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ABSTRACT 

Stress intensity factor is used in fracture mechanics to more accurately predict the 

stress state near the crack tip caused by remote load or residual stress. Stress intensity 

factor characterizes the crack-tip condition in a linear elastic material. 

In this project, the stress intensity factor at the crack tip for several crack geometry in 

finite strip will be determined by using finite element method. ANSYS software will 

be used to model and analyse the crack geometry to determine the stress intensity 

factor. 

The results obtained from ANSYS will be compared with the solutions available in 

the literature. From the comparison the accuracy of the ANSYS results can be 

determined. 
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CHAPTER! 

INTRODUCTION 

1.1 Background of Study 

Failure of engineering structures through fracture can be fatal. Disasters often occur 

because of cracks in engineering structures, arising either during production or during 

serv1ce. 

The cracks may propagate and cause failure to the structure. The study of stress state 

(stress intensity) in the vicinity of a crack is very important for the crack propagation 

prediction. To predict the stress state, stress intensity factor, K is used. 

Stress intensity factor can be determined experimentally, analytically and numerically. 

In this project, a numerical method which is Finite Element Analysis (FEA) will be used 

to determine the stress intensity factor for three basic loading modes for a crack. The 

three basic modes ofloading are opening mode, shearing mode and tearing mode. 

The result of this project will be verified by comparing them with those available in 

literature. 
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1.2 Problem Statements 

The stresses at the vicinity of a crack are severe. So, the knowledge of the stress state in 

this region is very important for the crack propagation prediction. To predict crack 

propagation, stress intensity at the vicinity of a crack need to be determined. However 

the stress intensity factors determined experimentally is time consuming and expensive 

exercise. 

1.3 Objectives 

The objectives of this project are: 

1. To model and determine the stress intensity factors for a crack in a strip by using 

finite element method. 

2. To compare the finite element method results with those 



CHAPTER2 

LITERATURE REVIEW 

2.1 Stress Intensity Factor, K 

Stress intensity factor, K is used to predict the stress state near the crack tip of a crack 

caused by a remote load or residual stress. Stress intensity factor is a parameter that 

amplifies the magnitude of the applied stress based on the geometry of the solid piece. 

There are three basic modes ofloading which are Mode I, Mode II and Mode III. Mode I 

loading is tensile load, Mode II loading is shear stress along the crack surface and Mode 

III is shear stress perpendicular to the crack surface [1]. 

The stress intensity factor value is a function of the applied stress, the length and the 

position of the crack and the geometry of the solid piece where the cracks exist. In 

general, the stress intensity factor, 

K = Y a,.fiW_ (1) 

where Y is the geometry factor, a is the applied load and a is the crack length. For a 

centre crack in an infinite plate, Y = 1.0. The geometry of the cracked body imposes an 

effect on the new crack tip stress field, thus modifying the value of the stress intensity 

factor. In general, if the crack is situated in a strip of finite width, w then the correction 

factor becomes a function of (a/w) [1] 

(2) 

To determine this geometry factor for any realistic geometry, numerical method maybe 

used to obtain the solution. The most popular and efficient method is finite element 

analysis. 
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2.2 Stress Intensity Factor for Several Geometries of Finite Width Strip 

The solutions of stress intensity factor for several geometries are given in "The Stress 

Analysis of Cracks Handbook", third edition by Hiroshi Tada, Paul C. Paris and George 

R. Irwin, and "Formulas for Stress, Strain and Structural Matrices", second edition by 

Walter D. Pilkey. In general, the solution for Mode I loading is 

(3) 

the solution for Mode II loading is 

(4) 

the solution for Mode III loading is 

(5) 

where F (~) is the geometry factor, cr is the tensile loading, Tu is the shear loading along 

the crack and Tm is the out-of-plane shear loading. 

