User Interface for Particle Controller

by

Nurunnisa Abdul Aziz

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Technology (Hons)
(Information Technology)

JULY 2005

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

User Interface for Particle Controller
by
Nurunnisa Abdul Aziz

A project dissertation submitted to the
Information Technology Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
BACHELOR OF TECHNOLOGY (Hons)
(INFORMATION TECHNOLOGY)

Approved %
[(A

(Mr Mohamed Nordin Zakaria}

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
July 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources of persons.

NURUNNISA IABDUL AZ1Z

ii

ABSTRACT

The primary objective of this project is to develop a particle system application using
Particle System Application Programmer Interface (API) and a GLUT Based User
Interface (GLUI). Particle System API is a C++ function library specification that
allows applications to simulate the dynamics of the particles. The API was implemented
in this project to add a diversity of particle-based properties to interactive graphics
applications. The particle system specification is emphasized on the creation of a group
of particles that are ‘manipulatable’.

GLUI User Interface Library provides a standard user interface elements that allows
user interface elements to be added within an OpenGL Utility Toolkit (GLUT) and it
gives the user an opportunity to control the particle systems. The integration of both
Particle System AP and GLUI lead to the paradigm shift in learning and developing the
particle systems.

iii

SCREENSHOT OF PARTICLE SYSTEM APPLICATION

|
| £
| ¢ Sptere

T 'Fsrﬁclss Atilkuies —

4. | SKhIcE

Fsﬂ[cls Fzle: I 4 .

]" irtial ﬁQE :

= Graviy

Cireciicr x: I_[.[&

| Cireciier v: [T 3
j'Eirsl:ﬂtr' z [T g

i? Eci¥ce '_:
- FaciLg:]..___ 2
i": Faﬂlcls Sige
o
AE |I: £
2y

f
al

.
1[s

‘ _'I,‘)'?:_F'_errcme Farficles

Age Limit [EC 4

Figure 1.0: Screenshot from Particle System Application

iv

ACKNOWLEDGEMENT

The author would like to express her gratitude to Allah the Almighty for giving the
opportunity to complete this final year project. Also the author wishes to thank Mr.
Mohamed Nordin Zakaria, Final Year Project (IT) Supervisor for his guidance and
support throughout the length of the project. His advice and ideas have proven

invaluabie to the author’s effort in completing the project.

Thanks also goes to all the final year IT lecturers and friends for their support,
constructing ideas and comments in improving and adding values to this project. It is
almost impossible to put the list of all their names here. Their contribution will always
be remembered either directly or indirectly. Special thanks to the author’s friends, Asrol
Affendy bin Gzali and Mohd Taqiyuddin Bakir, who even through rough times believed
and supported the author in her efforts.

Last but not least, the author wishes to dedicate her work to her beloved parents, family
and colleagues who have always been there when needed. All the support given
throughout the years were heartening and highly appreciated.

Thank you.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL

CERTIFICATION OF ORIGINALITY

..........

ABSTRACT i
ACKNOWLEDGEMENTccccoconmmunisssmnsrsusssesninssnsssssssessessrosassasasssasaasnons v
TABLE OF CONTENTS vi
LIST OF FIGURES viii
CHAPTER 1: INTRODUCTION 1
1.1 Background of Study. 1
1.2 Problem Statement... 1
1.2.1 Problems Identified...........ccooeevrvnieniinineecnrseceereeeinnns 2
1.3 Objectives and Scope 2
1.4 Significance of the Project
CHAPTER 2: LITERATURE REVIEW 4
2.1 Particle SYStemS..cumeessersssssassssersrsssorsossensrassnsasssnsssass 4
2.2 Particle Systems API 5
2.3 GLUT Based User Interface (GLUI) 8
2.3.1 Usage for Standalone Windows.........cceeerrvveiinerireerns 9

CHAPTER 3: METHODOLOGY/PROJECT WORK 11
3.1 Project Development Phases 11

3.1.1 Preliminary Understanding..........cccoussscesscssusssorearuenenes 11

3.1.2 Literature Search.....oocrrismnecrmssimmssssesissssssnasaees 1

3.1.3 Data Gatl%lering rereerestiesareesasnnesesraeen 12

3.14 Developlﬁent ... 12

315 Testing and DEDUZEZING.....ccrrreeeesemsmmmerrersssssssssssssssssos 12

3.1.6 Final RElEase....ocuirieuiisrirssnssnmmsssrnisasssinmassssrasassssenssse 12

3.2 Tools Required... 13

321 HardWare......comeceererinsrnessensiiininnsnsssesssessesanssississssssenss 13

322 SORWALS..crrseoseserses s sssnses e 13

CHAPTER 4: RESULTS AND DISCUSSEONS cocreserrormecssmsmsssmssmssssnss 14
4.1 The Particle Environment 14

4.2 Fature Upgrades iand Recommendations 16

CHAPTER 5: CONCLUSION. v v s ——— 17
REFERENCES 18

vii

LIST OF FIGURES

Figure 1.0: The environment of the particle systems and the particle controller.......

