
STATUS OF THESIS

Title of thesis
Context-aware Modeling Using Semantic Web and Z Notation

I BA YU ERFIANTO

hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

I. The thesis becomes the property of UTP.

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

D Confidential

Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for--==---- years.

Remarks on disclosure:

Endorsed by

BA YU ERFIANTO

Komplek Bumi Adipura IV

Jalan Pinus V No 28 Gedebage,

Bandung, Indonesia

Date:

) fl r-D~ ~hmad Kamli Bin Mahmood ~~rot. v.n

Head & I formation Sciences Department
con1puter n · FrRONAS

ASSOC. PRO!jlymtti ~M':fi<::AMIL MAHMOOD

Universiti Teknologi PETRONAS

Bandar Seri Iskandar, Perak,

Malaysia

Date:

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor (s)

The undersigned certify that they have read, and recommend to The Postgraduate

Studies Programme for acceptance, a thesis entitled "Context-aware Modeling

Using Semantic Web and Z Notation" submitted by Bayu Erfianto for the

fulfillment of the requirements for the degree of Master of Science in Information

Technology.

Date

Signature

Main Supervisor

Date

Co-Supervisor

c~~~c. Prof. Dr. Ahmad Kamli Bin Mahmood

U
co,mput.e:r & Information Sciences Department

n ver"'' Teknologi PETRONAS

I

Abdullah Sani B. Abd
Lecturer .
lf"''c•rmation Technology/InformatiOn Systems

·· ·-,ti T~knologi PETRONAS
r: l~kand3r,
"'''· ;Jerak Oarul Ridzuan, MALtWP.,,.,

UNIVERSIT! TEKNOLOGI PETRONAS

Context-Aware Modeling Using Semantic Web and Z Notation

By

Bayu Erfianto

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE

fNFORMA T!ON TECHNOLOGY

BAN DAR SERI ISKANDAR,

PERAK

AUGUST, 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledge. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

Signature

Name BA YU ERFIANTO

Date

Acknowledgement

First of all, the praise should be for Allah for all His grace and bounty, hence I could

finish my study in UTP by writing up this thesis.

This work would not have been possible without the support of Dr. Ahmad Karnil

and Mr. Abdullah Sani under whose supervision I finish this thesis. The gratitude

expression would also be addressed to Post Graduate Studies - Universiti Teknologi

PETRONAS for providing the graduate research assistantship grant and facilities dur

ing my study.

In my daily work I have been blessed with a friendly and cheerful group of fellow

IT students in Postgraduate Lab room 02-02-12. I would like to extend my grateful

ness to my colleagues for providing fun environment in which I could learn and grow

like the normal person.

Finally, I cannot end without thanking my family, on whose constant encourage

ment and love I have relied throughout my time in UTP. I am grateful also to my

parents, my beloved wife 1/hamdaniah, and my daughters Zahra and /zza. Their smile

will always inspire me, in my unpredictable way. It is to them that I dedicate this

work.

Abstract

Surveys in user context modeling have shown that the semantic web is one of

the promising approach to represent and structure the contextual information captured

from user's surrounding environment in a context-aware application. A benefit of

using semantic web language is that it enables application to reason user contextual

information in order to get the knowledge of user's behavior. However, regarding its

notation format, semantic web is suitable for implementation level or to be consumed

by application run-time.

Context-aware application is a part of distributed computing system. In distributed

computing system, the language used for specification should be distinguished from

the implementation I run-time purpose. This is known as separation of modeling lan

guage. Regarding the context-aware application, for those who are concerned with

specification of context modeling, the language that is used for specification should

also be distinguished from the implementation one.

This thesis aims at proposing the use of formal specification technique to develop

a generic context ontology model of user's behavior at the Computer and Information

Sciences Department, Universiti Teknologi PETRONAS. Initially, the context ontol

ogy was written in OWL semantic web language. The further process is mapping onto

a formal specification language, i.e. onto Z notation. As a result, specification of con

text ontology and its consistency checking have been developed and verified beyond

the semantic web language environment. An inconsistency of context model has been

detected during the verification of Z model, which cannot be revealed by current OWL

DL reasoner.

The context-aware designers might benefit from the formal specification of context

ontology, where the designers could fully use formal verification technique to check

the correctness of context ontology. Thus, the modeling approach in this thesis has

shown that it could complement the context ontology development process, where the

checking and refinement are performed beyond the semantic web reasoner.

Abstrak

Kajian terhadap pemodelan konteks pengguna menunjukkan bahawa web seman

tik adalah salah satu pendekatan yang mempunyai harapan untuk mewakili dan men

struktur maklumat konteks yang diambil daripada persekitaran pengguna dalam ap

likasi sedar-konteks. Manfaat menggunakan bahasa web semantik ialah ianya mem

bolehkan aplikasi untuk memikirkan maklumat kontekstual pengguna untuk menda

patkan pengetahuan mengenai kelakuan pengguna. Walaubagaimanapun, berkaitan

dengan format notasinya, web semantik lebih bersesuaian untuk paras pelaksanaan

atau untuk digunakan oleh aplikasi masa-lari.

Aplikasi sedar-konteks merupakan sebahagian daripada sistem pengkomputeran

teragih. Dalam sistem pengkomputeran teragih, bahasa yang digunakan untuk spesi

fikasi harus dibezakan daripada pelaksanaan I tujuan masa-lari. Hal ini dikenal seba

gai pemisahan bahasa pemodelan. Berkaitan dengan aplikasi sedar-konteks, untuk hal

yang berkaitan dengan spesifikasi pemodelan konteks, bahasa yang digunakan untuk

spesifikasi juga harus dibezakan dari pelaksanaannya.

Tesis ini bertujuan untuk mencadangkan penggunaan teknik spesifikasi formal un

tuk membangunkan model ontologi konteks generik kelakuan pengguna pada Jabatan

Komputer dan Sains Maklumat, Universiti Teknologi PETRONAS. Mula-mula, on

tologi konteks ditulis dalam bahasa web semantik OWL. Seterusnya adalah pemetaan

terhadap bahasa spesifikasi formal, seperti notasi Z. Dan hasilnya adalah, spesifikasi

ontologi konteks dan semakan kekonsistenan dibangunkan dan disahkan diluar dari

pada persekitaran bahasa web semantik. Ketidakkonsistenan model konteks telah

dikesan semasa pengesahan model Z, yang mana ianya tidak dinampakkan oleh pemikir

OWL DL sedia ada.

Pereka bentuk sedar-konteks mendapat manfaat dari spesifikasi formal ontologi

konteks, dimana pereka bentuk dapat menggunakan sepenuhnya teknik pengesahan

untuk menyemak ketepatan ontologi konteks. Pendekatan pemodelan dalam tesis ini

menunjukkan ianya dapat melengkapi proses pembangunan ontologi konteks, dimana

penyemakan dan penapisan dapat dilakukan diluar daripada pemikir web semantik.

Contents

1 Introduction

1.1 Research Background .

1.1.1 State of the Art of Context-Awareness Modeling

1.1.2 Semantic Web and Formal Specification

1.2 Objectives

1.3 Research Questions

I .4 Approach

1.5 Scope of the Study and Limitation

1.6 Structure of the Thesis

2 Literature Review

2.1 Context-Aware Computing

2.1.1 The General Architecture .

2.1.2 Context Modeling Issue

2.1.3 Related Works on Context-Aware Deployment

2.2 Description Logics and Semantic Web Language

2.2.1

2.2.2

2.2.3

2.2.4

Overview of Description Logics

Description Logic: Syntax and Language

OWL Semantic Web Language . . .

OWL Semantic Web Language Tool

2.3 Z Formal Specification

2.3.1 Z Syntax and Language

2.3.2 ZIEYES Tool

2.4 Chapter Summary ..

3 Semantic Web Context Model

3.1 Modeling Process

3.2 Representing Context Ontology in DLs

11

1

3

3

3

4

5

5

8

8

10

10

12

14

15

16

17

17

21

26

27

27

30

31

33

33

34

CONTENTS

3.2.1 Identify the concepts and develop its taxonomy

3.2.2 Identify the individuals belong to concept

3.2.3 Distinguish Role to link the concepts

3.2.4 Identify sub roles

3.2.5 Determine concept and role constraints

3.3 Semantic Web Model

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

OWL Header Definition . . .

Semantic Web of Class Person

Semantic Web of Class Network

Semantic Web of Class Device .

Semantic Web of Class Location

Semantic Web of Class Activity

3.3.7 Class Restriction .. .

3.4 OWL Semantic Checking .. .

3.4.1 Consistency checking .

3.4.2 Concept Subsumption

3.4.3 Instantiation Checking

3.5 Chapter Summary

4 Z Specification of Context Model

4.1 Mapping Process

4.2 Z Syntax and Semantics (OWL-Z)

4.2.1 Class Description

4.2.2 Properties

4.2.3 Value Constraint

4.2.4 Individual

4.3 Mapping Context Ontology onto Z Notation

4.4

4.3.1 Specification of Class Person and Its Related Property

4.3.2 Specification of Class Device

4.3.3 Specification of Class Activity

4.3.4

4.3.5

Specification of Class Location

Specification of Class and Property Constraint

4.3.6 Specification of Individuals

Checking Z Specification of Context Ontology .