Below are the solutions for several geometries obtained in the literature. The most 

accurate solution for each geometry is considered in this project. 
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2.2.1 Center Crack in a Finite Width Strip (Mode I Loading) 

Figure 2.1 shows the geometry of a center crack in a finite width strip subject to Mode I 

loading [2]. 

t t r, 1 

---t---
' I h 

Figure 2.1: Geometry of a center-cracked strip subject to Mode I loading 

Geometry factor 

(6) 

The accuracy is 0.1% for any and the method of derivation is the modification of 

Feddersen's formula (Tada 1973). 
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2.2.2 Single Edge Crack in a Finite Width Strip (Mode I Loading) 

Figure 2.2 shows the geometry of a single edge crack in a finite width strip subject to 

Mode I loading [2]. 
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Figure 2.2: Geometry of a single-edge-cracked strip subject to Mode I loading 

Geometry factor 

Zb :n:a 1-sin;:)
3 

-tan-. rra 
n:a Zb cos2b 

(7) 

The accuracy is better than 0.5% for any (Tada 1973). 
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2.2.3 Double Edge Cracks in a Finite Width Strip (Mode I Loading) 

Figure 2.3 shows the geometry of double edge cracks in a finite width strip subject to 

Mode I loading [2]. 
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Figure 2.3: Geometry of double-edge-cracked strip subject to Mode I loading 

Geometry factor 

F1 m = ( 1 + 0.122cos 4 
;:) 

(8) 

The accuracy is 0.5% for any and the method of derivation is the modification of 

Irwin's interpolation formula (Tada 1973). 
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2.2.4 Center Crack in a Finite Width Strip (Mode II Loading) 

Figure 2.4 shows the geometry of a center crack in a finite width strip subject to Mode II 

loading [3]. 

a-~~· 
'T 

:.: ........ 

Figure 2.4: Geometry of a center-cracked strip subject to Mode II loading 

Geometry factor 

Fu (~) = [ 1- o.1 (~r + o.96 Gr]Jsec :a. 
(9) 
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2.2.5 Double Edge Cracks in a Finite Width Strip (Mode II Loading) 

Figure 2.5 shows the geometry of double edge cracks in a finite width strip subject to 

Mode II loading [3]. 
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Figure 2.5: Geometry of double-edge-cracked strip subject to Mode II loading 

Geometry factor 
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2.2.6 Center Crack in a Finite Width Strip (Mode III Loading) 

Figure 2.6 shows the geometry of a center crack in a finite width strip subject to Mode 

III loading [3]. 

t 
·-·- b .. 

Figure 2.6: Geometry of a center-cracked strip subject to Mode III loading 

Geometry factor: 

(11) 
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2.2.7 Double Edge Cracks in a Finite Width Strip (Mode III Loading) 

Figure 2. 7 shows the geometry of double edge cracks in a finite width strip subject to 

Mode III loading [3]. 

Figure 2. 7: Geometry of double-edge-cracked strip subject to Mode III loading 

Geometry factor 
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3.3 Modelling of Crack Geometry in ANSYS 

ANSYS software is used to model and perform finite element analysis on all crack 

geometries to determine the stress intensity factor. The material used in this project is 

Stainless Steel Alloy 405 where the Young's Modulus, E is 200GPa and the Poisson's 

ratio is 0.3. All models are assumed to be linear elastic and in plane strain condition. 

There are three stages involved in determining the stress intensity factor for any crack 

geometries by using ANSYS. The stages and the steps involved are shown below 

1. Preprocessor 

a. Determine the type of element to be used. 

b. Set the material model to be linear elastic and isotropic. Insert the values 

of Young's Modulus and Poisson's ratio of the material used. 

c. Model the geometry by creating keypoints, lines and areas. 

d. Mesh the geometry. 

e. Apply boundary conditions to the model. 

2. Solution 

a. Define analysis type as static. 

b. Solve. 

3. Postprocessor 

a. Define path operation. 

b. Create local coordinate system at the crack tip. 

c. Calculate the stress intensity factor by using nodal calculation. 

13 



3.3.1 Modelling of Center-Cracked Strip Subject to Mode I Loading 

The geometry of interest is shown in Figure 2.1. Due to the symmetric condition, only a 

quarter of the geometry is modelled and analysed. 

Figure 3.2 below shows the quarter model of center-cracked strip that need to be 

modelled in ANSYS where a is the crack length and cr is the tensile load. 

" 

i i T 

0. lm 

O.lm 

a .I 

Figure 3.2: The quarter model of center-cracked strip subject to Mode I loading 

Nine models are analysed for values of a ofO.O!m, 0.02m, 0.03m, 0.04m, 0.05m, 0.06m, 

0.07m, 0.08m and 0.09m. cr value is set to be I OOMPa. 

