
USB Learning Module

by

Praveen Manaprath Mathews

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

JUNE2008

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

Approved by,

CERTIFICATION OF APPROVAL

USB Learning Module

by

Praveen Manaprath Mathews

A project dissertation submitted to the

Electrical and Electronic Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL AND ELECTRONIC ENGINEERING)

DR. YAP VOOI VOON

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

JUNE 2008

CERTIFICATION OF ORIGINALITY

This is to certifY that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

PRA VEEN MANAPRATH MATHEWS

ABSTRACT

In Universiti Teknologi Petronas (UTP), it is essential for Electrical and

Electronic engineering students to grasp the basis of C programming. Quite often,

programming is taught through lectures and the lab exercises are more computer

science related rather than Electrical and Electronic. Thus the main objective of this

project is to produce course materials to aid in the teaching of programming in UTP.

The main feature of these course materials will be a PIC microcontroller board and

several interface modules. The PIC microcontroller board communicates with the PC

via the USB port. Example worksheets are also produced to facilitate the teaching

and learning process.

ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. Yap Vooi Voon for guiding me throughout

the entire FYP programme. Thank you for guiding me as well as being patient, kind

and helpful throughout the entire two semesters. To my co-supervisor, Mr. Patrick

Sebastian, who also stepped in to help out with this project. To Mr. Evan Dudzik

also for his advise and suggestions on USB interfacing.

11

TABLE OF CONTENTS

ABSTRACT.

ACKNOWLEDGEMENT

LIST OF FIGURES .

CHAPTER!: INTRODUCTION .
1.1 Background of Study ..

1.2 Problem Statement

1.3 Objective of Study

1.4 Scope of Study

CHAPTER2: LITERATURE REVIEW

2.1 USB

2.2 USB Development

2.3 USB Enumeration

2.4 USB Bootloading

2.5 LOGO programming .

2.6 LOGO as a teaching tool

2.7 C Programming

2.8 Teaching C Programming

2.9 Summary

CHAPTER3: METHODOLOGY .

CHAPTER4: RESULTS AND DISCUSSION

4.1 Research

4.1.1 Programming Skills

111

11

v

1

1

1

2

2

3

3

3

4

5

6

6

7

7

8

9

12

12

12

CHAPTERS:

REFERENCES

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIXV

4.1.2 USB

4.2 Establishing USB Connection

4.3 Establishing USB Communication

4.4 Learning Module

4.4.1 Hardware Design

4.5 Application Boards

4.6 Results and Discussion

4.6.1 Problems Encountered

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

lV

14

14

14

15

16

17

20

20

21

21

22

23

24

26

27

28

32

LIST OF FIGURES

Figure 3.1 Methodology Flow Chart 9

Figure 3.2 Operation Flow Chart . 11

Figure 4.1 Pie Chart 1 12

Figure 4.2 Pie Chart 2 13

Figure 4.3 Pie Chart 3 13

Figure 4.4 Pie Chart 4 13

Figure 4.5 Board recognized by the PICDEM FS USB Tool 14

Figure 4.6 PICDEM FS USB Tool programming and executing device 15

Figure 4.7 Learning Module Base schematic and diagram 16

Figure 4.8 First Application Board schematic and diagram 18

Figure 4.9 Second Application Board schematic and diagram 19

v

CHAPTERl

INTRODUCTION

1.1 Background of Study

The main objective of this project is to produce course materials to aid in the

teaching of C programming in Universiti Teknologi Petronas (UTP). It aims to train

students on programming skills and problem solving from an engineering perspective.

The device will accept simple instructions from students to execute tasks on application

boards. This will also instill an engineering method of thinking while enhancing thinking

skills for future endavours. As the ever-growing technology era continues, people need to

have a basic understanding of technology and its methodologies to cope with the growing

advancements.

1.2 Problem Statement of Study

i) With advancements in technology, people must be able to understand the

fundamentals of programming.

ii) A suitable learning module is needed to teach students about computer skills

and problem solving skills.