4.4. I Consistency Checking .

4.4.2 Subsumption Checking

4.4.3 Instantiation Checking .

Ill

34

36

37

39

39

41

41

42

44

45

46
47

47

48

49

51

53

55

56

56
58

60
61

63

65
65

66
69
70
71

71

73

73

73

76
77

CONTENTS IV

4.5 Chapter Summary . 80

5 Discussion 82
5.1 Context Development Process 82

5.2 Context Modeling Using OWL 83

5.3 Ontology Expressiveness ... 85

5.4 Reflection on the Proposed Method . 85

5.5 Chapter Summary 87

6 Conclusion and Future Works 88
6.1 Thesis contribution .. 89
6.2 Future Work Directions 90

Appendix 97

A DLs Specification of CIS Context Model 97

A. I Person Conceptual Model 97
A.2 Location Conceptual Model 98
A.3 Device and Network Conceptual Model 99
A.4 Activity Conceptual Model 100

A.5 Axioms of Restriction ... 100
A.6 Class and Role Data Type . 101

B Context-Aware Ontology Specification 102

c OWL-Z Semantic Definition 119

D Z Specification of Context Ontology 124

E Screenshoot of Proof Process 132

Chapter 1

Introduction

In a context-aware computing system, the term "context" is used to describe infor

mation about user's surrounding environment. Context information might be gath

ered from sensors and software agents and modeled by means of the available context

modeling approach. Surveys in context modeling, conducted by Strang and Linnhoff

Popien [I] and Bolchini et al. [2], have shown that context-aware computing applica

tion is now fully supported by semantic web. This implies that semantic web is one

of the promising modeling language to represent, structure user contextual informa

tion captured. Chen et al. [3] have developed context-aware application framework

(CoBrA), which was also supported by semantic web as its user context modeling

approach. Another works initiated by Xiao [4], Gu [5]-[6], and Almeida et a!. [7] pro

posed semantic web as their contextual information model (context model) as well.

Context-aware computing is a part of distributed computing. With regards to the

design in distributed computing, many works used formal specification to distinguish

modeling language at specification/design level and implementation I run-time level.

For example, in his work, Jensen [8] used Colored Petri Net (CPN). Another example

of application of formal specification language is CSP (Communicating Sequential

Process), which is discussed in [9]. The intention is to design a protocol interaction

in distributed system. With regards to formal specification language, Bj¢ner and Hen

son [I 0], summarized that formal specification is a mathematical description about

the software or hardware which is used to develop an implementation. Given such

a specification, it is possible to use formal verification techniques to look at the cor

rectness of the system being designed or realization of implementation with respect

to the specification. Regarding this matter, Nissanke [II] and Bowen [12] used Z no

tation, and Jackson Jakson2006 used Alloy notation as formal specification language

in distributed system design. Based-on description above, it is summarized that the

2

language used for specification/design purpose is separated from the language for the

implementation level. This is also known as separation of modeling language.

As a part of research works in ontology and semantic web, formal specification

is further taken into account to express ontology beyond the semantic web language.

Many works have been proposed as the basis foundation of the logical transformation

from semantic web onto another formal specification language. Various formal speci

fication languages have been addressed such as Alloy [13], PVS [14], and Z Notation

[13]-[15]-[16]. Once mapped onto formal specification language, their following task

was dealing with checking the consistency and reasoning the ontology beyond the

semantic web reasoner [14]-[17].

The fundamental issue in this thesis is to address formal specification technique to

develop context ontology model and checking the correctness of context ontology be

yond the semantic web reasoner. The research domains mentioned above have become

a motivation to propose context ontology model by using formal specification tech

nique. In this thesis, context ontology is describing the user's behavior in the Com

puter and Information Science Department (CIS) environment, Universiti Teknologi

PETRONAS.

Initially, CIS context ontology is written in semantic web language format using

Web Ontology Language (OWL). Once validated in OWL reasoner, this context on

tology model is then mapped onto Z specification by adopting Z syntax and semantics

[13]-[16]. Consistency, subsumption, and instance checking of context ontology is

further demonstrated in Z environment by making use of ZJEVES, a tool for check

ing and proving Z specification. As a result, context ontology is expressed in Z formal

specification and ontology checking are carried out beyond the semantic web language

reasoner, i.e. using ZJEVES.

The context-aware designers might benefit from the formal specification of con

text ontology model, by which the designers could use formal verification technique

to check the correctness of context ontology. Thus, it becomes a complementary ap

proach to develop and check context ontology beyond the semantic web reasoner.

During the demonstration, an undetected inconsistency of ontology model has been

discovered by ZJEVES. The refinement process might be taken into account to rede

fine the context ontology prior to the implementation process. The Z context ontology

is formally specified hence the correctness of context ontology can be guaranteed not

only from the syntactical point of view, but from logical point of view as well. An

other benefit of using formal specification is that it is able to specify more expressive

logical constraint involved in context ontology model.

In this chapter, an introduction to the conducted research is discussed. It begins

1.1. RESEARCH BACKGROUND 3

with a research background that contains state of the art of context-aware modeling

and semantic web and formal specification. An overview of problems and a proposed

solution are also presented in the later section. This chapter ends by presenting the

outline of the thesis.

1.1 Research Background

1.1.1 State of the Art of Context-Awareness Modeling

Context-aware computing is a part of ubiquitous computing that is collaboratively

able to provide, share, and exchange relevant information (or context) from surround

ing user's environment. Context-aware computing concept, which was introduced by

Schilit et a!. in [18], defines a computing system that was able to acquire context

information.

In context-aware computing, it is also important to define what context can be cap

tured. Further, in [19)-[20)-[21)-[22)-[23], a context information incorporates user's

surrounding information, such as location information, user profile, time, user ac

tivities, existence of computing devices, execution of application and services, and

physical condition of the environment.

Upon acquiring data from the user's environment, a run-time application will pro

cess such context information hence user can use it for further reasoning purpose.

Various knowledge-representation techniques, e.g. using ontology in semantic web

language, have also contributed to address those challenges, as deployed by [3)-[4)

[5)-[7)-[24)-[25]. They use ontology using semantic web language because it provides

a vocabulary of concepts for describing context. The context can be defined as these

mantic representation of user's real-world in a machine understandable format. The

common format used is OWL, written in XML notation. Further representation and

structuring of context become the challenges which are the interest of the researcher

to answer in this thesis.

1.1.2 Semantic Web and Formal Specification

Semantic web language family, i.e. DAML+OlL and OWL, are actually developed

based-on Description Logics (DLs) semantics. Therefore, specifying ontology in se

mantic web language is the implementation of ontology model in DLs. Though ex

pressing ontology in DLs can be independent from the implementation concern or

run-time application phase, nevertheless, the automated tools to explore (specify and

1.2. OBJECTIVES 4

proof) DLs syntax and languages are not available yet.

Current ontology reasoners, such as Pellet and Fact++, are able to classify taxon

omy of ontology and able to detect inconsistency of ontology. Unfortunately, such

reasoners yet have to carry out ontology checking based-on implementation-oriented

language, such as OWL DL, because the current DLs reasoner still rely on semantic

web language, e.g. OWL DL reasoner.

Dong [13] and Wang [26] proposed formal Z notation, Alloy and PVS as the al

ternative ways to express ontology beyond the semantic web model. Dong in [17] and

Li in [27] then continued the previous works to combine Z Notation with Alloy to

design and check Military Plan Ontology. They previously generated Military Plan

ontology using DAML+OIL, and then mapped this ontology onto Z notation. In their

approach, ZIEVES is then used to check the consistency of their ontology to remove

some trivial syntax errors. They further transformed DAML+OIL Military Plan on

tology into Alloy. Continuing their works, Lucanu et al. [28]-[29] also came up with

the institution morphism approach to prove the similarity between semantic of OWL

semantic web language and logical semantic used in ZIEVES, as the common tool to

check and prove Z specification.

1.2 Objectives

The aim of this thesis is to provide a methodology to develop context ontology model

by addressing the formal specification technique as mentioned in the previous section.

This aim can be further expanded into the following objectives.

I. Developing a context ontology model using formal specification language.

• To represent context ontology model using DLs notation and OWL Se

mantic Web Language

• To map the context ontology in semantic web onto Z formal specification

(notation)

2. Checking the correctness of context ontology model (consistency, subsumption

checking, and instantiation checking)

• To carry out semantic checking of context ontology in semantic web lan

guage using semantic web reasoner

• To carry out semantic checking of context ontology model in Z notation.

1.3. RESEARCH QUESTIONS 5

1.3 Research Questions

Several research questions are defined to assist in the fulfillment of the objectives

presented in the previous section. To be able to address formal specification technique

in developing context ontology, the following research questions are come up.

I. What are the requirements to represent contextual information into ontology?

2. What are the modeling processes involved to develop context ontology using

formal specification language?

3. How to validate the context ontology model?

1.4 Approach

The research presented in this thesis is about conceptual work in context ontology

modeling. Problems related to this have been raised in the research question presented

in the previous section, and the approach to answer those research questions have been

proposed as follows:

I. Context information describes relevant aspects of the user's physical environ

ment including its computing devices. Such information can be obtained from

the available computing resources, such as from sensors and software agents.

The environment to be modeled in this thesis is the behavior and situation of

Computer and Information Sciences Department (CIS), Universiti Teknologi

PETRONAS. As described in [19]-[20]-[21], information about location, activ

ity, and the presence of computing devices are considered as the aspects to be

included into context ontology model in this thesis.

As in Strang and Linhoff-Popien [I], they classified the context modeling ap

proaches into relational data base model, graphical model, logic-based model,

mark-up scheme model, and ontology model. This thesis focuses on the use of

ontology model to represent and structure contextual information. Ontology is

chosen because it can represent the knowledge of the user's behavior in a hier

archical manner to be used for reasoning purpose. Since many context-aware

frameworks widely support ontology using semantic web language, hence the

reasoning process of contextual information could be carried out in an unambi

guity manner.

/.4. APPROACH 6

2. Context information in this thesis is supposedly obtained from sensors and soft

ware agents. Such contextual information should be described in an abstraction

manner, intentionally designed to be easy to understand by human. This mod

eling approach can be explored by using either the graphical notation to meet

the requirement of context information conceptual modeling, such as described

in [30]-[31]. Nevertheless, as the alternative, this thesis presents the abstraction

of context information using conceptual modeling in Description Logics (DLs)

notation. DLs are chosen because it is the logical foundation of semantic web.