The steps involved in modelling and analysing the model shown in Figure 3.2 are as 

follow: 

1. Define the element type. PLANE82 is used. 

2. Set the value of Young's Modulus and Poisson's ratio. 

3. Model the geometry by creating keypoints, lines and areas. 

4. Assign the Concentration Keypoint at the crack tip to be able to assign meshes 

that incorporate the singular element and mesh the area. 

5. Apply symmetry boundary condition to the model at the symmetrical lines. Do 

not apply any boundary condition at the crack line. 
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6. Apply negative pressure load on the top line of the model. 

7. Solve the problem. 

8. To calculate K1, define path operation and create local coordinate at the crack tip. 

Use KCALC command to get the K1 value. 

Figure 3.3 belo'" shows the ANSYS model of center-cracked strip subject to Mode I 

loading. 

Figure 3.3: ANSYS model of center-cracked strip subject to Mode I loading 

3.3.2 Modelling of Single-Edge-Cracked Strip Subject to Mode I Loading 

The geometry of interest is shown in Figure 2.2. Due to the symmetric condition. only a 

half of the geometry is modelled and analysed. 

Figure 3.4 below shows the half model of single-edge-cracked strip that need to be 

modelled in ANSYS where a is the crack length and o is the tensile load. 
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Figure 3.4: The half model of single-edge-cracked strip subject to Mode I loading 

Nine models are analysed for values of a of 0.02m, 0.04m, 0.06m, 0.08m, 0.1 Om, 0.12m, 

0.14m, 0.16m and 0.18m. cr value is set to be 1 OOMPa. 

The steps involved in modelling and analysing the model shown in Figure 3.4 are as 

follow: 

1. Define the element type. PLANE82 is used. Set the value of Young Modulus and 

Poisson's ratio. 

2. Model the geometry by creating keypoints, lines and areas. 

3. Assigu the Concentration Keypoint at the crack tip to be able to assigu meshes 

that incorporate the singular element and mesh the area. 

4. Apply symmetry boundary condition to the model at the symmetrical line. Do 

not apply any boundary condition at the crack line. 

5. Apply negative pressure load on the top line of the model. 

6. Solve the problem. 

7. To calculate K1, define path operation and create local coordinate at the crack tip. 

Use KCALC command to get the K1 value. 
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Figure 3.5 below shows the ANSYS model of single-edge-cracked strip subject to Mode 

I loading. 

Figure 3.5: ANSYS model of single-edge-cracked strip subject to Mode I loading 

3.3.3 Modelling of Double-Edge-Cracked Strip Subjected to Mode I Loading 

The geometry of interest is shown in Figure 2.3. Due to the symmetric condition, only a 

quarter of the geometry is modelled and analysed. 

Figure 3.6 below shows the quarter model of double-edge-cracked strip that need to be 

modelled in ANSYS where a is the crack length and cr is the tensile load. 
(J 

i i i 

I 
0 .1m 

O.lm 

a .I 

Figure 3.6: The quarter model of double-edge-cracked strip subject to Mode I loading 
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Nine models are analysed for values of a ofO.Olm. 0.02m, 0.03m, 0.04m, 0.05m, 0.06rn, 

0.07m, 0.08m and 0.09rn. cr value is set to be I OOMPa. 

The steps involved in modelling and analysing the model shown in Figure 3.6 are as 

follow: 

I. Define the element type. PLANE82 is used. 

2. Set the value of Young's Modulus and Poisson's ratio. 

3. Model the geometry by creating keypoints, lines and areas. 

4. Assign the Concentration Keypoint at the crack tip to be able to assign meshes 

that incorporate the singular element and mesh the area. 

5. Apply symmetry boundary condition to the model at the symmetrical lines. Do 

not apply any boundary condition at the crack line. 

6. Apply negative pressure load on the top line of the model. 

7. Solve the problem. 

8. To calculate K1, define path operation and create local coordinate at the crack tip. 

Use KCALC command to get the K1 value. 

Figure 3.7 below shows the ANSYS model of double-edge-cracked strip subject to 

Mode I loading. 

Figure 3.7: ANSYS model of double-edge-cracked strip subject to Mode I loading 
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3.3.4 Modelling of Center-Cracked Strip Subject to Mode II Loading 

The geometry of interest is shown in Figure 2.4. Full model of the geometry is modelled 

and analysed since the loads are not symmetric. 

