
Text-Based Plagiarism Detection System

By

Hazliyana Binti Hussain

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons) in

Business Information System

December 2005

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

t

„§M^ «^-1

Approved by,

CERTIFICATION OF APPROVAL

Text-Based Plagiarism Detection System

by

Hazliyana Binti Hussain

A project dissertation submitted to the

Business Information System Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for for the

BACHELOR OF TECHNOLOGY (Hons)

IN BUSINESS INFORMATION SYSTEM

(Jale Bin Ahmad)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgments, and

that the original work contained herein have not been undertaken or done by unspecified

sources or persons.

Wr •
HAZLIYANA BINTI HUSSAIN

ABSTRACT

Due to increasing of internet usage, students attempt to plagiarize the digital

documents as their own work without acknowledging the sources as references. As

this phenomenon becomes very common among students, a system that can detect

plagiarism is most welcome to overcome the problem. The system is able to map out

the words from the body of text files and then compare the strings between the text

files. Besides, the system is also able to compare lines in the text files. The system is

developed referring to the concept of Word Frequency Model which count the

number words occurrence in the text files.

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to Allah S.W.T,

because with His mercy and blessings had gave me the strengths to face challenges

in completing this project for my Final Year Project.

I would like to express my profound appreciation, highest gratitude and

sincere thanks to my supervisor, Mr. Jale Bin Ahmad for all the valuable guidance,

positive and constructive criticism and advice that have been given to me while I

was involved in the completion of this project.

I also would like to express my gratitude and thanks to all lecturers and

tutors in IT and IS department who eventually helped me during the project and also

in sharing their knowledge and information, which has made the project an

unforgettable. Not to forget, special thank you to all my friends who helped and

share their knowledge with me during the project development.

Lastly, I acknowledge with greatest appreciation to other personnel not

mentioned above whom gave me such great support in completing this project

successfully and to UTP for giving me a chance to gain knowledge and experiences

during the final year project development. Last but not least, I sincerely apologize

for all the problems involuntarily caused by myself. All of your kindness and

cooperation are highly appreciated and will be fondly remembered.

II

ABSTRACT

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

TABLE OF CONTENTS

i

INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 2

1.3 Objectives and Scope of Studies 3

LITERATURE REVIEW 5

METHODOLOGY 15

3.1 Procedure Identification 15

3.2 Tool Requirement 16

RESULT AND DISCUSSION 17

4.1 System Design 17

4.2 System Flow Process 18

4.3 Word by Word Comparison Process 20

4.3.1 Text Extraction Using Tokenizer 20

4.3.2 Word Clustering Process 21

4.3.3 Word Clustering Result 22

4.3.4 Unification for String Comparison 22

4.3.5 Calculate Difference from String

Comparison 24

4.3.6 Plagiarism Status 25

4.4 Line by Line Comparison Process 26

4.5 One to Many Text Files Comparison 27

4.6 The Characters Clustering Process 29

4.7 Text-Based Plagiarism Detection System's

Interface and Functions Screen Shots 32

4.7.1 Functions 42

III

CHAPTER 5: RECOMMENDATION AND CONCLUSION 43

REFERENCES 45

APPENDIXES 47

IV

LIST OF FIGURES

Figure 1: The Vector Space Model (VSM) and Relative Frequency Model (RFM)

Figure 2: Semantic Sequence Model (SSM)

Figure 3: Semantic probe algorithm

Figure 4: The architecture of CHECK

Figure 5: Methodology phases / project procedure

Figure 6: Text-Based Plagiarism Detection System's Design

Figure 7: Text-Based Plagiarism Detection System's Flow Process

Figure 8: Unification

Figure 9: Comparison process

Figure 10: Character clusters including spaces

Figure 11: Total Character clusters including spaces

Figure 12: Total Characters including spaces

Figure 13: Character clusters including spaces

Figure 14: Total Character clusters including spaces

Figure 15: Total Character including spaces

Figure 16: Splash Screen

Figure 17: Line by Line Comparison Screen

Figure 18: Line by Line Comparison Menus 1

Figure 19: Line by Line Comparison Menus 2

Figure 20: Status Record

Figure 21: Quit Dialog Box

Figure 22: About PlagTest 1.0 Screen Shot

Figure 23: Browse Dialog Box

Figure 24: Compare File

Figure 25: Arrange Text Window in Horizontal Tiling

Figure 26: Arrange Text Window in Vertical Tiling

Figure 27: Word by Word Comparison Screen

Figure 28: Word by Word Comparison's Menus 1

Figure 29: Word by Word Comparison's Menus 2

Figure 30: Browse Dialog Box

Figure 31: Show Statistic

Figure 32: Compare Files

V

Figure 33: Status Record

Figure 34: Quit Dialog Box

VI

LIST OF TABLES

Table 1: String Extraction

Table 2: Word Clustering Result

Table 3: Unification for string comparison

Table 4: Difference Calculation

Table 5: Comparison process and the number of comparisons occur

Table 6: Statistic of Comparisons Occur

VII

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Plagiarism refers to the use of another's ideas, information, language, or

writing, when done withoutproper acknowledgment of the original source. Essential

to an act of plagiarism is an element of dishonesty in attempting to pass off the

plagiarized work as original. Plagiarism is not necessarily the same as copyright

violation, which occurs when one violates copyright law. Like most terms from the

area of intellectual property, plagiarism is a concept of the modern age and not

really applicable to medieval or ancient works.

Through keyword-driven Internet research using search engines like Google

and Yahoo, millions worldwide have easy, instant access to a vast and diverse

amount of online information. Compared to encyclopedias and traditional libraries,

the World Wide Web has enabled a sudden and extreme decentralization of

information and data.

The existence and widespread use of the Internet has increased the

occurrence of plagiarism. Students are able to use search engines to locate

information on a wide range of topics. Once located, this information can be cut-

and-pasted into new documents with minimal effort.

The students also tend to distribute the same information among themselves

and have relatively same contents in the assignments without properly acknowledge

the sources as reference. The size of the Internet makes it difficult for lecturers to

trace the source of plagiarized material.

1.2 PROBLEM STATEMENT

Technological advances have made the plagiarism activities become

common between the students in campuses and universities. As stated, plagiarism is

using others' ideas and words without clearly acknowledging the source of that

information as their own idea and works.

Although plagiarism is not a new issue, the recent use of the internet for

information is increasingly making plagiarism more difficult for lecturers to

recognize. In a 1999 survey of 2,100 students on 21 campuses across the country,

about one-third of the participating students admitted to serious test cheating and

half admitted to one or more instances of serious cheating on written assignments.

On most campuses, over 75% of students admit to some cheating.

This shows that, most of the students produce non-original assignments and

plagiarism activities day by days become overpowering. It happenedbecause it is no

longer possible for the lecturers to simply recognize the text from which the student

may have copied or to detect that two students have a similar work. The lecturers

must now only be able to detect work which may have been taken from any of

potential web sites by noticing a change in the student's style of writing but it is still

not effective to prevent plagiarism.

As the internet provides lots of free or paid information such as paper mills,

journal and articles, the students attempted to copy the digital material as their own

work. They are using the ideas of different persons as their own ideas to complete

the assignments and projects. Students do likely not understand the content that they

have copied. Thus, the qualities of their project or assignments do not meet the

education quality standard. Besides, the lecturers tend to give wrong or non exact

evaluation on their work.

There is also side impact caused by plagiarisms. Plagiarism may demoralize

the honest student, successful plagiarism will encourages lifelong dishonesty,

plagiarizers will undermine their own education and it will depress the faculty to

encounter plagiarism.

2

As a student, they shouldhave come out with their own ideas and solution to

produce high quality of paper works. Thus, it is the academic responsibilities to

handle the problem by preventing and detecting the plagiarism activities among the

students.

A system which can be used to detect and prevent plagiarism is suggested to

overcome the problem.

The project is significant to the lecturers in order to prevent and detect

plagiarism among the students in campus especially in UTP. Besides, it will also

help the organization, UTP to produce quality graduates and well independent

student.

1.3 OBJECTIVE AND SCOPE

The objective of the project is to enable the lecturers to detect the similarities

of students' assignments by using a Text-Based Plagiarism Detection System. The

system is responsible to identify whether the submitted assignments have similar

contents or not. By doing this, the lecturers can detect and prevent plagiarism among

the students.

The scope of the study involves strings mining where the system is able to

map out strings or text within the submitted digital assignments or project papers

(softcopy). With the extracted strings, the system will compare the similarities

between two or more text files and finally present the plagiarism status. The study is

focusing on the UTP's current scenario where most of the students do plagiarism.

The relevancy of the project is obviously to give advantages to the lecturers

and the faculty itself in orderto detect or prevent plagiarisms. This can help faculty

to achieve its objective to produce well-rounded graduates who are creative and

innovative with the potential to become leaders of industry and the nation.

Operationally, the project is feasible because of the advantages that the

faculty can achieve. The people in the organization especially lecturers, would think

the project will be very helpful in the future in order to prevent plagiarism. Besides,

the availability of information, references, knowledge and skills will help the project

to be technically feasible. Referring to the time frame or schedule feasibility, project

scope and the budget, the project is practicable to be developed.

CHAPTER 2

LITERATURE REVIEW

The text feature extraction is a common issue in Information Retrieval, Text

Mining, Web Mining [2], Text Classification/Clustering and Document Copy

Detection. The most popular approach is word frequency based scheme [I].

There are several models that can be used for the text feature comparison or

extraction. The models that available are Word Frequency Model (WFM) [1] and

Semantic Sequence Model (SSM) [1]. Under Word Frequency Model (WFM) there

are other two models which are Vector Space Model (VSM) [8] and Relative

Frequency Model (RFM) [1].

