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ABSTRACT

This report basically discusses the research done and basic understanding of the
chosen topic, which are Dynamic Loading Analysis of the Telescopic Jetty
Gangway. This project is an inclusive research study regarding the harmonic response
on a telescopic jetty gangway structure. The project is related to the study on the
dynamic characteristics of the jetty gangway structure which exerted the harmonic force
at the free end of the beam structure. From the studies, we could find the values of the
harmonic response on the telescopic jetty gangway and the mode shape under the

influence of harmonic force of sea wave.

The mathematical models are developed based on simplified I-beam geometry
by using Newtonian method. The mathematical solutions of the jetty gangway were
conducted in two different techniques. In the first technique, the upper and the lower
beam were treated as separated parts. The separated calculation processes are conducted
in both upper and load beam structure. For the second technique, the jetty gangway
structure was treated as a single structure with different value of cross sectional areas at

the beginning, middle and far end of the jetty gangway.

The mode shapes and the responses of the beam structure from both techniques
were plotted and the data taken were compared with the mode shapes values and

patterns of the single uniform beam taken from the previous references and studies.
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CHAPTER 1

INTRODUCTION

1.1 Background

Telescopic jetty gangway is one of the new designs of gangway which give the
flexibility to the shore personnel to board and off-board from/to the vessel and ship at
the port. This design is created for countering the limitations of the conventional design
of the jetty gangway. The limitations are including the rigidity of the gangway structure
and the length of the gangway cannot be extended or adjusted to desired length. Many
small jetties in the Asia pacific region are facing obstacles in operating their shore based
(stationary) gangways due to these limitations. The figure 1 is representing the example

of conventional jetty gangway.

Figure 1.1: Conventional Jetty Gangway [Wikipedia.com]
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The study on the static load of the telescopic gangway structure had developed and only
emphasized on the shear forces, bending moment, shear stress and bending stress of the
gangway structure. The dynamic analysis on the ftelescopic jetty gangway is not
conducted for the moment and had been highlighted from the previous study in order to
be perform. This study is necessary for evaluating the stability of the telescopic
gangway structure for public use.

1.2 Problem Statement

This project is a continuation project of the “Study on Telescopic Walkway Design of
Jetty Gangway” conducted by Mr P, Dhinesh Kumar in his Final Year Project at
University Teknologi PETRONAS. From the previous project, the design concept of the
jetty gangway as well as the study on the loading analysis on the gangway structure had
been performed. The study on the loading analysis provides the insightful design
parameters for development of the detail design of a jetty gangway. However, the
loading analysis only concentrated on the static load analysis and did not covers the
study on the dynamic load analysis especially on the dynamic load due to the wave
motion at the jetty. The dynamic loading due to the wave motion would create a
harmonic motion of the jetty gangway which could result in the destruction of the jetty
structure. Therefore, it is necessary to carry out the dynamic load analysis in order to
make sure that the jetty gangway can withstand both static and dynamic load.

1.3 Objective

The objective of this project is to conduct the dynamic load analysis on the telescopic
jetty gangway structure. The study only focuses on the jetty gangway at the full
extension position. The purposes of the project are to collect sufficient data on the mode
shape of every modes condition of the jeity gangway and values of the responses of the
structure which depends on the frequencies of the wave.



1.4 Scope of Study

The project gives more attention on the dynamics analysis which discuss about the
mathematical relations of the parameters of the jetty gangway structure. The study
mainly concentrates on finding the relation of the wave (frequency and amplitude) with
mode shape and responses (displacement) of the gangway structure. The mathematical
relations determined from the study are focusing on the behavior of jetty gangway
structure when the harmonic force form the wave is imposed at the free end of the jetty
gangway. The study also investigates the stability of the structure in full extension
modes with the wave factor that exist in the sea area. The parameter of the wave factor
will be narrowed down to South East Asia region. The lists of parameters for the force

harmonic are listed below.
e Wave amplitude = 1000 N
e Wave frequency range = 10Hz to 600 Hz

All of the data gained from the study will be collected and arranged to make it more
presentable and can be as a reference in the future for researchers, professors and
students of Universiti Teknologi PETRONAS.



"CHAPTER 2

LITERATURE REVIEW

2.1 Structure of the Telescopic Jetty Gangway

Gangway is a bridge — like structure used at the berth to access the ship’s deck from the
jetty and vice versa. The gangway is comprised of two parallel sides, on which
handrails are movably hinged on both sides on a railing. The handrails and the sides
form a parailelogram with each inclination and the sides each are supported at the lower
end on a roller and rotatable base secured at the upper ends. The trapezoidal steps are
flexible suspended with spacing from the sites in which the sides are secured.
Gangways may be constructed in steel, aluminum or combination of steel and

aluminum.

Usual practice is to construct gangways entirely from aluminum. Aluminum extrusion
for the gangway structure shall be aluminum alloy 6061-T6, 6063-T5 and 6063-T6.
Powered gangway support structures are usually constructed in steel, with the walkway
form the support structure to the ship constructed in aluminum to minimize the gravity
loading applied to the support structure and the size of the hydraulic control system
required to maneuver the walkway to and from the vessel [ P Dhinesh kumar, 2009].



Figure 2.2: Gangway used in ExxonMobil Refinery Jetty in Sriracha, Thailand



2.2 Study of Vibration

Most human activities involve vibration in one form or other. Any motion that repeats
itself after an interval of time is called vibration or osciliation. The theory of vibration

deals with the study of oscillatory motions of bodies and forces associated with them.

2.2.1 Vibration Analysis

A system executes an oscillatory motion defined as an aggregation of components
acting collectively as a whole. For mechanical systems the oscillatory motion is
normally referred to as vibration. Vibration in generally consists of the study on
fundamental concept of Newtonian mechanics, components modeling, system
modeling, derivation of system differential equation of motion, general excitation,
response characteristics and motion stability. The derivation of the equation of motion
can be carried out by means of methods of Newtonian mechanics or by methods of
analytical dynamics. The fundamental tool in deriving the equation of motion is the
free-body diagram, namely, a diagram for each mass in the system showing all the

forces acting upon the mass.

A model consists of a collection of either individual components, or group of
component or both. The objective of system modeling amounts is to devising a
simplified model capable of simulating the behavior of an actual physical system. For
vibration systems, the behavior is governed by the equation of motion. In order to
derive the system response, the equation of motion needs to be derived in prior. In
addition, there is a large variety of excitations, and each type of excitation tends to
require a different approach to the solution [Singiresu S. Rao, 2005].

2.2.2 Eigenvalues

5®° is known as the characteristic determinant or characteristic polynomial. The
characteristic polynomial is of degree n in w”and possesses in general distinct roots

referred to as eigenvalues. The n roots are donated by ®,%, .%,.... 3% and the square
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roots of these quantities are the system natural frequencies o, (r = 1, 2,...,n). The
natural frequencies can be arranged in increasing order of magnitude, namely,
01 < 077 <.... < 05 The lowest frequency o, is referred to as the fundamental frequency
and for many practical problems it is the most important one. In general, all frequencies
o, are distinct and the equality sign never holds, except in degenerate éases which are
very random and cannot occur in one degree-dimensional structures but they can occur
in two-dimensional symmetric structures. In addition, for the harmonic motion type, the
natural frequencies referred as o, (r = 1, 2,...,n) [Leonard Meirovitch, 2001].

2.2.3 Dynamic Analysis

A vibration system is a dynamic system which the input and output are time dependent.
The response of a vibrating system generally depends on the initial conditions and the
external excitations. Mostly, the real practical vibration problem is very complicated
and the variables which included in the mathematical analysis are not totally all been
considered and calculated. The complex systems are often been analyzed by a simple
model. Usually, the dynamic analysis consists of mathematical modeling, derivation of

the governing equations, solution of the equation, and interpretation of the results.

2.2.4 Mode Shape

In the study of vibration in engineering, a mode shape describes the expected curvature
(or displacement) of a surface vibrating at a particular mode. To determine the vibration
of a system, the mode shape is multiplied' by a function that varies with time, thus the
mode shape always describes the curvature of vibration at all points in time, but the
magnitude of the curvature will change. The mode Shape is dependent on the shape of
the surface as well as the boundary conditions of a particular surface { Wikipedia.org].



Figure 3 below describing the mode shape of astringatn=1,2& 3.

Figure 2.3: The Mode Shape of a String {Singiresu S. Rao, 2004}

2.2.5 Response
Response defined as the ratio of the output to the input, as for given frequency of a
system operating under specified condition. The differential equation of motion was
needed to be solved in order to derive the system response. Figure 2.4 described the

transient and steady state response of a force vibration.
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06 7 % pausient state of the farced vibrafion steady state of e forced vibration

Figure 2.4; Transient and Steady State Response of Forced Vibration [Singiresu
S. Rae, 2004]

The nature of the response depends on the excitations and on the system characteristics.

