
User Interface for Particle Controller

by

Nurunnisa Abdul Aziz

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Information Technology)

JULY 2005

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan



TT

CERTIFICATION OF APPROVAL

User Interface for Particle Controller

by

Nurunnisa Abdul Aziz

A project dissertation submitted to the

Information Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION TECHNOLOGY)

(Mr Mohamed Nordin Zakaria)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July 2005



CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the worksubmitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources ofpersons.

NURUNNISA ABDUL AZIZ

u



ABSTRACT

The primary objective of this project is to develop a particle system application using

Particle System Application Programmer Interface (API) and a GLUT Based User

Interface (GLUI). Particle System API is a C++ function library specification that

allows applications to simulate the dynamics of the particles. The API was implemented

in this project to add a diversity of particle-based properties to interactive graphics

applications. The particle system specification is emphasized on the creation of a group

ofparticles that are 'manipulatable\

GLUI User Interface Library provides a standard user interface elements that allows

user interface elements to be added within an OpenGL Utility Toolkit (GLUT) and it

gives the user an opportunity to control the particle systems. The integration of both

Particle SystemAPI and GLUI lead to the paradigmshift in learningand developing the

particle systems.

in



SCREENSHOT OF PARTICLE SYSTEM APPLICATION

Farlicle GUI

FartcleCcrircls-

FSlllClES ~fy£E
r Lires
*?[Fcirf:|

rCciralr l^fe
ff Cjilirccr
rUre
r Fcirl

r Sprere

r Particles ^HHtUcs -I]
J7 Settee

-£)FbtIIcIe Fate: |"CC

r Irilial ££e
CsMaltcr I" 3

si

3

|7 Otavity

Ciredicr X |C.C
Ciredicr Y, | c.c
ClKCfcT2: (-C.C-

p Ectrce

aFaclu:JE

r FsrHcte Size

il

3

X: jC.E
V;|t.S
Z:|U

|7 Feirc\e Farlicles

^eUirit: ]E£ £-

Gi.11

Figure 1.0: Screenshot from Particle System Application

IV



ACKNOWLEDGEMENT

The author would like to express her gratitude to Allah the Almighty for giving the

opportunity to complete this final year project. Also the author wishes to thank Mr.

Mohamed Nordin Zakaria, Final Year Project (IT) Supervisor for his guidance and

support throughout the length of the project. His advice and ideas have proven

invaluable to the author's effort in completing the project.

Thanks also goes to all the final year IT lecturers and friends for their support,

constructing ideas and comments in improving and adding values to this project. It is

almost impossible to put the list of all their names here. Their contribution will always

be remembered either directly or indirectly. Special thanks to the author's friends, Asrol

Affendybin Gzali and Mohd Taqiyuddin Bakir, who even throughrough times believed

and supported the author in her efforts.

Last but not least, theauthor wishes to dedicate her work to her beloved parents, family

and colleagues who have always been there when needed. All the support given

throughout the years wereheartening andhighly appreciated.

Thank you.



TABLE OF CONTENTS

CERTIFICATION OF APPROVAL i

CERTIFICATION OF ORIGINALITY ii

ABSTRACT . . »» » in

ACKNOWLEDGEMENT v

TABLE OF CONTENTS . .vi

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION. . 1

1.1 Background ofStudy..................................................................l

1.2 Problem Statement 1

1.2.1 Problems Identified 2

1.3 Objectives and Scope................................................................. 2

1.4 Significance of the Project........................ ..................... 3

CHAPTER 2: LITERATURE REVIEW 4

2.1 Particle Systems 4

2.2 Particle Systems API... 5

2.3 GLUT Based User Interface (GLUI) 8

2.3.1 Usage for Standalone Windows 9

vi



CHAPTER 3: METHODOLOGY/PROJECT WORK. 11

3.1 Project Development Phases. H
3.1.1 Preliminary Understanding 11

3.1.2 Literature Search H

3.1.3 DaU Gathering 12

3.1.4 Development 12

3.1.5 Testing and Debugging 12

3.1.6 Final Release 12

3.2 Tools Required...^ 13
3.2.1 Hardware ^

3.2.2 Software] 13

CHAPTER 4: RESULTS AND DISCUSSIONS 14

4.1 The Particle Environment 14

4.2 Future Upgrades and Recommendations....................—......—.16

CHAPTER 5: CONCLUSION J 17

REFERENCES. i 18

vu



LIST OF FIGURES

Figure 1.0: The environment of theparticle systems andtheparticle controller iv

Figure 1.2: Particle System Application 1

Figure 4.1: Screenshot from Particle System Application 15

vin



CHAPTER 1

INTRODUCTION

1.1 Background of Study

Ever since the advent ofthe computer graphic, the field has become more sophisticated
and complicated and the demand for realism, quality and interaction increases in both
computer generated effects, in video games and other simulations. Game engines such
as Quake Engine have become an essential element for abstracting the representation
and dynamics ofavideo game's virtual world.

