment with negligible holdup are easily modeled in dynamic mode. For
example, dynamic pressure specification for a mixer is always set to ‘Equalize all’.
This setup avoids backflow condition, in which one of the inlet streams with the
lowest pressure carries a negative flow rate and thus flows away from the mixer. A tee
split stream specification may be selected as constant values at the initial stage.
However, this is not recommended for final simulation since flows of the splitter
outlets are governed by the differences in the upstream and downstream pressures. If
flow of one of the outlet streams is specified, the rate should be regulated by a split-
range controller. Flows of fluid across valves are governed by an equation similar to
Equation 3.1. In this case, the k-value is substituted with the valve sizing coefficient,
C, to be consistent with the literature. The valve is sized with a 50% valve opening
and 15-30 kPa pressure drop at a typical flow rate. Calculation of a C, v@lue is

performed based on the current steady-state profile.



Table 3.6: Dynamic specifications of coldboxes E-101, E-103 and E-105

E-101 E-103 E-105
Zone Geometry
+ Width (m) 1.05 1.05 1.05
« Height (m) 1.281 1.281 1.281
Zone Metal Properties
« Thermal cond (W/m-°C) 180 180 180
» G, (kl/kg-"C) 0.88 0.88 0.88
. Dens1ty (kg/m?) 2748 2748 2748
Zone Layers
« Number of Layers in Set 3 4 2
» Repeated Sets 12 6 5
Plate and Fin Properties
» Perforation (%) 0 0 0
» Height (mm) 6.73 6.73 6.73
« Pitch, fins/m 530 530 530
+ Fin thickness (mm) 0.419 0.419 0419
Plate thickness (mm) 1.22 1.22 1.22
Convectlve UA (KW/°C)
« Layer1 1881.172 242.563 84.190
« Layer2 1982.556 275.894  84.190
« Layer3 101.385 7.479 -
+ Layer4 - 25.852 -
Conductance (k-value)
Zone 1
+ Layerl 0.289 0.215  0.220
« Layer2 0.115 0.106 0.016
» Layer3 0.320 0.080 -
+ Layer4 - 0.200 -
Zone 2
. Layerl 0.325 0.260  0.230
« Layer2 0.139 0.119  0.014
+ Layer3 0.408 0.102 -
« Layer4 - 0.160 -
Zone 3
. Layerl - - 0.200
o Layer2 - - 0.014

Turbo machineries such as pumps, compressors and expanders may be simulated
in a rigorous manner. The main requirement is availability of the characteristic curves
of individual equipment. A complete characteristic curve must consist of head and
efficiency curves. In HYSYS, pump curves can be generated automatically based on
designated pump speeds and steady-state conditions, This feature reduces modeling
effort since a realistic pump can be installed based on current flowsheet conditions.
is unavailable for compressors and

However, automatic curve generator



40

turboexpanders. The characteristic curves need to be added at the ‘Rating-Curves’
page in order to enhance rigor of dynamic model. Compressors and turboexpanders
may also be modeled based on steady-state duty, and adiabatic or polytropic
efficiency specifications. For pumps, only the power and static head are required. This
simplification is only recommended to ease the transition from steady-state to

dynamic mode or to force a more difficult model to converge.
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Figure 3.4: Head (a) and efficiency (b) curves of booster compressor K-102. Current
operating point is shown as a solid circle.
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In the current work, turboexpander-compressor K/KT-101 is modeled in this
manner since their characteristic curves are unavailable, On the other hand, booster
compressor K-102, demethanizer bottom pump P-101 and absorber bottom pump
P-102 are modeled using corresponding curves as illustrated in Figures 3.4 to 3.6.
Multispeed design characteristics of compressor K-102 and pump P-101 are necessary
because these units are manipulated by PI controllers to maintain setpoints of PC-101

and LC-103, respectively (Figure 3.4).
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Figure 3.5: Head (a) and efficiency (b) curves of demethanizer bottom pump
P-101. Current operating point is shown as a solid circle.
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Figure 3.6: Head (a) and efficiency (b) curves of absorber bottom pump P-102.
Current operating point is shown as a solid circle.

The second step in the transition from steady-state to dynamic model is to enter a
pressure or flow condition at all boundary streams. This pressure-flow specification is
important because pressure and material flows are solved simultaneously in HYSYS.
Any inconsistency will stop the ‘Integrator’ due to convergence failure. In addition,
compositions and temperatures of all feed streams at the flowsheet boundary must be
input a priori. Physical properties of other streams are then calculated sequentially at
each downstream unit operation based on the specified holdup model values (k and

C,). In the current simulation work, all boundary streams are specified with pressure
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values. The feed streams enter RGP at 56.0 barg. The exiting streams are the NGL

stream at 28.5 barg and the SG stream at 33.5 barg. Flow specification is avoided

since inlet stream flows can be governed by regulatory controllers and outlet streams

flows are dictated by separation processes in the RGP.

The final step is installation of regulatory controllers. In most cases, basic

regulatory controllers are sufficient for stabilizing a plant model. However, advanced

regulatory controllers such as cascade, ratio, split range and surge controllers are

required to handle more difficult control problems. In this work, the RGP is equipped

with the following controller schemes:

1.

Three PI flow controllers at plant inlets to control individual flow rates of

feed gas streams.

Two PI temperature controllers to control refrigeration cooler E-102 outlet

stream temperature and demethanizer C-101 tray 35 temperature.

Two PI level controllers to control reboiler E-104 level and absorber

C-102 bottom level.

Two cascade controllers to control separator no. 1 (S-101) and separator
no. 2 (S-102) levels by manipulating the liquid flow rates at the outlets of
the respective separators. Each cascade controller consists of a primary

level controller and a secondary flow controller.

Three split range controllers (SRC), one to regulate top pressure of
separator no. 2 (S-102) and the other two are employed to control feed gas
temperature at coldbox E-101 outlet and processed temperature at coldbox

E-103 outlet.

A ratio controller to regulate flow of stream that flows to gas subcooled

process (GSP) unit over that to turboexpander KT-101.
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7. A surge controller at booster compressor K-102 to prevent compressor

blade damage.

8. A digital on-off controller to control air cooler E-106 outlet temperature.

Locations of these controllers are shown in Figure 3.7. The controllers are tagged
based on their orders of installation. Starting values of PID controller tuning
parameters follow those suggested by Svreek et al. (2006). These values as listed in
Table 3.7 are optimized for a quarter decay ratio criterion and recommended to be
used as the initial steady-state. Fine tuning should be performed for sluggish
controllers. For extremely fast acting controllers, a setpoint ramping procedure may
be imposed to enhance realism and to stabilize plant. In general, increasing the
controller gain will result in faster closed loop response while decreasing it will cause
a slower but more stable response. The integral action in PI control should be applied
to eliminate the controlled variable offset from the setpoint. The derivative action in
the PID control scheme serves as the lead term. Thus a PID controller is capable to
reduce the oscillation period of the PI controller due to its ability in predicting the
error direction. On the other hand, HYSYS ‘Autotuner’ feature may also be used to
calculate the controller gain as well as the integral and/or derivative times. However,
the dynamic model must be stabilized a priori before this feature is enabled. In the
next section, final tuning parameter values are presented and major control

philosophies are discussed.

Table 3.7: Suggested tuning parameter settings (Svrcek et al., 2006)

f Controller | K. | 7; (min) | 74 (min)
FC 0.4-0.65 0.05-0.25 -
PC (1) 0.5-2 0.1-0.25 -
PC (v) 2-10 2-10 .
LC 2-10 1-5 -
TC 2-10 2-10 0-5

Note: FC=flow controller; PC=pressure controller; LC=level controller;
TC=temperature controller. For PC, (1) = liquid; (v} vapor; K. =controller gain;
7; =integral time; 7; =derivative time.
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3.4 RGP Control Philosophies

There are four major control schemes adopted in RGP namely: 1) plant load control,
2) demethanizer overhead pressure control, 3) sales gas quality control, and 4) plant
temperature control. The first control scheme is used mainly during load scheduling.
The remaining three schemes are employed during mode scheduling. Philosophies

behind these control schemes are presented in this section.

3.4.1 Plant load control

The purpose of this loop is to control flow of mixed feed gas or plant load (Figure
3.8). At normal condition, plant load is maintained at 280 ton/h by flow controller
FC101. This is achieved by regulating separator S-102 pressure via split-range
operation of controller SRC101. Setpoint of split-range controller SRC101 is sent
remotely by flow controller FC101. Both FC101 and SRC101 are reverse-acting
controllers. This configuration renders controller output to decrease when process

value is higher than target specification.

Split range control is executed by manipulation of inlet guide vanes of turbo-
expander KT-101 and/or Joule-Thompson (J-T) valve through parallel operation
(Figare 3.9). The inlet guide vanes are simulated as a ‘Control Valve’ of
- turboexpander KT-101 duty, which is designed to fully close at 4 mA and fully open
at 12 mA. On the other hand, Joule-Thompson valve is modeled as a linear valve with
C, value of 100 US gallon/min. The J-T valve is designed to only open after
turboexpander KT-101 duty reaches a maximum value of 3000 kW. Important plant

load control parameters and their corresponding values are shown in Table 3.8.
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Figure 3.8: Plant load control scheme

100
80
60 -
40
20 -
0 [ AR . S TR
0 4 8 12 16 20
SRC-101 Signal Qutput (mA)
Figure 3.9: SRC-101 split range setup
Table 3.8: Control and tuning parameters
FC101 SRC101
Action Reverse Reverse
Mode Auto CAS
Range 0 to 400 ton/h 0 to 100 barg
SP 280.0 ton/h 51.8 barg
K. 24 2.0

Z 2.7 2.0
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3.42  Demethanizer overhead pressure control

Demethanizer C-101 overhead pressure is controlled by varying compressor K-102
speed through pressure controller PC101 (Figure 3.10). Pressure controller PC101 isa
direct-acting controller, which increases its output when process value is higher than
setpoint (Table 3.9a). Increasing output of pressure controller PC101 increases
compressor K-102 speed. Higher speed of compressor K-102 reduces its suction

pressure and thus overhead pressure of demethanizer C-101.

In the event of low suction volume, potential surge of compressor K-102 is
prevented through opening of a kickback valve by reverse-acting controller SC101.
Surge control parameters A, B and C (Table 3.9b) are calculated based on the lowest
values of compressor K-102 head curves (Figure 3.4). Control and surge lines as well

as quick-opening action of surge controller SC101 are standard design decisions.

An important function of pressure controller PC101 is to provide means for
changing RGP operation mode. Change of plant mode from natural gas liquids to
sales gas increases demethanizer C-101 overhead pressure from 22 to 24 barg.
Indirectly, sales gas final temperature is also increased. The final temperature of sales
gas is regulated by on-off controller TC103, which fully opens when process value

rises above 34 °C and fully closes when process value drops below 28 °C via a latch

mechanism.
TCY .. PC
r 103 : [ A oA - 7 ToC-102
G .
E-106 ¥ From K-101

1
I
1
é NGLs

Figure 3.10: Demethanizer overhead pressure control scheme
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Table 3.9 a: Control and tuning parameters

PC-101 SC-101 TC-103
Action Direct Reverse Latch
Mode Auto Auto Auto
Range 0 to 60 barg 1000 to 0to 60 °C
20,000 m*/h
SP 22 barg 6723 m’/h  28<SP<34 °C
(24 barg)
K. 2.0 2.0 N/A
T 2.0 2.0 N/A

Note: (*) = SG recovery mode; N/A=not applicable.

Table 3.9b: Surge control parameters

SC-101

Parameter A, m 1606.5

Parameter B, m/(m’/s) -1782.3

Parameter C, m/(m*/s)? 2130.6
Control line, % 10.0
Backup line, % 5.0
Quick opening, %/s 3.0

3.43  Sales Gas Quality Control

Quality of sales gas is measured by its composition. A high level of carbon dioxide in
sales gas is undesirable due to environmental concerns. This issue is fortunately
resolved in a section upstream of RGP. On the other hand, higher contents of ethane
and heavier hydrocarbons, termed natural gas liquids, increase gross heating value
(GHV) of the sales gas. Low GHV indicates lean sales gas whereas high GHV
denotes losses of natural gas liquids. Since separation of natural gas is a pseudo-

binary cut process, sales gas quality is controlled by specifying its ethane content.

During natural gas liquids mode, ethane content in absorber C-102 overhead is
specified at 2.0 moie % (Table 3.10). This is achieved by regulating temperature of
processed gas exiting coldbox E-103 through split-range controller SRC102 (Figure
3.11). Division of sales gas entering or bypassing coldbox E-103 is carried out via
cross setup of valves A and B (Figure 3.12). Valve A opens linearly from 4 to 20 mA

signal whereas valve B closes linearly within the same range.
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During sales gas mode, the ethanc content is set at 5.0 mole %. A higher cut
percentage is crucial in preventing excessive condensation in separator S-102 and
bottom of absorber C-102. Liquid level at separator S-102 is regulated by cascading
signal from level controller LC102 to flow controller FC103. Similarly, liquid level at
bottom of absorber C-102 is controlled by a cascade controller consisting of level

controller LC104 and flow controller FC105.

Recovery of natural gas liquids is improved by increasing the ratio of processed
gas flowing to absorber C-102 over that to turboexpander KT-101. The ratio is
specified at 0.005 for sales gas mode and 0.15 for natural gas liquids mode. High limit
of controller RC101 ratio is dictated by maximum flow rate of processed gas to
absorber C-102, which is 40 ton/h by design. Low limit is set to ensure convergence

of coldbox E-105 model during steady-state and dynamic simulations.

ToE-101 (3
From S-101

102 103 po102 To C-101

E-103
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Figure 3.11: Sales gas quality control scheme
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Figure 3.12: SRC-102 split range setup
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Table 3.10: Control and tuning parameters

AC-101 SRC-102 . LC-102 FC-103
Action Reverse Direct Direct Reverse
Mode Auto CAS Auto CAS
Range 0tol10mol% -100t00°C 0to100% 0 to 60 tonh
Sp 2.0% -53.9°C 50 % 19.9 ton/h
(5.0%) (-43.3 °C) (17.0 ton/h)
K, 1.0 2.0 1.8 0.25
i 0.1 2.0 32.1 0.1
RC-101 LC-104 FC-105
Action Reverse Direct Reverse
Mode Auto Auto CAS
Range 0Oto40ton/h 0to100% 0 to 60 ton/h
SP 0.15 50 % 35.0 ton/h
(0.005) (26.1 ton/h)
K. 0.2 1.8 0.25
T 0.2 32.1 0.1

Note: (-) = SG recovery mode; CAS=cascade mode.

3.44  Plant Temperature Control

Operating condition of RGP is indicated in two places. The primary location is at top
of absorber C-102. Temperature reaches -90 °C or lower during natural gas liquid
mode and around -70 °C during sales gas mode. However, temperature swing at this
location can only be achieved through a sequence of events termed mode scheduling,

In other words, the primary indicator of RGP state cannot be controlled directly.

Another location signifying RGP condition is at refrigeration cooler E-102 outlet.
Here, feed gas is chilled in two stages (Figure 3.13). The first stage is at coldbox
E-101 and the second stage at cooler E-102. Temperature of feed gas exiting coldbox
E-101 is regulated by reverse-acting split-range controller SRC103. The split of sales
gas flow is governed by cross configuration of valves A and B as explained
previously (Figure 3.14). Larger amount of sales gas entering coldbox E-101 results in
cooler feed gas temperature. Setpoints for natural gas liquids and sales gas modes are

-30.5 and -25.1 °C, respectively (Table 3.11).

In the second stage, feed gas is further chilled by refrigeration cooler E-102. The
chilling process is regulated by direct-acting temperature controller TC101. This setup

compels the controller output to increase when process value is higher than setpoint.
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Temperature of feed gas at cooler E-102 outlet is set at -40 and -30.6 °C for natural
gas liquids and sales gas modes, respectively. In the event of excessive condensation,
level of separator S-101 is regulated by cascade control scheme comprising level

controller LC101 and flow controller FC102.

Sufficient heat is required for good separation of sales gas from natural gas liquids
in demethanizer C-101. Control objective is to maintain tray 35 temperature at 5 °C in
both modes. This is achieved by manipulating reboiler E-104 duty through
temperature controller TC102. In the event of excessive boiling, liquid level at
demethanizer C-101 bottom is regulated by level controller LC103. The controller
output is speed of pump P-101 with multiple head and efficiency curves (Figure 3.5).
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Figure 3.13: Plant temperature control scheme
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Figure 3.14: SRC-103 split range setup



53

Table 3.11: Control and tuning parameters

TC-101 SRC-103 TC-102
Action Direct Reverse Reverse
Mode Auto Auto Auto
Range -70t0-10°C -100t00°C  -30t020°C
SP -40.0°C -30.5 °C 5.0°C
(-30.6 °C) (-25.1°C)
Ke 0.31 1.0 0.91
Ti 0.32 1.0 9.7
LC-101 FC-102 LC-103
Action Direct Reverse Direct
Mode Auto CAS Auto
Range 0to 100 % 0 to 60 ton/h 0 to 100 %
SP 50 % 30.4 ton/h 50 %
(15.4 ton/h)
Kc 1.8 0.25 2.0
Ti 23.6 0.1 0.3

Note: (1)=SG recovery mode; CAS=cascade mode.

Up to this point, only regulatory control of RGP is discussed. Given chalienges
such as feed disturbance, rising operational costs and fluctuating prices of natural gas
liquids, sustaining production at an optimum cost is crucial to the RGP. These
challenges may be alleviated by implementing an MPC scheme in replacement of the
current regulatory control schemes. Discussion on MPC development is the subject of

the next section.

3.5 Model Predictive Control

Model predictive control (MPC) refers to a cluster of advanced control algorithms that
employ a process model to make prediction of future plant state, Applications of MPC
technology are widely spread out in areas such as refining, petrochemical, gas
processing, polymer, pulp and paper, automotive, and acrospace industries (Qin and
Badgwell, 2003). In general, MPC algorithms are classified as linear or nonlinear
depending upon the type of process model used. A process model is obtained through

empirical or first-principle modeling.

A first-principle model is derived from material and energy balances of an actual
plant. Parameters such as hold-up coefficients (%), valve coefficients (C,), overall heat

transfer coefficients (U) and reaction kinetic constants (kz) are either estimated from
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off-line modeling or adjusted on-line using extended Kalman filter, The first-principle

model is generally written in discrete-time implicit form as:

X =1(x,,0,,v,,W,) (3.2a)
Y. =8(x,,u,)+E, (3.2b)

where xe®R" is a vector of state variables, ueR~ is a vector of manipulated

variables or inputs, yeR" is a vector of controlled variables or outputs, ve®R™ is a

vector of measured disturbance variables or input noise, we®R™ is a vector of
unmeasured disturbance variables or process noise, and &e®R™ is a vector of

measurement noise. In most circumstances, Equation 3.2 is highly nonlinear to reflect
the true process. However, linearization of process model around operating conditions
is also a common practice. Nonlinear MPC utilizes nonlinear form of Equation 3.2 to
predict future responses of the process. In-depth discussion on nonlinear MPC is
beyond the scope of this work. Comprehensive overview of nonlinear MPC can be
found in Allgower et al. (1999).

An empirical model is developed from input-output information of a plant that is
excited with a sequence of systematic testing signals. Common process models are
FIR/FSR, transfer functions, auto-regressive with exogenous inputs (ARX) and state-
space models. Transfer function models are traditionally employed by process control
engineers due to several reasons namely: 1) simplicity of models, 2) familiarity with
model structures, and 3) ability to relate model parameters with physical elements.

The simplest form of transfer function is first-order model (Seborg et al., 2004):

W) _ K,

u(s) 7,85+1 (3-3)

which relates output 3(s) to input u(s) through process gain X, and time constant z,.
Transfer function models are written in Laplace domain as denoted by transformed
variable s, First-order and second-order models with or without time delay are
typically used. Often lead-lag models are also utilized to describe more complex

Processes.
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To be useful, the continuous-time transfer function models need to be transformed
because modern MPC algorithms are based on discrete-time models. An ARX model

can be written in an equivalent matrix form of discrete-time transfer function as

(Kailath, 1980):

Y=, (7)Y, +@, (g7, +@, (g7 v, +® (g7)W, +L, (3.4a)
where
& =[1-P, (g, (3.4b)

A notable feature of ARX model is backward-shift operator q'] that represents

difference terms compactly. The difference terms appear in Equation 3.4 when
transfer function models are discretized at sampling time As. For example, the term
®,(¢-)u, can be represented in two-term polynomial series as b1g "wit+bag u; and
expanded as biug_at byugoar. A general form of ARX polynomial model can thus be

written as:

Ay, =Bu, +{, (3.5)

where A and B, respectively, are matrices of output and input coefficients with
appropriate sizes. For convenience, measured v and unmeasured w disturbance

variables are grouped as inputs to the process. Noise { can be colored even though

measurement noise & is white or Gaussian,

Another type of process model is state-space model, which is derived from a set of
first-order ordinary differential equations. State variables x need not have physical
meanings because they may be constructed in arbitrary order from input-output
testing data. Linear state-space model is obtained by rearranging ARX mode! with

single delay as:
X, =Ax, +Bu, +B v +B w, (3.6a)
y,=Cx, +Du, +&, (3.6b)

where A, B, C and D are coefficient matrices of corresponding variables with

appropriate sizes. Nonlinear state-space model include a nonlinear term N(x,,u,) in
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its output (Equation 3.6b). Function N(x,,u,) may be obtained, for example, from

neural network or block-oriented models such as Wiener or Hammerstein model. If a
neural network model is used, extrapolation beyond the range of learning data sets
may be unreliable, On the other hand, a Wiener/Hammerstein model may be used to

approximate any nonlinear process (Sentoni et al., 1998).

3.5.1  System Identification

System identification refers to a technique of obtaining process model through input-
output testing data. Process inputs may be stepped independently with various
magnitudes or excited simultaneously via pseudo-random-binary-sequence (PRBS})
signals. In this section, process models are developed from open-loop step and PRBS

tests.

3.5.1.1  Step Test
The first step in setting up MPC controller is to obtain a process model. Here, a

traditional approach of open-loop step testing is initially implemented. Two main
requirements are imposed during step testing: 1) tuning of regulatory controllers is
prohibited, and 2) if operator intervention is required to uphold plant safety or
maintaining product quality, synchronizing or correlated input moves are disallowed

(Qin and Badgwell, 2003).

Responses of outputs y: y=[y1 y2], where outputs y; is after cooler E-102 stream
temperature and y, is demethanizer C-101 tray 35 temperature, due to inputs w:
u=[u; uy], where input u, is cooler E-102 duty and input #; is reboiler E-104 duty, are
plotted in Figures 3.15 and 3.16. The inputs are moved by increasing and decreasing
certain percentages of the valve opening according to the values in Tables 3.7 and 3.8.
In each test, an input is stepped after 100 min simulation time, returned to the nominal
condition after 500 min and maintained there for another 500 min. In essence, a total
of 1100 min is taken for each of the twenty step tests. The long duration ensures that
steady-state output values are reached in each step test. Outputs are measured
simultaneously during each input move in order to capture their dynamic responses
due to that particular input. For small step changes in inputs, all responses resemble a

first order plus time delay (FOPTD) model:
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Notation gy refers to the transfer function relating output y; to input ;. X}, ; and 7, ; are

process gain and time constant, respectively. Time delay is given by 7y,
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Figure 3.15: Open-loop step responses of outputs y; (top) and y, (bottom) due to
various moves of input u,
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Figure 3.16: Open-loop step responses of outputs y; (top) and y, (bottom) due to

various moves of input u,

Responses from larger step changes reveal lead behaviors and varying gains for

step changes of equal magnitude but in the opposite direction. Nonlinearity is

expected due to the presence of large equipment such as a distillation column,

liquefied natural gas heat exchangers and absorber in the process. For simplicity, lead

term is ignored and step testing data are fitted with FOPTD model (Equation 3.7).