The excitations represent external factors and consist of initial displacement and

velocity and applied forces and/or moments.



2.2.6 Continuous System

Continuous system is a system of infinite degree of freedom in which it is not possible
to identify discrete masses, damping and spring. It is necessary to consider continuous
distribution of the mass, damping and elasticity and assume that each of the infinite
number of point of the system can vibrate. When a system is modeled as a discrete
system, the governing equations are ordinary differential equations which are easy to
solve and if the system in modeled as a continuous system, the governing equation are
partial differential equation which are more difficult [Singiresu S. Rao, 2004].

2.3 Method for Solving Continuous System

The continuous system is not similar compare to the discrete system. The motion of
discrete system is governed by ordinary differential equations. In discrete system, the
mass of beam, string and rod can be neglected and were treated as an equivalent
springs. The mass of the elastic members which treated as continuous system is not

neglected and the members can no longer be regarded as equivalent springs.

The methods to solve the continuous problem (displacement) are depended on two
independent variables, x and t. The motion of continuous system is governed by partial
differential equations and must satisfy the boundary conditions of the particular system.
Due to the existing of boundary conditions, the continuous system also considered as a
boundary-value problem (BVP).The methods to soive the continuous system can be
divided into two approaches.

¢ Exact solution

e Approximate solution

In most part, problems in continuous system do not admif exact solution since the
system parameters are appear in the form of coefficients in the partial differential
equation and the boundary conditions of the system are depended explicitly on the
spatial of variable x. As a result, the exact solution can only be used in a system with

uniform mass and stiffness distributions [Leonard Meirovitch, 2001].
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2.3.1Exact solution

The exact solution consists of two methods, which are:

¢ Newtonian Method

e Extended Hamilton Principle
Newtonian approach requires a free body diagram for a differential element of mass. It
also applies the usage of sign conventions for forces and moments where M) is
referring to the bending moment and Q¢x,¢) is referring to the shearing force. The figure
below showed the example of free-body diagram with it respective sign.

fix.1)dx

aQ(x,t)
M), L Q)45

-  dx_ t) Mix r}+§ﬂ—49ﬂdx
[ C! dx

¥y Oxt)

Figure 2.5: Free Body Diagram of Beam [Leonard Meirovitch, 2001]

From the free body diagram, the force equation of motion and the moment equation of
motion will be obtained and later will be manipulated in order to find the total solution
equation. The total solution is referring to the equation of displacement for system with

regard to x and t and must satisfied the boundary conditions of the particular solution.

By applying the partial differential method on force equation and moment equation, the

equation of motion for structure can be derived which is shown below:

Fw

a%w . -
EL Py (x,t) + p}lﬁ (X,t) = f2t) i, 2.3)

The boundary typical boundary conditions for the continuous system (in this case: the
structure of beam system) are stated in the table below:
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Table 2.1: Boundary Condition of a Beam Structure
No. |- Typlcal end of beam system Boundary condmon =

I, |Fixed end . Dlspiacement w(x) =0

l . SlOpe dw (x) =

2. | Simply supported (pinned) ¢ Displacement, w(x} = 0

end e Bending moment,
z ’
1 d u(-:) =
dx

3. | Freeend .

[

FI R
Bending moment, £ I-dw—;:}c =0

d w(x)c

‘!"

Shear force, ~E{—————= =0

The extended Hamilton's principle is derived from the generalized d Alembert’s
principle. The principle can be used to derive all the system equations of motion,
regardless of whether the system is subjected to constraints or not. This principle
also involves the kinetic energy, potential energy and the virtual work application
in order to solve the system's problem. The Hamilton's approach also
implemented the theory of energy conservation by mean of solving the system and
structure problems. The extended Hamilton principle in the form of [Leonard
Meirovitch, 2001]:

gl
f (6T — 6V +6W, . )dt = 0,8¥(x,t) = 0,0 Sx < L, t =ty,t,
rl

Where

L a g 2
T(t) = %f p(x)[ ygi ‘) dx
o D * ' g
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is the kinetic energy and

L
W, (1) = f Fx )8y(x, thdx
s}

is the virtual work of the non-conservative distributed force.

The variation relations in potential and kinetic energies were interpolated with regards
to the geometry conditions of the structure in order to derive the equation which
completes the derivation of the boundary-value problem. The equation is illustrated
below [Leonard Meirovitch, 2001]:

dy
Pt ky=0x=1L
ox

2.3.2 Approximate solution

The exact solution only compatible for systems characterised by uniformly distributed
parameters and simple boundaries. In real life, however, most systems do not posses
these properties. As a result, the approximate solutions need to be applied in order to
solve the boundary-value problem. The approximate techniques normally modei the
continuous systems as discrete systems which amount to spatial discretization and
truncation. The lists of common approximate solutions for solving the boundary-value
problem are shown below [Singiresu S. Rao, 2004):

¢ Rayleigh's principle method

¢ Rayleigh-Ritz method

o Finite Element method

2.3.3 Rayleigh principle method

The Rayleigh's quotient has a stationary value in the neighborhood of an eigenfunction
and this stationary value is actually a minimum at the lowest eigenfunction. The
Rayleigh's principle can be presented by the equation below:

A, =wf=mnR(Y)=R (V)
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If w(x) is the mode shapes, then is equal to the square of the natural frequency of that
mode. If w is not a mode shape, the R(w) is the scalar function for w. For a discrete
systems, R{w) is a minimum when w is a mode shape. Therefore, Rayleigh's quotient

can be used to approximate the lowest natural frequency for continuous system.

Rayleigh method can be applied to find the fundamental natural frequency of
continuous systems. This method is much simpler than exact analysis for system with
varying distribution of mass and stiffness. In order to apply Rayleigh's method, we need

to derive expression for the maximum kinetic, potential energies and Rayleigh quotient.

1 M? 1 diy\*
== -~—~dx=—f£'1(—-—£) dx

Umax 2) El 2 dx?
1 1
Toor = Ef yidm = -é-wz fyzdm
d?y\’
() -
Jytdm

The usage of Rayleigh method is highly appreciated in continuous system. This is due
to the significant of fundamental frequency in continuous system as the forced
responses in many cases of continuous system are in large magnitudes. The Rayleigh
method can be used to determine the fundamental frequency of a beam or shaft

represented by a series of lumped masses [Singiresu S. Rao, 2004].

2.3.4 Rayleigh-Ritz method
The Rayleigh-Ritz method can be considered as an extension of Rayleigh method. 1t is
base on the premise that the closer approximately to the exact natural mode can be
obtained by superimposing a number of assumed functions than by using a single
assumed function, as in Rayleigh method. The equation 2.8.1.1 below stated the

deflection equation when » functions are chosen.

W(x) =ciwi(x) +eowa(x) +...+ cown(X). ... 2.9
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If the assumed functions are suitably chosen, this method provided not only the
approximate value of the fundamental frequency but also the approximate values of the
higher natural frequencies and the mode shapes.

It is usual to approach the problem in vibration problem by using energy principles
either with a Rayleigh-Ritz Method (continuous series} or with the finite element
method. A number of studies have been made which employed different versions of the
latter technique and these have dealt with a variety of boundary conditions. However,
not all possible boundary conditions have been considered and there has also been the
problem of obtaining convergence of the solution when the number of terms in the
series solution is increased. The Rayleigh-Ritz approaches are suitable for the
symmetric balanced and unbalanced cases. It is demonstrated that the solution by using
Rayleigh-Ritz method possesses good numerical characteristics and convergence

properties.

In Rayleigh Ritz method, an arbitrary number of functions can be used in order to get
the accurate result as the number of frequencies can be obtained is equal to the number
of functions used. However, the amount of computation required becomes prohibitive
for the asymmetric case where the finite element technique should be used and
implemented [Singiresu S. Rao, 2004].

2.3.5 Finite element method

The basic idea in the finite element method is to find the solution of a complicated
problem by replacing it by a simpler one. Since the actual problem is replaced by a
simpler one in finding the solution, we will be able to find only an approximate solution
rather than the exact solution. The existing mathematical tools will not be sufficient to
find the exact solution {and sometimes, even an approximate solution) of most of the
practical problems. Thus, in the absence of any other convenient method to find even
the approximate solution of a given problem, we have to prefer the finite element

method. Moreover, in the finite element method, it will often be possible to improve or

14



refine the approximate solution by spending more computational effort. The example of

finite element structure of milling machines structures by finite element

i) Frovle phat gl CapR bt ctr

Figure 2.6 : The Diagram of the Finite Element Structure of a Milling Machine

The principal advantage of the finite element method is its generality; it can be used to
calculate the natural frequencies and mode shapes of any linear elastic system.
However, it is a numerical technigue that requires a fairly large computer, and care has
to be taken over the sensitivity of the computer output to small changes in input. For
beam type systems the finite element method is similar to the lumped mass method,
because the system is considered to be a number of rigid mass elements of finite size
connected by massless springs. The infinite number of degrees of freedom associated
with a continuous system can thereby be reduced to a finite number of degrees of

freedom, which can be examined individually.