1.2 Problem Statement

Simulation of computer generated effects has been used in computer animation for

several years and has recently been used in real time simulation and video games. Alot
of research has been done to explore ways to compute and render the particle systems

but somewhat little research has discussed a suitable application that has interface

which can control the particle systems. Therefore, little information is available on an

issue regarding the development ofan application that can synchronize with the changes

of the particles' characteristics without recompiling and running the application many

times.

Figure 1.2:Particle SystemApplication

1



1.2.1 Problem Identified

1. A visible lack of user interface for computer graphics applications and

simulations.

2. Most of the user interface of the computer graphics application and simulations

is developed using quite a complex programming method.

3. Many of current computer generated effects are developed and displayed

without user interface controller and anychanges of value of the effects must be

made in the development software and need to recompile and run a lotof times

which is very tedious task.

1.3 Objectives and Scope

The project's aim is to achieve a number ofobjectives by the end ofthe specified period

of timeprearranged for the course of the project:

• Develop a particle system application to berun in Windows platform

• Implement a user interface that can enable users to manipulate with the particle's

attributes

Developing a major particle system application title would be a tedious task which

requires time and effort thatwould exceed the constraints of this project. Therefore, the

scope hasbeen correspondingly reduced to ensure the feasibility of thisproject:

• The particle system application will integrate with a graphical user interface to

enable the manipulation of the particle systems

• Thedevelopment of particle system application is basedon Particle System API

In essence, the scope of the project entails the review and understanding of the C++

programmmg language, 3D graphic programming with OpenGL, Particle System API

andGLUI library thatwillbe used forthe core of theparticle system application.



1.4 Significance of the Project

The particle system application will benefit and provide new alternatives especially to

beginners, multimedia and 3D graphics development in which they will be able to

understand particle's behaviour and manipulate with the particle system application.

It is hoped that with the completion of the project, the author will have grasped a basic

understanding of the principles of graphic development. Readers of this paper should

also hopefully achieve a somewhat familiar appreciation ofdeveloping particles and the

world of graphicdevelopment in general.

In both cases, this paper should encourage computer graphic enthusiasts and computer

graphic programmers totry and experiment with the particle system development and in

the long run, produce worthy andrealistic particle simulation.



CHAPTER 2

LITERATURE REVIEW

There are several references that have been done related to the topic. Most of the

references are taken from research institutes and paperworkfrom other universities such

as from Department of Computer Science University of North Carolina at Chapel Hill

and other institutes and articles.

2.1 Particle System

The idea of using particle system application was first brought to fame by William T.

Reeves (Lucasfilm, Ltd.) in a paper called "Particle Systems - A Technique for

Modeling a Class of Fuzzy Objects". In the paper, he describes the basic model of a

particle system, describes how particle systems differ from other methods ofmodelling,

and describes some potential applications ofparticle systems.

According to Reeves (1983)

The representation of particle systems application differs in three basic ways from

representations normally used in image synthesis. First, anobject is represented not

by a set of primitive surface elements. Second, a particle system is not a static

entity. Third, anobject represented by a particle system is notdeterministic, since its

shape and form are notcompletely specified. Instead, stochastic processes are used

to create and change an object's shape and appearance.

Reeves (1983) gives us a few characteristics or attributes thatneed to be determined in

developing particle systemapplication:

• Position

• Velocity (speed and direction)

• Size



• Colour

• Transparency

• Shape

• Gravity

Reeves (1983) mentioned one oftheadvantages of particle systems over other methods

which is particles are simple. Because of this, it is possible to render more particles,

resulting in theability to render more complex images. Particle systems are dynamic by

their very nature which means that they are naturally suited to animation.

To calculate eachframe in a motion sequence, the following stepsareperformed:

1. New particles are generatedinto the system

2. Each particle is assignedits individual attributes

3. Theprescribed lifetime of the existed particles are extinguished

4. The particles aremoved and transformed according to theirdynamic attributes

5. An image of the livingparticles is rendered in a frame buffer

The particle system can be programmed to perform any setof instructions at each step.

It is a procedural approach and it can incorporate to any computational model that

describes the appearance ofthe object.

2.2 Particle System API

Particle System Application Programmer Interface (API) was developed by David K.

McAllister (University of North Carolina). In a paper called "Documentation for the

Particle System API", he portrays particle system API as a set of functions that allow

C++- programs to simulate dynamics of particles.

Particle System API is aimed for special effects ingraphic applications. It also proposed

to be similar to OpenGL from Silicon Graphics, Inc. (SGI). McAllister (1999) found

5



that a particle within the Particle System API is an object with a small setof attributes

which is very similar to Reeves' (1983) original particle systems. The particles can be

operated onmany similar objects that move according to the same rules.

The purpose ofthe API istoenable real-time applications indeveloping particle system

application. Thus, it requires an efficiency computational method ofthe particles so the
CPU has enough time per frame to perform the application's computation. The API also

allows user to design orcreate effects that are not visualized by other developers.