Figure 3.8 below shows the full model of center-cracked strip that need to be modelled 

in ANSYS where a is the crack length and tis the shear load. 

0.2m 

0.2m 

Figure 3.8: The full model of center-cracked strip subject to Mode II loading 

Nine models are analysed for values of a of0.02m, 0.04m, 0.06m, 0.08m, O.lOm, O.l2m, 

0.!4m, 0.!6m and 0.!8m. 

The steps involved in modelling and analysing the model shown in Figure 3.8 are as 

follow: 

l. Define the element type. PLANE82 is used. 

2. Set the value of Young's Modulus and Poisson's ratio. 

3. Model quarter of the geometry by creating keypoints, lines and areas. 

4. t12 92.02 245.53 Tm
(3. )Tj
n's.146 18 3502 74030.035 Tc 11.679(used. )Tj
-d
(are )Tj
7312 0 0 o. 



7. Merge the overlapping nodes except nodes on the crack lines. 

8. Apply constraint in the y direction on the crack lines and on the horizontal 

middle line. 

9. Apply force at each node on the crack lines. All forces applied are in the positive 

x direction for the top crack line and in the negative x direction for the bottom 

crack line. The value of each force is 20N. 

10. Solve the problem. 

11. To calculate K11, define path operation and create local coordinate at the crack 

tip. Use KCALC command to get the K11 value. 

Figure 3.9 below shows the ANSYS model of center crack strip subject to Mode II 

loading. 

Figure 3. 9: ANSYS model of center-cracked strip subject to Mode II loading 

3.3.5 Modeling of Double-Edge-Cracked Strip Subject to Mode II Loading 

The geometry of interest is shown in Figure 2.5. Full model of the geometry is modelled 

and analysed since the loads are not symmetric. 
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Figure 3.10 shows the full model of double-edge-cracked strip that need to be modelled 

in ANSYS where a is the crack length and 1: is the shear load. 

a a 

1 1 
!>.. ""- ""-""-""- 1>-. ""- ""-""-""- 0. ................................. ............................ 2m 
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Figure 3.10: The full model of double-edge-cracked strip subject to Mode II 
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9. Apply force at each node on the crack lines. All forces applied are in the positive 

x direction for the top crack line and in the negative x direction for the bottom 

crack line. The value of each force is 20N. 

10. Solve the problem. 

11. To calculate Ku, define path operation and create local coordinate at the crack 

tip. Use KCALC command to get the K11 value. 

Figure 3.11 below shows the ANSYS model of double-edge-cracked strip subject to 

Mode II loading. 

-
Constraint in 
y direction 

figure 3.11: ANSYS model of double-edge-cracked strip subject to Mode II loading 
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CHAPTER4 

RESULTS AND DISCUSSIONS 

4.1 Results of the Crack Geometry Subject to Mode I Loading 

The results obtained from analysing the crack geometries subject to Mode I loading by 

using ANSYS are K1 values. To calculate the geometry factor, Y for each crack 

geometry, the general equation ofSIF is rearranged. The equation becomes 

(13) 

Then, the geometry factor values from ANSYS are compared with the literature results 

for each crack geometry. 

4.1.1 Results of Center-Cracked Strip 

Table 4.1 below shows the Y values from ANSYS and Tada's equation for center­

cracked strip subject to Mode I loading. 

Table 4.1: Y values for center-cracked strip subjected to Mode I loading 

Geometr] Factor, Y 
alb Tada ANSYS Error(%) 
0.1 1.006 1.009 0.323 
0.2 1.024 1.054 2.862 
0.3 1.058 1.121 5.982 
0.4 1.109 1.213 9.394 
0.5 1.186 1.330 12.145 
0.6 1.303 1.478 13.464 
0.7 1.487 1.672 12.415 
0.8 1.814 1.985 9.423 
0.9 2.577 2.675 3.832 

As shown in Table 4.1, the maximum error of ANSYS results compared to Tada results 

is 13.46%. 
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Figure 4.1 below shows the Y values from ANSYS and Tada's equation plotted on a 

graph. 
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Figure 4.1: Comparison of Y versus alb results between ANSYS and Tada's equation for 

center-cracked strip subject to Mode I loading 

Based on Figure 4.1, the curve line for both ANSYS results and Tada's equation results 

have the same pattern. The geometry factor will increase with the increase of crack 

length. It shows that the stress intensity factor at the crack tip will increase with the 

increase of crack length. 
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4.1.2 Results of Single-Edge-Cracked Strip 

Table 4.2 below shows the Y values from ANSYS and Tada's equation for single-edge­

cracked strip subject to Mode I loading. 