I

1.3 Objective of Study

i) To construct and test a USB interfacing circuit.

ii) To utilize the learning module for a programming course.

iii) To produce sample worksheet to facilitate learning and teaching

1.4 Scope of Study

This project covers a study of alternative teaching methods for teaching

programming skills from an engineering perspective.

This project also covers the area of studying different USB interface circuits. This

area is important as it provides a fast and easy connection that is recognized worldwide.

The project also covers interfacing a user interface, using LOGO and C programming,

with the module.

2

CHAPTER2

LITERATURE REVIEW

Introduction

With new advancements in connectivity, the popular serial interface is phasing out and

being replaced with other alternatives. The most distinct and successful of these is the

Universal Serial Bus.

In this section, the literature review is divided into two parts for better understanding,

USB and LOGO and C programming:

USB

The first version of USB, the USB 1.0 was created in 1996. Soon after, USB 1.1 was

created in September 1998. Finally the current USB 2.0 was created on April2000, it

managed to support up to 48Megabits per second, which was 40 times faster than the

speed of USB 1.1 [5].

The Universal Serial Bus is a fast, flexible and ideal interface for connecting devices to

computers. It was designed to be easy for users with no configurations required on both

hardware and software.

USB Development

USB peripheral designing involves getting the peripheral running and developing the PC

software to communicate with the peripheral. An assembler or compiler is necessary to

create firmware inside the device's chip. A device driver is also needed for recognition

by the computer. A monitor program, or protocol analyzer is also used to help in

developing firmware and for debugging purposes[4].

3

USB Enumeration

To determine the specific capabilities of each device, the peripheral and the host go

through a series of data exchanges upon attachment that inform the operating system of

the device and the maximum speed the two can communicate; low, full, or high. This is

the first step in the enumeration process; a common process on Windows systems

through which all peripherals are registered.

Each device on the USB is identified by a Vendor ID and a Product ID; VID & PID. VID

numbers are managed by USB-IF and each number is licensed to a specific vendor; no

two VID numbers are used by more than one vendor. On the other hand, the PID is used

by the vendor to distinguish vendor products and is assigned without regard of other

vendor PIDs. These numbers together constitute a unique key that identifies devices on

the bus which the operating system uses during communication[3].

Every USB peripheral is required to implement one or more device descriptors that

include information about the device class (type) and its capabilities; Endpoints and

communication configurations. The host will request descriptors during the enumeration

process, which it will use to register the device with the operating system using the VID

and PID, load the appropriate drivers, and set the rules of communication[6].

4

USB Bootloading

A bootloader acts as a small program to load software for a system to start-up. It resides

as the base of the system and allows other programs to boot on it. In the context of USB

bootloading, the bootloader must be present on the system before the data is transferred

to the device through the USB. Once the system is on bootloader mode, then only will the

computer acknowledge the system and thus allow data transfer. When the system is then

switched on, the bootloader must be initiated, then only will the data be read and

executed. Data can then be efficiently erased and re-programmed on the system.

:J'"~"'' __ , ____ ""....,_ ...

Q[#!.: ·1!1 ,1 C>oiliiCI- ,jl;!l'a: ... , .. I
.,0 _.,,._..,.,,,.,_ . .,.,,, ,., .. ,,
"·'"-"'"-"' '""

.•v '"'·" ~C""-"'""'"·'·~'"' -'""""

·"''"'""'-'"·'"'"''"-'·"'"'-'""···

5

LOGO Programming

The Logo Programming Language, a dialect of Lisp, was designed initially by a team

from MIT headed by Wallace Feurzeig in 1967 as a tool for learning. It was designed to

tutor children to encourage different thinking styles in where they can think mechanically

or 'like a computer'. It is accessible to novices, including young children, and also

supports complex explorations and sophisticated projects by experienced users. A Logo

word is a string of characters. A Logo list is an ordered collection of words and or lists.

Logo's data structures, words and lists are closely parallel to words, phrases, and

sentences that make up spoken and written language[2]. For example, the code:

FORWARD 100

will move the module I 00 steps forward

LOGO As A Teaching Tool

The design of the LOGO environment as a whole is strongly influenced by certain

general ideas of which three are particularly relevant to work with young minds:

Procedurization, anthropomorphization and debugging[7]. Procedurization describes

creating an environment where sets of procedures are used which when knit together will

help the person understand better. This will channel real-world procedural knowledge

into mastering the computer and vice versa. Anthromopomorphization is described as

ascribing human characteristics to non--human things. Debugging describes the process

of making things work by hypothesizing, testing, revising, etc.