The API also consists of simple coding that can guide author to understand the API as

anoverview. Generally there are four (4) setof functions included in the API:

1. Actions

Actions are functions in API that manipulate attributes of particles in the particle

groups. Actions simulate effects or physical forces such as gravity, bouncing,

explosions and etc. The API has twenty seven (27) action functions and each

particle effects consist of between three toeight actions. Each action performed will

bedistributed over allparticles in thegroup. pDrawGroupp is used to render particle

group whereby each particle being a primitive and for each particle that used display

list will call pDrawGroupl.

2. Particle Groups

Particle group is a collection of particles and each particle exist within a particle

group thatacted together. All actions apply to every particle in theparticle group. It

is created using pGenParticleGroups which is to generate the particle group.

Maximum number of particles in the group is specified using pSetMaxParticles.

When particle group reaches the maximum size, the addition particles will be

ignored.



3. Action Lists

Actions that are compiled into action lists will encapsulate alloperations required to

produce particular effect. It allows specific effect to be treated as primitive like

actions and allows effects to be simulated efficiently. Action lists are produced

using pGenActionLists followed bypNewActionList.

The concept is quite similar with display list of OpenGL. By using the syntax, all

subsequent action and state change calls are stored inthe action list instead ofbeing

executed at once. The pEndActionList will end the list and the API will be switched

to normal execute mode. To call the function within the action list, pCallActionList

is executed.

Using action list can reduce the interaction between the applications and the

hardware devices. Thus, it improves the application performance.

4. Attributes and Domains

pSource is one of the API's important actions. pSource is used to create new

particles. The particles must be given anattributes such ascolour, velocity, size and

initial age. In order to increase the flexibility of theAPI, those attributes are created

as API state. Domains have variety of shapes. Domains define 3D volume such as

PDSphere, PDPlane, PDBox, PDCylinder and so on.

Domains also provide a consistent method for identifying API region. Forinstance,

pColorD specifies a region of colour space for new particles and pVelocityD

specifies a region ofvector space in choosing thevelocity of each particle. Domains

areused as parameters to some actions and functions. pSource creates particles with

position chosen within a domain and so does pSink that kills particles that enter or

leave a domain.



2.3 GLUT-Based User Interface Library (GLUI)

GLUI was created by Paul Rademacher (1999). In a document called "GLUI Manual",
he explains that GLUI is a GLUT-based C++ user interface library which provides
controls such as buttons, checkboxes, radio buttons, spinners, and listboxes to OpenGL

applications. It is window-system independent that relies on GLUT to handle all mouse
and window management.

The OpenGL Utility Toolkit (GLUT) is awell known user interface library for OpenGL
applications which provides asimple interface for handling windows, keyboard, mouse
and other input devices. It offers an attractive environment for developing cross
platform graphics applications. Alot of features can be used in GLUT and it is common
for GLUT applications where almost key on the keyboard is assigned to some functions.

According to Rademacher (1999), GLUI User Interface Library can address with the
problem by providing standard user interface elements such as buttons and checkboxes.
The GLUI library is written entirely over GLUT and has no system-dependent code. A
GLUI program will behave the same on SGIs, Windows machines, Macs, or any other
system to which GLUT has been ported. Furthermore, GLUI is designed for
programming simplicity, allowing user interface elements to be added with one line of
code each.

Rademacher (1999) insists that GLUI is built on top of and meant to fully interact with
the GLUT toolkit. Existing GLUT applications therefore need very little change in

order to use the user interface library.



2.3.1 Usage for Standalone Windows

Rademacher (1999) found that integrating GLUI with a new or existing GLUT

application is very straightforward. The steps are:

1. Add the GLUI library to the link line (glui32.1ib). The proper order in which to add

libraries is: GLUI, GLUT, GLU and OpenGL.

2. #include the file "glui.h" in all sources thatwill use the GLUI library.

3. Create regular GLUT windows and popup menus as usual. Make sure to store the

window id of main graphics window, so GLUI windows can later send it redisplay

events:

int window_id = glutCreateWindow("Main gfx window");

4. Register GLUT callbacks as usual.

5. Register GLUT idle callbacks if any with GLUI_Master (a global object which is

alreadydeclared), to enable GLUI windowsto take advantageof idle events without

interfering with the application's idle events. If do not have an idle callback, pass in

NULL.

GLUIJrfaster.set_gIutIdleFunc(myGlutIdle);

or

GLUI__Master.set_glutIdleFunc(NULL);

6. In idle callback, explicitly set the current GLUT window before rendering or

posting a redisplay event. Otherwise the redisplay may accidentally be sent to a

GLUI window.



void myGlutIdle(void)

{

gIutSetWindow(main_window);

glutPostRedisplay();

}

7. Create a new GLUI using

GLUI *glui = GLUI_Master.create_glui("name", flags, x, y);

Note that flags, x and y are optional arguments. If they are not specified, default

values will beused. GLUI provides default values for arguments whenever possible.