According to Jun-Peng Rao, Jun-Yi Shen, Xiao-Dong Liu and Qin-Bao

Song, the Word Frequency Model (WFM) is the most popular text feature extraction

model which counts word appearance in documents and/or whole corpus to build the

text feature vector and then measure the vectors similarity by dot product, cosine

function or others like that to represent the similarity of documents. This model is fit

to represent text similarity which is applied in text classification/clustering.

The Vector Space Model (VSM) [8] is a regular model to represent text

documents. It is also used widely in Text Mining, Web Mining, Text

Classification/Clustering and also Information Retrieval. The TFIDF algorithm is

often combined with VSM.

The Relative Frequency Model (RFM) is presented by SCAM (Stanford

Copy Analysis Method) so as to find out subset copies. SCAM was developed by

Shivakumar and Garcia-Molina [4] to improve the previous copy detection system,

COPS (Copy Protection System) [3].

The RFM [1] is the first asymmetric similarity measures in copy detection.

The RFM is derived from VSM [1], where the both construct the text feature vector

based on word frequency. The different between VSM and RFM is like mentioned

before, RFM uses asymmetric similarity to measure in copy detection but VSM uses

symmetric cosine function to do that.

Lei F(A) and F{S) be document A and B word
frequency vectors, then the similarity ofAand BinVSM is

E tiF,{A)Ftm
^raaMS) —\ "

where Oi is the word weight vector, FiA\ FiB) are the
respective number ofoccurrences of theiaword inAand B.
It is obvious that SmMJh ^ SVSilB,A). Because the
similarity ofAto B andthatof 8 toAis thesame, i.c S(A,B)
- S{B,A), we call it symmetric similarity, For symmetric
similarity, the copies* (same documents) vahie is 1 and the
more overlapped words between documents the higher
score, But they cannot distinguish the subset copies from
partly overlapped documents. We know that A is included
in B is different from B is included m A, i.e.

AczB&BczA. So the inclusion measure of A<= B
should be different from that of B C A, However the
symmetric similarity does not satisfy that.

In RFM the subset measure of document A to be a
subset ofdocument B to be:

Subset(A,B)
ZmW^-^W

It is obvious that Subset(A,B) f Subset(B,A) and
SubsetiAtA") = 1 if Ac is a copy of A. Hence we call this
type asasymmetric similarity measure. The RFM similarity
measure between two documents A and B is:

- m.Bx^ubse(AiB)tSubse(B, A)}
The SubsetfA,B) may be greater man 1. In order to

regularize the similarity value in [0,1], the final RFM
similarity ofdocuments A and B is;

= mln(1, max{5bfa^45),&£tt<£,4)}}

Figure 1: the Vector Space Model (VSM) and Relative Frequency Model

(RFM)

"RFM detects subset copy well because it can distinguish ACB from BCA

by asymmetric metric. But it cannot find out n to 1 partial copy because lack of local

detail information" [1].

The document copy detection (DCD) is to decide whether some part of the

wholedocument is a copy of another [1] which we can call it plagiarism. DCD plays

an important role in Intellectual Property Protection [9].

Plagiarism detection cares about the text identity more than the similarity.

The very similar documents may not be identical, but plagiarizing documents must

be very similar [1]. Even tough the DCD can detect plagiarism using the String

Matching Scheme, it is still cannot resist the noise or modification. The action of

rewording the sentences makes the plagiarism detection precision become weak or

unused.

Due to the issue, Jun-Peng Rao, Jun-Yi Shen, Xiao-Dong Liu and Qin-Bao

Song present a new text feature extraction model Semantic Sequence Model (SSM)

[l].the SSM is based on the concepts of word distance, word density, and semantic

sequence. Compare to RFM, SSM contains both global and local features so as to

detect n to 1 partial copy well while RFM lack of local detail information.

Definition 1 Let 5 be a sequence of words, i.e.
S**wtw!,„!#„. We denote the portion t ill S by is* foe word
at i (taolei by wtfW- The word (Ottanoe of position i$
(ijSfdt), denoted ky d(*d* & ^e iraroter of words between
Hfftg) and wtfg) , Le, cftfy^ & - % wheie wfft^wfts) and
w^shNr^ (I<fc<k<i&t), If no wfV exists, i.e. wfij first
occurs, then dfW"*•

Definition 2 Let 5 be a sequence of words, i,e.
5"WjWi„,.wfl, Tlie word density of position & (/£i£z),
denoted by p{i& is die reciprocal ofd(i]j :p(l<$ m}'d(is) *

In feet, dflg is tfee distance ofw|%l to its test appearance
in the sequence S, and pf&* denotes us local (frequency. A
document is a long sequence of words so that in a given
range ih© small dislanoe meansHie Mgh faulty of word m
a local seetto. That is to say the mote small distance the
higher density of some words in the local section* We
believe that the high-densi^ words in some section indicate
the semantic ofit

Definition 3 Let S be a sequence of words, i.e.
S^wlw2...w». A semantic sequence of S is a part of
wntiii&M wofdls £{3Hrfty*»*fc U<i<j<k&t) m S ami
satisfies the following conditions:

<I)WS)|>I

pj^iK^)) -*3w(x,Xm</W)) =w(*a))
WW = w(*s))A W»W" Mysy>

m ~*(lKS)<i*!Ks^Xs<yS)
WW =*<Xs»a(w(«w) • w(j5))

(4) A(«wWw +i)^<0<yf-*,£*)
(5) pQs^diisZhZkg

(6) (%=%-i)^W^)<^)
(7) (v,-^ +I)-Krt*><4)

where £and z are user defined parameters (e.g. S^I/20*£mj*>-

Figure 2: Semantic Sequence Model (SSM)

In fact, a semantic sequence in 5 is a continuous word sequence after

omitting the low dense words in S. It contains local semantic and structural

information of a document. A long S may have several semantics. We denote all of

the semantic sequences in the document S by Q(S), which then includes the global

and local semantic features as well as local structural information. However, a single

semantic sequence may not represent the document global feature [1],

A semantic is a sequence of words, but the authors of SSM [1] do not use

string matching to compare two semantics. Their purpose is to tell whether

plagiarism happened, so they just need to know whether the common semantics

length is longer than a threshold. If the max common semantic is long enough then

we believe they are plagiarisms otherwise they are normal.

Hence, they can probe some words in the semantic to find the max common

length (P#), which may not be very precise but it is enough to compare with the

threshold. Without comparing the whole word string, they gain a great performance

promotion. They define the plagiarism probability of document A and B as r(A,B) =

min(P#/Jl,l) where JI is the maximum probe number. The following is the semantic

probe algorithm.

Function SemanticProbes()
Inputparameters: Q(A)t Q(B)
Output; TWy

For each 1(A) in Q(A)
I
probes • get %wordsrandomly from L(A)\
ForeachZtfBjinDfB;

p =numberof probes contained in
p^maxfp);
)

r(A,B) - mm(p%J)
End

Figure 3: Semantic probe algorithm

The value of max probes number (JI) need not be very large, 6 or 7 is

enough. The threshold of the word density (5) cannot be too large; otherwise the

semantics length is too small to probe. The threshold of the number of contained

probes in candidate semantics has crucial effect on the final detection. It seems that

4 or 5 are the best because the false positive and the false negative are both very

low.

Bao Jun-Peng, Shen Jun-Yi, Liu Xiao-Dong, Liu Hai-Yan, and Zhang Xiao-

Di proposed a Semantic Sequence Kernel (SSK) for DCD application which is a

Kernel Method based on the semantic density, not the common global word

frequency which is derived from string Kernel (SK) [6] and Word Sequence Kernel

(WSK)[5].

The SSK is first finds out the semantic sequences in the documents and then

it uses a kernel function to calculate their similarities. SK and WSK only calculate

the gap between the first word and the last one [9]. SSK is comparedwith Relative

Frequency Model (RFM) and Semantic Sequence Model (SSM), which is word

frequency based model. It shows that SSK is excellent on non-rewording corpus.

Lodhi et al [6] proposed the string kernel method that devides the text

category according to the common sequences between documents. The string kernel

exploits the structural information instead of word frequency and can outperform the

bag of words approach [9].

Cancedda et al. [5] introduced the word sequence kernel that extends the idea

of a string kernel. They greatly increase the number of symbols to be considered as

symbols are words rather than characters. It reduces the average number of symbols

per document and yields a significant improvement in computing efficiency so that

the training on large corpus becomes feasible without approximation [91-

Brin et al [3] proposed the first DCD Prototype such as COPS that can detect

overlap based on sentence and string matching but it has some difficulties in

detecting sentences and finding partial sentence copy [9]. As stated before, SCAM is

10

developed to improve COPS. The SCAM measures overlap based on word

frequency.

Si et al. [7] built a copy detection mechanism called CHECK. CHECK

parses each document to build and internal indexing structure called structural

characteristic (SC), which is used in document registration and comparison modules.

Figure 4 is the CHECK System architecture [7] which is one of plagiarism

detection system architecture that is available in the market. As shown in the

architecture diagram, CHECK is composed of three main modules: document

registration, document comparison anddocument parsing. These three modules have

been mentioned in the previous paragraph.

According to Si A., Leong H.V. and Lau R. W. H., the three modules of the

system provide three basic functions: original document registration, document

verification, and normal document registration. From the CHECK system

architecture, the author came out with Text-Based Plagiarism Detection System

Design by narrowing the scope.