Figure 1.2: Particle System AppliCation........eccvisuecieusessinssnssssrnsnssnensssisisessisassrsaonsnnss
Figure 4.1: Screenshot from Particle System Application........covrnennnicnnnne

viii

iv

CHAPTER 1
INTRODUCTION

1.1 Background of Study

FEver since the advent of the computer graphic, the field has become more sophisticated
and complicated and the demand for realism, quality and interaction increases in both
computer generated effects, in video games and other simulations. Game engines such
as Quake Engine have become an essential element for abstracting the representation

and dynamics of a video game’s virtual world.
1.2 Problem Statement

Simulation of computer generated effects has been used in computer animation for
several years and has recently been used in real time simulation and video games. A lot
of research has been done to explore ways to compute and render the particle systems
but somewhat little research has discussed a suitable application that has interface
which can control the particle systems. Therefore, little information is available on an
issue regarding the development of an application that can synchronize with the changes
of the particles’ characteristics without recompiling and running the application many

times.

Figure 1.2: Particle System Application

1

1.2.1 Problem Identified

1. A visible lack of user interface for computer graphics applications and
simulations.

2. Most of the user interface of the computer graphics application and simulations
is developed using quite a complex programming method.

3. Many of current computer generated effects are developed and displayed
without user interface controller and any changes of value of the effects must be
made in the development software and need to recompile and run a lot of times

which is very tedious task.

1.3 Objectives and Scope

The project’s aim is to achieve a number of objectives by the end of the specified period
of time prearranged for the course of the project:

e Develop a particle system application to be run in Windows platform

¢ Implement a user interface that can enable users to manipulate with the particle’s

attributes

Developing a major particle system application title would be a tedious task which

requires time and effort that would exceed the constraints of this project. Therefore, the

scope has been correspondingly reduced to ensure the feasibility of this project:

¢ The particle system application will integrate with a graphical user interface to
enable the manipulation of the particle systems

¢ The development of particle system application is based on Particle System API

In essence, the scope of the project entails the review and understanding of the C++
programming language, 3D graphic programming with OpenGL, Particle System API
and GLUI library that will be used for the core of the particie system application.

1.4 Significance of the Project

The particle system application will benefit and provide new alternatives especially to
beginners, multimedia and 3D graphics development in which they will be able to
understand particle’s behaviour and manipulate with the particle system application.

It is hoped that with the completion of the project, the author will have grasped a basic
understanding of the principles of graphic development. Readers of this paper shouid
also hopefully achieve a somewhat familiar appreciation of developing particies and the

wotld of graphic development in general.

In both cases, this paper should encourage computer graphic enthusiasts and computer
graphic programmers to try and experiment with the particle system development and in

the long run, produce worthy and realistic particle simulation.

CHAPTER 2
LITERATURE REVIEW

There are several references that have been done related to the topic. Most of the
references are taken from research institutes and paperwork from other universitics such
as from Department of Computer Science University of North Carolina at Chapel Hill

and other institutes and articles.

2.1 Particle System

The idea of using particle system application was first brought to fame by William T.
Reeves (Lucasfilm, I.td.) in a paper called “Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects”. In the paper, he describes the basic model of a
particle system, describes how particle systems differ from other methods of modelling,

and describes some potential applications of particle systems.

According to Reeves (1983)
The representation of particle systems application differs in three basic ways from
representations normally used in image synthesis. First, an object is represented not
by a set of primitive surface elements. Second, a particle system is not a static
entity. Third, an object represented by a particle system is not deterministic, since its
shape and form are not completely specified. Instead, stochastic processes are used

to create and change an object’s shape and appearance.

Reeves (1983) gives us a few characteristics or attributes that need to be determined in

developing particle system application:

o Position
¢ Velocity (speed and direction)

e Size

¢ Colour

¢ Transparency
e Shape

o Gravity

Reeves (1983) mentioned one of the advantages of particle systems over other methods
which is particles are simple. Because of this, it is possible to render more particles,
resulting in the ability to render more complex images. Particle systems are dynamic by

their very nature which means that they are naturally suited to animation.

To calculate each frame in a motion sequence, the following steps are performed:

New particles are generated into the system

Each particle is assigned its individual attributes

The prescribed lifetime of the existed particles are extinguished

The particles are moved and transformed according to their dynamic attributes

A S

An image of the living particles is rendered in a frame buffer

The particle system can be programmed to perform any set of instructions at each step.
It is a procedural approach and it can incorporate to any computational model that

describes the appearance of the object.

2.2 Particle System API

Particle System Application Programmer Interface (API) was developed by David K.
McAllister (University of North Carolina). In a paper called “Documentation for the
Particle System API”, he portrays particle system API as a set of functions that allow
C-++ programs to simulate dynamics of particles.

Particle System API is aimed for special effects in graphic applications. It also proposed
to be similar to OpenGL from Silicon Graphics, Inc. (SGI). McAllister (1999) found

5

that a particle within the Particle System API is.an object with a small set of atiributes

which is very similar to Reeves’ (1983) original particle systems. The particles can be

operated on many similar objects that move according to the same rules.

The purpose of the API is to enable real-time applications in developing particle system

application. Thus, it requires an efficiency computational method of the particles so the

CPU has enough time per frame to perform the application’s computation. The API also

allows user to design or create effects that are not visualized by other developers.

The API also consists of simple coding that can guide author to understand the API as

an overview. Generally there are four (4) set of functions included in the APL:

1.