2.4 Method Used in the Project

In order to solve the project, I am choosing to use the Newtonian method as the primary
calculation method. The main reason of using the Newtonian Method is because of the
geometry condition of the beam structure which in uniformly structure. The Newtonian
method may be considered as the best method in order to solve this boundary-value

problem.

The resuit achieve from the Newtonian method will be accurately compare to the
Rayleigh Principle and Finite element methods. Both methods can be relying on when
more functions and iterations been included in the calculation. As a result, the

calculation will be long and tedious and not suitable for manual analytical caiculation.
15



2.5 Study Of Non-Linear Beam Analysis By Mesut Simsek

From the study on Mesut Simsek, researcher from Yildiz Technical University, Turkey,
in his journal “ Non-linear Vibration Analysis of a Functionally graded Timeshenko
beam under action of a moving load” , he already specify the technique for study the
non-linear beam structure. In this reference, the effect of large deflection, material
distribution, velocity of the moving load and excitation frequency on the beam

displacement, bending moments and stresses have been examined in detail.

In this journal, the result gain from the study then was compared with the existing result
of a linear beam which was gain from the previous study. This is conducted in order to
verify the result gain from his study where the result gain from linear beamn will be
treated as references values. Below are one of the results gain from the Mesut's study
which shown the transverse displacement of the beam with respected to the time for
different value of the load velocity (20m/s) and the excitation of frequency (20 rad/s).

Both line of the graph are represented the displacement of a linear and non-linear beam.

vl_::ZIl JUR]

TREe- 20 ks

ALFE

Lhdngan Kisp. 1y

) METSEY]
Figure 2.7: The Displacement of the Beam With Respect of Time for Linear (---) and
Non-Linear (---) [Mesut Simsek,2010]

The comparison method of the linear and non-linear beam which been applied in this

reference can be implemented in this project.
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2.6 Dynamic Analysis of Uniform Cantilever Beam Subjected to Harmonic Force

Based on the study conducted by Demeter G. Fertis in his book, Mechanical and
Structural Vibration, the solution of for the uniformly cantilever beam subjected to the
vertical harmonic force at the free end of the beam are stated below:
The total solution of the beam given:

wix, t) = W(x}. T(t)

where

F ) . .
P ¥ (cos hL) cos L] [{(sinhPL + sinfl)(coshfl — cosBL) — (coshfL

+ cos fEY(=inhJL ~ sinfL)]
T(t) = sinew, t

Wix) =

The notation given:
F = the amplitude of wave
w, = the frequency of the harmonic force.

The model of the beam from the book is illustrated below:

Fith = F sin wet

l '
¥

| L

Figure 2.8: Beam Structure [Demeter G. Fertis,1995]

From the study conducted by Demeter G. Fertis , number of graph been plotted which
illustrated the relationship of the displacement of the cantilever beam and the wave
frequency of the harmonic force. The graph plotted base on the detail of the beam which

are stated below:

Length of beam, L = 5 meter

Modulus of elasticity, E = 69 Gpa (Aluminum 6061)
Cross sectional area, A = 0.0198m?

Moment of inertia, I = 0.000108 m*
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Graph of mode shape of beam with frequency varies from O0HZ to 700HZ are illustrated

below:

b

cibtofd

(R

® (h) @

The graph (a) is the mode shape for frequency is 10Hz , (b) for 50Hz, (c) for 100Hz, (d)
for 200Hz, (e) for 300Hz, (f) for 400Hz, (g) for 500Hz, (h) for 600Hz and (i) for 700Hz.

The relation of the displacement of the free end of the beam varies with the value of
frequencies for 0Hz to 700Hz also had been plotted as shown below. The graph (a) is
the displacement of the beam at frequency of 10Hz, varies from 0 sec until 900 seconds
, (b) for 100Hz, (¢) for 200Hz, (d) for 300Hz, (e) for 400Hz, (f) for 500Hz, (g) for
600Hz and (i) for 700Hz.
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CHAPTER 3
METHODOLOGY

Initial study Intermediate Advance study

Literature Review

Develop . Determine
Dynamic analysis eguation of Total boundary
motion Solution condition

Determine
response

Validation Compare with
existing data

Data collection and
documentation

Figure 3.1: The Diagram of the Methodology for the Project
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The projects will begin with literature review on several sessions. The session divided

into 3 parts, which are:

e Initial Study
e [Intermediate study
e Advance study

3.1 Initial study

The initial study was performed in order to know and develop a complete design
structure of the telescopic jetty gangway with the full dimension referring to the
standard of designing a gangway. By having a correct dimensional of a gangway, it will
make the dynamics analysis more reliably and meaningful. The mechanical properties
of the jetty gangway also were determined. The picture below represents the model of
the jetty gangway which related to this project.

Figure 3.2: CAD design of the Jetty Gangway

Table 3.1: Detail and Properties of the Jetty Gangway

Figure Detail Of Beam

e Name : UPPER BEAM
e Material type: Aluminum 6061 * Length: 3 meter

e Density : 2700 kg/m”3 e Poisson’s ratio : 0.35

e Modulus of Elasticity : 69 Gpa °© C70ss sectional Area : 0.0198m"2

Mass : 159.259 kg
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e Name: LOWER BEAM
e Material type: Aluminum 6061 * Length: 3 meter

e Density : 2700 kg/m”"3 e Poisson’s ratio : 0.35

« Modulus of Elasticity : 69 Gpa °* ©ross sectional Area : 0.0198m"2

Mass : 159.259kg

[Detail of information of the beam can be illustrated at Appendix C)

The position of the full extension of the jetty gangway is presented in figure below:

1m A

Lower Beam

ixed Joint

H

v

<« - —lp
Sm

Figure 3.3: The Jetty Gangway Structure Diagram

3.2 Intermediate study

When the design of the gangway structure been finalized, a comprehensive studies
related to the fundamental of a continuous system were performed. The studies provide
the information on the behavior and responses (displacements) of the continuous system
under the transverse and longitudinal vibrational forces. From the studies conducted,
method of finding the natural frequency and mode shape of a continuous system were
also determined. The studies related to the fundamental only were insufficient for
solving this project. In order to make the research of the project more presentable and
reliable, the literature review will be done from previous papers and journals which are
related to the dynamics analysis of a structure. By conducting the literature review on
the real research areas, a lot of ideas and methods which researchers used and
emphasized on their studies were identified. The full information with regards to this

topic can be reviewed in the previous chapter (literature review).
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3.3 Advance study

When the studies on the dynamics analysis are completed, a set of methodology for
solving the dynamics mathematical relations for this project been developed. The
suitable approach for finding the total responses and mode shapes of a continuous
system will be specified. The most suitable approach for this project is the Newtonian
method. This approach been used in the solution and was referred at most time through
out of the project period.

The mathematical solutions of the jetty gangway (by using the Newtonian approach)
were conducted in two different techniques. In the first technique, the upper and the
lower beam were treated as separated parts. The separated calculation process was
conducted in both parts. The figure below shows the jetty gangway which the upper
beam and the lower beam were treated as an individual beam structure.

€ Upper Beam D

IA Lower Beam Floh = Fp

Figure 3.4: The Diagram Of Jetty Gangwat Sturcure For First Technique

For the second technique, the jetty gangway structure was treated as a single structure
with different cross sectional areas at the beginning, middle and far end of the jetty
gangway structure. The figure below illustrates the characteristic of the jetty gangway

under the second technique.

Figure 3.5: The Diagram of Jetty Gangwat Sturcure For Second Technique
23



3.4 Elaboration of the First Technique

3.4.1 Develop the Equation of Motion

The Newtonian Method had been implemented In order to solve the problem. The
picture below showed the physical model of continuous system of beam structure.
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\ s Fizt} Gr dx
3z -Vtai r;\ 23
ax
M
—r2
j ErxsJixi, Aixhp (x)
&x T
I
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Figure 3.6: Free Body Diagram Of Beam [Leonard Meirovitch,2001]
There are some considerations/ assumptions applied in order to solve the problem:

1. Beam are assume to be as a elastic elements that are subjected to lateral loads
which are the forces or moments that have their vector perpendicular to the
centre line of a beam.

