
STATUS OF THESIS

Biologically Inspired Self-Healing Software System Architecture
Title of thesis

I MAZIN ELHADI

hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP.

2. The IRC ofUTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

D
0

Confidential

Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for ______ years.

Remarks on disclosure:

Endorsed by

MAZIN ELHADI

Date:_.2_Y-_/.:._;!I-"-o--""g ___ _

AZWEEN ABDULLAH

Universiti Teknologi PETRONAS

Bandar Seri Iskandar, Tronoh, 31750

Perak, Malaysia I
Date: ~ 41 I _ 0 ff

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor (s)

The undersigned certify that they have read, and recommend to The Postgraduate

Studies Programme for acceptance, a thesis entitled "Biologically Inspired Self­

Healing Software System Architecture" submitted by (Mazin Elhadi) for the

fulfillment of the requirements for the degree of Master of Science in Information

Technology.

Date

Signature

Main Supervisor

Date

Signature

Co-Supervisor

Date

Or Azweon Bin Abdunah
Senior Lecturer
Information Technology/Information Syatams
Uulvarsili T01lo.nologi PETRONAS
317 50 TIIIIIIOh
Porall 08nd Rldzuan

II

TITLE PAGE

UNIVERSITI TEKNOLOGI PETRONAS

Biologically Inspired Self-Healing Software System Architecture

By

Mazin Elhadi

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE

INFORMATION TECHNOLOGY

BANDAR SERI ISKANDAR,

PERAK

JUNE, 2008

Ill

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledge. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

Signature

Name Mazin Elhadj

Date

IV

ABSTRACT

Self-healing capabilities have begun to emerge as an interesting and potentially valuable

property of software systems. Self-healing characteristic enables software systems to

continuously and dynamically monitor, diagnose, and adapt itself after a failures has

occur in their components. Adding such characteristic into existing software systems is

immensely useful and valuable for allowing them to recover from failures. However,

developing such self-healing software systems is a significant challenge.

The nature introduces to us unforeseen concepts in terms of presenting biological

systems that have the ability to handle its abnormal conditions. Based on this observation,

this thesis presents self-healing architecture for software system based on one of the

biological processes that have the ability to heal by itself (the wound-healing process).

The self-healing architecture provides software systems the ability to handle anomalous

conditions that appear among its components. The presented architecture is divided into

to layers, functional and healing layer. In the functional layer, the components of the

system provide its services without any disruptions. The component is considered as

faulty component if it fails to provide its services. The healing layer aims to heal the

faulty component and return it to the running system without the awareness of the user.

The presented self-healing software system is formally described to prove its

functionality. Set-theoretic and Finite State Machine (FSM) is introduced. A prototype

for the presented architecture has been implemented using Java language. Java objects

are considered as the system components. The modules of the healing layer in the self­

healing architecture have been implemented into Java classes. An object from the module

class will be created to perform its task for the healing process. The thesis concludes with

recommendations for future works in this area and enhancement of the presented

architecture.

v

ACKNOWLEDGEMENTS

First of All, I would like to express my gratitude and appreciation to my advisor Dr.

Azween B Abdullah. He was always there for me. His support, encouragement, valuable

assistance, and unwavering patience rescued me from frustration and guided me

throughout my research. Without his excellent guidance it would have been impossible to

finish this work. His very positive influence on my professional development will be

carried forward into my future career.

I would like to thank my parents, my sister, and my brothers for their endless

support. They gave me courage and strength to never give up. They provided me sturdy

motivation and strong emotional and moral support which I have needed throughout my

life.

Special thanks are extended to my colleagues at Computer and Information

Sciences Department. They have been very friendly and gracious which provided me an

excellent study environment.

At the end, I would like to thank my friends for their consistent support, help, and

encouragement.

VI

TABLE OF CONTENTS

STATUS OF THESIS ... i

TITLE PAGE .. .iii

DECLARATION .. iv

ABSTRACT ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER ONE: INTRODUCTION .. !

1.1 Introduction ... 1

1.2 Motivation ... 3

1.3 Subject ... 3

1.4 Objectives ... 3

1.5 Scope .. .4

1.6 Methodology4

1. 7 Outline of the Thesis ... 5

1.8 Conclusion .. 5

CHJ\JPTER TWO: LITERATURE RE"IEW ... 6

2.1 Introduction ... 6

2.2 Autonomic Computing .. 6

2.3 Autonomic Computing Classifications .. 9

2.3.1 Self-Configuring ... 9

2.3.2 Self-Healing 1 0

2.3.3 Self-Optimizing ... 1 0

2.3.4 Self-Protecting ... 10

2.4 Self-Management Phases .. 12

Vll

TABLE OF CONTENTS- CONTINUED

2.5 Autonomic Computing Element Architecture .. 15

2.6 Self-Healing Software Systems .. 17

2.6.1 Failure Detection .. 17

2.6.2 Fault Diagnosis ... 17

2.6.3 Fault Healing ... 18

2.6.4 Verification ... 18

2.7 Related Works ... 20

2. 7 .I Autonomic Computing .. 20

2.7.2 Biological Self-Management ... 24

2.8 Conclusion ... 26

CHAPTER THREE: SELF-HEALING SOFTWARE SYSTEM ARCHITECTURE 27

3 .I Introduction .. 27

3.2 Wound-Healing ... 27

3.2.1 Wound-Healing phases .. 28

3.2.1.1 Homeostasis Phase .. 29

3.2.1.2 Inflammatory Phase ... 29

3.2.1.3 Proliferation Phase .. 29

3.2.1.4 Remodeling or Maturation Phase .. 30

3.3 Mapping Wound-Healing into Self-Healing Software System 31

3.3 .I Homeostasis Phase into Fault Control Phase ... 32

3.3.2 Inflammatory Phase into Repair Phase ... 32

3.3.3 Proliferation Phase into Repair Validation Phase 32

3.3.4 Remodeling Phase into Integration Phase .. 33

3.4 Biological Self-Healing Software System Architecture 34

3.4.1 The Proposed Architecture ... 34

3.4.2 Formal Description .. 42

3 .4.2.1 Definition 1 43

VIJI

TABLE OF CONTENTS- CONTINUED

3.4.2.2 Definition 2 .. .49

3 .4.2.3 Definition 3 .. .49

3.4.2.4 Definition 449

3 .4.3 Commutativity Property ... 51

3.4.4 Closure Property ... 53

3.5 Graphnet Model. ... 56

3.6 Conclusion ... 73

CHAPTER FOUR: SELF-HEALING SOFTWARE PROTOTYPE 74

4.1 Introduction .. 74

4.2 Java Language ... 74

4.3 Architecture Prototype ... 75

4.4 Example of Faults in Java Objects ... 80

4.4.1 Exceptions in Java .. 80

4.5 Application Tasks ... 80

4.6 Case Study: ATM System .. 86

4.6.1 ATM System: The Functional Layer. ... 87

4.6.2 A TM System: The Healing Layer. ... 96

4.7 Results and Discussion .. 98

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORKS 99

5.1 Conclusions .. 99

5.2 Future Trends .. 101

PUBLICATIONS .. l02

REFERENCES .. . 1 03

APPENDIX A: TEST PROGRAM LISTING .. 110

IX

LIST OF TABLES

Table 2-1: Autonomic Computing Classifications .. 11

Table 3-1: The Description of the Phases in Wound-Healing and Self-Healing Software

System .. 33

Table 3-2: Table of Notations ... 42

Table 3-3: Commutativity and Closure Properties for the Repair Plans 55

Table 4-1: Self-Healing Software (Main Classes) .. 78

Table 4-2: Output Messages from Healing Modules ... 84

X

LIST OF FIGURES

Figure 2-1: Self-Management Classifications .. 9

Figure 2-2: Feedback Loop in Self-Managed Systems ... 12

Figure 2-3: Structure of an Autonomic Computing ... 15

Figure 2-4: Information Flow in Self-Healing Systems 18

Figure 2-5: Scope of Self-Healing In Autonomic Pervasive Computing 19

Figure 3-1: Phases of Wound-Healing .. 28

Figure 3-2: The Time Life of the Wound Healing Phases 30

Figure 3-3: Mapping the Wound-Healing Process to Self-Healing Software System 31

Figure 3-4: Biologically Inspired Self-Healing Software System Architecture 36

Figure 3-5: Example of Fault Expansion ... 38

Figure 3-6: Blocking SCS and RCS .. 39

Figure 3-7: Component's States in the Functional Layer 57

Figure 3-8: Fault Detection Graphnet .. 59

Figure 3-9: Repair Plan Graphnet. .. 61

Figure 3-10: Mutate Plan Graphnet ... 63

Figure 3-11: Replicate Plan Graphnet. ... 66

Figure 3-12: Mutate-Replicate Plan Graphnet.. ... 67

Figure 3~13: Mutate Plan Graphnet for Concurrent-Faults 70

Figure 3-14: Replicate Plan graphnet For Concurrent-Faults 71

Figure 3-15: Mutate-Replicate Plan graphnet For Concurrent-Faults 72

Figure 4-1: UML Class Diagram for Self-Healing Software System 77

Figure 4-2: Sequence Diagram for Self-Healing Software System 79

Figure 4-3: Accessing File A from the Running System 81

Figure 4-4: Save Data into Data. txt. .. 82

Figure 4-5: Copying Backup File ... 83

Figure 4-6: The Output from the Healing Modules ... 85

Figure 4-7: Welcome Screen .. 87

XI

LIST OF FIGURES-CONTINUED

Figure 4-8: Login Screen ... 88

Figure 4-9: ATM System Main Menu .. 89

Figure 4-10: Account Inquiry ... 90

Figure 4-11: Withdrawal Money .. 91

Figure 4-12: Withdrawal Report .. 92

Figure 4-13: Transfer Transaction: Destination Account. 93

Figure 4-14: Transfer Transaction: Confirm Operation .. 94

Figure 4-15: Exiting From ATM System .. 95

Figure 4-16: The Output ofthe Healing Modules in the Healing Layer. 97

Xll

CHAPTER ONE: INTRODUCTION

1.1 Introduction

The rapid growth of the computational power over the past decades contributed to

introduce large and complex software-based systems with a variety and great number of

components. Moreover, information technology systems are continuing to develop with

innovations and changes. The new version of the information technology systems are

released from existing technologies. Therefore, programmers need to suit their existing

applications to the new technologies. To catch this race, software developers have

exploited the rapid growth in computational power in every possible way, producing ever

more sophisticated software applications and environments, which results in enormous

growth in the number and variety of systems and components (Fuad, 2007). As a

consequence, software systems become complex and software architecture become less

able to anticipate and control interactions among the components of the systems. This

leads to complexity of these systems as well as complexity in the environments where

these systems reside. This complexity of software systems causes these systems to be

difficult to manage and administer (Mohammad & Koen, 2007) (Paul, Alexander & John,

2005). Software-based systems with this complexity must handle such things as resource

variability, changing user needs, and system faults at run-time.

Today, information technology organizations encounter growing challenges in the

management and maintenance of large scale software systems because these systems

must be active and available 24 hours a day, 7 days a week. Existing control methods and

tools are inadequate to mange and administer today's and future software systems.

Moreover, while the complexity of these systems continue to grow, the need of skilled

persons who install, optimize, protect, and maintain these systems becomes more

important.

~C~H~A~P~T~E~R~O~N~E~:~I~N~T~R~O~D~U~C~T~IO~N~--2

There have been several attempts to reduce the complexity within these systems

by introducing better software engineering practices. However these attempts, the

complexity of such systems remains the same as more and more new technologies and

systems are being incorporated together. This complexity of the software systems and

their environment leads to the idea of autonomic computing (Paul, 2001) (Jeffery &

David, 2003). This new area of computing aims to provide software systems that have the

ability to handle their complexity by themselves. In other words, autonomic computing is

a solution which proposes to reallocate many of the management responsibilities from the

administrators to the system itself (Mohammad & Mohsen, 2007). The vision of

autonomic computing (Jeffery & David, 2003) is to improve the management of the

complex information technology systems by introducing self-management systems for

configuration, healing, optimization, and protection purposes. From this vision, the major

characteristics of autonomic computing systems (Mazeiar & Ladan, 2005) are self­

configuration, self-healing, self-optimization, and self-protection. This work focuses on

the second characteristic of autonomic systems, self-healing characteristic.

A system is said to be self-healing if it can recover from failures without external

intervention. In other words, the system is capable of automatically re-organizing itself to

continue operating after part of it has failed. This is obviously closely related to the

notion of fault-tolerance in which a system can operate normally despite experiencing

failures. There are finer shades of distinguishing semantics when we relate security, fault­

tolerance, survivability and self-healing. We use the term self-healing to mean a wider

class of systems and degree of re-organization than is usually denoted by the term fault

tolerance.

Specification logics are extensively utilized to verify necessary and inherent

properties of self-healing systems. These logics can allow notion of good behavior and

abnormal behavior to be formally specified and as a result permit precise reasoning about

fault tolerance. We intend to look at their application in self-healing systems which can

dynamically reconfigure in response to changes in their environment and allow the

~C~H~A~P~T~E~R~O~N~E~:~!N~T~R~O~D~U~C~T~1~0~N __ 3

succinct specification of both self-healing systems and the properties that they must

satisfy.

1.2 Motivation

The tum to the nature has brought us many unforeseen great concepts. Biological systems

are able to handle many of the challenges that face these systems, with an elegance and

efficiency still far beyond current human artifacts. Based on this observation, bio-inspired

approaches have been proposed in the past years as a strategy to handle the complexity of

such systems. In other words, human efforts to engineer self-healing systems have had

limited success, but nature has developed extraordinary mechanisms for robustness and

self-healing over billions of years (Fuad, 2007) (Selvin, David & Steven, 2003). This

work aims to introduce self-healing software system architecture based on the

observation of one of the biological system (the wound-healing process).

1.3 Subject

The subject of this thesis is biologically inspired self-healing software system

architecture. The thesis intends to apply the wound-healing process into software system

architecture in order to provide software systems the ability to handle system failures

without human intervention.

1.4 Objectives

The objective of this research is to develop a method on how to engineer software

systems which have similar high stability and efficiency often found in biological

systems. This method must be able to:

I. Monitor its own behaviors in order to detect anomalous behavior.

~C~H~A~P~T~E~R~O~N~E~:~I~N~T~R~O~D~U~C~T~IO~N~--·4

2. Diagnose the anomalous behavior to find the cause of the problem in order to

determine the best way to fix this problem.

3. Recover from the problem to the normal execution of the system.

1.5 Scope

The goal of this research is to develop biologically inspired self-healing architecture for

software systems. To achieve this, different issues regarding self-healing characteristic

must be addressed. Addressing all of these issues and developing solution for them in a

single research project is impractical. Therefore, the essential and more important issues

are addressed in this work. The remaining issues will be left as future works.

The scope of this research is three fold:

o To study and analyze a biological system that has the ability to heal by itself.

o To devise a self-healing architecture for software systems based on the biological

system in the previous step.

o To develop a prototype to validate the proposed architecture.

1.6 Methodology

This thesis is conducted through: (a) a review of the current status and the relevant work

in the area of the autonomic computing in general and in the area of the self-healing

systems in particular; (b) analyze these works especially in the area of self-healing

systems; (c) identify the biological systems that has the ability to heal by itself; (d) study

and analyze the biological system in (c); (e) map the biological system process into a

self-healing software system; (f) propose self-healing software system architecture based

on the mapping of the biological system process into self-healing software system that

~C~H~A~P~T~E~R~O~N~E~:~I~N~T~R~O~D~U~C~T~IO~N~--5

mentioned above; (g) formally specify the proposed architecture; (h) develop a prototype

to validate the proposed architecture; (i) seek avenues for further research.

1. 7 Outline of the Thesis

The rest of the thesis is organized as follows: chapter 2 discusses background information

required to comprehend this thesis. The chapter introduces an overview of autonomic

computing in general and self-healing systems in particular. Moreover, this chapter

investigates different works in the area of autonomic computing and self-healing systems.

We introduce our proposed self-healing software system architecture in chapter 3.

In this chapter, we present the theoretic as well as the formal descriptions of the

architecture.

Chapter 4 presents the prototype of the proposed self-healing software system

architecture.

Finally, Chapter 5 concludes this thesis and presents directions for future work.

1.8 Conclusion

The mam purpose of this chapter is to provide the reader a brief description of the

research topic which will be conducted through this thesis. The motivation and the

subject of the study were introduced. The objectives of this research and the methodology

were discussed as well.

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

This chapter introduces and discusses the necessary information to comprehend this work

and provides the background information on autonomic computing in general and the

self-healing in particular.

2.2 Autonomic Computing

The emergence of large, complex and pervasive software application and environment is

the result of the rapid growth of the computational power in the last decades. Software

system is continuing to grow and dominate most of the systems in the industry and

academic area. As these systems continuing to develop and become more complex (Eleni

& Nancy, 2006), the interactions between the components of these systems become more

complicated. Although there have been numerous works that tried to simplify this

interaction (Component Based Software Systems Architecture, Object Oriented

Programming, etc), the complexity of such systems remains the same as more new

software systems are being developed. A failure that occurs in the system's components

is the basic challenge facing these systems. This leads to the idea of autonomic

computing where the system can fix the failures of its components by itself.