Hence, by expressing conceptual model in DLs it could be easily transformed

into semantic web language (OWL format). The further detail of the context

modeling approach used in this thesis is defined as illustrated in Figure 1.1. The

methodology involves the following steps:

Concoptuai(Ols)~-Cont tO tolog -Wrl.-nln- OWL
Context Model ex n Y

Z Semantics for
OWL

I
-~ I

Formal Context
Specification z

Figure 1.1: Context modeling approach used in this thesis

• Construction of conceptual context model using DLs

Before writing user context ontology in OWL notation, the conceptual

model of context is initially written in DLs notation as described in [32].

DLs notations are very helpful to describe conceptual model of context

ontology, which is composed of concepts, roles, and individuals. Since

DLS is the logical basis of OWL, once completed writing context ontol

ogy model in DLs, it could be directly mapped onto OWL notation.

• Writing of DLs model in OWL semantic web language

Semantic web language, e.g. OWL, is the realization of DLs. Due to its

feature, the OWL semantic web language of context ontology model can

be directly written from DLs notation. As described in the previous sec

tion, semantic web language is actually the realization of DLs conceptual

model. Therefore, once the context ontology model has been written in se

mantic web language, it can directly be used by the run-time application.

1.4. APPROACH 7

Mapping of the OWL context model onto Z notation

Regarding the distributed system modeling described in the previous sec

tion, modeling language should be distinguished from the application run

time or implementation language. For example, in the purpose of specifi

cation or design, modeling language (or specification language) is not in

the executable manner. Semantic web language has widely been used as

the context modeling approach. However, since it can directly be instanti

ated or be used by the application run-time, and due to its notation format

as well, in this thesis, it is considered not suitable for context modeling

purpose.

Therefore, this thesis adopts the concept initiated by [16]-[28]-[29] to

specify ontology beyond the semantic web language format. They de

fined Z syntax and semantics for each of corresponding OWL syntax. Z

formal specification is a chosen language because its logical formalism is

derived from set theory and first order logic, which is similar to the DLs

logical foundation as well. In this thesis, the Z syntax and semantics to

express OWL syntax are redefined and rewritten by directly taking from

OWL semantics definition in [33].

The semantic web language consists of class constructors, properties and

axioms. They were then mapped onto Z formal notation as well. After

ward, to achieve one of the objectives presented in this thesis, the context

ontology model written in semantic web language are mapped onto Z for

mal notation by using the redefined OWL-Z syntax.

3. This thesis addresses semantics checking to evaluate the correctness of con

text ontology. Semantics checking covered in this thesis includes inconsistency

checking, subsumption checking, and individual checking.

Pellet, as OWL DL reasoner, is used to validate the context ontology written in

OWL semantic web language. Pellet is chosen since it has the ability to perform

term checking and instantiation checking (a.k.a TBox and A Box) in a semantic

web language document.

Z notation is not an implementation-oriented language (be prepared for run-time

application) like OWL, instead, it is a formal specification language built on top

of set theory and First Order Predicate Logic (FOL). Z features are also able

to support concepts relation, role, and instantiation. Inconsistency, subsump

tion, and instance checking is then demonstrated in Z environment by means of

1.5. SCOPE OF THE STUDY AND LIMITATION 8

ZIEVES tool. Due to its features, Z notation has been selected to be used in this

thesis. As a result, it is demonstrated that context ontology can be expressed

in Z formal notation, thus, ontology checking is carried out further in Z envi

ronment, i.e. using Z!EVES tool. This shows that context ontology checking

independent from OWL DL reasoner (Pellet, FACT++,Racer,etc.).

1.5 Scope of the Study and Limitation

Throughout the work and from the modeling results, some limitations of the thesis

were identified. The discussion in this thesis is restricted to as follows:

I. This thesis excluded the context acquisition system, i.e. how to capture con

textual information from user's surrounding environment. Due to the limitation

of the context-aware and ubiquitous infrastructure in CIS department, there

fore, it is assumed that all context information provided in this thesis have been

captured by means of sensors and agents. The context was only limited to de

scribe user's surrounding information in CIS Department, Universiti Teknologi

PETRONAS.

2. This thesis excluded the development of context-aware application. All context

ontology are defined for the verification purpose.

3. This thesis excluded the dynamic context-aware modeling such as how to model

interaction system among the context-aware computing elements. However, this

concern is suitable to address by using another formal specification language

such as rr calculus [34].

1.6 Structure of the Thesis

This thesis is organized as follows:

I. Chapter 1: Introduction. This chapter discusses research background, aims

of the research, problem statements, solution approach and the outline of the

thesis.

2. Chapter 2: Literature Review. This chapter briefly discusses the background

of study and the state of the art in context-aware computing application, seman

tic web and description logics as foundation of ontology.

1.6. STRUCTURE OF THE THESIS 9

3. Chapter 3: Description Logics and Semantic Web of Context Ontology.

This chapter presents the process of constructing a context ontology using OWL

semantic web language. The discussion within this chapter includes a design of

class (concept), properties and individuals in OWL. This chapter ends with a

semantic consistency checking of the context ontology.

4. Chapter 4: Z Specification of Context Ontology. This chapter presents a

briefly discussion on Z formal specification. The mapping process of OWL

semantic web syntax and axioms onto 0 WL- Z model is further presented.

Context ontology given in Chapter 3 is mapped onto Z specification. To check

the correctness of the z specification, the Z typed checking has been performed,

i.e. to detect typical syntax error, and use Z theorem prover perform ontology

reasoning in ZIEVES.

5. Chapter 5: Discussion. This chapter presents the discussion on the process

of developing context ontology using semantic web language and formal spec

ification. The reflection on the proposed methods ends the discussion on this

chapter

6. Chapter 6: Conclusion. This final chapter concludes the whole thesis high

lighting the summary of contributions followed by a discussion on future and

including limitation of the research work.

Chapter 2

Literature Review

The discussion in this chapter begins with the background study and the state of the

art of context-aware computing and context modeling approaches. Thereafter, the

overview of Description Logics (DLs) as the logical foundation of ontology and Se

mantic Web Language as the implementation of DLs are presented as well, which is

followed by an overview of Z formal specification.

2.1 Context-Aware Computing

In computer science, the term of context-aware computing refers to the situation that

computing devices can sense and react to the user environment. Computing devices

may have information about the situation, where they are able to operate and based

on given rules to react accordingly. Context-awareness devices may also try to make

assumptions (depending on the given deduction rule) about the user's current situation.

The term context-awareness is a part of ubiquitous computing, which was introduced

by Schilit [18]. They introduced distributed system from the perspective of context

aware computing. Schilit defined the term of context-aware computing as follow ([I 8]

page 85):

" ... a computer application that can adapt according to the location of

user, the collection of nearby users and objects, as well as the dynamic

changes of those objects in the environment ... "

For example, Computer and Information Science Department at Universiti Teknologi

PETRONAS in the future plan is going to deploy a context-aware meeting room.

In a given scenario, the context-aware application automatically recognizes a meet

ing place and schedule it associates with specific agenda. To achieve this behavior,

10

2.1. CONTEXT-AWARE COMPUTING II

context-aware application program will execute the rule that has been defined in on

tology. Once a person enters the meting room, by recognizing the RFID tag used by

a person, hence the context-aware application may detect the presence of person, it

will turn on the light, projector, microphone, and other related meeting equipment. A

context-aware mobile phone may also know that it is currently in the meeting room

(e.g. using position sensors to perceive the position of a user}, and the mobile phone

will condition its profile for a meeting scenario such as by activating vibrate mode

and will reject any unimportant calls. This scenario could be possible by deploying

context-aware computing application.

In context-aware computing system, the term "context" is used to describe infor

mation about user's surrounding environment. Context information is gathered from

sensors and software agents which is then represented by means of the available mod

eling approach [1]-[30]. Abowd and Dey [19]-[35] defined context as

" ... any information that can be used to characterize the situation of enti

ties"

Research community in context-aware computing initially perceives that the term con

text is a matter of user's location, as in Dey [19]. However, in the last few years the

term context has been considered not simply as a location only, but might also in

volves computing environment, as explained in [20]-[21]-[22]-[23]. Based-on their

investigation, what aspects that might be constructed in a context are identified as

follows:

I. Service and application context: context information that describes application

and service currently used and run by a user, e.g. email client application, web

service run, etc. Kranenburg et al. in [21] also consider context information of

all properties in user's desktop that are relevant to running application, running

process, display size, percentage of memory and processor usage (computing

hardware context).

2. Access Network context: context information that describes all properties of

available network resources, e.g. network traffic, bandwidth usage, QoS, status

of connected devices, e.g. Bluetooth, WiFi, etc.

3. User profile context: is context information that typically describes about per

son's environment (people nearby, light, humidity), profile, task, social and

spatia-temporal (outdoor and indoor position).

2.1. CONTEXT-AWARE COMPUTING 12

4. User's position context: is usually indicated by location where a person is pres

ence. With regard to the location-awareness in context-aware computing, Dom

nitcheva in [36] differentiates into physical location model and geographical

model. Physical location model is about the earth coordinate system and typi

cally provides a magnitude in a latitude and longitude. Geographical location is

about geographical objects on earth, such as countries and cities, etc. Both of

location models are considered to be used in our context ontology.

5. Personal context: health, mood, schedule, and activity

6. Social context: group, activity, social relationship, and people nearby

7. Physical context: contextual information related to physical aspect of the con

text aware system

8. Environmental context: weather, altitude, light, etc

2.1.1 The General Architecture

In his book, Lake [20] mentions at least there are three basic functionalities exist

in a context-aware computing application. Those three layers are sensing, thinking

and acting. Sensing layer in context-aware computing comprises many sensors, for

instance a position and a light intensity sensor. Those are together categorized as

physical sensors which are used to capture user's physical related information.

Lake also identifies various data processing and analysis techniques considered

to process context information. Those techniques involve mathematical modeling,

cognitive-based models, and knowledge-based model combined with logical reason

ing, and fuzzy logic. Prior to Lake with his idea of modeling and processing context

information, Chen et al. [3] and Eunhoe Kim and Jaeyoung Choi [24] have also pro

posed a context modeling using semantic web ontology, that was identical to knowl

edge bases model.