8. Add controls to the GLUI window. For example, add a checkbox and a quit button

with:

glui->add_checkbox("Lighting", &lighting);

glui->add_button ("Quit", QUITJD, callback_func);

9. Let each GLUI window created know where its main graphics window is:

glui->set_main_gfx_window(windowJd);

10. Invoke the standard GLUT main event loop, just as in any GLUT application:

glutMainLoop();

10



CHAPTER 3

METHODOLOGY/PROJECT WORK

For the development of the particle system application, an exploratory research will be

used. Exploratory research will rely on secondary sources such as reviewing available

literature on journals and articles. Through thorough research, the particle system

application then will be developed and experimented based on the findings on Particle

System API and GLUI in order to integrate it.

The following is a briefdescription ofthesteps taken in thedevelopment of theproject.

3.1 Project Development Phases

Theauthor's objective is to accomplish the exploratory research phase of thisproject:

3.1.1 Preliminary Understanding

Preliminary understanding is obtained by expanding research by reviewing previous

works or previous articles available to gain familiarity with the projectthat can lead to

narrow down the research study to developing the problem statement.

3.1.2 Literature Search

This phase involves gathering information from secondary sources such as literature

review. It is a review of books as well as articles in journals or professional literature is

to find ways that address to a solution or solved problems that relates to the author's

problem statements. It also involves the analyzing of the requirements for the project in

order to obtain the specifications for the project. The analysis of the requirements will

resultin an initialproduct specification that the end product will revolve upon.

11



3.1.3 Data Gathering

Through the literature search, the background information that related to the particle
system application is gathered. From the information gathering, the author can identify
information that should be gathered and identify the sources for the topic that might be

usedin the development of the project.

3.1.4 Development

This stage is not really a part of the Exploratory Research, but the author decides to
include this stage. This stage is where actual coding for the development of the initial
application is carried out. An imtial appHcation based on the information gathered and
analyzed earlier is used as the constraints to model this project.

3.1.5 Testing and Debugging

Testing and debugging are done to ensure the workability and the functionality of the
project.

3.1.6 Final Release

The final product is obtained after all the steps of the exploratory method is complete
and afully functional product is developed meeting the problem statements criteria.

12



3.2 Tools Required

3.2.1 Hardware

Mentioned below is the minimum requirement that required to develop the

application.

• PentiumIII, 800 Mhz Processoror higher

• 128 MB RAM or higher

• 3 GB ofhard disk space or higher

• 800X 600,256 colors of video resolutions, or higher

• Graphics Card - Gforce 64MB or higher

3.2.2 Software

• VisualStudio.NET

Visual Studio.NET is used in developing the particle system application by

using a console Win32. The particle system application will have two

windows displayed which are a console and the OpenGL Utility Toolkit

(GLUT) window.

13



CHAPTER 4

RESULTS AND DISCUSSIONS

This section discusses the results that have been achieved upon the implementation of

Particle System API and GLUI libraries used in the development of the user interface

for particle system controller. Basically, the result will be the end product, which is

essentially a particle system application that is 'manipulatable'. The discussions will

include theproblem encountered throughout thedevelopment process.

4.1 The Particle Environment

Based on the literature review done for the purpose of this project, the author started

developing the framework for the application using OpenGL and implemented Particle

System API and GLUI libraries to build the particle application with user interface
controller. The extra headers that are required to be included in the source files are

tga.h, papi.h and GL/glui.h. The first header file allows the texturing on the quads
whereas papi.h is referred to particle API which provides initialization of the particles.

The glui.h allows for the creation ofuser interface ofthe particle system application.

The particle system application is developed using Win32 console application in Visual
Studio.NET. A 500 by 500 pixel window was created as the main window of the

particle system application with an additional 220 by 600 pixel sized window at the
right side ofthe main window acting as the particle controller which enable user to
manipulate with the particles' attributes.

14



Si- tit'- !.-*«*
V It' 4 -Ml

r,3flr» rtfn 1
ff tlsBH

Fww * F-« ~~"~ as

v «*f.- ."*»

CjC-^»I '*
=*

J5 1 !ClX

£««•••? ~i3

£* I m»i

#«-• ; ;'

r* i rt«s * * --*

I? lis! i *«*a l-

Figure 4.1: The environment ofthe particle systems and the particle controller.

Initially, the GLUT window will display a plane and user has to make a start by using

the particle controller at the right side to choose the particles type. Particles type

consists ofprimitives and textured particles drawn as a group ofparticles. Primitives are

the fastest OpenGL based method of drawing particles. Primitives are point, triangles

and lines drawn as a group of particles. When primitive equals points, each particle

becomes a single vertex. For lines, each particle becomes a line specified by two

vertices, yielding a line inthe direction that the particle ismoving. Atextured particle is

drawn by loading the texture, the image in .tga format. The texture then has to be blend

using glBlendFunc() inorder to allow the transparency ofthe particles.