Ideas from computer science like naming, procedurization, and debugging become

intermixed with anthropomorphic thinking to become tools in problem-solving situations.

The interface between LOGO and the user can be changed by the teacher who knows

LOGO, to better suit the user or task assigned. The teacher need not be a computer

programmer even.

6

C Programming

C is a general-purpose, block structured, procedural, imperative computer programming

language developed in 1972 by Dennis Ritchie at the Bell Telephone Laboratories for use

with the Unix operating system. It has since spread to many other platforms. Its design

goals were for it to be compiled using a relatively straightforward compiler, provide low

level access to memory, provide language constructs that map efficiently to machine

instructions, and require minimal run-time support. Today it is the most widely used

programming language for both software and hardware. Thus it is essential that every

electrical and electronic engineer be more than familiar with this language.

Teaching C Programming

Being the most widely used programming language, it is essential for every engineer to

be familiar with the language. However some are still unclear and distant with it due to

the lack of proper education and exposure of the topic at the beginning stages. It has been

noted that traditional programming has been taught as the professors learnt it, via syntax,

through the vehicle of a single language. With this students are bogged down in the

specifics of the chosen form, that they see programming as "fighting the compiler" [8].

Other researchers found that programming should be taught through redundancy and

instilling fundamental concepts first before heading on to complex programs [9]. It has

also been found that the main problems with teaching beginners especially

undergraduates, are that it is difficult for them to grasp the concept of arrays, functions,

pointers and also the basic design and flow of the program [10]. Thus the overall layout

and flow of a program must be taught first. This can be done through simple programs

which students can play around with through trial and error and learn accordingly by

viewing the outcomes on the monitor or application boards.

7

Summary

From the USB reviews, it states and reviews the basic USB functions and limitations

which will aid in manipulating the USB for the purpose of this project. Through

enumeration and development, the software side of the USB is defined; this helps in

explaining the entire process flow of when the USB is plugged into a computer. USB

bootloading is a key criterion for this project as the learning module will require

programs to be downloaded onto it.

From the LOGO and C programming reviews, a basic knowledge of the languages is

grasped and understood. More importantly, their effects as a teaching tool are deeply

observed. In accordance with the objective of the project, methods of teaching these

languages are also looked into with greater detail.

8

CHAPTER3

METHODOLOGY

I RESEARCH I
+

ESTABLISHING
USB CONNECTION

i
ESTABLISHING USB
COMMUNICATION

i
LEARNING
MODULE

i
APPLICATION

BOARDS

Figure 3 .I Methodology Flow Chart

This final year project will consist of various stages towards the goal of completion:

Research: The first stage was venturing into the nature of USB itself. Extensive research

and study was conducted on the USB capabilities and functions as well as searching for

alternative USB interface circuits. Each circuit was studied in detail and tested. The best

circuit was then chosen and constructed.

9

Establishing USB connection: As the next stage, a simple USB Demo board using the

18F4550 PIC was constructed to communicate with the computer via USB. Hardware

components for the board were obtained and assembled. A bootloader file was compiled

and burnt onto the 18F4550 PIC. The appropriate driver was found and installed into the

PC to recognize the USB Demo board. This stage was to ensure successful

communication on a one way level first just to verify the USB functionality.

Establishing USB communication: The device was then configured to communicate

two ways with the computer. The device was successfully recognized by the computer.

The necessary driver was installed. A simple software program was then obtained, this

program sent already existing hex files that were previously compiled on the computer to

the USB Demo board. After which upon execution, that program ran on the USB Demo

board. Necessary adjustments were made on the microcontroller and software to send

information to the computer.

Learning module: The learning module was constructed and via USB, programs were

downloaded to it. Originally the USB Demo board, the learning module was constructed

on a Printed Circuit Board (PCB). Extensive testing was conducted to ensure reliability.