Process models are identified using prediction error method. All identified models can

explain about 90% of the experimental data.
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Table 3.12: Open-loop responses with #; move

Input Moves Output SS Values
Case (%Au)) w1 (%) w (kW) »(C) » (0
Nom. 0 85.0 3570.0 -352 5.0
Al 2 86.7 36414 356 2.1
B1 4 884 37128 -36.1 -2.2
C1 6 91.1 37842  -36.5 -8.8
8

D1 91.8 38556 -36.8 -16.5
El 10 93.5 39270 372 =222
Fl1 -2 833  3498.6 347 6.9
Gl —~4 81.6 34272 343 8.3
H1 -6 79.9 33558 339 9.4
I1 -8 782 32844 332 10.3
1 -10 76.5  3213.0 -33.0 11.0

Nom. = nominal value; SS = steady-state.

Table 3.13: Open-loop responses with u; move

Input Moves Output SS Values
Case (%Aw) (%) wkW) »(C) »n (0
Nom. 0 67.0 30150 -352 5.0
A2 2 68.3 30753 -34.8 8.5
B2 4 69.7 31356 345 10.3
C2 6 71.0 31959 342 11.3
8

D2 724 32562  -33.8 11.9
E2 10 737 33165 =335 12.2
F2 -2 657 29547 355 -3.6
G2 ~4 643 28944 356 -189
H2 -6 63.0 28341 357 =245
12 -8 61.6 2773.8 357 -26.6

J2 -10 603 27135 357 -27.6
Nom. = nominal value; SS = steady-state.

Figures 3.17 to 3.19 show the variations of the process gains, time constants and
time delays. Preliminary visual inspection suggests that the process should be shifted
to another operating condition (—4% u; move). This condition results in the highest
gain (Kp2 = 9.1 °C/%), thus making it easier to control output y; by manipulating
input u. It should be noted, however, that this move entails significant deviation from
the desired value of y; = 5 °C. The resulting new value of y» = —18.9 °C is quite close
to the tray weeping limit of approximately —20 °C. To maintain good separation of

sales gas from natural gas liquids, plant state remains at nominal conditions.
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Figure 3.17: Variation of process gains (X,) with respect to changes in cooler duty
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duty (u,) and reboiler duty () from nominal value.
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Nonlineatity of process gains K- and K2 suggest that an adaptive controller
such as gain scheduling approach is more appropriate for estimating output y,.
However, the FOPTD model (Equation 3.7) could still be applied since these gains
behave linearly within a small range of [-2%, +2%] of moves for both inputs #; and
i. In addition, the other two gains K, 11 and K}, 1, are constant throughout entire range
of the step tests. On the other hand, nonlinearity in both time constants and time
delays may be attributed to modeling uncertainty and errors. Mismatch between actual
process and model is resolved in the MPC formulation via feedback mechanism.
Discussion on this issue is deferred to later section of this chapter. An approximate
process model is obtained after experimental tuning of MPC parameters following the
approach by Khaledi and Young (2005). Final values of process gains, time constants

and time delays obtained from step testing are presented in Table 3.14.

Table 3.14: FOPTD model parameters

Transfer Model Parameters
Function K, (°C/%) 7p,{min) 74 (min)
£11 -0.26 24.5 0
212 0.26 38.9 5.5
£21 -1.70 18.8 16.4
%) 2.69 26.6 1,7

3.5.1.2 PRBS Test
The traditional approach of performing step tests to obtain process models is time

consuming because each input has to be moved 8 to 15 times while other variables are
fixed at their steady-state values. The step tests are run continuously until all relevant
inputs are stepped. In addition, linearity assumption must hold for input moves at
equal magnitude but in opposite direction. One way to alleviate drawbacks of step
testing is through multivariable plant testing using pseudo-random-binary-sequence

(PRBS) input signals.

PRBS signals are generated using shift registers and Boolean algebra (Godfrey,
1993). Attributes of a PRBS signal depends on two parameters namely: 1) number of
shift registers n,, and 2) switching time #,,. Plenty of guidelines for designing these
parameters are available in literature. For example, Gaikwad and Rivera (1996)
propose the following guidelines for a MIMO system comprising #, number of inputs

and 1, number of outputs:
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2.8¢%
wE T (3.8)
2ne B
N§1)2 ; 5 ¥ dom (39)

where 7ym are estimates for the lowest (with superscript L) and highest (with
superscript H) dominant time constants for the process, @ is a multiplier between
closed-loop and open-loop response times, and f is a factor representing frequency
of an input that provides information up to a certain percentage of open-loop settling
time of the process. These factors are used to define frequency (w) bandwidth as

follows:

1 a,
<os (3.10)

H L
ﬂ s Tdom Tdom

Factor N =2 -1 in Equation 3.9 relates to the period of PRBS signals in such a

way that the sequence repeats itself after a period P=N/y,.

A key requirement of MIMO PRBS signals is that there must be a sufficient lack
of cross-correlation among all generated signals. One way to realize this requirement
is by using delayed versions of the same signal for the remaining inputs. In other
words, inputs 2 to n, of a MIMO system is delayed by a factor D, which is defined as:

tmax

D=- (3.11)

W

where 2% is the maximum open-loop settling time after considering all SISO

transfer functions estimated during pre-step tests. Delayed factor D may also be used

to estimate N:

N®>n,D (3.12)
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Final value of N is taken as the higher value between those calculated in Equations

3.9 and 3.12.

N, =max(NO,N®) (3.13)

Magnitudes of PRBS inputs are decided by APC engineers after discussion with
plant operators. Guidelines for input magnitudes are unavailable because: 1) model
gains requires a priori process knowledge as they are plant specific, and 2) plant
constraints must be respected to maintain safety and product quality. In this work,
changes of £5 % are selected for both inputs. Other PRBS design parameters are
estimated from results of step tests (Table 3.14) and presented in Table 3.15. Recall
that during step test, large input moves yield nonlinear responses making it difficult to
estimate process gains (Figures 3.15 to 3.17). During PRBS test, nonlinearity is

accounted for in the design of input signals.

Table 3.15: Design parameters of PRBS inputs

Parameters Values Remarks

Factor o 2 Close-loop response is twice as fast as
open-loop response.

Factor f; 5 Signal frequency corresponds to about
99% OLST.

tk  (min) 19 7,21 (Table 3.14)

t#  (min) 39 7,12 (Table 3.14)

[y 200 About five times 7,12

Iy (min) 26 Calculated from Equation 3.8

o bandwidth (min™) [0.0051,0.1053] Calculated from Equation 3.10

N 48 Calculated from Equation 3.13

P, (min) 1248 Period Pi=N,Ty,

Figures 3.20 and 3.21, respectively, show input moves and output responses from
PRBS test. Recall that input %, is cooler E-102 duty whereas input u, is reboiler E-104
duty. The third input is load disturbance measured during the test. Outputs y; is after
cooler E-102 stream temperature and y, is demethanizer C-101 tray 35 temperature.
Fewer oscillations are found in output 3, due to slow dynamics of rectifying section of
the demethanizer C-101. Process is modeled using ARX and state-space structures.
Low-order ARX model is chosen due to: 1) better representation of the 2x2 system in

study, and 2) marginal improvements of higher-order ARX models. Numbers of
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parameters 4 and B are two whereas delay is one. For state-space structure, a fourth-
order model is selected for the same reasons as.those of ARX model. Both ARX and
state-space models can estimate about 70 and 50 % of outputs y; and y», respectively.

These results are expected due to highly nonlinear nature of the process.

90
80 |
S
70
L1 | | i
0 50 100 150 200 250 300
L Yy—
[ (
78 |
=
76 [ 11l i
o o4 | | R L
0 50 100 150 200 250 300
285
280; , /
S
275! :

Figure 3.20: PRBS signals on inputs %, (cooler E-102 duty) and u; (reboiler E-104
duty), as well as measured input disturbance u; (plant load). Only the first 300 out of
1248 sampies are illustrated for clarity.
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Figure 3.21: Responses of outputs y, (after cooler E-102 stream temperature) and y,
(demethanizer tray 35 temperature) due to PRBS signals. Only the first 300 out of
1248 samples are illustrated for clarity.

Figure 3.22 illustrates output responses of ARX and state-space models due to a
unit step of corresponding inputs. Directionality of gains of both ARX and state-space
models is consistent with that estimated from FOPTD model (Table 3.14). On the
other hand, magnitude of gains of ARX model due to input u, appears to be larger
than those of state-space model. From control point of view, this condition makes it
easier to regulate outputs y; and y» by smaller #, move. However, open-loop settling
times for ARX model exceed 200 min, which is the maximum value estimated from
step tests. In the next section, performance of MPC scheme using ARX and state-

space models is studied in order to select the better process model.

Table 3.16: Process gains K, of FOPTD, ARX and state-space (SS) models.

Transfer K, (°C/%)

Function FOPTD ARX SS
g -0.26 -0.17 -0.15
o1 0.26 0.10 0.04
g1 -1.70 -2.72 -2.56

J o)) 2.69 6.36 3.78
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3.52  MPC Design

MPC controller is designed by specifying: 1) a discrete process model to represent an
actual plant, and 2) design and tuning parameters. Identification of process model has
been discussed in the previous section. Discussion on design and tuning of MPC
parameters is presented in this section, Performance of MPC schemes based on ARX
and state-space models is compared in several cases of setpoint tracking in order to

select the better model.

3.52.1 MPC Formulation

The objective of MPC scheme is to minimize a quadratic function written in the

following compact form (Qin and Badgwell, 2003):

r M-I
1}},@3{*’ =Y llel,, 5+ llAu,,, 12 +let,, I3 ]} (3.14)
J=1 J=0

subject to model equations and inequality constraints:

Ymin £¥ i) SY > =L, P (3.15a)
Au,;, <Au,  <Au_ ,Vj=0,.,M~-1 (3.15b)
Uy, SW, Su V=0, M -1 (3.15¢)

where ey, ; are deviations of future model output y,, ; from reference trajectory yj,
over a prediction horizon of length P, Au,,; are predicted input moves over control
horizon of length M, e},  are deviations of future input u,, , from desired steady-state

input u’ over control horizon of length M. The conflicting terms in Equation 3.14 are
assigned relative importance through positive semi-definite weighting matrices Q, R
and S. The more important terms are indicated by higher diagonal values of weighting

matrices. Reference trajectory is modeled in the filtered setpoint form as:
YICU' :CZIYIT +(1—aj)yip» Vj“—‘-l,...,P (316)

This approach offers several advantages: 1) degrees of freedom of MPC controller are

enhanced through filter constant &= [0 1], where higher @ value means slower control
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action to reach setpoint y”, and 2) a feedback mechanism is added through measured
output y¥ at current time instant k to reduce plant-model mismatch. Solution to the

optimization problem is a sequence of M input moves:

AU¥ ={Au, ,Au,,,,....Au,,, | (3.17)

In practice, however, only the first input move Au, is implemented at each control

action. The remaining calculated moves [Au palseen AU k+M—1] are discarded. In

subsequent control actions, this process is repeated at each time step.

3.5.2.2  Design and Tuning Parameters

Table 3.17 shows MPC design and tuning parameters. MPC controller is built on top
of two decentralized PI controllers, TC101 and TC102, which are previously
employed to regulate duties of refrigeration cooler E-102 and reboiler E-104.
Parameters are selected after performing several closed-loop simulation studies under
different process conditions. The decision of 1-minute control interval is made so that
actual process does not deviate too much from model prediction before the next MPC
action. Control horizon of length 2 indicates less aggressive MPC actions. Long
prediction horizon of 120 is sufficient to bring process to a new steady-state. Output
weights Q are ten times larger than input rate weights R indicating heavier penalties
are imposed on deviation from targets rather than input moves. No penalty is imposed

on deviation from nominal input values as shown by zero input weights S.

Table 3.17: MPC design and tuning parameters

Parameiers Values

Control interval, Af 1 min
Control horizon, M 2
Prediction horizon, P 120
Weighting matrices:

« Output, Q diag[1 1]

+ Inputrate, R diag[0.1 0.1]

o Input, S diag[0 0]
Constraints:

+ Output, y [-20 20; -20 20]

+ Input rate, Au [-55;-55]

« Input,u []
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The inputs u are left unconstrained in MPC scheme as denoted by empty square
matrix []. However, physical constraints of the inputs u are enforced at plant level
since duties of refrigeration cooler E-102 and reboiler E-104 are bounded. Qutputs y
are loosely constrained at 20 °C to account for adequate temperature swing during
changes of plant operating mode. Input rates Au are capped at £5 % to ensure that
actual process is taken from one state to another within reasonable movements of

inputs.

3.5.23  Setpoint Tracking

A good controller should be able to bring an output from its nominal value to another
state smoothly. This process is termed setpoint tracking. Performance of MPC
controller is measured using integral of squared error (ISE) for output changes and
total duties for input moves. Nominal input and output values are given in Table 3.18.
Relationship between controller output value (%) and actual duty (kW) is assumed
linear within ranges presented in Table 3.19. Total simulation time for all cases of

setpoint tracking is 100 min.

Table 3.18: Nominal input and output values

Index Input (%)  Output (°C)
1 71.7 -33.8
2 64.4 4.8

Table 3.19: Ranges of actual input duty values

Input Minimum (kW) Maximum (kW)
u 0 4200
U 0 4500

Three case studies are carried out to determine the performance and costs of
setpoint tracking by MPC and PI controllers. Case 1 is a change in setpoint of y; by
~1°C. Downward movement in y; will result in increasing duty of u;. On the other
hand, Case 2 is a change in setpoint of y, by +1°C, which will increase duty of u,.
Cases 1 and 2 are typically encountered when RGP receives rich feed gases. This
condition forces RGP to utilize more energy in order to process more natural gas
liquids. In both Cases 1 and 2, y, and y; are tracked independently. In Case 3, both y,

and y; are simultaneously stepped by —1 and +1°C, respectively. Since y; and y, move
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in the opposite directions, Case 3 depicts response of the MPC controllers due to

process interaction.

Figures 3.23 to 3.25 compare closed-loop responses of MPC controller using
ARX (MPC-ARX) and state-space (MPC-SS) process models for Cases 1, 2 and 3. In
all three cases, outputs y; and y, are brought to new steady-states by coordinated
moves of both inputs u; and u;. In Cases 1 and 3, smaller output deviations from
respective targets are observed for MPC-ARX controller actions. This trend is
reversed in Case 2. Table 3.20 affirms this preliminary visual inspection through
comparison of ISE values of the responses. To reach new setpoints, MPC-ARX
controller seems to deploy smaller input moves especially on u,. Recall that ARX
model has larger gains than state-space model (Table 3.16). A large model gain
enables the MPC controller to predict future behavior of outputs with less effort.
Based on average input duties, however, only marginal energy savings within a range
of 0.2 to 1.9 kW/min are realized from using MPC-ARX controller (Table 3.21).
These savings may translate into thousands on Ringgit Malaysia (RM) per annum for
a large plant such as RGP. Discussion on economics of RGP operation is the subject

of the next chapter.

Table 3.20: Integral of Squared Errors (ISEs) [(°C)*min] for different setpoint
changes

Case 1 Case 2 Case 3
Output ARX SS ARX SS ARX 8§
» 2,65 266 010 0.05 2.67 271
» 0.48 1.34 321 3.17 413 7.16

Table 3.21: Average input duties (kW/min) for different setpoint changes

Case 1 Case 2 Case 3
Input ARX SS ARX SS ARX SS
wy  3577.5 35782 3256.5 3258.4 3580.8 3582.0
w, 3005.8 3006.0 29179 2918.7 3028.4 3029.8
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Figure 3.23: Closed-loop responses for a change in y; (Case 1) using ARX (thin
line) and state-space (thick line) models as compared with output setpoints and
input nominal values {dotted line)
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Figure 3.25: Closed-loop responses for simultaneous changes in y; and y, (Case
3) using ARX (thin line) and state-space (thick line) models as compared with
output setpoints and input nominal values (dotted line)
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3.6 Concluding Remarks

Developments of steady-state and dynamic models of RGP are presented in this
chapter. An accuracy of close to 95% is achieved when the steady-state model is
validated against actual plant data. The plant data are averaged a priori over a 48-hour
continuous period during the natural gas liquids mode of operation. The dynamic
model is initialized and developed based on the steady-state model. Regulatory
controllers are installed to stabilize RGP and maintain product qualities. To better
handle operational and economic challenges, a two-output-by-three-input constrained
MPC scheme is employed in RGP. This MPC scheme is developed based on step and
PRBS tests. Process model is approximated by linear parametric models in the forms
of ARX and state-space models. ARX model is selected due to smaller ISEs on output

variables in several cases of setpoint tracking.



CHAPTER 4
REAL-TIME OPTIMIZATION

4.1 TIntroduction

Natural gas has recently emerged as an important source of clean energy. Improving
operational efficiency of a refrigerated gas plant (RGP) may significantly increase its
profit margin. One way to increase efficiency is through frequent updates of RGP
operating conditions. This proves to be a challenging task due to time-varying nature
of feed gas flow rates and compositions. At the plant outlet, product values may also
fluctuate at frequent intervals depending on market conditions. Such challenges in
operation and economics are typically handled by employing advanced process

control (APC) and real-time optimization (RTO), respectively.

Development of APC scheme in the form of model predictive control (MPC) is
discussed in the previous chapter, The MPC scheme is commissioned on top of PI
controllers for stabilizing and maintaining product qualitics. Here, MPC actions can
reduce operating costs by coordinating and adjusting input moves optimally (Huang
and Riggs, 2002). A reduction in operating cost may increase RGP profit if all else
remain the same. Maximization of profit is performed at RTO layer. This procedure
requires a plantwide, preferably first-principle, model of RGP. Steady-state RGP
model may be used for solving the RTO problem due to highly complex and nonlinear

nature of the process.

4.2 RTO Problem Formulation

The goal of real-time optimization (RTO) is to maximize RGP profit while respecting
certain plant constraints, and contractual obligations to both producers and customers.
This is generally carried out through maximization of product throughputs and/or
minimization of feed gas and operating costs. The RTO problem can be written in the
following form:

max f (4.12)

us, ys
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subject to:
gL (uss,yss’zss ,p)SO (4.1b)
yss __-fm(uss,zss,p) (410)
ymjn Sy = Syrnax ‘ (41d)
W i <u* S“max (413)

where fz is an economic objective function and gz is a set of inequality constraints.
Steady-state process outputs y* and inputs u™ are bounded within their corresponding
minimum and maximum values. Algebraic state variables z* are updated via steady-
state RGP model f,, using constant plant parameters p. The optimization problem is
solved using a HYSYS built-in sequential quadratic programming (SQP) algorithm
with constraints (Chamberlain and Powell, 1982). The procedure starts with
formulation of the RTO problem (Figure 4.1). It is stopped when one of the following

conditions is achieved:

1. The SQP algorithm reaches convergence, or

2. A new state with higher profit value is attained for non-convergence cases.

Start

Objective function
4

Problem Formulation [ Constraints

X Variables

v

Initialization

Yes

Figure 4.1: Optimization process flowchart
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RTO problem formulation involves three main steps of defining: 1) an objective
function, 2) process constraints, and 3) optimization variables. The objective function

as written in Equation 4.1a is further defined as:

P=2R-DE, “2)

where P is profit, R; (/=5) are revenues and E; (J=10) are expenses, In other words,
the objective function is specially formulated as an economic expression of product
values and operational expenses. Valuable products are sales gas and natural gas
liquids comprising ethane, propane, butane and condensates. Revenues are calculated
based on flow rates of respective products. Operational expenses are mainly due to
costs of feed gas and utilities in the forms of refrigeration cooler duty (E-102Q),
demethanizer reboiler duty (E-104Q), compressor fuel gas consumption (K-102Q),
turboexpander-compressor maintenance (KT/K-101Q) and electricity usage for
pumping actions (P-101Q and P-102Q). Prices and corresponding units of each

component of revenues and expenses are shown in Table 4.1.

Table 4.1: Economic data

Component Price Unit
Feed gas A 6.0 RM/MMBtu
Feed gas B 5.5 RM/MMBtu
Feed gas C 5.0 RM/MMBtu
Feed gas D 7.0 RM/MMBtu
Sales gas 14.4 RM/MMBtu
Ethane 304.0 RM/ton
Propane 569.0 RM/ton
Butane 908.0 RM/ton
Condensates 673.8 RM/ton
Refrigeration 169.0 RM/MWh
Steam duty 89.9 RM/MWh
Compressor duty 84.5 RM/MWh
Turboexpander duty 42.3 RM/MWh
Electricity 233.3 RM/MWh

Source: Personal correspondence with an engineer working at a GPP

For practical reasons, only inequality constraints are specified. This way, feasible
solution can be obtained faster or within RTO sampling interval of 200 min. The long

duration of sampling interval is necessary to match the open-loop settling time of
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MPC controller. Total number of constraints is thirty four including specifications on

product qualities as well as limits in plant throughput, equipment and processes

(Table 4.2).

Table 4.2; Values and bounds of constraint variables

Variable Unit Min  Max Description
¢l ton/h 100.0 310.0 Flow of mixed feed gas
¢ MJ/m* 35.1  48.1 Gross heating value of sales gas
c3 - - 0.75  Specific gravity of sales gas
C4 mol% - 2.00  Carbon dioxide content in sales gas
cs ton/h 205.0 - Flow of sales gas
Cs bar 30.0 - Pressure of sales gas
c7 °c - 50.0  Temperature of sales gas
cs kW/°C - 2000 Coldbox E-101 capacity
Co °c 5.0 - Coldbox E-101 LMTD
10 kW/°C - 800  Coldbox E-103 capacity
e °C 5.0 - Coldbox E-103 LMTD
1 kW/°C - 400  Coldbox E-105 capacity
ci3 °C 5.0 - Coldbox E-105 log LMTD
Ci4 kW 0 4000 Cooler E-102 duty
C15 kw 0 4700 Demethanizer C-101 reboiler duty
Cl6 kW 0 4000 Turboexpander KT-101duty
C17 kW 0 4700 Compressor K-102 duty
13 kW 0 30.0 Pump P-101 duty
C19 kW 0 15.0 Pump P-102 duty
€20 % 25.0  85.0 Flooding at Section 1 of demethanizer
Ca1 % 25.0 85.0 Flooding at Section 2 of demethanizer
cn % 25.0 85.0 Flooding at Section 3 of demethanizer
€23 % 25.0  85.0 Flooding at Section 4 of demethanizer
Co4 % 10.0 50.0 DC backup at Section 1 of demethanizer
C25 % 10.60  50.0 DC backup at Section 2 of demethanizer
C26 % 10.0 50.0 DC backup at Section 3 of demethanizer
C27 % 10.0 50.0 DC backup at Section 4 of demethanizer
C28 % 25.0 85.0 Flooding in absorber C-102
Ca9 % 10.0 50.0 DC backup in absorber C-102
C30 °C 5.0 - Alr cooler LMTD
c31 - 0.50 1.00  Ratio of gas to expander over that to JT valve
c32 - 0.50 1.00 Ratio of gas to coldbox E-103 to that bypasses it
33 - 0.50 1.00 Ratio of gas to coldbox E-101 to that bypasses it
C34 - 0.005 0,150 Fraction of gas to gas subcooled process section

Note: LMTD=log mean temperature difference; JT=Joule-Thompson,
DC=downcomer

Significance of the constraints can be explained as follows. The feed gas flow rate

of 310 ton/h represents the maximum load that RGP can process at a given time.