As the models can guide the plagiarism detection system development, there

is also some other techniques and method canbe used. The common thread between

information theory and computer science is the study of the amount of information

contained in an ensemble [11], [12] or a sequence [13]. According to Xin Chen,

there are question that; given two sequences how do we measure their similarity in

the sense that the measure captures all of the intuitive concepts "computable

similarities"?

There are many plagiarism detection systems that have been developed and

based on their characteristic that they employ to detect plagiarism, they can be

grouped into two categories [10] which are; attributes-counting system and

structure-metric system.

A simple attribute-counting system [14] only counts the number of distinct

operators, distinct operands, total number of operands of all types, and then

11

construct a profile using the statistic for each program. While structure-metric

system extracts and compares representation of program structure.

YAP Family [15] is one of the system that available using the structure-

metric system. Such system usually has two phases. The first phase involves the

tokenization procedure to convert source codes into token sequences by a lexical

analyzer. Even though it is for programs codes, it is believed that the method can

also be used for text or documents. The second phase involves the method to

compare those tokens sequences.

A token for the case above is referring to the basic unit of programming

languages such as "if," "then" and many more.

YAP. A similarity score used in YAP system [15] is a value from 0 to 100,

called percent match, representing the range from "no-match' to "complete-match".

It is obtained by the formulas

Match = (same - diff) / minflle - (maxfile - inin file)/ maxfile

PercentMatch = max (0, Match) * 100

The formulas that have been used in YAP system can be implemented in

Text-Based Plagiarism Detection System to measure the percentage of plagiarism of

the students work to the original author.

12

Input
Document

1 1

DocutBeftt Parsing

Document

Recognition
Keyword

extraction

Document Comparison
Module

jt

Document Registration
Module

Til I. Ill

The CHECKS System

Structural
Characteristic

Generation

Document

Structural
Characteristic

Figure 4: the architecture ofCHECK

From the previous studies and research ofrelated work, the author chooses to

use the Word Frequency Model (WFM) as the reference for Text-Based Plagiarism

Detection System or PlagTest 1.0 development. Besides, PlagTest 1.0 is developed

by using simple method which it can enhance system performance in term of

response time.

PlagTest 1.0 has two functions which are "Word by Word Comparison" and

"Line by Line Comparison". Wordby word comparison is suitablefor text files that

are in paragraph format such as quote and simple text files. While line by line

comparison is suitablefor text files that contain texts that are in lines format such as

coding and poem.

Using the WFM, the Text-Based Plagiarism Detection System is able to

count the word occurrence (Word Clustering) in a body of text file. After word

clustering, the systemwill comparethe stringsto identifythe number ofdifferences.

13

The total difference will determine the plagiarism status. Tokenizer is needed to

extract the words into the list and after that the words are sorted ascending order (A-

Z). With the words listed, Wordclustering will take place.

For the Text-Based Plagiarism Detection System, the author also considers

the characters appearance including space and also the characters cluster (the

occurrence of same character).

14

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 PROCEDURE IDENTIFICATION

Requirement
Definitio

tniliat Investigation

Coding &
Testing

System Design

Maintenance

Figure 5: Methodology phases / project procedure

The initial investigation is important to start a system development. During

the initial investigation, everything have to be done including to come out with the

problem statement, study the previous research paper for information gathering,

analyze the significance of the project whether it is worth to be done, the cost

involved and also the time frame. The author first gather all related research paper

that can be referred in order to come out with the problem statement and as general

ideas to develop text-based plagiarism detection system. Besides, the author also did

find some plagiarism detection system that available in the market as a sample

application.

After the initial investigation is the requirement definition. At this phase, the

requirement would be the system functions determination itself and also the method

15

that will be used. Referring to the model above, requirement definition can be

modified as there are changes.

After the requirement definition, the next phase is system design. In the

system design the system flow processes is specified and the functions such as

system interface design and others are also determined.

The system design phase is followed by 'coding and testing' phase. Based on

the system design, the system will be developed by generating the codes and do

testing to make sure that it is working. The three phases; requirement definition,

system design and coding & testing can be redone due to changes until it satisfy the

requirement and ready for implementation.

The next phase is implementation, where the system is ready to be used by

the user. The last phase is maintenance. At this phase, the system needs to be

keeping updated due to users' preferences and requirements.

3.2 TOOL REQUIREMENT

The tools that are needed for the project are a computer with a good

performance, and Microsoft Visual Basic 6.0 software. The system is fully

developed using VB 6.0 and as for the database, Microsoft Access version 7.0 is

used.

16

CHAPTER 4

RESULT AND DISCUSSION

4.1 SYSTEM DESIGN

The system design for the system is shown in figure 6 below. The system

will have one database which is use to store documents and record. The system must

be able to detect similarity among students' assignment after text extraction.

Referring to the system design, the user will first need to input the document

or text into the system as the master and target text file. Then the system will extract

the text input by the user. After the text extraction, the system will start comparing

the text and lastly presents the status.

The system should be able to compare between two text files or more. If it is

between two text files then it can be done using the master input file and target file.

If it is between many files which are more than two, one text file will be taken as

master file and the rest as the target files. The master file will be compared with the

documents that are stored in the database. If plagiarism is detected, the system will

produce the output or report for the percentage of plagiarism from the original

author. The status can be stores as record for future reference in the database.

17

Text Extraction 4—• •
•

i i

Plagiarism
detected

Input
Plagiarism Status

Figure 6: Text-Based Plagiarism Detection
System's Design

4.2 SYSTEM FLOW PROCESS

Database

Figure 7: Text-Based Plagiarism Detection System's Flow Process

18

For word by word comparison, the system involves 5 processes that

classified under two stages that are process word and compare files. The process is

listed below:

Process Words

1. Text extraction (tokenizing)

2. Sorting (Ascending)

3. Word Clustering (the number of same word occurrence in a text)

Comparison Process

1. Unification for string matching to find the total differences

2. Present the plagiarism status of the similarities based on the total differences

using a mathematical calculation

For line by line comparison, the system involves 3 processes that classified

under two stages that are process lines and compare files. The process is listed

below:

Process Lines

1. Count the number of lines in text files and find the lines that contain

differences

Comparison Process

1. Compare lines and find the number of differences

2. Present the plagiarism status of the similarities based on the total differences

using a mathematical calculation

19

Referring to the flow process shown, the system need input files as master

file and target files. Each of the files will be first being processed accordingly. After

the files are processed and done with comparison, the status is printed and it can be

stored as record for reference.

4.3 WORD BY WORD COMPARISON PROCESS (1 - 1 TEXT FILES

COMPARISON)

Example:

TEXT

I want to be an engineer. WhenI was in primaryschool, I want to be a doctor.

4.3.1 TEXT EXTRACTION USING TOKENIZER

Unsorted Sorted

I a

want an

to be

be be

an doctor

engineer engineer

when I

I I

was I

in in

the primary

primary school

school the

I to

want to

to want

be want

a was

doctor when

Table 1: String Extraction

20

The text is first extracted using a tokenizer and after that they are sorted in

ascending oder (A-Z). The purpose of sorting the strings is to ease the word

clustering process.

4.3.2 WORD CLUSTERING PROCESS

Word clustering is done to calculate the same words occurrence in a text. By

having clustered word, the system can count the amounts of same words and after

that place them for string comparison.

Cluster [0] - "a"
Counter [0] = 1
Cluster [1] = "an"
Counter [1] = 1
Cluster [2] - "be"
Counter [2] = 1+1
Cluster [3] = "doctor"
Counter [3] = 1
Cluster [4] = "engineer"
Counter [4] = 1
Cluster [5] = "I"
Counter [5] = 1+1+1
Cluster [6]= "in"
Counter [6] = 1
Cluster [7] = "primary"
Counter [7] - 1
Cluster [8] = "school"
Counter [8] - 1
Cluster [9] - "the"
Counter [9] - 1
Cluster [10]-"to"
Counter [10]-1+1
Cluster [11] = "want"
Counter [11] = 1+1
Cluster [12]= "was"
Counter [12] = 1
Cluster [13] = "when"
Counter [13] = 1

The list above shows how word clustering is done. It start with cluster 0 with

a string name (example: a) and the counter will start counts until there is no more

"a". The new cluster will take place and the process will continue until the last

cluster is found.

21

4.3.3 WORD CLUSTERING RESULT

a —> 1

be -> 2

doctor --> 1

engineer -> 1

I --> 3

in -> 1

primary -> 1

school -> 1

the „> 1

to --> 2

want —> 2

was „> 1

when „> 1

Table 2: Word Clustering Result

The table above shows the clustered word after Word Clustering Process.

The total clustered word is 13 and at the right side is the total number each of the

clustered words.

4.3.4 UNIFICATION FOR STRING COMPARISON

Text 1 = A

Text 2 = B

Unified Words Cluster = C

Figure 8: Unification

22

C = A U B

The purpose of the unification is to trace the overlapping words or strings between

the texts. By having the unification subtraction can be done in order to identify

difference or score.

Text A as Master

I want to be an engineer. When I was in primary school, I want to be a doctor.

Text B as Target

I want to be a pilot. When I was in primary school, my ambition is to be an
astronaut.

A B C

a a a

an ambition ambition

be an an

doctor astronaut astronaut

engineer be an

I I be

in in doctor

primary is engineer

school my I

the pilot in

to primary is

want school my

was to pilot

when want primary

was school

When the

to

want

was

when

Table 3: Unification for string comparison

23

During the unification, all words from text files that have been clustered will

be put into the unification field / unified words cluster (C) like the example in table

3. In the unification field there are only different words from the texts and no

redundancy occurs. From the columnC, the differences calculationcan be done.