Domain type is to describe the velocities of the particle. Particles attributes which is

using rollout contains the characteristics ofthe particles tobe manipulated by user. User

can set their own particle behaviour by using the controller. Source will enable user to

add particles in the specified domains. A domain used in source is to describe the

volume in which a particle will be created. Target colour contains three (3) primary

colour which are red, green and blue. It changes the particle colour towards the

specified colour. The gravity section consists ofdirection x, y and z which isto
15



enable user to indicate and accelerate the particles in the given directions. The bounce

part is meant to bounce particles off a domain space. Bounce actions use domains to

describe volume in the environment for particles to bounce off respectively. The

particle size which consists of sizex, y andz is to identify the newsizeof the particles.

Lastly, the remove particle section is meant for removing or kills old particles

depending on the value of the age limitset in the spinner.

4.2 Future Upgrades and Recommendations

The current version of particle system controller is far from perfect. Quite a number of

areas could be tweaked and codes restructured to provide more functionality and

realistic. Below are listed some of the possible recommendations that the author has

identified for future work on the project:

• The current version only created particle system application. Future versions might

include a particle system application that can simulate effects such as smoke,

explosions, fire, rainand othereffects.

• Provide a controller that can change the behaviour of the particles so users can

manipulate and learn more about the particle system.

• Provide a virtual environment that can simulate how the particle works.

16



CHAPTERS

CONCLUSION

Over a period of time, particles are generated into the system; move and change form

within the system, and & from the system. As a whole, Particle System models an

object to represent motion, changes of form, and dynamic which is not possible with

traditional surface-based representations. The implementation of particle system in this

project can lead tonew experience ofvirtual environment that represents real world.

In summary, the project has shown significantly that the traditional way of simulating

an effect such as controlling the particles using a keyboard can be developed into an

interactive way byimplementing both Particle System API and GLUI user interface into

the coding. Particles are made easy with Particle System API. Particle System and

GLUI library is an efficient means of thedevelopment of theparticles without having to

worry too much about how theparticles might behave and thebehaviour of theparticles

can beunderstand bymanipulating the particles attributes using GLUI user interface.

The extensive usage of Particle System API shows theadvantages of using it.Applying

Particle System API helps in managing the particles in group and reduces the

complexity ofthe project.

17



REFERENCES

Reeves, William T., 1983, Particle Systems: A Technique for Modeling a Class of

Fuzzy Objects

David, K. McAllister, 1999, Documentationfor the Particle System API, University

of Carolina

Rademacher, Paul, 1999, GLUIManual

David, K. McAllister, 2000, The Design ofan APIfor Particle Systems, University

of Carolina

J. L. Neider, T. R. Davis and M. Woo, 1993, OpenGL Programming Guide: The

Official Guide toLearning OpenGL, Addison-Wesley

Wright, Richard S. and Sweet, Michael, 2000, OpenGL: Super Bible, Waite Group

Press

Sekaran, Uma, 2003, Research Methods for Business: A Skill Building Approach,

John Wiley & Sons Inc.

Donald, R. Cooper and Pamela, S. Schindler, 2002, Business Research Methods, Mc

GrawHill

18



APPENDIX

SOURCE CODE FOR PARTICLE SYSTEM API

._:./.--•.-•{;:., "opengl32.1ib")
/ , ?.„'.!•.••:--.-: (I:..]:, "glut32 .lib")

-- y.xr.-?.::.-•(: -.:-., "glui32.1ib")

'{::,:l -•:;;-i;:!--^r "particleDLL. lib")

.',.•6 <stdlib.h>

._•.;••:- <GL/glut.h>

/ /

r:c-.i,'.•?=. <GL/glui.h>

11

"papi.h"

"tga.h**

"CCamera.h"

-.:,Ld Getlnput () ;

CCamera Camera;

GLuint theQuad;

GLuint LoadTexture(

GLuint TexIDl;

coiTiP':.J,'-; a

in an a•'-;•}

*TexName);

19

-a;:;-or



:-..r : main window;

/ /

particles = De
particles type

1 !"• - domain = 0;

2 : . - domain type = 0;

1 /

' r,

. targetC - 0;

.: r = 0;

j "'.

.-. g = 0;
- b - 0;

//

kill = 1;

age limit = 10;

// de

size = 0;

•a:. size_x = 0.5;
. size_y = 0.5;

.•a-:: size z = 0-5;

gravity = 0,

dir_x = 0.0;
dir_y = 0.0;
dir z = 0.0;

source = 1;

particle rate

bounce = 0;

radius = 0;

GLUT

GLUI^RadioGroup
GLUI Checkbox

GLUI_Panel
GLUI_Rollout
GLUI Spinner

= 0;

10;

20

*glui;

*radiol, *radio2;
*checkboxl, *checkbox2, *checkbox3, *g_checkbox,
*b_checkbox, *size_checkbox, *checkbox,
*color_checkbox;
*obj_panel;
^options;
*grav_spinner1, *grav_spinner2, *grav_spinner3,
*b_spinner, *size_spinnerl, *size_spinner2,
*size_spinner3, *source_spinner, *target_spinnerl,
*target_spinner2,*target_spirmer3, *kill_spinner;



a. 5 control_cb( '. :. : control
{

: { control — 1 ) {
particles = particles_type;