Processing context using knowledge-based technique fully utilizes ontology writ

ten in semantic web language. Therefore, context-aware computing application can

further react upon sensing and reasoning process. Actions to be taken are defined in

application by means of executing rule via software AP!s. As in Dey [19]. context is

considered in the relation of tasks (or static context model in this thesis) rather than

interactions between users and application (dynamic context-aware model).

For the implementation purpose, software agents or sensors might be attached to

the existing context-aware application framework. To do so, for example, an instant

2. I. CONTEXT-AWARE COMPUTING 13

messenger-like application can be made context-aware by adding agents or attaching

sensors to acquire the information of awareness from user behavior. Thus, this appli

cation may deduce the information about user's position (including room name, floor

and building name), who is in the room (users nearby), what are activities related to

a user (he/she is away from the desktop or he/she is in meeting room), etc. By using

context-aware instant messenger-like application, it enables a user to deduce current

activities of a person according to his/her current location.

Figure 2. I illustrates a general context-aware computing architecture. A client

can be a mobile device, like PDA or smart phone, personal computer, or notebook.

To enable context exchange among the users, context-aware computing application is

required to be deployed in a client computing. The application may consist of core

context-aware application (including user interface) and software agents [20].

Soltww•Aa
H-.. A,gtont --.......,.,....
P...-.on.I"'M\1

Figure 2. I: General context-aware computing architecture

The core of context-aware computing application can be like an instant messen

ger application as described in the previous paragraph. An agent is required to cap

ture contextual information related to user's surrounding information. Context-aware

server usually acts like a mediation server to receive information from software agents

and temporarily store in the database. Mediation server can also receive and process

queries from a client who wants to deduce information related to a user, such as infor

mation about current location, current activities, etc.

2.1. CONTEXT-AWARE COMPUTING 14

2.1.2 Context Modeling Issue

Upon acquiring context from sensors and software agents, the following task is how to

process such user context so that it does make sense for reasoning purpose. Represent

ing, structuring, managing and using context further become the interested challenges

and many research are still underway. To· address those challenges, various context

modeling and representation formalisms and techniques have been proposed such in

[3]-[4]-[5]-[7]-[24]-[37]. They used semantic web language ontology since semantic

web provides a vocabulary for describing context-awareness and it also enable reason

ing with formal logical representations.

Strang et. al. [I] classify context modeling approaches into relational data base

model, graphical model, logic-based model, mark-up scheme model, and ontology se

mantic web model. They also denoted another modeling, i.e. object-oriented model

that is intentionally developed to support web-based ubiquitous computing applica

tion. Another important thing, which is also mentioned in their findings, is the easiness

to build application derived from the object-oriented model. Nevertheless, the object

oriented model still lacks with logical expressiveness for context reasoning purpose,

because it is not supported by logical form.

Context modeling using semantic web language, as introduced in [5]-[24]-[38],

aims at overcoming the lack of formality and logical expressiveness of the previous

context model. They build context model in semantic web language because it en

ables knowledge sharing in dynamic context-aware application, and also well-defined

semantic web language model which provides a mechanism for context-aware appli

cation to reason or deduce awareness information.

The context modeling approach identified by Gu in [5]-[6] and Eunhoe Kim and

Jaeyoung Choi in [24] are summarized as follows:

I. Application oriented approach: the specific application programming interface

functionalities were developed for context-aware system application.

2. Model oriented approach: a conceptual model commonly used to represent the

context. Many researches proposed context model based-on ER (entity relation

ship).

3. Ontology Oriented Approach: since OWL was introduced by W3C, many context

aware computing applications make use of OWL semantic web language as its

ontology language to represent and structure context model. The context-aware

application also makes use the OWL APis to reason the information captured

from the sensors and software agents.

2.1. CONTEXT-AWARE COMPUTING 15

2.1.3 Related Works on Context-Aware Deployment

In this section, some examples of works on developing of context-aware applications

using semantic web context model are presented. In this thesis, the identified domain

of context-aware applications are mostly deployed for smart home [24]-[38]-[39]

[40], smart office [41), smart space [22).

CO NON is OWL ontology developed by Wang et al. [4). They developed CONON,

dedicated for home and office ubiquitous environment. Context in CON ON was struc

tured in semantic web ontology because the use of logical reasoning in ontology can

detect inconsistency of context information using logical deduction.

Figure 2.2 shows CONON ontology presented using OWL graphical notation,

which are grouped into home domain and office domain, and folded into upper and

lower ontology for each particular domain. With regard to what can be a context,

CON ON already accommodated user context as discussed in the previous section.

Uovla < Device

'"- ucedActivlli: ::>
"'

(Show ... >- c duledActlv t --<! Playa:::?

(CooU~ v IP'-'•
Pony

~' .. . nlvarsa ...
<:: Activity CompEntlty :::> ...

ll·~~. <t!!,ltdoorSpoce
Locot10n

-·Hr --~ r< Building alden :::::>

(Pe<son :::> '\ -c."~ _
... \ ~ . ..

' ... ~oorSpac """'"
Uppef ct... S~llk: Clats cwt:P~aCNft)' n:Ut:tuDCiasaOf

Legend: C=:> c::::> - -<>

Figure 2.2: Context ontology model in CONON. This picture is taken from [4)

Chen et al. [3) proposed CoBrA infrastructure for context representation and

knowledge sharing. In CoBrA, context information is shared by all devices in smart

space computing application. CoBrA provides ontology written in OWL semantic

web language. CoBrA architecture is illustrated in Figure 2.3. Regarding to its ar

chitecture, CoBrA has four functional components: context knowledge base, context

reasoning engine, context acquisition module, and context policy management mod

ule.

The following reasons are the motivation of why CoBrA architecture makes use

of semantic web as its context model.

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE

Information Servers
(Exchange Server, iCal,

YahooGroups, etc.)

COntext-Aware Devices

~~
~~

Semantic Web &
Web Services

(RDF, OAML+OIL & OWL)

Context Broker
Coote~t

kfoo,.ledge bou
Cootut

ll.eou.oning Engine

Context
~""isiton lobdule

Smart Tag Sensors Environment Sensors
(Radio Frequency Identification) (xanboo & XlO technology)

Database
(MySQL)

Context-Aware Agents

Device & Gadget Sensors
(Java Ring, SmartCarcl etc.)

Figure 2.3: COBRA Architecture. Taken from [3]

16

I. Semantic web ontology provides a mean to develop context-aware computing

application that is able to share context knowledge with minimum redundancy.

2. OWL as ontology is expressive enough to model contextual information ontol

ogy in CoBrA, e.g. information about person, events, devices, places, time,

etc.

3. Context ontology has explicit semantics, hence they can be reasoned by current

semantic web ontology reasoners to detect the inconsistency of concepts.

There are three types of reasoning purposes provided in CoBrA, i.e. reasoning with

physical location ontology, reasoning with device ontology, and reasoning with tem

poral ontology. In CoBrA architecture, context-aware device may include device pro

file, device ownership relation, user temporal properties associated with device, and

spatial properties of associated device.

2.2 Description Logics and Semantic Web Language

This section discusses the Description Logics (DLs), which are used as logical foun

dation of semantic web language. Regarding the DLs, semantic web language is the

implementation of DLs. Related ontology tools are discussed as well in this section.

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 17

2.2.1 Overview of Description Logics

The term of Description Logics (DLs) refer to concept descriptions used to describe a

domain and to the logic-based semantics which can be given by a translation into first

order logic. Description logic was designed as an extension to semantic networks.

DLS was introduced in the 1980s as terminological systems and concept languages

[42]. Today Dis have become a basis of the semantic web in the design of ontologies

[43].

With regard to Baader et a1.[43], DLs are designed to represent and reason about

knowledge in an application domain. DLs language provides a set of constructor to

build a concept (class) and role (property) description. Description language consists

of distinct concept name (C), role name (R), and individual or object names(/).

Nowadays, DLs become a foundation of ontology language. In computer sci

ence, an ontology is data model that represents a set of concepts within an application

domain and the relationships between those concepts [43]. Besides semantic web,

ontologies are also used in artificial intelligence, software engineering, biomedical in

formatics and information architecture as a form of knowledge representation about

the world or some part of it [43].

2.2.2 Description Logic: Syntax and Language

DLs are built on top of theoretical semantics, which are defined in term of interpreta

tion. An Interpretation Tis composed of a domain t!,I and an interpretation function

.z. Interpretation function also maps object or individual name a a E I into an element

ai E t!,I.

Definition 2.1. Let A E C be an atomic concept name, r E R be a role name, C and

D are the concept name. Regarding to [42], this concept and role are defined by the

DLs syntax:

C, D _, AITI_ll~ CICn DIG u DIV R.Cj3 R.C (2. I)

where A is atomic concept, T is top concept, j_ is bottom concept, R is an atomic

relation,C and Dare concepts name, \f is universal quantifier and 3 is existential quan

tifier.

The family of DLs language above is known as AL:C, which stands for Attributive

L:anguage with Complements. AL:C has been introduced by Manfred Schmidt-SchauB

and Gert Smolka in [42]. Other constructors may also include restrictions on roles

such as inverse, transitivity, and functionality. The other DLs languages are extended

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 18

from A.CC language. To understand the relation between A.CC and its semantics, the

examples are given as follows.

Example 2.1, Let {Professor, PhDStudent, AcademicStaff, Pull TimeS tal} E C

be concept name, supervise E R be role name, thus the constraints could be deter

mined

Professor = 3 supervise. PhD Student

Professor £;;;; AcademicStajJ n F'ullTimeStajJ

therefore, a deduction can be made such that

lr/ supervise. PhDStudent £;;;; AcademicStaff n FullTimeStaff

The above DLs axioms describe a situation in a University that a Professor, who

has a PhD student, must be a full time academic staff accordingly. Such description is

composed of concept conjunction (n), existential quantification lr/ R. C. Such compo

sition forms minimum DLs language, which is described in Definition 2.1.

To perceive the semantics of 2.1, the second example is given below.