Actions

Actions are functions in API that manipulate attributes of particles in the particle
groups. Actions simulate effects or physical forces such as gravity, bouncing,
explosions and etc. The API has twenty seven (27) action functions and each
particle effects consist of between three to eight actions. Each action performed will
be distributed over all particles in the group. pDrawGroupp is used to render particle
group whereby each particle being a primitive and for each particle that used display
list will call pDrawGroupl.

Particle Groups

Particle group is a collection of particles and each particle exist within a particle
group that acted together. All actions apply to every particle in the particle group. It
is created using pGenParticleGroups which is to generate the particle group.
Maximum number of particles in the group is specified using pSetMaxParticles.
When particle group reaches the maximum size, the addition particles will be

ignored.

3. Action Lists
Actions that are compiled into action lists will encapsulate all operations required to
produce particular effect. it allows specific effect to be treated as primitive like
actions and allows effects to be simulated efficiently. Action lists are produced

using pGenActionLists followed by pNewActionList.

The concept is quite similar with display list of OpenGL. By using the syntax, all
subsequent action and state change calls are stored in the action list instead of being
executed at once. The pEndActionList will end the list and the API will be switched
to normal execute mode. To call the function within the action list, pCallActionList

is executed.

Using action list can reduce the interaction between the applications and the

hardware devices. Thus, it improves the application performance.

4. Attributes and Domains
pSource is one of the API’s important actions. pSource is used to create new
particles. The particles must be given an attributes such as colour, velocity, size and
initial age. In order to increase the flexibility of the API, those attributes are created
as API state. Domains have variety of shapes. Domains define 3D volume such as
PDSphere, PDPlane, PDBox, PDCylinder and so on.

Domains also provide a consistent method for identifying API region. For instance,
pColorD specifies a region of colour space for new particles and pVelocityD
specifies a region of vector space in choosing the velocity of each particle. Domains
are used as parameters to some actions and functions. pSource creates particles with
position chosen within a domain and so does pSink that kills particles that enter or

leave a domain.

23 GLUT-Based User Interface Library (GLUI)

GLUI was created by Paul Rademacher (1999). In a document cailed “GLUI Manual”,
he explains that GLUI is a GLUT-based C++ user interface library which provides
controls such as buttons, checkboxes, radio buttons, spinners, and listboxes to OpenGL
applications. It is window-system independent that relies on GLUT to handle all mouse

and window management.

The OpenGL Utility Toolkit (GLUT) is a well known user interface library for OpenGL
applications which provides a simple interface for handling windows, keyboard, mouse
and other input devices. It offers an attractive environment for developing cross
platform graphics applications. A lot of features can be used in GLUT and it is common

for GLUT applications where almost key on the keyboard is assigned to some functions.

According to Rademacher (1999), GLUI User Interface Library can address with the
problem by providing standard user interface elements such as buttons and checkboxes.
The GLUI library is written entirely over GLUT and has no system-dependent code. A
GLUI program will behave the same on SGls, Windows machines, Macs, or any other
system to which GLUT has been ported. Furthermore, GLUI is designed for
programming simplicity, allowing user interface elements to be added with one line of

code each.

Rademacher (1999) insists that GLUI is built on top of and meant to fully interact with
the GLUT toolkit. Existing GLUT applications therefore need very little change in

order to use the user interface library.

2.3.1 Usage for Standalone Windows

Rademacher (1999) found that integrating GLUI with a new or existing GLUT

application is very straightforward. The steps are:

1.

Add the GLUI library to the link line (glui32.1ib). The proper order in which to add
libraries is: GLUIL, GLUT, GLU and OpenGL.

#include the file “glui.h” in all sources that will use the GLUI library.

Create regular GLUT windows and popup menus as usual. Make sure to store the
window id of main graphics window, so GLUI windows can later send it redisplay
events:

int window_id = glutCreateWindow(“Main gfx window”);
Register GLUT callbacks as usual.

Register GLUT idle callbacks if any with GLUI Master (a global object which is
already declared), to enable GLUT windows to take advantage of idle events without
interfering with the application’s idle events. If do not have an idle callback, pass in
NULL.

GLUI_Master.set_glutldieFunc(myGlutldle);
or

GLUI Master.set_glutldleFunc(NULL);

In idle caliback, explicitly set the current GLUT window before rendering or
posting a redisplay event. Otherwise the redisplay may accidentally be sent to a
GLUI window.

void myGlutidle({void)
{

glutSetWindow(main_windowy};
glutPostRedisplay();

7. Create a new GLUI using
GLUI *glui = GLUIL Master.create_glui(“name”, flags, X, y);

Note that flags, x and y are optional arguments. If they are not specified, default
values will be used. GLUI provides default values for arguments whenever possible.

8. Add controls to the GLUI window. For example, add a checkbox and a quit button
with:
glui->add_checkbox(“Lighting”, &lighting);
glui->add_button (“Quit”, QUIT_ID, callback_func};

9. Let each GLUI window created know where its main graphics window is:

glui->set_main_gfx window(window_id});

10. Invoke the standard GLUT main event loop, just as in any GLUT application:
glutMainLoop();

10

CHAPTER 3
METHODOLOGY/PROJECT WORK

For the development of the particle system application, an exploratory research will be
used. Exploratory research will rely on secondary sources such as reviewing available
literature on journals and articles. Through thorough research, the particle system
application then will be developed and experimented based on the findings on Particle
System API and GLUI in order to integrate it.