Autonomic computing is an initiative by IBM (Paul, 2001) in 2001. Paul Hom,

senior vice president of IBM Research (Daniel & Jeffery, 2007) (Zach & Sam, 2005)

addressed the Agenda conference, an annual meeting of the preeminent technological

minds held on October 151
h 2001, he suggested a solution, which is: "build computer

systems that regulate themselves much in the same way our autonomic nervous system

regulates and protects our bodies" (IBM Research, 2001).

6

~C~H~A~P~T~E=R~T~W~O~:~L~/T~E~RA~T~U~RE~RE~V~I~E~W--------------------------------------7

The autonomic nervous system (ANS) is "the body's master controller that

monitors changes inside and outside the body integrates sensory inputs and effects

appropriate response" (Manish & Salim, 2005) (George, Vincent, Ian & Chad, 2006).

Examples of ANS's operations include, the heart beat as specific rate depending on the

body conditions, the body healing from an injury without any human medical

intervention, breathing, the body temperature, and many other systems.

The new computing paradigm, autonomic computing, has changed the view of the

fundamental definition of the technology age from one of computing, to one defined by

data (IBM Research, 2001). After applying the autonomic computing to the design and

implementation of computer systems, software, and storage, these systems will have the

following fundamental properties from the user point of view:

• Flexibility: The system will be able to examine data via a platform- and device­

agnostic approach.

• Accessible: The nature of the autonomic system is that it is always on.

• Transparent: The system will perform its tasks and adapt to a user's needs without

dragging the user into the intricacies of its workings.

The ultimate goal of autonomic computing is to create computer systems that

possess the capability and the property of self-management to overcome their growing

and handle any failure or fix abnormal situation during their execution. The autonomic

computing paradigm transforms computer systems to mature systems. IBM suggests

eight characteristics of an autonomic system (IBM Research, 2001):

~C~H~A~P~T~E~R~T~W~O~:~L~IT~E~RA~T~U~R~E~R~E~V~I~E~W ______________________________________ 8

• "know itself': the autonomic systems needs to know all the information about its

components such as: the function of the component, current status, the interaction

between components. This information helps the system to manage its self.

• Autonomic configuration: autonomic system must configure itself according to its

condition. The configuration is needed to handle the changes in the system

environment.

• Autonomic system has the ability to optimize itself by enhancing the interaction

between its components.

• Autonomic system must have the ability to recover form components failures. The

ability to handle component malfunction called "healing".

• Computer systems are vulnerable to vanous types of attacks. Therefore,

autonomic computing must have the ability to protect its self to maintain overall

system security and integrity.

• Autonomic system must interact with other system and use remote resources. As a

consequence, autonomic system must have the ability to adapt itself and

communicate with the surrounding environment.

• Autonomic system must be able to manage itself as well as functioning in a

heterogeneous environment and implement open standards.

• Without involving the user into details, autonomic system must anticipate the

optimized resources needed while keeping its complexity hidden.

j

~C~H~A~P~T~E~R~T~W~O~:~L~IT.~c~RA~T~U~R~E~R~E~V~!~E~W---------------------------------------9

2.3 Autonomic Computing Classifications

Presenting the autonomic computing concept, IBM established regroup four different

classifications of self-management system (Davide, 2004) (Aaron & Charlie, 2005) (Zach

& Sam, 2005) (George, Vincent, Ian & Chad, 2006): self-configuring, self-healing, self­

optimizing, self-protecting. Figure 1-1 illustrates the four self-management classification.

Self-Management

(Self-Configuring [Self-Healing)

(Self-Optimizing) (Self-Protecting)

Figure 2-1: Self-Management Classifications

The terminology and means of these classifications are as follows:

2.3.1 Self-Configuring

This classification concentrates on the autonomic system itself. Self-configuring is a

mechanism to change the interaction between the system's components in order to

improve the services. In other words, it denotes the system ability to change the system

structure dynamically. For example, self-configuring systems able to insert new

component to the system, replace an existing component with another component,

remove component, and control the interaction between these components.

C~H~A~P~T~E~R~T~W~O~:~L~IT~E~RA~T~U~RE~RE~V~IE~W ______________________________________ lO

2.3.2 Self-Healing

The system ability to examine, detect any faults or run time anomalies, diagnose, and

recover from this fault or runtime anomalies and continue providing its full service easily.

The main objective of self-healing is to maximize availability, survivability,

maintainability and reliability of the system (Alan & Thomas, 2003). Self-healing system

must be able to observe the functionality of its components in order to detect component

failure by evaluating the current constraints of the component and apply the appropriate

corrections. In other words, self-healing system must have knowledge about its

components behavior in order to find, diagnose and recover from the component failure.

2.3.3 Self-Optimizing

An autonomic system must be able to detect any sub-optimal behaviors and optimize

itself to improve its execution (Manish & Salim, 2005). Self-optimization is the ability of

the system to autonomously optimize its resources. For example, monitoring, optimizing,

and allocating the resources in a proper way in order to provide the services.

2.3.4 Self-Protecting

Security is the critical issue in software system. Self-protecting focuses on the system

security aspects. Software systems are vulnerable to many types of attack such as non

authorized access, viruses, denial-of-service, etc. Therefore, autonomous systems must be

able to observe external attacks and as a consequence they should take a specific action in

order to make the systems safe, non-vulnerable, and more secure.

~C~H~AP~T~E~R~T~W~O~:~L~I~~E~R~~~T~U~R~E~R~E~V~I~E~W _______________________________________ ll

Along with these classifications, autonomic system has the following properties

(Manish & Salim, 2005) (Mazeiar & Ladan, 2005), table 2-1 shows the four

classifications as well as the additional properties:

• Self-Awareness: awareness of its current state and behavior in order to cooperate

with other autonomic systems (Deepak, 2005).

• Context-Awareness: awareness of its environment and the ability to react to any

changes in its environment. This property some times called self-adaptive which

is "software that evaluates and changes its own behavior when the evaluation

indicates that it has not accomplishing what it is intended to do, or when better

functionality or performance is possible" (Laddaga, 1999).

• Anticipatory: expectation of any changes that may occur to the system state and

the ability to manage these changes.

• Openness: ability to integrate with heterogeneous environment and operate with

open standard and protocols.

Table 2-1: Autonomic Computing Classifications

Classification Main Focus

Self-Configuring Usability

Self-Healing Dependability

Self-Optimizing Maintainability

Self-Protecting Security

Self-Awareness Functionality

Context-Awareness Adaptability

Anticipatory Efficiency

Open Portability and Integrity

~C~H~A~P~T~E~R~T~W~O~:~L~/~TE~RA~T~U~R~E~R~E~V.~f~E~W~-------------------------------------12

2.4 Self-Management Phases

The capability of a digital system to automatically and dynamically change and adapt its

own behavior and characteristic, to improve functionality and dependability is called self­

management (Jochen, 2007). Self-management is general concepts of self-CHOP which

an abbreviation for; self-configuring, self-healing, self-optimizing, and self-protecting. In

some works these classifications are called self-abilities. Next section introduces these

classifications in details.

Numerous of systems with self-management capability have been investigated in

last decades to address different problems and they regroup all the defined classifications

in order to provide a system always efficient without user intervention.

Depending on goals and application domains, self-management mechanisms

exploit different approaches to execute a set of common steps. From the classification of

self-management systems, the common steps that might be executed by self-management

mechanisms are shown in Figure 2-2.

Interpretation

Adapbtion SYSTEM

Figure 2-2: Feedback Loop in Self-Managed Systems

~C~H~A~P~T~E~R~T~W~O~:~L~!T~E~RA~T~U~R~E~RE~V~J~E~W ______________________________________ I3

Some authors divide the feed back loops in self-managed systems to five common

steps; monitoring, interpretation, diagnosis, adaptation, and learning. Other authors divide

the feed back loops into more than five steps by splitting diagnosis and adaptation steps

into different steps (Grishikashvili. Pereira & Pereira, 2007). Next are the descriptions of

each the steps:

• Monitoring: If there is any abnormal condition of the current system behavior is

discovered by this step. The rules and conditions are previously defined to support

decision making at each step. These steps provide statistical analysis related to the

system performances such as CPU usage, memory usage process on execution or

network latency. Because this step depends on dynamic data, these data must be

compared to the standard data in order to determine if the actual system behavior

is not consistent with normal behavior. This step must catch the exception raised

by system modules. Moreover, it must provide analysis related to environment

where the system is running. Also, the monitoring step must observe the internal

behavior of the system as well as the behavior of the operating environment.

• Interpretation: The data which have been collected by the monitoring step 1s

analyzed and verified by the interpretation step. If any abnormal condition has

been observed, the detection module tries to retrieve the problem resolution

record. If the record for the specified problem is not found, the detection module

updates knowledge of the knowledge base module adding the report through the

learning module.

• Diagnosis: This step identifies the problem by determining the causes of the

problem and verifies the applied solutions.

• Adaptation: Tries to execute the problem resolution cycle. The cycle starts from

the solution record identified by the detection module. To complete task,

~C~H~A~P~T~E~R~T~W~O~:~L~ITuE~RA~T~U~R~E~RE~V~I~E~W ______________________________________ l4

mechanisms are required to dynamically plan, deploy and enact changes, to

remove either the diagnosed faults or their effects.

• Learning: Creates and updates the knowledge base acqumng new knowledge

learned from data collected by the monitoring activity.

~C~H~A~P~T~E~R~T~W~O~:~L~IT~E~R~A~T~U~R~E~R~E~V~I~E~W _______________________________________ I5

2.5 Autonomic Computing Element Architecture

In any autonomic computing system, autonomic computing elements are the basic

building blocks and their interactions produce self-management behavior (Mohammad &

Mohsen, 2007). Figure 2-3 illustrates the generic architecture of the autonomic element.

Autonomic
Manager

Managed{
Element

1\:lanagl."d SoftwarE'
Componl."nt

Figure 2-3: Structure of an Autonomic Computing

~C~H~A~P~T~E~R~T~W~O~:~L~!T~E~RA~T~U~R~E~R~E~V~I~E~W _______________________________________ l6

As shown in Figure 2-3, autonomic computing system consists of autonomic

elements. The autonomic elements can communicate with each other and as a

consequence autonomic systems can interact with each other. Each autonomic element

has self-management property. In other words, each autonomic element knows its own

behavior, state, and the interaction with the other elements whether these elements are in

the same environment or in other neighboring environments.

The developer sets the goal of the autonomic element to control its behavior and

states as well as its interaction with the other autonomic elements. Sometimes, autonomic

element helps other autonomic elements to achieve their goals.

In Figure 2-3, each autonomic element has autonomic manager and managed

element. The autonomic manager is responsible for the self-management function. It

consists of four components:

o Monitor: monitors the autonomic element and itself.

o Analyzer: analyzes the current state of the autonomic element from the data which

received from the monitor component.

o Plan Component: based on some constraints and policies, the plan component

decides to take the appropriate plan to meet the behavior or state changes.

o Executor: this component executes the plan which devised by the plan

component.

The managed element is the component from the system. Sensors and effectors

are the basic components for the autonomic element to deal with its environment. Sensors

monitor the environment and effectors deliver the control information to the managed

element.

~C~H~A~P~T~E~R~T~W~O~:~L~!T~E~RA~T~U~RE~R~E~V~I~E~W ______________________________________ l7

2.6 Self-Healing Software Systems

In order to invent self-healing software system architecture, a clear vision of self-healing

systems is needed. This section introduces general concepts about self-healing software

systems.

The topic of self-healing systems has been studied in a number of areas, including

robotics and control systems, programming language design, fault-tolerant computing,

and middleware infrastructures (Fabio, Fabio, Gordon & Roy, 2002) (Marija, Nikunj &

Nenad, 2002). Self-healing software systems rely on four main phases in order to react to

adverse conditions in their runtime environment: failure detection, fault diagnoses, fault

healing, and verification of healing actions (Jochen, 2007). Next, we provide a concise

description of each phase. Moreover, in each phase we present some works that related to

the phase.

2.6.1 Failure Detection

Failure detection denotes to mechanisms that present conditions violate correctness

assumptions about the runtime states of the program, usually stated by constraints. This

phase is the initial phase of the self-healing process. Therefore, without knowing what

has gone wrong in the system, the healing process might not be achieved.

2.6.2 Fault Diagnosis

This phase denotes to mechanisms that analyze the detected failures to the parts of the

system that are responsible for these failures.

~C~H~AP~T~E~R~T~W~O~:~L~IT.~E~R~A~T~U~R~E~R~E~V~I~E~W _______________________________________ !8

2.6.3 Fault Healing

The system decides which changes should be applied to the system to fix the detected

problems.

2.6.4 Verification

Verification of healing actions makes sure that the conducted measures to overcome the

failures do not cause additional problems. The verification phase is often implicit.

Figure 2-4 depicts the general self-healing software systems architecture. The

system model contains useful information for each phase.

Fault

Detection

System

Figure 2-4: Information Flow in Self-Healing Systems.

(Shameem, Sheikh, Moushumi & Munirul, 2007) define the concepts of

autonomic computing and self-healing systems. Systems that have the ability to manage

itself and dynamically adapt to change in accordance with policies and objectives are

termed as autonomic computing. If the system is an autonomous system, it has the ability

to identify and correct problems often before they are noticed by the user.

C~H~A~P~T~E~R~T~W~O~:~L~IT.~E~RA~T~U~R~E~R~E~V~I~E~W _______________________________________ 19

They define self-healing as, self-healing systems that have the ability to perceive

those are not operating correctly and, without human intervention, make the necessary

adjustment to restore them to normal operation. They determine the scope of self-healing

in Figure 2-5.

Figure 2-5: Scope of Self-Healing in Autonomic Pervasive Computing

~C~H~A~P~T~E~R~T~W~O~:~L~IT~EdR~A~T~U~RE~R~E~V~I~E~W ______________________________________ 20

2.7 Related Works

This section presents autonomic computing and self-healing researches in general and

biological self-healing researches in particular.

2.7.1 Autonomic Computing

(Dashofy, Andre & Richard, 2002) create an approach for self-healing systems based on

software architecture. The repairs are achieved at the level of a software system's

components and connectors. They believe that before an automated planning agent can

decide how to repair a self-healing system, a significant infrastructure must be in place to

support making the planned repair. Moreover, the self-healing system must be built using

a framework that allows for run-time adaptation. Therefore, they present tools and

methods that implement these infrastructure elements in the context of an overall

architecture-based vision for building self-healing systems. These tools and methods help

to express the repair plan, in order to help the reconfiguration agent to execute the repair

plan after it is created.

(Michael, 2004) described an approach to designing self-healing components for

robust, concurrent and distributed software architecture. A self-healing component is able

to detect object anomalies inside of the component, reconfigure inter-component and

intra component before and after repairing the sick object. Each component is structured

to the layered architecture with two layers, the service layer and the healing layer. The

service layer and of a self-healing component provides functional services to other

components, whereas the healing layer encapsulates the self-healing mechanism for

monitoring objects in the service layer and repairing the sick objects detected. The

process of component self-healing includes detection, reconfiguration before and after

repairing, repairing, and testing.

~C~H~A~P~T~E~R~T~W~O~:~L~IT~E~RA~T~U~R~E~R~E~V~l~E~W ______________________________________ 21

(Michael & Daniel, 2005) described the self-healing mechanism for components

in reliable systems. Each component in a self-healing system is designed as a layered

architecture, structured with the healing layer and the service layer. The healing layer of a

self-healing component is responsible for detection of anomalous objects in the service

layer, reconfiguration of the service layer, and repair of anomalous object detected. The

service layer of a self-healing component provides functionality to other components,

which consists of tasks, connectors, and passive objects accessed by tasks. A connector

supports the self-healing mechanism for self-healing components as well as encapsulates

the synchronization mechanism for message communication between tasks in a

component.

(Jochen, 2007) discussed general requirement for failure detection in self-healing

software, and proposed an approach to automatically map system level specifications to

run-time checkable code-level assertions. This work proposes as automatic technique that

addresses the problems of incompleteness and ambiguity by mapping high-level

requirements to executable assertions. The technique follows four basic steps: (1)

extracting useful information from the requirements. This task is a human task. The

software engineer has to identify useful information that implies constraints in the model,

(2) Annotating the conceptual model which turns the extracted information from a human

readable requirements specification into a format that can be handled automatically. (3)

Based on the requirements, which abstract constraints are associated with the entities in

the conceptual model, the implied invariants are mapped to operations and relationships

pertaining to those entities, this step called mapping constraints to code-level entities. (4)

After the determination of which invariants have to be checked, and in which code

locations the checks need to be added, then the additional code will be generated and

inserted into the program.