4.3.5 CALCULATE DIFFERENCES FROM STRING COMPARISON

Total Differences = A - B

c A B A-B

a 1 1 0

ambition 0 1 -1

an 1 1 0

astronaut 2 2 0

an 1 1 0

be 2 2 0

doctor 1 0 1

engineer 1 0 1

I 3 2 1

in 1 1 0

is 0 1 -1

my 0 1 -1

pilot 0 1 -1

primary 1 1 0

school 1 1 0

the 1 0 1

to 2 2 0

want 2 1 1

was 1 1 0

when 1 1 0

A-B

0

1

0

0

0

0

1

• 1

1

0

1

1

1

0

0

1

0

1

0

0

Total Difference 9

Table 4: Difference Calculation

Total words cluster after unification = 20

• The negative value resultingfrom the subtraction (A-B) must be converted to

positive valuefor the accuracy ofstring matching

24

Table 4 shows how the difference is calculated. If text A doesn't have a word of

"ambition" the value will be put as 0 and if text A has the word, then the value must

not be 0.

4.3.6 PLAGIARISM STATUS

Total word cluster after unification, UWC (Unified Word Cluster) = 20

Total Difference = 9

Status or % of match = 100 - (((A - B) / UWC) * 100)

If Status is > 50% then Plagiarism Status is "Suspected as plagiarized work"

If Status is < 50% the Plagiarism Status is "not plagiarized work"

From the example above:

Status =100-((9/20)* 100) ,

= 55%

Thus, the text file is suspected as plagiarized work.

The concept of this system is the lower the different value between the text

files, thehigherthepossibility ofplagiarism and the higherthe different value, the

lower the possibility of plagiarism. Condition is added in order to identify

plagiarism.

25

4.4 LINE BY LINE COMPARISON PROCESS (1-1 TEXT FILES

COMPARISON)

Example:

TEXT A

1 Don't write yourself off yet

2 It's only in your head you feel left out or looked down on

3 Just try your best

4 Try everything you can

5 And don't you worry what they tell themselves when you're away

6 It just takes some time

7 I \ei\iliiii\i\\i!ll

TEXTB

1 Don't write yourself off yet

2 It's only in your head you feel left out or looked down on

3 Just try your best

4 Try everything you can

5 And don't you worry what they tell themselves when you're away

6 It just takes some time

7 1Ct:i\ihiff^ill 'vjusUfiiiO

8 I wiwliipg.w.ll !v all right

The system will count the number of lines of both the text files. As the

example above text A has 7 lines and text B has 8 lines. As seen above in text A

above the seventh line, there is some modification made and in the text B there is

one line that is not in text A which is line seven. Line eight in text B is same like

line seven in text A but it is different because there is word modification.

The system will first count the number off different lines. Thus there is only

one different line in both text files. The system will compare the lines and after that

it will highlight the similar lines and the lines that are different in different color so

the lecturer can see the difference.

26

The percentage of similarity can be calculated based on the different that the

system detect. It calculates the percentage of similarity by using the formula shown.

Number of lines in Text A = A

Umber of line in Text B = B

Difference = A - B

Status, % of match = 100 - (difference / A) * 100)

% match > condition = suspected as plagiarized work

Else not plagiarized work

If A - B resulted a negatives value then the system will change it to positive

value, so the system can produce accurate status. The system enables the user to set

the condition whether the file is plagiarized or not.

4.5 ONE TO MANY TEXT FILES COMPARISON

If there are many files to be compared, then there will be more comparisons

occur at once and it will require time to do the comparison. For one to many files

comparison, the word by word comparison and line by line comparison process are

the same. The different is only the time taken to do comparisons. It is only the

matter how comparisons occur with many files. The process is discussed below.

Assume that there are six files to be compared.

Number of files, n = 6

To start comparison, 1 file needs to take as master file or start point. For

example, file 1 is taken as master file and file 2 until 6 as target files. Basically, file

1 will be compared to the rest of target files. If the file one is completed with

comparisons with the target files, file 2 will start compare with file 2,3,4,5 and 6.

The process continues until there is no more files to be compared. The process is

shown in figure 9.

27

Figure 9: Comparison Process

1-2 2-3 3-4 4-5 5-6

1-3 2-4 3-5 4-6

1-4 2-5 3-6

1-5 2-6

1-6

1 • ii « i1 3 1 2 11 % 1

Table 5: Comparison ProcessAnd The Number ofComparisons Occur

In the table above it shows that how "one to many" files occur same like in

figure 9. As seen in the table, there are numbers that colored in red. The number

represent the numbers ofcomparisons occur for file 1, file 2 and the rest.

To calculate the total comparisons occur for 6 files, the system will total up

the value that is in red color or by using a formula shown.

Formula: N = n (n -1) / 2

N = 5 + 4 + 3 + 2 + l = 15

Or

Number ofComparisons occur, N = 6(6 - 6) / 2 = 15

Thus, mere are 15 comparisons occur for 6 files.

28

As stated before, if there are many files to be compared, it means that there

are many comparisons will occur and this will require time to process and response

to user. From the system testing, the author find out that 1 to 1 text files comparison

require 1 comparison and the time required is 2 second. The author provides a table

shows the number of files, numbers of comparisons occur and total time required.

Time

Time Required Required Time Required
n N (Second) (Min) (Hour)

1 0 0 0.00 0.000

2 1 2 0.03 0.001

3 3 6 0.10 0.002

4 6 12 0.20 0.003

5 10 20 0.33 0.006

6 15 30 0.50 0.008

7 21 42 0.70 0.012

8 28 56 0.93 0.016

9 36 72 1.20 0.020

10 45 90 1.50 0.025

20 190 380 6.33 0.106

30 435 870 14.50 0.242

40 780 1560 26.00 0.433

60 1770 3540 59.00 0.983

100 4950 9900 165.00 2.750

250 31125 62250 1037.50 17.292

300 44850 89700 1495.00 24.917

500 124750 249500 4158.33 69.306

1000 499500 999000 16650.00 277.500

5000 12497500 24995000 416583.33 6943.056

Table 6: Statistic of Comparisons Occur

4.6 THE CHARACTERS CLUSTERING PROCESS

The characters clustering process is same like words clustering process. The

characters clustering purpose is to show the statistic of characters occurrence in the

texts. For the time being, clustered characters are shown only for statistic and not yet

for plagiarism status determination.

29

TEXT A

I want to be an engineer. When I was in primary school, I want to be a doctor.

—> 13
—> 1

• — > 2
a --> 6
b — > 2
c — > 2
d — > 1
e —> 6
q —> 1
h —> 2
L --> 6
L —> 1

n —> 1
n --> 7
o --> 6
P --> 1
r — > 4
s — > 2
t — > 5
w --> 4
y — > 1

Figure 10: Character clusters including spaces

Total Char Cluster = 21

Figure 11: Total Character clusters including spaces

Total Chars ==> 79

Figure 12: Total Characters including spaces

30

TEXTB

I want to be a pilot. When I was in primary school, my ambition is to be an

astronaut.

--> 19
, —> 1
. —> 2
a —> R
b —> 3
c -> 1
e —> 3
h —> 2
i — > ft
I —> 2

n —> 3
n —> 6

o —> 7
p —> 2
r --J> a

5 —> 4
t — > 7
u —> 1
w --> 3
y — > z

Figure 13: Character clusters including spaces

Total Char Cluster =20

Figure 14: Total Character clusters including spaces

Tot a_L _Ch ars_== >_87

Figure 15: Total Character including spaces

31

4.7 TEXT-BASED PLAGIARISM"DETECTION SYSTEM INTERFACE

AND FUNCTIONS SCREEN SHOTS

Figure 16: Splash Screen

Figure 17: Line by Line Comparison Screen

32

Figure 18: Line by Line Comparison Menus 1

Figure 19: Line by Line Comparison Menus2

33

Figure 20: Status Record

Figure 21: Quit Dialog Box

34

Figure 22: About PlagTest 1.0 Screen Shot

Figure 23: Browse Dialog Box

35

Figure 24: Compare File

/.'.ijtititfeti-ritnl • I » PtegTest 1.0 '"5)p IZilSPM'

Figure 25: Arrange Text Window in Horizontal Tiling

36

? K!agr«tl,G '2 8 j> !Z:19PM

Figure 26: Arrange Text Window in Vertical Tiling

Figure 27: Word by Word Comparison Screen

37

Figure 28: Word by Word Comparison's Menus 1

Figure 29: Word by Word Comparison's Menus 2

38

Figure 30: Browse Dialog Box

Figure 31: Show Statistic

39

Figure 32: Compare Files

Figure 33: Status Record

40

Figure 34: Quit Dialog Box

41

4.7.1 FUNCTIONS

1. Clear Button

• To clear the filled field

2. Browse Button

• To open the text file into the input fields

3. Quit Button

• To exit the system

4. Show Statistic Button

• To list the statistic of words, characters, words clusters, characters

clusters for both master and target text files. Besides, there is also

summary indicate the total of words, total of characters, total of words

clusters and total of characters cluster.

5. Compare Button

• Compare the text files for the status result.

6. Horizontal and Vertical Tiling

• Arrange the text window horizontally or vertically

7. Go to By Words Comparison

• Navigate from Line by Line Comparison Page to Word by Word

Comparison Page

8. Go to By Lines Comparison

• Navigate from Word by Word Comparison Page to Line by Line

Comparison Page

9. About Menu

• Prompt a window describing about Plagtest 1.0

42

CHAPTER 5

RECOMMENDATION AND CONCLUSION

The ultimate goal of plagiarism detection system is the reduction of

plagiarism. Many cases of plagiarism can be detected by using the system which

would be easily missed by a lecturer. It is recommended that the system can be

implemented online whether intranet or internet. This can give easy access to the

authenticated user.