(particles__type == 0)

color_checkbox->enable{);
target_spinnerl->enable{)
target_spinner2->enable(}
target spinner3->enable()

f(particles_type == 1)

color_checkbox->enable{);
target_spinnerl->enable();
target_spinner2->enable();
target spinner3->enable();

f(particles__type == 2)

size__checkbox->enable {} ;
color_checkbox->disable();
target_spinnerl->disable();
target_spinner2->disable();
target spinner3->disable();

.'. { control == 16)

(source)

source_spinner->enable{) ;

source spinner->disable();

21



it ( control

"(targetC)

}

target_spinnerl->enable();
target_spinner2->enable();
target spinner3->enable();

target_spinnerl->disable();
target__spinner2->disable () ;
target spinner3->disable();

if ( control == 5)

i(gravity)

grav_spinnerl->enable{);
grav_spinner2->enable();
grav spinner3~>enable();

{

grav_spinnerl->disable();
grav_spinner2->disable();
grav spinner3->disable();

, .:" ( control == 9)

•:.:: (bounce)

{

b_spinner->enable() ;

}

{

b__spinner->disable () ;

}

. a- ( control = 12)

_f (size)

{

size_spinnerl->enable() ;
size_spinner2->enable();
size spinner3->enable();

22



size_spinnerl~>disable();
size_spinner2->disable();
size_spinner3->disable();

}

}

a_;.-v. ,. .: ( control = 20)

{

iz(kill)

{

kill_spinner->enable();

}

{

kill spinner->disable{);

}

}

ComputeParticles()

iv(targetC){
pTargetColor(r, g, b, 1.0, 0.5);

}

}

}

}

}

(domain_type == 0)(
pVelocityD(PDCylinder, 0.01, 0.0, 0.035, 0.01, 0.0, 0.37,

0.021, 0.019);

iz(domain_type = 1){
PVelocityD(PDLiner 0.01, 0.0, 0.035, 0.01, 0.0, 0.37,

0.021, 0.019);

if(domain_type == 2){
PVelocityD(PDPoint, 0.01, 0.0, 0.35, 0.01, 0.0, 0.37,

0.021, 0.0019);

i:i: (domain_type — 3) {
pVelocityD(PDSphere, 0.0, 0.0, 0.0, 0.5, 0.0);

23



pStartingAge(1.0, 2.0);

•', i (size) {
pSize(size_x, size_y, size_z);

}

::(source){
pSource(particle_rater PDLine, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0);

}

if(gravity){
pGravity(dir__x, dir_y, dir__z) ;

}

if(kill){
pKillOld(age_limit, fal=a);

}

\f(bounce){
pBounce(~0.05, 0.35, 0, PDDisc, 0, 0, 0, 0, 0, 1,
radius);

}

pSink(f =.:-.., PDPlane, 0,0,-3, 0,0,1);

pMove{);

:. vafz init(--zl J)

TexIDl=LoadTexture("sprite.tga");

glEnable(GL_BLEND) ;
glBlendFunc(GL_SRC_ALPHA, GL_ONE);

theQuad - glGenLists(1);
glNewList(theQuad, GL_COMPILE);

glBegin(GL_QUADS);
glColor3f (0.8f, O.lf, 0.2f); // r-.o-jv,^- p?-r. f; -. f- c,,l.o
glTexCoord2f(1.0f,1.0f); glVertex3f(0.Of, O.Of, O.Of)
glTexCoord2f(1.Of,O.Of); glVertex3f(O.lf, O.Of, O.Of)
glTexCoord2f(O.Of,O.Of); glVertex3f(O.lf, O.Of, O.lf)
glTexCoord2f{O.Of,1.Of) ; glVertex3f(0.Of, O.Of, O.lf)

24



glEnd();

glEndList();

glClearColor{0.0, 0.0, 0.0, 0.0);

Camera.'setCamera"(0.0f,U 0.2f, -10.Of," O.Of, O.Of, O.Of, O.Of,
l.Of, O.Of);

}

GLuint LoadTexture (.:a-z *TexName)

{
TGAImg Img; // -uaqe loader
GLuint Texture;

if(Img.Load(TexHame) !=IMG_OK)

glGenTextures(l,STexture) ;

glBindTexture(GL_TEXTURE_2D,Texture);

jf(img.GetBPP()=24)

glTexImage2D(GL_TEXTURE_2D, 0, 3,Img.GetWidth (), Img.GetHeight () ,0,
GL RGB,GL_UNSIGNED_BYTE,Img.GetImg());

=:;-e af(Img.GetBPP()==32)

glTexImage2D(GLJTEXTURE_2D, 0, 4, Img.GetWidth () ,Img. GetHeight () ,0,
GL RGBA,GL UNSIGNEDJBYTE,Img.Getlmg());