Example 2.2. Interpretation of I = (67 ,I) is model of lr/ supervise.PhDStudent

where the facts or individual(in capital) could be determined as follows:

AcademicStaff = {ARTALE, MCGUINESS, HAVERKORT, BAADER,

SATLER}

F'ullTimeStajJ = {ARTALE, HAVERKORT, BAADER, HORROCKS}

Professor7 = {HAVERKORT, BAADER}

PhDStudent7 = {KHATTRI, KATOEN, JEFF}

supervise7 = { (HAVERKORT, KATOEN), (BAADER, JEFF)}

According to Definition 2.1, the individuals can be involved in the axiom:

3 supervise.PhDStudent = {HAVERKORT, BAADER, KATOEN, JEFF}

The interpretation function and interpretation domain are illustrated in Figure 2.4.

In that figure, individual HAVERKORT and BAADER are subset of domain 6 7 . The

concept of Professor, PhDStudent, and Student are also sub set of 6 7 . The role or

property supervise is sub set of cross function of interpretation domain 6 7 x 6 7 .

Table 2.1 shows DLs concepts and constructors. From this table, the minimal DLs

A.CC can be extended to form another more expressive language, e.g. with notation

R + as Transitive Role, I as Inverse Role, Q is Qualified cardinality restriction, F

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE

Interpretation function I Interpretation domain uz

Individuals az e JlZ

Baader _ - - - - _ -Katoen -------Concepts CI ~ zli -.. -AcademicStaff - - - - _..

FuiiTimeStaff -----

PhDStudent - - - - - - _

Roles RI ~ t:Jl x t:J.I

supervise - - - - - - -

..... ····~·

Professor • (AcademicStaff n FullTimeStaff)

·•·······

•

Professor • (Academic Staff n¥supervise.PHOStudent)

•

•

Figure 2.4: An Illustration of concept, role and individual interpretation in DLs

19

is Features functionality, and 0 is Individuals enumeration. The extension of DLs

determines the expressiveness of DLs language.

Typically, knowledge-base in Description Logics comes into two parts, namely

terminological concept (TBox), i.e. knowledge about problem domain and assertional

concept (A Box), i.e. knowledge about specific situation.

Terminological Box

Terminological Box (TBox) is set of axioms describing how concepts are related to

each other in a problem domain. TBox can be built in the form of concept inclusion

(C ~ D), role inclusion (R ~ S), concept equality C = D and role equality R = S

[43). For example, the axiom

3 supervise.PhDStudent ~ Professor U Doctor

determines a policy in a university that only Professor and Doctor who can supervise

a PhD Student.

In TBox, interpretation I satisfies A = C iff C 7 = D7 and A ~ C. Definition

axioms in TBox introduces names for concept such as A = C and A ~ C. In

definition axioms, A = Cis equivalent to A ~ C and C ~ A.

Assertional Box

ABox, or Assertional Box, is set of axioms describing concrete situation of concept

and role. In ABox, concept assertion is described as a : C, where a is an individual

and C is a concept. The example of this concept assertion is Haverkorl : Professor n

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 20

Table 2.1: Description Logic Concepts and Constructors, taken from [44]

Name DLs Syn- DL Semantics Language
tax

Top T D.' AC
Bottom j_ 0 AC
Atomic Concept A AI <;; Q_I AC
Atomic Role R RI <;; aixt>I AC
Union CuD czuDI u
Negation ~c D.z\cz c
Intersection enD cz nDI AC
Value Restriction 'I R.C {a E aii'Ib.(a.b) E RI-b E CI) AC
Existential Quant 3R.C {a E aii'Ib.(a,b) E RI 1\ bE CI) AC
Unqualified 2: nR {a E D.'l{b E D."l(a, b) E R"} 2: n}
number S nR {a E D.zl{b E D.zl(a, b) E Rz) S n) N
restriction = nR {a E D.zl{b E D.zl(a, b) E Rz) = n)
Qualified 2: nR.C {a E D.'l{b ED.' I(a, b) E R" 1\ bE C'} 2: n}
number SnR.C {a E D.zl{b E ail(a, b) E Rz 1\ bE cz} S n) Q
restriction =nR.C {a E aZI{b E ail(a, b) E Rz 1\ bE cz} < n)
Role-value R!;;S {a E D.'l'lb E R"- (a, b) E S'}
map R=S {a E D.zl'lb E Rz ~(a, b) E Sz}
Agreement and UJ ,.: 'U2 {a E D.'l3b E t>'.uf(a)- b- uf(a)) F
disagreement u, "'u, {a E D.zl3b,,b, E ai.uf(a) = b, f. , =

u," (a)}
Nominal I /CD.'Ill-1 0
Inverse Role t-JR {(x,y)l(y,x)ER") I
Transitive Role \+JR R' - (R')' n

\;/ supervise.PhDStudent. Role assertion is described as (a, b) : R. The example

of this axiom is (Baader, Jeff) : hasPhDStudent, which describe that BAADER

supervise a PhD Student named JEFF.

In Assertional Box the interpretation T satisfies a: C iff a7 E C 7 , and (a, b) : R

iff (a7 , bi) E Rz.

Ontology Checking

In DLs, reasoning with DLs ontology is based on process of discovering implicit

knowledge entailed by the ontology. Reasoning in ontology will involve the checking

of the truth of statements or axioms exists in ontology.

Let 0 is the knowledge bases in ontology, C and D E 6 7 , and a E 6 7 I is

individual name.

The DLs basic reasoning service provides:

I. Consistency checking. The intention is to check whether the knowledge is

meaningful or not, so that ontology 0 is consistent, thus T I= 0, or concept

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 21

Cis consistent, thus CT i' 0 iff I I= 0

2. Subsumption checking. The intention is to check the structure of knowledge

and to obtain the taxonomy of knowledge, so that C ~ D i.e. cr <:;; or iff
I I= 0.

3. Equivalence reasoning. The intention is to check if two concepts denote the

same set of instances, so that C = D i.e. CT = DT iff I I= 0

4. Instantiation reasoning. The intention is to check if individual i is instance of

concept C, i.e. i E ccr iff I I= 0

2.2.3 OWL Semantic Web Language

OWL, or Web Ontology Language, is semantic web language initiated by W3C. This

semantic web language provides ontology vocabularies for implementation of De

scription Logics. Prior to OWL, semantic web language has been introduced by

the Defense Advanced Research Projects Agency (DARPA), which was known as

DARPA Agent Markup Language (DAML +OIL).

OWL now becomes W3C recommendation for semantic web language model. The

aim of OWL W3C semantic web language is to share the knowledge by means of

web environment. Since then, OWL is widely used as a common ontology language

to share information in distributed application by means of web environment, which

replace the functionality of DAML+OIL. Both DAML+OIL and OWL are constructed

based-on Description Logics.

OWL is split up into 3 distinct language distinguished by its logical constructors,

i.e. Lite, DL, and Full. The sub language OWL Lite supports simple constructs fea

ture that conforms to DLs (SHIF) family. Meanwhile, OWL DL supports all OWL

Lite features with some extension on logical constructs. OWL DL conforms to DLs

SHOIN(V) family. OWL DL fully supports DLs logical constructs, hence this lan

guages is decidable and commonly supported by OWL DL reasoner. OWL Full sub

language is meant for user who wants to express syntactic freedom of ontology specifi

cation. OWL Full supports both OWL Lite and OWL DL. However, this sub language

cannot be used to reason the ontology due to the undecidable of OWL Full syntax.

With respect to ontology language in Table 2.2, DLs SHIQ becomes the comer

stone language for W3C Web Ontology Language. SHI Q is DLs extension with S +

role hierarchy 7-i + inverse role I+ qualified number restrictions Q. S is often used

to describe ALC extended with Transitive Roles(+) R.

2.2. DESCRIYTION LOGICS AND SEMANTIC WEB LANGUAGE 22

OWL Lite extends OLs AL:C with Transitive restriction on role, inverse role,

and functional restriction. Thus the logical expressiveness of OWL Lite is equivalent

to OLs SHIF (SHIQ extended with functional number restriction). Meanwhile,

OWL OL extends SHIQ with nominals,i.e. SHOIN). As described in the previous

paragraphs, additional letters indicate other extensions of OLs family (see Table 2.2).

Table 2.2: OWL Family Extensions

Symbol Meaning I Example II
'H. role hierarchy hasDaughter ~ hasChild
I inverse roles isChildOf = hasChild-
CJ nominals/singleton classes A1ars
N number restrictions ~ 2hasChild, :S 3hasChild
Q qualified number restrictions 2:: hasMother.Actrees
:F functional number restrictions < lhasMother

Class, Property and Individual Axioms and Description

A Class in OWL reflects a concept in DLs. A Class can also contains individuals or

class instances. In OWL class description, there is class owl.· Thing that superclass of

all OWL class and owl.· Nothing as inverse of owl:Thing (see Table 2.6). The axiom

subC/assOf is rdfs vocabulary to express class hierarchy in OWL. An owl class may

be classified as a sub class of another class.

As described in the previous section, OLs falls into two parts, namely TBox and

ABox. TBox consists of a number of class axioms (see Table 2.3) and property ax

ioms (see Table 2.4); meanwhile A Box consists of a number of individual assertions

(see Table 2.5). In Table 2.3, Table 2.4, and Table 2.5, letters C,D refer to class, T

refers to a concrete data type, whereas R refers to an object property, U refers to data

type property; P refers to an object or data type property, o and t refer to object and

concrete values.

A class axiom in the TBox consists of two class descriptions, separated with the

GCI (General Class Inclusion, or class subsumption I;;) symbol or the equivalence

symbol (=), which is equivalent to GCI in both direction (i.e. C I;; 0 equivalent to 0

I;; C).