The Text-Based Plagiarism Detection System that the author developed is

not fully completed and has limitations. Currently, it can only compare one to one

text files only. Some of the functions still have small errors. It need enhancement to

improve the functions in order to meet the requirements. The main limitation of the

system is it cannot identify the original text files. It can only choose one text file as

the master and others as the target and decision to penalize the students who do

plagiarism is depend to the lecturers.

For a group of text files comparison, it is suggested to use Self-Organizing

Maps (SOM). SOM is part of the Neural Network. The SOM can populate the same

files into group within the database. From the same files population, the system can

detect text files similarity.

The testing result shows that PlagTest 1.0 is applicable to be used in UTP

since the number of student per subject offered is less than 300. If there is only 100

students take a subject, it represent 100 files to be compared and the total time

required is about two hours.

As the conclusion, the project is feasible and practicable to be developed as

the method, equipments and the budget is possible and reasonable. Besides, the

43

project is beneficial to lecturers and the organization in order to prevent and detect

plagiarism.

44

REFERENCES

[I] Jun-Peng Rao, Jun-Yi Shen, Xiao-Dong Liu, Qin-Bao Song. A New Text

Feature Extraction Model and Its Application in Document Copy Detection, 82-87,

2003

[2] Raymond Kosala, Hendrik Blocked. Web Mining Research; A Survey. ACM

SIGKDD,2(1):1-15,2000

[3] S Brin, J Davis, and H Garcia-Molina. Copy detection mechanisms for digital

documents. In Proceedings of the ACM SIGMOD Annual Conference, s San

Francisco, CA, May 1995

[4] N Shivakumar, H Garcia-Molina. SCAM: A copy detection mechanism for

digital documents. In Proceedings of 2nd International Conference in Theory and

Practice of Digital Libraries (DL'95), Austin, Texas, June 1995.

[5] N.Caicedda, E. Gaussier, C. Goutte, J. M. Renders. Word-Sequence Keniels.

Jounial of Machine Learning Research, 3:1059-1082, 2003

[6] H. Lodhi, C. Sannders, J. Shawe-Taylor, N. Cristianini, C. Watkins. Text

Classification using String Keniels. Journal of Machine Learning Research,

2(Fcb):419-444,2002

[7] Si A., Leong H.V., Lmu R. W. H. CHECK A Document Plagiarism Detection

System. In Proceedings of ACM Symposium for Applied Computing, pp.70-77,

Feb. 1997.

[8] G Salton. The state of retrieval system evaluation. Information Processing &

Management, 28(4):441-453.1992

[9] Bao Jun-Peng, Shen Jun-Yi, Liu Xiao-Dong, Liu Hai-Yan, Zhang Xiao-Di.

Document copy detection based on kernel method.

[10] Xin Chen, Brent Francia, Ming Li, Member, IEEE, Brian McKinon and Amit

Seker. Shared Information and Program Plagiarism Detection, 1545-1551, July 2004

[II] C.E. Shannon, "A mathematical theory of communications," Bell Syst. Tech. J.,

Vol.27, pp.379-423, July and October.1948

[12] W.Weaver and C.E. Shannon, The mathematical theory of communication.

Chicago,IL:Univ.Illinois Press, 1949

[13] M.Li and P.Vitanyi, An introduction to Kolmogorov Complexity and Its

Applications, 2nd ed. New York:Springer-Verlag, 1997

45

[14] K.Ottenstein, "An algorithmic approach to the detection and prevention of

plagiarism."SIGCSE Bull, vol. 8, no. 4, pp. 30-41,1997

[15] , "YAP3: Improved detection of similarities in computer program and

other texts InProc.27th SCGCSE Tech. symp., Philadelphia, PA, 1996, pp. 130-134

46

APPENDIXES

47

Option Explicit

Private Sub mnFilel_Click()

End Sub

frmdoc

Private Sub CooiBarl_HeightChanged(ByVal NewHeight As Single)
With next

Top = 0 + NewHeight
.Left = 0

,Width = Me.Width- 125

.Height = Me.Height - 400 - NewHeight
End With

End Sub

Private Sub Form_Load()

With rtext

Top = 0
.Uft = 0

.Width =Me.Width- 125

.Height-Me.Height-400
End With

End Sub

Private Sub Form_Resize()
If Me.WindowState <> 1 Then

With rtext

.Top = 0

.Left = 0

.Width = Me.Width-125

.Height = Me.Height -400
End With

End If

End Sub

Private Sub mnJump_C!ick()
Dim compare! ine As String
Dim I As Integer
compareline= rtextSelText

If InStr(l, mastertext, compareline) = 0 Then
1=0

Else

I = InStr(l, mastertext, compareline)
End If

With newdoc(O). rtext
.SetFocus

.SelStart=I- 1

.SelLength= Len(compareline)

End With

End Sub

Private Sub mnJumpCompare_Click()
Dim masterline As String
Dim I As Integer

masterline = rtext.SelText

If InStr(1, comparetext, masterline) = 0 Then
1=0

Else

I = InStr(l, comparetext, masterline)
End If

With newdoc(1).rtext
.SetFocus

.SeIStart = I-l

.SeiLength = Len(masterline)
End With

End Sub

Private Sub rtext_MouseUp(Button As Integer,Shift As Integer,x As Single,y As Single)
IfButton = l Then

SendKeys"{HOME}"
SendK.eys"+{END}"

End If

If Button = 2 Then

PopupMenu mnedit
End If

End Sub

frmmain

Option Explicit
'Private Sub Form_Load()
'Call HScroll_Scroll
'End Sub

Private Sub begin_Click()

If txtmaster = "Master File" Or txtcompare = "Compare File" Then
MsgBox "You must specify a Master and Target File"
Exit Sub

End If

Dim masterline As String
Dim compareline As String
Dim mlinecount As Integer
Dim clinecount As Integer
Dim diffcount As Integer
Dim Difstats As Integer
Dim I As Integer
Dim K As Integer

newdoc{0).Show
newdoc(O),Caption = "Master File <" & txtmaster. Text & ">"
newdoc{l),Show
newdoc(!).Caption = "Target File <" & txtcompare.Text & ">"
vtile.Enabled = True

htile.Enabled = True

Open txtmaster.Text For Input As #1
Do Until EOF(l)

Line Input #1, masterline
mlinecount = mlinecount + 1

Loop
Close #1

ReDim masterarray(mlinecount)
mlinecount ^=0

Open txtmaster.Text For Input As #1
Do Until E0F{1)

Line Input #1, masterline
masterarray(mlinecount) = masterline
mtxtadd (masterarray(miinecount))
mlinecount = mlinecount + 1

Loop
Closest

Open txtcompare.Text For Input As #1
Do Until EOF(l)

Line Input # 1, compareline
clinecount = clinecount + 1

Loop
Close #1

ReDim comparearray(clinecount)
ReDim diffarray(clinecount)
clinecount = 0

Open txtcompare.Text For Input As #!
Do Until EOF(l)

Line Input # 1, compareline
comparearray(clinecount) = compareline
ctxtadd (comparearray(clinecount))

clinecount = clinecount + 1

Loop
Close #1

comparecount = clinecount

mastertext = newdoc(0).rtext.Text
comparetext= newdoc(l).rtext.Text

DoEvents

Call mstatsadd("Number of Lines", mlinecount)
Call cstatsadd("Number of Lines", clinecount)

For I = 0 To clinecount

If InStr(l, mastertext, comparearray(I)) = 0 Then
With newdoc(l).rtext

.SelStart= InStr(I, comparetext, comparearray(I)) - 1

.SelLength = Len(comparearray(I))

.SelColor = vbBlue

End With

diffcount = diffcount + 1

diffarray(diffcount) = comparearray(I)
End If

Next I

DoEvents

Call cstatsadd("Number of Differences", diffcount)

Difstats = 100 - (diffcount/(mlinecount) * 100)
Diff.Text = " " & Difstats & "%"

'IfDifstats<50Then

'Diff2.Text= "Not Plagiarized Work"
'Else: Diff2.Text= "Plagiarized Work"
'End If

End Sub

Private Sub browsel_Click()
'cdl.Filter= "Text Files (*.TXT)|*.TXT|All_Files (*.*)|*.*"
cdl.Filter = "Ail Files (*.*)|*.*|Text Files (*TXT)|*.TXT|Batch Files(*.BAT)|*.BAT|Executable Files(*.EXE)|*.EXE"
cdl.ShowOpen
txtmaster.Text = cd 1.FileName

End Sub

Private Sub browse2_Click()
'cd1.Filter= "TextFiles (*.TXT)|*.TXT|All_Files (*,*)[*.*"
cdl.Filter - "All Files (*.*)|*.*|Text Files (*TXT)|*.TXT|Batch Files(*.BAT)]*.BAT|Executable Files(*.EXE)j*.EXE"
cdl.ShowOpen
txtcompare.Text= cdl .FileName
End Sub

Private Sub Clear_Click()
txtmaster.Text =""

txtcompare.Text =""
mstats.Text =""

cstats.Text =""

Diff.Text = ""

Diff2.Text = ""

End Sub

Private Sub Command l_Click()
PlagTest.Show
End Sub

Private Sub DiffChangeQ

Call HScroll_Scroil
End Sub

Private Sub Exit_Ciick()
On Error Resume Next

If MsgBox("Are you sure you want to quit?",vbQuestion + vbYesNo) = vbYes Then
Unload Me