(Yang, Yang & Xu, 2005) proposed a framework for the self-healing systems

based on dynamic software architectures. Their primary idea is to use the approach to

guide the repair of the running system, while the software architecture itself is changeable

~C~H~A~P~T~E~R~T~W~O~:~L~ITwE~RA~T~U~R~E~R~E~V~I~E~W ______________________________________ 22

and manageable during runtime. They divided their framework into two main parts. One

part is related to the architecture, consisting of an architecture manager (AMR) and an

architecture model container (AMC). The AMR is responsible for monitoring and

management of the architectural model. The other part is related to running system,

consisting of a running system (RS) and a runtime environment (RE). The RE is

responsible for monitoring and reconfiguration of the RS.

(Shin & Jung, 2006) describe an approach of self-reconfiguration. This approach

is part of a self-healing mechanism against anomalous objects. The self-reconfiguration is

prior to repairing anomalies of objects. The system is structured into components and

connectors between the components. The component is self-reconfigured differently in

accordance with the object types, such as tasks (concurrent or active objects), connectors

between tasks, and passive objects accessed by tasks in the component, while a connector

between the components is self-reconfigured in response to the different object types

constituting a connector. An asynchronous message queue connector between

components is used to illustrate self-reconfiguration of a connector between components.

A modeling framework for self-healing software systems, which proposed by

(Michael, Jing, David & John, 2007), is a generic modeling framework to facilitate the

development of self-healing software systems. They use a model-based approach to

organize software failures and specify their disposition at the model level. The self­

healing part is achieved by transforming the model of the system into platform-specific

implementation instrumented with failure detection and resolution mechanisms to

mitigate the effect of software failures and maintain the level of healthiness of the

system.

Failures in software systems are very critical issues in computing. Finding ways

to dynamically validate software systems to avoid the high cost of system failures are

becoming more imperative. Although research continues to advance in many areas of

autonomic computing, there is a lack of development in the area of testing these types of

~C~H~A~P~T~E~R~T~W~O~:~L~IT~E~RA~T~U~RE~RE~V~f~E~W ______________________________________ 23

systems at runtime. (King, Babich, Alava, Clarke & Stevens, 2007) propose a framework

that dynamically validates changes in autonomic computing systems. They extend the

current structure of autonomic computing systems to include self-testing as an implicit

characteristic.

A conceptual architecture for fault diagnosis and self healing of interpreted object

oriented application has been presented by (Haydarlou, Overeinder & Brazier, 2005). The

architecture deals with current and legacy interpreted object oriented code. Their

architecture presents a technique which makes the application able to heal itself from

failures. Furthermore, the application can attempt to solve the root cause that initiate the

fault.

The emergence of the web services has introduced heterogeneous computing

systems. These systems can interact dynamically with each other to deliver specific

services. (Zeid & Gurguis, 2005) combine the goals of autonomic computing and the

promises of web services into one technology called Autonomic Web Services. This work

aims to provide web services that possess autonomic computing features. The developed

technology merges autonomic computing that provides the primitive for achieving self­

management, services-oriented architecture that provides the required infrastructure for

achieving just-in-time integration among computing systems, and web standards needed

for achieving interoperability.

Many other works have been investigated in the area autonomic computing to

introduce self-management system (Alessandra, 2007) (Stuart et al., 2003) (Bogdan, Dan,

Marin & Mircea, 2007). These works have not adopted the characteristics that found in

biological systems. In other words, these works have addressed the requirements of

autonomic computing from software engineering point of view.

~C~H~A~P~T~E~R~T~W~O~:~L~IT~E~RA~T~U~R~E~R~E~V~I~E~W ______________________________________ 24

2. 7.2 Biological Self-Management

(Wang, Li & Bu, 2004) proposed a biological formal architecture of self-healing system.

They presented a self-healing system model for unstable network environment. The

introduced model treats a self-healing system as a component-based architectural model

which comprise business logic module and control module. The model introduces a

definition of heart, sensor and DNA-logic. Heart is the system kernel module represented

as three element tuple (Curlnfo, DNAlogic, Cond), Curlnfo is the current information of

the component, DNAlogic is the evolution result of the component, Cond is the condition

to be met if the component evolution shall occur. Sensor is a finite set of sensors

collecting the component's run-time information and sending it to the heart module.

A biologically-inspired autonomic architecture for self-healing data centers,

called SymbioticSphere, was proposed by (Paskom & Junichi, 2006). This architecture

allows data centers to autonomously adapt to dynamic environmental changes and

survive partial system failures. The architecture follows certain biological principles such

as decentralization, natural selection, emergence and symbiosis to design data centers

(application services and middleware platforms). Each service and platform is modeled as

a biological entity, analogous to an individual bee in a bee colony, and implements

biological concepts such as energy level, health level, energy exchange, environment

sensing, migration, replication and death. Simulation results show that, like in biological

systems, desirable system properties in data centers (e.g., adaptability and survivability)

emerge from collective actions and interactions of services and platforms.

(Selvin, David & Lance, 2002) propose a cell-based programming model that can

be used for software systems operation and healing. The model is more closely related to

the biological processes. Their model supports a notion of cell division, a communication

model based on chemical diffusion, and a rudimentary model of the physical forces

involved. They represent a cell program as an automaton containing discrete states and

transitions between the states. Every cell comprising the program is in one of these states.

~C~H~A~P~T~E~R~T~W~O~:~L~IT~E~RA~T~U~RE~R~E~V~l~E~W ______________________________________ 25

The input to each cell state is the sensed properties of the local environment and the

output is a transition to another state, or a division into two (possibly different) states.

They also applied the concept of the Nature's programs which are encoded in DNA and

exhibit remarkable density and expressiveness.

(Pruet & Junichi, 2002) propose middleware architecture for sensor networks (A

biologically-inspired middleware architecture for self-managing wireless sensor

networks, BiSNET). This work addresses several key issues in multi-modal wireless

sensor networks (MWSNs) such as autonomy, scalability, adaptability, self-healing and

simplicity. The difference which makes this work attractive is that this work is based on

the observation that various biological systems have· developed mechanisms to overcome

these issues. BiSNET follows certain biological principles such as decentralization, food

gathering/storage and natural selection to design MWSN application. They present some

biological systems such as bees and their interaction with each other and food gathering

and storage.

Biologically inspired self-governance and self-organisation for autonomic

networks is techniques which proposed by (Sasitharan, Dmitri, William, Micheal & John,

2006). As the autonomic network management provides the ability for network devices to

cooperatively self-organise and self-govern in the support of high level business goals,

they argue that these principles are inspired by biological systems. They propose key self­

organisation and self-governance techniques that are drawn from principles of molecular

biology. The biological processes that included in their works are blood glucose

homeostasis, reaction diffusion, microorganism mobility using chemotaxis techniques,

and hormone signaling.

Although many biological autonomic computing approaches have been proposed,

none has fully adopted and implemented a complete biological process. These works

have adopted small parts of the biological process such as DNA, cell division, and

chemical diffusion.

~C~H~A~P~T~E~R~T~W~O~:~L~IT.~E~RA~T~U~RE~R~E~V~I~E~W ______________________________________ 26

2.8 Conclusion

This chapter has introduced the fundamental information that helps the reader to

understand the basic concepts and terms presented in the rest of this thesis. Sections 2.2

until 2.5 have introduced the term autonomic computing and its classifications. Section

2.6 has presented some related works. The different between these works and this thesis

is that this thesis adopts a complete biological process modeling to introduce the self­

healing software system architecture.

CHAPTER THREE: SELF-HEALING SOFTWARE SYSTEM ARCHITECTURE

3.1 Introduction

Software architectures provide high-level abstractions for representing the structure,

behavior, and key properties of a software system (Dewayne & Alexander, 1992). These

abstractions involve descriptions of the elements from which systems are built,

interactions among those elements, patterns that guide their composition, and constraints

on those patterns (Mary & David, 1996).

This chapter introduces software system architecture based on the wound-healing

processes. We believe that, to devise biologically self-healing software system

architecture one needs to observe one of the self-healing processes of the biological

systems. We found that, one of the biological systems that have the ability to heal by

themselves is the wound-healing process.

In this chapter, we introduce the definition of wound-healing as well as the

description of its phases. Then, we explain how we mapped each phase of the wound­

healing process to the expected phase in self-healing software system. Finally, we present

our proposed architecture based on the mapping.

3.2 Wound-Healing

One of the biological systems that have the ability to heal by themselves is the wound­

healing. In this section, we intend to present brief, clear and simple description of wound­

healing process.

A wound is created when the anatomic integrity of the tissue is disrupted and

healing is the process whereby the integrity of the tissue is restored ("WoundHeal "). The

27

~C~H~AP~T~ER~T~HRE~~E~:S~E~L~F~-H~E~~~L~I~N~G~S~O~F~T~W.~~~R~E~S~YS~T~c~M~AR~C~H~I~T~c~C~T~U~R~E _______________ 28

biological process that starts with an injury (the disruption of the anatomic integrity of the

tissue) and ends with formation (restoring the integrity of the tissue) is called wound­

healing (or wound repair).

The wound-healing process is complex, dynamic, and continuous process. It

consists of distinct phases which overlap in time. Some authors categorize the wound

healing process into three separate phases (the inflammatory, proliferation, and

remodeling), and the others categorize it to four or more by dividing the inflammatory or

proliferation phase into different phases (David & Heather) (Jayne & Sarah, 2004)

(Sarah, 2002).

3.2.1 Wound-Healing Phases

In this section, we introduce the wound-healing phases. According to (David & Heather)

(Robert & Melissa, 2004), the wound-healing process consists of four phases. Figure 3-1

illustrates the sequence of wound healing process.

Figure 3-1: Phases of the Wound-Healing Process

-"'C"-'H"-'A"-P-'-T-"'E-'-'R'-'T'-'-H-'-'R-"'E"-'E"'-:-"S'-"'£'-"L-'-F:::.!.-H_!_!£"'A'-'L"-'-I'-'-N"'G-"S""O'LF'-'-T-"W'-"'A'-'-'R""E'-'S'-'-~-"'-S-'-'TE""M""-£A'-'-R'-'C"-'-H!..!.I-'-T""-EC""-'-T"'-U'-'R""-E--------29

3.2.1.1 Homeostasis Phase

After the disruption of the anatomic integrity of the tissue occurs, the body responds

quickly to this disruption. Within seconds after the injury, the blood vessels constrict to

stop bleeding at the site. Platelets, cells that produce substances to aid in stop blood

bleeding; prime role is to form a stable clot sealing the damaged vessel. To stop blood

bleeding, platelets aggregate and adhere to exposed collagen-protein of connective tissue­

to initiate the second phase.

3.2.1.2 Inflammatory Phase

The second phase of wound-healing presents as swelling and warmth often associated

with pain. The basic work to be done in wound-healing is to clean up the debris. The

blood vessels become leaky and releasing plasma into the surrounding tissue because of

the inflammatory response.

In this phase, there are some types of cells which act as the first line of defense

against infection called neutrophils. Another type of cells which acts as the second line of

the defense called macrophages. These cells task is starting rebuilding (or repairing) the

injury site. Also, they produce variety of substances which appear to direct the next

phase.

3.2.1.3 Proliferation Phase

In this phase, epidermal cells burst into mitotic activity. Then, they begin their migration

across the surface of the wound. Another type of cells, fibroblasts, proliferates in the

deeper part of the wound. This type of cells begins to produce small amount of collagen

and proteoglycans which acts as a scaffold for migration and further fibroblast migration.

""C"-'H"-'A,..P_.T-'=E"'R'-'T'-'H_.,RE~E,_,:_,S'-'=E'-'=L'-F::.!.-H-'-'E~:A"-'L""'-IN'-'-"'G-"S'-"O<'-F-'T--'-'W:'-":A'-"R-'=E'-'S!.!~.>!.S.!...TE""M!.!!....!A"-'R-'-'C"'H-'-'f'-'-T.-'='E'-"C'"'-T-"'U"-'R-'=E--------30

At the end of this phase the fibroblasts begin to produce large amount of collagen

and proteoglycans. Collagen fibers are laid down randomly and cross liked into large,

closely and packed bundle.

3.2.1.4 Remodeling or Maturation Phase

The remodeling in the wound-healing process involves remodeling of the dermal tissue to

produce greater tensile strength. After the fibroblasts leave the wound site, collagen is

remodeled into a more organized matrix.

As we mentioned earlier in this section, the wound-healing process overlap in

time. The homeostasis phase begins immediately after the injury and the next phase

begins within seconds. The second phase, inflammatory phase, takes 1-4 days.

Proliferation phase starts four days after wounding and usually lasts until day 21. The last

phase lasts up to years after wounding. Figure 3-2 shows the time life of the wound

healing process.

Maturation

Proliferation

Inflammatory

Time from injury (in days)

Figure 3-2: The Time Life of the Wound-Healing Phases

Infection of bacteria, fungus, or virus which interrupts the healing process must be

controlled during the wound-healing phases in order to perform the normal healing

process.

,C,_,H""'AP""--'T..,E,.,R'-'T,_.H...,RE=E"-':-"'S""£""L"-F"'--H-'-'£"'-'A.._,L,_!N'-'-"'G-"'S"'O"-F--'-T-'-'W.'""'A'""R""E'-"S'-!l':-"'S_,_TE""M'-"--"A'-'-R_,_,C,H_,_,/'-'-T""''E""C'-'-T-"'U-'-'R""E'--_______ 31

3.3 Mapping Wound-Healing into Self-Healing Software System

In this section we show how the wound-healing process can be mapped into self healing

software system. We mapped each phase in the wound-healing process to the expected

phase in self-healing software system (see Figure 3-3).

Mapped to

Mapped to

Mapped to

Mapped to

Mapped to

Mapped to

Figure 3-3: Mapping the Wound-Healing Process into Self-Healing Software System

In the wound-healing, a wound is created when the anatomic integrity of the

tissue is disrupted. In software systems, a fault is a structural imperfection in a software

system that may lead to the system's eventually failing. Therefore, we mapped the wound

to the fault.

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~/N~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~C~H~/~T~E~C~TU~RE~---------------32

In the wound-healing process, when an injury happens, the body sends particular

chemical signals to indicate that there is an injury at the specified area. In software

systems, when a fault occurs in one of the system's components, a particular technique is

needed to detect this failure.

3.3.1 Homeostasis Phase into Fault Control Phase

In wound-healing process, the body tries to stop bleeding at the injury site. So, too in

software systems, the system needs to stop losing components that are related to the

faulty component. In wound-healing, special cells are sent to the injury site either to stop

blood bleeding or to produce substances that help in stopping the blood bleeding. To map

this phase to self-healing software system, we need to find a technique that stop losing

components.

3.3.2 Inflammatory Phase into Repair Phase

In this phase, in order to start the healing process after detecting the injury and stopping

the blood bleeding, the body starts to clean up the debris at the injury site. Also, special

types of cells start to produce some substances which help on rebuilding (repairing) the

injury site. In software system, isolating the faulty component from other components is

needed. This isolation prevents the other components from failure. Moreover, repairing

(healing) the faulty component becomes easier when the faulty component is isolated

from other component.

3.3.3 Proliferation Phase into Repair Validation Phase

Two types of cells appear in this phase. The first type of cells migrates across the surface

of the wound. The second type of cells proliferates in the deeper part of the wound. These

two types of cells produce large amounts of substances which contribute in creating and

connecting new tissues and blood vessels. By the end of this phase, new tissues and blood

,.C"-'H'-"A"'P2T~E~R'-'TuH~RE~E~:'-"S!!;E~L<.!..:F:::.!-H.!..!E~A:!..!Le.!l!:!.N!>!.G~S~O~FJ.T-!!W.uA!.!:R~E,__,SL!Y.~SCLTt.<.E!.!!MC.LA:!..!R~C:.!H.!..!Ie.!.T£'E""C:..!..T..!.<U:.!lR£E'---------33

vessels are produced. In software system, repairing the faulty component results a new

component, the healed component. Therefore, testing the new component (the healed

component) is needed to make sure that the healed component is working in a proper

way.

3.3.4 Remodeling Phase into Integration Phase

The role of the last phase in wound-healing process is to remodel the tissues and

strengthen the scar. Also, collagen fibers are remodeled to more organized matrix. So too

in software system, we need to return the healed component to the running system

without affecting the other components.

Table 3-1 summarizes the task of each phase in the wound-healing process as well

as in the self-healing software systems.

Table 3-1: The Description of the Phases in Wound-Healing and Self-Healing Software System

Wound-Healing Self-Healing Software System

Phase Description Phase Description

Hemostasis Stop bleeding Fault Control
Stop losing other

components

Inflammatory
Removing the debris

Repair
Isolating and repairing

at the injury site the faulty component

Build and fill the Test the healed
Proliferation Repair Validation

injury site component

Remodeling the tissues Returning the healed

Remodeling/Maturation and Strengthen the Integration component to the

scar system

We believe that, infection of viruses should be controlled in the wound-healing

process as well as in self-healing software systems during the healing time. As we

mentioned in chapter two, there is another area of autonomic computing that focuses on

security issues called self-protecting.