Like in OLs, a property in OWL semantic web language is used to state:

I. Relationship between class instances, this relation refers to owl:ObjectProperty.

2. Between class or instance of class with instance data type, and this second rela

tion is owl: DatatypeProperty

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 23

Table 2.3: OWL DL Class Axioms, taken from [44)

II OWL Abstracts Syntax I DL Syntax I Example

subClassOf(C,, C,) c, !; c, Human I,; Animal
equivalentClass(C1 ••• C;) c, =···= ci Man := Humann Male
disjoint With(C1 ••• C;) Ci n C, !; _L Male !; ~ Female
enumerated Class(Ao1 ..• 0 11) A= o1 , ... , o,.. Animal;: Cat, Dog, Bear

Table 2.4: OWL DL Property Axioms. Taken from [44)

II OWL Axioms I DL Syntax I Example II
subPropertyOJ(P1 , P2) P1 !; P2 hasDaughter !; has Child
equivalentPropertyOJ (P1 ••• P,) Pt = ... =Pi hasCost = hasPrice
ObjectProperty (R
super(R 1) ••• super(R,) R!; R,
I inverseOJ(Ro)J R = Ro- has Child := hasP a rent-
domain(C1) .•• domain(C,) T !;'iR-.C,
range(Ct) ... range(C,) T !;'iR.C,
ISymetricJ R= n-
I FUnctional[T !;::0: IR T !;::0: I has Mother
[JnverseA.mctional] T !;::0: IW T !;::0: lhasChild-
I Thmsitivej) R+ ancestor+ C ancestor
Datatype(T) XSD
DatatypeProperty (U
super(U1) ••• super(U,) U!; R,
domain(C,) ... domain(C,) T!;'iU-.T,
range(Ct) ... range(C,) T!;'iU.T,
I FUnctionalj) T C< IU T C< lhasName

A property P is said to be Transitive such that P(x,y) and P(y,z) implies P(x,z). A

property is said to be symmetric property such that P(x,y) iff P(y,x). Pis functional

property such that P(x,y) and P(x,z) =;. y = z. Pis inverse functional property such that

P(y,x) and P(z,x) =;. y = z. Similarly with Class axioms, property axioms consists of

a two property names, separated with subsumption!; or the equivalence(=) symbol.

In DLs, the abstract and concrete properties are distinguished by describing the

range of the property, i.e. is abstract or concrete. OWL DL reflects this distinction

by using object properties and datatype properties, where an object property may only

have a class description as its range and a data type property may only have a datatype

as its range. Class descriptions and data type are disjoint each other.

A description in the TBox is either a named class (A), an enumeration (o1 ... o,),

a property restriction (3 R.D, V R.D, 3 R.o, ~ nR,:::; nR, analogously for datatype

property restrictions), or an intersection (CnD), union (CuD) or complement(~ C)

of such descriptions (see Table 2.6). Individual assertions in the A Box are either class

membership (o E C,), property value ((o1, "2) E R,, hol, o1, 1 E U;), or individual

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 24

Table 2.5: OWL DL Individual Assertion

II OWL Abstract Syntax I DLSyntax I Example

Individual (o type(C1 ••• type(Cn)) o e ci
value(R1 (o1)) ••• value(Rm (om)) (o, o;) E Q;
value(U1 (t1)) ••• value(Um (4n)) (o, ~) E U;
Samelndividual(o1 ... 0 11) Ot = ... =On God = Create rea tor
Differentfndividual(o, ... on) Ot f. ... f. On Zubair -/:- Ackerman

Table 2.6: Description in OWL DL S1-lOIN, taken from [44]

II OWL Abstract Syntax I DL Syntax I Example

A(URI Reference) A
owi:Thing T
owl:Nothing .l
intersectionOJ(C, ... Cn) C1 n ... nCn)
union0f(C1 ••• Cn) C1 U ... n Cn)
complementOJ(C) ~c ~Male

oneOf(o, ... on) Ot···On john, zubair, dalton
restriction(Rail Values From(C)) 'I R.C V hasStudent. Teacher
restriction(Rsome Values From(C)) 3R.C 3 hasStudent. Professor
restriction(Rvalue(o)) 3R.o 'I hasStudent . .JOHN
restriction(UmaxCardinality(n)) ::; nR :5 1 hasStudent
restriction(UminCardinality(n)) > nR ~ 3hasStudent
restriction(Uall Values From(T)) 'I U.T 'I hasName.BOB
restriction(Us orne ValuesFrom(T)) 3R.T 3 hasStudent.BABA
restriction(Uvalue(t)) 3R.o 'I hasStudent.JOHN
restriction(UmaxCardinality(n)) ::; nU ::; I hasStudent
restriction(UminCardinality(n)) > nU > 3hasStudent

(in)equality (o1 = a-,, o1 f a-,) assertions (see Table 2.5).

OWL semantic web language is written in XML format. Such that, it contains

header that must be declared first. OWL header consists of name space definitions.

Name space indicates the identifiers of what specific vocabularies are being used in

semantic web ontology. In the example, the built in OWL W3C namespace, namely

owl, rdf, rdfs, and xsd must be declared. Further, the specific name space for our

semantic web ontology model are defined as well. In the following example, the

specific name space is declared as prj.

OWL Headers

<!--Ontology Information -->

<?xml version•"l.O" encoding .. "UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owlt">

<!ENTITY prf "prft">

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE

) ,

<!ENTITY rdf "http://www.w).org/1999/02/22-rdf-syntax-nsl">

<!ENTITY rdfs "http://www.wJ.org/2000/0l/rdf-schemaf">

<!ENTITY xsd "http://www.wJ.org/2001/XMLSche~af">

<rdf:RDt xml:base•"prf"

xmlns:owl•"&owl;"

xmlns:prf•"&prf;"
xmlns:rdf•"&rdf;"

xmlns:rdfs•"&rdfs;">

<owl:Ontology rdf:about•""/>

25

The OWL header must be followed by ontology declaration. In the previous ex

ample 4 classes have been declared: Professor, PhDStudent, FulltimeStaff, and

AcademicStaff. Class Professor represents academic staff that supervise some PhD

students. Class AcademicStaff represents a person (or individual) who works as aca

demician, while class FullTimeStaff is for full time staff who are non academician.

Those above description are written in OWL semantic web as follows.

Classes Definition

<owl:Class rdf:about•"IAcdemicStaff"/>

<owl:Class rdf:about•"lfullTimeStaff"/>

<owl:Class rdf:about•"IPhDStudent"/>

<owl:Class rdf:about•"IProfessor">
<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource•"lsuvervise"/>

<owl:someValuesFro~ rdf:resource•"IPhDStudent"/>

</owl:Restriction>

</owl:equivalentClass>

<owl:intersectionOf rdf:parseType•"Collection">

<rdf:Description rdf:about•"IAcdemicStaff"/>

<rdf:Description rdf:about•"IFullTimeStaff"/>

</owl:intersectionOf>

</owl:Class>

Object Properties Definition

Relation between concept or class with other class is defined by OWL built in Object

property, i.e. owl : ObjectProperty. In the previous example, a given object property

is declared as supervise. This object property is determined by its domain and range,

which restrict the source and destination of object property. Domain and range of a

owl : supervise object property is defined using rdfs (Resource Description Format

Schema) name space, defined as follows.

<owl:ObjectProperty rdf:about•"fsupervise">

<rdfs:domain rdf:resource•"IProfessor"/>

<rdfs:range rdf:resource•"IPhDStudent"/>

</owl:ObjectProperty>

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 26

Instances Definition

Instance in OWL reflects with the individuals which are the member of a class. In the

previous example, the name of Professors with the name of PhD Students are linked.

The name of Professor, full time staff, academic staff, and PhD student are defined as

individuals, and declared in OWL semantic web as follows.

<prf:PhDStudent rdf:about•"tKatoen"/>

<prf:AcdemicStaff rdf:about•"fBaaderr">

<rdf:type rdf:resource•"f~ullTimeStaff"/>

</prf:AcdemicStaff>

<prf:PhDStudent rdf:about•"fKahttri"/>

<prf:fullTimeStaff rdf:abouta"lfaizal"/>

<prf:AcdemicStaff rdf:about•"fBaader">

<rdf:type rdf:resource•"ffullTimeStaff"/>

</prf:AcdemicStaff>

<pr f: full T imeSta f f rd f: about •" IJames" I>
<prf:AcdemicStaff rdf:about•"fSatler">

<rdf:type rdf:resource•"IFullTimeStaff"/>

</prf:AcdemicStaff>

<prf:FullTimeStaff rdf:about•"#Nancy"/>

<prf:PhDStudent rdf:about•"fJeff"/>

<prf:PhDStudent rdf:about•"fOthman"/>

<prf:fullTimeStaff rdf:about•wtstacy"/>

2.2.4 OWL Semantic Web Language Tool

OWL semantic web language tools are distinct into editor and reasoners [45]. Various

OWL tools have been developed to support features such as composing ontology,

management, merging, reasoning, and checking [46]-[47]. In the rest of this section,

briefly introduction of semantic web tools that are used in this research are discussed.

The core reasoning in DLs are concepts satisfiability, concept subsumption, and

instantiation [48]-[49]-[50]. Those DLs core reasoning is used as the basis of OWL

semantic web language core ontology reasoning. Many tools are available to carry

out semantic web ontology core reasoning through a DLs reasoner application, such

as discussed in [46]-[51]-[52].

FaCT++ (Fast Classification of Terminologies) is the implementation of descrip

tion logics reasoner developed at University of Manchester. FaCT++ supports concept

subsumption and satisfiability checking [53]. However, this tool only supports TBox

checking and reasoning, and has no support for individual level reasoning (ABox rea

soning) [52]. Currently FaCT supports both DAML+OIL and OWL semantic web

language.

RACER (Renamed ABox and Concept Expression Reasoner) [54] is an commer

cial DLs reasoner and support DLs AL.CQH.IR +(D). It has a much richer set

2.3. Z FORMAL SPECIFICATION 27

of functionalities than FaCT++ has, including ontology creation, query, retrieval and

evaluation, knowledge base conversion to DAML+OIUOWL.