End If

End Sub

Private Sub HScroll_Change()
Call HScroll_Scroll
End Sub

Private Sub HScroH_Scrol!()
Dim Difstats As Integer

Textl =HScroll. Value

If Val(Diff) > Val(Textl) Then
Diff2 = "Suspected as Plagiarized Work"
Diff2.BackColor=vbRed

Else

Diff2 = "Not Plagiarized Work"
Diff2.BackColor= vbGreen

End If

'If Difstats < Val(Textl) Then
'Diff2.Text = "Not Plagiarized Work"
'DifT2.BackColor= vbGreen

'Else: Diff2.Text = "Plagiarized Work"
'Diff2.BackColor = vbRed

'End If

End Sub

Private Sub htile_Click()
Me.Arrange vbTileHorizontal
End Sub

Private Sub MDIForm_Load()
Call HScroll_Scroll
End Sub

Private Sub PT_Click()
about. Show

End Sub

Private Sub Quit_Click()
On Error Resume Next

IfMsgBox("Are you sureyouwantto quit?", vbQuestion + vbYesNo) = vbYes Then
Unload Me'

End If

End Sub

Private Sub Rec_Click()
STATUS_FORM.Show
End Sub

Private Sub vtile__Click()
Me.Arrange vbTileVertical
End Sub

Private Sub Words_Click()
PlagTest.Show
End Sub

frmSplash

Option Explicit

Private Sub Form_KeyPress(KeyAscii As Integer)
Unload Me

frmmain.Show

End Sub

Private Sub Form_Load()
lbIVersion.Caption = "Version " & App.Major & "." & App.Minor '& "," & App.Revision
IblProductName. Caption = App.Title

End Sub

Private Sub Framel_Click()
Unload Me

frmmain.Show

End Sub

Dim a(120) As String
Dim countCIusterWord(120) As Integer
Dim ClusterWord(120) As String
Dim ch(2000) As Byte
Dim countch(2000) As Integer

PlagTest

'try for compare purpose
Dim b(120) As String
DimcountClusterWordl(120) As Integer
Dim ClusterWordl(120) As String
Dim ch1(2000)As Byte
Dim countch1(2000)As Integer

Private Sub ClearTextl_Click()
InputTextl.Text =""
ListWordsl.Clear

ListChars 1.Clear

ListWords 11.Clear

TotalCharsl.Clear

InputText2.Text =""
ListWords2.Clear

ListWords22. Clear

ListChars2.Clear

TotalChars2.Clear

Result. Clear

Status.Clear

End Sub

'Private SubcmdCompare_Click()
If Not blsCompared Then

MsgBox "Error is Building Arrays"
End If

'end try
End Sub

Private Sub Compare_CHck()
If InputTextl = "" Or InputText2 = "" Then

MsgBox "You must specify a Master and Target File"
Exit Sub

End If

Sentencel = InputTextl
InputTextl =LCase(Sentencel)
Sentencel =LCase(InputTextl)

lok = -1

ctrWordl - 1

'Tokenizer

While (Not Len(Sentencel) = 0) And (Not lok - 0)
lok = lnStr(l, Sentencel," ", vbTextCompare)
If lok = 0 Then lok = Len(Sentence 1)
b(ctrWordl) = Mid(Sentencel, 1, iok- 1)

'to remove Question mark (?) at the end of the word
lokasiQmark = InStr(l, b(ctrWordl),"?", vbTextCompare)
If lokasiQmark = Len(b(ctrWordl)) Then b(ctrWordl) = Left(b(ctrWordl), lokasiQmark - 1)

'to remove full-stop (.) at the end of the word
lokasiFSmark = InStr(l, b(ctrWordl),".", vbTextCompare)
If lokasiFSmark = Len(b(ctrWord 1)) Then b(ctrWordl) = Left(b(ctrWordl), lokasiFSmark - 1)

lokasiFSmark = InStr(l,b(ctrWordI),",", vbTextCompare)

If lokasiFSmark = Len(b(ctrWord1)) Then b(ctrWordl) = Left(b(crrWordl), lokasiFSmark - 1)

iokasiFSmark= InStr(l,b(ctrWordl),"!", vbTextCompare)
If lokasiFSmark = Len(b(ctrWordl))Then b(ctrWordl)= Left(b(crrWordl), lokasiFSmark - 1)

ctrWordl = ctrWordl+ 1

Sentencel = Mid(Sentencel, lok+ 1)

Wend

'adjust the value ofctrWordl
ctrWordl = ctrWordl - 1

'Selection sort —> required for words clustering, see bellow
Fori = 1 To ctrWordl -1

Forj = 1+ 1 To ctrWordl
If (StrComp(b(j), b(I), vbBinaryCompare) < 0) Then

temp = b(j)
bG) = b(0
b(I) = temp

End If

Nextj
Next I

Sentence = InputText2
'convert case for character

lnpuiTexf2 = LCase(Sentence)
'convert case for word
Sentence = LCase(InputText2)
lok = -1

ctrWord = 1

Tokenizer

Whiie(Not Len(Sentence) = 0) And (Not lok- 0)
lok = InStr(l, Sentence," ", vbTextCompare)
If lok = 0 Then lok = Len(Sentence)
a(ctrWord)-Mid(Sentence, I, lok- 1)
'to remove Question mark (?) at the end of the word
lokasiQmark = InStr(l, a(ctrWord),"?", vbTextCompare)
If lokasiQmark = Len(a(ctrWord)) Thena(ctrWord) = Left(a(ctrWord), lokasiQmark - 1)

'to remove full-stop (.) at the ned of the word
lokasiFSmark = InStr(l, a(ctrWord),".", vbTextCompare)
If lokasiFSmark = Len(a(ctrWord)) Then a(ctrWord) = Left(a(ctrWord), lokasiFSmark - I)

lokasiFSmark = InStr(l, a(ctrWord),",", vbTextCompare)
If lokasiFSmark - Lenfa(ctrWord)) Then a(ctrWord) - Left(a(ctrWord), lokasiFSmark -1)

lokasiFSmark = InStr(l, a(ctrWord), "I", vbTextCompare)
If lokasiFSmark = Len(a(ctrWord)) Thena(ctrWord) = Left(a(ctrWord), lokasiFSmark - I)

ctrWord = ctrWord + 1

Sentence = Mid(Sentence, lok + 1)
Wend

'adjust the value of ctrWord
ctrWord - ctrWord - 1

'Selection sort —> required for words clustering, see bellow
For I = 1 To ctrWord - 1

Forj =1+ 1To CtrWord
If (StrComp(aG), a(I),vbBinaryCompare) < 0) Then

temp = a(j)
a(j) = a(I)
a(I) = temp

End If

Nextj
Next I

(**+++*********+***

If ctrWord 1 < ctrWord Then

diffcount1= (ctrWord - ctrWordl)

Else: diffcountl = (ctrWordl - ctrWord)
End If

Dim diff1 As Integer
diffi = 100 - ((diffcountl / (ctrWordl) * 100))
ResultAddltem " "

Result.Addltem " Total similar words is " & diffl & "%"

1+4:4:4:++**

'Word clustering, similar words are group together
TmpString = b(l)
ctrClusterl = 1

countClusterWordl(ctrClusterl) = 1

ClusterWordl(ctrClusterl) = TmpString
Fori = 2 To ctrWordl

If StrCompfTmpString, b(I);vbBinaryCompare) = 0 Then
countCIusterWordl(ctrClusterl) = countCiusterWordl(ctrClusterl) + 1

Else

ctrClusterl = ctrClusterl + 1

TmpString = b(I)
ClusterWord1(ctrClusterl) = TmpString
countClusterWordl (ctrClusterl) = 1

End If

Next I

jumlahPktn! = 0 ' to checkthesumof clustered words statistic
'Populate the clustered words in listbox
For 1=1 To ctrClusterl

TmpString = ClusterWordl(I)& Space(20)
jumlahPktnl =jumlahPktnl +countClusterWordl(I)

Next I

'Wordclustering, similarwords are grouptogether
TmpString = a(l)
CtrCluster = 1

countClusterWord(ctrC!uster)= 1

ClusterWord(ctrCluster)= TmpString
For I = 2 To ctrWord

If StrCompfTmpString, a(I), vbBinaryCompare) = 0 Then
countClusterWord(ctrCluster) = countClusterWord(ctrCluster) + I

Else

ctrCluster = ctrCluster + 1

TmpString = a(I)
ClusterWord(ctrCluster) = TmpString
countClusterWord(ctrCluster) = 1

End If

Next I

jumlahPktn = 0
'to check the sum ofclustered words statistic
'Populate the clustered words in listbox
For I = 1 To ctrCluster

TmpString = ClusterWord(I) & Space(20)
jumlahPktn -jumlahPktn + countClusterWord(I)

Next I
1****+***

'If countClusterWordl(I) < countClusterWord(I) Then
'diffcounC - (countClusterWord(I) - countClusterWordl(I))
'Else:diffcount2 = (countClusterWordl(I)-countClusterWord(I))
'End If

'Dim Diffi As Integer
'Diffi= 100 - ((diffcount2 / ((countClusterWordl(I) + countClusterWord(I)) /2) * 100))
'Result.Addltem " "

'Result.Addltem " Total similar words Cluster is " & Diffi & "%"

If ctrClusterl < ctrCluster Then

diffcount2 = (ctrCluster - ctrClusterl)
Else: diffcount2 - (ctrClusterl - ctrCluster)
End If

Dim Diffi As Integer
Diffi - 100 - ((diffcount2 /(ctrClusterl) * 100))
Result.Addltem " "

Result. Addltem " Total similar words Cluster is " & Diffi & "%"

i>i<+4:4:4:414:4:4:****+*********+**************** **************************************

Sentencel = InputTextl
ctrChl =Len(Sentencel)

For 1=1 To ctrChl

cri(I)= Asc(Mid(SentenceI, I, 1))
Next I

'sorting characters
Fori-! To ctrChl-1

Forj = 1+1 To ctrChl
Ifchfj)<ch(I)Then

temp = chfj)
chG) = ch(I)
ch(I) = temp

End If

Nextj

Next I

Sentence = InputText2
ctrCh = Len(Sentence)

For I = 1 To ctrCh

ch(I) = Asc(Mid(Sentence, I, 1))

Next I

'sorting characters
For I = 1 To ctrCh - !