Table 4.2: Y values for single-edge-cracked strip subjected to Mode I loading 

Geome!!) Factor, Y 
alb Tada ANSYS Error(%) 
0.1 1.196 1.105 7.550 
0.2 1.367 1.365 0.146 
0.3 1.655 1.659 0.214 
0.4 2.108 2.110 0.087 
0.5 2.827 2.822 0.176 
0.6 4.043 4.027 0.399 
0.7 6.376 6.343 0.506 
0.8 11.993 11.926 0.560 
0.9 34.719 34.482 0.682 

As shown in Table 4.2, the maximum error of ANSYS results compared to Tada results 

is 7.55%. 

Figure 4.2 below shows the Y values from ANSYS and Tada's equation plotted on a 

graph. 
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Figure 4.2: Comparison of Yversus alb results between ANSYS and Tada' s equation for 

single-edge-cracked strip subject to Mode I loading 
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Based on Figure 4.2, the curve line for both ANSYS results and Tada's equation results 

have the same pattern. The geometry factor will increase with the increase of crack 

length. It shows that the stress intensity factor at the crack tip will increase with the 

increase of crack length. The ANSYS results are agree well with Tada results since both 

curves overlap. 

4.1.3 Results of Double-Edge-Cracked Strip 

Table 4.3 below shows the Yvalues from ANSYS and Tada's equation for double-edge­

cracked strip subject to Mode I loading. 

Table 4.3: Yvalues for double-edge-cracked strip subjected to Mode I loading 

Factor, Y 
alb Tada ANSYS Error(%) 
0.1 1.121 1.134 1.166 
0.2 1.118 1.176 5.146 
0.3 1.120 1.228 9.645 
0.4 1.132 1.281 13.192 
0.5 1.163 1.329 14.333 
0.6 1.226 1.382 12.754 
0.7 1.343 1.461 8.822 -
0.8 1.567 1.636 4.445 
0.9 2.113 2.118 0.204 

As shown in Table 4.3, the maximum error of ANSYS results compared to Tada results 

is 14.33%. 
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Figure 4.3 below shows the Y values from ANSYS and Tada's equation plotted on a 

graph. 
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4.2 Results of the Crack Geometry Subject to Mode II Loading 

The results obtained from analysing the crack geometries subject to Mode II loading by 

using ANSYS are K11 values. To ca1culate the geometry factor, Y for each crack 

geometry, the general equation of SIF is rearranged. The equation becomes 

Ku 
Y=--

r..fiffi 
(14) 

To determine the shear load, 1: exerted along the crack surface, the following equation is 

used 

L,F (1 5) 
r=-

A 

where LF is the summation of forces acting on the nodes at the crack lines and A is the 

area of the crack surface. Since the thickness of the strip is 1 unit, A is equal to the crack 

length multiply by 1. The unit of 1: is Pa. Then, the geometry factor values from ANSYS 

are compared with the literature results for each crack geometry. 

4.2.1 Results of 402Qr.0133 0o8each crack geometry. 



Table 4.4: Yvalues for center-cracked strip subjected to Mode II loading 

Geometry Factor, Y 
alb Pilkey ANSYS Error(%) 
0.1 1.005 0.564 43.944 
0.2 1.023 0.587 42.566 
0.3 1.058 0.650 38.536 
0.4 1.121 0.717 36.043 
0.5 1.231 0.794 35.479 
0.6 1.420 0.899 36.655 
0.7 1.754 1.054 39.897 
0.8 2.391 1.323 44.683 
0.9 3.916 1.942 50.399 

As shown in Table 4.4, the maximum error of ANSYS results compared to Pilkey results 

is 50.40%. Large value of error shows that the ANSYS model for this crack geometry is 

not accurate maybe due to the wrong application of load, where the loads are applied at 

the nodes on the crack lines. 