Pellet [55] is also free software for ontology reasoner. It has more features than

FaCT++. Pellet can be used to check and reason ontology either in TBox or Abox

[52]. This DLs reasoner can be connected to many ontology editors, such as Protege

[56] and SWOOP [57]. Pellet is able to check ontologies with various DLs language

such as SHI(D), SHOIN(D), and SHOIQ. In this thesis, SWOOP and Pellet

reasoner are used to evaluate and reason the context ontology written in OWL format.

2.3 Z Formal Specification

The Z notation (formally pronounced zed) is a formal specification language used for

describing and modeling computing systems. "It is targeted at the clear specification

of computer programs and the formulation of proofs about the intended program be

havior" [12]. Z is a formal specification language which is based on ZF set theory

and and first-order predicate logic [12]-[58]. Z contains a standardized mathematical

toolkit of commonly used logical (mathematical) functions and predicates. Express

ing system specification in Z is to describe what a system does. The way of specifying

system in Z can be distinguished from another specification language, such as imper

ative programming and functional programming language. Imperative programming

pays attention on how it does, while all functional programming concentrate on how

the outcome is to be achieved [12]. Both imperative and functional programming

language are executable [12]-[58].

2.3.1 Z Syntax and Language

Z is not a programming language. In Z, a name must be declared before it is refer

enced. Properties of systems are stated using Z predicates. Hence, declarations and

predicates form Z specifications.

Z Declaration

The basic form of Z declarations is x : A, where x is the introduced variable of the

free type A. This type A, however, should be defined previously. In Z, a variable can

be declared either as global or local. A global variable can be used by Z specification

from the point of declaration to the end of specification. For more details are provided

in Spivey [59].

2.3. Z FORMAL SPECIFICATION 28

Predicates in Z

Predicates in Z are Boolean-valued. Z predicates can be the forms of:

Equality and Set Membership

Basic predicates in Z notation are equalities, which is denoted by = and membership

relationships, which is denoted by E. For example, the predicate p E q states that

variable p is a member of natural numbers q.
In Z, a set relationship operator such as subset (<;;) can be derived using set mem

bership. In general, the subset relationship A <;; B can be expressed as A E lP B [59],

where lP is the power set symbol. The expression lP B denotes all the sets that are

subsets of B.

Propositional Operators

These include propositional logic connectives, i.e. ~, 1\, V, =>,and<=>. Logical con

nectives are used to connect simpler predicates to construct more complex predicates.

Quantifier

Z language also defines quantifiers in predicates, like in first order logic. These in

clude the universal quantifier V, the existential quantifier 3 and the unique existential

quantifier 3 1•

Z Language Constructs

Z also defines language constructs. These include basic type definition, axiomatic

box, schematic box, constraints, theorems and proofs.

Basic Type Definition

This language construct introduces uninterpreted basic types, which are treated as sets

in Z. For example:

[Identity]

introduces a given type of Identity, which are a set.

2.3. Z FORMAL SPECIFICATION 29

Axiomatic Definition

An axiomatic definition is used to define global variables, and optionally constrains

their values using predicates. These global variables cannot be globally reused.

For example, the following axiomatic definition declares two variables Name and

Address as subsets of Identity. Furthermore, these two sets are also defined mutually

disjoint, which means that their intersection is an empty set. By using Z axiomatic

definition, such variables could be defined as follows.

Name : lP' Identity

Address : lP' Identity

Name n Address = 0

Generic Axiomatic Definition

A generic axiomatic definition is a generic form of axiomatic definition, parameterized

by a parameter.

The formal generic parameters are local to the definition, and each variable intro

duced by the declaration becomes a global generic constant. These identifiers must not

previously have been defined as global variables or generic constants, and their scope

extends from here to the end of the specification. The predicates must determine the

values of the constants uniquely for each value of the formal parameters.

[XSD]===============
gateway Number, proxy Number : DatatypeProperty

gateway! P, proxy! P : lP' XSD

domain(gatewayNumber) = Gateway

rangeD(gatewayNumber) =gateway!?

domain(Proxy) = proxyNtLmber

rangeD(proxyNumber) =proxy!?

In the above generic axiomatic definition, gatewayNumber and proxyNumber are

defined with a type of DatatypeProperty, while gatewayiP and proxyiP as a type of

XSD.

2.3. Z FORMAL SPECIFICATION 30

2.3.2 Z/EVES Tool

In this research, ZJEVES tool is used to evaluate the correctness of Z specification.

It is a common automated prover that provides integrated interface for composing,

checking, and analyzing Z specification. Z /EVES supports syntax checking, type

checking in structured specification (using schema), and general theorem proving [60].

ZIEVES supports editing ofZ specification in 11I'J3X format and GUI interface as well.

In ZIEVES, properties about a specification can be specified as theorems. These prop-

eu......,tl.cu•ity) • Pl......:! ''
o:ur.--tl.cli'fity) • o.duced

Figure 2.5: Proofing Process Using ZIEYES (ZJLaTeX Mode)

erties include facts and expected facts that are to be facts. By proving theorems of a

particular specification, the confidence about its correctness can be gained. To prove

the specification, ZIEVES provides general commands to use, described as follows

(take from Z Reference Manual).

Proof Command: Simplification

The simplifications performed by the simplify command are equality, integer, and

predicate calculus reasoning, together with tautology checking. Simplification is af

fected by grules and frules whenever their hypothesis matches a sub-formula.

The conclusion of these lemmas are then included as assumptions. Simplification

offers the user the opportunity to perform direct proofs because it allows the smallest

2.4. CHAPTER SUMMARY 31

of the transformations.

Proof command: Rewriting

Rewriting is given by the rewrite command. It performs simplifications together with

automatic application of enabled rewriting rules that matches any sub-formula.

For example, e E { x : T I x <;;; I { x)} is rewritten as e E T 1\ e <;;; I {e).

Proof Command: Reduction

Reduction is the most complex transformation scheme and is given by the reduce

command. It performs rewriting together with further clever, but simple deduction

schemes. This leads to the biggest step on the transformation of formula with the

worst performance. In fact reduction is more than simply expansion together with

rewriting. It recursively performs these activities until the formula stops changing.

Proof Command: Prove by Reduce

There two commands that implicitly combine tactics. They are prove by reduce and

prove by rewrite. Both commands can also be written as prove. They repeatedly

apply tactics on the formula until no effect is observed.

2.4 Chapter Summary

In this chapter, first of all, the state of the art of context-aware computing are dis

cussed. Many works have contributed to this research domain, including context

modeling, ·context acquisition, and the deployment of context-aware computing ap

plication. One of the promising model is using ontology in semantic web format.

The merits of using semantic web model is that it provides a mechanism to reason

the information structured in the context model. Therefore, context-aware application

can sense and react based-on the reasoning process which is supported by the logical

form (DLs). Another feature is that semantic web provides vocabulary to describe the

DLs conceptual model using XML format. Regarding the XML notation, semantic

web language could be categorized as an executable language during the application

run-time. From the reasoning point of view, some DLs reasoners also still rely on

semantic web language instead of on DLs syntax (with mathematical symbol) it self.

Since context-aware is a part of distributed system, designing and specification of

a context model must consider a language that is not executable at design or specifi-

2.4. CHAPTER SUMMARY 32

cation level. Thus, semantic web language still lacks of formality, due to its notation

that could not express more expressive logical constraint. Therefore, researchers have

proposed another way to express ontology beyond the semantic web language, hence

the consistency of ontology can be verified independently from the such executable

notation. Z notation, Alloy, PVS are the formal specification language which are pro

posed to specify ontology. As the consequence, consistency of ontology will be verify

beyond the semantic web reasoners.

In the next chapter, the development of CIS context ontology will be presented.

First of all, the ontology is specified in DLs notation. Once completed, mapping of

context ontology from DLs notation onto OWL semantic web language is take place

Chapter 3

Semantic Web Context Model

This chapter presents the development of context ontology. Context ontology is firstly

specified in DLs notation. Thereafter, the generation of context ontology from DLs no

tation into OWL semantic web language is discussed. Semantic consistency checking

is further carried out to detect inconsistency, subsumption checking, and instantiation

checking. This ends up the discussion in this chapter.

3.1 Modeling Process

In this section, the main steps for developing context ontology is presented. Dur

ing the requirement step, the behavior to model context ontology is also identified .

As mentioned in Chapter I, the intention of this section is to model the behavior of

CIS Department environment, at Universiti Teknologi PETRONAS. The remainings

of the thesis will use the term "CIS context ontology" to refer to the ontology of CIS

contextual information.

Capturing information about context, such as information about user's profile, ac

tivities, location, and computing device are still fundamental entity to be included in

the context ontology. Further in the implementation, sensors and software agents are

used to capture context information about user's surrounding information. This thesis,

however, excludes a context acquisition system, e.g. to acquire context information

from software agents and sensors. Context information provided in this thesis is sup

posedly acquired from agents and sensors.

The further step is about conceptual modeling with Description Logics as men

tioned in [32]. The intention is to represent context information by classifying concept

and sub concepts, defining relations among concepts, and defining individuals belong

to a concept(s)(see step CD in Figure 3.1).

33

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 34

The OWL semantic web of CIS context ontology is generated from the conceptual

model which is initially presented in DLs notation (see CD in Figure 3.1). As depicted

in Figure 3.1, Swoop 2.3.1 and Protege 4.0 are chosen to support modeling context

ontology in OWL semantic web formal. Both ontology editors are featured with visual

interface, which is very helpful to develop rapid and complex ontology.

Steps I Methods Supporting ActiviUes I Tools

R••aonlng with P•U•t
through Swoop

Figure 3.1: Steps to develop context ontology in OWL semantic web language

Once context ontology has been completely defined, it is further required to eval

uate the ontology (D). To do so, Swoop OWL editor is connected to Pellet OWL DL

reasoner. The evaluation of context ontology will arrive to the conclusion of consis

tency of CIS context ontology (see step @), and the expressiveness of CIS context

ontology being designed could also be identified.