Forj = I + 1To ctrCh
IfchG)<ch(I)Then

temp = ch(j)
chG) = ch(I)
ch(I) = temp

End If

Nextj
Next I

l*4;4:****4'***************** ********************* ************** +*****************

If ctrChl < ctrCh Then

diffcount3 =(ctrCh - ctrChl)
Else: diffcount3 = (ctrChl - ctrCh)
End If

DimdifB As Integer
diffi = 100 - ((diffcount3 /(ctrChl) * 100))
ResultAddltem " "

ResultAddltem " Total similar characters is " & diffi & "%"

1+****************+***********************+************************************

tmpCh = ch(l)
ctrClusterChl = 1

ch(ctrClusterChl) = tmpCh
countchl(ctrClusterChl)= I
Fori = 2 To ctrChl

Ifch(I) = tmpChThen
countchl(ctrClusterChl) = countchl(ctrClusterChl) + 1

Else

tmpCh = ch(I)
ctrClusterChl = ctrClusterChl + 1

countchl(ctrClusterChl)= 1
ch(ctrClusterCh1)= tmpCh

End If

Next I

tmpCh = ch(l)
ctrClusterCh = 1

ch(ctrClusterCh) = tmpCh
countch(CtrClusterCh) = 1
For I = 2 To ctrCh

Ifch(I) = tmpChThen
countch(ctrClusterCh) = countch(ctrClusterCh) + I

Else

tmpCh = ch(I)
ctrClusterCh = ctrClusterCh + I

countch(ctrClusterCh) = 1
ch(ctrClusterCh) = tmpCh

End If

Next I

14. **

'If ctrClusterChl < ctrClusterCh Then

'diffcount4 = (ctrClusterCh - ctrClusterChl)
'Else: diffcount4 = (ctrClusterChl - ctrClusterCh)
'End If

'Dim diff4 As Integer
'diff4 = 100 - ((diffcount4 /ctrClusterChl) * 100)
'Result.Addltem "Total similar characters Clusters is " & diff4 & "%"

' characters only have 26. no need to count the diff
1******************************4'**************************************+*********

If diffi >= 50 And Diffi >= 50 And diffi >= 50 Then

Status.Addltem" "

Status.Addltem " Suspected as Plagiarized Work"
Else: Status.Addltem " "

Status.Addltem " Not Plagiarized Work"
End If

End Sub

Private Sub Exit_Click()
'Unload Me

On Error Resume Next

If MsgBox("Are you sure you want to quit?", vbQuestion + vbYesNo) = vbYes Then
Unload Me

End If

End Sub

Private Sub GoCode_Click()
frmmain.Show

End Sub

Private Sub lines__Click()
frmmain.Show

End Sub

Private Sub mnuFileOpen_Click()
Dim WhatFile As String
CommonDialogl .Filter = "Text Files (*TXT)j*TXT|All_Files (*.*)]*.*"
'CommonDialogl.Filter = "All Files (*.*)|*.*|TextFiles (*.TXT)|*TXT|Batch Fi!es(*.BAT)|*.BAT|Executable Files(*.EXE)|*.EXE"
CommonDialogl.Filterlndex= 1

CommonDialogl.ShowOpen
WhatFile = CommonDialogl .FileName

If MsgBox("<" & WhatFile& ">",vbQuestion + vbYesNo) = vbYesThen
Load Me

End If

Open WhatFile For Input As # I
Input#l,loadfilel
InputTextl Text = loadfilel

End Sub

Private Sub mnuFileOpen2_Click()

Dim WhatFile! As String
CommonDialog2.Filter= "Text Files (*.TXT)l*.TXT|All_Files(*.*)]*.*"
CommonDialog2.FilterIndex= 1

CommonDialog2. ShowOpen
WhatFilel = CommonDialog2. FileName

If MsgBox("<" & WhatFilel & ">",vbQuestion + vbYesNo) = vbYes Then
Load Me

End If

Open WhatFilel For Input As #2
Input #2, MyString2
InputText2- MyString2

End Sub

Private Sub PT_Click()
about. Show

End Sub

Private Sub Quit_Click()
On Error Resume Next

If MsgBox("Are yousureyouwantto quit?", vbQuestion + vbYesNo) - vbYes Then
Unload Me

End If

End Sub

Private Sub Rec_Click()
STATUS_FORM,Show
End Sub

Private Sub ShowStatistic_Click()

If InputTextl = "" Or InputText2 = "" Then
MsgBox "You mustspecifya Master andTarget File"
Exit Sub

End If

'ListCharsl.Clear

'ListWordsll.Clear

TotalCharsl.Clear

'If InpuTextl = "Master File" Or InputText2 = "Target File" Then
' MsgBox "Youmustspecifya Master and Compare File"
'Exit Sub

'End If

'input text 1 codes
Sentencel = InputTextl
'change the case for ctrClusterl character
InputTextl = LCase(Sentencel)
Sentencel =LCase(InpufTextl)
If InputTextl =""Then

ListCharsl.Clear

ListWordsll.Clear

TotalCharsl.Clear

End If

!ok=-l

ctrWordl = 1

'Tokenizer

While (NotLenfSentencel) = 0) And(Notlok= 0)
lok= InStr(l, Sentencel," ", vbTextCompare)
If lok = 0 Then lok = LenfSentencel)
b(ctrWordl)= Mid(Sentencel, I, lok- 1)

'to remove Question mark(?) at the end of the word
lokasiQmark = InStrfl, b(ctrWordl),"?", vbTextCompare)
If lokasiQmark = LenfbfctrWord 1)) Then b(ctrWordl) = Leftfb(ctrWordl), lokasiQmark - 1)

'to remove full-stop (.) at the end of the word
lokasiFSmark - InStrf1, bfctrWordl),".", vbTextCompare)
If lokasiFSmark- Len(bfctrWordl))Then bfctrWordl)= LeftfbfctrWordl), lokasiFSmark - 1)

lokasiFSmark = InStr(i, bfctrWordl),",", vbTextCompare)
If lokasiFSmark = Len(b(ctrWord1)) Then bfctrWordl) = LeftfbfctrWordl), lokasiFSmark -1)

lokasiFSmark = InStrfl, bfctrWordl),"!", vbTextCompare)
If lokasiFSmark= LenfbfctrWord1)) Then bfctrWordl) = Left(b(ctrWordl), lokasiFSmark - 1)

ctrWordl = ctrWordl + 1

Sentencel = MidfSentencel, lok + 1)

Wend

'adjust the value ofctrWordl
ctrWordl -ctrWordl -1

'Selection sort --> required for words clustering, see bellow
Forl-lToctrWordl -1

Forj = 1+1 To ctrWordl
If (StrCompfbG), b(I), vbBinaryCompare) < 0) Then

temp = bG)
bG) = b(I)
b(I) = temp

End If

Nextj
Next I

'Populate the sorted words in listbox
ListWordsl.Clear

Fori = 1 To ctrWordi

ListWordsl.Addltem b(I)
Next I

'Word clustering, similar words are group together
TmpString = bfl)
ctrClusterl = I

countClusterWordl(ctrClusterl)= 1

ClusterWordl (ctrClusterl)- TmpString
Fori = 2To ctrWordl

If StrCompfTmpString, bfl), vbBinaryCompare) = 0 Then
countClusterWordlfctrClusterl) = countClusterWordlfctrClusterl) + 1

Else

ctrClusterl = ctrClusterl + 1

TmpString = bfl)
ClusterWordl(ctrClusterl) = TmpString
countClusterWordlfctrClusterl)^ I

End If

Next I

ListWordsl 1 Addltem "*********+****************+*******"

ListWordsl 1.Addltem "Total Words Cluster = " & ctrClusterl
ListWordsl 1 Addltem "**********************************"

jumlahPktnl - 0 ' to checkthe sumof clustered words statistic
'Populate the clustered words in listbox
ForI = l To ctrClusterl

TmpString = ClusterWordlfl) & Space(20)
ListWords 11 Addltem LeftfTmpString, 15)& "=> " & countClusterWord1(I)
jumlahPktnl = jumlahPktnl +countClusterWordl(I)

Next I

ListWordsl 1.Addltem "==^— —- "

'display thesumof clustered words -> onlyforchecking
ListWordsl 1.Addltem "Total Words => " & jumlahPktnl

m

ListWordsl 1.Addltem "=

'Counting characters
Sentencel -InputTextl
ctrChl = LenfSentencel)

TotalCharsl.Addltem " Total Words => " & ctrWordl
TotalChars!,Addltem " Total Words Clusters => " & ctrClusterl

TotatCharsl.Addltem " Total charactersincludespaces => " & ctrChl
'TotalChars I.Addltem " Total charactersincludespaces=> " & ctrCh1 & vbCr
'TotalCharsl Addltem " Total charactersincludespaces==> " &jumlahCh