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~CdH~I~T~E~C~TU~R~E~ ______________ 34

3.4 Biological Self-Healing Software System Architecture

In the previous sections we discussed how we mapped the phases of the wound-healing

process into phases of the self-healing software system. In this section, we introduce our

self-healing software system architecture.

In wound-healing process, particular types of cells are responsible for particular

tasks. For example, in the first phase of wound-healing process, the homeostasis phase,

blood vessels constrict to stop bleeding and platelets adhere and produce special

substances which help to stop bleeding. Likewise, in our self-healing software system

architecture, we introduce some modules in each phase. These modules play the same

role of the cells in the wound-healing process. In other words, each module is responsible

for a specific task. Figure 3-4 depicts the phases of our self-healing software architecture

as well as there modules.

3.4.1 The Proposed Architecture

Our self-healing software system architecture consists of two layers: the functional layer

and the healing layer.

1. The Functional layer

In this layer, the system executes normally without any fault. In other words, the

system provides its full services in this layer. Each component in the system

provides its full service and interacts with other components without any

disruption. For example, in Figure 3-4, the system consists of four components

Cl, C2, C3, and C4.

_,C~H"-'A..,_P_,_T""'E....,R'"""'T'"""H-'-'RE=E"-':-"S""E""L"-F-'-H-'-'E"'A-'-'L"'-IN'-'-"'G-"S"'O'-'-F-'-T-"-'W~A'""R""E'--'S'-'-~-"'S'--'TE,M=-<-A'-'-R,_,C'-'-H-'-'I-'-T"''E""C-'-T>.<U'-"R"'E--------35

2. The Healing Layer

If one of the components fails to provide its services during the execution of the

system (receive input, process, deliver output), the component is considered as faulty

component. In this layer we aim to return the faulty component to its normal condition

(the functional layer) by applying the wound healing phases in self-healing software

systems. The healing layer composes of five phases: Monitoring phase, Fault Control

Phase, Repair Phase, Repair Validation Phase and Integration Phase. Each phase consists

of a set of modules. These modules interact with each other to achieve the task of their

phase. The modules are numbered from I to 10 in Figure 3-4.

""C-'-'H-'-'AP"-T""-E""R"'--'-T-'-'H""RE"""'E'-': S""'E"""L'-'-Fc:!-H'-"E"'-'A"-'L"'-IN'-'-"'G-"'S""O"-F-'-T'-'-W-'-'A'-"RE"'--"'S-'-'YS"-'T.-"'E"-'M'-'A"-'R'-'-'C""H'""I'-'-T.-"'-'E-"'C-'-T"'-U'-'RE"'---------36

Monitoring Phase

Fault Control
Phase

Repair Phase

Repair Validation
Phase

Integration Phase

Figure 3-4: Biologically Inspired Self-Healing System Architecture

FlOlctional Layer

Healing Layer

~C~H~A~P~T~E~R~T~H~R~E~E~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F2T~W.~A~R~E~S~~~S~T~EM~A~R~C~H~I~T~E~C~T~U~R~E~ ______________ 37

• Monitoring Phase (Failure Detection Phase)

This phase consists of two elements; Fault Detector and Fault Analyzer. These

two elements act like the chemical signals in wound-healing process which would

be sent once the injury is discovered.

• Module No.1: Fault Detector

The task of this element is to observe the component's behavior by monitoring

its execution. The normal execution of the component is expressed by

constraints. If a fault occurs during the component's runtime execution

(revealing conditions that violate correctness assumption about the execution

of the component), the Fault Detector sends two messages; the first message

containing the fault information (for example fault time and the current

conditions of the component) will be sent to the Fault Analyzer, the second

message will be sent to the Fault Expansion Detector (in the Fault Control

Phase). This message notifies the Fault Expansion Detector that the

component has failed.

• Module No.2: Fault Analyzer

This module analyzes the cause of the fault (for example; determining the root

that causes the fault and whether the cause of the fault internal or external).

• Fault Control Phase

The task of the homeostasis phase m wound-healing process is to stop blood

bleeding after the injury is detected. In this phase we aim to stop the expansion of

the fault. If one of the components of the system fails, this fault may affect the

other components that are related to the faulty component. Figure 3-5 shows an

example.

"'C'-'H"-'AP~T_,.E"'R'-'T'-'H"'RE~E"'-:-"S""E""L!....F2-H_,_,E""A'-"L'-"/N,_,_,G_,S,_,O'-'-F-'-T-'-'W:'-"A"-'R'-'=E'-"S'-'Y:-"'S-'--TE""M<!!....!A'-"R'-'C"'-H-'-'I-'-T."'-'E"'C-'--T"'-U'-'RE""--------38

Figure 3-5: Example of Fault Expansion

In the normal execution, component A receives messages from

component B and C, and sends two messages; one to component D and the

other back to component C.

If component A fails to provide its service, which means component A

will not be able to receive messages from other components and each output

message will be a wrong output which might affect the other components by

sending the wrong data or messages. This also might lead to failures in

components C and D. In this case, we need to stop component A from

sending and receiving messages, in other, words we need to isolate component

A.

In the wound-healing process, two types of cells are responsible for

stopping the bleeding; platelets and blood vessels. To achieve this in our

model, we provide two elements:

• Module No.3: Fault Expansion Detector

The task of this element is to create two sets: the first set, called Sender

Components Set (SCS), contains the components that send messages to the

faulty component (for example, in Figure 3-5, if the faulty component is A,

SCS set contains B and C,) the second set, called Receiver Components Set

(RCS) contains the components that receive messages from the faulty

component (for example, in Figure 3-5, if the faulty component is A, RCS set

contains C and D.) In wound-healing process, Platelets produce special

"'CH"-='A~P_...T...,E...,R'""'T'""H"""'RE""""E"-'-:-"'S""£""'L'-F-:...H,_.£"-'-A'-"L""'/N'"'-G"'--"S""O"-F_...T.!..!.W:-'-'A"-'R""E'""S~Y...,_S-'-'TE,.,M=-cA,_,_R,_,C"-'-H"'-'-I-'-T."'-'E"'C"-T"'-U'-"RE"'---------39

substances that aid to stop the bleeding. Likewise, Fault Expansion Detector

generates the two sets (SCS, RCS), which aid in stopping fault expansion, and

sends these sets to the Fault Expansion Resistor.

• Module No.4: Fault Expansion Resistor:

After receiving the two sets, this module blocks the components that related to

the faulty component from sending/receiving messages to/from the faulty

component. (for example, in Figure 3-6 component B, C and D will be

blocked from sending/receiving messages to/from the faulty component A).

To stop bleeding, the blood vessels constrict in the area of the wound area. In

the same way, Fault Expansion Resistor is responsible for stopping the fault

from spreading to other components.

Figure 3-6: Blocking SCS and RCS

• Repair Phase

Two types of cells m the inflammatory phase of wound-healing process are

responsible for repairing the injury site by producing some substances. These

substances direct the next phase of the wound-healing process. Moreover, at the

beginning of this phase, the body tries to remove the debris at the injury site in

order to start repairing it.

"'C-'-'H""A"-P_,_T_,.E"-'R~T'-'H-"RE~E"-':-"S'-"'E"'L"-F.::!-H-"E""A:!..!L,_,_/'-'-N'='G-"S"'O'-'-F-'-T-"W'-"A'-"R""E'-"S"-'>C-"'S"-T"'-EM=-"A'-'R-'-'C"-'H-'-'I-'-T-"''E-"'C-'-T'='U"-'R-"'E'-----------·40

In this phase, we aim to isolate the faulty component (remove debris) in

order to start repairing it. There are two ways to repair the faulty component;

either to mutate the component or to replicate it. In some cases the system

performs the two repair plans; mutate and replicate. This phase contains:

• Module No.5: Repair Analyzer

The system needs to determine what action should be taken (for example to,

mutate, replicate or mutate and replicate). The Repair Analyzer determines to

replicate, mutate or mutate-replicate the component after receiving a message

from the Fault Analyzer. The Repair Analyzer sends a message: (1) to the

Replication Executor if the action is replicate, (2) to the Mutation Plan

Generator if the action is mutate, (3) or to the Mutation Plan Generator and

Replication Executor if the action is mutate-replicate.

• Module No.6: Mutation Plan Generator

This module generates the mutation plan against the faulty components. The

generated mutation plan is based on the current state of the faulty component.

The Mutation Plan Generator sends the mutation plan to the Mutation Plan

Executor.

• Module No.7: Mutation Plan Executor

The task of this module is to execute the mutation plan which has been

generated by the Mutation Plan Generator.

• Repair Validation Phase

In proliferation phase of wound-healing process, the cells start rebuilding the

injury site by performing the mitotic activity. Here, we intend to make sure the

chosen repair plan has been executed in a proper way.

~C~H~A~P~T~E~R~T~H~RE~E~:~S~E~L~F~-H~E~A~L~/N~G~S~O~F~T~W~A~R~E~S~Y.~S~TE~M~A~R~C~H~I~TE~C~T~U~R~E--------------~41

• Module No.8: Mutation Plan Tester

This module tests whether the component after the mutation works. If the

component after the mutation works properly, the Mutation Plan Tester sends

a message to the Runtime Manager; otherwise it sends a message to the

Mutation Plan Generator to choose other configuration plan.

• Module No.9: Replication Executor:

The Replication Executor module replicates the component after receiving a

message from the Repair Analyzer.

• Integration Phase

In wound-healing process, the last phase tasks are remodeling the tissues and

strengthen the scar at the injury site. In the same way, Integration phase task is to

return the isolated component (healed component) to the system in a way that will

not harm the running system.

• Module No.1 0: Runtime Manager

returns the healed component to back to the system by rece1vmg two

messages, one from the Mutation Plan Tester (indicates that the test result is

positive) and the other from the Replication Executor (indicates that the

replication completed.) it sends a notification message to the Fault Expansion

Resistor to unblock the two sets of components in order to interact with the

healed component.

~C~H~AP~T~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~RE~S~YS~T.~E~M~A~R~C~H~I~T.~E~C~T~U~RE~ ______________ 42

3.4.2 The Formal Description

As software systems increase in size and complexity, using formal methods to specify

and verify software systems are becoming more important. Modeling runs through many

stages as specifications, model checking and analysis of properties, code generation, and

execution of the code. Previous section introduced the specifications of self-healing

software architecture. This section checks and analyzes the architecture by presenting a

formal description of the architecture using set-theoretic. At the end of the description,

we prove the associative and closure properties for our architecture. Table 3-2 describes

the notations used in this chapter.

Table 3-2: Table of notations

Notation Description

p Functional Layer

f.1 Healing Layer

A Fault Detector

E Fault Analyzer

<;; System's Component

K(<;;) Constraints of component <;;

6 Fault Type

D Fault Expansion Detector

R Fault Expansion Resistor

scs Sending Components Set

RCS Receiving Components Set

z Repair Analyzer

y Repair Plan

G Mutation Plan Generator

n Mutation Plan

M Mutation Plan Executor

X Replicate Executer

I Run-Time Manager

:><C.!..!H~Ae!.P..!.T.!eE~Re.!T~H.!!RE~E"'-:-"S~E""L!._F:!.-H!..!.E~A!!L<!./NC!.YG--"S~O~F..LT.!!W:..:A~R~E'-'S!..!.Y..OLS!._TE!.<!Me!!....!:A!..!.R!.!.Co!..H!.!.l..!.T,_'E:><C'-T~U~RE""----------·43

3.4.2.1 Definition 1

A self-healing system S can be represented by a 2-tuple element< P, Jl >:

• P : is the functional layer of the system S that consists of a set of components and

a logical framework: C is a set of components,

C = {<;t, <;2. ·· <;n}.

Each <;i is a 4-tuple element: <Funi, Interfacei, Infoi, Perfi>, where:

n: is the number of the components in systemS,

1 :-::; i :-::; n

Funi: is the function of component <;i,

Interfacei: is the interface of component <;i,

Infoi: is the information of component ~i,

Perfi: is the performance of component <;i·

• Jl : is the healing layer of the system S represented by a 5-tuple element:

<Monitor, Fault Control, Repair, Repair Validation, Integration>. Each of these

elements is a finite set of modules. The numbers of modules in the finite set

equals to the numbers of components in the healing layer. There is one module for

each component.

• Monitor: can be represented by 2-tuple element <A, :2:>:

• A: is a finite set of sensors modules (or Fault Detectors).

\;j <;i E C ~ :J Uj E A.

These modules analyze the state of the components at the run

time (the time that the component receives input, executes process or

,C"-'H"-'A'-'-P--'-T-"'E""'R'"""'T'-'H-'-'RE~E"-':-"S""£'-"L"-F::..~.-H_,_,E,A"-'L"-'-I'-'-N-"'G-"S"'O'-'-F--'-T-"W'-'-A'-'-R"'E'--"S'-'~-""S.LTE""M=-'-A'-'-R'-'C"-'-H-'-'I-'-T""E""C.LT-""U-'-'RE"'--------44

sends output) using a set of constraints K for each component at a

particular time t.

\i <;; E C ---+ .3 K(<;i)t £; K(<;;).

The component <;; is considered to be in its normal condition if a;

updates the component state as follows:

\i <;; E C, .3 tj, tj+l, ---+ K(<;i)tj+l C K(<;;)tj, where K(<;i)tj = K(<;;).

The component <;; is considered to be in its abnormal condition if

a; updates the component state as follows:

\i <;; E C,.3 tj, tj+h ---+ K(<;;)tj+l ex. K(<;;)1j, where K(<;;)1j = K(<;;).

If the component is in its abnormal condition, a; moves the

component to the next state with this input:

<K(<;i)tj+ I , K(<;i)tj>.

The related components to the faulty component send/receive

messages to/from the faulty component need to be blocked from

sending and receiving messages. Therefore, a; sends a blocking

request to the Fault Expansion Detector.

<block>.

• L: is a finite set of modules (Fault Analyzers):

\i <;; E c ---+ .3 <J; E L.

The Fault Analyzer module cr; analyzes the constraints of the faulty

components c; at a particular time tj to find the type of fault 6;.

E = {6,, 6z ... 6m},

\i <;; E c ---+ .3 <J; E L analyze K(<;;)tj+ I CX. K(<;i)tj
find 6; E E,

"'C"-'H"-'A"-P_,_T,.ER,_,__,_T-'"'H~RE""""'E""': S""E""'L""'"F-"-H'-'-""'EA"-'L""-1'-'-N""'G--"S~O"-F-'-T.!.!.W-'-'A-'-'RE"'--"'S-'-'YS~Tc.:E"-'M-'-'A"'R'-"C""'H'""I'-'-T-"'E""C-'-T""'U-'-"R"'-E-------45

Then, the Fault Analyzer moves the faulty component to the next state

with input:

• Fault Control: can be represented by a 2-tuple element <D, R>:

• D: a finite set of modules (Fault Expansion Detectors).

\;/ <;i E c ~ 3 T]i E D

The Fault Expansion Detector <Ji of a faulty component <;i, creates two

sets of components SCS, RCS:

<;i.

SCS: is a set of components that send outputs to the faulty component <;i·

SCS = {~" S2 ... ~n}, where ~I, S2 ... ~n E C.

RCS: is a set of components that receive inputs from the faulty component

RCS = {~1, /;2 ... ~n}, where ~I, ~2· .. ~n E C.

The Fault Expansion Detector moves the faulty component to the next

state with input:

<SCS, RCS>

• R: a finite set of modules (Fault Expansion Resistors):

\;/ <;i E c ~ 3 Cj E R.

The Fault Expansion Resistor receives the two sets of components, SCS

and RCS, and blocks the two sets from sending/receiving messages to/from

the faulty component.

block SCS 1\ Ei
block RCS, where Ei E R.

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~I~N~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~C~H~I~T~E~CLT~U~RE~ ______________ 46

After receiving a notification message from the Runtime Manager

indicates that the faulty component is healed, the Fault Expansion Resistor

unblocks the two sets of component.

V c;; E C ~ :3 E;
unhlock SCS 1\ E;

rmhlock RCS, where E; E R.

• Repair: can be represented by 3-tuple element <E>, '¥, <D>:

• E>: a finite set of modules (Repair Analyzers):

V c;; E C ~ :3 8; E 0.

The Repair Analyzer 8; of a faulty component c;; receive an input from the

Fault Analyzer contains:

<K(c;;)tj+ I , K(c;;)tj, 6;>.

Then the Repair Analyzer analyzes the state of the component and the

fault type 6; to find the suitable Repair Plan 'Yj·

Y = {y1, yz, y3}, where

y1: Mutate,

yz: Replicate,

y3: Mutate-Replicate.

V K(c;;)tj+ 1 ri. K(c;;)tj ~ :3 6; E b , then,

V 6;E I> ~ :3 Yn E Y,: 1 ~ n ~ 3

After determining the suitable plan, the Repair Analyzer sends a

notification message to the next state containing the appropriate plan:

<yn>.

=C~H~A~P~T=E~R~T~H~RE~E~:~S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~R~E~S~Y.=S~TE~M~A~R~C~H~I~T~EC~TU~R~E ________________ 47

• IJ': a finite set of modules (Mutation Plan Generators):

Vc;; E c ~ 3 ljl; E IJ'.

The Mutation Plan Generator ljl; of a faulty component c;; uses the current

constraints of the component K(c;;)1j+l and the type of the fault 6; to find the

suitable Mutation Plan w;.

\f K(c;;)tj+l ct. K(c;;)tj 1\ 3 6; E E ~ W; E f2.

Then the Mutation Plan Generator ljl; moves the faulty component to the

next state with input:

• <1>: a finite set of modules (Mutation Plan Executors):

\f c;; E C ~ 3 q>; E <1>.

The Mutation Plan Executor q>; of a faulty component c;; executes the

Mutation Plan w; by performing the operation in definition 2, then notifies the

Mutation Plan Tester to test the healed component:

<test>

• Repair Validation: can be represented by 2-tuple element <T, X>:

• T: a finite set of modules (Mutation Plan Testers):

\f c;; E C ~ 3 1:; E T.

The Mutation Plan Tester -r; tests whether the faulty component is

healed. The Mutation Plan Tester -r; achieves the test by sending a test data to

the component. After receiving the output data, the -r; checks the constraints of

the component, if the constraints of the component after the test equals to the

constraints of the component, then, the faulty component is healed. As a

consequence, -r; sends a notification message to the Run-Time Manager:

<succeed>,

~C~H~A~P~T~E~R~T~H~RE~E~:~S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~R~E~S~~~S~TE~M~A~R~C~H~I~T~EC~T~U~R~E ________________ 48

Otherwise, -r; sends a notification message back to the Mutation Plan

Generator ljl; to determine another mutation plan.

<failed>.

• X: a finite set of modules (Replicate Executors):

v c;; E c ~ 3 Xi E X.

The Replicate Executor replicates the component by performing

definition 3, and then sends a notification message to the Runtime Manager.

<replicated>

• Integration: can be represented by !-tuple element <I>:

• I: a finite set of modules (Runtime Managers).

'</ c;; E C ~ 3 U; E l.

The Runtime Manager u; returns the healed component c;; to the running

system. It sends an unblocking message to the Fault Expansion Resistor to

unblock the two sets of component SCS, RCS.

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~C~H~I~T~E~C~T~U~RE~ ______________ 49

3.4.2.2 Definition 2

An action in a self-healing system S with component ~; is called mutate if the

following conditions are satisfied:

1. V ~; E C, :3 y1 e Y Curinfo (~;) :::2 Cond (~;) ::::> ~;
mutate

~;',where

2. Fun(~;) ~ Fun(~;'),

3. Interface(~;) c Interface(~;'),

4. Perf(~;)< Perf(~;').

3.4.2.3 Definition 3

An action in a self-healing system S with component ~; is called replicate if the

following conditions are satisfied:

1. V ~; E C, :3 '¥2 E Y Curinfo (~;) :::2 Cond (~;) ::::> ~;

2. Fun(~;)= Fun(~;'),

3. Interface(~;)= Interface(~;'),

4. Perf(~;)= Perf(~;').

3.4.2.4 Definition 4

replicate) r·, where ..,, ,

An action in a self-healing system S with component ~; is called mutate-replicate

action if the following conditions are satisfied:

V ~; e C, :3 y1 E Y Curinfo (~;) :::2 Cond (c;;) ::::>~;
mutate

~;'

1. Fun(~;) c Fun(~;')

2. Interface(~;) c Interface(~;')

3. Perf(~;)< Perf(~;')

~C~H~A~P~T~E~R~T~H~R~E~E~:~S~E~L~F-~H~E~A~L~IN~G~S~O~F~T~W~A~R~E~S~~£S~TE~M~A~R~C~H~I~TE~C~TU~R~E~--------------50

'1:1 <i E C, 3 Y2 E Y Curinfo (c;;') ;;;2 Cond (c;;') ~c;;' replicate

1. Fun(c;; ') = Fun(c;; ") ,

2. Interface(c;;) = Interface(c;;"),

3. Perf(c;;') = Perf(c;;").

That means:

mutate replicate) <;i' '

c;·"
1 '

The system performs the mutate operation in order to heal the faulty component.

Then, the system replicates the healed component.

!=:C....,H....,A"-P-'-T""E...,R'--'T'-'-H-'-'R""'E""'E"'":-"S""£""L'-F"'--H.!..f.£"'-A'-"L'-"/N'-'-G"'-"S"'O'-'-F-'-T-'-'W-"A"'R"'E'-"S'-'-l':""-S-'-'TE""M"'-'-A'-'-R'-'C""'-H'-'-I.!...TE,_C"""-T"'-U'-'R£"'--------·51

3.4.3 Commutativity Property

Commutativity property means, within an expression two or more of the same

commutativity operators in a row, the order of operations does not matter as long as the

sequence of the operands is not changed. Next, we prove whether the commutativity

property is satisfied in definition 2, 3, 4.

• Commutativity Property for Definition 2:

In definition 2, the mutate operation, which is

mutate ' c;; -=::.::_~ c;; '

does not satisfy the associate property because of the time dimension. In other

words, the mutate operation is not reversible because of the time dimension;

therefore the associate property is not satisfied.

• Commutativity Property for Definition 3

Likewise, time dimension makes the replicate operation in definition 3

non reversible.

replicare , c;; -'-=-=~ c;;

As a consequence, the replicate operation does not satisfy the associate

property.

• Commutativity Property for Definition 4

Definition 4 which is the mutate-replicate operation consists of two

parts, mutate and replicate. Here, we intend to prove the associate property of

the mutate-replicate operation.

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~/N~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~C~H~/~T~EC~TU~R~E~--------------52

If the sequence of the operation is mutate then replicate,

mwale , c;; -=::.:.._~ c;; replica1e) c;i''

After the faulty component c;; is mutated, the resulting component c;;' will

have complete basic properties (Fun, Interface, Perf). The outcome of the fist

part is:

Fun(c;;) <;;;; Fun(c;; ')

Interface(c;;) <;;;; Interface(c;;')

Perf(c;;) < Perf(c;;')

The second part of the operation is to replicate the mutated component c;;'.

The outcome of the second part is:

Fun(c;;') = Fun(c;;"),

Interface(c;;) = Interface(c;; "),

Perf(c;;') = Perf(c;;").

At the end of the mutate-replicate operation, the resulting component will

have the complete specifications of the system's component.

In the same way, if the sequence of the two part of the operation has

changed, the resulting component will have the complete specifications of the

system's component.

replicate ' c;; __ :_cc=~ c;;

As a result, definition 4 satisfies the commutativity property.

,C"-'H"-A,,_P_.T_,E"-'R'--'T'-'H-'-'R'""'E,_,E,_,:_,S'-'=£'-"L"--F"-'-H-'-'E"'A-'-'L"-'-/'-'-N-"'G--"S""O'-'-F--'-T-'-'W:'-'-A'-'-R'-"E'-'S!..!.~-"'S-'-'TE""M""--"A'-'R-'-'C"-'-H-'-'I-'-T""-E-"'C-'-T""'U-'-'R""-E--------53

3.4.4 Closure Property

The closure property means, the operation on members of the set produces a

member of the set. Next, we prove whether the closure property is satisfied in definitions

2, 3, and 4.

• Closure Property for Definition 2

In definition 2, the mutate operation, which is

mutate ' <;; -=::..:....~ <;; ,

The result of this operation is:

Fun(<;;) ~ Fun(<;;')

Interface(<;;) ~ Interface(<;;')

Perf(<;;) < Perf(<;;')

After the faulty component <;; is mutated, the resulting component <;;' will

have the complete specifications (Fun, Interface, Perf) of the system's component.

Therefore, the mutate operation satisfies the closure property.

• Closure Property for Definition 3

The replicate operation in definition 3 is:

replicate ' <;; -'-'==~ <;;

The result of this operation is:

Fun(<;;) = Fun(<;;') ,

Interface(<;;)= Interface(<;;'),

Perf(<;;) = Perf(<;;').

"'C-'-'H""A'-'-P_,_T_..E"-'R'-'T'-'H.!.!R""E"'E"":-'=S'-"'E""L!...F:!.-H-'-'E~A'-'L"-'-/!..!.N'='G-"S"'O'-'-F-'-T-"W'-"A'-'-R"'E'-"S'-'-l':-"'S-'-'TE""M""-"A'-'-R"-'C'-'-H-'-'I-'-T"'-E"'-C-'-'T""-U-'-'R"'-E--------54

The replicate operation makes a copy of the system's component at a certain

time. As a consequence, the resulting component will have the same

specifications (Fun, Interface, Perf) of the system's component.

From definition 3, we can deduce that the replicate operation satisfies the

closure property.

• Closure Property for Definition 4

To prove the closure property of definition 4, we need to perform the two

part of this definition. The two part of mutate-replicate operation, definition 4,

are:

1. Mutate:

c;i
mula/e

The result of this part is:

2. Replicate:

Fun(c;i) ~ Fun(c;i')

Interface(c;i) ~ Interface(c;i')

Perf(c;i) < Perf(c;i').

The result of this part is:

Fun(c;i') = Fun(c;i"),

Interface(c;i) = Interface(c;i "),

Perf(c;i') = Perf(c;i").

=C~H"'A,._P_,_T_,.,E....,R'-'T'-"H_,_,RE=E"'-:-"S""£""L'-F-'--H-'-'£"'-A-'-"L'""/ N'-'-G"'-"'S""O"-F-'-T.!..!.W-'-'A""'R""E'-"S'-'-~""-S-'-'TE""M"'-'-A'-'-R'-"C'-'-H'-'-I"-TEo:.C"'-'-'TU"'R'-'E"'----------55

At the end of the mutate-replicate operation, the resulting component will

have the complete specifications of the system's component. We can deduce that

the mutate-replicate operation satisfies the closure property.

Table 3-3 surnmanzes the commutativity and closure properties for the

repair plans.

Table 3-3: Commutativity and Closure Properties for the Repair Plans

~ Commutativity Closure
n

mutate X ./

replicate X ./

mutate-replicate ./ ./

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~CdH~I~T~E~C~T~UR~E~ ______________ 56

3.5 Graphnet Model

Beside the set-theory definition, finite state machine (FSM) is usually

encountered as graphical objects. In this section, we present a finite state machine called

graphnet. Graphnet is presented to prove the functionality of our architecture. The

graphnet model starts by describing the states of the system's component and the

transitions between them.

o Definition 5

Let a deterministic graphnet is 5-tuple ':P = { <D, c;;, I, A., A,} where

<D: a finite set of component's state.

c;; : start state of the component, where c;; E <D.

/: a set of input alphabet.

A.: state transition function.

A: a set of accepting state where A E <D, and A = { c;;}.

The accepting state of the component is pictured as double-circle and the

non-accepting states of the component are pictured as single-circle. To prove the

functionality of our architecture, the component must start from the accepting

state, move through the other states, return to the starting and accepting state.

o Functional layer

In the functional layer, the component executes its operations without any

disruptions. To execute these operations, the component moves through

different states. Figure 3-7 illustrates the states of the component in the

functional layer.

~C~H~A~P~T~E~R~T~H~RE~E~:~S~E~L~F-~H~E~A~L~/N~G~s~O~F~T~W~A~R~E~S~Y.~S~TE~M~A~R~C~H~/~TE~C~TU~R~E~--------------57

Figure 3-7: component's states in the functional layer

Path 1: c;; - c;;ti - c;/j+l - c;;tj+Z- c;; =input+ process+ output+ end

In Figure 3.7 component c;; receives an input at time ti. Then, the

component executes processes at time tj+l, and sends an output at time tj+Z· At the

end of the component execution, the component must return to the accepting state.

This is the normal execution of the component in the functional layer. If any thing

has gone wrong during the execution of the component, the component moves

through the healing layer states.

• Healing Layer: in this layer, we mm to return the component to its

accepting state. Next are the graphnets and descriptions of each phase in the

healing layer. The component's accepting state is pictured as double-circle

and the component's non-accepting states are pictured as single-circle.

.::C"-'H"-'A'-'-P--'-T-'=E"-'R'-'T'-"H-'-'R""E"'-'E"-':-"S"=£'-"L"-F"-'-H-'-'£""A-'-'L"-'-/N,_,_,G....cS'-"O'-'-F--'-T-"W'-"A'-'-R"'E'--"S'-'-JC-"'S-'-'TE""M~A,_,_R'-'C'-'-H!..!!_,_T""-E""C-'-'T-"'U-'-'R""-E ________ 58

• Single-Fault:

The graphnet presents one component at a time. However, the

architecture deals with single-fault. The healing layer creates one

module for the faulty component in each state. This seems practical

and easy to develop.

In Figure 3-8, path 1 is the normal execution of the system's

component. Through this path, the component completes its operations

without any interruptions. If there is any interruption during the execution of

the component (receiving input, processing, or sending output), the

component will move through path 2, 3, or 4. These paths will be completed

through next phases.

Each component in the systems has constraints which have been

mentioned in the previous section. In the fault detection state <Ji, the Fault

Detector Module checks the constraints of the component every time that the

component moves from one state to another. If the constraints of the

component at the specified time is not equal to the constraints of the

component

< K(c;h CZ: K(c;i)>,

<K(Sitj+I) cz: K(c;i)>, or

<K(c;/j+l) cz: K(c;i)>.

The Fault Detector Module moves the component state to fault

analysis state. The transition function which leads to this state is:

A.(K(Si 1))

This is the constraints of the component at the time of the fault t.

the Fault Analyzer Module receives the current state of the component

~C~H~A~P~T~E~R~T~H~RE~E~:~S~E~L~F2-H~E~A~L~IN~G~S~O~F~T~W~A~R~E~S~~~S~TE~M~A~R~C~H~I~TE~C~TU~R~E~---------------59

(the constraints at time t) in order to analyze the state of the component

and to determine the type of fault.

<K(<;;')>

Figure 3-8: Fault Detection graphnet

Path I: <;;- c;ii - c;;tj+I - c;ii+2 - <;; = input+ process+ output+ end

Path 2: <;; - <;; ti - a; - o; ... = input + <K(c;h <t: K(<;;)> + <K(c;/)> ...

Path 3: <;;- <;;1i- <;;tj+I- a; - o; ... =input+ process+ <K(<;;ti+ 1)cz:K(<;;)> +

<K(<;/)> ...

P h 4 tj tj+l tj+2 at : <;; - <;; - <;; - <;; - a; - o; input + process + output

+<K(<;;tj+2) <t: K(<;;)> + <K(<;;t)> ...

~C~H~A~P~T~E~R~T~H~RE~E~:~S~E~LF~-~H~E~A~L~/N~G~S~O~F~T~W.~A~R~E~S~~~S~TE~M~A~R~C~H~/~TE~C~TU~R~E~--------------60

In Figure 3-9, the component moves to the repair analysis state

with the transition function

A(K(c;;'), 6;).

The input to this state is the current constraints of the component

K(c;;1) and the fault type 6; which has been determined by the Fault

Analyzer Module. In this state, the Repair Analyzer module determines

the repair plan that should be taken according to the fault type. There are

three plans that could be determined by the Repair Analyzer module;

mutate, replicate, and mutate-replicate. The Repair Analyzer module sends

the selected plan to the module that responsible for the specified plan.

~C~H~A~PT~E~R~T~H~R~E~E~:S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W.~AR~E~SY.~S~T~E~M~A~R~C~H~I~T~EC~TU~R~E~ ______________ 61

Figure 3-9: Repair Graphnet

Path 1: ~; - ~; 1j - ~;tj+J - ~;~+2 -~;=input+ process+ output+ end

Path 2: ~; - ~;~ - a; - cr; - 8; ... = input+ <K(~; 1j) <t: K(~;)> + <K(~; 1)> + <K(~; 1), 6;> ...

Path 3: ~;- ~; 1j- ~;tj+J- a;- cr;- 8; ... =input+ process+ <K(~;tj+J)<t:K(~;)> + <K(~;1)>

+ <K(~;1), 6;> ...

Path 4: ~; - ~;tj - ~;tj+J - ~;~+2 - a; - cr; - 8; ... = input + process + output +

<K(~;tj+2)ctK(~;)> + <K(~;1)> + <K(~;\ 6;> .. .

~C~H~A~P~T~E~R~T~H~RE~E~:~S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~R~E~Su~~S~TE~M~AuR~C~HufLTE~C~TU~RE~ ______________ 62

We described the states of the component until the repair plan

state. In Figure 3-10 we introduce the mutate plan graphnet. We start the

description of this figure from the repair plan state.

After the repair plan has determined by the Repair Analyzer

module which is mutate, the component state moves to the mutate plan

state by transition function

A.(<yj>).

In the mutate plan state ljl; the Mutation Plan Generator module

determine which mutate plan w; should be taken. By determining the

mutate plan, the Mutation Plan Generator module moves the state of the

component to the execute plan state by the transition function

A.(<execute, w;>).