}

-l;

glTexParameteri (GLJTEXTUREjb, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ;
glTexParameteri {GLJTEXTTJRE_2D, GLJIEXTUREJdAGJFILTER, GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_WRAP_J3,GL_CLAMP) ;
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_CLAMP);

Texture;

vaiz display(^oaf)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFF£R_BIT);
glLoadldentity();

GetInput();

25



a —-:

gluLookAt(Camera.Pos.x, Camera.Pos.y, Camera.Pos.z,
Camera.View.x, Camera.View.y, Camera.View.z.
Camera.Up.x, Camera.Up.y. Camera.Up.z);

glScalef{2.0, 2.0, 2.0);

glTranslatef(Camera.View.x, 0, Camera.View.z);

glRotatef(180, 0.0, 1.0, 0.0);

glBegin(GL_QUADS);
glColor3ub(0, 115, 0);
glVertex3f(-5.0, 0.0, -5.0);
glColor3ub(0, 5, 140);
glVertex3f(-5.0, 0.0, 5.0);
glColor3ub(0, 5, 140);
glVertex3f(5.0, 0.0, 5.0);
glColor3ub(0, 115, 0);
glVertex3f(5.0, 0.0, -5.0);
glEnd();

c,o

ComputeParticles 0;

if(particles_type == 0){

glRotatef(-90, 1.0, 0.0, 0.0);
pDrawGroupp(GL_JLINES, tr-a);

}

ela? \f (particles_type = 1)1

glRotatef(-90, 1.0, 0.0, 0.0);
pDrawGroupp(GL_POINTS, aa.e);

}

rC.3~ if (particles_type = 2) {
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,TexIDl);

glRotatef(-90, 1.0, 0.0, 0.0);

pDrawGroupl(theQuad, zrua

glDisable(GLJrEXxURE__2D) ;

}

glutSwapBuffers();

26

;oi



•cizi myldle

:: { glutGetWindow() !- main_window )
glutSetWindow(main_window);

glutPostRedisplayO ;

glui->sync_live();
radiol~>set_int_val(particles);

}

acf: mouse(aza btn, : .: state, z a x, aaz y)

1

•f(btn==GLUT_LEFT_BUTTON && state == GLUTJXMN) particles = 0;
••.f (btn=GLUT_MIDDLE__BUTTON && state == GLUT_DOWN) particles = 1.
ff(btn==GLUT RIGHT_BUTTON && state = GLUT_DOWN) particles = 2;

myReshape {:...zz w, z .. h)

glViewport(0, 0, (GLsizei)w, (GLsizei)h);

glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(60, w / fafa(h), 1, 100);
glMatrixMode (GL_MODELVIEW);

;: Getlnput {)

Camera.CalculateTime();

(GetKeyState(VKJJP) & 0x80) Camera.MoveCamera(UP);
(GetKeyState(VKJX)WN) & 0x80} Camera.MoveCamera(DOWN);

;f(GetKeyState(VK_LEFT) & 0x80) Camera.RotateCamera
(CVector4(Camera.View.x, Camera.View.y. Camera.View.z),
LEFT, 0, 1, 0);

27



f(GetKeyState(VKJRIGHT) & 0x80)
Camera.RotateCamera(CVector4(Camera.View.x. Camera.View.y,
Camera.View.z), RIGHT, 0, 1, 0);

;;(GetKeyStateOW) & 0x80 II GetKeyState('w') S 0x80)
Camera.RotateCamera(CVector4(Camera.View.x, Camera.View.y.

Camera.View.z), UP, 1, 0, 0);

i.: (GetKeyStateOS1) & 0x80 |i GetKeyState('s') & 0x80)
Camera.RotateCamera (CVector4(Camera.View.x, Camera.View.y,
Camera.View.z), DOWN, 1, 0, 0);

main(faz argc, i'.zz* argv[]}

glutlnitDisplayMode( GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH };
glutInitWindowPosition( 50, 50 );
glutInitWindowSize( 500, 500 );

main_window = glutCreateWindow( "User Interface Particle Controller"

glutDisplayFunc( display };
glutReshapeFuncf myReshape );
glutMouseFunc(mouse);

glEnable(GL_DEPTH_TEST);
glDepthFunc(GLJLESS) ;

init () ;

i.oz particle_handle = pGenParticleGroups(1, 4000);
pCurrentGroup(particle_handle);

printf("GLUI version: %3.2f \n", GLUI_Master.get_version());

glui = GLUI_Master.create_glui( "GLUI", 0, 400, 50 );
glui->add_statictext( "Particle GLUI" );
obj panel = glui->add_panel( "Particle Controls" );

28



GLUI_Panel *type_panell = glui->add_panel_to_jpanel( objjpanel,
"Particles Type");
radiol = glui->add_radiogroup_to_panel(type_panell, &particles_type,

1, control_cb);

glui->add_radiobutton__to_group{radiol, "Lines");
glui->add_radiobutton_to_group(radiol, "Points");
glui->add_radiobutton_tojgroup(radiol, "Textured");