2. The beam performs vibrations due to the external distributed unit load , f(x,t)

3. Let consider I{x) as beam moment of inertia, cross section A{x), density p{x)

and the young's modulus £(x)

From the free body diagram above, the force equation of motion in the y direction
gives,

]

—~{(V +dV) + flx,t)dx + V = pA(x)dx ;;: {x, £} 3.D

The moment equation of motion about z axis passing through point G in figure x above
leads to

(M +dM) = (V + dWdx + f(x, Ddx T ~ M = 0 (32)
24



By writing dV = —Z—de and dM = %Efdx, and disregarding terms involving second
X

power in dx, both equation (3.1) and (3.2) can be written as

- (x, e+ flxt) = p-A(x)—--(xJ t) (3.3)

M

M) -vixe) =0 (3.4)

Rearrange the equation (3.4) to be V = M /3x and then put into equation (3.3), then it

becomes

—— (x, O+ flxty= pACX)—(x, t) (3.5)

Base on the Euler-Bernoulli theory, the mathematical relation of bending moment and
deflection can be considered as

M{x.t) =EI (x) (x t) (3.6)

We then can modify equation (3.5) by using equation (3.6) and it becomes as

j—[gz(x) P i, o] + pA(x) S (x0) = flxD) 3.7)

The equation (3.7) is the equation of motion for force lateral vibration. But the equation
only true for non-uniform beam. Equation of motion for uniform beam can be expressed
by reducing the eq_uation (3.7_) to be:

Elx ) (x,

t) = f(x,it) (3.8}
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The equation (3.8) can be express as the general equation of motion for force vibration.
The general equation of motion for free vibration of uniform beam then can be
expressed as: '

&%
Fx#

Ei(x)

(68) + pAG) T2 (,0) = 0 (3.9)

The equation (3.8) then been modified by letting the force vibration to be
fx,t) = gsinwgt and then the equation become:

EI) S (6 8) + pAG) T2 (5,8) = gsinugt (3.10)

The equation (3.10) express the equation of motion of a uniform beam with subjected to
the harmonic force vibration where wy is the frequency, in radian per second.
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3.4.2 Determine the Total Response Equation

Figure 3.7: The Diagram of Jetty Gangway with the Harmonic Force at Point C and D

In this technique, the beam will be separated into two individual bodies which are: the
lower beam and the upper beam. Each beam will be treated as an individual beam and
the calculation for solving the boundary value problem will be conducted for both beam
structures. The transfer function method is applied in order to relocate the harmonic
force from point D to point C. The detail of the calculation step for transfer function
method is stated in the appendix A.

3.4.3 Calculation for Lower Beam

3m

Figure 3.8: The Diagram of Lower Beam
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The lower beam will be treated as a uniform cantilever beam and the calculation step

for finding the total response for lower beam are stated below.

Consider now the lower beam is loaded with concentrated harmonic force F (t) at its
free end by this expression:

F(t) = Fg sinws (3.11)

Where, FC is referring to the amplitude of the wave force which is equivalent to
930.667N.

Let consider that, the governing differential equation of motion for the length L of the
members between the fixed support and just to the left of the applied harmonic force
F(t) = Fesinw,t is the same as equation (3.10) when the load gsine,t is made equat to

zero which shown below:

B T2 600+ pA0 T2 (0 = 0 (.12)

The steady-state motion cause by the force given by harmonic force will be determined.
We assume the total deflection, w(x,t) of the jetty gangway to be of the form of:

wix, t) = Wx).T(®) (3.13)

Where, W(x) is a function of x only and T (t) is a function of t only.

The force vibration solution can be found by substituting equation (3.13) into equation
(3.12) and perform separating variable, we will obtain:

Ef diWix) -1 dTT(E]
PAOW(X) dx* | T(L) de?

(3.14)
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The right side and the left side of equation (3.14) will be equal to each other only if both
sides are equal to a constant. So the constaiit is assumed to be equal 10 w? , where it is a
positive constant. The modified equation (3.14) shown below:

BI awix)  -1dT(n)
PAYW(X) dx® | T(t) di*

(3.15)

Since w? is a positive constant and cannot be equal to zero, then eqguation (3.15) can be
expressed in two separated equations:

d‘::(x} _ P::ﬁ" W{x)=0 (3.1 6)
£, Wi =0 (3.17)

We can assume that, the solution for equation (3.17) can be expressed as
T{t) = sinw,t (3.18)

The expression of equation (3.18) is a reasonable assumption since the applied force is a
sinusoidal. Equation (3.18) then was substitute into equation (3.17) and yield:

w? = wyl (3.19)

From expression of equation (3.19), Equation (3.16) can be modified by leiting

) 2
§*="L which lead to
4w () 7
T _ pw(n) =0 (3.20)

The solution of equation (3.20) can be assumed to be:

W(x) = Ces* (3.21)
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Where C and S are constants and derive the auxiliary equation as

S4— f4= 0 (3.22)

And the roots of the equation are

51,2 = 0 53,4 = +if

Hence the solution for equation (3.20) becomes

W{x) = CreB% + Cre™Pr 4 (q0% 4 (,e~ihx (3.23)

Where, €y, C3, Cz,and Cy4 are constants . Equation (3.23) above also can be expressed as

W{x) = C;cos8x+ CpsinBx+ Cycoshfx + Cismhfx (3.24)

The values ofCy, €3, €3, and £, can be found from the boundary conditions and the value
of § can be found from equation below:

pAw _f""
T E

54

3.4.4 Determine the boundary condition
The boundary conditions of the lower beam are stated below:

At the fixed joint (x=0),

W =0)=0,...... (3.25)
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At the free end (x =L), where L. =3

EWx=ly _

From equation (3.25) and (3.24)

CitC3=0...... (3.29)
From equation (3.26) and (3.24)
Cat Co=0....... (3.30)
From equation (3.27) and (3.24)
Cy (—cosBLY + Cy(~sinBL) + C, (cosh BLY + C4{smhBL) =0 ... (3.31)
From equation (3.28) and (3.24)
CiB¥(sin BL) + €% (~cosBL) + Cqf* (sinh BL)+ €4 f3(coshpL) = 2£(3.32)

Then, rearrange the equation (3.29}, (3.30), (3.31) & (3.32) into the matrix form,

1 0 1 0 Cy g
0 1 0 1 C,
—cosfil —5infSL coshfL sinhfiL o - 'DF )
B3(sinBl) B (—cosBL) [®(sinhBl) [3(coshBL) c, - E‘?

From the matrix above, the values of constant C,,£,, C; &, can be found by using

MATLAB. The related steps of calculation are attached in appendix B1 for references.
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3.4.5 Calculation for upper beam

A-A

UpperBeam

F{t) =FoSinwyst

Figure 3.9: The Diagram of Upper Beam

The lower beam will be treated as a uniform canfilever beam and the roller joint at the
point B and C are treated as a fixed joint since the roller will be lock up in order to be
used by shore personnel. The calculation steps for finding the total response for lower

beam are stated below.

Consider now the lower beam is loaded with concentrated harmonic force F (1) at its
free end by this expression:

Where, FD is referring to the amplitude of the wave force which is equivalent to 1000N,

Let consider that the governing differential equation of motion for the length L of the
members between the fixed support and just to the left of the applied harmonic force
F(t) = Fpsinwgi is the same as equation (3.10) when the load gsinwst is made equal to

zero which shown below:

EIO 22 (00 + A S0 8) = 0 (3.34)
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The steady-state motion cause by the force given by harmonic force will be determined.
We assume the total deflection, w(x,t} of the jetty gangway to be of the form of:

wix, t) = W{(x).T(t) (3.35)

Where, W(x) is a function of x only and T (%) is a function of t only.

The force vibration solution can be found by substituting equation (3.35) into equation
(3.34) and perform separating variable, we will obtain:

EI dAWix) =1 23T(t)
AARW(E dxd T T &2

(3.36)

The right side and the left side of equation (3.36) will be equal to each other only if both
sides are equal to a constant. So the constant is assumed to be equal to w? , where it is a
positive constant. The modified equation (3.36) shown below:

EI W) =1dT()
PALDW ()  dxd | T(t) dtF

(3.37)

Since w? is a positive constant and cannot be equal to zero, then equation (3.37) can be
expressed in two separated equations:

AW (x) pdw® _
T T T Wix}=10 (3.38)
d2T(t) 2 _

e e TH)=0 (3.39)

We can assume that, the solution for equation (3.39) can be expressed as
T(t) = sinwst (3.40)

The expression of equation (3.40) is a reasonable assumption since the applied force is a
sinusoidal. Equation (3.40) then was substitute into equation (3.39) and yield:

W= (3.41)
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pAwg?