The Mutation Plan Executer module executes the selected mutate

plan and moves the component to the testing state q>;. The transition

function is:

A.(<test>).

In the testing state, the Mutation Plan Tester module tests the

mutated component to check whether the component mutated. The

Mutation Plan Tester module moves the component to the integration state

if the test succeeds,

A.(<succeed>).

Otherwise the Mutation Plan Tester module moves the component

back to the mutate plan state.

A.(<failed>).

Once the component moves to the integration state, the Runtime

Manager module moves the healed component back to the system (the

accepting state).

A.(<healed>).

""'C"-'H"-'A'-'-P--'-T-'=E"-'R'-'T'-"H-'-'R-"'E""E""':--'S'-'=£""L"-F::..!-H-'-'£"'A-'-'L"'-/'-'-N"'G--'S"'O'-'-F--'-T-"-'WC.!.A'-'-R'-"E'-'S'-'-Y.-"'S-'-TE""M"'--'-A'-'-R""C"'-H-'-'I-'-T""-E"'C-'-T""U'-"R""-E--------63

<healed>

<K(c;;'), 6;>

<failed> <execute, wi>

<succeed>

Figure 3-10: Mutate Plan Graphnet

=C~H~A~P~T=E~R~T~H~RE~E~:~S~E~LLF-~H~E~A~L~!N~G~S~O~F~T~W~A~R~E~S~~~S~TE~M~A~R~C~H~!~TE~C~TU~R~E~ ______________ 64

Path 1: c;i - c;i~ - c;ii+I - c;ij+Z- c;i =input+ process+ output+ end

Path 2: c;i - c;itj - Ui - ai - ei - 'Vi - <l>i - Ti - 1>i - c;i = <input> + <K(c;h a: K(c;i)> +

<K(c;i1)> + <K(c;i\ 6i> + <yi> +<test>+ <wi> +<succeed>+ <healed>

Path 3: c;i - c;ij - c;i~+l_ Ui - ai - ei - ljli - <jli - Ti - 1>i - c;i = <input> + <process> +

<K(c;i1j)cz:K(c;i)> + <K(c;i)> + <K(c;i\ 6i> + <yj> + <test> + <wi> +

<succeed> + <healed>

P h 4 tj ~+I tj+2 9 . at : c;i - c;i - c;i - c;i - Ui - ai - i - 'Vi - <pi - Ti - 1>i - c;i = <mput> + <process> +

<output>+ <K(c;i1i)cz:K(c;i)> + <K(c;i1)> + <K(c;i\ 6i> + <yi> +<test>+ <wi>

+ <succeed> + <healed>

~C~H~A£P~T~E~R~T~H~R~E~E~:~S~E~L~F-~H~E~A~L~IN~G~S~O~F~T~W~A~R~E~S~~~S~TE~M~A~R~C~H~I~TE~C~TU~R~E~---------------65

Figure 3-11 illustrates the replicate plan graphnet. The replicate plan is to make a

copy the component. The Replicate Executor module makes a copy of the component and

moves the component state to the integration state.

A.(<replicated>).

Once the component moves to the integration state, the Runtime Manager module

moves the healed component back to the system (the accepting state).

A.(<healed>).

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~f~N~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~C~H~I~T~E~C~T~U~RE~--------------66

<healed>

<replicated>

Figure 3-11: Replicate Plan Graphnet

Path 1 : c;; - c;/j - c;/j+ 1
- c;; ti+2

- c;; = input + process + output + end

Path 2: c;i- c;;1j- a;- cr;- 9;- X;- u;- c;; =input+ <K(c;;ti)cz:K(c;;)> + <K(c;;1)> + <K(c;;1
),

6;> + <yj> + <replicated > + <healed>

Path 3: c;i - c;;1j - c;;tj+l - a; - cr; - 9; -)(; - u; - c;; = input + process + <K(c;;1j) cz: K(c;;)> +

<K(c;;1)> + <K(c;/), 6;> + <yj> +<replicated>+ <healed>

Path 4: c;i - c;;1j - c;;ti+l - c;/j+2
- a; - cr; - 9; - X; - u; - c;; = input + process + output +

<K(c;h cz: K(c;;)> + <K(c;;1)> + <K(c;;1), 6;> + <yj> + <replicated > + <healed>

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~IN~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~C~H~I~T~EC~TU~R~E~ _____________ 67

When the Repair Analyzer module determines to mutate-replicate the component, the

component moves through the mutate plan states first, then through the replicate plan

states. Figure 3.12 illustrates the mutate-replicate plan graphnet.

<healed>

<replicated> <succeed>

Figure 3-12: Mutate-Replicate Plan Graphnet

"'C"-'H"'A'-'-P--'-T-"'E"-'R'--'T'-'H-'-'RE~E"':-"S"=E<!<L!....F"'--H-'-'E"'"A"-'L""-l!..!.N-"'G-"S'-"O'-'-F--'-T-"W.'-'-A'-'-RE""--'S'-'~-"'-S-'-'TE""M""--'-A'-'-R'-"C""'-H-'-'I""-T"'-E"'-C-'-T""U-'-'RE""--------68

Path 1: c;; - c;;1i - c;;tj+I - c;/i+l- c;; =input+ process+ output+ end

Path 2: c;; - c;;ti - a; - cr; - 9; - IJI; - <p; - -r; -)(.; - u; - c;; = input + <K(c;;ti) a: K(c;;)> +

<K(c;;1)> + <K(c;;1
), 6;> + <yi> +<test>+ <co;>+ <succeed>+ <replicated>

+<healed>

Path 3: c;; - c;;1i - c;/i+ 1- a; - cr; - 9; - IJI; - <p; - -r; -)(.; - u; - c;; = input + process +

<K(c;;1j)cz:K(c;;)> + <K(c;/)> + <K(c;/), 6;> + <yj> + <test> + <co;> +

<succeed> + <replicated> + <healed>

P h 4 tj tj+l tj+2 9 . at : c;; - c;; - c;; - c;; - a; - cr; - ; - IJI; - <p; - -r; -)(.; - u; - c;; = mput + process +

output + <K(c;h a: K(c;;)> + <K(c;/)> + <K(c;/), 6;> + <yi> + <test> + <co;> +

<succeed> + <replicated> +<healed>

"'C""'H""'A,_,_P_,_T-"'E'-'R--'T-'-'H'-"RE""-"'E"--: S,_,E"'L"'"F-"-H'-'-""EA'-"L"'!-'-'-N:>:G--'S"'O"-F-'-T-'-'W:-'-'A"-'R-"'E-"'S-'-'YS~T-=E~M"-'A'-"R'""C""H-'-'!'-'-T""'E"""C-'-T"'-U'-'RE""---------69

• Concurrent-Faults

The architecture can handle single-fault as well as concurrent-faults. To

handle concurrent-faults, the system creates one module for each

component. See Figure 3-13, 3-14, and 3-15. In each state of the

components, the system creates a set of modules in order to handle

concurrent-faults. The number of modules in each state equals to the

number of faulty components.

For example, in java programming, the set of modules can be done

by using threads. Java virtual machine (JVM) allows the application to

have multiple threads of execution running concurrently. By using

advanced programming language we can develop a self-healing system

which can handle single and concurrent faults.

""'C_,_,H"-'A,..P_,_T_,.E=R'-'T'-'H_,_,R""E"'E"':-"S""£""L"-F__,-H_,_,E,A_,..L"'"/'-'-N""'G--"S'-"O'-'-F_,_T-"W:'-'-A,_,_RE""""'S"""~""'S""'TE""M=-"-A,_,_R,_,C=H_,_,_I_,_T""'E"'C-'-T""'U....,R""E ________ 70

<healed>

<K(C'), 6>

<r>

<succeed>

{u, u, ... }

<test>

Figure 3-13: Mutate Plan Graphnet for Concurrent-Faults

:><C.'...!HJ:JA'-'-P...!.T~E.!:!R'-'T'-!H.!..!RE~E"":-"S!!e£'-"'L!_F:.!-H.!..!E"'A!.!L:.!./N~G_,;S~O~F..!..T.!!W:...:A!..!.R~E'-'S;u.Y..c!S!_TE""MC!:!...!A!..!.R~C:.!.H!.!.I.!...T!.<.EC~T"'"-U~R!.<.E ________ ?l

<replicated>

{u,,u, ... }

Figure 3-14: Replicate Plan Graphnet for Concurrent-Faults

~C~H~A~PT~E~R~T~H~RE~E~:S~E~L~F~-H~E~A~L~/~N~G~S~O~F~T~W~A~RE~S~YS~T~E~M~A~R~C~H~I~T~E~C~TU~RE~---------------72

<healed>

<replicated >

{u,, Uz ... }

<test>

Figure 3-15: Mutate-Replicate Plan Graphnet for Concurrent-Faults

"'C-'-'H"-'A"-P-'-T-"'E"'-'R'-'T'-'-H_,_,R~E"'E""':-"S'""£""L"--F"-'-H-'-'£"'A-'-'L"-'-/'-'-N""-G-"S""O'-'-F-'-T-'-'W'"-A'-"R"'E'-'S'-'-Y.-"'S-'-'TE""M'-'-'--"A'-'-R_,_,C,_,_H I_,_T"'E""C-'-T""-U"'-'R"'E--------73

3.6 Conclusion

This chapter has introduced self-healing software system architecture based on the

wound-healing process. Theoretical and formal descriptions of the architecture have been

presented. To prove the functionality of the architecture, closure and commutativity

properties have been discussed. The end of this chapter has presented finite state machine

called graphnet which describes that states of the architecture during single and

concurrent faults.

CHAPTER FOUR: SELF-HEALING SOFTWARE PROTOTYPE

4.1 Introduction

Self-healing applications should be able to recover from potential faults (Jeffery &

David, 2003) and should continue to work smoothly without human intervention. In this

chapter, we applied our architecture into two case studies. We simulate these case studies

by developing two Java applications. The first application is a simple Java application

that retrieves and sends data to a file. The second application is a simulation of

Automated Teller Machine (ATM) system which provides the basic financial

transactions. The chapter begins by a brief description of the Java language and presents

the concepts of exceptions in Java. This chapter also presents the class diagram of the

developed software. At the end of this chapter, the output of the developed applications is

introduced.

4.2 Java Language

Java is a high-level programming language developed by Sun Microsystems. Similar to

C++, Java is an object-oriented language. Moreover, Java is a general purpose

programming language with a number of features that make the language able to simplify

and eliminate common errors that continuously appear in other language.

Java supports object-oriented programming which is the way of programming that

programmers define the data type of a data structure as well as the operations or functions

that can be applied to the data structure. The data structure becomes an object which

includes both data and operations. Furthermore, programmers can create the relationships

between objects. The concepts of object-oriented programming in Java is applied by

building blocks that contains data type and operations, this block is called class. The

concepts of Java class provide these benefits:

74

~C~H~A~P~T~E~R~F~O~U~R~:~S~E~L~F~-H~E~A~L~/~N~G~S~O~F~T~W,~A~R~E~P~R~O~~~O~TY~P~E~------------------------75

o defining subclasses of data object that share same or some of the main class

characteristics. These benefits simplify data analysis, reduce development time,

and ensure more accurate coding.

o hiding class data and providing greater system security and avoids data

corruption.

o the class can be used by the program that IS initiated for as well as by other

object-oriented programs.

o programmers can create any new data types that are not defined in Java language

for any purposes.

Using these features, we implemented self-healing software based on our

architecture using Java. Each module in the proposed self-healing architecture is

represented as a class. Next section introduces the main classes, describes their tasks, and

presents the relationships between them.

4.3 Architecture Prototype

In this section, we introduce the Unified Modeling Language (UML) Class Diagram for

our prototype (Figure 4-1). The diagram contains classes that represent the functional and

healing modules ofthe proposed self-healing software architecture.

The functional layer consists of components which are represented as classes.

Each component provides particular services. The program user access this services via

graphical user interface. Some components provide their services without user graphical

interface. They provide their services to other components. The normal situation of the

functional layer is:

,C,...,H"-'AP~T-"'E"'R'-'F-'0"-'U"-'R"":'-"S'-"£'-"L"--F::.!-H-'-'E""A"-'L"-'I-'-'N-"G'-'S'-'0"-'-F-'-T-'-W.'-"A'-'-R'-'E'-"P'-'R"'-'O"'-T<'-'O"'-T'-'Y'-'P-"E"----------------76

o each component provides its services (and interface if any) without any

disruption.

o All the components interact with each other without any disruption.

In the healing layer, each component associates with a set of modules. These

modules are represented as classes.

~C~H~A~P~T~E~R2F~O~U~R~:~S~E~L~F~-H~E~A~L~IN~G~S~O~F2T~W,~A~R~E~P2R~O~~~O~T~Y~P~E~------------------------77

COflllOI}:nt Cofllllnlerface . .
1

1 1 1

.
Service .

.
FaultDtr

1

.
FautTypes FaultAnz RepiarArrz . 1--1-----

1 1

1

RlDltirreMgr MutatimPian T

~ ' ~ 1
.--
1

11

'
Mutati:mPlanE MutafunPianG

Repli:atimExc 1
1

1 1 .
1 MutationPians .

Figure 4-1: UML Class Diagram for self-healing Software System

"'C"-'H"-A,..P__.T_,.E""R'-.!F'-'O~U"'R"':'""S""£"'L"-F-"-H"-'£~A"-'L~/-'-'N-"'G'-"S<->O<..:.F__,T-'-W:'-"A,_,_RE~P'-'R~O"'-T<'--'O"'-T'-'Y'-'-P__.E~------------78

Each class in the class diagram has a particular task. Table 4-1 illustrates the tasks

that have been identified to each class. These tasks help the creation of the conceptual

model which contains the relation between these classes.

Table 4-1: Self-Healing Software (Main Classes)

Class Description

Component Component ofthe system

Service Services delivered by the system component

Interface The component's interface

FaultDtr Monitors the execution of the component

FaultAnz Analyzes changes (faults) in the component

FaultTypes Contains possible faults of the component

RepairAnz Determines the repair plan that must be taken

MutationPlanG Determines the mutation plan that must be applied

MutationPlanE Executes the chosen mutation plan

MutationPlanT Tests the component after mutation

MutationPlans Contains possible mutation plans

ReplicateExc Replicates the component

RuntimeMgr Returns the component to the system

Figure 4-2 illustrates the sequence diagram. In this diagram we introduce the

message passing between the system modules in order to complete the healing process.

CHAPTER FOUR: SELF-HEALING SOFTWARE PROTOTYPE 79

[-~- 11-~ J [~~nz-1 l
I I

)_
notify ~

__,
"' repairRqst

' 7

I

notify __,
/ notify

refri~\E __,

~-- e£cRqsl- -- _ta
/

__,
tes*qst "'

-'

]<----------- ~- ~--- ~~~--- ~- ~-------:

Figure 4-2: Sequence Diagram for Self-Healing Software System

" ---

mujatfd
' replicated " __,
"1 I restart

Tl

'
"'

T

~C~H~A~P~T~E~R~F~O~UR~:~S~E~L~F~-H~E~A~L~/~N~G~S~O~F~T~W,~A~R~E~P~R~O~~~O~T~Y~P~E~------------------------80

4.4 Example of Faults in Java Objects

This section presents Java program that has the ability to returns to its normal execution

after runtime error has occurred. We applied the proposed architecture into this

application by creating one class for each module. Next is the description of the

application. Java language provides a technique to detect common errors that appears

during the runtime execution. This technique called Exception Handling.

4.4.1 Exceptions in Java

Exception is any abnormal, unexpected events or extraordinary conditions that may occur

during runtime execution. Java Exceptions are basically Java objects. No Project can ever

escape a Java error exception.

Java exception handling is used to handle error conditions in a program

systematically by taking the necessary action. Exception handlers can be written to catch

a specific exception such as Number Format exception or an entire group of exceptions

by using generic exception handlers. Any exceptions not specifically handled within a

Java program are caught by the Java run time environment.

We use this concept to detect faults that occur during the execution of Java

objects. Java can detect the abnormal condition but the thing is, how to recover the

system from this fault.

C~H~AP~T~E~R2F~O~UR~:~S~E~L~F~-H~E~A~L~I~N~G~s~O~F~T~W.~A~R~E~P~R~O~~~V~T~Y~P~E~------------------------81

4.5 Application Task

The application provides GUI to the user who tries to access some files on the system.

The system has number of components that communicate with each other in order deliver

the system's services to the user (see Figure 4-3). For example, the user tries to access

file called FileA. To deliver this service, the system provides:

o graphical user interface to access the service through it,

• components to deliver the services,

o and interaction between these components to complete the tasks.

Running System

Disk!

Figure 4-3: Accessing FileA from the Running System

In Figure 4-4, assume that, the user tries to save some data into Data.txt File.

AccessFile object WriteintoFile object will finish this task. AccessFile object accesses

Data.txt and open it (output 1). Then, it sends the file pointer to the WritelntoFile object.

WriteintoFile object store the data into Data.txt and closes the file (output 2).