GLUI_Panel *type_panel2 = glui->addj?anel_to_panel( obj_panel,
"Domain Type");
radio2 = glui->add_radiogroup_to_panel(typej?anel2, &domain_type, 2,

control_cb);

glui->add_radiobutton_to_group(radio2, "Cylinder");
glui->add_radiobutton_to_group(radio2, "Line");
glui~>add_radiobutton_to_group(radio2, "Point");
glui->add_radiobutton_to_group(radio2, "Sphere");

options = glui->add_rollout_to_panel(objj?anel, "Particles
Attributes", f •-.:.-,a) ;

checkbox = glui->add_checkbox_to_panel(options, "Source", Ssource,
16, control__cb) ;

source__spinner = glui~>add_spinner_to_panel(options, "Number of
Particles: ", GLUIJ3PINNERJLNT, &particle_rate, 17, control_cb);
source spinner->set_int_limits(0, 1000);

glui->add_separator_to_panel(options);

/ /

color_checkbox = glui->add_checkbox_to_panel(options, "Target
Color", StargetC, 18, control_cb);
target_spinnerl = glui->add_spinner_to_j?anel (options, "Red: ",

GLUI_SPINNER_FLOAT, &r, 22, control_cb);
target_spinnerl->set_float_limits(0.0, 1.0};

target_spinnerl->disable();

target_spinner2 = glui~>add_spinner_to_panel(options, "Green: ",
GLUI_SPINNER_FLOAT, &g, 23, control_cb);
target_spinner2->set_float_limits(0.0, 1.0) ;

target_spinner2->disable();

29



target_spinner3 = glui->add_spinner_to_panel(options, "Blue: ",
GLUI_SPINNER_FLOAT, &b, 24, control_cb);
target_spinner3->set__float_limits(0.0, 1.0);

target_spinner3->disable();
glui->add_separator__to_panel (options) ;

g__checkbox = glui->add_checkbox_to_panel(options, "Gravity",
Sgravity, 5, control_cb);
grav_spinnerl = glui->add_spinner_to_panel(options, "Direction X: ",

GLUI_SPINNER__FLOAT, &dir_x, 6, control_cb);
grav_spinnerl->set_float_limits(-0.1f, O.lf);
grav_spinnerl->set_speed(0.1f);

grav_spinnerl->disable();

grav_spinner2 = glui->add_spinner_to_panel(options, "Direction Y: ",
GLUI_SPINNER_FLOAT, &dir_y, 7, control_cb);
grav_spinner2->set_float_limits(-O.lf, O.lf);
grav_spinner2->set_speed(0.1f);

grav_spinner2->disable();

grav_spinner3 = glui->add_spinner_to_panel(options, "Direction Z: ",
GLUI_SPINNER__FLOAT, &dir_z, 8, control^cb);
grav_spinner3->set_float_limits(-0.01f, O.lf);
grav_spinner3->set_speed(0.1f);

grav_spinner3->disable();
glui->add_separator_to_panel(options);

b_checkbox = glui->add_checkbox_to_panel(options, "Bounce", &bounce,
9, control_cb);
b spinner - glui->add_spinner_to_panel(options, "Radius:",

GLUI_SPINNER_INT, Sradius, 11, control_cb);
b_spinner->set_int_limits(0, 10);

b_spinner*->disable () ;
glui->add_separator_toj?anel(options);

size_checkbox = glui->add_checkbox_to_panel(options, "Particle
Size", Ssize, 12,control_cb);
size_checkbox->disable() ;
size_spinnerl = glui->add_spinner_to_panel(options, "X:",

GLUI_SPINNER_FLOAT, &size_x, 13, control_cb);
size_spinnerl->set_float_limits(O.Of, 1.5f);
size_spinnerl->set_speed(0.1f);

size spinnerl->disable();

30



size__spinner2 = glui->add__spinner_to_panel (options, "Y:",
GLUIJ3PINNER_FL0AT, &size__y, 14, control_cb);
size_spinner2->set_float_limits(O.Of, 1.5f);
size_spinner2->set_speed(0.1f) ;

size_jspinner2->disable () ;

size_spinner3 = glui->add_spinner_to_panel(options, "Z:",
GLUI_SPINNER_FLOAT, &size_z, 15, control^cb);

size_spinner3->set_float_limits(O.Of, 1.5f);
size_spinner3->set_speed(0.If);

size_spinner3->disable();
glui->add_separator_to_panel(options);

checkbox'« glui->add_checkbox_toj?anel(options, "Remove Particles",
Skill, 20, control_cb);
kill_spinner = glui->add_spinner_to_panel(options, "Age Limit: ",

GLUI__SPINNER_INT, &age_limit, 21, control_cb);
kill_spinner->set_int_limits(0, 1200);

glui->add_button{ "Quit", 0, {GLUIJJpdate_CB)exit );

glui->set__main_gfx__window( main_window );

GLUI_Master.set_glutIdleFunc( myldle );

glutMainLoop(};

}

31

(•;; .r