3.2 Representing Context Ontology in DLs

Borgida [32] mentioned about the steps to create conceptual modeling in DLs. Be

sides using DLs syntax, Borgida also proposed abstract syntax to construct conceptual

model, which is further used as OWL semantic web syntax. This section discusses the

steps to create conceptual modeling as mentioned by Borgida.

3.2.1 Identify the concepts and develop its taxonomy

By referring to [20]-[21]-[22]-[23]. 5 aspects have been defined to be included m

the CIS context ontology, namely Person, Device, Activity, Location, and Network.

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 35

Concept Person is used to describe involved user or person profile, such as full name

and email address, in CIS Department. The computing devices used by a person are

described by concept Device. Concept Network is used to draw the computer network

infrastructures and resources belong to the CIS Department. Activities belong to a

person is described in concept Activity. And the last, concept Location describes the

person current position around CIS Department building or UTP campus.

Figure 3.2 shows the highest level of CIS context ontology presented in informal

RDF graphical notation. Person, Device, Activity, Location, Network are defined as

main concepts, which are sub class of ContextAware ontology.

"000...
Outdoor

Student
Postgr•d
Staff

I
I

~ subCiassOf
---·-··-+ objectProperty

Figure 3.2: Highest Level CIS Context Ontology

Ethernet

The CIS context ontology describes user's environment surrounding Computer and

Information Science Department (CIS) at Universiti Teknologi PETRONAS. The con

cepts involved in CIS context ontology are declared using DLs (Description Logics)

notation as follows:

(Location, Person, Activity, Device, Network) ~ t;.T

where t;.T is CIS context interpretation domain.

CIS context model distinguishes location into Outdoor and Indoor place. Indoor

place indicates location inside the CIS building. If the position of a person is outside, it

is indicated by longitude and latitude point, which can be acquired from GPS-enabled

device.

Indoor location is composed of room, which can be a class room, seminar room,

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 36

tutorial room, office room, and laboratory room, as depicted by ontology graphical no

tation in Figure 3.4. The concept of Location, including its sub classes. are composed

in DLs notation as follows:

(Indoor, Outdoor) !;;; Location

(Longitude, Latitude) !;;; Outdoor

(Room, Building) !;;; Indoor

(Room) !;;; Building

ClassRoom, SeminarRoom, LectureHall, MeetingRoom,

OfficRoom, Lab)!;;; Room

H•rdwar.
sonwa ...
lH ~~

"
~ subCiassOf
·--·-• objectProperty

Figure 3.3: Description of Person, Device, and Network Concept

3.2.2 Identify the individuals belong to concept

Once the concepts and their taxonomy have been defined, the individuals belongs to a

concept(s) can further be identified. For example, the concept ClassRoom describes

the class room used by CIS Department for lecturing activity. Following DLs axioms

describe the memberships or individuals exist in ClassRoom concept.

ClassRoom= {COl, C02, C03, C04, C05, C06, DOl, D02, D03, D04, D05, D06}

LectureHall:: {LHOl, LH02, LH03, LH04, LH04, LH06)

Meeting Room = {010310, 010210, 0203010}

Office Room= { LECTUREROOM, POSTGRADROOM}

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS

..00••
ClassRoom

OfflcaRoom

Laboratory C:::!Roo~m::.:::.,.---...co..oo~ Indoor
Tutorial Room

LKiur•Hall ~•+C'••O'

Dltducld
F~o

On_tha_Phona
Browsing

______,. subClassOf
- objectProperty

~ •• 1101
I, I" C Outdoor ::>

CParson";)

Figure 3.4: Description about Person, Activity, and Location Concept

37

A small number of existing browsers application are accommodated as individuals

in concept Browsersuch as IE, FIREFOX, MOZILA, SAFARI, OPERA. Thus, the

axiom above can also involve individuals of concept Browser to be declared in DLs

notation as follow:

Browser= {IE, FIREFOX, MOZILLA, SAFARI, OPERA}

The complete specification of individuals can be seen in the Apendix A.

3.2.3 Distinguish Role to link the concepts

A concept is directed with another concept by means of a role, as depicted by highest

level of context ontology in Figure 3.2. In DLs, a role can be distinguished by its

domain and range. The description of roles related to the concept of Person presented

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS

in the previous subsection are declared in DLs notation as follows.

Person n 3 use.Device

Person n V locatedin. Location

Person n V currentActivity.Activity

Person n V loginto.Server

Person n V connectedTo.Internet

Person n V connectedTo.Intranet

Person n V run.ApplicationRun

Device n V oumedBy.Person

Person n V loginto.{NOVELNETWARE}

38

Role use is declared to describe the relation between concept Person and Device.

For example, to describe there exists a Desktop used by a person is reflected by DLs

axiom Person n 3 use.Desktop.

In CIS context model, Profile is composed of concepts that declare full name, of

fice address, phone number, and email address. Those context information are used

to describe person's profile. For example, a role ful/Name is declared, which is to

describe person's full name. Actually, the value of this role fullName can be related

to literal name or data items such as strings. Nevertheless, DLs do not distinguish

the role whose value is concept or associated with data type. Therefore, in CIS con

text model, the XSD is introduced as a concept name whose instances are data type

definition. This is to describe data type value range. In the implementation of OWL

language later, XSD can be transformed into data type like string, date, alphanumeric

etc. Therefore, it is defined that the role whose value is instance of XSD is categorized

as data type property.

XSD ={STRING, TIME, DATE, ... , INTEGER, DECIMAL, BOLEAN}

In OWL data type role and object role are distinguished and disjoint each other,

hence their interpretation domain are also separated. In OWL, object property is sub

set of t:,.I, while data type property is subset of t.I,. OWL adopts XML Schema

Datatype (XSD)definition to describe data type used in data type property. Following

axioms describe the person's profile declared as role with data type definition.

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS

Lecturer= Person n 3jullName.{ STRING}

Staff = Person n 3 officeAddress .{STRING}

PostGrad =Person n 3 emailAddress.{STRING}

3.2.4 Identify sub roles

39

The role run is defined to describe some application software run by a person. The

concept of Software is previously declared as subclass of Device. This role is defined

as sub role of use. The family of DLs in which role hierarchy is used is specified as

H. In another word, role run determines the DLs expressiveness of ontology being

specified.

3.2.5 Determine concept and role constraints

Regarding to Figure 3.3, the domain and range of role ownedBy is inverse of role

use. Therefore, it can also be written in DLs notation as use = -ownedBy. The

use of inverse role indicates the expressiveness of DLs specification. Thus, for DLs

specification that has inverse role is categorized as I language.

The axiom Person n 'I loginto.{NOVELNETWARE} relates role login To with

nominal. This axioms describes a condition in which a person has to log in to the

Netware server prior to accessing the network resource. {NOVELNETWARE} is

declared as instance of concept Server. This expressiveness reflects the use of nominal

in DLs language, expressed with letter 0 .

Another role, namely connectedTo, is used to describe a person that is connected

to a network device. This role also is used to describe concept Device that is connected

to the Internet, as sub concept of Network. Regarding its relation, this role transitive

that makes Person is connected to· Network. The characteristic of transitive role ·

makes the minimum A.CC language in our CIS context model becomeS.

Number restriction is assigned in axiom= l.currentActivity and~ 2.run. Ax

iom = l.currentActivity restricts role currentActivity with one role value (role con

cerned), meaning that person is restricted with only one possible activity that he can

do within a specific time. Meanwhile,~ 2.run restricts the role run with 2, meaning

that a person can run more than two application in his computing devices. The use of

number restriction indicates DLs language with N.
Practically, in CIS context model, activities related to a person is distinguished

into scheduled and deduced activities, which are declared as concept Planned and

Deduced, respectively. Planned concept is to describe a situation when a person is

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 40

doing activities that have been on schedule. Activities like meeting and lecturing are

classified as planned activities.

Assume that a user is required to put his schedule into the calendar or organizer

application. The context related to user's scheduled activity actually can be acquired

by means of the information sent by software agents that are attached to the existing

calendar or organizer application software, e.g. Sunbird, Outlook, iCal, etc.

(Planned, Deduced) ~ Activity

(Meeting, Lecturing, Seminar, LabActivity, Tutotial) ~ Planned

(Busy, Free, Chatting, Bowsing, Not_At_Office, Available, On_the_Phone,

Opening _Email) ~ Deduced

F'ree = ~ Busy

Context information pertaining to deduced activity is obtained by deducing the

rules that are already defined in the context model. For example, a person is assumed

to be busy if the context-awareness system (including the application) get the infor

mation of what is person doing and where. Hence, the context-aware system deduce a

person is busy according to the given deduction rule about the person's current activity

and the venue of activity to take place.

For example, in deduced activity, the concept of Browsing in declared to describe

an activity in which a person is running an Internet application, e.g. web browser to

surf information throughout the Internet. This activity requires a person that is con

nected to the Internet. To express this activity, the concept of Browsing is restricted

as follows.

Browsing= Person n '<I connectedTo.Jnternet n 3 run.Browser

Several existing browser applications are accommodated as individuals in concept

Browser, declared as Browsing = IE, FIREFOX, MOZJLA, SAFARI, OPERA.

Hence, in the axiom above individuals of concept Browser could be declared in the

DLs axiom as follows:

Browsing = Person n '<I connectedTo.Internet n 3 run.({IE}, {FIRE FOX},

{MD ZILLA}, {SAFARI}, {OPERA})

In CIS context, the concept of Not_At_Office is to describe a person where he/she

is not in the office room. At CIS Department, assumed that all of lecturer room

and postgraduate room are categorized as office room. Therefore, 0/ficeRoom =

3.3. SEMANTIC WEB MODEL 41

{POSTGRADROOM, LECTUREROOM }. In DLs, the Not_At_Office situation is

described as follows.

Not_At_Office =Person n 1:/ located!n.~ Office Room

Not_At_Office = Personnl:/located!n.~ ({POSTGRADROOM},

{LECTUREROOM})

3.3 Semantic Web Model

The DLs specification of CIS context model becomes the starting point to generate

OWL semantic web model. