Text-Based Plagiarism Detection System

By

Hazliyana Binti Hussain

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Technology (Hons) in

Business Information System

December 2005
¥
Universiti Teknologi PETRONAS A
Bandar Seri Iskandar T fe
31750 Tronoh HOZR
Perak Darul Ridzuan ol
. wm'lv-ﬂ) — g’\’\"-J’:j g
. Cactome t:‘k‘{)iq\’"\ am-‘\q\')‘ﬂg - foge
Seatinen®y

N Qloﬂ\(}\\n SV}

oo =TT lesis

CERTIFICATION OF APPROVAL
Text-Based Plagiarism Detection System
by

Hazliyana Binti Hussain

A project dissertation submitted to the
Business Information System Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for for the
BACHELOR OF TECHNOLOGY (Hons)

IN BUSINESS INFORMATION SYSTEM

Approved by,

Ll

(Jale Bin Ahmad)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

December 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgments, and
that the original work contained herein have not been undertaken or done by unspecified

SOuUrces or persons.

L

HAZLIYAW BINTI HUSSAIN

ABSTRACT

Due to increasing of internet usage, students attempt to plagiarize the digital
documents as their own work without acknowledging the sources as references. As
this phenomenon becomes very common among students, a system that can detect
plagiarism is most welcome to overcome the problem. The system is able to map out
the words from the body of text files and then compare the strings between the text
files. Besides, the system is also able to compare lines in the text files. The system is
developed referring to the concept of Word Frequency Model which count the

number words occurrence in the text files.

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to Allah S.W.T,
because with His mercy and blessings had gave me the strengths to face challenges

in completing this project for my Final Year Project.

I would like to express my profound appreciation, highest gratitude and
sincere thanks to my supervisor, Mr. Jale Bin Ahmad for all the valuable guidance,
positive and constructive criticism and advice that have been given to me while I

was involved in the completion of this project.

I also would like to express my gratitude and thanks to all lecturers and
tutors in IT and IS department who eventually helped me during the project and also
in sharing their knowledge and information, which has made the project an
unforgettable. Not to forget, special thank you to all my friends who helped and

share their knowledge with me during the project development.

Lastly, I acknowledge with greatest appreciation to other personnel not
mentioned above whom gave me such great support in completing this project
successfully and to UTP for giving me a chance to gain knowledge and experiences
during the final vear project development. Last but not least, I sincerely apologize
for all the problems involuntarily caused by myself. All of your kindness and

cooperation are highly appreciated and will be fondly remembered.

I

ABSTRACT

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

TABLE OF CONTENTS

INTRODUCTION.....cctuteiminranisniasisinisisisssicnn
1.1 Background of Studycovvviiinininininien
1.2 Problem Statementocoviiiiiiiniiiincnnnnnn,
1.3 Objectives and Scope of Studiescccovueeeen
LITERATURE REVIEW.......ccooviiiiiiiennieiininanien
METHODOLOGY....ccovtiiiiiiiiiiniiiiiiiiinrennnn
3.1 Procedure Identification..........c.cocovviinninnn
3.2 Tool Requirement......cccoevrieriiiernnincninrereon
RESULT AND DISCUSSION.....coiiviiiiiiniiiiinininien
4.1 System Design......cocvvvivvririniiniacicienininenen
4.2 System Flow Process.........coovevievniinniianaens .
43 Word by Word Comparison Process..............
4.3.1 Text Extraction Using Tokenizer.........
4.3.2 Word Clustering Process........cccovuuees
4.3.3 Word Clustering Result...................
4.3.4 Unification for String Comparison.......

4.4
4.5
4.6
4.7

4.3.5 Calculate Difference from String
Comparison....cccvvirveviererennessnnsienen

4.3.6 Plagiarism Status...........c.coviviniinnnnns

Line by Line Comparison Process........c.......

One to Many Text Files Comparison.............

The Characters Clustering Process.........ccveeee.

Text-Based Plagiarism Detection System’s
Interface and Functions Screen Shots...........

4.7.1 FunctionS....coeeieeesreereseresasssrenessoses

I

CHAPTER 5: RECOMMENDATION AND CONCLUSION............ 43

REFERENCES oiviiiiiiiiiiininns eenrarensiseaettentetasteeriensrtaserans 45

APPENDIXES .ot sta e ee e v r e s nsrnes 47

v

LIST OF FIGURES

Figure 1: The Vector Space Model (VSM) and Relative Frequency Model (RFM)
Figure 2: Semantic Sequence Model (SSM)

Figure 3: Semantic probe algorithm

Figure 4: The architecture of CHECK

Figure 5: Methodology phases / project procedure
Figure 6: Text-Based Plagiarism Detection System’s Design
Figure 7: Text-Based Plagiarism Detection System’s Flow Process
Figure 8: Unification

Figure 9: Comparison process

Figure 10: Character clusters including spaces

Figure 11: Total Character clusters including spaces
Figure 12: Total Characters including spaces

Figure 13: Character clusters including spaces

Figure 14; Total Character clusters including spaces
Figure 15: Total Character including spaces

Figure 16: Splash Screen

Figure 17: Line by Line Comparison Screen

Figure 18: Line by Line Comparison Menus 1

Figure 19: Line by Line Comparison Menus 2

Figure 20: Status Record

Figure 21: Quit Dialog Box

Figure 22: About PlagTest 1.0 Screen Shot

Figure 23: Browse Dialog Box

Figure 24: Compare File

Figure 25: Arrange Text Window in Horizontal Tiling
Figure 26: Arrange Text Window in Vertical Tiling
Figure 27: Word by Word Comparison Screen

Figure 28: Word by Word Comparison’s Menus 1
Figure 29: Word by Word Comparison’s Menus 2
Figure 30: Browse Dialog Box

Figure 31: Show Statistic

Figure 32: Compare Files

Figure 33: Status Record
Figure 34: Quit Dialog Box

VI

LIST OF TABLES

Table 1: String Extraction

Table 2: Word Clustering Result

Table 3: Unification for string comparison

Table 4: Difference Calculation

Table 5: Comparison process and the number of comparisons occur

Table 6: Statistic of Comparisons Occur

Vil

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Plagiarism refers to the use of another's ideas, information, language, or
writing, when done without proper acknowledgment of the original source. Essential
to an act of plagiarism is an element of dishonesty in attempting to pass off the
plagiarized work as original. Plagiarism is not necessarily the same as copyright
violation, which occurs when one violates copyright law. Like most terms from the
area of intellectual property, plagiarism is a concept of the modern age and not

really applicable to medieval or ancient works.

Through keyword-driven Internet research using search engines like Google
and Yahoo, millions worldwide have easy, instant access to a vast and diverse
amount of online information. Compared to encyclopedias and traditional libraries,
the World Wide Web has enabled a sudden and extreme decentralization of

information and data.

The existence and widespread use of the Internet has increased the
occurrence of plagiarism. Students are able to use search engines to locate
information on a wide range of topics. Once located, this information can be cut-

and-pasted into new documents with minimal effort.

The students also tend to distribute the same information among themselves
and have relatively same contents in the assignments without properly acknowledge
the sources as reference. The size of the Internet makes it difficult for lecturers to

trace the source of plagiarized material,

12 PROBLEM STATEMENT

Technological advances have made the plagiarism activities become
common between the students in campuses and universities. As stated, plagiarism is
using others' ideas and words without clearly acknowledging the source of that

information as their own idea and works.

Although plagiarism is not a new issue, the recent use of the internet for
information is increasingly making plagiarism more difficult for lecturers to
recognize. In a 1999 survey of 2,100 students on 21 campuses across the country,
about one-third of the participating students admitted to serious test cheating and
half admitted to one or more instances of serious cheating on written assignments.

On most campuses, over 75% of students admit to some cheating.

This shows that, most of the students produce non-original assignments and
plagiarism activities day by days become overpowering. It happened because it is no
longer possible for the lecturers to simply recognize the text from which the student
may have copied or to detect that two students have a similar work. The lecturers
must now only be able to detect work which may have been taken from any of
potential web sites by noticing a change in the student’s style of writing but it is still

not effective to prevent plagiarism.

As the internet provides lots of free or paid information such as paper milis,
journal and articles, the students attempted to copy the digital material as their own
work. They are using the ideas of different persons as their own ideas to complete
the assignments and projects. Students do likely not understand the content that they
have copied. Thus, the qualities of their project or assignments do not meet the
education quality standard. Besides, the lecturers tend to give wrong or non exact

evaluation on their work.

There is also side impact caused by plagiarisms. Plagiarism may demoralize
the honest student, successful plagiarism will encourages lifelong dishonesty,
plagiarizers will undermine their own education and it will depress the faculty to

encounter plagiarism.

As a student, they should have come out with their own ideas and solution to
produce high quality of paper works. Thus, it is the academic responsibilities to
handle the problem by preventing and detecting the plagiarism activities among the

students.

A system which can be used to detect and prevent plagiarism is suggested to

overcome the problem.

The project is significant to the lecturers in order to prevent and detect
plagiarism among the students in campus especially in UTP. Besides, it will also
help the organization, UTP to produce quality graduvates and well independent

student.
1.3 OBJECTIVE AND SCOPE

The objective of the project is to enable the lecturers to detect the similarities
of students’ assignments by using a Text-Based Plagiarism Detection System. The
system is responsible to identify whether the submitted assignments have similar
contents or not. By doing this, the lecturers can detect and prevent plagiarism among

the students.

The scope of the study involves strings mining where the system is able to
map out strings or text within the submitted digital assignments or project papers
(softcopy). With the extracted strings, the system will compare the similarities
between two or more text files and finally present the plagiarism status. The study is

focusing on the UTP’s current scenario where most of the students do plagiarism.

The relevancy of the project is obviously to give advantages to the lecturers
and the faculty itself in order to detect or prevent plagiarisms. This can help faculty
to achieve its objective to produce well-rounded graduates who are creative and

innovative with the potential to become leaders of industry and the nation.

Operationally, the project is feasible because of the advantages that the

faculty can achieve. The people in the organization especially lecturers, would think

the project will be very helpful in the future in order to prevent plagiarism. Besides,
the availability of information, references, knowledge and skills will help the project
to be technically feasible. Referring to the time frame or schedule feasibility, project

scope and the budget, the project is practicable to be developed.

CHAPTER 2

LITERATURE REVIEW

The text feature extraction is a common issue in Information Retrieval, Text
Mining, Web Mining [2], Text Classification/Clustering and Document Copy

Detection. The most popular approach is word frequency based scheme [1].