Application boards: As the last stage, application boards were made to coincide with the

learning module to act as input and output devices. The user may observe the outcomes

of their programming codes on these application boards. The application boards

constructed are simple, durable and appealing. Each application board can be connected

one at a time to avoid confusion and unnecessary extra configurations.

10

Operation Flow

User enters program on computer

I
Program is compiled on computer

I
Learning module is connected to computer

I
Program is downloaded onto learning module

I
Module is unplugged from the computer, program is run

I
Application boards display output

Figure 3.2 Operation Flow Chart

11

CHAPTER4

RESULTS AND DISCUSSION

4.1 Research

For the first phase of the project, extensive research and study were conducted in

two fields:

4.1.1 Programming Skills

Research was done to inquire on the effectiveness of the current programming

course in engineering. A survey was done in a class of 10 final year electrical and

electronic engineering students from Universiti Teknologi Petronas. The following data

was obtained:

1. Students that felt that the C programming course (TAB 1013 Structured Programming)

provides sufficient knowledge to manipulate a small robot

Figure 4.1: Pie Chart 1

2. Relevancy of the C programming course in the degree they are pursuing

12

[']Not relevant

DSome
relevancy

!!!.!l Totally
Relevant

Figure 4.2: Pie Chart 2

3. Students that found it difficult learning C programming through lectures

DYes

CINo

E1 Don't' Know

Figure 4.3: Pie Chart 3

4. Students that would rather learn C programming in the form of a lecture

Figure 4.4: Pie Chart 4

13

[]Yes

CINo

El Don't' Know

4.1.2 USB

Extensive research was done on the functions and capabilities of the Universal

Serial Bus (USB). The PIC chosen for the module was the 18F4550 PIC from MicroChip

as it has USB 2.0 capabil ities. A demo board was designed and built on a breadboard for

testing.

4.2 Establishing USB Connection

The bootloader file was burnt onto the 18F4550 PIC on the demo board using a

standard PIC burner. The demo board was then connected via the USB to the computer.

Reset button S I was pressed while holding down reset button S2 (boot loader reset) and

bootloader mode was initiated. The computer recognized the demo board and prompted

for a driver. Driver is obtained and installed. Device was recognized as PIC 18F4550

Family Device. USB connection was successfully established.

4.3 Establishing USB Communication

The MicroChip PICDEM FS USB Tool was obtained from MicroChip. After

connecting the demo board to the computer and initiating bootloader mode, the board was

recognized as a demo board.

Boodold Modo 1 o..., Modo

Silled Pla>EM FS USB BMd

~MICROCHIP

PI(])[M ~usa Boodold Modo E...,

Hokidorlwii!UIIht~Uton Slhnto~~Mth
botrdbrcr .. W"'I•ta.At<lnS1

Figure 4.5: Board recognized by the PICDEM FS USB Tool

14

A sample program (.hex file) was programmed onto the demo board and the board is

executed. Program was successfully downloaded and executed on the demo board.

Communication successfully established.

Booolood ~ode 1 o-~ode 1

Select PICOE~ FS USB B..,d

C\o«S"-

- J

~MICROCHIP

PICD£~ FS US8 Booolood ~ode Eroy

Held down puohbo.tton S21hon ,_ lho
botrdb!fcw••WIOP!Jthb.AtonSl

H£SSACE - Progr•Ming FLASH Co"''htfd
t€SSACE - Erutng ~nd Pragr.l~~W~~lng FLASH ...

Addr. 10 11 12 03 ·- liS 116 17 18 19 lA 18 OC 1D IE IF

PROCRAH HEHORY :

OOGDIO 87 EF Dll Fl 12 DD XX XX XX XX XX XX XX XX XX XX
DID111 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

Figure 4.6: PICDEM FS USB Tool programming and executing device

4.4 Learning Module

For the fourth phase of the project, the finalized base of the learning module was

constructed and tested.

The base of the learning module consists of two segments: the USB interface and the

microcontroller. The construction of the learning module base is primarily to verify that

programs can be downloaded onto the microcontroller via USB and also to verify the

proper programming techniques and definitions needed in each program to allow the

microcontroller to function properly.