Constraints on sales gas are as specified by the customers. Specifically, the constraints
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on gross heating value and specific gravity are to ensure quality of the sales gas.
Maximum carbon dioxide content of less than 2.0 mol % is to adhere to
environmental regulation imposed by major customers. Minimum sales gas flow rate
of 205 ton/h is the load demanded by the customers. Minimum pressure of 30 bar and
maximum temperature of 50 °C are offsite specifications. Flooding and downcomer
backup constraints on demethanizer C-101 are to ensure good separation of sales gas
from natural gas liquids. Similar constraints on absorber C-102 represent surrogates to

flooding in absorber bed and chimney trays.

Maximum heat exchange capacities in three cold boxes E-101, E-103 and E-105
are taken as per design. The same reason goes to maximum duties of cooler E-102,
reboiler E-104, turboexpander KT-101, compressor K-102 and pumps P-101 and P-
102. Log-mean temperature difference (LMTD) of greater than 5 °C is to prevent
temperature cross violation at the cold boxes as well as air cooler E-106. Physical
constraints on ratios of gas flowing to certain streams are imposed to avoid dealing
with negative flow rate in one of the other split streams. Minimum fraction of gas
flowing to gas subcooled process section are enforced to prevent total shutdown of
this section. On the other hand, maximum fraction corresponding to the highest gas

flow rate of about 40 ton/h is based on design conditions.

The last step in RTO problem formulation is the definition of variables. This
challenging task must be performed properly because there are many potential
variables to be selected. It should be noted that solution to the steady-state RTO
problem (Equation 4.1) is a set of targets that are passed to dynamic control layer for
implementation. A dynamic model of RGP is already developed in Chapter 3. Process
and instrumentation diagram (P&ID) of this model is illustrated in Figure 3.7. Two
product streams, namely SG and NGLs, contain sales gas and natural gas liquids,
respectively. Feed gas streams A, B, C and D comprises different levels of carbon

dioxide but similar compositions of hydrocarbons (Table 4.3).

It should be noted that compositions of feed gas streams other than feed gas
stream D differ from those given in Table 3.1. This is due to nature of Taguchi
method that requires simultaneous changes of all variable values at each run. For

example, an abrupt change of lean feed gas stream A to very rich feed gas stream C
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flowing at 280 ton/h will cause RGP dynamic model to crash. On the other hand, the
dynamic model can handle a sudden change of flow of rich feed gas stream D from 0
to 2 ton/h due to its much smaller rate. It should be noted that the altered
compositions of feed gas streams A, B and C cause no loss of generality when it

comes to parametric design of RGP.

Table 4.3: Compositions of feed gas streams used for parametric design

Component A B C D
Methane 0.8956 0.8790 0.8465 0.7604
Ethane 0.0525 0.0516 0.0497 0.1581
Propane 0.0289 0.0284 0.0273 0.0441
i-Butane 0.0103 0.0101 0.0098 0.0080
n- Butane 0.0060 0.0059 0.0057 0.0051
i-Pentane 0.0003 0.0003 0.0003 0.0000
n-Pentane 0.0002 0.0002 0.0002 0.0000
n-Hexane 0.0001 0.0001 0.0001 0.0000
Nitrogen 0.0040 0.0039 0.0037 0.0177
Carbon Dioxide 0.0020 0.0206 0.0567 0.0066

In the P&ID, controllers and energy streams are numbered systematically.
However, numbering for most material streams is omitted for reading clarity. The
large dynamic model of RGP contains 770 state variables and 21 regulatory control
loops. This implies that hundreds of variables are available for manipulation. In
practice, however, only several variables are considered important. These variables

are constantly monitored and regulated by manipulating controller outputs.

Key controllers are: (a) split range controller SRC103 that regulates feed gas
stream temperature after coldbox E-101, (b) temperature controller TC101 that
regulates cooler E-102 outlet temperature, (c) split range controller SRC102 that
regulates feed gas stream temperature after coldbox E-103, (d) Ratio controller
RC101 that regulates flow of gas to absorber C-102 over that to turboexpander KT-
101, (e) flow controller FC104 that regulates flow of feed gas stream D, which is
mainly used to increase sales gas gross heating values, (f) pressure controller PC101
that regulates demethanizer C-101 overhead pressure, (g) temperature controller
TC102 that regulates demethanizer tray 35 temperature, and (h) flow controller
FC101 that regulates plant load. For MPC and RTO purposes, manipulated variables

and/or setpoints of these controllers are selected as optimization variables.
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Significance of these variables is analyzed using Taguchi design of parameters, which

is simply termed parametric design.

4.3 Parametric Design

Parametric design through Taguchi method was successfully applied in many
engineering disciplines. For example, Cheng et al. (2008) studied thermal chemical
vapor decomposition of silicon film by integrating computational fluid dynamic codes
in FLUENT and a dynamic model of Taguchi method with Lig 2" x 37) orthogonal
arrays. They found that thickness deviation of silicon film could be reduced by up to
11% from 36% previously. Engin et al. (2008) employed Lie (4> x 2%) arrays to
investigate color removal from textile dyebath effluents in a zeolite fixed-bed reactor.
A surfactant called hexadecyl-trimethyl-ammonium bromide (HTAB, CioH4aBrN)
was added to increase absorption capacity of the zeolite. Experimental results
indicated that HTAB concentration, zeolite bed height and wastewater flowrate were

important parameters, whereas HTAB flowrate was insignificant parameter.

In another application, Chiang (2005) studied cooling performance of parallel-
plain fin heat sink module using L;s (2" x 37) arrays. Through analysis of variance
(ANOVA), four out of eight variables were found to exhibit significant contribution
to the cooling process. The significant variables are number of opening slots (34.8%),
surface area of copper base (22.7%), fan capacity (13.6%) and height of fin flake
(8.7%). By utilizing an optimal configuration of these variables in simulated
environment, a 15% improvement in cooling performance was achieved. Lee and Kim
(2000) proposed a controller gain tuning technique for multi-axis PID control system.
The test bed was a parallel-mechanism machine tool containing eight servodrivers.
Each servodriver has four controller gains, thus a total of 32 gains needed to be tuned
simultaneously. By utilizing Lo (3") orthogonal arrays, robust controller gains were
obtained. A performance indicator namely the index of average position and velocity
errors was reduced by 61.4%. In addition, average signal-to-noise ratio (SNR) was

increased by 8.5 dB to attain better control of the machine tool.

In the current work, Taguchi method for design of parameters is applied to

accomplish the following cbjectives (Roy, 1990):
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1. To identify and rate optimization variables under the influence of disturbance
variables.

2. To determine optimum configurations of optimization and disturbance variables.

3. To estimate and validate maximum RGP profit within specific constraints of all

variables.

Cross-array experiments employing L7 (37) and Lo (3%) internal and external arrays,
respectively, are performed on RGP dynamic model to investigate effects of seven
optimization variables and two disturbance variables at 3 levels each on to RGP

profit.

43.1 Taguchi Method

Taguchi method can be illustrated with the help of a flow diagram (Figure 4.2). The
procedure employed in the current work is modified from that presented by Yang et
al. (2007). It is more compact and includes a failure loop for invalidated design of

experiment.

' Objective function
Problem Formulation 4{ Factors

Levels
y

Orthogonal arra
Experimental Design —_,l: 8 d

A

Conduct experiment

\ 4 SNR
No Analysis of Results *—E ANOVA
Response plot
Validated?

Yes

Figure 4.2: Flow diagram of Taguchi method
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Step 1 involves problem formulation, which requires definitions of an objective
function, factors and levels. This step entails an in-depth knowledge of the process of
interest. In case of RGP, inputs from experienced operators are essential in
determining potential optimization and disturbance variables, as well as their normal,
high and low values (Table 4.4). Optimization and disturbance variables are called
controllable and noise factors, respectively, in Taguchi-related literature. Limits of
high and low values are called levels. Median, and lower and upper quartiles of the

limits may also be included to augment experimental design configurations.

Controllable factors A to G are set up in an Ly7 (37) internal array whereas noise
factors H and 7 in an Lo (3°) external array. Cross-array experiments between external
and internal arrays are conducted to include the effect of noise on controllable factors
(Taguchi and Konishi, 1987). Outputs from running these experiments are profit
values obtained from an objective function (Equation 4.2). Since RGP dynamic model
is developed based on first principles, significance of optimization and disturbance

variables can be systematically established through Taguchi method.

Table 4.4: Description of factors and levels for RGP

Factors I, Ly L Units Description
A 90 95 100 % Split range controller SRC103 output
B 30 40 50 % Temperature controller TC101 output
C 90 95 100 % Split range controller SRC102 output
D 0.005 0.075 0.15 - Ratio controller RC101 ratio
E 0 25 50 % Flow controller FC104 output
F 22 23 24 barg Demethanizer C-101 overhead pressure
G 70 85 100 % Temperature controller TC102 output
H 250 280 310 ton/h Feed gas flow rate
I 6.0 5.5 50 RM/MMBtu Feed gas prices

Note: L=level; subscript denotes level number.

Step 2 involves designing and conducting experiments. Numbers of factors and
levels have an effect on selection of standard orthogonal arrays. For 7 controllable
factors at 3 levels such as the one in this study, an Ly; array consisting of 27 rows and
13 columns is appropriate. The rows and columns represent experimental runs and
factors, respectively. Since there are only 7 controllable factors used to calculate RGP
profit, the remaining 6 columns on far right of the array are ignored. Similarly, an Lg

array consisting of 9 rows and 4 columns is selected for 2 noise factors at 3 levels.
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Only the first 2 columns are used in this study. Reduced arrays are shown in Tables
4.5 and 4.6. It should be noted that, in order to capture adequate responses of all 7
controllable factors towards the objective function, only 27 experiments from an
internal array need to be conducted for each of the 9 runs from an external array.
Hence a total of 243 (=27*9) experiments need to be performed. This is more

appealing than running 19,683 (3°) experiments under full factorial design approach.

Table 4.5: Taguchi internal array showing levels of controllable factors

Factors

g

W WL WLWWWRNNNDNNNDNN = e e e |
WWLWWRONN—, R, WWWRNDND = — — WWwWWD RN =~y
RN =W = = W W WR N WL WER NN = -
= L W W NN RN = = WL WL W NN = — =y
i I T S B S el IR VST S RN VERY N ISR SURN N o
B WM = I R W = W N = W R = W WR — W = W) =y
R W W N e W R W N LW W N W R =D

RO B N IO M M R B et
N U RO NSNS 0 R A N PR L0 IRN R WN =

Table 4.6: Taguchi external array showing levels of noise factors

Run
Factor  —————=—7—"" %7 3§ ¢
71 1 1 2 2 2 3 3 3
7 1231 2 31 2 3
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Step 3 deals with analysis of results. Three major statistical tools commonly
applied in Taguchi method are signal-to-noise ratio (SNR), analysis of means

(ANOM) and analysis of variance (ANOVA). SNR for each run » is defined as:
(SNRY' =—10log(MSD)"; Vn=1,..,.N (4.3)

where N=27 is the number of experiments in the internal array. Since RGP profit is
chosen as the objective function in this work, mean squared deviation (MSD) is

defined to uphold “the-larger-the-better” quality principle as follows:

(MSD)" L v
M pour (xmn xm )2

. Vn=1,..,N 4.4
where M=9 is the number of experiments in the external array. Equation 4.3 is slightly
modified from the one presented by Roy (1990). This is necessary to avoid dealing
with large absolute values of RGP profit. In the current work, deviational values of

profit are obtained from the spread around means X" of respective cases.

For ANOM and ANOVA, two averages must be calculated a priori. Average of

factor k at level / in case m, X7, is taken as sum of respective factorial values divided

by number of repeated level, Np.

Np
X =—1—Zx,'{;”; Vk=1,.,K; Yi=1,.,L; Vm=1,..M (4.5)

R n=1

where Ng=9, K=7 and L=3 are correspondingly numbers of repeated level, factors and
levels. Tt should be noted that in Equation 4.4, n is an index referring to run numbers
in L,7 array that correspond to unique configurations of factorial levels. This means
that n=1,...,Ng may not follow a sequence from 1 to Ng. For example, index n=1 may
refer to the tenth row in Ly; array containing the first output of a particular factor at

level 2. After determining average of factor k at level /, average of factor k over all

levels L in each case m, X" is calculated as below:
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L
> E0; Vk=1...K (4.6)

These two averages are used to calculate variance V” which has two contributors.
The numerator is the sum of squares between two averages of factor k (¥ andX").
The denominator is called degrees of freedom of factor & over all levels L in case

m,(DOF); .

L — —
D (xp-xpr)
{=1

Ir-1

(4.7)

Vo= L Vk=1,...,.K

Percentage contribution C[" is obtained by dividing individual variance of factor %,

V,» from total variance of all factors and multiplying the result with 100.

10OV,
Cr=—-rt: V=1,.,K

inm 4.8)
k=1

Step 4 is validation of experiment. For each run in external array, there are 27
experimental runs in internal array. By design, only one run will yield the highest
profit margin. Preliminary visual inspection of trends of each factor average
contributions at all levels can be made through a response plot. Here, average values
of profit and SNR of factor &k at levels /=1,...,.L (L=3) are plotted against
corresponding factors. The response plot may be used to locate optimal design
configuration for the purpose of verifying results. Additional experiments with 9 runs
are required to compare both experimental and calculated values of profit. The

calculated optimum profit x, in case m is obtained by summing up mean X~ for the
same case with maximum deviations of average values of factor & at level /, X from

the corresponding average values at all levels, x”.

K
xm =X +(Zmax(f,;;‘)—f,§” ); vi=1,..,L 4.9)

opt
k=1
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where
m=xr; Vk=1,.,K (4.10)

Equation 4.9 implies that average of factor & over all levels, X" equals to mean x” of

the respective case m. This is true since Taguchi design of experiment is unbiased by

construction.

4.3.2 Analyses of Taguchi Results

All experiments are conducted using RGP dynamic model developed under HYSYS
environment. Profit (Equation 4.1) is calculated online in a built-in spreadsheet.
Material and energy units are converted a priori to be consistent with the basis of one-
minute interval calculation. To ensure repeatability, HYSYS 2006 SP5 running on
Windows XP Professional operating system is employed. This process simulator is
installed in a standard Dell Optiplex GX520. Reproducibility is also ensured because
experimental steps are pre-configured in ‘Event Scheduler’. Changes on levels of all

factors are set to run in parallel.

Experiments are stopped after all factors reach steady-state at 420 min simulation
time. In most experiments, profit values level off after 360 min but in some runs, the
values slightly fluctuate towards the end. For these runs, the last 60 values are
averaged out. Only one profit value is required for each run. Major results are
presented in Table 4.7. For convenience, profit is denoted as x™ where m (m=1,...,9)
and n (n=1,...,27) are indices of external and internal runs, respectively. Cases 1 to 9
refer to the corresponding values of index m. In the following discussion, Cases 1-3,
4-6 and 7-9 are categorized as Groups [, Il and III due to similarity in configuration of

noise factor H (plant load) and sequence of noise factor / (feed gas prices).
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4.3.2.1 Effect of Noise Factors

Means for Cases 1, 2 and 3 (Group I} are respectively 1739.63, 1787.46 and 1742.48
in the unit of RM/min. For convenience, the unit RM/min is omitted in subsequent
discussions. For Cases 4, 5 and 6 (Group II), means are 1965.28, 2000.32 and
1949.48. In the last three cases (Group III), the values are 2178.59, 2216.94 and
2158.44. The means for Groups I, IT and III can be calculated as 1756.53, 1971.69 and
2184.66, respectively. A gap of about 200 is noticed between Groups I and II as well
as between Groups II and III. This discrepancy is caused by the presence of noise
factor H, which is plant load. Increasing plant load increases amount of feed gas and
thus RGP profit due to additional productions of sales gas and natural gas liquids.
However, it should be noted that RGP was designed to process a maximum of 310
ton/h of feed gas. Any amount higher than this value will push equipment loads
towards upper constraints. On the other hand, RGP load can be reduced to 100 ton/h
of feed gas without the need for total plant shutdown. However, under-loading is

undesirable since RGP profit will also diminish.

Similarly, effect of noise factor / on RGP profit can be deduced. The highest
values of average profit in each Groups I, 1I and III are generated from L (factor /,
level 2) configuration. As clearly shown in Cases 2, 5 and 7, the average profits are
respectively 1787.46, 2000.32 and 2178.59. This is attributed to different economic
values of feed gas streams A, B and C due to different values of carbon dioxide
contents (Table 4.3). Highly priced feed gas stream A erodes RGP profit while the

cheaper feed gas stream C increases it.

4.3.2.2 Average Profit Analysis

To study relative significance of factors quantitatively, ranking of factors is initially
performed using analysis of mean (ANOM). Table 4.8 shows ANOM results for RGP
profit. Equations 4.4 and 4.5 are applied to calculate averages of factor k. For RGP
profit analysis, values of profit from Cases 1-9 are averaged out in a row-by-row basis
as implemented by Yang et al. (2007). This approach is consistent with the general
procedures of Taguchi method that deals with average values. Superscript m referring

to run number in the external arrays may be omitted in this section. Hence, an average
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value of profit at certain level is denoted as X,. As an example, averages of factor 4

at levels 1, 2 and 3 are (Equation 4.4):

: 1975.01+1995.18+2014.21
fA1=—9- +1964.17+1986.01+2002.61 |=1985.18; n=1,...9.
+1955.75+1978.42+1995.29

. 1984.80+1973.86+1988.92
X, =—| +1972.67+1959.07+1976.79 (=1971.44; n=10,...18,
+1965.87+1952.57+1968.42

| 1961.15+1973.16+1958.73
X5 =§ +1956.32+1966.71+1953.28 |=1956.25; n=19,...27.
+1941.12+1954.54+1941.25

where X, denotes average of profit due to factor 4 at level / (/=1,...,3). Similarly,

average of factor 4 at all three levels is (Equation 4.5):

X, =%(1985.18+1971.44+1956.25)=1970.96

By design, average of factor 4 is the same as those of other factors as shown in
Table 4.8. This factorial average value is also the same as the global mean value of

1970.96 as presented in Table 4.7 and implied by Equation 4.10.

Table 4.8: Analysis of means for average profit

Xy X Xa X1 Xgy Xpi X
Level 1 1985.18 1980.56 1971.95 1969.98 1964.10 1969.28 1959.30
Level2 1971.44 1970.85 1970.81 197030 1971.06 1970.69 1972.48
Level 3 1956.25 1961.47 1970.11 1972.59 1977.72 197291 1981.10
X, 1970.96 1970.96 197096 1970.96 1970.96 1970.96 1970.96

E; 28.93 19.09 1.84 2.61 13.63 3.63 21.80
Ry 1 3 7 6 4 5 2
Note: k=factor number; /=level number
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Ranking is initially determined from ANOM, which shows deviation of the
highest value from the lowest value of average of factor k at level I: [=1,...,.L (L=3).
This deviation is denoted as E;. The highest ranking is assigned to a factor carrying
the highest E, value. In case of 7 controllable factors that affect RGP profit, the
descending order of importance is AGBEFDC (Table 4.8). This implies that factor 4
is the most significance while factor C is the least significance. Ranking from ANOM
is verified with ranking from ANOVA (Table 4.9). In the latter analysis, averages of
factor & at level / and at all levels L are used to determined sum of squares of factor £.

For example, sum of squares of factor 4 is:

(1985.18-1970.96 )
S, =27% +(1971.44-1970.96)° [=11310.14
+(1956.25-1970.96)°

Table 4.9: Analysis of variance for average profit

A B C D E F G
S, 11310.14 4918.75 4651 109.73 250723 18124 6507.04
(DOF); 2 2 2 2 2 2 2

Vi 5655.07 2459.37 23.26 54.86 1253.61 90.62 3253.52

Cr 4421 19.23 0.18 0.43 9.80 0.71 25.44

Ry 1 3 7 6 4 5 2
Note: k=factor number

In general, an S; value represents spread of experimental results of factor £ from
data average. A large value such as the one obtained here indicates significant
contribution of that particular factor towards output (RGP profit). On the other hand, a
factor is deemed unimportant if its S; value approaches zero. Since S; values are
unbounded at the higher end, it is convenient to denote relative importance of a factor
k in term of its percentage contribution, C; (Equation 4.7). Before calculating Cy, a
quantity called general variance of factor £, ¥ needs to be determined. This quantity
differs from population variance o, which could only have been obtained if all
19,683 (3%) possible experiments had been conducted. The ¥ value is obtained from
Equation 4.6 where degree of freedom of factor k, (DOF), is one less its number of

levels. For example, variance of factor 4 is thus:
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11310.14

v, =5655.07

Finally, percentage contribution of factor 4 is:

c - 100(5655.07)
4 15655.07+2459.37+23.26+54.86
+1253.61+90.62+3253.52

=44.21%

Ranking of factor &, R, from ANOVA is presented in Table 4.9 above. The
descending order of importance of 7 controllable factors is AGBEFDC. This result is
strikingly similar to the one from ANOM. Factor 4 (split range controller SRC103
output} is a major contributor with 44.2%. This factor regulates temperature of feed
gas exiting coldbox E-101 that could influence refrigeration cooler duty (temperature
controller TC101 output). Lower feed gas temperature means less cooler E-102 duty
is required to maintain the same separation and thus higher RGP profit. Contribution
of factor B (temperature controller TC101 output) at 19.2% is slightly less than that of
factor G (temperature controller TC102 output) at 25.4%. Both factors B and G play
an important role in plant energy balance. Hence an increase in temperature controller
TC101 output that further reduces RGP temperature must be accompanied by a
similar raise in temperature controller TC102 output. Disproportionate contribution of

factors B and G is attributed to presence of factor 4.