For 1=1 To ctrChl

ch(I)= Asc(Mid(Sentencel, 1,1))
Next I

'sorting characters
ForI = l To CtrChl-1

Forj = I +-1 To ctrChl
IfchG)<ch(I)Then

temp = chG)
ch(j) = ch(I)
chfl) = temp

End If

Nextj
Next I

tmpCh = ch(l)
ctrClusterChl - 1

ch(ctrClusterChl)-tmpCh
countchl(ctrClusterChl)= 1
ForI = 2 To ctrChl

Ifch(I) = tmpChThen
countchlfctrClusterChl) = countchl (ctrClusterChl) + 1

Else

tmpCh - ch(I)
ctrClusterChl = ctrClusterChl + 1

countchl(ctrClusterChl)= 1
chfctrClusterCh1)= tmpCh

End If

Next I

'Populate the clustered characters
jumlahChl =1
ListCharsl.Clear

ListCharsi.Addltem"*********************************"

ListCharsl Addltem "Total Char Cluster = " & ctrClusterChl

ListCharsi.Addltem"*********************************"

TotalCharsl Addltem " Total Char Cluster => " & ctrClusterChl

Fori =1 To ctrClusterChl

ListCharsi.Addltem Left(Chr(ch(I)) & Space(5), 2) & "--> " & countchl(I)
jumlahChl =jumlahChl +countchl(I)

Next I

ListCharsi.Addltem " •..•-.l--.---..--.-.-,»

'ListCharsi.Addltem "Total Chars => " & jumlahChl
ListCharsl .Addltem "Total Chars => " & ctrChl

ListCharsi.Addltem " •• •• = — -•—='•

mmuumm#mmmmmmmmmmmmmmmmmmmmmmmmmmmmiiMmu#text2

ListChars2.Clear

ListWords22.Clear

TotalChars2.Clear

Sentence = InpurText2
'convert case for character

InputText2 - LCase(Sentence)
'convert case for word

Sentence = LCase(InputText2)
Iok = -l

ctrWord = 1

'Tokenizer

While (Not Len(Sentence) = 0) And (Not lok = 0)
lok = InStr(1, Sentence," ", vbTextCompare)
If lok = 0 Then lok = Len(Sentence)
afctrWord) - MidfSentence, 1, lok - 1)
'to remove Question mark (?) at the end of the word
lokasiQmark- InStrfl, afctrWord),"?", vbTextCompare)
If lokasiQmark = LenfafctrWord)) Then afctrWord) = LeftfafctrWord), lokasiQmark - I)

'to remove full-stop f.) at the ned of the word
lokasiFSmark = InStrfl, afctrWord),".", vbTextCompare)
If lokasiFSmark = LenfafctrWord)) ThenafctrWord) = Left(a(ctrWord), lokasiFSmark -1)

lokasiFSmark = InStrfl, afctrWord),",", vbTextCompare)
If lokasiFSmark = Len(afctrWord)) Thena(ctrWord) = LeftfafctrWord), lokasiFSmark -1)

lokasiFSmark = InStrfl, afctrWord), "I", vbTextCompare)
If lokasiFSmark = Len(a(ctrWord)) ThenafctrWord) = LeftfafctrWord), lokasiFSmark - I)

ctrWord = ctrWord + 1
Sentence = MidfSentence, lok + 1)

Wend

'adjust the value ofctrWord
ctrWord = ctrWord - I

'Selection sort --> requiredfor wordsclustering, see bellow
For I = 1 To ctrWord -1

For j = I + 1 To ctrWord
If (StrComp(aG),a(I), vbBinaryCompare) < 0) Then

temp = aG)
aG)-a(I)
a(I) - temp

End If

Nextj
Next I

'Populate the sorted words in listbox
ListWords2. Clear

For I = 1 To ctrWord

ListWords2.Addltem a(I)
Next I

'Word clustering, similar words are group together
TmpString = a(l)
ctrCluster = 1

countClusterWord(ctrCluster) = 1

ClusterWord(ctrCluster) = TmpString
For I = 2 To ctrWord

If StrCompfTmpString, a(I), vbBinaryCompare) = 0 Then
countClusterWordfctrCluster) = countClusterWordfctrCiuster) + 1

Else

ctrCluster - ctrCluster + I

TmpString = a(I)
ClusterWord(ctrCluster) = TmpString
countClusterWordfctrCluster) = 1

End If

Next I

ListWords22 Addltem "***"
ListWords22 Addltem "Total Words Clusters = " & ctrCluster
ListWords22 Addltem "***"

jumlahPktn = 0
'to check the sum ofclustered words statistic

'Populate the clustered words in listbox
For 1 = 1 To ctrCluster

TmpString = ClusterWord(I) & Space(20)
ListWords22.Addltem LeftfTmpString, 15)& "=> " & countClusterWord(I)
jumlahPktn-jumlahPktn + countClusterWordfl)

Next I

ListWords22.Addltem " -•••-^—^ - • ="

'display the sumof clusteredwords-> only for checking
ListWords22 Addltem "Total Words => " & jumlahPktn
ListWords22.AddItem "—- ' •• -^^=== •••• =="

'Counting characters
Sentence = InputText2
ctrCh = LenfSentence)

TotalCharslAddltem " Total Words => " & ctrWord
TotalChars2,Addltem " Total Words Clusters => " & ctrCluster
TotalChars2.Addltem " Total characters include spaces => " & ctrCh
TotalChars2.Addltem " Total characters include spaces => " & ctrCh & vbCr
TotalChars2.Addltem "Total characters includespaces=-> " &jumlahCh& vbCr

For I = 1 To ctrCh

ch(I) = Asc(Mid(Sentence, I, 1))

Next I

'sorting characters
For I = I To ctrCh -1

Forj = 1+1 To ctrCh
IfchG)<ch(I)Then

temp = chG)
chG) = ch(I)
ch(I) = temp

End If

Nextj
Next I

tmpCh-ch(l)
CtrClusterCh = 1

chfctrClusterCh) = tmpCh
countchfctrClusterCh) = 1
For I = 2 To ctrCh

Ifch(I) = tmpChThen
countchfctrClusterCh) - countchfctrClusterCh) + 1

Else

tmpCh = ch(I)
ctrClusterCh = ctrClusterCh + 1

countchfctrClusterCh) = I
ch(ctrClusterCh) = tmpCh

End If

Next I

'Populate the clustered characters
jumlahCh = 1
ListChars2.Clear
ListChars2 Addltem "*********************************"

ListChars2.AddItem "Total Char Cluster = " & ctrClusterCh
ListChars2 Addltem "*********************************"

TotalChars2. Addltem " Total Char Cluster => " & ctrClusterCh
For I = 1 To ctrClusterCh

ListChars2,AddltemLeft(Chr(ch(I)) & Space(5),2) & "--> " & countch(I)
jumlahCh = jumlahCh + countch(I)

Next I

ListChars2. Addltem "====^.- '•• • -^=="

ListChars2.AddItem "Total Chars => " & ctrCh
'ListChars2.Addltem "Total Chars => " & jumlahCh
ListChars2.Addltem "=-===•••••? -^=^-r^=»

End Sub

STATUS_FORM

Private Sub ForrnJJnloadfCancel As Integer)
Screen.MousePointer = vbDefault

End Sub

Private SubdatPrimaryRS_Error(ByVal ErrorNumber AsLong, Description AsString, ByVal ScodeAs Long, ByVal Source As
String, ByVal HelpFile AsString, ByVal HelpContext As Long, fCancelDisplay As Boolean)
This is where you would put error handling code
'Ifyouwantto ignore errors, comment out the nextline
'If youwant to trap them,add code hereto handlethem
MsgBox "Dataerror event hit err:" & Description

End Sub

Private SubdatPrimaryRS_MoveComplete(ByVaI adReason AsADODB.EventReasonEnum, ByVal pError AsADODB.Error,
adStatus As ADODB.EventStatusEnum, ByValpRecordsetAs ADODB.Recordset)
'Thiswill displaythe currentrecordpositionfor this recordset
datPrimaryRS .Caption = "Record: "&CStr(datPrimaryRS.Recordset.AbsolutePosition)

End Sub

Private Sub datPrimaryRS_WiilChangeRecord(ByVal adReason As ADODB.EventReasonEnum, ByVal cRecords As Long, adStatus
As ADODB.EventStatusEnum, ByVal pRecordsetAs ADODB.Recordset)

'This is where you put validation code
This eventgets calledwhen the following actionsoccur
Dim bCancel As Boolean

Select Case adReason

Case adRsnAddNew

Case adRsnClose
Case adRsnDelete

Case adRsnFirstChange
Case adRsnMove

Case adRsnRequery
Case adRsnResynch
Case adRsnUndoAddNew

Case adRsnUndoDelete

Case adRsnUndoUpdate
Case adRsnUpdate
End Select

If bCancel Then adStatus - adStatusCancel

End Sub

Private Sub cmdAdd_Click()
On Error GoTo AddErr

datPrimaryRS.Recordset. AddNew

Exit Sub

AddErr:

MsgBox Err.Description
End Sub

Private Sub cmdDelete_Click()
On Error GoTo DeleteErr

With datPrimaryRS .Recordset
.Delete

.MoveNext

If.EOFThen.MoveLast

End With

Exit Sub

DeleteErr:

MsgBox Err.Description
End Sub

Private Sub cmdRefresh_Click()
This is only needed for multi user apps
On Error GoTo RefreshErr
datPrimaryRS.Refresh

Exit Sub

RefreshErr:

MsgBox Err.Description
End Sub

Private Sub cmdUpdate_Click()
On Error GoTo UpdateErr

datPrimaryRS.Recordset.UpdateBatch adAffectAll
Exit Sub

UpdateErr:
MsgBox Err.Description

End Sub

Private Sub cmdClose_Click()
Unload Me

End Sub