The learning module was tested on a veroboard and deemed feasible; it was then

constructed on a printed circuit board (PCB).

15

4.4.1 Hardware Design

Below is the new design for the PCB base of the learning module:

Figure 4.7: Learning Module Base schematic and diagram

16

4.5 Application Boards

Two application boards were made to be connected to the base of the learning module.

The first consists of LEOs and switches and will output lit or flashing LEOs according to

the program written. The second board is a two wheeled robot that will move forward,

backward, left or right depending on the code produced.

These application boards can only be connected to the learning module one at a time.

17

Below is the design for the first application board:

. ""+"" 1
+

~

.~ =-v> r..,•
(~ =->II<> l1 (;

' ===-
~ (c'1 c::::::::..r ;::::::z:::;

~ c::::::-.r ' ~

_h -"
K-1. ..

_r,; _1\

;" ... r

~ ... ·" ;...-..
~
~

..
--"' _1\

;:::;
~ ;:::; ;:::;

~ ~ ·,

Figure 4.8: First Application Board schematic and diagram

18

Below is the design for the second application board:

0
L298N

1 2 3 4 5 5 1 8 9 10 11 12 13 14 15

+
c > > II)

11 12 + 13 14

E1·2 E3-4

04 02 03 01 05 08

M1 M2 M3 M4

Figure 4.9: Second Application Board schematic

19

4.6 Results and Discussion

The learning module primarily consists of the USB interface and the

microcontroller that runs the module. For this, the 18F4550 PIC from MicroChip was

used.

The first application board primarily consists of LEDs and switches. This board

will be connected to the learning module. The switches are inputs to the learning

module, when the switches are switched on or off, a selected program will run on the

learning module and the output LEDs will flash accordingly.

The second application board is a 2 wheeled robot. This board will be connected

to the learning module as well. Depending on the code produced, the robot will move

forward, backward, left or right.

Another application board will eventually be constructed such as an LCD screen.

4.6.1 Problems Encountered

The major problem encountered was determining the appropriate definitions and

functions that needed to be included in the program for proper execution. Since these

programs are transferred via the USB, many definitions and functions needed to be

included in proper format before the program is able to execute. After much research, all

necessary functions were determined.

20

CHAPTERS

CONCLUSION AND RECCOMMENDATION

5.1 Conclusion

In conclusion, this project studies different programming languages available for

teaching programming skills. Using a learning module, students will be able to acquire

programming skills, as well as problem solving skills. The project aims to produce course

materials both in hardware and software, to aid in the teaching and learning of C

programming.

The project also aims to explore the use of the USB port to control devices. It

looks for alternative USB interface circuits. Being a fast, easy and universally recognized

standard, USB is a feasible and ideal connection for the purpose of this project and also

for many other devices.

To date, the base of the learning module and two application boards have been

constructed and function properly. A simple program was successfully downloaded onto

the base and executed on the testing board. This coincides with the final stage of the

project: 'Application Boards'. The given time dateline will be sufficient for the

completion of the project as the methodologies have been planned out already and are

deemed feasible.

The next phase carried out will be on constructing an additional application board

to be connected to the base. Extensive construction aod testing will be necessary.

21

5.2 Recommendation

For future enhancement of this project, other appealing application boards should

be made. A board with an LCD screen can be made to display the output of the program.

Users will then input a program to display characters on a 16 by 2 LCD screen.

22

REFERENCES

[1]. Seymour Papert, Mindstorms, Basic Books, 1980, pg 27

[2]. LOGO Foundation:

http://el.media.mit.edullogo-foundatioullogolindex.html

http://el.media.mit.edu/logo-foundation/logo/programming.html

[3]. Jan Axelson, USB Complete Second edition, Lakeview Research, 2001, pg 19, pgl47

[4]. Don Anderson, USB Systems Architecture Second Edition, MindS hare Inc, Addison

Wesley, 2001, pg 19

[5]. Universal Serial Bus Implementers Forum [Internet}. Beaverton(OR): c2006.

Available from www.usb.org/.

[6]. Eric Brown, USB Instrumentation, 2006, Yale University

[7]. Cynthia J. Solomon, Teaching Young Children To Program In A LOGO Turtle
Computer Culture, ACM Sigcue Bulletin, July 1978

[8] Fincher S., What Are We Doing When We Teach Programming?, Proceedings 1999
Frontiers in Education Conference Nov.l999, San Juan PR, p.p 12a4-l-12a4-5.

[9] Jermann W.H., The Freshman Programming Course: A new direction, Proceedings
1996 ASEE Annual Conference, June 1996, Washington D.C.

[10]. Dan Budny, Laura Lund, Jeff Vipperman, John L. Patzer II, Four Steps To Teaching
C Programming, 2002, 32nd ASEE/IEEE Frontiers in Education Conference

23

APPENDIX I

Bootloader main c file

/**INCLUDES **/
#include <p 18cxxx.h>
#include "system\typedefs.h"
#include "system\usb\usb.h"
#include 11 io_cfg.h"

II Required
II Required

II Required

#include "system\usb\usb _compile _time_ validation.h" //Optional

/**VARIABLES **/
#pragma udata

/**PRIVATE P R 0 T 0 TYPES***************************************/

/** V E C T 0 R REMAPPING***/

#pragma code _HIGH_ INTERRUPT_ VECTOR ~ Ox000008
void_ high _ISR (void)
{

_asm goto RM _HIGH_ INTERRUPT_ VECTOR_ endasm

#pragma code _LOW _INTERRUPT_ VECTOR~ Ox000018
void _low _ISR (void)
{

_ asm goto RM _LOW_ INTERRUPT_ VECTOR_ endasm

#pragma code

/**DEC LARA T I 0 N S **/
#pragma code
void main(void)
{

byte temp;
temp~ ADCONI;
ADCONI 1~ OxOF;

//TRISBbits.TRISB4 ~I; II Reset value is already 'I'

//Check Bootload Mode Entry Condition
if(PORTBbits.RB4 ~~I) //If not pressed, User Mode
{

ADCONl ~temp; II Restore reset value
_ asm go to RM _RESET_ VECTOR_ endasm

24

}//end if

II See usbdrv.h

//Bootload Mode
mlnitAllLEDs();
mlnitializeUSBDriver();
USBCheckBusStatus();
while(I)

II Modified to always enable USB module

{
USBDriverService(); II See usbdrv.c
BootService(); II See boot.c

}//end while
}//end main

#pragma code user~ RM _RESET_ VECTOR

/** EOF main.c ***/

25

APPENDIX II

Downloading Software

- "" =•"-' "' """"'" "~"' """ "~ ' "' '~ "" ~ ~-~ ~ -~ - '"" r " '

•" PICDEM(TM) FS USB Demo Tool- Version 1.00 Q~~
L~.O..O.li~~AH~~d Demo Mode]

··Select PICDEM FS USB Board··

I

~ !,oad HEX File ~MICROCHIP

I

'·-

Cl~ar Screen I

Ready r· Copyright (C) Mi~r~~hip :r~-;,hnology ~~~:-2ori4 '

26

APPENDIX III

Student Survey Form

1. Do you feel that after having completed the "TAB I 013 Structure Programming"
course C that you would be able write C programs to manipulate a small robot?
Yes No
Circle the appropriate answer.

If no, please state reasons

2. How would you rank the relevancy of"TAB1013 Structure Programming" in the
degree course that you are pursuing?

1- Not relevant at all
2- Some relevancy
3- Totally relevant

3. Do you think you understand C programming through lectures difficult?
1- Yes
2- No
3- Don't know

Circle the appropriate answer.

4. Would you rather learning C programming in the form of a lecture?
1- Yes
2- No
3- Don't know

Circle the appropriate answer.