The effect of factor £ (flow controller FC104 output) is also significant with 9.8%
contribution. Flow controller FC104 output regulates re-injection of rich hydrocarbon
to boost sales gas gross heating value. An increase in flow controller FC104 output
increases sales gas production. Due to large gap between prices of sales gas and feed
gas stream D (Table 4.1), a lift in sales gas rate increases RGP profit. However, it
should be noted that only 10 ton/h of feed gas stream D is available for this purpose.
Contribution of factor F (pressure controller PC101 that regulates demethanizer
overhead pressure) is about four times as large as factor C (split range controlier
SRC102 output). Both factors C and F are mainly used to regulate demethanizer
overhead quality. Since installation of gas subcooled process (GSP) section in RGP,
influence of split range controller SRC102 controller on demethanizer overhead

quality has been drastically reduced and taken over by pressure controller PC101.
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Contribution of factor D (RC101 controller ratio) is minor at 0.4%. This factor
regulates split of processed gas going into GSP section and/or turbo-expander. A
higher value of RC101 controller ratio promotes more recovery of ethane and heavier
hydrocarbons at GSP section. In other words, factor D is useful in improving ethane
recovery but only slightly significant in increasing RGP profit due to lower price of

ethane as compared with other natural gas liquids and sales gas values.

4.3.2.3 Signal-to-Noise Ratio (SNR) Analysis

RGP profit is determined by independently setting 7 controllable and 2 noise factors
in Taguchi arrays. Ly, (3’) internal arrays are selected for controliable factors and Lo
(3%) external arrays for noise factors. This means that each experimental run from
internal arrays (Table 4.5) needs to be repeated 9 times under different configuration
of external arrays (Table 4.6). In the previous section, significance of controllable
factors in maximizing RGP profit has been discussed with moderated influence of
noise factors. In this section, significance of controllable factors is investigated using
signal-to-noise ratio (SNR) approach. Qualitative principle in the form of “the-larger-
the-better” SNR is selected for this analysis. A high value of SNVR in a particular run
indicates minimum effects of noise factors on outputs. SNR values for all runs are
presented in Table 4.10. They are calculated using Equations 4.2 and 4.3. Taking run
atray mn=13 (runs 1 and 3 in external and internal arrays, respectively) for example,
mean standard deviation (MSD)" can be calculated as:
(1798.38-1739.63) +(1832.00-1787.46) +(1777.96-1742.48)"

+(2019.41-1965.28) +(2038.59-2000.32) * +(1977.41-1949.48)  [=0.2940
+(2230.85-2178.59) % +(2260.46-2216.94)* +(2192.79-2158.44)

(MsD)"” =-}§

Signal-to-noise ratio (SNR)" is:

(SNR)”? =—10*10g(0.2940)=5.32
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Table 4.10: Results of signal-to-noise ratio (SNVR) analysis

Run (SNRY  (SNR),,

1 532 23.37
2 26.40 44.46
3 32.03 50.09
4 8.89 26.95
5 22.37 40.43
6 29.11 47.17
7 23.51 41.57
8 16.88 34,94

9 27.15 45.21
10 19.09 37.15

11 4.43 22.49
12 24.91 42.96
13 0.58 18.64
14 20.83 38.89
15 12.91 30.97

16 13.49 31.54
17 24.95 43.00

18 -3.51 14.54
19 18.34 36.39
20 -12.84 5.22

21 19.31 37.37
22 22.69 40.74
23 -18.06 0.00
24 23.72 41.78
25 28.86 46.91
26 22.06 40.11
27 28.63 46.68

Since an SNR value may be negative when MSD rises above 1, a bias is added to all
SNR values. The bias is chosen as the minimum value of SNR across all case studies.

In essence, an adjusted SNR is defined as:
(SNR)y, =(SNR)™ —min(SNR)" 4.11)
In this case, the adjusted SNR for run array mn=13 is:

(SNR)., =32.03—(~18.06)=50.09
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In subsequent discussions, the word ‘adjusted’ is omitted for convenience. All SNR
values refer to adjusted SNR values. These values are used to determine ranking of

controllable factors that can minimize effects of noise factors.

Ranking is performed using a similar method employed in average profit analysis.
However, SNR values instead of average values of profit are used in carrying out
ANOM and ANOVA. For ANOM, averages of SNR of factor k at levels 1, 2 and 3 are
initially calculated before determining the corresponding £y values. For example, SNR

averages of factor 4 are:

23.37+44.46+50.09

(E“NE)AI% 126.95+40.43+47.17 |=39.35

+41.57434.94+45.21

(3715424944296
(W)ﬂ:; +18.64+38,89+30.97 |=31.13
+#31.54+43.00+14.54

(3639452243737
(M),B:5 +40.74+0,00+41.78 |=32.80
+46.91+40.11+46.68

where (S_NE)A, denotes average of SNR due to factor 4 at level [: /=1,...,3. Thus,

average of SNR due to factor A4 at all three levels is:

SVR), = 1(39.35431.13432.80)=34.43
G

Other average SNR values of factor &k are calculated using the same procedure and
presented in Table 4.11. Ranking of 7 controllable factors in descending order of
importance is FEACBDG. This shows that factors F and G are respectively the most
and least important factors. However, it is important to note that SVNR results disagree
with the ones based on average profit. Interpretation of results from SNR analysis is
differed until after discussion on ANOVA, which is utilized to verify results from

ANOM.
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Table 4.11: Analysis of means (ANOM) for SNR

(svR), (SNR), (SNR), (SNR), (SNR), (SNR), (SAR),
Tevel | 3935 3328 3217 3779 3370 2508  35.79

Level2  31.13 31.73 38.98 31.40 29.95 37.00 36.93
Level3  32.80 38.28 32.13 34.09 39.64 41.21 30.57

Xy 34.43 34.43 3443 3443 34.43 34.43 3443

E, 8.22 6.55 6.85 6.39 9.69 16.13 6.36

R 3 5 4 6 2 1 7
Note: k=factor number; /=level number

The main objective of ANOVA is to calculate percentage contributions of factor
k, Cy in influencing RGP profit. Ranking of factors may also be determined from C;
values. A factor with the highest C; value is the most significance. The procedure for
calculating Cy values are presented previously in the case of average profit analysis
and thus will not be repeated here. The descending order of importance from ANOVA
is FEACBGD (Table 4.12). The order is similar to that from ANOM except for the
last two, in which factors D and G switch places. Since ANOVA is a second order

statistical analysis, its results are more reliable than those of ANOM.

Table 4.12: Analysis of variance (ANOVA) for SNR

A B C D E F G
Sy 1019.78 633.06 840.08 55596 1289.81 3781.63 620.73
(DOF), 2 2 2 2 2 2 2

Vi 509.89 316.53 420.04 27798 64490 1890.82 310.36

Ci 11.67 7.24 9.61 6.36 14.76 43,26 7.10

Ry 3 5 4 7 2 1 6
Note: &=factor number

It is evident that ranking orders for statistical analyses using average profit and
SNR values differ markedly. Factor 4 (split range controller SRC103 output) with
44.2% contribution is the most significance in maximizing RGP profit. On the other
hand, factor F (pressure controller PC101 setpoint) with 43.3% is the most important
in minimizing effects of noise factors through SNR analysis. PC101 is a pressure
controller responsible for maintaining demethanizer overhead pressure. Raising
pressure contreller PC101 setpoint from 22 to 24 bar increases demethanizer top
column temperature by about 5 °C. This action induces losses of ethane and propane

in sales gas product stream. On the other hand, a low value of pressure controller
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PC101 setpoint at 22 bar helps to improve recovery of natural gas liquids due to
cooler condition at enriching part of demethanizer. Given fluctuating disturbances in
the forms of noise factors H (plant load) and 7 (feed gas prices), pressure controller

PC101 should be set at appropriate level to stabilize demethanizer.

Factor E (flow controller FC104 output) at 14.8% contribution is the next
important factor. Flow controller FC104 regulates rich hydrocarbon (feed gas stream
D) injection to sales gas product stream. In the event of low plant load, flow controlter
FC104 output is increased to boost sales gas flow rate and gross heating values. This
practice will drive revenue upwards due to large gap between prices of sales gas and
feed gas stream D. Factor 4 (split range controller SRC103 output) with 11.7%
contribution is also significant. Split range controller SRC103 output regulates
amount of processed gas entering and bypassing coldbox E-101. A high value of split
range controller SRC103 output at 100% means no bypass. As a result, the hotter feed
gas exchanges more heat with the much cooler processed gas and leaves coldbox E-
101 at lower temperature. This will have a positive effect on recovery of natural gas
liquids and thus RGP profit. A stream with high carbon dioxide content contains
lower quantity of hydrocarbon (termed leaner) to be processed. Since carbon dioxide
has zero heating value, leaner feed gas requires less energy to be cooled and/or heated
in order to achieve the same separation as the richer one. Thus split range controller
SRC103 output value needs to be adjusted accordingly to handle either feed gas
streams A, B or C.

Explanation for significance of Factor C (split range controller SRC102 output)
with 9.6% contribution is similar to that of Factor 4 (split range controller SRC103
output). The only difference between the two factors is in regulating split of sales gas
flow at coldbox E-103 instead of E-101. Contributions from factors B (temperature
controller TC101 output) and G (temperature controller TC102 output) are about the
same at 7.2% and 7.1%, respectively. Temperature controller TC101 output regulates
propane refrigeration cooler duty while temperature controller TC102 output regulates
demethanizer reboiler duty, Both variables control the amount of energy leaving or
entering RGP. A high value of plant load requires additional load on temperature
controller TC101 duty to maintain the same recovery of natural gas liquids. Increasing

value of temperature controller TC101 output must be matched by the same amount in
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temperature controller TC102 output. With close to zero contribution, factor D
(RC101 controller ratio) is the least significant factor in regulating external
disturbances. RC101 is a ratio controller that regulates amount of feed gas entering
turboexpander and GSP section of RGP. A high value of RC101 controller ratio
improves recovery of natural gas liquids. However, RC101 controller ratio can hardly
be employed to minimize the effects of fluctuations in feed gas flow and prices on to

RGP profit.

Besides determining significance of factors responsible for stabilizing disturbance,
SNR results may also be employed to locate optimal configuration of factors to yield
maximum RGP profit. This configuration is found based on ‘the-higher-the-better’
qualitative principle. From Table 4.10, the highest SNR value of 50.1 comes from run
3 with configuration A4,8,C1DiE;F3G;. This configuration consistently gives the
highest profit values in all Cases 1-9 as shown by results across the same row. In fact,
profit value of 2260.46 in Case 8 is the maximum one found from all 243

experiments.

On the other hand, zero SNR value implies that configuration 43B,C1D3E,F1(Gs in
run 23 yields the lowest profit. However, it is found that average profit value of
1966.71 at this run is closer to the overall mean value of 1970.96 than to the minimum
value of 1941.42, This result confirms that SNR principle employed in this study is
only valid in determining the highest value but not the lowest value of RGP profit. In
general, maximum and minimum values of profit can only be ascertained after
running the entire 19,683 (39) experiments under full factorial design approach. It is
possible that profit values derived from Taguchi method do not even reach either side
of the extremities. For this reason, it is important to estimate and validate maximum
value of profit by running another set of experiments under optimal configurations of

both controllable and noise factors.

4.3.3 Validation

The final step in Taguchi method is validation of results. RGP profits obtained from
conducting HYSYS experiments are compared with those calculated based on

ANOM. In this case, ANOM results are obtained for individual Cases 1-9 as opposed
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to the one discussed previously where ANOM is performed using average values of
profit from all 9 cases. This is necessary because the latter lacks configuration of
noise factors to be assigned in HYSYS ‘Event Scheduler’. ANOM profit values are
obtained from Equation 4.8, which contains two terms namely means and maximum
differences of averages of factor k k=1,...,K (K=T) for the corresponding cases

m=1,...,9. An example on how to calculate ANOM profit is shown below:

x1 =1739.63+(16.31+12.49+1.42+2.31+8.05+4.06+11.65)=1795.92

opt

where superscript value of optimum output x}, denotes Case 1. The mean value for

Case 1 is 1739.63 (Table 4.7). Values in parenthesis are maximum differences
between individual averages of factor & at level /=1,...,L (L=3) and their means at

respective Cases 1-9 (Table 4.13).

Table 4.13: Maximum differences of averages of controllable factors for Cases 1 to 9

Case A B C D E F G
16.31 12.49 1.42 2.31 8.05 4.06 11.65
12.17 9.36 0.36 2.02 6.93 2.84 10.08
8.33 6.84 0.89 0.79 6.54 1.36 6.74
18.37 11.47 1.81 2.13 6.85 3.18 12.31
14.43 9.78 1.12 2.79 5.57 2.03 9.77
9.37 6.41 0.24 1.87 6.12 1.01 7.94
20.60 11.75 1.17 0.60 7.28 1.06 13.19
17.22 10.70 1.21 1.07 6.54 0.53 11.42
11.23 7.60 1.01 1.15 7.01 1.49 8.13

Neli--REN Be SRV R NS S

Optimal configurations of controllable factors can be determined from a response
plot of average values of factor & at respective levels against output values. In this
work, the outputs are profit and SNR values. Two qualitative observations can be
made from this plot: 1) significance of individual factors can be established from
steepness of factorial graph slopes, and 2) levels of individual factors yielding
maximum RGP profits and SNR can be visually determined. In the first observation,
the steeper the slope of a factorial graph, the more significant the factor is. This
deduction can complement percentage contributions of factors, Ci as discussed
previously. As an example, split range controller SRC102 (factor C) output may be
varied between 90 and 100% without affecting much of RGP profit. For split range

controller SRC102 output values below 90%, a decrease by 1% in controller output
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increases demethanizer top temperature by about 0.2 °C. This eventually leads to
losses in ethane and propane products by about 0.90 and 2.25%, respectively. On the
other hand, a controller output value above 100% is not allowed due to violation in
physical constraint. Similar deductions can be made on the effects of factor D (RC101

controller ratio) and factor F (pressure controller PC101 setpoint) on the RGP profit.

The second observation is important in estimating and validating experimental
results. A configuration of optimal levels of factors should yield a maximum value of
RGP profit. In analysis that uses average values of profit, it is clear that maximum
profit could be obtained from configuration 4,B8,C1D3E3F3G3 (Figure 4.3). Values of
this optimal configuration are set up in HYSYS ‘Event Scheduler’ and run for 420
min. RGP proﬁt is calculated automatically using built-in spreadsheet to prevent
round-off error. Profit values of 1813.67, 1840.20, 1791.35, 2009.59, 2037.80,
1981.95, 2229.17, 2259.73 and 2192.06 are obtained for Cases 1-9, respectively.
Assuming that HYSYS experimental results are the correct ones, deviation from these
values are termed error, E” for cases m=1,...9. For example, an E” value can be

calculated as:

1795.92-1813.67)

E! =100( =-0.98%
1813.67

where superscript 1 in error term E! denotes Case 1. Positive E™ values indicate that
HYSYS experimental results are lower than those obtained from ANOM. In this work
small E™ values of less than 1% for all cases are obtained (Table 4.14). This means

that optimal configurations of controllable factors for all cases have been found.

PUSAT SUMBER MAKLUMAT
FINTVERSITI TEKNOLOGT PETRON &Y
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Optimal configurations of noise factors can be determined from means of profit in
Cases 1-9 (Table 4.7). A minimum value of 1739.63 is obtained from Case 1 with
configurations Hyl;. On the other hand, configurations H3L, in Case 8§ yield a
maximum value of 2216.94. This shows that optimum configurations of noise factors
have been found in Case 8. If combined with the previous result, optimal
configurations of controllable and noise factors are 4,8,C1D:E;F3GyHsL. When run
in HYSYS, these configurations yield a profit value of 2259.73. A comparison with
ANOM result yields a small £ value of 0.3% confirming that this configuration is
optimum. In addition, the profit value obtained from running optimal configuration of
factors is close to the maximum profit value of 2260.46 obtained from run 3 in Case 8

with configuration A, BC\DsE3FyGsHsb,.

Table 4.14: RGP profit values from experiments (HYSYS) and Taguchi method
(ANOM) at optimal conditions

HYSYS ANOM Deviation

Case (RM/min) (RM/min) (%)

1813.67 1795.92 -0.98
1840.20  1831.21 -0.49
1791.35  1773.98 -0.97
2009.59  2021.39 0.59
2037.80  2045.82 0.39
1981.95  1982.43 0.02
2229.17  2234.24 0.23

225973 2265.63 0.26
2192.06  2196.05 0.18

o0~ NN R W =

Figure 4.4 shows a response plot based on SNR analysis. Configuration
A1B3CG D E3F3G, seems optimal because SNR values of each factor are the highest.
Another run in HYSYS with this configuration coupled with H3/> configuration on
noise factors yields profit value of 2233.75. This value is 1.2% lower than the one
found based on average profit analysis. When optimal configurations based on
average profit and SNR values are compared, agreements are only found on levels of
factors 4, K and F. Differences in optimal levels of factors B, C, D and G are found to
be responsible for lowering profit. This result shows that an optimal configuration of
factors cannot be determined from SNR response plot. Instead, the optimal
configuration can be found from the response plot based on average profit values of

all 9 cases as discussed earlier.
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When the optimal configuration based on average profits is run in HYSYS,
dynamic responses and final steady-state levels for Cases 1 to 9 can be plotted to
illuminate several interesting points (Figure 4.5). Highly fluctuating trends in the
early part of simulation time reflect difficulties faced by RGP to maintain stability due
to changes in levels of all factors, After initiél rise in profit values, trough is clearly
noticed after about 10 min of simulation effort for all 9 cases. For the last three cases,

additional fluctuations are noticed after 30 min of simulation time.

In general, the trough phenomenon is caused by inadequacy of cooling for
separation of natural gas liquids from sales gas when feed gas flow is raised from 250
to 280 ton/h. This corresponds to changes in factor H from level 1 to 2. Recall that
feed gas is cooled by increasing levels of factors A (split range controller SRC103
output), B (temperature controller TC101 output) and C (split range controller
SRC102 output). However, these factors are set at their lowest levels under optimal
conditions causing profit values to initially drop. After occurrence of trough, sharp
rise in RGP profit margins is caused by increasing level of factor D (RC101 controller
ratio) from level I to 3. Raising RC101 controller ratio from 0.003 to 0.15 increases
feed gas flow to GSP section from about 1.1 to 34.2 ton/h. This action improves
recovery of valuable natural gas liquids and thus RGP profit.

In Cases 1-3 (Group ), profit trends produce the deepest trough and settle at the
lowest margins due to low value of feed gas flow at 250 ton/h. Mild oscillations in
Group I results are caused by changes in factors D, E, F, G from level 1 to 3 and
variations in factor J (feed gas prices) at all three levels. Profit trends in Cases 4-6
(Group II) settle above Group I steady-state values. Higher settling trends of Group II
profit are caused by increase in feed gas flow from 250 to 280 ton/h. Raising feed gas
flow by additional 30 ton/h also causes similar trough occurrences as in Group I due
to insufficient cooling. On the other hand, profit trends in Cases 7-9 (Group III)
generate the shallowest trough among the three groups. Major fluctuation of profit
trends is seen after 30 min of simulation time. This phenomenon is attributed to
equivalent delay in switching time of level of factor D (RC101 controller ratio) from
levels 1 to 3. The delay is required to prevent inétability of RGP dynamic model when
changes on other factors are imposed simultaneously. Trends of Group III settle at the

highest levels as compared with trends of the other two groups. Results from this
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observation indicate that factor H (plant load) at level 3 yields the highest profit
margins. Slight differences of steady-state values are caused by variations in levels of
factor 1. The highest profit margin obtained in Case 8 reveals that [, (feed gas stream
B with moderate carbon dioxide content) configuration is optimum although price of

feed gas stream B is in between those of feed gas streams A and C.

4.3.4 Summary of Parametric Design

Significance of 7 controllable and 2 noise factors affecting RGP profit is studied by
conducting 243 experiments in a cross-orthogonal-array set up. Three controllable
factors handling RGP energy consumption top the ranked list. A combined effect of
factors 4 (split range controller SRC103 output) and B (temperature controtler TC101
output) controls the entire plant temperature. Higher values of these factors cool the
plant and thus enhancing recovery of natural gas liquids. In a balancing move, energy
intake through factor G (temperature controller TC102 output) is vital in ensuring

smooth separation of feed gas in demethanizer C-101.

RGP profit can also be improved by setting higher level of factor £ (flow
controller FC104 output). This action increases amount of hydrocarbon injection to
sales gas product, and thus boosting sales gas gross heating value and flow.
Contributions from factors C (split range controller SRC102 output), D (RC101
controller ratio) and F (pressure controller PC101 setpoint) are found to be slightly
significant in optimizing RGP profit. These controllable factors play more important
roles in minimizing the effects of noise factors as shown in ANOM and ANOVA
results of SNR values. Among the two noise factors, factor H (plant load) is more
significant than factor 7 (feed gas prices). Higher plant load increases amount of feed
gas to be processed, which in turn produces more sales gas and natural gas liquids

products.

Maximum RGP profit is derived from an optimal configuration of both
controllable and noise factors. This unique configuration of low, medium or high
levels of individual factors was selected based on a response plot of average profit
values. The optimal configuration of factors is set in HYSYS for validation. For all

Cases 1 to 9, results from HYSYS experiments are compared against those from
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ANOM. Remarkable agreements found in all cases verify the optimality of factorial

configuration.

It should be noted that optimization via Taguchi method is only valid over certain
pre-set levels and ranges of controllable and noise factors. In reality, plant states move
constantly due to time-varying nature of feed gas flow and compositions as well as
existing dynamics inside the plant. Therefore, frequent updates of factorial values
within and sometime outside the pre-set ranges may be necessary to locate global
optimality. Restricting factorial levels at a fixed configuration all the time may not
always work. For example, low levels of factor 4 (split range controller SRC103
output) and factor B (temperature controller TC101 output) at optimal configuration
are inadequate for handling rich feed gases. In fact, compositions of feed gas streams
A, B and C specified for Taguchi design of experiment studied here differ only in
carbon dioxide but not in hydrocarbon contents. This is done to avoid systematic
crash of dynamic RGP model used in the experiments. The crash can happen when
compositions of a mixed feed gas stream flowing at 280 ton/h are suddenly changed

from lean to rich and vice-versa as required by Taguchi method.

The current specification of feed gas compositions is applied without loss of
generality because the main objective of Taguchi approach is to verify suitability of
key factors for control and/or optimization purposes. All 7 controllable factors are
found suitable at varying degrees of contribution to RGP profit. As a matter of
decision, two factors namely factor B (temperature controller TC101 output) and
factor G (temperature controller TC102 output) are selected as manipulated variables
for MPC scheme. These two factors function as sink and source terms, respectively, in
overall balance of plant energy. The remaining factors are employed in RTO studies

of RGP in the next section.
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4.4 RTO Case Study

Benefits of employing RTO in maximizing RGP profit are illustrated in a case study.
The case study centers on balancing flow rates of three feed gas streams with different
compositions and prices. Higher composition of natural gas liquids in a feed gas
stream increases its richness and thus makes gas processing more difficult. This is
because a richer stream requires more cooling and reboiling energy to achieve good
separation of sales gas from natural gas liquids. However, energy is limited and plant
is constrained to certain ranges of operating conditions. Acceptance to process richer
off-gas streams can be interpreted as social contribution to reduce flaring at a crude
oil terminal and a slug catcher. This situation is unique in the case of RGP because it
lacks a product recovery unit comprising deethanizer, depropanizer and debutanizer.
As a result, RGP is reluctant to process the richer streams despite the fact that they are
cheaper than the lean feed gas stream. Such scenario of feed gas prices is only valid
for this case study. In another scenario, a different type of gas processing plant may
find better economic advantages to process the richer streams. The caveat is that the
price structure is reverse where richer feed gas streams are more expensive than
leaner streams. An RTO study on this kind of price structure requires a dynamic

model of the product recovery unit and thus beyond the scope of the current work.