The following is a brief description of the steps taken in the development of the project.
3.1 Project Development Phases
The author’s objective is to accomplish the exploratory research phase of this project:
3.1.1 Preliminary Understanding
Preliminary understanding is obtained by expanding research by reviewing previous
works or previous articles available to gain familiarity with the project that can lead to
narrow down the research study to developing the problem statement.
3.1.2 Literature Search
This phase involves gathering information from secondary sources such as literature
review. It is a review of books as well as articles in journals or professional literature is
to find ways that address to a solution or solved problems that relates to the author’s
problem statements. It also involves the analyzing of the requirements for the project in

order to obtain the specifications for the project. The analysis of the requirements will

result in an initial product specification that the end product will revolve upon.

11

3.1.3 Data Gathering
Through the literature search, the background information that related to the particle
system application is gathered. From the information gathering, the author can identify

information that should be gathered and identify the sources for the topic that might be

used in the development of the project.

3.1.4 Development
This stage is not really a part of the Exploratory Research, but the author decides to
inctude this stage. This stage is where actual coding for the development of the initial
application is carried out. An initial application based on the information gathered and
analyzed earlier is used as the constraints to model this project.

3.1.5 Testing and Debugging

Testing and debugging are done to ensure the workability and the functionality of the

project.

3.1.6 Final Release

The final product is obtained after all the steps of the exploratory method is complete
and a fuily functional product is developed meeting the problem statements criteria.

12

3.2 Tools Required

321

Hardware

Mentioned below is the minimum requirement that required to develop the

application.

322

Pentium 11, 800 Mhz Processor or higher

128 MB RAM or higher

3 GB of hard disk space or higher

800 X 600, 256 colors of video resolutions, or higher
Graphies Card - Gforce 64MB or higher

Software

Visual Studio.NET

Visual Studio.NET is used in developing the particle system application by
using a console Win32. The particle system application will have two

windows displayed which are a console and the OpenGL Utility Toolkit
(GLUT) window.

13

CHAPTER 4
RESULTS AND DISCUSSIONS

This section discusses the results that have been achieved upon the implementation of
Particle System API and GLUI libraries used in the development of the user interface
for particle system controller. Basically, the result will be the end product, which is
essentially a particle system application that is ‘manipulatable’. The discussions will

include the problem encountered throughout the development process.
4.1 The Particle Environment

Based on the literature review done for the purpose of this project, the author started
developing the framework for the application using OpenGL and implemented Particle
System API and GLUI libraries to build the particle application with user interface
controller. The extra headers that are required to be included in the source files are
tga.h, papih and GL/gluih. The first header file atlows the texturing on the quads
whereas papi.h is referred to particle API which provides initialization of the particles.
The glui.h allows for the creation of user interface of the particle system application.

The particle system application is developed using win32 console application in Visual
Studio.NET. A 500 by 500 pixel window was created as the main window of the
particle system application with an additional 220 by 600 pixel sized window at the
right side of the main window acting as the particle controller which enable user to
manipulate with the particles’ attributes.

14

Figure 4.1: The environment of the particle systems and the particle controller.

Initially, the GLUT window will display a plane and user has to make a start by using
the particle controller at the right side to choose the particles type. Particles type
consists of primitives and textured particles drawn as a group of particles. Primitives are
the fastest OpenGL based method of drawing particles. Primitives are point, triangles
and lines drawn as a group of particles. When primitive equals points, each particle
becomes a single vertex, For lines, each particle becomes a line specified by two
vertices, yielding a line in the direction that the particle is moving. A textured particle is
drawn by loading the texture, the image in .tga format. The texture then has to be blend
using glBlendFunc() in order to allow the transparency of the particles.

Domain type is to describe the velocities of the particle. Particles attributes which is
using rollout contains the characteristics of the particles to be manipulated by user. User
can set their own particle behaviour by using the controller. Source will enable user to
add particles in the specified domains. A domain used in source is to describe the
volume in which a particle will be created. Target colour contains three (3) primary
colour which are red, green and blue. It changes the particle colour towards the

specified colour. The gravity section consists of direction X, y and z which is to
15

enable user to indicate and accelerate the particles in the given directions. The bounce
part is meant to bounce particles off a domain space. Bounce actions use domains to
describe volume in the environment for particles to bounce off respectively. The
particle size which consists of size x, y and z is to identify the new size of the particles.
Lastly, the remove particle section is meant for removing or kills old particles

depending on the value of the age limit set in the spinner.
4.2 Future Upgrades and Recommendations

The current version of particle system controller is far from perfect. Quite a number of
areas could be tweaked and codes restructured to provide more functionality and
realistic. Below are listed some of the possible recommendations that the author has

identified for future work on the project:

e The current version only created particle system application. Future versions might
inciude a particle system application that can simulate effects such as smoke,
explosions, fire, rain and other effects. |

e Provide a controller that can change the behaviour of the particles so users can
manipulate and learn more about the particle system.

e Provide a virtual environment that can simulate how the particle works.

16

CHAPTER 3
CONCLUSION

Over a period of time, particles are generated into the system; move and change form
within the system, and die from the system. As a whole, Particle System models an
object to represent motion, changes of form, and dynamic which is not possible with
traditional surface-based representations. The implementation of particle system in this

project can lead to new experience of virtual environment that represents real world.

In summary, the project has shown significantly that the traditional way of simulating
an effect such as controlling the particles using a keyboard can be developed into an
interactive way by implementing both Particle System API and GLUI user interface into
the coding, Particles are made easy with Particle System API. Particle System and
GLUI library is an efficient means of the development of the particles without having to
worry too much about how the particles might behave and the behaviour of the particles
can be understand by manipulating the particles attributes using GLUI user interface.

The extensive usage of Particle System API shows the advantages of using it. Applying

Particle System API helps in managing the particles in group and reduces the

complexity of the project.

17

REFERENCES

Reeves, William T., 1983, Particle Systems: A Technique for Modeling a Class of
Fuzzy Objects

David, K. McAllister, 1999, Documentation for the Particle System API, University

of Carolina

Rademacher, Paul, 1999, GLUI Manual

David, K. McAllister, 2000, The Design of an API for Particle Systems, University

of Carolina

J. L. Neider, T. R. Davis and M. Woo, 1993, OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Addison-Wesley

Wright, Richard S. and Sweet, Michael, 2000, OpenGL: Super Bible, Waite Group

Press

Sekaran, Uma, 2003, Research Methods for Business: A Skill Building Approach,
John Wiley & Sons Inc.

Donald, R. Cooper and Pamela, S. Schindler, 2002, Business Research Methods, Mc
Graw Hill

18

APPENDIX

SOURCE CODE FOR PARTICLE SYSTEM AP1
J e e e e G e e e S o B sl e e e e e

"opengl32.1ib®™)
Tglut32.1ib")
"glui3Z.iib")
"particleDLL,1ib"}

=z <stdlib.h>
<GL/glut.h>

"Cbémera.h"

cote Anouan Tor o smaoh
GetInput()}
wrrmoogngach LEe somove arouanad Che
CCamera Camera;
Pt e Lhe ranlay Loiat
GLuint theQuad;
A deolzration for @

GLuint LoadPexture({:..:: *TexName};

JF tenture 1D

GLuint TexIDl:
19

/) These are liva i e passed into gluld,
s main window;
A define primitlives propariis
particles = 0;
particles type = 0;
fF Smfine O 3 e Cles
domain = 0;
domain type = 0:
JSodsline ta OIS DL TeT, grasn]

int targetC
§ r = {;

s reEnove vartlois oroy
= 1;
age limit = 10;

TR

/S odeline guze
i size = 0;
size x = 0.5;
size y = 0.5;
size z = 0.5;

gravity

o dir ®x = 0.
0.

0.

dir y =

0
. 0
szf dixr z = 0

- source = 1;
T particle rate = 10;

ClE TR A DEUNTE

bounce = 0;
radius = 0;

re of the controls creatsd

FREN B RS RN

GLUI

GLUT_ RadiocGroup *radiol, *radiol;

GLUI_Checkbox *checkboxl, *checkbox?, *checkbox3, *g checkbox,
*b_checkbox, *size checkbox, *checkboz,
*coloxr_checkbox;

GLUI_Panel *obj panel;

GLUI_ Rcllout *options:

GLUI_ Spinner *grav_spinnerl, *grav_spinner2, *grav_spinner3,
*b spinner, *size_spinnerl, *size_ spinnerz,
*size spinner3, *source_spinner, *target spinnerl,
*target spinner2, *target_spinner3, *kill spinner;

20

Tocoptrel = peoolois LT
control == 1) {
particles = particles_type;

2 contrel _cb{

[conbyrol o

Lf(particlesaﬁype == 0)

{

color _checkbox->enable(};

target spinnerl->enable();
()
()

r

target spinnerZ->enable
target spinner3->enable

r

S0 wl i =

Rlzt VT(paitlcleS_type — i)

color checkbox->enable{);
target spinnerl->enable(];
target spinner2->enablie(};
target spinner3->enable{};

(particles type

size checkbox->enable(};

color_ checkbox->disable();

target_spinnerl—>disable();

target spinnerZ->disable(};

target spinner3->disable();
}

i¥ { contro}l == 16)

i1 {source)

{

source_spinner»>enable();
}
{

sourcemspinner—>disable();
1

21

—_— (]

(conmtrol == 18)

i (targetC)

/4 Tmable target color
target spinnerl- >enable()
target spinmerZ->enable();

target spinner3->enable();

FoDisznis Laroen oolor
target splnnerl >disable();
target spinnerz- >disable(};
target spinner3->disable(};

1% { contrel == b}

Li{gravity)

grav_ splnnerl >enable{),
grav_sp1nner2—>enable(),
grav_spinner3-renable();

}

{
grav splnnerl >dlsable();
grav_spinnerZ->disable();
grav_spinner3->disable();

}

1Y (control == 9)

1% (bounce)
{
S/ Ernable mounos propertisas
b spinner->enable(};
1
{
AAD e Dounos o
b splnner >dlsable(),
}

(control == 12}

F{size)

J/ o Enahle slen Lrooerties

size spinnerl->enablel();

size spinnerZ->enable();

size spinner3d->enable();
}

22

[k (FJSJ_L"L*

R u LS

S/ Dileghle sive properiiss
size spinnerl->disable():;
size spinnerZ->disable();

size spinner3->disable{};