Equation (3.38) can be modified by letting 5% = P

which lead to

i (x)
dxt

~- B*W(x) =0 (3.42)
The solution of equation (3.42) can be assumed to be:

W(x) = Ce™ (3.43)

Where C and S are constants and derive the auxiliary equation as

54— ﬁ‘fi =0 (345)

And the roots of the equation are
Si2=4%8, S3.=12if

Hence the solution for equation (3.42) becomes

W(x) = C ef¥ + Coe™ B4 Co0% 4 (,07iFx (3.46)

Where, €y, €3, C3,and 4 are constants . Equation (3.46) above also can be expressed as

Wx) = Cicosfix+ Casinfx+ Cycoshfx + Cysinhfx (3.47)

The values of Cy, Co, €3, and €4 can be found from the boundary conditions and the value
of £ can be found from equation below:

a_ pAwag®
}8‘ Er
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3.4.6 Determine the boundary condition

Boundary conditions for the upper beam are stated below:
At the fixed joint (x=0),

WHx=0)=0,.......(3.48)

At the fixed joint (x=Lc=1m),
W =L)=0,....... (3.50)

W (x=Lg)
dae

=0,......(3.51)

At the free end (x = LD=3m),

d® w(x=lp)
dx?

0,.......(3.52)

¥ -
—p S~ py L (3.53)

The equation (3.47) and its respective derivative equations are stated below:

W(x) = C,6056x+ Cpsinfx+ Cséoshfix + C smhfx

d;:ix) = G f(—sinfx) + Caf(cosfx) + C38(sinhfx) + C,f{coshfx)
_——dz?} = (1 8%(—cosfx) + C,8%(—sinfx) + C3f%(coshfx) + C.f%(sinhfx) (3.55)
L = G B3 (sinBx) + Cof*(—cosBx) + Cof(sinhf) + Cof* (coshx)

Since the numbers of boundary condition are exceeding the number of constants, the
suitable 4 boundary conditions should be chosen from the existing 6 boundary
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condition. Then substitute the equation (4.38) and it derivatives into respective

boundary condition equation

From equation (3.47) and (3.48)

oooooooooooo

From equation (3.47) and (3.50)
W(x) = CycosBx+ Cypsinfix+ Cacoshfx + Cysinhfx ... (3.58)
From equation (3.52) and (3.55)

Cy8%(—cosBly) + Cof2(~sinfly) + Caf2(coshfLly) + C4p% (sinhfLy) =0 (3.59)

oooooo

From equation (3.53) and (3.56)

CB3¥sinflp) + Cof¥(~cosflp) + Cof{(sinhBly) + €43 coshBly) = -% (3.60)

Rearrange the equation (3.57), (3.58), (3.59) & (3.60) into the matrix form, as showed

below:

1 0 1 0 4
cosSL, sinfl. coshfl. sinhfL- Ca
—cosSly —sinfl, roshihly sinhfLl, Oy
Bi(sinflp) F(—cosflp) [3(sinhfLp) f3{cosnflp) Cs
0
0
0
= FD
El

From the matrix above, the values of constant C;,C,, £3 &, can be found by using

MATLAB. The related steps of calculation are attached in appendix B2 for references.
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3.5 Elaboration of the second technique

3.5.1 Develop the equation of motion

The Newtonian Method had been implemented in order to solve the problem. The
picture below showed the physical model of continuous system of beam structure.
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Figure 3.10: Free Body Diagram [Leonard Meirovitch,2001]

There are some considerations/ assumptions applied in order to solve the problem:

4. Beam are assume to be as a elastic elements that are subjected to lateral loads
which are the forces or moments that have their vector perpendicular to the
centre line of a beam. .

5. The beam performs vibrations due to the external distributed unit load , £(x, £)

6. Let consider 1(x) as beam moment of inertia, cross section A(x), density p(x)
and the young's modulus £ (x)

From the free body diagram above, the force equation of motion in the y direction
gives,

—(v +dV) + f(x)dx +V = pA(xydxZF (xt) (3.71)

The moment equation of motion about z axis passing through point G in figure x above
leads to
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(M +dM) ~ (V +dV)dx + fx, )dx = ~M = 0 (3.72)

By writing dV = % dx and dM = %g—dx, and disregarding terms involving second

power in dx, both equation (3.71) and (3.72) can be written as

~E 0+ f50 = pA) T (1) (3:73)
D =vVixt) =0 374)

Rearrange the equation (3.74) to be V = dM /Jx and then put into equation (3.73), then
it becomes

T 0) + F00 ) = pASE (x,0) (3.75)

Base on the Euler-Bernoulli theor_y, the mathematical relation of bending moment and
deflection can be considered as

M(x.£) = EI() 2 (2,0 (3.76)

We then can modify equation (3.75) by using equation (3.76) and it becomes as

:’7[ El EX)%‘;'(L t)] +PAEE (D) = Fx D) (3.77)

The equation (3.77) is the equation of motion for force lateral vibration. But the
equation only true for non-uniform beam. Equation of motion for uniform beam can be
expressed by reducing the equation (3.77) to be:

5%
5t

EIG) 22 (0, 8) +pA(O Y (1) = f(x1) (3.78)
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The equation (3.78) can be express as the general equation of motion for force
vibration. The general equation of motion for free vibration of uniform beam then can
be expressed as:

w 2\\"
EI) 22 (1) + pAG) ST (1 8) = 0 (3.79)

The equation (3.78) then been modified by letting the force vibration to be
f(x,t) = gsinw,t and then the equation become:

54w 5w

E! (x:)—;;F(x, t) + pA(x) = (x,t) = gsinwt (3:830)

The equation (3.80) express the equation of motion of a uniform beam with subjected to
the harmonic force vibration where w, is the frequency, in radian per second.

3.5.2 Determine the total response equation

im

—

n
v

Upper Beam I

F{t) =Sin w:t

iower Beam

Figure 3.11: Structure of Jetty Gangway with the Harmonic Force at the Free
End

Consider now the uniform cantilever beam which is in position as shown in the picture
above, and is loaded with concentrated harmonic force F (1) at its free end by this
expression:

F(t) = Fsinwgt (3.81)

There are some assumptions which applied in order to solve the problem. The
assumptions are listed below:
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1. The jetty gangway is at the full extension position as shown above and the joint
between the lower beam and upper beam is a fixed joint

2. The joint connection between both beams is involving all surface related to be
adhere to each other without any single void in between.

3. w,is the frequency of the harmonic force which is obtain for frequency range of

(OHz — 700 Hz)

4. The time duration for each dynamic analysis is been fixed up to 900 sec or 15
hours in particular day.

5. The amplitude of the harmonic force is a constant value of 1000N

6. Let consider L as the total length of the full extension for jetty gangway.

Let consider that the governing differential equation of motion for the length L of the
members between the fixed support and just to the left of the applied harmonic force
F(t) = Fsinw, t is the same as equation (3.80) when the load gsinw,t is made equal

to zero which shown below:;

6&1\( 2“7
El(x) 33 (x,1) +pA(x) 559 (x,£= 0 (3.82)

The steady-state motion cause by the force given by harmonic force will be determined.
We assume the total deflection, w(x,t) of the jetty gangway to be of the form of:

w(x, t) = W(x).T(t) (3.83)

Where, W(x) is a function of x only and T (t) is a function of t only.

The force vibration solution can be found by substituting equation (3.83) into equation
(3.82) and perform separating variable, we will obtain:

Bl &w) __ -1 dT()
pAIW(x) dx® () ded

(3.84)

The right side and the left side of equation (3.84) will be equal to each other only if both
sides are equal to a constant. So the constant is assumed to be equal to w?, where it is a

positive constant. The modified equation (3.84) shown below:
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Bl Wy -1 4T 2
pA(X)W(x) dx* T(t) de¥

(3.85)

Since w? is a positive constant and cannot be equal to zero, then equation (3.85) can be
expressed in two separated equations:

a4 (x Ac®
e W () = 0 (3.86)
T 4 WP T(8) =0 (3.87)

We can assume that, the solution for equation (3.87) can be expressed as

T(t) = sincw,t (3.88)

The expression of equation (3.88) is a reasonable assumption since the applied force is a
sinusoidal. Equation (3.88) then was substitute into equation (3.87) and yield:

w? = wfz (3.89)

o 2
Equation (3.86) can be modified by letting 8* = BA—E;L which lead to

d*wix)

dx?