In this work, the RTO study is based on price structure as presented in Table 4.1.
Ten variables are selected as optimization variables. Descriptions and bounds of these
variables are shown in Table 4.15. Parallels of the optimization variables with factors

of the previous parametric design study are:

1. Variable u, is flow rate of sales gas that goes into coldbox E-101. It is used to
manipulate temperature of feed gas exiting the same coldbox. This variable is

a surrogate to factor 4, which is split range controller SRC103 output.

2. Variable u, is temperature of feed gas stream (factor B) exiting cooler E-102.
Its initial value is required for solving cooler E-102 flowsheet and thus
convergence of the entire steady-state model. This variable is the controlled

variable of temperature controller TC101. Since it is selected as optimization
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variable, the manipulated variable of TC101, which is cooler E-102 duty, is
constrained between 0 and 4200 kW.

. Variable u3 is flow rate of sales gas that goes into coldbox E-103. It is used to
manipulate temperature of feed gas exiting the same coldbox. This variable is

surrogate to factor C, which is split range controller SRC102 output.

. Variable u4 is flow rate of processed gas to gas subcooled process section.
This variable is numerator of RC101 controller ratio (factor D). Low value of

14 contributes to less recovery of natural gas liquids.

. Variable us is flow rate of processed gas to turboexpander KT-101. High value
of this variable means less or no flow of processed gas to Joule-Thompson
bypass valve. Value of us is proportional to flow rate of mixed feed gas stream
at RGP inlet. This is because s is the resulting output of split-range controller

SRC101, which serves as a slave to flow controller FC101.

. Variable ug is demethanizer tray 35 temperature (factor G), which is one of the
specifications used for solving demethanizer C-101 flowsheet. This variable is
the controlled variable of temperature controller TC102. Since variable ug is
selected as optimization variable, the manipulated variable of TC102, which is

reboiler E-104 duty, is constrained between 0 and 4500 kW.

. Variable u7 is temperature of processed gas exiting coldbox E-105. When
solving steady-state optimization problem, value of u; must vary with RGP

overall temperature to reflect upstream events.

. Variables ug, 19 and uyg are flow rates (factor H) of feed gas streams A, B and
C. Prices of these streams are reflected by factor . Thus effects of both factors

H and I are reflected by behaviors of these three variables.
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Table 4.15: Bounds and description of optimization variables

Bounds
Var. Factor Unit Lower Upper Description

U A ton/h 0 300.0 Flow of sales gas to coldbox E-101

7 B °C -42.0 0.0  Temperature of feed gas exiting cooler E-102
u3 C ton/h 0 300.0  Flow of sales gas to coldbox E-103

Uy D ton/h 0 40.0  Flow of PG to GSP section

us H  ton/h 0 300.0  Flow of PG to turboexpander KT-101

Ug G °C 0 20.0  Temperature of demethanizer C-101 tray 35
U7 G °C -100.0 -50.0  Temperature of PG exiting coldbox E-105

ug H&I ton/h  100.0 310.0 Flow of feed gas stream A
gy H&I ton/h 0 150.0  Flow of feed gas stream B
ug H&I ton/h 0 100.0  Flow of feed gas stream C

Note: SG=sales gas; PG=processed gas; GSP=gas subcooled process

It should be noted that factors £ and F are excluded in the current RTO study. The
former factor, a surrogate to flow rate of feed gas stream D, is only used to boost
gross heating value of sales gas. Its role is taken care of by feed gas streams B and C.
On the other hand, the latter factor is dropped because: 1) an abrupt change in
overhead pressure of demethanizer C-101 will cause instability for the entire plant
operation, and 2) balancing flow rates of feed gas streams A, B and C is performed at
natural gas liquids mode, which requires the overhead pressure of demethanizer
C-101 to remain constant at 22 barg. Decision of which feed gas streams and their

respective quantities to be processed is the focus of current RTO study.

4.4.1 RTO Results and Discussion

This section is divided into two parts. The first part deals with economic issues. In the

latter part, operational matters are discussed.

4.4.1.1 Economics

Recall that the RTO objective function is profit margin of RGP. This is because profit
is the bottom line of any plant business consideration. Higher profit can be obtained
by increasing revenues, decreasing expenses or both at the same time. In this work,
economic calculations are based on RGP operation in a fixed regime environment.
Supply of feed gas streams and demand for products are agreed on long-term contract
bases. Hence prices of feed gas, sales gas and natural gas liquids do not fluctuate as

those in the daily spot market. Even the utility costs remain unchanged in the
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cost overrun since feed gas and product values as well as operational expenses

(OPEX) are precisely known a priori.

Table 4.16: Values (RM/min) of economic parameters for base and RTO case studies

Case Study
Parameter Base RTO
Revenue 3320.50 3745.27
Cost of feed gas 1435.56 1550.94
OPEX 23.98 14.41
Profit 1860.95 2179.92

Table 4.16 shows results from the RTO study in comparison with the base case.
Revenue is upped by 12.8% from 3320.50 to 3745.27 RM/min. Cost of feed gas
increases by 8.0% from 1435.6 to 1550.9 RM/min. Conversely, OPEX decreases by
39.9% from 23.98 to 14.41 RM/min. In the end, RGP profit jumps to 2179.92 from

1860.95, or up by 17.1%, amid increments in both revenue and cost of feed gas.

Breakdown of revenue is presented in Figure 4.6. For the base case, sales gas
takes up 84.8% of total revenue, ethane 3.2%, propane 5.4%, butane 6.5% and
condensates 0.2%. Large contribution from sales gas is attributed to the following
facts: 1) sales gas is a major product whereas natural gas liquids are the by-products,
2) feed gas stream A is a lean gas containing 88.6 mole % methane and 11.4% natural
gas liquids, and 3) price of sales gas is more than double that of feed gas. Similar
result is shown in the RTO case whereby the contributions of revenue from sales gas
is 86.9%, ethane 1.2%, propane 4.2%, butan¢ 6.9% and condensates 0.8%. In a word,
contributions from sales gas, butane and condensates increase by 2.1, 0.4 and 0.6%,
respectively. However, contributions from ethane and propane reduce by 2.4 and
1.2%, respectively. These results reveal that the RTO strategy in maximizing RGP
profit is to induce losses of ethane and propane in sales gas product stream whilst

recovering more butane and condensates in natural gas liquids product stream.

RGP expenses are presented in Figure 4.7. For the base case, cost of feed gas
stream A represents 98.4% of total expenses. Out of 1.6% contribution from OPEX,
the combined cost of refrigeration cooler (E-102Q) and reboiler (E-104Q) makes up
1.0%. The remaining costs are derived from compressor fuel gas K-102Q (0.4%) and
maintenance of turboexpander KT-101Q (0.2%). Costs of pumping actions P-101Q
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and P102Q are too small to be illustrated in the pie chart and thus neglected here. For
the RTO case, portion of feed gas stream A is reduced by 8.4% to give way to
contributions from feed gas streams B (4.2%) and C (4.9%). This is necessary to
recover more natural gas liquids. At the same time, OPEX decreases by 0.7% from
the base case portion. Contribution of cooler duty E-102Q shrinks by 0.5% when
OPEX components are further analyzed. On the other hand, negligible changes are

detected from the other contributions of OPEX components.

C4 ~ Cb+
C3 6.5% 0.2%

5.4%

c2
3.2%

2 ((’(’(’( &
R

(b) RTO case

Figure 4.6: RGP revenue due to sales gas (SG), ethane {(C2), propane (C3), butane
(C4) and condensates (C5+)
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4.4.1.2 Process

While economics is the bottom line of RGP business, safety is an important aspect in
its operation. For this reason, buffers are often created to ensure reliability and smooth
operation of the plant. The buffers are beneficial and can be turned into opportunities
for enhancing plant performance. These opportunities may entail some of the RGP
assets to “sweat” as certain variables and constraints may be forced to move closer to
their respective lower and/or upper bounds. Table 4.17 shows the moves of
optimization variables in an attempt to shrink these buffers. These moves on RTQO
case study are obtained while satisfying plant limits on process, equipment and
throughput capacity (Tabie 4.18).

Table 4.17: Values of optimization variables for base and RTO case studies

Case Study
Var.  Unit Base RTO  Description
uy  ton/h 2243  217.0 Flow of sales gas to coldbox E-101
u °C -40.0  -17.7 Temperature of feed gas exiting cooler E-102
3 ton/h  170.6 225.8 Flow of sales gas to coldbox E-103
us  ton/h 34.5 24,6  Flow of PG to GSP section
us ton/h  194.1 228.6  Flow of PG to turboexpander KT-101
U °C 5.0 10.9  Temperature of demethanizer C-101 tray 35
U; °C -80.9 -58.5  Temperature of PG exiting coldbox E-105
g ton‘/h  280.0 2747 Flow of feed gas stream A
ug  ton/h 0 15.0  Flow of feed gas stream B
uyp ton/h 0 20.3  Flow of feed gas stream C
Note: PG=processed gas; GSP=gas subcooled process

Recall that the base case reflects RGP condition during natural gas liquids mode.
At this mode, overall temperature of RGP is colder than that during sales gas mode.
This condition favors recovery of natural gas liquids from feed gas stream A whose
composition of hydrocarbon is lean. To optimize profit, RGP needs to overcome this
deficiency by mixing feed gas stream A with richer feed gas streams B and C. Results
from Tables 4.17 and 4.18 indicate that the balancing act is obtained by slightly
decreasing flow rate of feed gas stream A whilst adding a right combination of feed
gas streams B and C. These changes effectively increase total mixed feed gas intake

to the maximum throughput of 310 ton/h.
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Table 4.18: Values of constraint variables for base and RTO case studies

Case Study
Variable Unit Base RTO Description
1 ton/h 280.0 310.0 Flow of mixed feed gas
&) M)/m® 38.1 39.6  Gross heating value of sales gas
c3 - 0.57 0.60  Specific gravity of sales gas
C4 mol% 0.14 0.55  Carbon dioxide content in sales gas
Cs ton/h 225.1 264.6 Flow of sales gas
Cé bar 335 33.5 Pressure of sales gas
¢y °C 35.6 34.2  Temperature of sales gas
cs kW/°C 1443 762  Coldbox E-101 capacity
Cy °C 8.3 11.1  Coldbox E-101 LMTD
€10 kW/°C 347 131  Coldbox E-103 capacity
ci °C 13.4 24.3  Coldbox E-103 LMTD
cn kW/°C 136 87  Coldbox E-105 capacity
c13 °C 187  11.7  Coldbox E-105 log LMTD
Cl4 kW 3291 689  Cooler E-102 duty
C15 kW 4294 2951 Demethanizer C-101 reboiler duty
Cl6 kW 2234 3291 Turboexpander KT-101duty
c17 kW 4661 3989 Compressor K-102 duty
cis kW 27.7 22.5  Pump P-101 duty
c19 kW 8.9 54  Pump P-102 duty
20 % 60.0 27.8  Flooding at Section 1 of demethanizer
ca1 % 523 26.3  Flooding at Section 2 of demethanizer
2 % 46.6 26.7 Flooding at Section 3 of demethanizer
23 % 69.2 52.8 Flooding at Section 4 of demethanizer
C2 % 30.9 25.1  DC backup at Section 1 of demethanizer
C25 % 30.6 25.9  DC backup at Section 2 of demethanizer
¢ % 33.8 27.6  DC backup at Section 3 of demethanizer
€27 % 40.1 32.6  DC backup at Section 4 of demethanizer
C23 % 67.9 74.2  Flooding in absorber C-102
C29 % 17.6 17.5  DC backup in absorber C-102
€30 °C 12.0 8.2  Air cooler LMTD
€31 - 1.00 0.88  Fraction of PG to expander over that to JT valve
c32 - 1.00 0.82  Fraction of sales gas to coldbox E-101
33 - 0.76 0.85  Fraction of sales gas to coldbox E-103
C34 - 0.151 0.086 Ratio of PG to gas subcooled process section

Note: LMTD=log mean temperature difference; JT=Joule-Thompson;
DC=downcomer; PG=processed gas;

Due to presence of richer stream of mixed feed gas, overall RGP temperature is

raised to prevent excessive condensation at separator S-101. Recall from summary of

parametric design study (Section 4.3.4) that overall RGP temperature is mainly

“controlled” at two locations: 1) feed gas stream exiting coldbox E-101, and 2) feed

gas stream exiting cooler E-102. Increasing temperature of both streams will

indirectly increase temperature of other streams in RGP. From Table 4.19,
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temperature of feed gas stream exiting coldbox E-101 increases almost twice the
former value from -30.3 to -15.5 °C. This is achieved partly by reducing flow of sales
gas to the same coldbox by 3.3% from 224.3 to 217.0 ton/h (Table 4.17). As a result,
flow of liquid exiting separator S-101 reduces drastically by 64.2% from 30.7 to 11.0
ton/h. Further down the stream, temperature of feed gas stream exiting cooler E-102
rises from -40.0 to -17.7 °C due to reduction in this cooler duty by 79.1% from 3291
to 689 kW. Consequently, temperature of processed gas exiting coldbox E-105 moves
upward from -80.9 to -58.5 °C. This move substantially increases overhead
temperature of absorber C-102, which is the main indicator of RGP state, from -94.4
to -62.8 °C.

Table 4.19: Values of selected plant model outputs for base and RTO case studies

Case Study
Var.  Unit Base RTO Description
i °C -30.3 -15.5  Temperature of feed gas exiting coldbox E-101
y» ton/h 307 11.0  Flow of liquid exiting separator S-101
3 °C -53.9  -27.7 Temperature of PG exiting coldbox E-103
ya ton/h 207 13.7  Flow of liquid exiting separator S-102
Vs °C ~94.4 -62.8  Overhead temperature of absorber C-102
Ve  ton/h 54.9 45.4  Flow of natural gas liquids
Note: PG=processed gas

In the middle of RGP, temperature of processed gas stream exiting coldbox E-103
increases from -53.9 to -27.7 °C in parallel with upward temperature adjustments in
other parts of RGP. The temperature increase would have been much higher if flow of
sales gas to the same coldbox had not been increased by 32.4% frofn 170.6 to 225.8
ton/h. A higher temperature means a smaller portion of processed gas condenses at
separator S-102. This premise helds truth since flow of liquid exiting the separator
decreases from 20.7 to 13.7 ton/h. The liquefied processed gas is forwarded to

demethanizer C-101 for recovery of natural gas liquids.

At demethanizer C-101, temperature of tray 35 is doubled from 5.0 to 10.9 °C
despite a decrease in reboiler E-104 duty from 4294 to 2951 kW. All four sections of
demethanizer C-101 show downward trends in flooding suggesting reduced internal
traffics of vapor and liquid. The incident arises from lower feed rates to this

distillation column and from drop in reboiler E-104 duty. Slight reduction in
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downcomer backup is also observed at all four sections. However, this reduction still
exceeds the minimum limit of 10%, which is required to maintain vapor-liquid
equilibrium at high temperature. Warmer state of demethanizer C-101 promotes
losses of lighter but not heavier components of natural gas liquids as shown by:
1) increase in flooding at absorber C-102 from 67.9 to 74.2%, and 2) reduction in
flow of natural gas liquids from 54.9 to 45.4 ton/h. Analyzing breakdown of RGP
revenue (Figure 4.6) verifies the fact that contributions from sales gas, butane and

condensate increase at the expense of those from ethane and propane.

Warmer conditions in RGP result in less heat transfer from the hotter feed gas
and/or processed gas streams to the colder sales gas streams in coldboxes. Here, heat
exchange capacities or ‘U4’ values of coldboxes E-101, E-103 and E-105 are reduced
by 47.2, 62.2 and 36.0%, respectively. The ‘UA’ values are calculated based on a
general heat transfer relation (GPSA, 2004):

Q=UA*LMTD 4.12)

where Q is duty or amount of heat that is transferred from hot to cold streams inside a
coldbox and LMTD denotes corrected log-mean-temperature-difference. Reduction of
‘UA’ values in the above manner is due to: 1) decrease in duties of coldboxes E-101,
E-103 and E-105 correspondingly by 29.4, 31.5 and 59.7% from base values of
11955, 4651 and 2540 kW, 2) increase in LMTD of coldboxes E-101 and E-103 by
33.7 and 81.3%, respectively, and 3) decrease in LMTD of coldbox E-105 by 37.4%.
Had the latter share an upward LMTD trend as shown in coldboxes E-101 and E-103,
the ‘U4’ value of coldbox E-105 would have dropped much lower.,

At the major product stream, quantity of sales gas increases from 225.1 to 264.6
ton/h, way above its minimum specification of 205 ton/h. Quality of sales gas is never
compromised despite increment in its flow rate. The reason that gross heating value
and specific gravity of sales gas increase by 3.9 and 5.3%, respectively, is due to
higher compositions of ethane and propane in sales gas product stream. Carbon
dioxide content in sales gas product stream is quadrupled from 0.14 to 0.55 mol % as
a result of processing feed gas streams B and C. This increase, however, is still below

the upper limit of 2.00 mol %.
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Pressure of sales gas remains unchanged because RGP is operating under natural
gas liquids mode, in which overhead pressure of demethanizer C-101 stays constant at
22 barg. On the other hand, temperature of sales gas decreases by 1.4 °C as a result of
reduction in booster compressor K-102 duty from 4661 to 3989 kW. The reduction in
compressor K-102 duty is because of lower pressure difference between its suction
and discharge sides. This happens after turboexpander KT-101 duty is a priori raised
from 2234 to 3291 kW due to increase in processed gas flow rate by 17.8% from
194.1 to 228.6 ton/h. The additional expansion work at turboexpander KT-101 further
drives up its mechanically link compressor K-101 duty, which in turn discharges sales

gas at a higher pressure.

4.5 Concluding Remarks

This chapter discusses a procedure on maximization of RGP profit through real-time
optimization (RTO). Profit of RGP is obtained from the difference between revenues
and expenses. Revenues are calculated based on values of sales gas and natural gas
liquids. The former is a major product whereas the latter is further processed to
recover individual components of the natural gas liquids. Expenses are due to costs of

feed gas and operation.

As a case study, three feed gas streams A, B and C are considered to be processed.
These streams represent lean, rich and very rich gas with varying levels of carbon
dioxide. Balancing flow rates of these streams is necessary given plant limits on
process, equipment and throughput capacity. A high-fidelity steady-state model of
RGP developed in Chapter 3 is employed in order to minimize uncertainties due to
complexity of the process (Yip and Marlin, 2004). A solution to the RTO problem is
obtained by manipulating ten optimization variables, including three feed gas stream

flow rates, while satisfying thirty-four constraints.

Values of these optimization variables (Table 4.17) and/or the corresponding
model outputs (Table 4.19) may be passed to control layer for implementation. Either
regulatory controllers or model predictive control (MPC) scheme can be employed to

move plant states to the new targets. The MPC scheme is preferred due to its ability in
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predicting future outputs and moving inputs optimally, thus reduces operating cost.
The implementation of setpoints entails rigorous data transfer from steady-state RTO

layer to dynamic scheduling layer, which is subject of the next chapter.




CHAPTER 5
INTEGRATED APPROACH FOR SCHEDULING AND RTO

5.1 Introduction

A refrigerated gas plant (RGP) faces challenges on three fronts namely: 1) at plant
inlet, multiple streams of feed gas from various producers are mixed causing
fluctuation in feed gas flow rate and composition; 2) within RGP, unscheduled
shutdowns due to regular equipment malfunction; 3) at RGP outlet, strict
specifications of several products are regularly enforced by its customers where
penalty will be imposed if these specifications are violated (Bullin, 1999). In business
aspect, RGP enters into diverse agreements with gas producers. As a result, prices of
feed gas vary depending, among others, on quality of gas and tenure of the contracts.
In contrast, price of sales gas is tightly_regulated by government. Prices of liquids

namely ethane, propane, butane and condensates are floated to market values.

These challenges force RGP to improve its operational efficiency in order to
maintain profitability. An identified area of improvement is during change of plant
operating mode. The change of plant mode poses a short-term (weeks) and continuous
scheduling problem in which pre-configured set points are directly implemented by
regulatory controllers. While this practice has been accepted in the past, efforts are
currently undertaken to improve it. This type of problem differs from batch
scheduling, which receives considerable attention in operations research. Excellent
reviews of batch scheduling have been published by Floudas and Lin (2004) and by
Mendez et al. (2006).

In contrast, continuous scheduling is often integrated with control to give rise to
mixed integer dynamic optimization (MIDO) problem. An example can be found in
Chatzidoukas et al. (2003) who formulate a MIDO problem on gas-phase
copolymerization in fluidized bed reactor. The authors simultaneously optimize grade
transition time of a copolymer and schemes of feedforward-feedback control. In
another related work on polymerization, Kadam et al. (2007) integrate real-time

optimization (RTO) with model predictive control (MPC) within a dynamic
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framework of grade transition problem. A method of tracking the necessary
conditions of optimality with a solution model is employed to preserve a feasible and
optimal operation under uncertainty. The addition of RTO layer between scheduling
and control layers is necessary in order to improve plant economics, production or
other suitable objectives. Since scheduling is normally performed at a much larger
time-scale (days to weeks) as compared to RTO (hours to days) and MPC (seconds to
minutes), integration of the three automation layers to enhance economic benefits is

difficult.

The current work proposes a potential means to address this issue through an
integrated approach of scheduling and RTO. This way, setpoints are re-calculated
based on current plant conditions. Optimal setpoints may be implemented using
regulatory or advanced controllers such as MPC scheme. RGP is employed as a test
bed. Steady-state and dynamic models of RGP are simulated under HYSYS
environment as presented in Chapter 3. MPC actions are calculated using MATLAB.
Communication between HYSYS and MATLAB is executed via component object

module (COM) technology (Beronich et al., 2005).

5.2 Integration of Scheduling and RTO

In a typical scheduling scenario, new plant set points are pre-determined from early
design specifications or heuristics. The set points are manually adjusted by
experienced personnel to the desired levels. This practice has several drawbacks:
1) current state of the plant may change due to sustained large disturbance or major
revamp activities and thus invalidate design set points, and 2) manual adjustment of
set points may lead to excessive energy utilization especially if target trajectory is not
optimal. One way to overcome these drawbacks is to integrate scheduling tasks with
real-time optimization (RTO) before passing set points to control layer. The proposed

approach is illustrated in Figure 5.1.
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Scheduling Scheduling
» RTO »  RTO
MPC
Regulatory Control Regulatory Control
Dynamic Dynamic
Model Plant Model Plant
(a) Integrated approach using PI (b) Integrated approach using MPC
controllers scheme

Figure 5.1: Structure of integrated scheduling and real-time optimization (RTO)
approach. Set points may be implemented via model predictive control (MPC) scheme
or, alternatively, regulatory controllers.

The new methodology leverages on availability of first-principle models in both
steady-state and dynamic modes. This is necessary to maintain accuracy when data
are transferred between the two models. In particular, scheduling is carried out using a
dynamic model until a new steady-state is reached. Data from the dynamic model are
passed to the steady-state model for target optimization task. For practical reasons,
only several values of key variables are exchanged to minimize mismatch between

dynamic and steady-state models.

Number of variables sent from dynamic to steady-state model is 49, which
includes stream flow rates, temperatures and pressures. In contrast, only six to eight
variables are forwarded from steady-state to dynamic model as setpoints. This is to
ensure that: 1) rigorous steady-state model is used for solving optimization problems
at RTO layer, and 2) feasible setpoints are passed to controllers for implementation of

optimal setpoints at the plant. For the second purpose, another dynamic model is used
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to represent an actual plant. The only difference between the dynamic model and the

plant is that the latter is at the state prior to scheduling.

Nonlinear dynamic model of a plant can be described implicitly by the following

set of differential-algebraic equations:

d
(ijzfm (X,ynlp:t): te[to 9tj] (5.1&)
0=g, (X,¥,2,p,f), telty,t,] (5.1b)

x(7,)=x, (5.1¢c)

where x and z are differential and algebraic state variables, respectively. Process
output is denoted by y whereas model and design parameters by p. Equation 5.1 is
~solved simultaneously over fixed time horizon for given y, p and initial conditions xy.
This dynamic model is used for scheduling and control implementation. On the other
hand, RTO is performed based on steady-state model that can be represented by

Equations 5.1a and 5.1b without the transient term.

During simulation of a scheduling problem, designed and optimal set points are
only introduced to the plant after 30 min to show that the plant is previously at steady-
state level. At the end of experiments, new steady-states are reached. Economic
benefits are calculated online using a built-in spreadsheet to prevent round-off error.
For fair comparison of different control procedures, instantaneous values of economic
parameters are averaged out over the entire simulation time as (Ferrer-Nadal et al.,
2007):

1

F.(t)=
R

famm (5.2)

where Fiz and F, respectively, denote values of instantaneous and average economic

parameters namely profit, revenues and expenses over time horizon [ty, 4]. Profit is
taken as a function of revenues and expenses (Equation 4.2). Revenues are derived

from the values of sales gas and natural gas liquids. Expenses are due to costs of feed
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gas and operation. The operational costs include those emanate from refrigeration and
reboiler duties, compressor fuel gas, turboexpander maintenance and pumping

actions.

Efficacy of the proposed approach is illustrated in several types of scheduling
problems namely: 1) mode, 2) load, and 3) input. Input scheduling refers to mixing of
certain fractions of lean and rich feed gas streams at normal plant load of 280 ton/h.
Load scheduling refers to variations of flow rate of lean feed gas stream by +30 ton/h.
Mode scheduling refers to change of plant operating mode from sales gas to natural

gas liquids, and vice-versa.

5.3 Mode Scheduling

Four studies are performed in the case of scheduling of RGP operation mode from

natural gas liquids to sales gas as given below (Case A):

Mode scheduling with PI controllers (base case)
Mode scheduling with MPC controllers
Integration of mode scheduling and RTO with PI controllers

B b=

Integration of mode scheduling and RTO with MPC controllers

The above studies are repeated for mode scheduling of sales gas to natural gas liquids
(Case B). In total, eight case studies are conducted. Each case is simulated for 510
min. For clarity, process description of each mode scheduling is presented in

subsequent sections.

5.3.1 Scheduling from Natural Gas Liquids to Sales Gas Mode (Case A)

5.3.1.1 Process

In case of scheduling from natural gas liquids to sales gas mode, RGP temperature as
indicated by top of absorber increases by more than 20 °C from a nominal value of
-94.4 °C (Table 4.19). A higher plant temperature is achieved by diverting flow of
sales gas streams away from both coldboxes E-101 and E-103, and thus reducing heat

transfer from the hotter feed gas stream. Cooler E-102 duty is also decreased allowing
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temperature of feed gas stream to rise to -30.6 °C (Table 5.1). In addition, pressure at
top of demethanizer C-101 is increased to 24 barg. Since turboexpander KT-101
discharges at about the same pressure, more processed gas stream bypasses it to
undergo an expansion process at Joule-Thompson valve. This is carried out to prevent
overload of booster compressor (K-101) and sales gas compressor (K-102) while
meeting pressure specification at sales gas product stream. Recovery of natural gas
liquids at gas subcooled process (GSP) section is lowered due to reduction of
processed gas flow. As a result, more ethane and propane are lost in sales gas product

stream causing value of sales gas to increase.

Table 5.1: Values of target variables for base and RTO cases in sales gas mode

Case Study
Var.  Unit Base RTO Description
i °C -22.0 -25.1  Temperature of feed gas exiting coldbox E-101
» °C -30.6 -30.2  Temperature of feed gas exiting cooler E-102
V3 °C -42.6 -38.9  Temperature of PG exiting coldbox E-103
W4 °C 5.0 15.2  Temperature of demethanizer C-101 tray 33
Vs barg 24 24 Pressure of demethanizer C-101 overhead
Yo ton/h 1.2 9.0  Flow of PG to GSP section
Note: PG=processed gas; GSP=gas subcooled process

Figure 5.2 illustrates closed-loop responses of two important target variables
namely: 1) temperature of feed gas stream exiting cooler E-102 (output y,) and,
2) temperature of demethanizer C-101 tray 35 (output ys). Trajectories of these
variables depend mainly on the types of controllers employed. Preliminary visual
inspection indicates that both PI controllers and MPC scheme manage to track the
setpoints. This task :is performed by manipulating duty of cooler E-102 (input ) and
duty of reboiler E-104 (input u4). Here, MPC moves are well-coordinated as shown by
quicker and deeper downward adjustments of inputs #; and u4 before they stabilized at
new levels. In actual fact, optimal MPC moves reduce offset duration in output y; in

approximately 80 min.

For the integrated approach, scheduling setpoints (Table 5.1) are optimized a
priori at the current plant state before implemented by the controllers. Values of
optimization and constraint variables are shown in Tables B.1 and B.2, respectively.

Significance of variable moves is analogous to those presented in Chapter 4 and thus
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will not be elaborated. In essence, pre-cooling of feed gas has been shified more
heavily on coldbox E-101 with its exit stream temperature decreases by 3.1 °C. Load
on cooler E-102 reduces a little due to higher setpoint at its exit stream temperature by
0.4 °C. Similarly, feed gas vapor entering coldbox E-103 is subjected to less cooling,
The vapor is now exiting the coldbox by 3.7 °C hotter. This phenomenon causes
temperature of demethanizer C-101 tray 35 to rise considerably to 15.2 °C from its

previous condition at 5 °C.

Tracking outputs y, and y4 to their respective optimal setpoints is a challenging
task for PI controllers namely: 1) temperature controller TC101 that regulates output
¥2 by manipulating input #», and 2) temperature controller TC102 that regulates output
¥4 by manipulating input u,. From closed-loop trajectories shown in Figure 5.3, output
¥4 regulated by TC102 settles at a much longer time when compared with that
controlled by MPC scheme. This poor performance is caused by the nature of PI
controllers, in which inputs are moved independently to satisfy target criteria of

various outputs,

For example, large input 14 moves at the early stage result in sudden increase in
output y4. When the output trajectory exceed y4 target, integral action of temperature
controller TC102 kicks in to climinate the offset. At the same time, input u; is
adjusted in sharp downward direction to raise output y, temperature from -40.0 to
-30.2 °C. This action consequently moves downstream temperatures upward making it
harder to control output ys. On the other hand, MPC scheme manages to bring outputs

2 and y4 to the respective targets faster due to its excellent predictive capability.
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Figure 5.2: Closed-loop responses of PI (thin line) and MPC (thick line) controllers on
temperature of feed gas stream exiting cooler E-102 (y») and temperature of
demethanizer C-101 tray 35 (y4) for Cases Al and A2 (scheduling only);
uz=cooler E-102 duty in %; us=reboiler E-104 duty in %
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Figure 5.3: Closed-loop responses of PI (thin line) and MPC (thick line) controllers on
temperature of feed gas stream exiting cooler E-102 (y;) and temperature of
demethanizer C-101 tray 35 (y;) for Cases A3 and A4 (integrated approach);
uz=cooler E-102 duty in %; us=reboiler E-104 duty in %
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5.3.1.2 FEconomics

Four studies are performed in the case of mode scheduling from natural gas liquids to
sales gas mode. Case Al is the base case where scheduling setpoints are implemented
by PI controilers. If the same setpoints are executed by MPC scheme as in Case A2,
RGP profit increases by 0.1% (Table 5.2). This is achieved due to increase in revenue
from sales gas by the same quantum but decrease in revenue from liquids by 0.5%. At
the same time, operational expenses decrease by 1.3% due to efficiency of MPC
controller in bringing plant to a new state optimally. Dynamic trajectories of RGP
profit are illustrated in Figure 5.4. For both Cases Al and A2, large peaks in profit
trajectories correspond to the period of increase in flowrate of sales gas product
stream due to losses of ethane and propane. The cause of these losses is a brief period
of temperature rises at demethanizer C-101 tray 35 temperature (output ya) way above
the setpoint value of 5 °C. When output y, returns to its setpoint, trough in profit
trajectories is noticed due to concurrent drop in revenue from natural gas liquids.
When this effect stabilizes, RGP profit slowly rises towards a new steady-state level

higher than the previous value.

Table 5.2: Average values (RM/min) of economic parameters over 510 min
simulation time

Revenues Expenses
Case Profit Sales Gas Liquids Feed Gas  Operation
Al 1921.75 2954.99 417.24 1435.55 14.93
A2 1923.35 2958.38 415.27 1435.57 14.73
A3 1929.70 2982.02 398.03 1435.61 14.74
A4 1930.58 2982.76 397.60 1435.50 14.28

Additional benefits can be achieved if scheduling setpoints are optimized at RTO
layer before they are implemented by controllers. For Cases A3 and A4, RGP profit
increases by 0.4 and 0.5%, respectively (Table 5.2). Revenue from sales gas increases
by 0.9% in both cases. However, sharp declines in revenue from liquids are noticed at
4.6 and 4.7% for Cases A3 and A4, respectively. In terms of operating expenses, PI
controllers manage to obtain reduction by 1.3% whereas MPC scheme by 4.4%.
Trajectories of RGP profit are similar to those in the first two cases (Figure 5.4). A
noticeable difference is when profit trajectory of Case A3 lies above that of Case A4

for about 100 min. The reason is again due to losses of ethane and propane in the sales
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gas product stream. This occurs when temperature controller TC102 performs poorly

in controlling temperature of demethanizer C-101 tray 35 (Figure 5.3).
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(b) Integrated approach — Case A3 (thin line) and Case A4 (thick line)

Figure 5.4: Dynamic trajectories of RGP profit for Case A

5.3.2  Scheduling from Sales Gas to Natural Gas Liquids Mode (Case B)

5.3.2.1 Process

In case of scheduling from sales gas to natural gas liquids mode, RGP temperature

indicator drops to -94.4 °C from around -74.3 °C. Cooling is achieved partly by

lowering temperature of streams exiting all three coldboxes E-101, E-103 and E-105,

-and cooler E-102 as specified in Table 5.3. Feed gas flow to gas subcooled process

section also increases significantly from 1.2 to 34.5 ton/h. In addition, top of

demethanizer pressure decreases from 24 to 22 barg. This procedure induces higher

recovery of natural gas liquids.
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Table 5.3: Values of target variables for base and RTO cases in natural gas liquids
mode

Case Study
Var.  Unit Base RTO Description
Y1 °C -30.5 -30.4  Temperature of feed gas exiting coldbox E-101
V2 °C -40.0 -39.1  Temperature of feed gas exiting cooler E-102
» °’C -53.9 -52.2  Temperature of PG exiting coldbox E-103
Va °C 5.0 0.4  Temperature of demethanizer C-101 tray 35
Vs barg 22 22 Pressure of demethanizer C-101 overhead
v ton/h 345 18.8  Flow of PG to GSP section
Note: PG=processed gas; GSP=gas subcooled process

Figure 5.5 shows closed-loop responses of outputs y» and ys. Temperature
controller TC101 reveals underdamped behavior when it manages to track output y»
down to -40.0 °C from -30.6 °C. Temperature controller TC102 also manages to
maintain setpoint of output y4 at 5 °C. However, movement of this controller input
reaches saturation for about 40 min. This happens despite the fact that temperature
controller TC102 employs positional algorithm with auto-reset windup. When output
ys Teturns to its setpoint, input us slowly reduces to settle at a new steady-state value.
On the other hand, MPC coordinated moves manage to reduce saturation period to

only a couple of minutes.

For the RTO case, optimal setpoints are obtained for maximizing value of natural
gas liquids while maintaining operational stability at new conditions. Setpoints of
streams exiting cooler E-102 and coldbox E-103 are increased by 0.9 and 1.7 °C,
respectively. At the same time, setpoint of demethanizer tray 35 temperature is
reduced to 0.4 °C from the previous state of 5 °C. This action reduces both cooling
and reboiling loads, and thus operationa! expenses. Flow of processed gas to gas
subcooled process section decreases by almost one-half. This is done to reduce heat

exchange between processed gas and sales gas at coldbox E-105.
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Figure 5.5: Closed-loop responses of PI (thin line) and MPC (thick line) controllers on
temperature of feed gas stream exiting cooler E-102 () and temperature of
demethanizer C-101 tray 35 (y4) for Cases Bl and B2 (scheduling only);
E-102Q=cooler E-102 duty in %; E-104Q=reboiler E-104 duty in %
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Figure 5.6: Closed-loop responses of PI (thin line) and MPC (thick line) controllers on
temperature of feed gas stream exiting cooler E-102 (y2) and temperature of
demethanizer C-101 tray 35 (yq) for Cases B3 and B4 (integrated approach);
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On the other hand, more feed gas flows to turboexpander KT-101 that is
mechanically linked to booster compressor K-101. In turn, this action also reduces
expenses since operating sales gas compressor K-102 is much more expensive than
maintaining turboexpander-compressor K/KT-101. Setpoint tracking for the RTO
case is handled poorly by temperature controller TC102 (Figure 5.6). Due to large
offset in output ys, input u4 saturation is still a problem albeit at lesser interval. This
phenomenon is missing in MPC result. In fact, it can be observed that MPC scheme
reveal strategic input adjustments in the following ways: 1) steeper and larger initial
move on input u,, followed by, 2) deeper initial move on input u4 to prevent saturation

at the upper constraint.

5.3.2.2 Economics

Similar to Case A, four case studies are carried out in Case B. This time, scheduling is
performed from sales gas to natural gas liquids mode. Case B1 is used as a basis to be
consistent with studies done in Case A. In Case B2, negligible benefit is achieved
even though set points are implemented by MPC controller. This happens because
economic parameters almost cancel each other out with 0.6% reduction in operating
expenses is matched with 0.1% reduction in revenue. Trajectory of RGP profit is
shown in Figure 5.7. Except for kinks, which are caused by MPC coordinated actions,

profit trajectories for both Cases B1 and B2 closely resemble each other.

Table 5.4: Average values (RM/min) of economic parameters over 510 min
simulation time

Revenues Expenses
Case Profit Sales Gas  Liquids Feed Gas ~ Operation
B1 1895.38 2843.57 508.91 1435.55 21.54
B2 1895.70 2844.22 508.45 1435.56 21.41
B3 1900.81 2856.18 500.19 1435.62 19.95
B4 1901.27 2857.68 499.08 1435.58 19.92

Integrated approach of scheduling and RTO are represented in Cases B3 and B4.
As compared with the base case (B1), the benefit is 0.3% for both cases. This is
achieved at almost similar means by PI and MPC controllers. The former increases
value of sales gas by 0.4% whereas the latter by 0.5%. PI and MPC controller actions
reduce revenue from liquids by 1.7 and 1.9%, respectively. However, gap between

both controllers shrinks to 0.1% in terms of benefit derived from operating expenses.
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For this particular case, the small marginal benefit indicates that optimal setpoints
calculated by the integrated approach may be equally executed by either PI or MPC
controllers. This is because the latter has exhausted all efforts in obtaining optimal

trajectory for its manipulated variables.
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(b) Integrated approach — Case B! (thin line) and Case B2 (thick line)

Figure 5.7: Dynamic trajectories of RGP profit for Case B

5.4 Load Scheduling

Load scheduling refers to a process of varying flow rate of feed gas stream A by
130 ton/h from a regular flow rate of 280 ton/h. In this section, four studies are

performed in the case of scheduling of RGP load from 280 to 250 ton/h (Case C):

1. Load scheduling with PI controllers (base case)
2. Load scheduling with MPC controllers
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3. Integration of load scheduling and RTO with PI controllers
4. Integration of load scheduling and RTO with MPC controllers

The above studies are repeated for load séheduling from 280 to 310 ton/h (Case D). In
total, eight case studies are conducted. Each case is simulated for 510 min. This case

study represents flow disturbance in feed gas stream.

5.4.1 Load scheduling from 280 to 250 ton/h (Case C)

5.4.1.1 Process

In the first case of load scheduling, flow rate of feed gas stream A is reduced from
280 to 250 ton/h. RGP is operating at natural gas liquids mode because feed gas
stream A is lean. Plant conditions at this base case have been explained in the
previous section and thus will not be repeated. In the case of integrated approach,
slight changes in operating conditions are necessary to cater for 30 ton/h reduction in
feed gas flow rate. These changes are supplied by the RTO layer before being

implemented by controllers.

Differences between base and optimal setpoints are presented in Table 5.5. Two
target variables, y; and y;, are maintained at their base values. On the other hand,
target variable y; drops by 1.8 °C causing cooler E-102 duty to increase by 20.6%
from its base value of 2931 kW (Table B.6). This move initially seems counter-
intuitive since operating cost due to cooler E-102 rises proportionately. However, an
increase in cooler E-102 duty is balanced with 26.0% reduction in reboiler E-104
duty, which directly affects energy level at the stripping section of demethanizer
C-101. The reduction in reboiler E-104 duty is an outcome of two factors namely:
1) drop in RGP load by 30 ton/h, and 2) decrease in output y, setpoint by 1.8 °C. At
the top of demethanizer C-101, pressure is maintained at 22 barg to be consistent with
the current plant operating mode. However, flow of processed gas to GSP section is
reduced from 34.5 to 11.3 ton/h, This move has a negative implication in recovery of
natural gas liquids. At the other end of product stream, sales gas production reduces to
200.5 ton/h (Table B.6). This throughput is slightly below the customer’s demand of
205.0 ton/h. As a solution, 9.8 ton/h of hydrocarbon is re-injected to the sales gas

product line.
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Table 5.5: Values of target variables for base and RTO cases under 250 ton/h load

Case Study
Var.  Unit Base RTO Description
yi °C -30.5 -30.5 Temperature of feed gas exiting coldbox E-101
2 °C -40.0 -41.8  Temperature of feed gas exiting cooler E-102
V3 °C -53.9 -53.9  Temperature of PG exiting coldbox E-103

Va °C 5.0 3.2 Temperature of demethanizer C-101 tray 35
Vs barg 22 22 Pressure of demethanizer C-101 overhead
Ve ton/h 345 11.3  Flow of PG to GSP section

y7  ton/h 0 9.8  Flow of hydrocarbon re-injection

Note: PG=processed gas; GSP=gas subcooled process

5.4.1.2 Economics

Four studies are conducted to investigate variations of RGP profit in the first case of
load scheduling. In Cases C1 and C2, scheduling targets are implemented by PI and
MPC controllers, respectively. Economic results show no additional benefits are
achieved by using different controller schemes (Table 5.6). A similar conclusion can
be drawn for the integrated approach in Cases C3 and C4 as evidenced by the same

values of economic parameters.

A reduction of plant load by 30 ton/h is initially expected to drop RGP production
and thus its profit margin. The outcomes from the integrated approach are exactly the
opposite. While it is true that natural gas liquids production drops by 1.0%, sales gas
production soars by 2.3% from the base level. This quagmire is caused by two factors
namely: 1) optimal setpoints favor losses of ethane and propane, and 2) hydrocarbon
re-injection has positive effect in boosting flow of sales gas product stream. The first
factor causes a rise in operating cost by 4.4%. The second factor inadvertently
increases feed gas cost by 1.9%. Despite downward effects in some economic

parameters, RGP profit is upped by 1.7% in both Cases C3 and C4.

Table 5.6: Average values (RM/min) of economic parameters over 510 min
simulation time

Revenues Expenses
Case Profit Sales Gas  Liquids Feed Gas  Operation
Cl 1723.67 2618.30 451.95 1326.76 19.82
C2 1723.68 2618.30 451.94 1326.76 19.80
C3 1753.07 2678.33 447.51 1352.07 20.70
C4 1753.05 2678.30 447.53 1352.06 20.71
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5.4.2  Load scheduling from 280 to 310 ton/h (Case D)

5.4.2.1 Process

The second case of load scheduling exhibits challenges in RGP operation at full
capacity of 310 ton/h. Plant state deviate a little from the typical conditions at natural
gas liquids mode. Pre-cooling of feed gas stream A is carried out by slightly
decreasing setpoint of output y; from -30.5 to -32.0 °C (Tables 5.5 and 5.7). However,
temperature setpoint of feed gas stream exiting cooler E-102 and that of processed gas
exiting coldbox E-103 are increased by 2.0 and 8.9 °C, respectively. To cater for an
additional load of 30 ton/h, overhead pressure of demethanizer C-101 is raised by 0.5

barg. However, outputs y4 and ys remain at their previous target values.

Table 5.7: Values of target variables for base and RTO cases (Case D)

Case Study
Var.  Unit Base RTO Description

Vi °C -32.0 -31.2  Temperature of feed gas exiting coldbox E-101
»n °C -38.0 -34.6  Temperature of feed gas exiting cooler E-102
V3 °C -45.0 -45.0 Temperature of PG exiting coldbox E-103
V4 °C 5.0 0 Temperature of demethanizer C-101 tray 35
Vs barg 22,5 22.5  Pressure of demethanizer C-101 overhead
Y6  ton/h 34.5 224 Flow of PG to GSP section
y7  ton/h 0 0 Flow of hydrocarbon re-injection

Note: PG=processed gas; GSP=gas subcooled process

Optimal setpoints in Table 5.7 reveal an increasing trend of feed gas temperature
at pre-cooling stage. Target variables y; and y, are increased by 0.8 and 3.4 °C,
respectively. As a result, cooler E-102 duty drops by almost one-half to 1200 kW
(Table B.8). Hotter feed gas condition favors losses of ethane and propane, especially
since temperature of processed gas exiting coldbox E-103 is kept at the same level as
the base case. This fact is compounded by a decrease in flow of processed gas to GSP
section from 34.5 to 22.4 ton/h. To alleviate the current predicament, temperature of

demethanizer C-101 tray 35 is reduced from 5.0 to 0 °C.

5.4.2.2 Economics

In the second case of load scheduling, the economic benefits of operating RGP at

maximum throughput are examined. Cases D1 and D2 are scheduling without target
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optimization. Economic results indicate that scheduling setpoints can be equally
implemented by both PI and MPC controllers (Table 5.8). The same deduction is
applicable for the integrated approach in Cases D3 and D4. However, RGP achieves a
0.3% increase in profit margin when it is subjected to optimal conditions, This margin
comes amid 0.3% rise in sales gas revenue but 1.2% decrease in natural gas liquids

revenue. A 10.3% reduction in operating cost also helps in improving RGP profit.