~C~H~A~P2T~E~R~F~O~U~R~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F~T~W.~A~R~E~P~R~O~TO~T~YP2E~------------------------·82

~ Output - Healing5imulation (run-single)

[;!) init:

0 deps-jar:l

compi~e-sing~e:

Figure 4-4: Save Data into Data. txt

Likewise, if the user tries to retrieve some data from Data.txt File, AccessFile

object accesses Data.txt and open it. Then, it sends the file pointer to the ReadFromFile

object. ReadFrornFile object retrieves the data from Data. txt and closes the file.

If Data.txt file does not exist in the system, AccessFile object will through an

exception. Therefore, the user will not be able to store or retrieve data from the system. In

order to fix this problem, every time the user modifies Data.txt, the system makes a

backup file from Data. txt. If Data.txt has been deleted or corrupted, the running system

will not be able to access it. In this case, the service will be denied to the user.

To fix this problem, the healing part of the system tries to return the service to the

user without any human intervention. The healing part suggests a plan to return the

deleted or corrupted. The plan is to make a copy from the backup file in the same deleted

or corrupted file location (disk).

~C~H~A~P~T~ER~F~O~U~R~:~SE~L~F~-~H~EA~L~/~N~G~S~O~F~T~W.~~~R~E~P~R~O~~~O~T~YP~E~-----------------------83

Running System

Functional Layer

Healing Layer

Disk2

Figure 4-5: Copying Backup File

~C~H~A~P~T~E~R~F~O~UR~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F2T~W~A~R~E~P~R~O~~~O~T~Y~P~E~------------------------84

The healing process moves through the steps that exist m the proposed

architecture. Each module in the healing process performs its task and presents an output

showing its operations. As we mentioned earlier in this chapter, the healing modules are

represented by classes. When a healing module is needed, an object from the healing

module is created. The object is destroyed after completing its task.

Figure 4-6 shows the output of each module. Next is the table of the circles area

in Figure 4-6 and the healing object (module) that responsible for it.

Table 4-2: Output Messages from Healing Modules

Area Module

1 Fault Detector

2 Fault Analyzer

3 Repair Analyzer

4 Mutation Plan Generator

5 Mutation Plan Executer

6 Mutation Plan A Executer

~C~H~A~P~T~E~R~F~O~UR~:~s~E~L~F~-H~E~~~L~I~N~G~S~O~F2T~W.~~~R~E~P2R~O~~~O~T~Y~P2E~------------------------85

_[Output- HeatmgSimulation (nm-sing!e)

fP init:

0 deps-jar:

compile-single:

run-single:

openFileData

copyhleData

Figure 4-6: The Output from the Healing Modules

~C~H~A~P~T~E=R~F~O~UR~:~S~E~L~F~-H~E~A~L~/~N~G~S~O~F~T~W.~A~R~E~P~R~O~~~O~T~Y~P~E~------------------------93

Moreover, the customer can transfer money from her/his account to any other

account liked to the bank. In Figure 4-13, the system asks the customer to enter the

account number that she/he wants to transfer the money to.

~-- ._.,.-. -.-..._...,. '>~ ..- ... -~--c _ _,_, ___ -~-C""~---·""'~-... ~-~~~- -~~...,---=----- ~

1 J!AT!f4~l!~~[§U~!

Eject Card ATMSystem Insert Card

""Transfer>>

0 Insert Account No:

0
852741

0 Cancel

0 Proceed

0 3

I 5 I 6

0 9

I 00 I CE

Figure 4-13: Transfer Transaction: Destination Account

l

~C~H~AP~T~ER~F~O~UR~:S~E~L~F~-H~EA~L~/~N~G~S~O~F~T~W~A~R~E~P~R~O~~~O~T~YP~E~-----------------------86

4.6 Case Study: A TM System

Automated Teller Machine (ATM) is a telecommunications device that computerizes the

financial transactions in a financial institution and allows the customer to access these

transactions in a public space without the need for human clerk (Rog'erio, Jon, Modupe

& Simon, 2007). This section introduces software system that simulates the Automated

Teller Machine (ATM).

We developed a simple ATM application using Java. The ATM application

provides the basic financial transactions. The customers can check their accounts,

withdraw cash, and transfer money to other customers. The screen shots of the basic

financial transactions of the ATM system are introduced in this chapter.

The ATM system services one customer at a time. The customer needs to insert a

special plastic card into an ATM card reader. After inserting the plastic card into the

A TM card reader, the customer needs to enter Personal Identification Number (PIN)

using a keypad. The PIN will be transmitted to the bank central system. This number

prevents unauthorized persons from performing transactions. If the PIN code is correct,

the customer will be able to perform one or more financial transactions. The card will be

inside the card reader until the customer indicates that they desires to exit from the

system.

The authorized customer must be able to:

• check their account balance.

• make a cash withdrawal.

• make a transfer of money to any other account liked to the bank.

~C~H~A~P2T~E~R~F~O~UR~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F~T~W.~A~R~E~P~R~O~~~O~T~Y~P2E~ ________________________ 87

• abort a transaction in progress by pressing the Cancel key instead of responding to

a request from the machine.

4.6.1 ATM System: The Functional Layer

In our application, we simulate this part of the A TM System by asking the

customer to click on Insert Card button (Figure 4-7 shows an example of the screen

shots).

ATMSystem Insert Card

Welcome to the ATM System

Please Press Insert Card ...

Q 2 3

0 5 6

0 8 9

0 00 CE

Figure 4-7: Welcome Screen

~C~H~A~P~T~E~R~F~O~UR~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F~T~W.~A~R~E~P~R~O~~~O~TY~P2E~ ________________________ 88

In Figure 4-8, as in the A TM at the bank sites, after clicking on Insert Card

button, the ATM system will ask the customer to enter PIN code. The customer will enter

his/her PIN using the keypad. The PIN consists of six digits. After the last digit has been

entered from the keypad, the system accesses the bank database to check this code.

Eject Card ATM System Insert Card

Please insert your PIN Number:

Q 2 I 3 I
0 s1 0 ~

0 8 I 9 I
0 00 I CE I

Figure 4-8: Login Screen

L

~C~H~A~P2T~E~R~F~O~UR~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F2T~W~A~R~E~P~R~O~~~O~T~Y~P2E~ ________________________ S9

If the code is not found in the bank database, the system will ask the customer to

try again. If the code is exist in the bank database, then the customer is successfully login

to the system and she/he is able to perform the basic financial transactions. Figure 4-9

show the main menu after logging in.

Eject Card ATMSystem Insert card

...
<<Main Menu»

n=
0 Account Inquiry !

•

0 Withdraw

0 ~ransfer .

0 Exit
....:... ...

Q D 3

~ 0 ~

0 I 8 I 9

0 I 00 I CE

Figure 4-9: A TM System Main Menu

~C~H~A~P~T~E~R~F~O~U~R~:~S~E~L~F~-H~E~A~L~/~N~G~S~O~F~T~W,~A~R~E~P~R~O~~~O~T~Y~P~E~------------------------90

The customer can check her/his account by clicking on the button that near to the

text Account Inquiry. Then, the customer can return to the main menu by clicking on

Back button (see Figure 4-1 0).

~---~ -·- ~-·· ... ~~ ---..-- ----~--~--- ~ ,. ------ --....__.,_-......----.,...., _ ____,._,...., _....".,..__ -=~---

L'!AI~.!~~,J.i~ ~"""W~""'"'·~·,. •. ~~-b-~J[§Jl~J

Eject Card ATM System Insert Card

«Account Inquiry»

Account Number: 852741

Balance: 40700 RM

Back

0 0
0 0
I 8 I I 9 I
I 00 I 0

Figure 4-10: Account Inquiry

=C~H~AP~T~E=R~F~O~U~R~:~S~E~L~F~-H~E~A~L~/~N=G~S~O~F~T~W~A~R~E~P~R~O~~~O~T~Y~P~E~------------------------91

From the main menu, the customer may choose withdrawal option to withdraw

cash from the ATM. In this case the customer needs to take his/her cash. In our

simulation we just display a report to the customer. See Figure 4-11 and Figure 4-12.

Eject Card ATM System Insert Card

....
«Withdraw» =j=

G Insert Amount

1000

~ G
G Cancel

:

G Proceed
-...

Q D I 3 I

0 0 0
[2] I 8 I 0
rn I 0 I CE I

Figure 4-11: Withdrawal Money

'I

~C~H~A~P2T~E~R~F~O~V~R~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F~T~W.~A~R~E~P~R~O~TO~TY~P2E~ ________________________ 92

Eject Card ATM System

<<Withdraw»

Your Balance: 40700

Withdraw Amount: 1 000

New Balance : 39700

back

0
0
0
I oo I

Figure 4-12: Withdrawal Report

Insert Card

~C~H~A~P~T~E~R~F~O~UR~:~S~E~L~F~-H~E~A~L~/~N~G~S~O~F~T~W,~A~R~E~P~R~O~TO~T~YP~E~------------------------94

Figure 4-14 illustrates the transfer transaction details, the destination account

number, the destination name, and the amount.

Eject Card

Back

Proceed

ATM System

""Transfer>>

Account No: 852741
Name: Hassan Yousuf

Transfer Amount: 250

0 0
~ 0
I 8 I 0
I 00 I I CE I

Figure 4-14: Transfer Transaction: Confirm Operation

Insert Card

~C~H~A~P2T~E~R~F~O~UR~:~S~E~L~F~-H~E~A~L~I~N~G~S~O~F~T~W.~A~R~E~P~R~O~TO~T~YP2E~------------------------95

When the customer decides to exit from the system, a message will be displayed

to inform the customer to take her/his plastic card (see Figure 4-15).

Eject Card ATMSystem Insert Card

Thank You for Using ATM System

To Take Your Card

Press Eject Card!!!

0 0
D 0
I 8 I I 9 I
I 00 I I CE I

Figure 4-15: Exiting From A TM System

------------- -·- ... - ..

"'Cc!..!H"'A~P~T..!,;E~Re...!F~OL!U.!.!R~:'-"S~£,_.,L,_F..:!-H~£~A2.!L"-!/!..:!.N~G'-"S!..!,O~F2T..!.W.!:..!'A!.!Rl.!E'--'P'--'R~O~TO,L!_TY'-'P2E,__ ____________ 96

4.6.2 A TM System: The Healing Layer

Each time the customer performs a financial transaction using the A TM, the system needs

to access the bank database. The database contains all the account information of the

customer. In our application, we assume that the server that contains the required

information of the bank customer has encountered a failure. Fortunately, a backup from

this information is located in another server. This failure might happen during the

execution of any transaction.

The failure of the database server which is located in the bank site leads to a

failure into the ATM system. If the system fails during a transaction operation, customers

will not trust in the services that provided by the ATM system. However, the system must

be able to detect the failure of the database server and must be able to access the backup

server without the awareness of the customer.

~C~H~A~PT~E~R~F~O~U~R~:~SE~L~F~-uH~EA~L~/~N~G~S~O~F~T~W.~A~R~E~P~R~O~~~O~T~YP~E~-----------------------97

;output- ATMCaseStudy(nm-single)
. - -. --- -

run-single:

12345

Figure 4-16: The Output of the Healing Modules in the Healing Layer

~C~H~A~P~T~ER~F~O~UR~:~SE~L~F~-~H~EA~L~I~N~G~S~O~F~T~W~A~R~E~P~R~O~~~O~T~YP~E~ _______________________ 98

4.7 Results and Discussion

The prototype proves that our self-healing software system architecture can be

implemented into software application. Using Java language, we implemented each

module in the proposed architecture into Java class. Each class performs the task of a

specified module.

We considered the Java objects as the system components. The application returns

the object to its normal execution after an exception has occurred. The results show that

the application has the ability to fix anomalies conditions. The first Java applications can

make a copy of the file that is corrupted or deleted. The second application can change

the server in order to access the database that it uses.

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORKS

This chapter is divided into two sections. The first section introduces the conclusions of

the research. The second section presents the recommendations for future research.

5.1 Conclusions

Autonomic computing is a new area of research which aims to provide software-based

systems that have the ability to manage itself at runtime to handle such things as

changing user needs, resource variability, changing environment requirements, and

systems faults. The major characteristics of autonomic computing are self-configuring,

self-healing, self-optimizing, and self-protecting.

Self healing software system is software that has the ability to automatically and

continuously monitor, diagnose and adapt itself without human intervention to handle

faults that happen during the execution time. Self-healing characteristic has begun to

emerge as an interesting, exciting, and potentially valuable property in software systems.

Biological systems have introduced to the world many unforeseen concepts.

These systems can handle many challenges with elegance still out of current human

artifacts. From this observation, biological inspired software systems approaches have

been proposed in the past years in order to handle the complexity of software systems.

This thesis presents software system architecture with self-healing characteristics.

The proposed architecture is based on biological system that has the ability to heal by

itself (the wound-healing process). The architecture consists of two layers; functional and

healing layers. In the functional layer, the system components operate and interact with

each other without any disruptions. The healing layer aims to provide the ability for the

system to handle anomalous conditions.

99

~C~H~A~P~T~E~R2F~JV~E~:C~O~N~C~L~U~S~/O~~~s~A~N~D~F~U~T~U~RE~W~O~R~K~S~--------------------------IOO

Theoretical and formal descriptions of the proposed architecture have been

presented in this thesis. The formal description is introduced to prove the functionality of

the architecture. This description showed that the architecture has the closure property

which indicates that the healed component will have the properties of the original

component of the system. Moreover, a Finite State Machine called graphnet has been

presented. The graphnet illustrated the component states and the transitions between them

during the healing process. The graphnet depicted the healing process for single as well

as concurrent faults. The healing process of single-fault is simple process because the

system faces one component failure. In contrast, the healing process of concurrent-fault is

more complicated. Healing concurrent component failure requires more than one module

in each phase of the healing layer.

At the end of this work, a prototype for the proposed architecture has been

introduced. The prototype showed that the architecture can be implemented into system

application. We provided a Java application. The presented application treats Java object

as a system component. If the object failed to provide its service during runtime, the

application has the ability to return the object to its normal execution. The presented

prototype has been applied into two case studies, simple Java application and A TM

system application.

As a conclusion, this thesis presents self-healing software system architecture as

well as the specification logics for this architecture. The proposed architecture has the

ability to recover the system from single-fault as well as concurrent-faults. The two case

studies prove that the proposed architecture can be applied into software system. The

fault can occur at any time during the system execution. The healing layer completes the

healing process without the awareness of the user. The output from the healing modules

in the healing layer shows that each module performs its task and notifies the next

modules by sending the required information.

~C~H~A~P~T~E~R~F~IV~E~:C~O~N~C~L~U~SI~O~N~S~A~N~D~F~U~T~U~RE~W~O~R~K~S~ __________________________ !Ol

5.2 Future Trends

This work can be pursued further in a number of directions:

• In the case studies, we have simulated the mutation plan for single-fault in

which the system can heal from known faults. We left the replication part

as well as healing from unknown faults for future works.

• Implementing a prototype for concurrent faults for the proposed

architecture. The prototype can be implemented usmg advance

programming languages.

• The proposed architecture consists of two layers, the functional and

healing layers. These layers appear as two different systems. As future

work, enhancing the proposed architecture is highly recommended. We

predict that the functional and healing layer can be composed into one

layer.

• A combination of self-healing and self-protecting is highly recommended

in order to stop viruses' attacks during the healing process and to heal

from a system failure that has been occur after an attack by virus.

• Developing self-healing middleware for large-scale distributed ubiquitous

software systems based on the biological systems to heal concurrent-faults

in multiple-applications in multiple-platforms. This middleware will

increase the reliability of the distributed application and support the

interoperability among the system components in a heterogeneous

environment.

PUBLICATIONS

1. Mazin Elhadi, Azween Abdullah, and Low Tang Jung, "Biologically Inspired Self­

Healing Software System Architecture", National Postgraduate Conference,

Universiti Teknologi PETRONAS, Tronoh, Malaysia, March 2008.

2. Mazin Elhadi and Azween Abdullah, "Layered Biologically Inspired Self-Healing

Software System Architecture", Third International Symposium on Information

Technology 2008 (ITSim'08), Universiti Kebangsaan Malaysia, Malaysia, August

2008. (accepted for presentation)

102

REFERENCES

Alan, G., G., & Thomas, A., C. (2003). The dawning of the autonomic computing era.

IBM System Journal, 42, 5-18.

Aaron, B. B., & Charlie, R. (2005). Measuring the effectiveness of self-Healing

autonomic systems. Proceedings of the Second International Conference on

Autonomic Computing (ICAC'05) (pp. 328-329). IEEE.

Alessandra, G. (2007). Towards design for self-healing. Presented at the Fourth

international workshop on Software quality assurance: in conjunction with the

6th ESECIFSE joint meeting, Dubrovnik, Croatia: ACM.

Bogdan, S., Dan, L., Marin, L., & Mircea, M. (2007). Towards a real-Time reference

architecture for autonomic systems. Proceedings of the 2007 conference of the

center for advanced studies on Collaborative research. 124-136: ACM.