There are several models that can be used for the text feature comparison or
extraction. The models that available are Word Frequency Model (WFM) [1] and
Semantic Sequence Model (SSM) [1]. Under Word Frequency Model (WFM) there
are other two models which are Vector Space Model (VSM) [8] and Relative
Frequency Model (RFM) [1]. '

According to Jun-Peng Rao, Jun-Yi Shen, Xiao-Dong Liu and Qin-Bao
Song, the Word Frequency Model (WEFM) is the most popular text feature extraction
model which counts word appearance in documents and/or whole corpus to build the
text feature vector and then measure the vectors similarity by dot product, cosine
function or others like that to represent the similarity of documents. This model is fit

to represent text similarity which is applied in text classification/clustering.

The Vector Space Model (VSM) [8] is a regular model to represent text
documents. It is also used widely in Text Mining, Web Mining, Text
Classification/Clustering and also Information Retrieval. The TFIDF algorithm is
often combined with VSM.

The Relative Frequency Model (RFM) is presented by SCAM (Stanford
Copy Analysis Method) so as to find out subset copies. SCAM was developed by
Shivakumar and Garcia-Molina [4] to improve the previous copy detection system,
COPS (Copy Protection System) [3].

Thel RFM [1] 1sthe first asymmetnc siﬁilarity measures in copy detection.
The RFM is derived from VSM [1], where the both construct the text feature vector
based on word frequency. The different between VSM and RFM is like mentioned
before, RFM uses asymmeitric similarity to measure in copy detection but VSM uses

symmetric cosine function to do that.

Let F(4) and F(B) be document A and B word
frequency vectors, then the similarity of A and B in VSM is

SP:SM{AsB):
Y A F{AF,B).
Smn{43)= = = =
JZa?ﬁf{A)xZafﬁ* (B
=l |

where o is the word weight vector, F{4), F{B) are the
respective number of occurrences of the is, word in A and B.
It is obvious that Sixd4.B) = SpndB.4). Because the
similarity of A to B and that of B to A is the same, i.e. 5{4,5)
= S5(B,A4), we call it symmetric similarity, For symmetric
similarity, the copies® (same documents) value is | and the
more. overlapped wonds between documents the higher
score, But they cannot distinguish the subset copies from
parily overlapped documents. We know that A is included
in B is different from B is included in A, ie.
Ac Bz Bc A. So the inclusion measure of AC B
should be different from that of B < A. However the
symmetric similarity does not satisfy that,

Ir RPM the subset measure of document A fo be a
subset of document B to be:

Zw, sc(ﬁ,ﬁ}afz F,(A)F,(B)
Yo a2F (4

Tt is obvious that Subsei(4,B) # Subsef(B,4) and
Subset(Ad,.47) = 1 if A" is a copy of A. Hence we call this
type as asymmefric similarity measure. The RFM similarity
measure between two documents A and B is:

Sl 4 B)
=max Subse(A, B),Subse(B, A}

The Subsef(4.B) may be greater than 1. In-order to
regularize the similarity value in [0,1], the final RFM
similarity of docunvents A and B is;

Subset(4,B)=

S (4. B)
= min{, max{Subsex 4, B),Subsed B, A)} }

Figure 1: the Vector Space Model (VSM) and Relative Frequency Model
(RFM)

“RFM detects subset copy well because it can distinguish ACB from B&A
by asymmetric metric. But it cannot find out s to 1 partial copy because lack of local

detail information” [1].

The document copy detection (DCD) is to decide whether some part of the
whole document is a copy of another [1] which we can call it plagiarism. DCD plays

an important role in Intellectual Property Protection [9].

Plagiarism detection cares about the text identity more than the similarity.
The very similar documents may not be identical, but plagiarizing documents must
be very similar [1]. Even tough the DCD can detect plagiarism using the String
Matching Scheme, it is still cannot resist the noise or modification. The action of
rewording the sentences makes the plagiarism detection precision become weak or
unused.

Due to the issue, Jun-Peng Rao, Jun-Yi Shen, Xiao-Dong Liu and Qin-Bao
Song present a new text feature extraction model Semantic Sequence Model (SSM)
[1].the SSM is based on the concepts of word distance, word density, and semantic
sequence. Compare to RFM, SSM contains both global and local features so as to

detect n to 1 partial copy well while RFM lack of local detail information.

Definition 1 Let 5 be a sequence of words, ie.
S=w;w,... W, We denote the pogition 1 in § by is, the word
at { denoted by wiigh. The word distance of position iy
(1<), denoted by dyig), is the number of words between
wihg and wiis) , i.e. dig= s - hs, where wihg=w{is) and
wikg#w(ig (I<h<k<i<nm. If no wihg exists, i.e. w(ig first
occurs, then dligh=o.

Definition 2 Let S be a sequence of words, ie
S=w;w;..w, The word density of position is (fSion),
denoted by pfis), is the reciprocal of d(ly) : pily) = VidYig) .

In Fact, dfig is the distance of w{ig) to s last appearance
in the sequence S, and priy denotes its local frequency. A
document is 2 long sequence of words so that in a given
range the small distance means the high density of word in
a local section. That i3 to say the more small distance the

higher density of some words in the local section. We
believe that the high-density wornds in some section indicate

the semantic of it.

Definition 3 Let § be a sequence of words, ie.
Sow,wy.. W, A semantic sequence of § is a part of
continued words L{Swmw..wy (I<i<j<ksn) in § and
satisfies the following conditions:

(1) 14831

Q) Yl) = Fwlxg Xl 5,) = wlxs »

(Wl 5)) = Wz A (w(mus)) = w(ys))

= (Vg5 <My5) € X5 < Yg)

(wlly5,) = W(xs NA(wimy)= w(y,)))

Ay =g + 1) (0 <y~ x5 < 8)

(3}

{4)
©) pUs) 20,0 <l <k

© (ks =i ~D— (plhs) <)
(D (vg = ks +1) > (p(vs) <d)

where 5 and £ are user defined parameters (e.g. =1/20, £=¥)-

Figure 2: Semantic Sequence Model (SSM)

In fact, a semantic sequence in § is a continuous word sequence after
omitting the low dense words in S. It contains local semantic and structural
information of a document. A long § may have several semantics. We denote all of
the semantic sequences in the document S by 2¢S), which then includes the global
and local semantic features as well as local structural information. However, a single

semantic sequence may not represent the document global feature [1].

A semantic is a sequence of words, but the authors of SSM [1] do not use
string matching to compare two semantics. Their purpose is to tell whether
plagiarism happened, so they just need to know whether the common semantics
length is longer than a threshold. If the max common semantic is long enough then

we believe they are plagiarisms otherwise they are normal.

Hence, they can probe some words in the semantic to find the max common
length (P#), which may not be very precise but it is enough to compare with the
threshold. Without comparing the whole word string, they gain a great performance

promotion. They define the plagiarism probability of document A and B as I'(4,B) =
min(P#/1,1) where JI is the maximum probe number. The following is the semantic

probe algorithm.

Function SemanticProbes()

Input parsmeters: (4), Q(B)

Output; T{A.B) '

Begin

For each L{d) in ﬂ!’«‘f)

{

probes = get x words randomily from Led);
For each L(B) in ﬂw)

{
P> = number of probes
p*=max(p); -

ined in L{B);

] |
I(A.B) = min(p*in, i)
End

Figure 3: Semantic probe algorithm

The value of max probes number (/I} need not be very large, 6 or 7 is

enough. The threshold of the word density (@) cannot be too large; otherwise the
semantics length is too small to probe. The threshold of the number of contained
probes in candidate semantics has crucial effect on the final detection. It seems that
4 or 5 are the best because the false positive and the false negative are both very
low.

Bao Jun-Peng, Shen Jun-Yi, Liu Xiao-Dong, Liu Hai-Yan, and Zhang Xiao-
Di proposed a Semantic Sequence Kernel (SSK) for DCD application which is a
Kernel Method based on the semantic density, not the common global word
frequency which is derived from string Kernel (SK} [6] and Word Sequence Kernel
(WSK) [5].

The SSK is first finds out the semantic sequences in the documents and then
it uses a kernel function to calculate their similarities. SK and WSK only calculate
the gap between the first word and the last one [9]. SSK is compared with Relative
Frequency Model (RFM) and Semantic Sequence Model (SSM), which is word

frequency based model. It shows that SSK is excellent on non-rewording corpus.

Lodhi et al [6] proposed the string kernel method that devides the text
category according to the common sequences between documents. The string kernel
exploits the structural information instead of word frequency and can outperform the

bag of words approach [9].

Cancedda et al. [5] introduced the word sequence kernel that extends the idea
of a string kernel. They greatly increase the number of symbols to be considered as
symbols are words rather than characters. It reduces the average number of symbols
per document and yields a significant improvement in computing efficiency so that

the training on large corpus becomes feasible without approximation [9].
Brin et al [3] proposed the first DCD Prototype such as COPS that can detect

overlap based on sentence and string matching but it has some difficulties in

detecting sentences and finding partial sentence copy [9]. As stated before, SCAM is

10

developed t;) 1mproveCOPSThe SCAM measures overfap based on word
frequency.

Si et al. [7] built a copy detection mechanism called CHECK. CHECK
parses each document to build and internal indexing structure called structural

characteristic (SC), which is used in document registration and comparison modules.

Figure 4 is the CHECK System architecture [7] which is one of plagiarism
detection system architecture that is available in the market. As shown in the
architecture diagram, CHECK is composed of three main modules: document
registration, document comparison and document parsing. These three modules have

been mentioned in the previous paragraph.

According to Si A., Leong H.V. and Lau R. W. H.,, the three modules of the
system provide three basic functions: original document registration, document
verification, and normal document registration. From the CHECK system
architecture, the author came out with Text-Based Plagiarism Detection System

Design by narrowing the scope.

As the models can guide the plagiarism detection system development, there
is also some other techniques and method can be used. The common thread between
information theory and computer science is the study of the amount of information
contained in an ensemble [11], [12] or a sequence [13]. According to Xin Chen,
there are question that; given two sequences how do we measure their similarity in
the sense that the measure captures all of the intuitive concepts “computable

similarities™?

There are many plagiarism detection systems that have been developed and
based on their characteristic that they employ to detect plagiarism, they can be
grouped into two categories [10] which are; attributes-counting system and

structure-metric system.

A simple attribute-counting system [14] only counts the number of distinct

operators, distinct operands, total number of operands of all types, and then

11

construct a profile using the statistic for each program. While structure-metric

system extracts and compares representation of program structure.