Table 5.8: Average values (RM/min} of economic parameters over 510 min
simulation time

Revenues Expenses
Case Profit Sales Gas  Liquids Feed Gas  Operation
D1 2087.18 3191.47 485.89 1571.12 19.06
D2 2087.15 3191.47 485.85 1571.12 19.06
D3 2093.07 3201.36 480.00 1571.19 17.10
D4 2092.93 3201.25 479.95 1571.18 17.08

5.5 Input Scheduling

Input scheduling refers to varying flow rates of feed gas streams. This case is similar
to the one presented in Chapter 4 except that flow of mixed feed gas stream is
specified at 280 ton/h. In addition, mixing amount of feed gas streams A, B and/or C
is pre-determined by the planners based on availability of these gases at the producing
sites. As such, four studies are performed in the case of processing feed gas streams A

and B flowing at 130 and 150 ton/h, respectively (Case E):

1. Input scheduling with PI controllers (base case)

2. Input scheduling only with MPC controllers

3. Integration of input scheduling and RTO with PI controllers

4. Integration of input scheduling and RTO with MPC controllers

The above studies are repeated for input scheduling of RGP feed gas streams A and C
flowing at 180 and 100 ton/h, respectively (Case F). In total, eight case studies are
conducted. Each case is simulated for 510 min. This case study represents

composition disturbance in mixed feed gas stream.
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5.5.1 Input scheduling of feed gas streams A and B (Case E)

5.5.1.1 Process
In this case, RGP processes 130.0 and 150.0 ton/h of feed gas streams A and B,

respectively. The presence of richer feed gas stream B forces RGP to increase its
overall temperature due to larger composition of heavier hydrocarbons in mixed feed
gas stream. This is necessary to ensure good separation of sales gas from natural gas
liquids. If temperature setpoints for the base case are higher than those for sales gas
mode, the optimal setpoints for Case E are even higher. Target variables Y1, )2 and y;3

are all increased by 2.8, 5.5 and 0.4 °C, respectively,

However, flow of processed gas to GSP section reduces from 33.2 to 29.6 ton/h.
This move cuts down recovery rate of natural gas liquids. To offset losses of ethane
and propane in sales gas product stream, temperature of demethanizer C-101 tray 35
is decreased from 5.0 to0 0.3 °C, Overhead pressure of the demethanizer is maintained
at 22 barg although there is an option to raise it to 24 barg. This option may be taken
if load disturbance is minimal and within control limits in order to avoid stability
issue. However, this option is skipped in the current study because the effect of
increasing ys setpoint has been conducted in the case of scheduling from natural gas

liquids to sales gas mode.

Table 5.9: Values of target variables for base and RTO cases (Case E)

Case Study

Var.  Unit  Base RTO Description

M °C -14.8 -12.0  Temperature of feed gas exiting coldbox E-101
W °C -25.6 -20.1  Temperature of feed gas exiting cooler E-102
V3 °C -40.1 -39.7  Temperature of PG exiting coldbox E-103

V4 °C 5.0 0.3 Temperature of demethanizer C-101 tray 35

Vs barg 22.0 22.0  Pressure of demethanizer C-101] overhead

Ys  ton/h 33.2 29.6  Flow of PG to GSP section

Y1 ton/h 0 0 Flow of hydrocarbon re-injection

ys  ton/h  130.0 130.0  Flow of feed gas stream A
Yo ton'h  150.0 1500 Flow of feed gas stream B
Yo ton/h 0 0 Flow of feed gas stream C

Note: PG=processed gas; GSP=gas subcooled process
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5.5.1.2 Economics

Table 5.10 presents economic results for Case E. Results from Cases El and E2
indicate remarkable agreement in all economic parameters except for operating
expenses. For Case E2, operating expenses drop by 0.9% due to efficiency of MPC
scheme in tracking setpoints. The same trend can be seen in Cases E3 and E4 albeit at
a smaller benefit of 0.8% differences between the operating expenses. In terms of
profit, a 0.4% increase is achieved by implementing RTO targets. The margin is
mainly derived from 0.8% increase in sales gas revenue and 12.0% decrease in
operating costs. On the other hand, a reduction of 2.4% in natural gas liquids revenue

hampers further growth in RGP profit.

Table 5.10: Average values (RM/min) of economic parameters for Case E over 510
min simulation time

Revenues Expenses
Case Profit Sales Gas Liquids Feed Gas  Operation
E1l 1827.03 2536.84 606.22 1295.11 20.92
E2 1827.15 2536.74 606.30 1295.16 20.74
E3 1833.80 2555.90 591.38 1295.05 18.44
E4 1834.43 2556.40 591.33 1295.03 18.27

5.5.2  Input scheduling of feed gas streams A and C (Case F)

5.5.2.1 Process

Feed gas stream C is the richest among the three feed gas streams. Mixing 100.0 ton/h
of feed gas stream C with 180.0 ton/h feed gas stream A poses a strong operational
challenge. RGP condition is even hotter than that in Case E. For example, temperature
of feed gas exiting coldbox E-101 rises from -14.8 to -5.5 °C (Tables 5.9 and 5.11).
The same is true for outputs 2 and y3, in which stream temperatures escalate by 9.7
and 13.5 °C, respectively. On the other hand, output ys is kept at 5.0 °C to ensure
availability of enough energy for separating sales gas from natural gas liquids in

demethanizer C-101.

Optimal RGP state in Case F reveals no changes in target variables V1 and js.
However, target variable y, is increased by 1.5 °C to yield 15.2% savings in cooler
E-102 duty (Table B.8). A reduction of Y4 setpoint from 5.0 to 0 °C helps RGP in two
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ways: 1) RGP can further save on operating cost due to reboiler E-104 duty by 7.2%,
and 2) flooding in Sections 1 to 3 in demethanizer C-101 is kept above 25% minimum
limit. Overhead pressure of demethanizer C-101 is maintained at 22.0 barg based on
the same reason as in Case E. On the other hand, flow of processed gas to GSP
section increases from 22.2 to 33.3 ton/h. This move has a positive effect in

enhancing recovery of natural gas liquids.

Table 5.11: Values of target variables for base and RTO case studies (Case F)

Case Study
Var.  Unit Base RTO Description
» °C -5.5 -5.5  Temperature of feed gas exiting coldbox E-101
w °C -15.9 -14.4  Temperature of feed gas exiting cooler E-102
3 °C -28.6  -28.6  Temperature of PG exiting coldbox E-103
V4 °C 5.0 0 Temperature of demethanizer C-101 tray 35

Vs barg 22.0 220 Pressure of demethanizer C-101 overhead
V6 ton/h 22.2 33.3  Flow of PG to GSP section

Y1 ton/h 0 0 Flow of hydrocarbon re-injection
Y3 ton/h  180.0  180.0 Flow of feed gas stream A
Yo ton/h 0 0 Flow of feed gas stream B

Yo tonvh  100.0 100.0  Flow of feed gas stream C
Note: PG=processed gas; GSP=gas subcooled process

5.5.2.2 Economics

Economic results for Case F are presented in Table 5.12. The first two cases are input
scheduling as implemented by PI and MPC controllers, A marginal benefit of 0.1%
profit is achieved for Case F2 as compared with Case FI. This is due to the same
amount of increase in natural gas liquids revenue and 0.8% decrease in operating
costs. Results from integrated approach exhibit 0.5% profit growth. This is
accomplished at the expense of 3.0% drop in natural gas liquids revenue. However, a
1.1% increase in sales gas revenue and more than 13% savings in operating expenses
are enough to offset the cut in revenue. When Cases F3 and F4 are scrutinized, MPC

scheme offers 0.5% savings in operating costs as compared with PI controllers.
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Table 5.12: Average values (RM/min) of economic parameters over 510 min
simulation time

Revenues Expenses
Case Profit Sales Gas Liquids Feed Gas  Operation
F1 1955.26 2619.11 683.53 1326.59 20.78
F2 1956.25 2619.89 684.05 1327.07 20.62
F3 1965.77  2648.36 662.81 1327.33 18.07
F4 1965.81 2648.14 662.94 1327.28 17.99

5.6 Concluding Remarks

Three types of scheduling problems are studied to verify efficacy of the proposed
approach, which is based on integrated framework of scheduling and RTO. The
scheduling problems are mode, load and input. Results of mode scheduling are
presented and discussed thoroughly in this chapter. However, those of load and input
scheduling problems are done partially to avoid repetitions and thus ensure smooth

reading of the thesis. For reference, these results are displayed in Appendix B.

In general, change of plant mode from natural gas liquids to sales gas results in
higher profit margin. This is because sales gas is more valuable than natural gas
liquids, The same fact can be deduced for load and input scheduling cases as
evidenced from the economic results. In short, RTO setpoints favor losses of ethane
and propane in the sales gas product stream. When these setpoints are implemented at
control layer, MPC scheme provides an additional benefit by reducing operational

expenses at slightly larger amount than PI controllers do.



CHAPTER 6
CONTRIBUTIONS AND FUTURE RESEARCH AVENUES

The primary motivation of this thesis work is to find a solution for an integrated
framework of process scheduling and real-time optimization (RTO), which form the
top two layers in the hierarchy of plant automation. Due to multi-temporal nature of
these two activities, integration of scheduling and RTO is difficult. This thesis work
adds four valuable contributions towards this field of knowledge. The major
contributions are divulged in the next section. Future work on the same field is

recommended in the latter section of this chapter.

6.1 Contributions

The proposed integrated framework of scheduling and RTO differs from the current
ones in the sense that previous work is limited to employing steady-state models on
large-scale nonlinear integrated plants or using dynamic models on linearized
individual units. In this work, efficacy of the proposed approach is evaluated using a
highly interacting nonlinear plant model. Among the challenges faced when
integrating scheduling and RTO procedures are: 1) difficulties in developing a
rigorous dynamic model consisting of several large units in an integrated plant,
2) difficult connectivity among various applications and dynamic submodels of large
individual units into a single process flowsheet, 3) high computational load in
executing an online optimization procedure, and 4) concerns on model and process

uncertainties. The current work attempts to address the first three limitations.

The first two limitations are addressed in a unified way. A rigorous dynamic
model is developed based on the converged solution of a high-fidelity steady-state
model. Both models share a Peng-Robinson thermodynamic package and a process
flowsheet. This integrated modeling design alleviates the task of moving the
simulation from steady-state to dynamic modeling environment. Data transfer
between the steady-state and dynamic models is performed automatically by
executing a small MATLAB code. Inter-connectivity among submodels of individual

unit is established in a single HYSYS simulation platform. Communication between
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HYSYS, MATLAB and the third-party software is achieved via component object
module (COM) technology. This unified approach certainly facilitates data transfer

and thus removes the first two limitations.

The third issue is related to computing power and efficient techniques for online
optimization. This is true if a large-scale mixed integer dynamic optimization (MIDO)
problem is encountered. It should be noted that there are two aspects to the third
limitation. The first aspect, mixed integer problem, is avoided by formulating the
scheduling problem as a nonlinear programming (NLP) problem. This can be
achieved by treating the scheduling problem as a continuous instead of batch
decision-making process. Here, scheduling decisions are enforced using a dynamic
model but have yet to be implemented. When the dynamic model is stabilized at a
new state, future model outputs are retrieved and forwarded to the RTO layer for

target optimization,

The RTO procedure uses a high-fidelity steady-state model, which is a priori
updated by the dynamic model outputs. The optimal setpoints as passed to a virtual
plant for target implementation via either regulatory controllers or MPC scheme. The
only difference between the dynamic model and the plant is that the latter is kept at
the former state prior to enforcement of scheduling decisions. A combinatorial usage
of a dynamic model for enforcing scheduling decisions and a steady-state model for
running an RTO procedure can alleviate the difficulty encountered when performing
dynamic optimization. This strategy addresses the second aspect of the third issue.
Here, the computational load in obtaining a feasible and practical solution of the

optimization problem is dramatically reduced to within a stipulated RTO cycle.

Following a discussion of the major thesis work, the detailed contributions are

highlighted as follows:

*  Development of steady-state and dynamic models of a refrigerated gas plant
(RGP) on a single HYSYS platform to be used as test beds for the proposed
approach: Each RGP model consists of three liquefied natural gas (LNG) heat

exchangers, a propanc-refrigerated cooler, two flash separators, a distillation
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column, an absorber, a turboexpander-compressor, a Joule-Thompson valve,
two pumps, a booster compressor and an air cooler. An integrated steady-state
model consisting of all operating units is initially developed based on first-
principle approach. The relevant model outputs are compared against the actual
plant data. Fine-tuning of process and equipment parameters are carried out to

ensure that the model reaches about 95% resemblance with the actual plant.

Once a high-fidelity steady-state model is produced, a dynamic model is
setup using the current state for initialization purposes. The dynamic model is
fairly large containing 770 differential-algebraic equations (DAFs) and 21
regulatory control loops. Sizing of major operating units are based on the plant
Mechanical Engineering Handbooks and Technical Datasheets. At the boundary
streams, pressures instead of flow rates are specified because the latter can be
regulated by controllers. The control philosophies employed in the dynamic

model follow those currently applied in the actual plant.

Systematic identification of the dynamic model of RGP using step and pseudo-
random binary sequence (PRBS) input signals to be deployed in an advanced
processed control (APC) strategy: Plant tests using multi-step input signals
results in a 2x2 first-order-plus-time-delay (FOPTD) process model. This model
is valuable for estimating magnitude and determining directionality of process
gains due to familiarity with its transfer function structure. However, the
FOPTD model is vulnerable to process nonlinearity and feed disturbance. This
makes it inadequate to be setup as a process model in an APC scheme known as
model predictive control (MPC). For this reason, a multiple-input-multiple-
output (MIMO) process model with state-space or autoregressive with

exogenous input (ARX) structure is more suitable.

These parametric models are developed based on multivariable input-output
information obtained simultaneously from the plant tests. Fourth order state-
space structure and second order ARX structure can readily replace the FOPTD
model to better represent the dynamics of RGP. The latter structure is chosen as
the process model because MPC-ARX scheme moves inputs more efficiently

for the same case of setpoint tracking. To accommodate the effect of



147

disturbance, flow rate of mixed feed gas stream is taken as the third input to the
process model. This decision augments the MPC-ARX scheme to a two-output-

by-three-input scheme.

RTO assessment of RGP profit by forcing RGP to consider processing
additional feed gas streams. Optimization is performed using sequential
quadratic programming (SQP) algorithm with constraints. RGP profit is taken as
the objective function subject to steady-state model convergence and thirty four
operational constraints. Ten optimization variables are manipulated to maximize
RGP profit. The significance of these optimization variables was established
through a series of parametric design of experiments based on Taguchi method.
A case study was conducted to evaluate economic feasibility of processing
richer feed gas streams B and C. This case is important because RGP prefers to
process lean feed gas stream A at a normal throughput of 280 ton/h. The highest
profit is earned over two conditions namely: 1) flow rates of feed gas streams A,
B and C are properly balanced, and 2) plant throughput is increased to the upper
limit of 310 ton/h.

Proposition of an integrated framework of scheduling and RTO with realistic
applications on three scheduling cases namely: 1) mode, 2) load, and 3) input.
Scheduling is carried out on a dynamic model of RGP. Both MPC and
regulatory controllers can be used to implement designed or heuristic setpoints
until all key operating variables level off at around 510 min of simulation time.
In the integrated approach, another dynamic model (virtual plant) is employed.
Setpoints are disjointedly implemented by regulatory and MPC controllers after
being optimized at the steady-state RTO layer. In some cases, SQP algorithm
faces difficulty in locating global maxima. This causes lack of convergence for
a few of the optimization problems. As a remedy, new RGP states with higher

profit are accepted as solutions.

Plant-model mismatch is minimized by sending values of 49 major variables
from dynamic to steady-state model. These variables consisting of stream flow

rates, temperatures and pressures are major specifications in the steady-state
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model. On the other hand, only. six to eight values of relevant controller
setpoints are passed from steady-state to dynamic model. This decision has two
advantages namely: 1) it promotes bumpless data transfer between the two
models, and 2) it ensures feasible pre_ssure-ﬂow conditions at all streams and

unit operations in the dynamic model.

Economic benefits from the integrated approach reach as high as 1.7% in
Case C and as low as 0.3% in Cases B and D (Figure 6.1). In Case C, RGP load
from feed gas stream A is reduced from 280 to 250 ton/h. As a result,
production of sales gas decreases slightly below the load demanded by
customers at 205 ton/h. To avoid penalty, a cheaper but richer hydrocarbon
stream from another plant is injected into sales gas product line. This action
boosts not only flow rate but also gross heating value (GHV) of the sales gas.
On the other hand, marginal profit margin of 0.3% each in Cases B and D is
mainly caused by warmer plant conditions as compared with corresponding
base cases. These conditions result in some losses of ethane and propane into

sales gas product stream.
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Finally, it would be interesting to compare case-average profits from each of
the three scheduling problems namely: 1) mode (Cases A and B), 2) load (Cases
C and D), and 3) input (Cases E and F). This information is important for RGP
to determine which state yields the higher profit on average between two similar
cases of scheduling. A case-average profit is defined as sum of profits within
the same case study divided by number of sub-cases. A bar chart of case-
average profits for all case studies is presented in Figure 6.2. Here, the

following trends are observed:
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Figure 6.2; Case-average profit values (RM/min) for Cases A to F

1. Mode scheduling in Case B reduces case-average profit by 1.5% or
28.06 RM/min when weighed against that in Case A. Hence RGP should
opt for sales gas mode rather than natural gas liquids mode in most of
the time. This suggestion is valid as long as prices of sales gas and feed
gas are fixed on a long-term basis and the difference between them

remains high. In addition, prices of natural gas liquids may be allowed to
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fluctuate albeit within a narrow band with long-term average values as
presented in Chapter 4. On the other hand, mode scheduling will have to
be performed at more frequent intervals if prices of natural gas liquids
components namely cthane, propane, butane and condensates float at

broader ranges such as those in the daily spot market.

. Load scheduling favors Case D over Case C with 20.2% or 351.71
RM/min difference in case-average profit. This result indicates that RGP
should process lean feed gas stream A at maximum throughput of 310
ton/h. If plant conditions are unfavorable at the upper limit, RGP can
decide on reducing its load to between 280 and 310 ton/h. Ultimately,
RGP can reap high margin due to large profit difference between the two
cases. On the other hand, descent profit can still be made even if RGP is
forced to reduce its load to 250 ton/h. The strategy is to boost sales gas
production through injection of feed gas stream D. However, flow of this

hydrocarbon stream is limited to 10 ton/h.

. Input scheduling in Case F improves RGP profit by 7.1% or 130.17
RM/min as compared with that in Case E. This result reveals the fact
that handling rich hydrocarbon composition in mixed feed gas stream is
a desirable challenge for RGP. In the past and at presént, RGP prefers to
process lean feed gas stream A to avoid “sweating” of its assets. In the
future, producers can only deliver rich gas due to dépleted content of
methane from gas reservoirs. RGP needs to find ways and revamp some
assets to prepare for this eventuality. At current state, the best solution in
handling rich gas is to warm the plant at an optimal level. This is done to
sustain minimum production of sales gas. At the same time, this effort
can prevent detrimental conditions such as inadequate duties of cooler
E-102 and reboiler E-104, as well as flooding at demethanizer C-101
and absorber C-102.
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6.2 Future Research Avenues

While this thesis work has presented several significant contributions on the proposed
integrated approach of scheduling and RTO, a few important issues remain to be
addressed. For example, the owner of RGP is keen to know whether the proposed
approach has reached maturity in terms of technological development. If it does, the
next question is whether there are industrial practitioners who have successfully
adopted the technology in their plants. Obviously, satisfactory answers to these
questions can only be redeemed in years ahead. For now, more research needs to be
conducted in order to overcome several technical limitations. The following
discussion elaborates these challenges and recommends the next plausible steps in

enhancing the proposed integrated approach:

o Improvement of the MPC process model: Recall that MPC scheme employs a
linear parametric model in the form of ARX structure. This process model is
identified using multivariable PRBS input signals that vary £ 5% from their
respective nominal values. Another type of input signal known as generalized
multi-level noise (GMN) may be suitable to handle nonlinearity in the RGP
system (Zhu, 2001). The GMN signal is generated from purely random noise
with underlying Gaussian distribution. An input is fully characterized by

specifying multiple levels and a switching time.

On another issue, nonlinear RGP system can be better represented by Wiener
and/or Hammerstein-type models. The resulting nonlinear MPC is expected to
perform better than its linear counterpart or regulatory controllers in cases of
setpoint tracking and disturbance rejection. While the former case is thoroughly
studied in this thesis, the latter is omitted due to difficulty in identifying the
disturbance model. Future research should focus on obtaining nonlinear and

disturbance models for MPC.

e  Minimization of modeling and operational uncertainties: In the integrated
approach of scheduling and RTO, the former procedure uses a dynamic model
whereas the latter a steady-state model. Mismatch between the two models will

exist even though efforts are taken to reduce it. In general, data transfer from
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dynamic to steady-state model and vice-versa produces errors of the following
magnitudes: 1) less than 5% for temperature and pressure of streams and major
equipment, and 2) as much as 20% for non-specified flow rates of certain

streams.

Small errors in temperature and pressure are credited to sharing of the same
Peng-Robinson thermodynamic package in HYSYS. Large errors in stream flow
rates are caused by two different fundamental theories used to calculate flow.
Steady-state model simultaneously solves material and energy balances while
ignoring transient behavior of the process. This is done to expedite calculations
for a quick estimate of the current plant state. On the other hand, dynamic
model include the accumulation term and relates flow to pressure drop across
equipment. The concept used in dynamic model is more realistic and thus can
be applied to replicate actual industrial processes. For this reason, it is
imperative to simultaneously run RTO and scheduling procedures in the same

dynamic model.

Adoption of a more sophisticated information technology infrastructure and an
efficient optimization algorithm to significantly reduce computational load: The
multi-temporal nature of these procedures poses two technological challenges:
1) hardware limitations especially in computing capabilities such as speed and
memory allocation, and 2) underdeveloped dynamic optimization algorithm for
solving large-scale constrained nonlinear problems within an RTO sampling
interval. It is noted that the first issue can be circumvented by connecting two
high-end workstations via an object-link-embedded for process control (OPC)
server. With the advent of computing technology, the hardware limitations are

expected to be alleviated in the near future.

On the second issue, general purpose optimization codes such as KNITRO
(Byrd et al., 1997), LOCO (Vanderber and Shanno, 1997), SOCS (Betts, 2001),
SNOPT (Gill et al., 2005) and IPOPT (Wachter and Biegler, 2006) are available
for academic usage. These codes are based on direct sparse factorizations that

eliminate state variables and linearized equations. The caveat is that users have
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to separately deal with the following difficult issues: 1) decomposition of a
large-scale nonlinear dynamic model comprising several complex unit
operations, 2) coupling of transient material and energy balances with detailed
equipment design and other aspects such as operability, controllability and

safety, and 3) multi-temporal nature of scheduling and RTO procedures.
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APPENDIX A
PENG-ROBINSON EQUATION OF STATE (EOS)

The Peng and Robinson (1976) EOS relating pressure (P), molar volume (v) and
temperature (7)) of a pure component is written as:

_RT a(T)
“y—b w(v+b)+b(v-b)

or when rewritten in the form of cubic equation to be solved:
Z°~(1-B)Z*+(A-3B>-2B)Z—(AB—B’-B*)=0

where

with
a(T)=a(T,)-a(T,,0)

RT.)?
a(TC)=0.45724(—-1-;L

4

b(T,)=0.07780 RPR

4

a'? =14+x(1-T1?)

where R is the universal gas constant at appropriate unit; 7, is the reduced temperature

and « is the characteristic constant for the pure component defined as:

I, =TT,
x=0.37464 +1.54226w 0.26992w?
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The values of acentric factor () of all components studied here may be obtained

from, e.g., Poling et al. (2001).