27

APPENDIX IV

Demo program 1 (Demo02.c)

/**INCLUDES **/

#include <p 18cxxx.h>

/**VARIABLES **/
#pragma udata

/** V E C T 0 R REMAPPING***/

extern void _startup (void); II See c018i.c in CIS compiler dir

#pragma code_ RESET _INTERRUPT_ VECTOR~ Ox000800

void _reset (void)

_ asm go to _startup _ endasm

#pragma code

#pragma code_ HIGH _INTERRUPT_ VECTOR~ Ox000808

void_high_ISR (void)

#pragma code_ LOW _INTERRUPT_ VECTOR~ Ox000818

void _low _ISR (void)

#pragma code

/**DEC LARA T I 0 N S **/

28

#pragma code

!**LED ***/
#define minitAllLEDs() LATD &~ OxFO; TRISD &~ OxFO;

#define mLED _1 LATDbits.LATDO

#define mLED _ 2 LATDbits.LATDl

#define mLED _3 LATBbits.LATBO

#define mLED 4 LATBbits.LATBl

#define mLED _ 5 LATBbits.LATB2

#define mLED _ 6 LATBbits.LATB3

#define mLED _7 LATBbits.LATB5

#define mLED _ 8 LATBbits.LATB6

#define mLED _9 LATBbits.LATB7

#define mLED _1_ On() mLED_l ~ 1;

#define mLED _ 2 _On() mLED_2~ 1;

#define mLED _3 _On() mLED_3~1;

#define mLED _ 4 _On() mLED_4~ 1;

#define mLED _ 5 _On() mLED_5 ~ 1;

#define mLED _ 6 _On() mLED_6~1;

#define mLED _7 _On() mLED_7~1;

#define mLED _ 8 _On() mLED_8 ~ 1;

#define mLED _9 _On() mLED_9~ 1;

#define mLED _1_ Off() mLED_l ~O;

#define mLED _ 2 _Off() mLED_2~0;

#define mLED _ 3 _Off() mLED_3~0;

#define mLED _ 4 _Off() mLED_4~0;

#define mLED _ 5 _Off() mLED_5~0;

#define mLED _ 6 _Off() mLED_6~0;

#define mLED _7 _Off() mLED_7~0;

#define mLED _ 8 _Off() mLED_8~0;

#define mLED _9 _Off() mLED_9~0;

#define mLED_l_Toggle() mLED_l ~ !mLED_l;

#define mLED _ 2 _Toggle() mLED _ 2 ~ !mLED _ 2;

29

#define mLED_3_Toggle()

#define mLED _ 4_Toggle()

#define mLED _5 _Toggle()

#define mLED _ 6 _Toggle()

#define mLED _7 _Toggle()

#define mLED _ 8 _Toggle()

#define mLED _9 _Toggle()

mLED_3 ~ !mLED_3;

mLED _ 4 ~ !mLED _ 4;

mLED_5 ~ !mLED_5;

mLED_6 ~ !mLED_6;

mLED_7 ~ !mLED_7;

mLED_8 ~ !mLED_8;

mLED_9~ !mLED_9;

/**SWITCH**************************"'**************************/

#define mlnitAllSwitches()

TRISBbits. TRISB4~ l ;TRISBbits. TRISBO~O;TRISBbits. TRISB I ~O;TRISBbits. TRISB2~0;TRISBbits. TRI

SB3~0;TRISBbits.TRISB5~0;TRISBbits.TRISB6~0;TRISBbits.TRISB7~0;

#define mlnitSwitch2() TRISBbits.TRISB4~l;

#define mlnitSwitch3()

TRISBbits.TRISB5~0;TRISBbits.TRISBO~O;TRISBbits.TRISBJ~O;TRISBbits.TRISB2~0;TRISBbits.TRI

SB3~0;TRISBbits. TRISB6~0;TRISBbits. TRISB7~0;

#define sw2

#define sw3

void main(void)

ADCONl 1~ OxOF;

mlnitAllSwitches();

mlnitAllLEDs();

while(!)

if(sw2 ~~ 0)

{

PORTBbits.RB4

PORTBbits.RB5

II Default all pins to digital

mLED_l_On();

mLED_2_0n();

mLED_3_0n();

mLED _ 6 _On();

mLED_7_0n();

mLED_8_0n();

mLED _9 _On();

30

else

mLED _I_ Off();