}
cize 37 { control == 20)
i

(ki1
{

S RATLE Nangye Darlidlg Dropenlas

kill spinner->enable();

{
J/F TDisenle yemove paviicla propeiviilss
kill_spinner~>disable(};
}
}
choles soroving on In bne the T

mic ComputePafti&les()”

P I
i A

Li{targetC
pTargetColori{r, g, b, 1.0, 0.5);

/"‘J ./! LR LG] K ,,

i~ (domain type == 0){

pVelocityD{FDCylinder, 0.01, 0.0, 0.035, 0.01, 0.0, 0.37,
0.021, 0.019);

ST A P s s Ldas

-lsc 27 (domain type == 1){
pVelocityD (PDLine, 0.01, 0.0, 0.035, 0.01, 0.0, 0.37,
0.021, 0.019);

i (domain;ﬁype == 24
pvelocityD{PDPoint, ¢.01, 0.0C, 0.35, 0.01, 0.0, 0.37,
0.021, 0.001%9):

LA s =

Luoanbmaln Tius = s
. f (domain type PR
pVelocityD(PDSphere, 0.0, 0.0, 0.0, 0.5, 0.0);

23

T R = 2 e P E ot s T
F AL TLERL 20F jl cicles {float agsih

pStartingAge(l.D, E.O);

ii{size){
pSize{size x, size y, size z);

}

Donsrats oorticson 8lond 8 VErY smno

;f(souzéé}{

pSource (particle_rate, PDLine, 0.0,

0.0);
}
S Tnaviiy
Lf{gravity) {
pGravity{dir x, dir_y, dir_z}:
}

E(kill) {
pKillOld(age iimif, Z=zl==);

by e S b e e N

movnos eortiotes off 2 diso of radiva.

» 7 (bounce) {
pBounce (~0.05, 0.35, 0, PDDisc,
radius};

| i 1.
ol e v D ewiy

PDPlane, 0,0,-3, 0,0,1);

/7 Laeand bh

TexIDl=LoadTexture ("sprite.tga™};

s

glEnable (GL_BLEND) ;
glBlendFunc (GL SRC ALPHA, GL_ONE);

theQuéd = glGenLists(l};
glNewlList (theQuad, GL_COMPILE);

glBegin (GL_QUADS) ;
glColor3f(0.8£, ¢.1f, 0.2f);

glTexCoord2f (1.0f,1.0£); glVertex3f
glTexCoord2f (1.0£,0.0f); glVertex3f
glTexCoordZf (0.0£,0.0£f); glVertex3f
glTexCoord2f{0.0f,1.0f); glVertex3f(0.0f,

24

Gl

{
{
(
{

.0, 0.0,

6.0, 0.0,

ERPT R
ol

0f, 0.0f,
0.1f,
0.1f,

0.0%,
0.0%,
0.0f,

0.Cf);
0.0£);
0.1f);
0.1f);

glEnd{};
glEndList(};

glClearColor{0.0, 0.0, 0.0, 0.0);

I A TR

P il -

.Of, 0.0f, 0.0f, O0.0f,

Camera;SetCamera(0.0f O;Zf, —10.0f,h0
1.0f, 0.0f);
}

/7 Load a TEA texburs
gluint L.oadTexture{-:2z
{

TGAImg Tmg; S T
GLuint Texture;

ii(Img.Load(TexName)!=IMG_OK)
raturn —1;

[} i

LEELLLE

R S

glGenTextures]l,&Texture);

Set mur Tew handlé s Current

ngindTexture{GL_TEXTURE#ZD,Texture);

Urests The ts

ff(Img.GetBPP{)— 24)

s
A

ngexImage2D(GL_TEXTUREUZD,0,3,Img.GetWidth(),Img.GetHeight(),0,
GLMBGB,GL_UNSIGNED_BYTE,Img.GetImg{});
staw 17{Img.GetBPP(}==32)

ngexImageZD(GLfTEXTURE#ZD,0,4,Img.GetWidth{).Img.GetHeight(),O,
GLWRGBA,GL”UNSIGNED_BYTE,Img.GetImg());

/7 Specity [lltering and =dgs actionsg
gl ex?arameteri(GL_TEXTURE_ZDfGL_TEXTURE_MIN_FILTER,GL*LINEAR);

glTexParameteri (G, TEXTURE_2D,GL_TEXTURE MAG FILTER,GL_LINEAR);
glTexParameteri {GL_TEXTURE 2D, GL_TEXTURE WRAP S,GL_CLAMP);
ngexParameteri(GL_TEXTURE_ZD,GLATEXTUREHWRAP*T,GL#CLAMP);

crusn Texture,

nic display(veold)

glClear(GL_COLOR_BUFFER_BIT i GELDEPTH_BUFFER“BIT};
glioadIdentity(};

FF T s e
i LI

GetIﬂpué();

vt Funorion will chscok

i ooluboohiniy will wosition the camera.
gluLookAt(Camera Pos.x, Camera.Pos.y, Camera.Pos.z,
Canera.View.x, Camera.View.y, Camera. View.z,

Camera.Up.x, Camera.Up.y, Camera.Up.z);

[The

glScalef({2.0, 2.0, 2.0};:

AR T . P
ST R - J,CJ 1 [S

ngranslatef(Camera Vlew X, 0, Camera.View. z)

glRotatef (180, 0.0, 1.0, 0.0);

e e
L (AR i

ngegln{GL QUADS),
glColor3ub (G, 115, 0}:
glvertex3f(-5.0, 0.0, -5.0);
giColor3ub (0, 3, 140);
glVertex3f (-5.0, 0.0, 5.0}
glColor3ub{d, 5, 140);
glvertex3f (5.0, 0.0, 5.0);
glColor3ub (0, 115, 0);
glVertex3£ (5.0, 0.0, ~5.0);
glEnd();

Crotia T S SN
A4 Loow = Chis wnAarliolaed Go.