For a mixture containing C number of components, the parameters a and b are

obtained from the following mixing and combining rules:

a,=(1-8,)a,a,)"?

where a;=a; and bi are the parameters and x; is the mole fraction for pure component .
The binary interaction parameter (&) is nonzero only when i#j. Values of §; are

available at, e.g., Knapp (1982).

At vapor-liquid equilibrium, the fugacity (f;) for component i must be equal in
both phases (for e.g., Sandler, 1999). For Peng-Robinson EOS, the fugacity can be

calculated from:

S B ( 2> %4, B (Z+1++2)B
=g é @b 22B| 4 M 0B

Another important thermodynamic property is the molar enthalpy, which is used to
solve material and energy balances simultaneously. The enthalpy (H) departure from

that of an ideal gas (H'®) is:

T@—a
ar (Z+(1+\/_)B]

H-HG=RT(Z-1
(@ 2WW2b  \ Z+(1-+2)B
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APPENDIX B
ADDITIONAL RESULTS FROM CHAPTER 5

Table B.1: Values of optimization variables for Case A

Case Study

Var.  Unit Base RTO Description

Uy ton’h 2243 197.9 Flow of sales gas to coldbox E-101

" °C -40.0 -39.1 Temperature of feed gas exiting cooler E-102

U3 ton/h 170.6 139.2 Flow of sales gas to coldbox E-103

Uy ton'h 345 18.8 Flow of PG to GSP section

us ton/h  194.1 209.8 Flow of PG to turboexpander KT-101

ug °C 5.0 0.4 Temperature of demethanizer C-101 tray 35

U °C -80.9 -70.0 Temperature of PG exiting coldbox E-105

Table B.2: Values of constraint variables for Case A
Case Study

Variable  Unit Base RTO Description
c ton/h 280.0 280.0 Flow of mixed feed gas
c MJ/m’ 38.1 383  Gross heating value of sales gas
c3 - 0.57 0.57  Specific gravity of sales gas
cy mol% 2464  161.0  Carbon dioxide content in sales gas
Cs ton/h 225.1 228.6 Flow of sales gas
Cs bar 33.5 33.5  Pressure of sales gas
cr °C 35.6 33.4  Temperature of sales gas
cs kW/°C 1443 1098  Coldbox E-101 capacity
Cy °C 8.3 109  Coldbox E-101 LMTD
C1o kW/°C 347 283  Coldbox E-103 capacity
Cin °C 13.4 152  Coldbox E-103 LMTD
ci2 kwW/°C 136 344  Coldbox E-105 capacity
i °C 18.7 22.6  Coldbox E-105 log LMTD
Cs kW 3291 2954  Cooler E-102 duty
C1s kW 4294 3359  Demethanizer C-101 reboiler duty
Cl6 kW 2234 2465  Turboexpander KT-101duty
c17 kW 4661 4192  Compressor K-102 duty
Cis kw 27.7 259  Pump P-101 duty
Cio kW 8.9 7.6 Pump P-102 duty
Ca % 60.0 47.7  Flooding at Section 1 of demethanizer
n % 52.3 41.6  Flooding at Section 2 of demethanizer
cn %o 46.6 359  Flooding at Section 3 of demethanizer
n % 69.2 47.0  Flooding at Section 4 of demethanizer
C24 % 30.9 28.9  DC backup at Section 1 of demethanizer
Cas % 30.6 28.8  DC backup at Section 2 of demethanizer
Cs % 33.8 31.8  DC backup at Section 3 of demethanizer
Cy % 40.1 35.6  DC backup at Section 4 of demethanizer
Ca8 % 67.9 71.7  Flooding in absorber C-102
Ca9 % 17.6 17.2  DC backup in absorber C-102
c30 °C 12.0 8.4  Aircooler LMTD
C3 - 1.00 0.98  Fraction of PG to expander over that to JT valve
c3 - 1.00 0.61  Fraction of sales gas to coldbox E-101
C33 - 0.76 0.87  Fraction of sales gas to coldbox E-103
Cu - 0.151 0.081 Ratio of PG to gas subcooled process section

Note: PG=processed gas; GSP=gas subcooled process; LMTD=log mean temperature
difference; JT=Joule-Thompson; DC=downcomer
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Table B.3: Values of optimization variables for Case B

Case Study
Var.  Unit Base RTO Description
M ton/h 183.3 192.0 Flow of sales gas to coldbox E-101
i °C -30.6 -30.2 Temperature of feed gas exiting cooler E-102
U3 ton/h  120.6 120.6 Flow of sales gas to coldbox E-103
Uy ton/h 1.2 9.0 Flow of PG to GSP section
Us ton‘h 2464 161.0 Flow of PG to turboexpander KT-101
U °C 5.0 15.2 Temperature of demethanizer C-101 tray 35
Uy °C -70.0 -70.0 Temperature of PG exiting coldbox E-105

Table B.4: Values of constraint variables for Case B

Case Study
Variable  Unit Base RTO  Description
< ton/h 280.0 280.0  Flow of mixed feed gas
< MJ/m® 38.8 39.2 Gross heating value of sales gas
c3 - 0.58 0.59 Specific gravity of sales gas
Cs mol% 0.002  0.002  Carbon dioxide content in sales gas
Cs ton/h 235.4  241.1  Flow of sales gas
C6 bar 33.5 33.5 Pressure of sales gas
¢ °C 28.5 322 Temperature of sales gas
Cs kw/°C 1024 1707 Coldbox E-101 capacity
Co °C 10.0 6.0 Coldbox E-101 LMTD
Cio kW/°C 258 155 Coldbox E-103 capacity
cn °C 15.5 17.0 Coldbox E-103 LMTD
c12 kw/°C 0.7 113.6  Coldbox E-105 capacity
cni °C 28.2 5.0 Coldbox E-105 log LMTD
Cu kW 1715 1588 Cooler E-102 duty
Cis kW 2525 2362 Demethanizer C-101 reboiler duty
Cls kW 2850 1935 Turboexpander KT-101duty
c17 kW 2859 3957 Compressor K-102 duty
Cig kW 158  13.8  Pump P-101 duty
Clo kW 10.5 8.4 Pump P-102 duty
0 % 31.2 26.4 Flooding at Section 1 of demethanizer
ca1 % 284 25.0 Flooding at Section 2 of demethanizer
Cn % 29.1 26.5 Flooding at Section 3 of demethanizer
¢33 % 40.1 43.5 Flooding at Section 4 of demethanizer
cn % 30.8 28.6 DC backup at Section 1 of demethanizer
C5 % 31.7 29.5 DC backup at Section 2 of demethanizer
%6 % 354 33.6 DC backup at Section 3 of demethanizer
cx % 41.1 40.9 DC backup at Section 4 of demethanizer
Cog % 72.3 70.7 Flooding in absorber C-102
Co % 16.9 16.9 DC backup in absorber C-102
C3o °C 5.4 6.2 Air cooler LMTD
Csy - 1.00 0.66 Fraction of PG to expander over that to JT valve
C3 - 0.51 0.50 Fraction of sales gas to coldbox E-101
C33 - 0.78 0.80 Fraction of sales gas to coldbox E-103
C34 0.005 0.035 Ratio of PG to gas subcooled process section

Note: PG“processed gas; GSP=gas subcooled process; LMTD=log mean temperature
difference; JT=Joule-Thompson; DC=downcomer
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Case Study

Var.  Unit Base RTO Description

" ton/h  207.2 178.8 Flow of sales gas to coldbox E-101

) °C -40.0 -41.8 Temperature of feed gas exiting cooler E-102

u ton/h 1544 120.4 Flow of sales gas to coldbox E-103

y ton'/h 345 11.3 Flow of PG to GSP section

us tonh  169.6 191.2 Flow of PG to turboexpander KT-101

s °C 5.0 3.2 Temperature of demethanizer C-101 tray 35

i °C -80.9 -80.9 Temperature of PG exiting coldbox E-105

Table B.6: Values of constraint variables for Case C
Case Study

Variable  Unit Base RTO Description
&) ton/h 2500  250.0  Flow of mixed feed gas
(&) MJ/m* 38.0 38.6 Gross heating value of sales gas
Cc3 - 0.57 0.58 Specific gravity of sales gas
Cy moi% 0.001 0.002  Carbon dioxide content in sales gas
Cs ton/h 200.5 2139  Flow of sales gas
Cs bar 33.5 33.5 Pressure of sales gas
¢ °C 34.2 322 Temperature of sales gas
Cg kW/°C 1243.5 1032.5 Coldbox E-101 capacity
Co °C 8.6 10.3 Coldbox E-101 LMTD
Cio kW/°C 313.8 2433 Coldbox E-~103 capacity
ci °C 13.2 14.6 Coldbox E-103 LMTD
c1 kW/°C 1349 34.1 Coldbox E-105 capacity
13 °C 18.8 19.2 Coldbox E-105 log LMTD
Ci4 kW 2931 3536 Cooler E-102 duty
Cis kW 3984 2947 Demethanizer C-101 reboiler duty
Cl6 kW 1952 2201 Turboexpander KT-101duty
C17 kW 4219 3899 Compressor K-102 duty
Cis kW 251 23.0 Pump P-101 duty
Ci9 kW 8.6 6.2 Pump P-102 duty
¢ % 56.9 42.4 Flooding at Section 1 of demethanizer
Cat % 493 36.8 Flooding at Section 2 of demethanizer
cn % 44.6 31.6 Flooding at Section 3 of demethanizer
cn % 654 424 Flooding at Section 4 of demethanizer
Cu % 303 27.1 DC backup at Section 1 of demethanizer
C2s % 29.9 26.8 DC backup at Section 2 of demethanizer
Cag % 32.6 30.1 DC backup at Section 3 of demethanizer
C27 Yo 38.2 33.6 DC backup at Section 4 of demethanizer
Cag % 66.5 65.1 Flooding in absorber C-102
Cyo % 17.6 16.6 DC backup in absorber C-102
Ci0 “C 11.7 7.3 Air cooler LMTD
c31 - 1.00 0.99 Fraction of PG to expander over that to JT valve
cn - 0.77 0.59 Fraction of sales gas to coldbox E-101
¢33 - 1.00 0.84 Fraction of sales gas to coldbox E-103
Ci 0.169  0.055 Ratio of PG to gas subcooled process section

Note: PG—processed gas; GSP=gas subcooled process; LMTD=log mean temperature
difference; JT=Joule-Thompson; DC=downcomer
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Table B.7: Values of optimization variables for Case D

Case Study

Var.  Unit Base RTO Description

u ton/h 2356 2533 Flow of sales gas to coldbox E-101

o) °C -38.0 -34.6 Temperature of feed gas exiting cooler E-102

1 ton/h  96.2 140.6 Flow of sales gas to coldbox E-103

Uy ton/h  235.7 248.3 Flow of PG to GSP section

Us ton’h 345 22.5 Flow of PG to turboexpander KT-101

Ug °C 5.0 0.0 Temperature of demethanizer C-101 tray 35

Uy °’C -80.9 -70.0 Temperature of PG exiting coldbox E-105

Table B.8: Values of constraint variables for Case D
Case Study

Variable  Unit Base RTO Description
a ton/h 310.0 310.0  Flow of mixed feed gas
Ca MJ¥/m’ 385 38.7 Gross heating value of sales gas
c3 - 0.57 0.58 Specific gravity of sales gas
€4 mol% 0.002 0.002  Carbon dioxide content in sales gas
Cs ton/h 2554 2593  Flow of sales gas
s bar 335 335 Pressure of sales gas
7 °C 35.7 37.1 Temperature of sales gas
Cs kW/°C 1252 1414 Coldbox E-101 capacity
o °C 11.1 9.6 Coldbox E-101 LMTD
C1o kW/°C 160 250 Coldbox E-103 capacity
on °C 14.4 143 Coldbox E-103 LMTD
c1n kW/°C 195 82 Coldbox E-105 capacity
13 °C 14.9 14.9 Coldbox E-105 log LMTD
cu kW 2212 1200.0 Cooler E-102 duty
Cis kW 3685 3180.7 Demethanizer C-101 reboiler duty
16 kW 2927 3081.5 Turboexpander KT-101duty
cy kW 4610 46403 Compressor K-102 duty
C1s kW 24.7 23.0 Pump P-101 duty
€19 kW 0.4 8.0 Pump P-102 duty
o % 49.7 36.8 Flooding at Section 1 of demethanizer
ol % 45.8 33.5 Flooding at Section 2 of demethanizer
n % 40.7 30.5 Flooding at Section 3 of demethanizer
3 % 62.9 435 Flooding at Section 4 of demethanizer
€u % 28.8 26.8 DC backup at Section 1 of demethanizer
Cs % 28.7 27.1 DC backup at Section 2 of demethanizer
Cas % 32.8 30.0 DC backup at Section 3 of demethanizer
cn % 39.0 339 DC backup at Section 4 of demethanizer
Cag % 71.8 76.2 Flooding in absorber C-102
C19 % 17.7 17.5 DC backup in absorber C-102
C30 °C 103 11.9 Air cooler LMTD
C31 - 1.00 1.00 Fraction of PG to expander over that to JT valve
cn - 0.38 0.54 Fraction of sales gas to coldbox E-101
1 - 0.92 0.98 Fraction of sales gas to coldbox E-103
C34 - 0.13 0.08 Ratio of PG to gas subcooled process section

Note: PG=processed gas; GSP=gas subcooled process; LMTD=log mean temperature
difference; JT=Joule-Thompson; DC=downcomer
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Table B.9: Values of optimization variables for Case E

Case Study .

Var.  Unit Base RTO Description

U ton/h  214.6 207.5 Flow of sales gas to coldbox E-101

) °C -25.6 -20.0 Temperature of feed gas exiting cooler E-102

Us tonh  167.7 189.2 Flow of sales gas to coldbox E-103

U ton/h 332 29.6 Flow of PG to GSP section

Us ton'h  187.8 145.6 Flow of PG to turboexpander KT-101

Us °C 5.0 0.3 Temperature of demethanizer C-101 tray 35

th °C -74.7 -70.9 Temperature of PG exiting coldbox E-105

Table B.10: Values of constraint variables for Case E
Case Study

Variable  Unit Base RTO Description
< ton/h 280.0 280.0 Flow of mixed feed gas
[4)) MJ/m’ 377 379 Gross heating value of sales gas
c3 - 0.60 0.60 Specific gravity of sales gas
Cy mol% 0.029  0.026  Carbon dioxide content in sales gas
Cs ton/h 213.6 213.3 Flow of sales gas
Cs bar 33.5 335 Pressure of sales gas
cr °C 30.9 30.8 Temperature of sales gas
Cs kW/°C 1725 1556  Coldbox E-101 capacity
Co °C 5.0 5.0 Coldbox E-101 LMTD
Co kW/°C 308 413 Coldbox E-103 capacity
Cii °C 12.8 13.4 Coldbox E-103 LMTD
C12 kW/°C 196 158 Coldbox E-105 capacity
c13 °C 13.4 13.5 Coldbox E-105 log LMTD
1 kW 3351 2429 Cooler E-102 duty
Cis kw 4706 2085 Demethanizer C-101 reboiler duty
Ci6 kW 2373 1846 Turboexpander KT-101duty
1 kW 2986 3492 Compressor K-102 duty
C1g kW 319 31.2 Pump P-101 duty
Clo kW 6.6 54 Pump P-102 duty
Ca0 % 42.2 34.2 Flooding at Section 1 of demethanizer
Ca % 45.5 31.3 Flooding at Section 2 of demethanizer
cn % 62.6 3¢.3 Flooding at Section 3 of demethanizer
cx % 60.2 39.8 Flooding at Section 4 of demethanizer
o % 26.0 25.7 DC backup at Section 1 of demethanizer
C2s % 273 26.7 DC backup at Section 2 of demethanizer
Ca6 % 36.3 314 DC backup at Section 3 of demethanizer
C7 % 37.5 33.9 DC backup at Section 4 of demethanizer
Crg % 60.0 593 Flooding in absorber C-102
C2 % 17.2 16.9 DC backup in absorber C-102
C30 °C 11.0 10.8 Air cooler LMTD
C3y - 1.00 0.76 Fraction of PG to expander over that to JT valve
c» - 0.78 0.89 Fraction of sales gas to coldbox E-101
C33 - 1.00 0.97 Fraction of sales gas to coldbox E-103
Cy - 0.15 0.13 Ratio of PG to gas subcooled process section

Note: PG=processed gas; GSP=gas subcooled process; LMTD=log mean temperature
difference; JT=Joule-Thompson; DC=downcomer
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Table B.11: Values of optimization variables for Case F

Case Study

Var.,  Unit Base RTO Description

u ton/h  200.0 200.0 Flow of sales gas to coldbox E-101

w °C -16.0 -14.4 Temperature of feed gas exiting cooler E-102

Us ton/h 117.7 153.6 Flow of sales gas to coldbox E-103

Uy ton/h 222 333 Flow of PG to GSP section

Us ton/h 1999 94.7 Flow of PG to turboexpander KT-101

Ug °C 5.0 0.0 Temperature of demethanizer C-101 tray 35

Uz °C -67.5 -52.0 Temperature of PG exiting coldbox E-105

Table B.12: Values of constraint variables for Case F
Case Study

Variable  Unit Base RTO Description
C ton/h 280.0 280.0  Flow of mixed feed gas
Ca MJ/m’ 392 39.8 Gross heating value of sales gas
C3 - 0.60 0.61 Specific gravity of sales gas
Cs mol% 0.009 0.010  Carbon dioxide content in sales gas
Cs ton/h 2104 2169  Flow of sales gas
Cs bar 33.5 335 Pressure of sales gas
¢ °C 29.5 31.2 Temperature of sales gas
Ccs kW/°C 332 453 Coldbox E-101 capacity
Co °’C 16.1 11.8 Coldbox E-101 LMTD
C1o kW/°C 235 295 Coldbox E-103 capacity
i °’C 13.7 12.5 Coldbox E-103 LMTD
cn kW/7C 230 66 Coldbox E-105 capacity
c13 °C 6.7 15.1 Coldbox E-105 log LMTD
Cia kW 3229 2733 Cooler E-102 duty
Cis kw 3874 3594 Demethanizer C-101 reboiler duty
Ci6 kW 2833 1341 Turboexpander KT-101duty
c17 kW 2366 4119 Compressor K-102 duty
Cig kW 34.3 31.2 Pump P-101 duty
Clo kW 5.0 3.5 Pump P-102 duty
€0 % 31.7 25.1 Flooding at Section 1 of demethanizer
Ca % 31.6 25.1 Flooding at Section 2 of demethanizer
cn % 279 22.7 Flooding at Section 3 of demethanizer
cn % 46.5 35.1 Flooding at Section 4 of demethanizer
C24 % 24.5 23.1 DC backup at Section 1 of demethanizer
C1s % 255 243 DC backup at Section 2 of demethanizer
Cas % 31.3 299 DC backup at Section 3 of demethanizer
cn % 359 33.3 DC backup at Section 4 of demethanizer
Cs % 58.8 56.6 Flooding in absorber C-102
C9 % 16.6 16.4 DC backup in absorber C-102
C30 °C 29 5.7 Air cooler LMTD
c3 - 1.00 0.50 Fraction of PG to expander over that to JT valve
C1 - 0.56 0.71 Fraction of sales gas to coldbox E-101
¢33 - 0.95 0.92 Fraction of sales gas to coldbox E-103
Caa - 0.10 0.15 Ratio of PG to gas subcooled process section

Note: PG=processed gas; GSP=gas subcooled process; LMTD=log mean temperature
difference; JT=Joule-Thompson; DC=downcomer
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Figure B.1: Closed-loop responses of PI (thin line) and MPC (thick line) controllers
on temperature of feed gas stream exiting cooler E-102 (3») and temperature of
demethanizer C-101 tray 35 () for Cases Cl1 and C2 (scheduling only);
uz=cooler E-102 duty in %; us=reboiler E-104 duty in %
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Figure B.2: Closed-loop responses of PI (thin line) and MPC (thick line) controllers
on temperature of feed gas stream exiting cooler E-102 (y,) and temperature of
demethanizer C-101 tray 35 (34) for Cases C3 and C4 (integrated approach);
us=cooler E-102 duty in %; us=reboiler E-104 duty in %
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Figure B.3: Closed-loop responses of PI (thin line) and MPC (thick line) controllers
on temperature of feed gas stream exiting cooler E-102 (y;) and temperature of
demethanizer C-101 tray 35 (y4) for Cases D1 and D2 (scheduling only);

E-102Q=cooler E-102 duty in %; E-104Q=reboiler E-104 duty in %
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Figure B.4: Closed-loop responses of PI (thin line) and MPC (thick line) controllers
on temperature of feed gas stream exiting cooler E-102 (y;) and temperature of
demethanizer C-101 tray 35 (y4) for Cases D3 and D4 (integrated approach);
E-102Q=cooler E-102 duty in %; E-104Q=reboiler E-104 duty in %
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Figure B.5: Closed-loop responses of PI (thin line) and MPC (thick line) controllers
on temperature of feed gas stream exiting cooler E-102 () and temperature of
demethanizer C-101 tray 35 (y4) for Cases El and E2 (scheduling only);
ts=cooler E-102 duty in %; us=reboiler E-104 duty in %
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Figure B.6: Closed-loop responses of PI (thin line) and MPC (thick line) controllers
on temperature of feced gas stream exiting cooler E-102 (3;) and temperature of
demethanizer C-101 tray 35 (y4) for Cases E3 and E4 (integrated approach);
uz=cooler E-102 duty in %; us=reboiler E-104 duty in %
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Figure B.7: Closed-loop responses of PI (thin ling) and MPC (thick line) controllers
on temperature of feed gas stream exiting cooler E-102 (32) and temperature of
demethanizer C-101 tray 35 (y4) for Cases F1 and F2 (scheduling only);
E-102Q=cooler E-102 duty in %; E-104Q=reboiler E-104 duty in %
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Figure B.8: Closed-loop responses of PI (thin line) and MPC (thick line) controllers
on temperature of feed gas stream exiting cooler E-102 (y,) and temperature of
demethanizer C-101 tray 35 (34) for Cases F3 and F4 (integrated approach);
E-102Q=cooler E-102 duty in %; E-104Q=reboiler E-104 duty in %
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Figure B.9: Dynamic trajectories of RGP profit for Case C
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Figure B.10: Dynamic trajectories of RGP profit for Case D
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Figure B.11: Dynamic trajectories of RGP profit for Case E
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Figure B.12: Dynamic trajectories of RGP profit for Case F
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