Figure 4.4 below shows the Y values from ANSYS and Pilkey's equation plotted on a 

graph. 
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Figure 4.4: Comparison of Yversus alb results between ANSYS and Pilkey's equation 

for center-cracked strip subject to Mode II loading 



Based on the Figure 4.4, the curve line for both ANSYS results and Pilkey' s equation 

results have the same pattern. The geometry factor will increase with the increase of 

crack length. It shows that the stress intensity factor at the crack tip will increase with 

the increase of crack length. 

4.2.2 Results of Double-Edge-Cracked Strip 

Table 4.5 below shows the Y values from ANSYS and Pilkey's equation for double­

edge-cracked strip subject to Mode II loading. 

Table 4.5: Y values for double-edge-cracked strip subjected to Mode Llloading 

Geometry Factor, Y 
alb Pilkey ANSYS Error(%) 
0.1 1.121 1.023 8.722 
0.2 1.118 0.997 10.848 
0.3 1.120 1.018 9.118 
0.4 1.132 1.023 9.581 
0.5 1.163 1.063 8.608 
0.6 1.226 1.127 8.062 6 1.
(1821749.29 Tm
(9.581 )Tj
ET
BT
/Suspect <</CT
/Sur213nf j
E>BDC 
0.01.553 0.569 rg
0.222 0 Td
(6 )Tj
EMC  -2T
BT
/4198.31c 11.8 0 o.4 
8 0 Td
(.)Tjt0.01.Tc 7 Tf
11.8 0 01 Tf
198.31 41 )Tj
9.3970 >>BDC6T1_0 DC6T
-0.0108 Tc 11.8 0 0 11.8 198.31 419.4 Tm
(1.
(1821749.29 Tm98..58m98..58m98..58m98..58m98..58m98..58m98..58m98..58m98..58m98..58m9822290 T6 )f
11.8 0 01 Tf
198.31 41 )Tj
9.3970 >>BDC6T1_0 DC6T
-0.0108 Tc 11.
118 01.
1 01 Tf
198.31 41 



Figure 4.5 below shows the Y values from ANSYS and Pilkey's equation plotted on a 

graph. 
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Figure 4.5: Comparison of Yversus alb results between ANSYS and Pilkey's equation 

for double-edge-cracked strip subject to Mode II loading 

Based on Figure 4.5, the curve line of ANSYS and Pilkey results have the same shape 

where the curve of ANSYS differs from Pilkey curve by a factor of 1.1. The curves 

show the geometry factor will increase with the increase of crack length. 
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CHAPTERS 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In conclusion, the objective to model and determine the stress intensity factor for a crack 

in a strip by using finite element method has been achieved. ANSYS software has been 

used throughout this project to model and analyse several types of crack geometry in 

order to determine the stress intensity factor at the crack tip of the crack geometry. 

However only the crack geometries subject to Mode I loading and Mode II loading were 

modelled and analysed due to lack of skills in using ANSYS. For Mode I loading, the 

crack geometries that have been modelled and analysed are center crack in a strip, single 

edge crack in a strip and double edge cracks in a strip. For Mode II loading, the crack 

geometries that have been modelled and analysed are center crack in a strip and double 

edge cracks in a strip. 

The results from ANSYS have been compared with the results available in literature. 

Tada's equation from "The Stress Analysis of Cracks Handbook", third edition by 

Hiroshi Tada, Paul C. Paris and George R. Irwin was used for comparison with ANSYS 

results for all crack geometries subject to Mode I loading. For cracks geometries subject 

to Mode II loading, Pilkey's equation from "Formulas for Stress, Strain and Structural 

Matrices", second edition by Walter D. Pilkey was used for comparison with ANSYS 

results. The objective to compare the ANSYS results with results available in literature 

was achieved. 

From the comparison, for crack geometries subject to Mode I loading, the maximum 

error for center-cracked strip is 13.46%, single-edge-cracked strip is 7.55% and double­

edge-cracked strip is 14.33%. For crack geometries subject to Mode II loading, the 

maximum error for center-cracked strip is 50.40% and double-edge-cracked strip is 

10.85%. 
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5.2 Recommendations 

Recommendations for future works of this project are as follow: 

1. Compare the results from ANSYS with several results available in literature. 

2. For Mode II and Mode III loading, apply surface traction boundary condition 

instead of applying force on the nodes along the crack line. 

3. Analyse more crack geometries such as single-edge-cracked strip subject to 

bending and single-edge-cracked strip subject to three point bending. 
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