Compute?artlcles(),
L i (particles _type == 0){

glRotatef (90, 1.0, 0.0, 0.0);
pDhrawGroupp (GL_LINES, Trea) g

}

=lzs 47 (particles type == 1){
glRotatef{~90, 1.0, 0.0, 0.0);
pDrawGroupp {GL_POINTS, True);

1

=nze 17 {particles type == jRI
glFnable {(GL_TEXTURE_Z2D);
glBindTexture (GL_TEXTURE_2D, TexID1);

glRotatef (-90, 1.0, 0.0, 0.0);

v o [oy

ravi u. LGP

VOIS,

pDrawGroupl(theQuad,

S/ Dimahnls &
nglsable(GL TEXTURE ZD)

R =

}

glutSwapBuffers({);

26

KRBT e At LE nmossaar

i glutGetWindow{) E= maih_window)
glutSetWindow (main window);

glutPostRedisplay();

£ L e L J
Iz : ;
," ¥ g
P S
/ /
i w
“y
i -/
i a g
. /

glui->sync livel):
radiol~>set _int val (particles);

<17 mouse! int btn, o7 state, irnT %, 1T Y)

i 7 (btn==GLUT LEFT BUTTON && state == GLUT_DOWN) particies = 0;
1f (btn==GLUT_MIDDLE BUTTON && state == GLUT DOWN) particles = 1;
L £ (btn==GLUT RIGHT BUTTON && state == GLUT DOWN) particles = Z;

i myReshape (it w, 272 h)
glviewport (0, 0, (GLsizei)}w, {(GLsizei)h};
glMatrixMode (GL_PROJECTION) ;
glLoadIldentity():

gluPerspective (60, w / ~o.2i=(h), 1, 100);
glMatrixMode(GLWMODELVIEW);

void GetInput ()

fF tmdzen che tims for Dineg bassed movemsni.
Camera.CalculateTime() ;
SO Hare we oneo caon lnpul thal we cars aboul.

i {GetKeyState (VK UP) & Ox80) Canmera.MoveCamera{UP);
1 i (GetKeyState (VK _DOWN) & 0xB80) Camera.MoveCamera (DOWN) ;

Perata Tefn An on

LAl A

L =

i1 {GetKeyState (VK _LEFT) & 0x80) Cémera.RotateCamera
(CVectord (Camera.View.x, Camera.View.y, Camera.View.z),
LEFY, 0, 1, 0);

27

Camera.RotateCamera (CVectord {Camera.View.x, Camera.View.y,
Camera.View.z), RIGHT, 0O, 1, 0);

Gorate YR oooamerns oo in 3rd person.

. < (GetKeyState ("W') & 0x80 {| GetKeyState('w') & 0x80)
Camera.RotateCamera (CVectord (Camera.View.x, Camera.View.y,
Camera.View.z}, UP, 1, 0, 0});

ool v

S Rotal =

.7 (GetKeyState ('S') & Ox80 || GetKeyState('s') & 0x80)
Camera.RotateCamera (CVectord {Camera.View.x, Camera.View.y,
Camersz.View.z}, DOWN, 1, 0, 0);

A

So4omain(int arge, <har*oargv([])

glutInitDiSplayMode{ GLUT RGE | GLUT DOUBLE ! GLUT DEPTH Vi
glutInitWindowPosition(50, 50 });
glutInitWindowSize(500, 500);

main_ window = glutCreateWindow{ "User Interface Particle Controllier”™
)i

glutDisplayFunc{ display };

glutReshapeFunc(myReshape);

glutMouseFunc (mouse) ;

glEnable (GL_DEPTH TEST);
glDepthFunc(GL LESE);

init();

ke @ pariicls grong

ini particle_handleJ: péen?articleGroups(l, 4000) ;
pCurrentGroup{particle handle);

Ao owint w

printh"GLUI“version:

glui = GLUI Master.create glui{ "GLUI", 0, 400, 50);
glui->add statictext("Particle GLUI™);
obj panel = glui->add_panel("pParticle Controls");

28

I
t‘ /‘ T -‘i
GLUI Panel *type panell = glui->add panel tc panel{ obj_panel,
"particles Type"}:

radiol = glui->add radiogroup_to_panel (type panell, &particles_type,
1, control cb);

glui->add radicbuttoen to_group(radiol, "Lines"};
glu1*>add radiobutton to group(radicl, "Points™);
glui->add radiobutton_to_group(radiol, "Paxtured");

f7 LT I
GLUI Panel *type panelZ = glui->add_panel to_panel (obj_panel,
"Domain Type”);

radic2 = glui—>add_radiogroup_to_panel(typeﬂpanelZ, sdomain_ type, 2,
control cb);

glui->add radiobutten_to_group(radiocz, "Cylinder™);

glui->add radiobutton_to_group(radicZ, "Line™};

glui->add radicbutton_to_group(radioZ, "Point");

glu1—>add radiobutton to group(radioZ, "Sphere");