- BWix) =0 (3.90)

The solution of equation (3.90) can be assumed to be:

W(x) = Ce™ (3.91)

Where C and S are constants and derive the auxiliary equation as

§'—pB*=0 (3.92)
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And the roots of the equation are
S12=%B,  53,=*%iB
Hence the solution for equation (3.90) becomes

Wix) = 61381"]‘“ Czeng"}" Caewx"i‘ C4e-a‘ﬁx (3.93)

Where, C,, C,, Cy.and C, are constants . Equation (3.93) above also can be expressed as

W(x) = C,cosfx + C,sinfix + Cyeoshfx + C sinhfx (3.94)

The values ofC,, Cy, C3, and &, can be found from the boundary conditions and the

value of f§ can be found from equation below:

g _ PAw 2
g = —f—m (3.95)
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3.5.3 Determine the boundary condition

Before we can go to estimate what are the boundary conditions for the jetty gangway,
we first need to understand the condition of the beam structure. The structure is not a
normal uniform structure and the structure can be divided into 3 main parts which
shown in the picture below:

Figure 3.12: Diagram of the Jetty Gangway with 3 differents parts

The details of each part are stated below:

Table 3.2: The Detail of the Cross Sectional and Moment of Intertia for Each

Parts
Part 1 Part 2 Part 3
Cross sectional area, Cross sectional area, Cross sectional area
Aa=0.0198 m’ A8 = 0.0396 m’ I Ac=0.0198 m’
Moment of inertia, Moment of inertia, Moment of inertia, |
Ia= 0.000108 m* I8 = 0.000216 m* Ic = 0.000108 m*
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The boundary conditions are already stated below:

AtX=

AtX =

AtX=

AtX=

Om (at the fixed joint)

Displacement , w(x}, = 0
dw(x)A =0

Slope,

2m

Displacement , w{x), = w(x),

d° w(x) 4 _

Bending moment, Ef 0

Bending moment, £f 5—%—@—5 0

d w(x)A dEwix)g

dxc®

Shear force , —E1 = —E]

3m

Displacement , w{x}; = w(x),

d w(x) B

Bending moment, £7 0

Bending moment, E?f E-%(ﬁ)—c 0

Shear force , —EIdL{”)ﬁ - _Elf;f_ﬁ;jg
dx

Sm

Bending moment, EIE_‘E’.,@E 0

Shear force , —E1 2 W(x)c

=F
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3.5.4 Determine the total response

Figure 3.13: The Profile of Jetty Gangway Structure with 3 Different Parts

Since we have differences profiles of beam in each part, the mode shapes result from
the jetty gangway structure may be different and have difference mode shapes and
responses with respect to each part. The picture below elaborates the scenario
mentioned:

W(x), = CycosBx + Cousinfx + Cy coshfx + C, sinhfx (3.108)
W(x)z = CygcosPx + CrgsinBx + CigcoshPfx + C,gsinhfx (3.109)
W(x). = CyccosPx+ Cyesinfx + Cyocoshfx + Cysinhfx (3.110)

But the W (x) , just valid for length between Om to 2m , W (x) just valid for length
between 2m to 3m and W (x) . just valid for length between 3m to 5Sm .

So the total response for jetty gangway will be:

w(x,t) = W(x),.T(t),+ W(x)g.T(t)g + W(x)..T(t), (3.111)

ButT(t) 4, T(t)p and T(t), is equal to sinw,t , so T(t),=T(t)p = T(t), = T(t) and
equation (3.111) can be modify to:

wix,t) =  [W(x),+ W(x);+W(x)]. T(t) (3.112)

SO, all constants Cu, Cu, CEA’ Cu, Cw, ng, Cm, CZE’ ClC’ Czc, Cgc & C4C can be
found by boundary conditions and value of £.
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The matrix 12 x 12 is derived from the equation of boundary conditions and equation
(3.108), (3.109) and (3.110) in order to find the value if each constant C. The matrix
form used in the calculation is shown below:
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Then the analytical analysis was performed in order to practically find the values and
equations of the displacement and mode shape of a gangway under the influences of sea
wave. When the calculations were successfully done, all of the data collected was
documented and the related graphs were plotted. The results gained were compared
with the existing results from the previous related journals and reports. The patterns and
trends of the graphs were evaluated with refer to the existing results gain in order to
make sure that the results will be validated and reliable for the future used.
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CHAPTER 4

RESULT AND DISCUSSION

4.1 Result for First Technique
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Figure 4.1: The Responses of the Upper Beam Which Varies From 0 Sec to 900 Sec in
Frequency Range of 10Hz to 600Hz.

Figure above is referring to the displacement of the upper beam structure which varies
from frequency 10Hz to 600Hz. Figure 4.23(a) refer to 10Hz, Figure 4.23(b) refer to
100Hz, Figure 4.23(c) refer to 200Hz, Figure 4.32(d) refer to 300Hz, Figure 4.23(e)
refer to 400Hz, Figure 4.23 (f) refer to 500Hz, Figure 4.23 (g) refer to 600Hz and
Figure 4.23(h) refer to 700Hz. The mode shape of the upper beam structure, in general,
is following the typical mode shape pattern without any abnormal graphs shown. From
the figure above, the responses of the beam will show clear sinusoidal characteristic as
the value of wave frequencies exerted at the free end of the beam increased. It can be
visibly observed since the number of peak and dip of beam displacement increased as

the value of frequencies increased.

The results gained from this calculation step were compared with the graphs taken from
the study conducted by Demeter G. Fertis in his book, Mechanical and Structural
Vibrations. The figure below shows the mode shape of the beam structure at 100
seconds, with 3 deferent values of wave frequency (10Hz, 200Hz and 400Hz).
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From the graph above, the mode shape of upper beam at 10Hz is considered as 1% mode
shape. The mode shape then transformed to be the 2*¢ mode shape at frequency 200Hz
and still remained as 2" mode shape at frequency of 400Hz. Base on the data from the
reference; the mode shape is at 1% mode when the frequency is at 10Hz. The mode
shape then transformed to be as 2™ mode at frequency value of 200Hz and at the 3"
mode when the frequency is at 400Hz. It clear that, the mode shape of upper beam from
the calculation, transformed to be at higher mode is slower compared to the data from
the reference. This is due to the parameter factors as the upper beam has 2 fixed joint at
the edge and the middle of it structure. The different profile will leads to the different
set of boundary conditions. The boundary conditions then affect the value of constants
C. As aresult, the response and mode shapes of the upper beam will be influenced and
the value of response/displacement will be differed from other type of beam profile.
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Result for lower beam

2000 - -- e e e e e s e et
Displacement {um) ——0s0c
1500 . : . ;
. == 100scc
1000 - 2005ec |
. i
00 - - ——300scc |
——a00sec
o5 . ; ; SN
- wgms 5) i
3 35 Osec Y 500s0c
500 “Length {m)-.... 600scc | i : {m}..._gooscc
-1000 - e T00see | g .
i |
i 800sec | i 800sec
-1500 - Lioe0 |
g D008CC } | = 000sec
- oot .
(2) (b)
B0 cmmome o e e e S ]
40 - Displacement {pm) S e =0OscC | e (isc
30 e e 1005 —B— 10050
_ e 200see | - 200sec
) = 300s0c ‘ == 30050C
——Aa00sec | wanenr 40080
e 500s0C | 5o 500
g 0. 338 e 35 S00see
Length (M) .. gapsec Length (m}- - - 600scc
2 ; T e FODSCC | - J00scc
!
30 - - 800sec | 800sec
|
-40 o 490050 | ot 0000
G - P i oas - S—
(© (d)
—
i
050 H = D5
== 100s0c =B 100500
e 200500 30050z
=~ 300500 e 300500
e 400seC == 300508

- S00seC ~=2~500s0¢

35
Length {m) - -600scc

= e G00s0r

-F00sec
-8a0see | $00scc
' e zoee OOQS0C ¥ R
150 ¢ - [ :

53




P
=)

. Displacement {ym) B ~—0sec |

- D00s0c

i
o

8
P —~8—100scc | = 100scc |
! !
2 ' - .o 200sec 2000
- H :
. R ——3005cc | e 30050
: S —400sec | i 40050
O & B e e i &
i 7 ~ge=500scC ., S i S00500
2 9 ... 3. ) i £ 35
! kg ().~ Go0see || S P,
4 - i
4 | \\ e F00s0C ! 2 3 I.eng:h lm, o F00SRC
: 800ser ‘ ! 400sec
-8 i e - - e e O00s2E ‘ H

(2) (h)

Figure 4.3: The Responses of the Lower Beam Which Varies From 0 Sec to 900 Sec in
Frequency Range of 10Hz To 600Hz.

Figure above is referring to the displacement of the lower beam structure which varies
from frequency 10Hz to 600Hz. Figure 4.25(a) refer to 10Hz, Figure 4.25 (b) refer to
100Hz, Figure 4.25 (c) refer to 200Hz, Figure 4.25(d) refer to 300Hz, Figure 4.25(e)
refer to 400Hz, Figure 4.25 (f) refer to 500Hz, Figure 4.25 (g) refer to 600Hz and
Figure 4.25(h) refer to 700Hz. The mode shape of the lower beam structure, in general,
is following the typical mode shape pattern without any abnormal graphs shown. From
the figure above, the responses of the beam will show clear sinusoidal characteristic as
the value of wave frequencies exerted at the free end of the beam increased. It can be
visibly observed since the number of peak and dip of beam displacement increased as

the value of frequencies increased.

The results gained from this calculation step were compared with the graphs from the
reference. The figure below shows the mode shape of the beam structure at 100%™
seconds, with 3 deferent values of wave frequency (10Hz, 200Hz and 400Hz).
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Figure 4.4: The Companson of Mode Shape Taken From Calculation Step and

Reference.

From the graph above, the mode shape of lower beam at 10Hz is considered as 1¥ mode
shape. The mode shape then transformed to be the 2™ mode shape at frequency 200Hz
and 3" mode at frequency of 400Hz. The mode shapes of the lower beam are similar to
the mode shape of the reference. This is due to the similar condition of beam, which
both beam taken from the journal and the calculation method is treated as a cantilever
beam. The only different which shown from the above figure is the length of the beam.
The lower beam is 3 meter maximum and the parameter of beam from the reference is 5
meter maximum. The amplitude of the force which is imposed to the frec end of the
lower beam also lower if compared to the amplitude force of the beam from the
references. This is due to the transfer function method which is applied in the
calculation in order to relocate the source of harmonic force from the free end of upper
beam to the free end of the lower beam. The calculation of transfer function method can
be refer from Appendix A.
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4.2 Result for Second Technique
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Figure 4.5: The Responses of the Beam Structure Which Varies From 0 Sec to 900 Sec
in Frequency Range Of 10Hz To 600Hz.

Figure above is referring to the displacement of the beam structure which varies from
frequency 10Hz to 600Hz. Figure 4.27(a) refer to 10Hz, Figure 4.27 (b) refer to 100Hz,
Figure 4.27 (c) refer to 200Hz, Figure 4.27(d) refer to 300Hz, Figure 4.27(¢) refer to
400Hz, Figure 4.27 (f) refer to 500Hz and Figure 4.27 (g) refer to 600Hz.

The mode shape of the beam structure, in general, is showing an abnormal pattern of the
mode shape. The mode shape gained did not show any characteristic of sinusoidal
function. The comparison between the mode shape of the calculation and mode shape

taken from the previous study are illustrated below:
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Figure 4.6: The Comparison of Mode Shape Taken From Calculation Step and

Reference

The figure above shows the mode shape of the beam structure at 100" seconds, with 3
deferent values of wave frequencies (10Hz, 200Hz and 400Hz). From the figure, the
pattern of the mode shape at 10Hz is not similar to the mode shape of the beam at
200Hz and the mode shape of the beam at 200Hz is similar to the mode shape at 400Hz.
In general, the patterns of the mode shape of the beam structure are changed from 10 Hz
to 200Hz and the pattern is not changed from 200Hz to 400Hz.

From the above figure, we can observe clearly that, the pattern of the mode shape
gained from the calculation steps is not similar to the pattern of the mode shape of the
reference. This is due to several factors which influenced the character of the mode
shape. The profile o the beam is not uniform as show from the figure below.

ixed Joint

Figure 4.7: Diagram of Jetty Gangway Structure
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The number of boundary conditions for this model is 12 boundary conditions, which 2
boundary condition at the fixed joint, 8 boundary conditions at the middle of the beam
structure and another two boundary conditions at the free end of the beam structure.
There are 12 unknown of constant C value. This leads to the derivation of 12 equations.
The equations cannot be simplified due to the large quantity of equations, and the only
way to solve the equations is by using a matrix form. The matrix 12 x 12 then been
constructed an MATLAB software used for finds the value of each constant C. The
values fond in this equation may be round of to certain decimal places and alter the real
value of each constant. This may contributed in abnormality of the responses graph of

the structure.

The boundary conditions chosen in the calculation may not be fit to the profile of the
beam structure. The wrong boundary conditions may lead the abnormality to the beam

response and mode shape pattern.

The graph of the displacement at the free end of the beam structure varies with the
frequency value also been plotted and shown at the figure below:

10Hz
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001 = -

0.005 __ SRS SO O N S, — e

= F0Hz

1000
—. Time (sec)

Figure 4.8: The Displacement of the Free End of the Beam with Frequency Value of
10Hz
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Figure 4.10: the displacement of the free end of the beam with frequency value of
200Hz
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Figure 4.11: the displacement of the free end of the beam with frequency value of
300Hz
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The displacement value of at the free end of the beam also compared to the value taken
from the study conducted by Demeter G. Fertis. The comparison of both values
illustrated in the figure below. Four sample of the displacement values taken from both
reference and calculation in order to make a comparison. The displacement vatues are
taken at the frequency value of 10Hz, 100Hz, 200Hz and 500Hz.

Displacement {um)

10000 -

f === calculation

—&=rcference

A 1000
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Figure 4.15: The Displacement Value at the Free End Taken From Calculation

& Reference

N J(O Hz
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¥ 1000 Time (sec)

Figure 4.16: The Displacement Value at the Free End Taken From Calculation

& Reference
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Figure 4.18: The Displacement Value at the Free End Taken From Calculation

& Reference

Base on the data given from figure above, it is clear that the pattern of the
displacements at the free end of the beam structure are given a same patter and the value
of the displacement all most similar at the value of frequency 10Hz and 100Hz. The
value then shrinks but at the same time, still maintained the pattern when the frequency
values are increased. It mean than the displacement or the displacement motion of the
beam at the free end for the jetty gangway structure is less if compared to the

displacement values taken from the uniform beam structure of the reference.

In addition, the data of the motion of the beam at the free end of the jetty gangway
when the jetty gangway is treated as a single structure is valid. This is due the boundary
conditions were chose correctly and suitable to be used. The uncertainty of
displacement at the middle of the beam structure can be considered derived due to the
complexity of the beam profile and the selection of the boundary may be not suitable

for the calculation.
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CHAPTER 5
CONCLUSION AND RECOMMENDATION

5.1 Conclusion

As a conclusion, this project was a comprehensive research study about harmonic
response on a telescopic jetty gangway structure. The project was related to the study on
the dynamic characteristics of the jetty gangway structure which exerted the harmonic
force at the free end of the beam structure. From the studies, we found the values of the
harmonic responses on the telescopic jetty gangway and the mode shapes under the
influence of harmonic force of sea wave. The mathematical models were developed
based on simplified I beam geometry by using Newtonian method. The mathematical
solutions of the jetty gangway were conducted in two different techniques. In the first
technique, the upper and the lower beam were treated as separated parts. The separated
calculation processes were conducted in both upper and load beam structure. For the
second technique, the jetty gangway structure was treated as a single structure with
different value of cross sectional areas at the beginning, middle and far end of the jetty

gangway.

The values of the mode shapes and responses of the jetty gangway were already
calculated. The objective of the project was successfully achieved. The values and
pattern of the mode shapes gained from both techniques were compared with the value
from the reference for verification. The pattern of mode shapes from the first techniques
shows the similarity when compared to the data of the reference. The pattern of the
mode shape gained from the 2™ technique shows the abnormality and did not show the
sinusoidal characteristic. However the values and patterns of the relation between the

displacement at the free end and the value of wave frequencies are showing the
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similarity when compared with the values taken from the study conducted by Demeter
G. Fertis.

The values of mode shapes and responses of the second technique can be defined as
valid and reliable values. The abnormal patterns of mode shapes of the beam were

caused of the complexity at the middie of the beam _proﬁle.

5.2 Recommendation

The study can be improved by comparing the result gained from other mathematical
approaches, which are stated below:
¢ Extended Hamilton Principle

¢ Finite element method

The extended Hamilton principle has the advantages in dealing with the nonlinear and
non uniform structure. As the beam shows the complex beam profile, this principle can

be applied by treating the beam as non-linear structure.

The result also can be improved by using the finite element method. The principal
advantage of the finite element method is its generality; it can be used to calculate the
natural frequencies and mode shapes of any linear elastic system. The finite element
method may require more computational effort in order to get the values better than

other approximate solutions.

The studies also need to be extended by operating the simulation by using software. The
related software like ANSYS and MATLAB can be applied in order to find the mode
shapes and responses for telescopic jetty gangway. The simulation data are highly
needed since the data and the simulation model can be implemented for other beam
profile and other wave parameters. Variation of data can be collected and yet can be

implemented in any location of the sea for any beam profiles.
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APPENDIX A: TRANSFORM FUNCTION METHOD

YALUE OF FORCE AND REACTION FORCE

Mass Distribution Load

¥ Y Y Y YYY Y Y Y YYIPVYEYY
B C

& ]

e Fe

s Feo

Mass Distribwtion Load

r Y Y Y Y Y YT Y Y ¥ Y yren rYryvyeyvyy
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Figure A.1: The schematic diagram of upper beam

Detail of Beam

E, Modulus of elasticity: 69 Gpa

I, Moment of Inertia: 0.000108 m*
m, Mass of heam: 159.259 kg

L, Total length: 3.0 m

a, Length between point B and point C: 1m

Distribution of mass loading
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W= ﬂ}“i’ take g = 10 m/s?

= 530.86 N/m

Wix)
Upper beam oo } _______________ :

Free body Diagram

£ ‘
letL=x, ’ ke

let+ MY F=w*x+ Fg,. F, =0,

S8 Fg +F S WHX ceccreeinvensessnnenns (G111}

Let ‘|’£ ZMD =,

wx(ﬁ-) —Fo(x—a)—Fgx =0,

# = a) 4 Faxt = Wi (2) v (8.2)

From equation (1),

Let Fg =wx —F,, vrirmnncinennns (4.3},
Then substitute (4.3} into (4.2)

» F;=2388.9N ....... (4.4),

Then substitute (4.4} into (4.3),
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s Fg = —796.31N

Lower beam

Free body diagram

Let+PYF =0,

+MEF = Fgy = wx + 796.31N(x — @) — 2388.9IN (X) sorcrrmrscrsmn (2.5)

o Fy, = —3185.17N

Let+L ¥M: =0,

+L YMe = —Fg(a) + wx (32‘-) = Fay(X) 4+ My covvvenicsrinvsnnssnenninnsns (4.6)

b M, = 7965.94Nm

let+3%F =0, = Fy =ON
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CALCULATION OF THE DEFLECTION OF BEAM

L.ower beam

Free body diagram

By using the superposition method,

FERSITN

YOtotar =01 + 02 + 05, e (4.7)

Where

o 81 due to distributed load
o 82 due to load at point B
o 83 due to load at point C

The forces and moment at point A will not be included in the calculation since Point A is the
fixed joint (no deflection).

530.86Wm

Value for 81 lu l 'l

Let w = 530.86N/m,

-w{h
SMax,Point C(x = L) = BE('I ......................... (4.8)
) _ (-5374.9575)
“ Opax,point ¢ = ~——g—— M
= ) = —WED , 2
Spoine p{x = 2m) = BV (x5 —4Lx + 6L).corecernn. (4.9)
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. _ (=3008.20667) 796 31N
" Opointp = FI m

Value for 62

Let w = 796.31N,

w?)

gpoi‘ntc = 6El (Zy + Bb)......... rannn (4.10)

) _. 3716.06667

“Opointc =

_ wm®
6point3 I e sesenes (4.11)
2388.0N

. _ 21234667

= Upgint B — ___EI

Value for 3

letw=2388.9N,

_w(d)
3EI

6Point C(x = L) = cenrengnans (4.12)

. __ =21500.1
o 6Pointc - El

-W(x?)
6ET

SPoint B(x 2) = (3L - x) ersrenan (4.13)

. 5 _ 111482
* OPointB ~ T g1 m
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Total deflection value at lower beam

YB¢otal at pointB = S1p +82p + O3, weenennnn (4.14)
_ {—3008.20667) 21234667 -11148.2
= EI m+ —E m + 7 m,..... {4.15)
_ (—12032.959) m
EI
zé‘tatal at point c= 616 + 62(.‘ + 63.: ............ {416}

3716.066677 ~21500.1
ET m +—x

_ (~5374.9575)

] m+

m

_ (-23159.025) m
B El

Upper beam

The only load which inffuence the deflection is the distributed
load. The forces at peints B & € will not been considered since

A & C are the simply supported joint.

£30.86N/mm

Deflection only occurred at point D and by using the

Super position method: %

L
706,518 2388.9N
20totat at point b = 01a +02q + 834
Where

o 81d due to distributed load at point B-C
o 02d due to moment at just above point C
o 83d due to distributed load at point C-D
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Value for 81

— 4
Slope B¢ = m .
22.119
- 9 C — ..‘—7E7i,,,,,,,
fc ~ tanb, ..........(4.18)
w 8p = Xtané,
44,238
* Op = EI
Value for 82

veeree (8.17), where L=length B to C= 1m

Let Moment at above point C = M,

M., = 530.86x (;;5) Nm

ML
Slope Bc = E’;E' let L = length between B & C= 1m,

g = 88.3334x%

T E

Op = tanb; .onennes (4.19)

& 8p = Xtan@,
~707.8133

*0p = —¢

Value for 33

Opoint p{x = 2) = —

8E!

wxY

wrnnennnns(4.20)
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530 86N'm

, where x = length Cto D = 2m

K30.86N41 (X)

, wherex=lengthCto D =2m

—1061.72

o 6 b
D EI



Total deflection value at upper beam

YOtotatat pointD = 81g + 824 + 634, e {4.21)

_ 44.238 —707.8133 —-1061.72
= ~F m +-—-—-E.T-—-—- m +—--—E.-!;——- m, ... (4.22
_ —1725,2953

El

After we already got all of the deflection values in both beam, then we will combine them for

Point A Point B Point C Poiat D

Figure A.2: The deflection vaiue of total beam system

The total deflection for heam system

88 = M LELARLIEELLIE LR LS ) ¢ (4.!23)
£
—23159.0245

~1725.3058 ~24884.3302
89-T+&=T ........................... {4.25)

Apply the value of £ and /, then
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Table A.1: The deflection value of the beam

Deflection . | Value in meter
oB . 0.0016147m
o 0.0031080m
oD 0.0033400m
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APPENDIX B1: SOLUTION OF MATRIX FORM BY MATLAB

The step is representing the solution by MATLAB for lower beam at frequency value of
100Hz.

>> Fc=930.667
Fc=
930.6670
>>E =6.9el0
E=
6.9000e+010
>>L=3
L=
3
>>B=1.29735
B=
1.2974

>>A=[1010;0101;-cos{B*L) -sin(B*L) cosh(B*L) sinh{B*L); BA3*(sin(B*L)) BA3*(-
cos(B*L})) BA3*{sinh(B*L)) BA3*{cosh(B*L))]

A=
1.0000 0 1.0000 0
0 1.0000 0 1.0000
0.7314 0.6820 24,5158 24.4954
-1.4892 1.5970 53.4880 53.5326

>>h =[0; 0; 0; -F¢/(E*0.000108)]
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APPENDIX B2: SOLUTION OF MATRIX FORM BY MATLAB

The step is representing the solution by MATLAB for upper beam at frequency value of
100Hz.

100Fz
Fd =
1000
>>Llc=1
Lc=
1
>>Ld=3
Ld =
3

>> E = 65000000000

6.9000e+010

>>1=0.000108

1.0800e-004

>>B =1.29735

1.2974
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>>A=[1010; (cos(B*Lc)) (sin{B*Lc)) (cosh{B*Lc}) (sinh{B*|c)); -{cos(B*Ld})) -
(sin(B*Ld)) {cosh(B*Ld)) (sinh{B*Ld}); B*3*(sin(B*Ld)) B*3*(-cos(B*Ld))
BA3*(sinh(B*Ld)) BA3*{cosh(B*Ld})]

A=
1.0000 0 1.0000 0
0.2701 0.9628 1.9664 1.6932
0.7314 0.6820 24,5158 24.4954
-1.4892 1.5970 53.4880 53.5326

>> b = [0; 0; 0; -Fd/(E*1)]
b=
1.0e-003 *
0
0
0
-0.1342
>> ¢ = inv(A}*b
C =
1.0e-004 *
0.4485
0.0256

-0.4485
0.4347
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APPENDIX C: DETAIL INFORMATION OF BEAM

X X
D bf ]
Detail Value

Designation (mm x kg/m) | W610x 155

Area, A (mm°) 19800

Depth , d, (mm) 611

Web thickness , tw (mm) 12.70

Flange width, bf (mm) 324

Flange thickness , tf (mm) | 19.0

I, y-y, (10° mm?) 108

[Information taken from, Mechanics of Material, R.C. Hibbeler2005, page 813]