Daniel, A. M., & Jeffery, 0. K. (2007). Guest editors' introduction: Autonomic

computing. IEEE Educational Activities Department, I I(1), 18-21.

Dashofy, E. M., Andre, V. D. H., & Richard, N. T. (2002). Towards architecture-based

self-healing systems. Proceedings of the first workshop on Self-healing systems

(pp. 21-26). Charleston, South Carolina: ACM.

David, K., & Heather, 0. The basic principles of wound healing. Retrieved from

http://www. pilonidal .org/pdfs/Princi p les-of-Wound-Heal in g. pdf.

103

=RE~F~E~RE~N~C~E~S~---104

David, M., Alia, S., Ian, W., & Steve, R. (2004). Unity: Experiences with a prototype

autonomic computing system. Proceedings of the International Conference on

Autonomic Computing (ICAC'04) (pp. 140-147). IEEE.

Davide, T. (2004). Research perspective in self-Healing systems., University of Milano­

Bicocca.

Deepak, K. G. (2005). Meta dynamic states for self healing autonomic computing

systems. International Conference on Man and Cybernetics Systems (Vol. 1, pp.

39-46). IEEE.

Dewayne, E. P., & Alexander, L. W. (1992). Foundations for the study of software

architecture. ACM SIGSOFT Software Engineering Notes, 17(4), 40-52. ACM.

Eleni, P., & Nancy, A. (2006). A framework for the deployment of self-managing and

self-configuring components in autonomic environments. Proceedings of the 2006

International Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM'06) (p. 5). IEEE.

Fabio, K., Fabio, C., Gordon, B., & Roy, H. C. (2002). The case for reflective

middleware. Communications of the ACM, 45(6), 33-38. ACM.

Fuad, M. M. (2007). AN aUTONOMIC sOFTWARE aRCHITECTURE. Unpublished

doctoral dissertation, MONTANA STATE UNIVERSITY, Computer Science (1,

Vol. 1).

George, C., Vincent, H. B., Ian, D. G.-D., & Chad, B. (2006). Practical autonomic

computing. Proceedings of the 30th Annual International Computer Software and

Applications Conference (COMPSAC'06) (pp. 3-14). IEEE Computer Society.

~RE~F~E~RE~N~C~E~S~---105

Grishikashvili, Pereira. E, & Pereira. R. (2007). Simulation of fault monitoring and

detection of distributed services. Simulation Modelling Practice and Theory (4,

Vol. 15, pp. 492-502). Elsevier.

Haydarlou, A., R, Overeinder, B., J, & Brazier, F., M. (2005). A self-healing approach

for object-oriented applications. Proceedings of the 3rd International Workshop

on Self-Adaptive and Autonomic Computing Systems (pp. 191-195). IEEE.

IBM Research. (2001). Autonomic computing. Retrieved from

Http://www.research.ibm.com/autonomic/ overview.

Jayne, C., & Sarah, K. (2004). The wound healing process. Peterborough Wound Care.

Jeffery, 0., Kephart, & David, M., Chess. (2003). The vision of autonomic computing.

IEEE Computer Society Press, 36, 41-50.

Jochen, W. (2007). An approach to detecting failures automatically. Fourth international

workshop on Software quality assurance: in conjunction with the 6th ESECIFSE

joint meeting, (pp. 17-24). Dubrovnik, Croatia: ACM.

King, T. M., Babich, D., Alava, J., Clarke, P. J., & Stevens, R. (2007). Towards self­

Testing in autonomic computing systems. Eighth International Symposium on

Autonomous Decentralized Systems (ISADS'07) (pp. 51-58). IEEE.

Laddaga, R. (1999). Creating robust software through self-adaptation. IEEE Intelligent

Systems, I4(3), 26-29. IEEE.

Manish, P., & Salim, H. (2005). Autonomic computing: An overview. Lecture Notes in

Computer Science, Unconventional Programming Paradigms, 3566, 257-269.

Springer Link.

~RE~F~E~R~E~N~C~E~S~---106

Marija, M.-R., Nikunj, M., & Nenad, M. (2002). Architectural style requirements for self­

Healing systems. Proceedings of the first workshop on Self-healing systems (pp.

49-54). Charleston, South Carolina: ACM.

Mary, S., & David, G. (1996). Software architecture: Perspectives on an emerging

discipline. Prentice-Hall.

Mazeiar, S., & Ladan, T. (2005). Autonomic computing: Emerging trends and open

problems. ACM_SIGSOFT Software Engineering Notes, 30(4), 1-7. ACM.

Michael, E. S. (2004). Self-Healing components in robust software architecture for

concurrent and distributed systems. Science of Computer Programming. 57(1),

27-44. Elsevier.

Michael, E. S., & Daniel, C. (2005). Connector-Based self-Healing mechanism for

components of a reliable system. ACM_SIGSOFT Software Engineering Notes,

30(4), 1-7. ACM.

Michael, J., Jing, Z., David, R., & John, S. (2007). A modeling framework for self-healing

software systems. (Autonomies Research, Motorola Network Infrastructure

Research Lab).

Mohammad, R., Nami, & Koen, B. (2007). A survey of autonomic computing systems.

Proceedings of the Third International Conference on Autonomic and

Autonomous Systems (p. 26). IEEE Computer Society.

Mohammad, R., Nami, & Mohsen, S. (2007). Autonomic computing: A new approach.

First Asia International Conference on Modelling & Simulation (AMS '07) (pp.

352-357). IEEE.

~RE~F~E~R~E~N~C~E~S~---107

Paskom, C., & Junichi, S. (2006). A biologically-inspired autonomic architecture for self­

healing data centers. Proceedings of the 30th Annual International Computer

Software and Applications Conference (COMPSAC'06) (Vol. I, pp. 103-112).

IEEE Computer Society.

Paul, H. (2001). Autonomic computing: IBM's perspective on the state of information

technology. IBM Corporation.

Paul, L., Alexander, M., & John, L. (2005). Defining autonomic computing: A software

engineering perspective. Proceedings of the 2005 Australian Software

Engineering Conference (ASWEC'05) (pp. 88-97). IEEE.

Pruet, B., & Junichi, S. (2002). BiSNET: A biologically-inspired middleware architecture

for self-managing wireless sensor networks. Computer Networks. 51(16), 4599-

4616. Elsevier.

Robert, F., Diegelmann, & Melissa, C., Evans. (2004). Wound healing: An overview of

acute, fibrotic and delayed healing. Frontiers in Bioscience, pp. 283-289.

Rog'erio, d., Lemos, Jon, T., Modupe, A., & Simon, F. (2007). Immune-Inspired

adaptable error detection for automated teller machines. IEEE Transactions on

Systems, Man, and Cybernetics-Part C: Applications And Reviews (Vol. 37, pp.

873 - 886). IEEE.

Sarah, C. (2002). Wounds the healing process. Royal Pharmaceutical Society of Great

Britain.

Sasitharan, B., Dmitri, B., William, D., MfcheaJ.6 F., & John, S. (2006). Biologically

inspired self-governance and self-organisation for autonomic networks.

~RE~F~E~RE~N~C~E~S~---108

Proceedings of the 1st international conference on Bio inspired models of

network, information and computing systems. Cavalese, Italy: ACM.

Selvin, G., David, E., & Lance, D. (2002). A biologically inspired programming model

for self-healing systems. Proceedings of the first workshop on Self-healing

systems (pp. 102-104). Charleston, South Carolina: ACM.

Selvin, G., David, E., & Steven, M. (2003). A biological programming model for self­

Healing. Proceedings of the 2003 ACM workshop on Survivable and self­

regenerative systems: in association with lOth ACM Conference on Computer

and Communications Security (pp. 72-81). Fairfax, VA: ACM.

Shameem, A., Sheikh, I. A., Moushumi, S., & Munirul, M. H. (2007). Self-healing for

autonomic pervasive computing. Proceedings of the 2007 ACM symposium on

Applied computing (pp. 110-111). Seoul, Korea: ACM.

Shang-Wen, C., David, G., Bradley, R. S., Joao, P., Sousa, Bridget, S., Peter, S. et a!.

(2002). Software architecture-Based adaptation for pervasive systems.

Proceedings of the international Conference on Architecture of Computing

Systems: Trends in Network and Pervasive Computing, 2299, 67-82. Springer­

Verlag.

Shin, M. E., & lung, H. A. (2006). Self-Reconfiguration in self-Healing systems.

Proceedings of the Third IEEE international Workshop on Engineering of

Autonomic & Autonomous Systems (pp. 89-98). IEEE Computer Society.

Stuart, A., Mark, H., Rob, P., Mark, R., Roger, S., James, S. et a!. (2003). Making

autonomic computing systems accountable: The problem of human-Computer

interaction. Proceedings of the 14th international Workshop on Database and

Expert Systems Applications (DEXA '03) (pp. 718-724). IEEE.

~RE~F~E~RE~N~C~E~SL-___ 109

Wang, C., Li, Y., & Bu, J. (2004). A biological formal architecture of self-healing

system. Presented at the 2004 IEEE International Conference on Systems, Man

and Cybernetics. IEEE.

WoundHeal. Retrieved 22, Nov, 2007, from

<http :I /www. woundheal.com/healing/processindex. htm>.

Yang, Q., Yang, X.-C., & Xu, M.-W. (2005). A framework for dynamic software

architecture-based self-healing. ACM SIGSOFT Software Engineering Notes,

30(4), 1-4. ACM.

Zach, P., & Sam, S. (2005). A machine to support autonomic computing2005 IEEE

Region 5 and IEEE Denver Section Technical, Professional and Student

Development Workshop (pp. 25-31). IEEE.

Zeid, A., & Gurguis, S. (2005). Towards autonomic web services. The Fourth

International Conference on Computer and Information Technology, CIT '04 (p.

69). IEEE.

APPENDIX A: TEST PROGRAM LISTING

APPENDIX A. I: Test Program I

package RunSimulation;

import java.io. *;

public class FileAccess {

RandomAccessFile f;

public FileAccess(String fileName, String name, String pass) {

System. out. print("* **File Access Class***\n");

openFile(fileName, name, pass);

}

public void openFile (String fileName, String name, String pass) {

System.out.print("Function: nopenFile\n");

}

try {

System.out.print("\n++++++++file name is "+fileName+"\n");

f= new RandomAccessFile(fileName, "rw");

setData(name, pass, f);

} catch (FileNotFoundException ex) {

}

System.out.print("File "+fileName+" Not Found!! !\n"+ ex);

new FaultDtr(ex);

public void setData(String name, String pass, RandomAccessFile f){

System.out.print("Function setData\n");

try {

f.writeUTF(name);

110

~A~PP~E=N~D=I~X~---111

}

}

APPENDIX A. I: Test Program 1 (continued)

f. writeUTF(pass);

} catch (IOException ex) {

}

System.out.print("Input Output Exception!! !\n"+ ex +"\n");

new FaultDtr(ex);

~A~PP~E~N~D~I~X~---112

APPENDIX A.2: Test Program 2

package RunSimulation;

import java.io.FileNotF oundException;

import java.io.IOException;

import java.io.RandomAccessFile;

public class OutputFromFile {

RandomAccessFile f;

public OutputFromFile(String fileName){

try {

}

f= new RandomAccessFile(fileName, "r");

System.out.print("Name: "+ getName() + "\n");

System.out.print("Password: "+ getPass() + "\n");

} catch (FileNotFoundException ex) {

System.out.print("File not Found! !\n" +ex);

new FaultDtr(ex);

}

public String getName(){

String str = "";

try {

str = f.readUTF();

} catch (IOException ex) {

System.out.print("Input Output Exception! !\n"+ex);

new FaultDtr(ex);

}

return str;

~A~PP~E=N~D=I~X~---113

}

}

APPENDIX A.2: Test Program 2 (continued)

public String getPass() {

String str = "";

}

try {

str = f.readUTF();

} catch (IOException ex) {

}

System.out.print("lnput Output Exception! !\n"+ex);

new FaultDtr(ex);

return str;

~A~P~PE~N~D~I~X~---114

APPENDIX A.3: Test Program 3

package RunSimulation;

public class FileLocations {

}

public static final String Joel = "c://Data.txt";

public static final String Joc2 = "c://backup//Data.txt";

public FileLocations() {

}

public static String getFile(int Joe) {

String str = "";

}

switch (Joe){

case 1:

}

str =Joel;

break;

case 2:

str = Joc2;

return str;

~A~P~PE~N~D~I~X~---115

APPENDIX A.4: Test Program 4

package RunSimulation;

import java.io. *;

public class FaultDtr {

}

public FaultDtr(Exception ex){

}

System.out.print("\n***Class: FaultDtr * **\nMessage: Fault Detected!! !\n");

notifyAnz(ex);

public void notifyAnz(Exception ex){

}

System.out.print("Method: notify Anz\nMessage: Notification \n ");

new FaultAnz(ex);

public void notify F aultRstO {

}

~A~P~PE~N~D~I~X~---116

APPENDIX A.5: Test Program 5

package RunSimulation;

import java.io. *;

public class FaultAnz {

public FaultAnz(Exception ex){

System.out.print("\n ***Class: FaultAnz* * *\n");

notify Repair Anz(ex);

}

public void notifyRepairAnz(Exception ex){

System.out.print("\nMethod: notifyRepairAnz\nMessage: ");

if (ex instanceof FileNotFoundException)

}

}

{

}

System.out.print("Fault Type 1: "+ex+"\n");

new RepairAnz(l);

else if (ex instanceofiOException){

System.out.print("Fault Type 2: "+ex+"\n");

new RepairAnz{2);

}

else{

}

System.out.print("Fault Type -1: "+ex+"\n");

new Repair Anz(-1);

~A~P~PE=N~D~I~X~---117

APPENDIX A.6: Test Program 6

package RunSimulation;

public class RepairAnz {

}

public RepairAnz(int faultiD){

System.out.print("\n* **Class: RepairAnz* * *\n");

repairPlan(faultiD);

}

public void repairPlan(int faultiD){

System.out.print("\nMethod: RepairPlan\nMessage: ");

switch (faultiD){

}

}

case 1:

case 2:

System.out.print("Plan 1 \n");

new MutationPlanG(faultiD);

break;

case 3:

System.out.print("Plan 2\n");

new ReplicateExcO;

default:

System.out.print("Plan 3\n");

~-

~A~PP~E~N~D~I~X~---118

APPENDIX A.7: Test Program 7

package RunSimulation;

class MutationPlanG {

}

public MutationPlanG(int faultiD) {

}

System.out. print("\n ***Class: MutationPlanG* * *\n ");

choosePlan(faultiD);

public void choosePlan(int faultiD){

System.out.print("\nMethod: choosePlan\nMessage: ");

switch (faultiD){

}

}

case I:

System.out.print("Plan a\n");

new MutationPlanExc('a');

break;

case 2:

System.out.print("Plan b\n");

new MutationPlanExc('b');

break;

default:

System.out.print("Plan z\n");

new MutationPlanExc('z');

A~PP~E~N~D~I~X~---119

APPENDIX A.8: Test Program 8

package RunSimulation;

class MutationPlanExc {

}

public MutationPlanExc(char c) {

}

System.out. print("\n ***Class: MutationPlanExc* * *\n ");

executePlan(c);

public void executePlan(char c){

System.out.print("\nMethod: executePlan\nMessage: ");

switch (c){

}

}

case 'a':

System.out.print("Execute Plan a\n");

new CopyFile(l);

break;

case 'b':

System.out.print("Execute Plan b\n");

//new planB();

break;

default:

System.out.print("Execute Plan z\n");

//new planC();

~A~PP~E~N~D~I~X~---120

APPENDIX A.9: Test Program 9

package RunSimulation;

import java.io. *;

import java.util.logging. *;

public class CopyFile {

public CopyFile(){

System.out.print("Ciass: CopyFile\n");

}

CopyFile(int i) {

System.out.print("Ciass: CopyFile\n");

openFile(i);

}

public void openFile(int i){

try {

System.out.print("Method: openFileData\n");

RandomAccessFile newFile = new RandomAccessFile(FileLocations.getFile(i),

"rw");

RandomAccessFile backupFile =new

RandomAccessFile(FileLocations.getFile(2), "r");

copyFileData(newFile, backupFile);

}

} catch (FileNotFoundException ex) {

System.out.print("Message: File Not Found!! !\n"+ex);

}

public void copyFileData(RandomAccessFile newFile, RandomAccessFile

backupFile) {

try {

System.out.print("Method: copyFileData\n");

~A~P~PE~N~D~I~X~---121

}

}

APPENDIX A.9: Test Program 9 (continued)

String str;

str = backupFile.readUTF();

while (str !=null) {

}

System.out.print("str = "+ str + "\n");

newFile.writeUTF(str);

str = backupFile.readUTF();

newFile.close();

backupFile.close();

System.out.print("\nMessage: File Copied!! !\n");

} catch (IOException ex) {

System.out.print("Message: Input Output Exception!! !\n"+ex);

}