YAP Family [15] is one of the system that available using the structure-
metric system. Such system usually has two phases. The first phase involves the
tokenization procedure to convert source codes into token sequences by a lexical
analyzer. Even though it is for programs codes, it is believed that the method can
also be used for text or documents. The second phase involves the method to

compare those tokens sequences.

A token for the case above is referring to the basic unit of programming

languages such as “if,” “then” and many more.

YAP. A similarity score used in YAP system [15] is a value from 0 to 100,
called percent match, representing the range from “no-match’ to “complete-match”.

It is obtained by the formulas

Match = (same — diff) / minfile — (maxfile — minfile)/ maxfile
PercentMatch = max (0, Match) * 100

The formulas that have been used in YAP system can be implemented in

Text-Based Plagiarism Detection System to measure the percentage of plagiarism of

the students work to the original author.

12

Figure 4: the architecture of CHECK

From the previous studies and research of related work, the author chooses to
use the Word Frequency Model (WFM) as the reference for Text-Based Plagiarism
Detection System or PlagTest 1.0 development. Besides, PlagTest 1.0 is developed
by using simple method which it can enhance system performance in term of

response time.

PlagTest 1.0 has two functions which are “Word by Word Comparison” and
“Line by Line Comparison”. Word by word comparison is suitable for text files that
are in paragraph format such as quote and simple text files. While line by line
comparison is suitable for text files that contain texts that are in lines format such as

coding and poem.

Using the WFM, the Text-Based Plagiarism Detection System is able to
count the word occurrence (Word Clustering) in a body of text file. After word

clustering, the system will compare the strings to identify the number of differences.

13

The total difference will determine the plagiarism status. Tokenizer is needed to
extract the words into the list and after that the words are sorted ascending order (A-

7). With the words listed, Word clustering will take place.
For the Text-Based Plagiarism Detection System, the author also considers

the characters appearance including space and also the characters cluster (the

occurrence of same character).

14

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 PROCEDURE IDENTIFICATION

Requirement
Definitior

System Design

Coding &
Testing

Figure 5: Methodology phases / project procedure

The initial investigation is important to start a system development. During
the initial investigation, everything have to be done including to come out with the
problem statement, study the previous research paper for information gathering,
analyze the significance of the project whether it is worth to be done, the cost
involved and also the time frame. The author first gather ali related research paper
that can be referred in order to come out with the problem statement and as general
ideas to develop text-based plagiarism detection system. Besides, the author also did
find some plagiarism detection system that available in the market as a sample

application.

After the initial investigation is the requirement definition. At this phase, the
requirement would be the system functions determination itself and also the method

15

that will be used. Referring to thé model above, requitement definition can be

modified as there are changes.

After the requirement definition, the next phase is system design. In the
system design the system flow processes is specified and the functions such as

system interface design and others are also determined.

The system design phase is followed by ‘coding and testing’ phase. Based on
the system design, the system will be developed by generating the codes and do
testing to make sure that it is working. The three phases; requirement definition,
system design and coding & testing can be redone due to changes until it satisfy the

requirement and ready for implementation.

The next phase is implementation, where the system is ready to be used by
the user. The last phase is maintenance, At this phase, the system needs to be

keeping updated due to users’ preferences and requirements.

32 TOOL REQUIREMENT

The tools that are needed for the project are a computer with a good
performance, and Microsoft Visual Basic 6.0 software. The system is fully
developed using VB 6.0 and as for the database, Microsoft Access version 7.0 is

used.

16

CHAPTER 4

RESULT AND DISCUSSION

41 SYSTEM DESIGN

The system design for the system is shown in figure 6 below. The system
will have one database which is use to store documents and record. The system must

be able to detect similarity among students’ assignment after text extraction.

Referring to the system design, the user will first need to input the document
or text into the system as the master and target text file. Then the system will extract
the text input by the user. After the text extraction, the system will start comparing

the text and lastly presents the status.

The system should be able to compare between two text files or more. If it is
between two text files then it can be done using the master input file and target file.
If it is between many files which are more than two, one text file will be taken as
master file and the rest as the target files. The master file will be compared with the
documents that are stored in the database. If plagiarism is detected, the system will
produce the output or report for the percentage of plagiarism from the original

author. The status can be stores as record for future reference in the database.

17

Plagiarism
detected

Figure 6: Text-Based Plagiarism Detection
System’s Design

42 SYSTEM FLOW PROCESS

Master File | | Target Files

Process B ' ' | ‘Process
Words/lines - | Words/lines

B \ - Comparison

. Process

Print Status

Register Stafus
to Database

Figure 7: Text-Based Plagiarism Detection System’s Flow Process

18

For word by word comparison, the System involves 5 processes that
classified under two stages that are process word and compare files. The process is

listed below:

Process Words

1. Text extraction (tokenizing)

2. Sorting (Ascending)

3. Word Clustering (the number of same word occurrence in a text)
Comparison Process

1. Unification for string matching to find the total differences

2. Present the plagiarism status of the similarities based on the total differences

using a mathematical calculation

For line by line comparison, the system involves 3 processes that classified
under two stages that are process lines and compare files. The process is listed
below:

Process Lines
1. Count the number of lines in text files and find the lines that contain
differences
Comparison Process
1. Compare lines and find the number of differences
2. Present the plagiarism status of the similarities based on the total differences

using a mathematical calculation

19

Referring to the ﬂbv&broceéé shown, the system need input files as master
file and target files. Each of the files will be first being processed accordingly. After
the files are processed and done with comparison, the status is printed and it can be

stored as record for reference.

43 WORD BY WORD COMPARISON PROCESS (1 -1 TEXT FILES
COMPARISON)

Example:
TEXT

I want to be an engineer. When I was in primary school, I want to be a doctor.

4.3.1 TEXT EXTRACTION USING TOKENIZER

Unsorted Sorted
I a |
want an
to be
be be
an doctor
engineer engineer
when I
I I
was I
in in
the primary
primary school
school the
1 to
want to
to want
be want
a was
doctor when

Table 1: String Extraction

20

The text is first extracted using a tokenizer and after that they are sorted in
ascending oder (A-Z). The purpose of sorting the strings is to ease the word

clustering process.

4.3.2 WORD CLUSTERING PROCESS

Word clustering is done to calculate the same words occurrence in a text. By
having clustered word, the system can count the amounts of same words and after

that place them for string comparison.

Cluster [0] =“a”
Counter [0] =1
Cluster [1] = “an”
Counter [1} =1
Cluster [2] = “be”
Counter [2] = 1+1
Cluster [3] = “doctor”
Counter [3] =1
Cluster [4] = “engineer”
Counter [4] = 1
Cluster [5] =“I"
Counter [5] = 1+1+1
Cluster [6] = “in”
Counter [6] =1
Cluster [7] = “primary™
Counter [7] =1
Cluster [8] = “school”
Counter [8] =1
Cluster [9] = “the”
Counter [9] =1
Cluster [10] = “t0”
Counter [10] = 1+1
Cluster [11] = “want”
Counter [11] = 1+1
Cluster [12] = “was”
Counter {12] =1
Cluster [13] = “when”
Counter [13] =1

The list above shows how word clustering is done. It start with cluster 0 with
a string name (example: a) and the counter will start counts until there is no more
“a”. The new cluster will take place and the process will continue until the last

cluster is found.

21

4.3.3 WORD CLUSTERING RESULT

a --> 1
be --> 2
doctor -> 1
engineer | --> 1
I - 3
in --> 1
primary | --> 1
school --> 1
the - |
to --> 2
want --> 2
was s> 1
when - |

Table 2: Word Clustering Result

The table above shows the clustered word after Word Clustering Process.
The total clustered word is 13 and at the right side is the total number each of the
clustered words.

4.3.4 UNIFICATION FOR STRING COMPARISON

Textl =A
Text2=B

Unified Words Cluster = C

Figure 8; Unification

22

C=A U B

The purpose of the unification is to trace the overlapping words or strings between
the texts. By having the unification subtraction can be done in order to identify

difference or score.

Text A as Master

I want to be an engineer. When I was in primary school, I want to be a doctor.

Text B as Tareet

I want to be a pilot. When I was in primary school, my ambition is to be an
astronaut.

A B C
a a a
an ambition ambition
be an an
doctor astronaut astronaut
engineer be an
I 1 be
in in doctor
primary is engineer
school my I
the pilot in
to primary is
want school my
was to pilot
when want primary
was school
When the
to
want
was
when

Table 3: Unification for string comparison

23

During the unification, all words from text files that have been clustered will
be put into the unification field / unified words cluster (C) like the example in table
3. In the unmification field there are only different words from the texts and no

redundancy occurs. From the column C, the differences calculation can be done.

4.3.5 CALCULATE DIFFERENCES FROM STRING COMPARISON

Total Differences= A - B

-
=/
g
=]

C

<>

a
ambition
an
astronaut

[}
fa—

an
be
doctor
engineer
|

in

A4

D= (== O (OO |O

is

my
pilot
primary
school
the

1o

want

was

»—-a—s[\)[\)HHHOQC}:—Mv—-)—[\mer—Ao.—x}
N N I = e e T T P i T NS B Mo Kee B I NG PR (O T P P i R e

when

1
—
Wio o|mioi=lo|O|(—||mIO(—mm—m o@D l—D |

Total Difference

Table 4; Difference Calculation

Total words cluster after unification =20

® The negative value resulting from the subtraction (A-B) must be converted io

positive value for the accuracy of string maiching

24

Table 4 shows how the difference is calculated. If text A doesn’t have a word of
“ambition” the value will be put as 0 and if text A has the word, then the value must
not be 0.

4.3.6 PLAGIARISM STATUS

Total word cluster after unification, UWC (Unified Word Cluster) = 20
Total Difference =9

Status or % of match = 100 — (A - B) / UWC) * 100)

If Status is > 50% then Plagiarism Status is “Suspected as plagiarized work”

If Status is < 50% the Plagiarism Status is “nof plagiarized work”
From the example above:

Status =100 — ((9/20) * 100)
=55%

Thus, the text file is suspected as plagiarized work.
The concept of this system is the lower the different value between the text
files, the higher the péssibility of plagiarism and the higher the different value, the

lower the possibility of plagiarism. Condition is added in order to identify

plagiarism.

25

44 LINE BY LINE COMPARISON PROCESS (1 - 1 TEXT FILES

COMPARISON)
Example:
TEXT A
1 Don’t write yourself off yet
2 It’s only in your head you feel left out or looked down on
3 Just try your best
4 Try everything you can
5 And don't you worry what they tell themselves when you're away
6 It just takes some time
.
TEXTB
1 Don’t write yourself off yet
2 It’s only in your head you feel left out or looked down on
3 Just try your best
4 Try everything you can
5 And don't you worry what they tell themselves when you're away
0 It just takes some time
7
8

The system will count the number of lines of both the text files. As the
example above text A has 7 lines and text B has 8 lines. As seen above in text A
above the seventh line, there 15 some modification made and in the text B there is
one line that is not in text A which is line seven. Line eight in text B is same like

line seven in text A but it is different because there is word modification.

The system will first count the number off different lines. Thus there is only
one different line in both text files. The system will compare the lines and after that
it will highlight the similar lines and the lines that are different in different color so

the lecturer can see the difference.

26

The percentage of similarity can be calculated based on the different that the

system detect. It calculates the percentage of similarity by using the formula shown.

Number of lines in Text A=A
Umber of linein TextB=B
Difference=A—-B

Status, % of match = 100 - (difference / A) * 100)

% match > condition = suspected as plagiarized work

Else not plagiarized work

If A — B resulted a negatives value then the system will change it to positive
value, so the system can produce accurate status. The system enables the user to set

the condition whether the file is plagiarized or not,

45 ONE TO MANY TEXT FILES COMPARISON

If there are many files to be compared, then there will be more comparisons
occur at once and it will require time to do the comparison. For one to many files
comparison, the word by word comparison and line by line comparison process are
the same. The different is only the time taken to do compatisons. It is only the

matter how comparisons occur with many files. The process is discussed below.

Assume that there are six files to be compared.

Number of files,n= 6

To start comparison, 1 file needs to take as master file or start point. For
example, file 1 is taken as master file and file 2 until 6 as target files. Basically, file
1 will be compared to the rest of target files. If the file one is completed with
comparisons with the target files, file 2 will start compare with file 2,3,4,5 and 6.
The process continues until there ts no more files to be compared. The process is

shown in figure 9.

27

Table 5: Comparison Process And The Number of Comparisons Occur

In the table above it shows that how “one to many” files occur same like in
figure 9. As seen in the table, there are numbers that colored in red. The number

represent the numbers of comparisons occur for file 1, file 2 and the rest.

To calculafe the total comparisons occur for 6 files, the system will total up

the value that is in red color or by using a formula shown.
Formula: N=n(n-1)/2

N=5+4+3+2+1=15

Or

Number of Comparisons occur, N=6(6-6)/2=15

Thus, there are 15 comparisons occur for 6 files.

28

As stated before, if there are many files to be compared, it means that there
are many comparisons will occur and this will require time to process and response
to user. From the system testing, the author find out that 1 to 1 text files comparison
require 1 comparison and the time required is 2 second. The author provides a table

shows the number of files, numbers of comparisons occur and total time required.

Time
Time Required Required Time Required

n N (Second) (Min) (Hour)
1 0 0 0.00 0.000
2 1 2 0.03 0.001
3 3 6 0.10 0.002
4 6 12 0.20 0.003
5 10 20 0.33 0.006
6 15 30 0.50 0.008
7 21 42 0.70 0.012
8 28 56 0.93 0.016
9 36 72 1.20 0.020
10 45 a0 1.50 0.025
20 190 380 6.33 0.106
30 435 870 14.50 0.242
40 780 1560 26.00 0.433
60 1770 3540 59.00 0.983
100 4950 8800 165.00 2.750
250 31125 62250 1037.50 17.292
300 44850 89700 1495.00 24.917
500 124750 249500 4158.33 69.306
1000 499500 999000 16650.00 277.500
5000 12497500 24995000 416583.33 6943.056

Table 6: Statistic of Comparisons Occur

46 THE CHARACTERS CLUSTERING PROCESS

The characters clustering process is same like words clustering process. The
characters clustering purpose is to show the statistic of characters occurrence in the
texts. For the time being, clustered characters are shown only for statistic and not yet

for plagiarism status determination.

29

TEXTA

[want to be an engineer. When I was in primary school, I want to be a doctor.

Q0

CEANSTO0D 22—~ MmO D =
11
11
Syl

b B O B = T = = O P (T s [P T T et s

Figure 10: Character clusters including spaces

Total,thar Cluster 21

Figure 11: Total Character clusters including spaces

Total Chars ==3 73]

Figure 12: Total Characters inclading spaces

30

TEXTB

I want to be a pilot. When I was in primary school, my ambition is to be an

astronaut.

i

MEASAMBETOO I 2 ——OnOue =
| |
I |
R
Pl == O P O i P 0 P D == O 20 M e

Figure 13: Character clusters including spaces
Total Char Cluster = 28
Figure 14: Total Character clusters including spaces

Total Chars ==> 87

Figure 15: Total Character including spaces

31

4.7 TEXT-BA'SED PLAGIARISM DETECTION SYSTEM INTERFACE

AND FUNCTIONS SCREEN SHOTS

Figure 16: Splash Screen

7 PlagTest 1.0

33@-” 2 Sl il s Sk ORGP It

Figure 17: Line by Line Comparison Screen

32

Compatison by words Ctrl+W!
Record rhR
Qull CHE

Figure 19: Line by Line Comparison Menus 2

33

Figure 20: Status Record

oot Fio

Veniml Timg rezantah AT

&2 TR

Figure 21: Quit Dialog Box

34

PlagTest Version 1.0 consists of two functions that are
word by word conparison and line by line comparison.

Word byword conparison
. It compares text flles by counting total words and trace the
sitnilar words and group the same words into word clusters.
. It also consider the total rumber of characters and the
characters are grouped Irto character clusters.
. Trough these, comparison process begin and the stetus
“Will be deternined.

Line byline comparison

. It campares text fifes by counting the number of lines and
calculaté the diference rumber of Ines between the master

and the target flas.
. The status will ba determined aiter the comparison process

begin.
. The slmllar [nes will be displayed in black and differert

lines will be displayed in blue colar,
. The user can specifytha cendtion point in order to determine

the status

% pen as wad-onfp:

Figure 23: Browse Dialog Box

35

Murabst of Lines' 44 [tiucber of Lines 51
‘Numbei of D¥fmrences: 7

Figure 25: Arrange Text Window in Horizontal Tiling

36

urnbar of Linas:
[Nusabar of Difterencss: 7

Figure 27: Word by Word Comparison Screen

37

Comparisanby ines CrhL
Record GrHR
Quit CrheE

Seatuns

Tawet Tent

Ty e

Lompaié fesuil

Btatus

Figure 29: Word by Word Comparison’s Menus 2

38

gy
] essign_1
+ {5 assign 2
(i) code 1
@ cods 2
: 557 (&) Java cods master
. Resdop . (] ava code target
Targiet Text : . . 4 l.nnpsl
R | B Locps2

My Dagumsnis % :g'L' ;

: = “[Text Fies .T%T)
Chinfizfe Besult . . I Open asieadony

ithe do until loop can run zerc or moxe
imes, this loop keeps pepeating itself
until its condition hecomez true.notice
that this is the opposite of the do . ;
luhile and do~loop while loops. these two
luugs keep running as long as thein !
anditions is true. the do until leop
eeps running until its comdition
ecomez truc. to avoid and endless do
ntil loop make sure that at least one
nstruetion inaide your do until inop
changes the true or false value of the

R

Taiget Tent

he do until leop cAn run ZErc or ROrs .

imeg. this Yoop kee‘gs repeating itself .

until its conditien becomes true.notice ota rds

that this is the opposite of the do Total Uords Clusters

while and do-loop while loops. these twe . Total charactars include spaces
Loops keep running as long as their Lo Total .Char Cluster

onditions is trus. the do until loop PR - . g

keeps running until its conditiop

becomes true. this is the sane thing az

caying that the do until loop keeps

Campraze. Rezull
gl cond|t Lon
candit[ons
2
Total Words .
Tatal Vowds Clusters

Jotal characters include spaces
Iotal Char Clusta

Figure 31: Show Statistic

39

Hagter Fes

he do wntil loop can run Zero oF noke
imes. this loop huegs repeating itself
ntll its condition hecomes true.notice
fthat this is the op}:ns:h:a of the do
jwhile and do—loop while loops. these two
keep running as long as their
lons ls trwe. the do until laep
keeps vunning until iis conditien
hecomes true. to avold and endless do
until loop make sure that at least one
instruction dngide your do until loop
hanges the trus or false walue of the s Lde
nstrucs lon
g:nlf
240
egp:

he do until luup l:an run Zero or nore

times. thiz loo ropsating itsell .

until its cunditinn scomez teue.noticas RS otal Uords

ithat this iz the opposite of the do : g : gl Total Words Clusters ws) 5@
thils and do-loop while loops. these two Total characters include spaces ==> 489
loops keep running as long as theiwe : | Total Char Cluster wed 26
lconditions iz true. the do until leup : ;

[keeps punning until its condition

scomas true. this is the same_ thing as

aying that the do until loop keeps

Compaie Retult

Total similar words is 76
Tetal simdlar words Gluster is ¥4x

Tetal similar characters is 792

Luspected as Plagiarized Wowk]

Hords
Tntnl Vords Cluste:
Total charactors im:luﬂ.u spaces
Total

Magle: Teat

Htha do w N PuUN ZEFD 0P MOPE
imas. th:la lunp keeEs rapeating itsalf
until its condition becomes true_notice
ithat this is the opposite of the do
Awhile and do—loap while loops. these two
pops keep ranning as_ leng as thair
jeonditions 1s true. the do until looyp
eeps running until itz condition
ecomeg true. to aveid and endless do

while and do-].nnp while lunpa. thes:
loo keep running as lony as their
iconditions is true, the do until leaj
Bkeepy running untll fts condition
thecomes true. this is ths_same thin
gaying that tha do until leop keeps

Total similar words is 76
Total similar vords Clustor is 94x
Total similar characters is 794

thel

een

{PTTREY Suspected as Plagiaw
otal Hords
| Total Hords Clusters

Iotal chmntem 1nclude spaces
i Total CI

Figure 33: Status Record

40

ithe do until loop can »un zero or pore
times. thiz loop keeps repeating itself
until its condition becomes true.notice
hat this is the oppacsite of the do
hile and do-loop while loopz. these two
loope keep running as_ long as theiw
conditionz iz true. the do auntil loap
heeps runcing uatll its condition
Ehocores trua. to avnid and endless do c : H
Buntil looy make sure that at least one c an hlms
instructlon inside youwr do until loop
changes the true or false value of the nslde
natruct ion

tiuw

the do until 1onp Can Fun Tery OFr ROPE
times. this loop keeps repeating itself
until its condition becomes true.notice
hat this is the opposite of the do
while and do—loop while loops. these tuo
loops heep running as long as their
conditions is true. the do until loop
Ekeeps punning until its conddition
becomes true. this iz the same thing as
aying that the de until loop keeps

e
ARRRAR R
ind

Compais Be:

Total sinilar words is 76x
§ Total similar words Cluster is 94

Total zimilar characters is 79

Sedius Suspected as Plagiarized Work

Total Words

Total Worde Clusters

Total characters luclude spaces
Total Char Cluater

Figure 34: Quit Dialog Box

41

4.7.1

FUNCTIONS

Clear Button

® To clear the filled field

Browse Button

® To open the text file into the input fields

Quit Button

® To exit the system

Show Statistic Button

® To list the statistic of words, characters, words clusters, characters
clusters for both master and target text files. Besides, there is also
summary indicate the total of words, total of characters, total of words
clusters and total of characters cluster.

Compare Button

® Compare the text files for the status result.

Horizontal and Vertical Tiling

® Arrange the text window horizontally or vertically

Go to By Words Comparison

® Navigate from Line by Line Comparison Page to Word by Word
Comparison Page

Go to By Lines Comparison

® Navigate from Word by Word Comparison Page to Line by Line
Comparison Page

About Menu

® Prompt a window describing about Plagtest 1.0

42

CHAPTERSS

RECOMMENDATION AND CONCLUSION

The ultimate goal of plagiarism detection system is the reduction of
plagiarism. Many cases of plagiarism can be detected by using the system which
would be easily missed by a lecturer. It is recommended that the system can be
implemented online whether intranet or internet. This can give easy access to the

authenticated user.

The Text-Based Plagiarism Detection System that the author developed is
not fully completed and has limitations. Currently, it can only compare one to one
text files only. Some of the functions still have small errors. It need enhancement to
improve the functions in order to meet the requirements. The main limitation of the
system is it cannot identify the original text files. It can only choose one text file as
the master and others as the target and decision to penalize the students who do

plagiarism is depend to the lecturers.

For a group of text files comparison, it is suggested to use Self-Organizing
‘Maps (SOM). SOM is part of the Neural Network. The SOM can populate the same
files into group within the database. From the same files population, the system can

detect text files similarity.

The testing result shows that PlagTest 1.0 is applicable to be used in UTP
since the number of student per subject offered is less than 300. If there is only 100
students take a subject, it represent 100 files to be compared and the total time

required is about two hours.

As the conclusion, the project is feasible and practicable to be developed as

the method, equipments and the budget is possible and reasonable. Besides, the

43

project is beneficial to lecturers and the organization in order to prevent and detect

plagiarism.

44

REFERENCES

[1] Jun-Peng Rao, Jun-Yi Shen, Xiao-Dong Liu, Qin-Bao Song. A New Text
Feature Extraction Model and lts Application in Document Copy Detection, 82-87,
2003

[2] Raymond Kosala, Hendrik Blockeel. Web Mining Research: A Survey. ACM
SIGKDD,2(1):1-15, 2000

[3] S Brin, J Davis, and H Garcia-Molina. Copy detection mechanisms for digital
documents. In Proceedings of the ACM SIGMOD Annual Conference, s San
Francisco, CA, May 1995

[4] N Shivakumar, H Garcia-Molina, SCAM: A copy detection mechanism for
digital documents. In Proceedings of 2nd International Conference in Theory and
Practice of Digital Libraries (DL95), Austin, Texas, June 1995.

[5] N.Caicedda, E. Gaussier, C. Goutte, J. M. Renders. Word-Sequence Keniels.
Jounial of Machine Learning Research, 3:1059-1082, 2003

[6] H. Lodhi, C. Sannders, J. Shawe-Taylor, N. Cristianini, C. Watkins. Text
Classification using String Keniels, Joumal of Machine Learning Rescarch,
2(Fcb):419-444, 2002

[7] Si A, Leong HV,, Lmu R. W. H. CHECK A Document Plagiarism Detection
System. In Proceedings of ACM Symposium for Applied Computing, pp.70-77,
Feb. 1997.

[8] G Salton. The state of retrieval system evaluation. Information Processing &
Management, 28(4):441-453.1992

[9] Bao Jun-Peng, Shen Jun-Yi, Liu Xiao-Dong, Liu Hai-Yan, Zhang Xiao-Di.
Document copy detection based on kernel method.

[10] Xin Chen, Brent Francia, Ming Li, Member, IEEE, Brian McKinon and Amit
Seker. Shared Information and Program Plagiarism Detection, 1545-1551, July 2004
[11] C.E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J.,
Vol.27, pp.379-423, July and October.1948

[12] W.Weaver and C.E. Shannon, The mathematical theory of communication.
Chicago,IL:Univ.Illinois Press, 1949

[13] M.Li and P.Vitanyi, An introduction to Kolmogorov Complexity and Iis
Applications, 2™ ed. New York:Springer-Verlag, 1997

45

[14] K.Ottenstein, “An algorithmic approach to the detection and prevention of
plagiarism.”SIGCSE Bull, vol. §, no. 4, pp. 30-41, 1997
[15] , “YAP3: Improved detection of similarities in computer program and

other texts In Proc.27" SCGCSE Tech. symp., Philadelphia, PA, 1996, pp. 130-134

46

APPENDIXES

47

frmdoc

Option Explicit
Private Sub mnFilel_Click(})

End Sub

Private Sub CooiBar]l_HeightChanged(ByVal NewHeight As Single)
With rtext
Top =0+ NewHeight
Left=0
Width = Me.Width - 125
.Height = Me Height - 400 - NewHeight
Ead With
End Sub

Private Sub Form_Load()

With rtext
Top=0
Left=0
Width =Me Width - [25
Height = Me Height - 400
End With

End Sub

Private Sub Form Resize()
If Me.WindowState <> | Then
With rtext
Top=20
Lefi=0
Width = Me. Width - {25
.Height = Me.Height - 400
End With

End If
End Sub

Private Sub mnJump_Click()
Dim compareline As String
Dim 1 As Integer
compareline = rtext.SelText

If InStr(1, mastertext, compareline) = 0 Then

1=0
Else
I = InStr(1, mastertext, compareline)
End If
With newdoc(0).rtext
SetFocus
SelStart=1-1
.SelLength = Len{compareline)
End With
End Sub

Private Sub mnJumpCompare_Click(}
Dim masterline As String
Dim [As Integer

masteriine = rtext.SelText

I InSir(l, comparetext, masterline) = 0 Then
=0

Else
1= InStr{1, comparetext, masterline)

End If

With newdoc{1).rtext

SetFocus

SelStart=1-1

Seilength = Len(masterline)
End With
End Sub

Private Sub rtext_MouseUp(Button As Integer, Shift As Integer, x As Single, y As Single)
If Button =1 Then
SendKeys "{HOME}"
SendKeys "+{END}"
End If
If Button = 2 Then
PopupMenu mnedit
End If
End Sub

frmmain

Option Explicit

‘Private Sub Form_Load()
‘Call H3croll_Scroll

‘End Sub

Private Sub begin_Click()

If txtmaster = "Master File" Or txtcompare = "Compare File" Then
MsgBox "You must specify a Master and Target File*
Exit Sub

End If

Dim masterline As String
Dim compareline As String
Dim mlinecount As Integer
Dim clinecount As Integer
Dim diffcount As Integer
Dim Difstats As Integer
Dim 1 As Integer

Dim K As Integer

newdoc{0).Show

newdoe{0).Caption = "Master File <" & txtmaster. Text & ">"
newdoc(1) Show

newdoc(1).Caption = "Target File <" & txtcompare, Text & ">"
vtile Enabied = True

htile.Enabled = True

Open txtmaster, Text For Input As #1
Do Until EOF(1)
Line Input #1, masterline
mlinecount = mitnecount + 1
Loop
Close #1

ReDim masterarray{mlinecount)
mlinecount =0

Open txtmaster, Text For Input As #1

Do Until EOF{1)
Line input #1, masterline
masterarray(mlinecount) = masterline
mtxtadd (masterarray(mlinecount))
mlinecount = mlinecount + |

Loop

Close #1

Open txtcompare. Text For Input As #1
Do Until EOF(1)
Line Input #1, compareline
clinecount = clinecount + {
Leop
Close #1

ReDim comparearray(clinecount)
Rel}im diffarray{clinecount)
clinecount = 0

Open txtcompare. Text For Input As #1

Do Until EOF(1)
Line Input #1, compareline
comparearray(clinecount) = compareline
etxtadd {comparearray(clinecount))

clinecount = clinecount + 1
Loop
Close #!
comparecount = clinecount

mastertext = newdoc(0).rtext. Text
comparetext = newdoc(1).riext. Text

DoEvents

Call mstatsadd{"Nutnber of Lines", mlinecount)
Cali ¢cstatsadd("Number of Lines", clingeount)

For I =0 To clinecount
If InStr(1, mastertext, comparearray(1)) = 0 Then
With newdoc(1).rtext
.SelStart = InStr{1, comparetext, comparearray(I)) - 1
.SelLength = Len(comparearray{1)}
SelColor = vbBlue
End With
diffcount = diffcount + 1
diffarray(diffecount) = comparearray(I)
End If
Next |
DoEvents
Call cstatsadd{"Number of Differences", diffcount)

Difstats = 100 - {diffcount / (mlinecount} * 100}
Diff Text =" " & Difstats & "%"

'If Difstats < 50 Then

‘Diff2.Text = "Not Plagiarized Work"
‘Else; Diff2 Text = "Plagiarized Work"
‘End If

End Sub

Private Sub browsel_Click()

'cd] Filter = "Text Files (* TXT)[* TXT|AL_Files (* *)[* *"

cd1 Filter = "All Files (*.*)|*.*[Text Files (* TXT)[* TXT|Batch Files(* BAT)* BAT|Executzble Files(* EXE){* EXE"
cd1.ShowOpen

fxtmaster. Text = cd 1 FileName

End Sub

Private Sub browse2_Click()

'cd | Filter = "Text Files {* TXT){* TXT|Ali_Files (* *){**"

cdl Filter = "All Files {* *)|* *[Text Files (* TXT)|* TXT|Batch Files(* BAT)* BAT|Executable Files(* EXE)[* EXE"
cd1.ShowOpen

txtcompare. Text = cd 1 FileName

End Sub

Private Sub Clear_Click()
teimaster. Text =""
txtcompare. Text =
mstats. Text=""
cstats Text=""
Diff. Text=""
Diff2. Text=""

nn

End Sub
Private Sub Command]_Click()

PlagTest.Show
End Sub

Private Sub Diff Change()

Call HScroll_Seroll
End Sub

Private Sub Exit_Click()

On Error Resume Next

If MsgBox(" Are you sure you want to quit?", voQuestion + vbYesNoe) = vbYes Then
Unload Me

End If

End Sub

Private Sub HScroll_Change()
Call HScroll_Scroll
End Sub

Private Sub HScroil_Scroll(}

Dim Difstats As Integer
ok ok o 0ok o o sk ok o e o o oK o o e ok ek o o g e o ok s sl e s s sl o sk ok sk ot ok ok kol koK ks ok ok ok kR

s o o oo o o ol ek e e s o o ok Rkl e Rl o el Rl ok o oo ek s kol ok sk

Textl = HScroll. Value
If Val(Diff) > Val(Textl} Then
Diff2 = "Suspected as Plagiarized Work"
Diff2 BackColor = vbRed
Else
Diff2 = "Not Plagiarized Work"
Diff2 BackColor = vbGreen
End If

'If Difstats < Val{Text1) Then
‘Diff2.Text = "Not Plagiarized Work"
'Diff2 BackColor = vbGreen

'Else; Diff2. Text = "Plagiarized Work"
'Diff2. BackColor = vbRed

‘End If

End Sub

Private Sub htile_Click()
Me. Arrange vbTileHorizontal
End Sub

Private Sub MDIForm_Load()
Call HScroll_Scroll
End Sub

Private Sub PT_Click()
about.Show
End Sub

Private Sub Quit_Click(}

On Error Resume Next

If MsgBox(" Are you sure you want to quit?", vbQuestion + vbYesNo) = vb¥es Then
Unload Me'

End If

End Sub

Private Sub Rec_Click()
STATUS_FORM.Show
End Sub

Private Sub vtile Click()
Me Arrange vbTileVertical
End Sub

Private Sub Words_Click()
PlagTest.Show
End Sub

frmSplash

Option Explicit

Private Sub Form_KeyPress(KeyAscii As Integer)
Unload Me
frmmain Show

End Sub

Private Sub Form_Load()
IblVersion.Caption = "Version " & App.Major & "." & App.Minor'& "." & App Revision
IhIProductName.Caption = App.Title

End Sub

Private Sub Framel_Click()
Unload Me
frmmain.Show

End Sub

PlagTest

Dim a(120) As String

Dim countClusterWord(120) As Integer
Dim ClusterWord(120) As String

Dim ch(2000) As Byte

Dim countch(2000) As Integer

"try for compare purpose

Dim b(120) As String

Dint countClusterWord1{120) As Integer
Dim ClusterWord1(120) As String

Dim chl(2000) As Byte

Dim countch1(2000) As Integer

Private Sub ClearText]_Click()
InputText]l. Text=""
ListWords].Clear
ListChars.Clear
ListWords11.Clear
TotalChars1.Clear
InputText2 Text=""
ListWords2.Clear
ListWords22.Clear
ListChars2 Clear
TotalChars2.Clear
Result.Clear
Status.Clear

End Sub

Private Sub emdCompare_Click()
' If Not bisCompared Then

! MsgBox "Error is Building Arrays"
" EndIf

Private Sub Compare_Click()

If InputText! ="" Or InputText2 ="" Then
MsgBox "You must specify a Master and Target File"
Exit Sub

End If

ok o e e e e oo o o kol ok e ob o o ok ok ofe ok o ol ok ok e ok e ok ok ol ek sk e o sk ook ok ok o ok ok oo o ook ok ek ekl sk ok ok ok sk ok K

Sentencel = InputTextl
InputText! = LCase(Sentencel)
Sentencel = LCase(InputTextl)

lok =-1
ctrWordl =1
'Tokenizer
While (Not Len(Sentencel} =0) And (Not lok = 0}
lok = InStr(1, Senteneel, " ", vbTextCompare)
If 1ok = 0 Then lok = Len(Sentencel)
b{etrWordl) = Mid(Sentencel, 1, ok - 1)

'te remove Question mark (?) at the end of the word
lokasiQmark = InStr(1, b(ctrWord1), "7*, vbTexiCompare)
If lokasiQmark = Len(b(ctrWord1}) Then b(ctrWord1) = Left(b(ctrWord1), lokasiQmark - 1}

‘to remove fuil-stop (.} at the end of the word
lokagiFSmark = InStr(1, b{cttWord1), ".", vbTextCompare)

[f lokasiFSmark = Len(b{ctrWord1)) Then b(cttWordl} = Lefy(b{cttWordl), lckasiFSmark - 1)

la_kasiFSmark = InStr(1, blctrWord1), ",", vbTextCompare)

If lokasiFSmark = Len(b{ctrWord1)) Then b(ctrWord1) = Lefi{b{ctrWord1), lokasiFSmark - 1)

{okasiFSmark = InStr(1, b(etrWordl), "t", vbTextCompare)
1f lokasiF$mark = Len(b(ctrWord 1)) Then b{ctrWord1) = Left(b{ctrWord1}), lokasiFSmark - 1)

ctrwordl = ctrWord] + 1
Sentencel = Mid(Sentencel, lok + 1}

Wend
‘adjust the value of ctrWordl
ctrord] = ctrWordl - 1

'Selection sort --> required for words clustering, see bellow
For1=1 To ctrWordl - 1
Forj=1+1 ToctrWordl
If (StrComp(b(j), b(I), vbBinaryCompare) < 0} Then
temp = b(j)
b{j}=b(I}
b(l) = temp
End If
Next j
Next]

Sentence = InputText2

‘convert case for character

InpufText2 = L.Case(Sentence)

‘convert case for word

Sentence = LCase(InputText2)

lok =-1

ctrWord =1

'Tokenizer

While (Not Len(Sentence) = 0) And (Not lok =0)
lck = InStr(1, Sentence, " ", vbTextCompare)
If lok = 0 Then lok = Len(Sentence)
a(ctrWord) = Mid(Sentence, 1, lok - 1)
'to remove Question mark (?) at the end of the word
lokasiQmark = InStr(1, a(ctrWord), "?", vbTextCompare)
If lokasiQmark = Len(a{ctrWord)) Then a(ctrWord) = Lefi{a{ctrWord), lokasiQmark - 1)

'to remove full-stop () at the ned of the word
lokasiFSmark = InStr(1, a(ctrWord), ".", vbTextCompare}
If lokasiFSmark = Len{a(ctrWord)) Then a(ctr'Word) = Lefi{a{ctrWord), lokasiFSmark - 1)

lokasiFSmark = InStr(1, a(cttWord), ",", vbTextCompare)
If lokasiFSmark = Len(a(ctrWord)) Then a{ctrWord) = Lefi(a(ctrWord), lokasiFSmark - 1)

tokasiFSmark = InStr(1, a(ctrWord), 1", vbTextCompare)
If lokasiFSmark = Len(a{ctrtWord}) Then a(ctrWord) = Left{a(ctrWord), lokasiFSmark - 1)

ctrword = etrWord + 1
Sentence = Mid{Sentence, lok + 1)
Wend
‘adjust the value of ctrWord
ctrword = ctrword - 1
'Selection sort --> required for words clustering, see bellow
For 1= 1 To ctr'Word - 1
Forj=1+ 1 To ctrWord
If (StrComp(a(j), a(l), vbBinaryCompare) < () Then
temp = a(})
a(j) =a{l)
a(l) =temp
End [f
Next j
Next 1

ke o e o s o s o e e o ol o o o ok ok ofe ok 3K Rk e st ek ok o seofeofeoke ok ok ok sk o o o ok ok kol ok oo o o ok ek oKk ok sk ok

If etrWord 1 < ctrWord Then
diffeount! = (ctrWord - ctrWordl)

Else: diffcount] = (ctrWord1 - ctrWord)

EndIf

Dim diff1 As Integer

diffl = 100 - ((diffeountl / (ctrWord1) * 100))

Result. Addliem " "

Result, Addltem " Total similar words is " & diffl & "%"

s s ks Ao o ook o e o SR ok o S Aok Sk R Rk s ok ok e e
"Word clustering, similar words are group together

TmpString = 5{1)

ctrClustert =1

countClusterWord l{cirClusterl) = 1

ClusterWord l{ctrClusterl) = TmpString
For1=2 To ctr'Word1
If StrComp(TrapString, b(I), vbBinaryCompare) =0 Then
countClusterWord 1{ctrCluster1) = countClusterWord 1 (cirCluster 1) + 1
Else
ctrCluster] = ctrCluster! + 1
TmpString = b(I)
ClusterWord [{ctrCluster1) = TmpString
couniClusterWord 1 (¢t Clusterl) = 1
End If
Next I

jumlahPkm} = 0 ' to check the sum of clustered words statistic
"Populate the clustered werds in listhox
For =1 To ctrClusterl
TmpString = ClusterWord 1(1) & Space(20}
jumlahPktn1 = jumlahPkin| + countClusterWord 1(T)
Next I

"Word clustering, similar words are group together
TmpString = a{l}
etrCluster = 1
countClusterWord{etrCluster) = 1

ClusterWord{ctrCluster) = TmpString
For 1 =2 To ctr'Word
If $trComp(TmpString, a(l), vbBinaryCompare) = ¢ Then
countClusterWord(ctrCluster) = countClusterWord(ctrCluster) +

Else
ctrCluster = ctrCluster + 1
TmpString = a(l)
ClusterWord(ctrCluster) = TmpString
countClusterWord(ctrCluster) = 1

End If
Next I

jumlahPktn =0
'to check the sum of clustered words statistic
"Populate the clustered words in listbex
For I =1 To ctrCluster

TmpString = ClusterWord(1) & Space(20)

jumlahPkin = jumlahPkin + countClusterWord(I}
’**I;]iifh}k***
'If countClusterWord 1(T) < countClusterWord(T) Then
diffeount2 = (countClusterWord(I) - countClusterWord 1(D))
'Eise: diffcount2 = (countClusterWord1(E) - countClusterWord(1))
'End If
'Dim Diff2 As Integer
Diff2 = 100 - {(diffcount2 / ((countClusterWaord 1{1) + countCluster Word(I)) / 2) * 100p
Result. Addltem " "
Result. Addltem " Total similar words Cluster is " & Diff2 & "%"

If ctrCluster} < etrCluster Then

diffcount2 = (ctrCluster - ctrCiuster1)

Else: diffcount2 = (ctrCluster - cirCluster)

End If

Dim Diff2 As Integer

Diff2 = 100 - {(diffeount? / {ctrCluster1) * 100})

Result. AddItem " "

Result. AddItem " Total similar words Cluster is " & Diff2 & "%"

s o koo o oo Rk o s o ok R ool SRR ko ok s el o s ko e Rk s e s R s KR ok o

Sentencel = InputTextl
ctrChl = Len(Sentencel)

For [=1 To cttChl
ch(D) = Asc(Mid{Sentencet, L, 1))
Next [
‘sorting characters
Fork=4§ToetrChl -1
Forj=I+1ToctrChl

[f ch(j) < ch(l) Then
temp = ch(j}
ch(j) =ch(I)
¢h(l) =temp

EndIf

Next j

Next 1

Sentence = InputText2
ctrCh = Len(Sentence)

Forl=1ToctrCh
ch([) = Asc(Mid(Sentence, 1, 1)}

Next [

'sorting characters

Fori=1ToctrCh- |
Forj=1+1ToctrCh

If ¢h(j} < ch(f) Then
temp = ch(j)
ch(j) = ch(l)
ch(l) = temp

End If

Next]
Next [

e o e o e s S e o o o o sk sl ok ol ok ok ok sl sk SRR R R R o R R sk skl s b Ok o el ok skl s skesk sk ok R ok R R

If ctrCh! < ¢trCh Then

diffeount3 = {ctrCh - ctrChl)

Else: diffeount3 = (ctrChl - ctrCh)

End If

Dim diff3 As Integer

diff3 = 100 - ((diffcount3 / (ctrCh1) * 100))

Result. AddItem " "

Result. AddItem " Total similar characters is ' & diff3 & "%"

Yoo o ok e s o oo ok o ok ool o s o o o ol o o e e s ok ok ok e SR Rl ok o stk okl ookl o ol e ke ekt ek ok ok otk s sk ek ok o o R ok ok

tmpCh = ch(1)
ctrClusterChl = 1
ch{ctrClusterCh 1) = tmpCh
countchl(ctrClusterCh1) = §
For 1=2 To ctrChl
If ch(1) = tmpCh Then
countch1(etrClusterCh1} = countchl(etrClusterChl}) + 1
Else ‘
tmpCh = ch{l}
ctrClusterCh1 = ctrClusterChl + 1
countehl{ctrClusterChi) =1
ch{ctrClusterCh1) = tmpCh
End If
Next I

tmpCh = ¢h(1)
ctrClusterCh =1
ch(ctrClusterCh) = tmpCh
countch({crClusterCh) =1
For1=2 To ctrCh
If ¢h(1) = tmpCh Then
eountch(ctrClusterCh) = countch(etrClusterCh) + 1
Else
tmpCh = ch(l)
ctrClusterCh = ctrClusterCh + 1
countch{ctrClusteyCh) = 1
ch(ctrClusterCh) = tmpCh
End If
Next 1

e 2 e e e o e oo o ok o ok o e o ol ook o ok o oo s e ol ok ok e ok ok o ok ke ok ok o e of ok o ol o o ol ok ook o o ok s s ok o ol e o bk o ol sk o o Ol SRl ok e

'If etrClusterCh1 < ctrClusterCh Then

‘diffeountd = (etrClusterCh - ctrClusterChi)

‘Else: diffeount4 = (ctrClusterCh] - ctrClusterCh)

‘End If

'Dim diff4 As Integer

'diff¢ = 100 - ({diffcountd / ctrClusterCh1) * 100)

Result. Addltem "Total similar characters Clusters is " & diff4 & "%"

‘ characters only have 26. no need to count the diff’

Tk o ok ok ok oo o s ok s ok ok ok ok ok ko ok o o o ok ok ool ok oot e st o sk o ok o o bkl o ok ok e e Ok 8 e o e ol e ook ok o ok sl sk ook ke e sk ke ok ek ek
If diff1 >= 50 And Diff2 >= 50 And diff3 >= 50 Then

Status. Addltem " "

Status, AddItem " Suspected as Plagiarized Work"

Else: Status. AddItem " "

Status. AddItem " Not Plagiarized Work"

End If

End Sub

Private Sub Exit_Click()

"Unload Me

On Error Resume Next

If MsgBox("Are you sure you want to quit?", vbQuestion + vbYesNo) = vbYes Then
Unload Me

End If

End Sub

Private Sub GoCode_Click(}
frmmain.Show
End Sub

Private Sub lines_Click()
frmmain, Show
End Sub

Private Sub mnuFileOpen Click()

Dim WhatFile As String

CommonDialog] Filter = “Text Files {(* TXT){* TXT|All_Fiies (*.%)[* *"

'CommonDialog] Filter = "All Files (*.*)[* *[Text Files (* TXT)[* TXT[Batch Fites(* BAT)|* BAT|Executable Files(*. EXE)[*. EXE"
ComrionDialog] Filterindex =1

CommonDialogl.ShowOpen
WhatFile = CommonDialog! FileName

If MsgBox("<" & WhatFile & ">", vbQuestion + vbYesNo) = vb¥es Then
Load Me
End If

Open WhatFile For Input As #t
Input #1, loadfilel
InputTextl.Text = loadfilel

End Sub

Private Sub mnuFileOpen2_Click()

Dim WhatFilel As String
CommonDialog2 Filter = "Text Files (* TXT)* TXT|AlL Files (*.*)|* *"
CommonDialog2 FilterIndex = 1

CommonDialog2. ShowOpen
WhatFilel = CommonDialeg2 FileName

If MsgBox("<" & WhatFile! & ">", vbQuestion + vbYesNo} = vbYes Then
L.oad Me
End If

Qpen WhatFile] For Input As #2
Input #2, MyString2
InputText2 = MyString2

End Sub

Private Sub PT_Click(}
about.Show
End Sub

Private Sub Quit_Click{)

On Error Resume Next

If MsgBox(" Are you sure you want to quit?", vbQuestion + vbYesNo) = vbYes Then
Unload Me

End If

End Sub

Private Sub Rec_Click{)
STATUS_FORM.Show
End Sub

Private Sub ShowStatistic_Click()

If InputText] ="" Or InputText2 = "* Then
MsgBox " You must specify a Master and Target File"
Exit Sub

End If

‘ListChars1.Clear
'ListWordsl1.Clear
‘TotalChars1.Clear
If InpuTextl = "Master Fije" Or InputText2 = "Target File” Then
' MsgBox "You must specify a Master and Compare File"
'Exit Sub
'End If
'input text 1 codes
Sentencel = InputText!
'change the case for etrCluster] character
InputText] = LCase(Sentencel)
Sentence] = LCase(InputTextl})
If InputTextl ="" Then
ListChars].Clear
ListWords11.Clear
TotalCharsl.Clear
End If

lok=-1

cirwordl =1

'Tokenizer

While (Not Len(Sentencel) =) And (Not lok = 0)
lok = InStr(1, Sentencel, " *, vbTextCompare)
If lok = 0 Then lok = Len(Sentencel)
b(etrWord 1) = Mid(Sentencel, §, lok - 1)

'to remove Question mark (?) at the end of the word
lokasiQmark = InStr{1, b{ctrWord 1), "?", vbTextCompare}
If lokasiQmark = Lea(b(ctrWord1)) Then b(ctrWord!) = Left(b(ctrWord1), lokasiQmark - T)

‘to remove full-stop (.) at the end of the word
lokasiFSmark = InSer(1, b(etrWord1), ".", vbTextCompare)
If lokasiFSmark = Len(b(ctrWord 1}) Then b{ctrtWord1) = Left(b(ctrtWord1), lokasiFSmark - 1}

lokasiFSmark = InStr(}, b(ctrWord1), ".", vbTextCompare)
If lokasiFSmark = Len{b{ctrWord1)) Then b(ctrWord1) = Lefi{b(ctrWord1), lokasiFSmark - 1)

lokasiFSmark = InStr(1, b{ctrWord1), "!", vbTextCompare)
If lokasiFSmark = Len{b(ctrWord1)) Then b{ctrWord1) = Lefti{b{ctrWord1), lokasiFSmark - 1)

ctrwWord] =ctrwordl + 1
Sentencel = Mid(Sentencel, lok + 1)

Wend
‘adjust the value of ctrWord
ctrword] = ctrWordl - |

'Selection sort --> required for words clustering, see bellow
For!=1To ctrword] - 1
Forj=I1+1ToctrWordl
H (StrComp(b(j), b{I), vbBinaryCompare) < 0) Then
temp = b(§)
b{j}="1(I)
b(I) = temp
End If
Next
Next I

'Populate the sorted words in listbox
ListWordsl.Clear

Forl=1To ctrtWordi
ListWords1.AddItem b(I)
NextI

"Word clustering, similar words are group together
TmpString = b(1)

ctrCluster] = 1

countClusterWord 1 (ctrClusterl) = 1

ClusterWord1(ctrCluster1) = TrmpString
For 1 =2 To ctrWordl
If StrComp(TmpString, b(l), vbBinaryCompare) = 0 Then
countClusterWord1(ctrCluster 1) = countClusterWord 1 (ctrCluster1) + 1
Else
ctrCluster] = ctrClusterl + 1
TmpString = b(I)
ClusterWord1(ctrClustert) = TmpString
countClustesWord1{ctrCluster1} = |
End If
Next [

ListWords!i l.AddItem W13 o o sk ok ok o ook ok ol ook o ok o ket sk ok sk solok o sk ()

ListWords]1.AddItem "Total Words Cluster =" & ctrCluster!
Listworésl lAddem T sfe s o S e 3 e sk ook sk ok sk ool sk sl oleeok o s ek ke sk ek ok s

jumlahPkinl = 0" to check the sum of clustered words statistic

'Populate the clustered words in listbox

For I=1 To ctzCluster]
TmpString = ClusterWord 1(I) & Space(20)
ListWordsl 1. Addltem Left{ TmpString, 15) & "==>" & countClusterWord1(I)
jumlahPktal = jumlahPkin] + countClusterWord 1(1)

Next 1

ListWords11.AddItem " "

'display the sum of clustered words -> only for checking

ListWords] 1.AddItem "Total Words ==>" & jumlahPkin}

ListWords1 |. AddItem " "

'‘Counting characters
Sentencel = InputTextl
ctrChl = Len(Sentencel)

TotaiCharsl . Addltem " Total Words =>"& ctrWardl
TotaiChars! . Addltem " Total Words Clusters =>" & ctrClusterl
TotatCharsi.Addltem " Tota} characters include spaces ==>" & ctrChl
"TotalCharst.Addlter " Total characters include spaces =>" & ctrCh! & vbCr
'TotalChars1.Addltem " Total characters include spaces ==>" & jumlahCh

ForI=1 ToctrChl
ch(l) = Asc{Mid(Sentencel, I, 1))
Next [
'sorting characters
ForI=1ToctrChl - 1
Forj=I1+1 To ctrChl
If ch(j) < ch(l} Then
temp = ch(j)
ch(j)=ch(D)
ch(l) =temp
End If
Next j
Next]

tmpCh =ch{1}
ctrClusterChl =1
ch{ctrClusterChl) = tmpCh
countchl(ctrClusterChl) =1
For =2 To ctrChl
If ¢h(1) = tmpCh Then
countchl{ctrClusterCh1) = countchi (ctrClusterCh1) + 1
Else
tmpCh = ch(I)
etrClusterCh1 = ctrClusterChl + 1
countchl{ctrClusterChl) =1
ch(etrClusterChl) = tmpCh
End If
Next 1

'Populate the clustered characters

jumlahChl =1

ListChars],Clear

ListChars] . Additem " dodokos sk ok skt ook ook e skeak seob ok ko s ok ek et

ListCharsl.Addltem "Total Char Cluster =" & ctrClusterCht
LiStCharSl Addltem Mskeokoofe e ok s sk otk sk ok skeosk ook sk sk sk ek sk ook ko ek ok
TotalChars1.Addltem " Total Char Cluster ==>" & ctrClusterChl
For I =1 To cirClusterCh1
ListCharsi. Addltem Left(Chr{ch{I}} & Space(3), 2) & "-=> " & countch1(I)
jumlahCh1 = jumlahCh! + countchl{I}
NextI
ListCharsl AddItem " "
'ListChars1.Addltem "Total Chars ==>" & jumlahCh1
ListChars1 . Addltem "Total Chars ==>" & ctrChl
ListChars1.AddlItem " .

A R S R A A R R S R R R A i e 2

ListChars2.Clear
ListWords22.Clear
TotalChars2.Clear

Sentence = InputTexi2
‘convert case for character
InputTextZ = LCase(Sentence)
'convert case for word
Sentence = LCase(InputText2)
jok =-1

ctrWord = |
"Tokenizer
While (Not Len(Sentence) =0} And (Not lok = ()
lok = InStr{1, Sentence, " ", vbTextCompare)
If 1ok = 0 Then lok = Len(Sentence)
a(ctrWord) = Mid(Sentence, 1, lok - 1)
to remove Question mark (?) at the end of the word
lokasiQmark = InStr(1, a{crtWord), "?", vbTextCompare)
If lokasiQmark = Len{a(ctrWord)) Then a(ctrWord) = Left(a(ctrWord), lokasiQmark - 1}

‘to remove full-stop (.) at the ned of the word
lokasiFSmark = InStr(1, a(ctrWord), ".", vbTextCompare})
If lokasiFSmark = Len(a(ctrWord)) Then a{ctrWord) = Left(a{ctrWord), lokasiFSmark - 1)

lokasiFSmark = InSir(1, afctrWord), ",", vbTextCompare)
If lokasiFSmark = Len(a(ctrWord)) Then a{ctrword) = Lefi(a(ctrWord), lokasiFSmark - 1}

lokasiFSmark = InStr(1, a{ctrWord), "!", vbTextCompare)
If lokasiFSmark = Len{a(ctrWord)) Then a(ctrtWord) = Lefi{a(ctr'Word}, lokasiFSmark - 1)

ctrWord = ctrtWord + 1

Sentence = Mid(Sentence, lok + 1)
Wend
‘adjust the value of ctr'Word
ctrword = ctrWord - |

'Selection sort --> required for words clustering, see bellow
For1=1To ctrWord - 1
Forj=1+1 To crWord
If (StrComp{a(j), a(I), vbBinaryCompare} <) Then
temp = a(j)
a(j) = a(l)
a(I) = temp
End If
Next j
Next I

"Papulate the sorted words in listbox
ListWords2.Clear

For1=1To ctrWord
ListWords2 . AddItem a(l)
Next I

"Word clustering, similar words are group together
TmpString = a{1}

ctrCluster=1

countClusterWord{ctrCluster) = §

Cluster Word{ctrCluster) = TmpString
For =2 To ctrWord
If StrComp{ TmpString, a([), vbBinaryCompare) =0 Then
countClusterWord(ctrCluster) = countClusterWord(ctrCluster} + 1

Else
ctrCluster = ctrCluster + 1
TmpString = a(l)
ClusterWord(ctrCluster) = TmpString
countClusterWord(ctrCluster) = 1

End If
Next I

ListW()]-d322 AddTtem "FFFEEx e ok s o sk e ok ek o ok st ook e e ok ool e s e sk s ok skt ok ol kool ook ok ek ook o e ok ek

ListWords22 AddItem "Tota! Words Clusters =" & cirCluster
LlstWordsZZAddltem 11 e ot s e s b o o o e e s ol s ok o ok oo ol ol o o ool sk s sk ool ok skl e sk ko ol o o ek ok ok ek 1

jumlahPktn=10 :
‘to check the sum of clustered words statistic

"Populate the clustered words in listbox
For 1 =1 To ctrCluster

TmpString = ClusterWord(IT) & Space(20)
ListWords22.Addltem Left{ TmpString, 15) & "==>" & countClusterWord(T)
JjumlahPktn = jumlahPktn + countCluster Word(T)
Next I
ListWords22 Addltem " "
'display the sum of clustered words -> only for checking
ListWords22. Addltem "Total Words ==>" & jumlahPkin
ListWords22 AddItem "

‘Counting characters
Sentence = InputText2
¢ctrCh = Len(Sentence)

TotalChars2. AddItem " Total Words =>" & ctrWord

TotalChars2. Addltem " Total Words Clusters ==>" & ctrCluster
TotalChars2. AddEtem " Total characters include spaces ==>" & ctrCh
"TotalChars2.AddItem " Total characters include spaces ==>" & ctrCh & vbCr
"Total Chars2. Addltem " Total characters include spaces =>" & jumlahCh & vbCr

FerI=1To ctrCh
ch(l) = Asc(Mid(Sentence, I, 1)}

Next 1
‘sorting characters
Forl=1ToctrCh-1
Fori=I1+1ToctrtCh
If ¢h(j) < ch(I} Then
temp = ch(j)
ch(j) =ch(D)
ch(l) = temp
End If
Nextj
NextT

tmpCh =ch(1)
ctrClusterCh = 1
ch(etrClusterCh) = tmpCh
countch({ctrClusterCh} =1
For I=2 To etrCh
If ch(d) = tmpCh Then
countch{ctrClusterCh) = countch{ctrClusterCh) + 1
Else
tmpCh = ch(T}
ctrClusterCh = ctrCiusterCh + 1
countch{ctrClusterCh) = 1
chfctrClusterCh) = tmpCh
End if
Next [

'Populate the clustered characters

jumlahCh=1

ListChars2 Clear

LiStChHISzAddIth W sk o o e oo e ook she s sk e s el ok ok ok el e ko

ListChars2. Addltem "Total Char Cluster =" & ctrClusterCh
LlstChars2AddItem M sieofe s o s ok o o ok ok ol o ot e ol ok s e sfeale sk ek ook o ok ok ke k ek M
TotalChars2. Addltem " Total Char Cluster ==>" & ctrClusterCh
ForI=1 To ctrClusterCh
ListChars2. AddItem Left{Chr{ch(I}) & Space(5), 2) & "--> " & countch(l)
jumlahCh = jumlahCh + countch(I)
Next [
ListChars2. AddTtem " U
ListChars2.Addltem "Total Chars => " & ¢trCh
'ListChars2.AddItem "Total Chars =" & jumlahCh
ListChars2. Addltem " !

End Sub

STATUS_FORM

Private Sub Form_Unload(Cancel As Integer)
Screen MousePeinter = vbDefault
End Sub

Private Sub datPrimaryRS_Error(ByVal ErrorNumber As Long, Description As String, ByVal Scode As Long, ByVal Source As
String, ByVal HelpFile As String, ByVal HelpContext As Long, fCance!Display As Boolean)

‘This is where you would put error handling code

'If you want to ignore errors, comment cut the next line

'H you want to trap them, add code here to handle them

MsgBox "Data error event hit err:” & Description
End Sub

Private Sub detPrimaryRS_MoveComplete(ByVal adReason As ADODB EventReasonEnum, ByVal pError As ADODB.Error,
adStatus As ADODB EventStatusEnum, ByVal pRecordset As ADODB Recordset)

‘This will display the current record position for this recordset

datPrimaryRS.Caption = "Record: " & CStr(datPrimaryRS Recordset. AbsolutePosition)
End Sub

Private Sub datPrimaryRS_WillChangeRecord(ByVal adReason As ADODB EventReasonEnum, By Val cRecords As Long, adStatus
As ADODB EventStatusEnum, ByVal pRecordset As ADODB. Recordset)

‘This is where you put validation code

"This event gets called when the following actions occur

Dim bCancel As Boolean

Select Case adReason
Case adRsnAddNew
Case adRsnClose

Case adRsnDelete

Case adRsnFirstChange
Case adRsnMove

Case adRsnRequery
Case adRsnResynch
Case adRsnUndoAddNew
Case adRsnlUndoDelete
Case adRsnUndoUpdate
Case adRsnUpdate

End Select

If bCancel Then adStatus = adStatusCancel
End Sub

Private Sub cindAdd_Click()
Cn Error GoTo AddEmr
datPrimaryRS Recordset. AddNew

Exit Sub
AddErr:

MsgBox Err.Description
End Sub

Private Sub cmdDelete_Click()
On Error GoTo DeleteErr
With datPrimaryRS Recordset

Delete

MoveNext

If EOF Then .MoaveLast
End With
Exit Sub

DeleteErr:

MsgBox Err.Description

End Sub

Private Sub emdRefresh_Click()
"This is anly needed for multi user apps
On Error GoTo RefreshErr
datPrimaryR8. Refresh

Exit Sub
RefreshErr:

MsgBox Err.Description
End Sub

Private Sub cmdUpdate_Click{)
On Error GoTo UpdateErr

datPrimaryRS Recordset. UpdateBatch ad AffectAll
Exit Sub

UpdateErm:
MsgBox Err, Description

End Sub

Private Sub cmdClose_Click()
Unioad Me
End Sub