}//end if else

}//end while

}//end main

mLED _ 2 _Off();

mLED _3 _Off();

mLED_4_0ff();

mLED _5 _Off();

mLED_6_0ff();

mLED _7 _Off();

mLED _ 8 _Off();

mLED _9 _Off();

/** EOF Demo02.c ***/

31

APPENDIXV

Demo program 2 (triall.c)

/** INCLUDES **/
#include <p 18cxxx.h>
#include <delays.h>

/**VARIABLES **!
#pragma udata

/**PRIVATE P R 0 T 0 TYPES***************************************/

/** V E C T 0 R REMAPPING***/

extern void _startup (void); II See c018i.c in your CIS compiler dir
#pragma code_ RESET _INTERRUPT_ VECTOR~ Ox000800
void _reset (void)
{

_ asm go to _startup _ endasm
}
#pragma code

#pragma code_ HIGH_INTERRUPT _VECTOR~ Ox000808
void _high _ISR (void)
{

#pragma code _LOW _INTERRUPT_ VECTOR~ Ox0008!8
void _low_ISR (void)
{

}
#pragma code

/**DEC LARA T I 0 N S **/
#pragma code

/**LED***/
#define mlnitAliOutputs() LATB &~ OxOO; TRISB &~ OxOO;

#define mOut_l
#define mOut_ 2
#define m0ut_3
#define mOut_ 4

#define mOut_l_ High()

LATBbits.LATB5
LATBbits.LATB6
LATBbits.LATB7
LATBbits.LATB3

mOut_l ~I;

32

#define mOut_ 2 _High()
#define m0ut_3 _High()
#define mOut_ 4_ High()

#define mOut_l_ Low()
#define mOut_ 2 _Low()
#define m0ut_3_Low()
#define mOut_ 4_Low()

m0ut_2 ~I;
m0ut_3 ~I;
m0ut_4 ~I;

mOut I~ O· - ,
mOut 2 ~ O· - ,
m0ut_3 ~ 0;
m0ut_4 ~ 0;

#define delay_ ms() Delay I OOTCY x(l 000)

#define mOut_l_Toggle()
#define mOut_ 2 _Toggle()
#define m0ut_3 _Toggle()
#define mOut_ 4 _Toggle()

mOut I~ !mOut_l;
m0ut_2 ~ !m0ut_2;
m0ut_3 ~ !m0ut_3;
mOut_ 4 ~ !mOut_ 4;

/** SWITCH***/
#define mlnitAlllnputs() TRISDbits.TRISD4~ I ;TRISDbits.TRISDS~ I;
#define mlnitSwitch2() TRISDbits. TRISD4~ I;
#define mlnitSwitch3() TRISDbits. TRISD5~ I;
#define sw2 PORTDbits.RD4
#define sw3 PORTDbits.RD5

void main(void)
{

ADCONI 1~ OxOF;
//mlnitAlllnputs();
mlnitAllOutputs();
while(!)

II Default all pins to digital

{

m0ut_3_Low();
mOut_l_ High();
m0ut_2_Low()';

}//end while
}//end main

/** EOF Demo02.c ***/

33

APPENDIX VI

Sample Worksheet

Moving forward

Upon downloading a program, a robot will execute according to its
written program. Did you ever stop to wonder why the robot was
moving? Now you will get a chance to look at the code more closely,
and using the code, create a Forward, Right, or Left movement with
the robot.

In this section, you will learn what each command does in the sample
program. You will also learn to move your robot forward, right and
left.

Below is a line explanation of the sample program:

Program 1: LED on

,~ ... cid rca in l.toid :-' Every C program contains a mainO task.

mainO is usually at the beginning.

rrLE;:> 1 On·.·

rrL2D 2 Of:: · , ;

•loid rr.a.in 'o.roi-d:

n.-L:::D_l_On ·', , ;

Program 2: Motor on

"'l'Oid rr:.c.in :void:•

!C.~t_l_:L,cr.-.t . _I ,:

rr.Out_2_High : '

rr.Out_3_LC1{,! ·: .1

void main forms a structure that starts
with an open brace and ends with a
closing brace.

This line is a statement that will turn on an LED
(LED 1).

-- This line is a statement that will tum on the
appropriate motor (motor 2)