A4 ncllout - Do mrous oontrols into collapesliinis ones

cptions = glul >add rollout to panel(obj panel "Particles
Attributes", RES I

¢
S

checkbox = glul >add checkbox to panel (options, "Source", &source,
16, control cbi;

source splnner = giul ->add spinner_to_panel (options, "Number of
Particles: ", GLUI SPINKER INT, &particle rate, 17, control _cb);
source spinner->set int_limits (0, 1000);

e

glui->add separator to panel(optlons)

'3
I

S T st el ood ; i

color checkbox = g1u1 >add checkbox to panel {options, "Target
Color®™, &targetC 18, control_cb),

target spinnerl = glui->add spinner_to_panel (options, "Red: ",
GLUI_ SPINNER FLOAT, &r, 22, control cbi;

target splnnerl >set float limits (0.0, 1.0);
this feiriasll Ni

target splnnerl >dlsable()

/f u‘

target spinnerZ = glui~»add spinner_to_panel{options, "Green: ",
GLUI_SPINNER FLOAT, &g, 23, control _cb);
target sp1nner2 >set float llmlts(O 0, 1.0);

tf Ligsinl 1

target sp1nner2 >dlsable()

29

target spinner3 =_glui—>add_spinnerwto_panel(options, "Blue: ",

GLUI_ SPINNER FLOAT, &b, 24, control cb);
target sp1nner3 ~>set fleat llmltS(U 0, 1.06};
J7 Disabla il it il
target splnnerB >dlsable{)
giui- >add_separator_to_panel(options};

S Dpana T oL EG LE

g checkbox = glui->add checkbox_tokpanel(options, "Gravity",
sgravity, 5, control_chb}:

grav_spinnerl = glul ->add_spinner to _panel (options, "Direction X: ™,
GLUI SPINNER FLOAT, gdir x, 6, control_ ch):

grav_ splnnerl ~>set float limits(-0. 1£, 0.1f);

grav_ splnnerl >set speed(O 1£);

S T
IR

grav splnnerl >d15able()

grav_spinner2 = glui->add . spinner to_ panel (options, "Direction ¥: ¥,
GLUI SPINNER FLOAT, gdir vy, 7, contrel cbj;

grav_ splnnerZ >set_float limits{-0. 1f, 0.1f);

grav_ sp1nner2 >set speed(O 1) ;

/ ; Vsl »-*. A - %‘ H .,

grav_ sp1nner2 >dlsable()

grav_spinner3 = glui->add spinner_to_panel{options, "Direction Z: ",
GLUI_ SPINNER_¥LOAT, &dir_z, 8, control ch);

grav_ splnnerB >set float limits(-0.01f, 0.1%};

grav sp1nner3 >set speed(o 1£y;

grav sp1nner3~>dlsable(),
glui->add separator_to_panel (options);

b checkbox = glui~>add_checkbox_to_panel(options, "Bounce", &bounce,
g, control _cb);

b splnner = glui->add spinner toﬁpanel(optlons, "Radius:",
GLUL SPINNER INT, &radius, 11, control#cb)

b splnner >set 1nt llmlts(O, 10);

LAY
b splnner—>dlsable{),
glui- >addmseparator_to#panel(optionsj;

f 1

1o mhis i

Igsinls

S BLIE

size checkbox = giui->add checkbox to _panel (options, "pParticle
Size"™, &size, 12,control cb):

size checkbox->disable () ;

size splnnerl = glui->add spinner_to panel(optlons, X",
GLUI_ SPINNER FLOAT, &size_x, 13, controil cb};

size splnnerl ->set Float limits{0.0f, 1, 5E);

size splnnerl >set speed(O 1f});

FponL & ioditia :

size splnnerl >dlsable(),

30

size_spinner? = glui->add _spinner to_panel (options, "Y: ",
GLUI_SFPINNER_ FLOAT, é&size y, 14, control cb):

size splnnerz >set float llmltS(D 0f, 1.5f):
size sp1nner2 >set speed(o 1£);
/7 Blsania b K ally
size splnnerZ >dlsable()

mw

gize spinmer3d = glui->add spinner to_panel (options, "Z:7,
GLUI SPINNER_ FLOAT, &size z, 15, control cb);

size splnnerB -»set float llmlts(O 0f, l.5f};

51ze sp1nner3 >set speed(O i),

size sp1nner3 >dlsable(),
glu1—>addﬁseparator_to_panel(options);

J4ORALY particlies

checkbox = glu1 ->add checkbox_ o _panel {options, "Remove Particles"
&kill, 20, control cb);

kill spinner = glu1 >add_spinner_to _panel {options, "Age Limit: ",
GLUI_SPINNER INT, &age_. limit, 21, control cbl;

kill _spinner->set_int limits (0, 1200);

A/ Burton - ineoiing usan 20t Lons

e

DL .

glul >add button("Qu1t" 0, {GLUI Update CB)exit);

Tlhack with CLUL, not with GLUT

GLUI Master set glutIdleFunc(myIdle);

/o Tesnlar CLUT mnin Loon
/4 Beoular Pomnin loop

glutMainLoop ()

31

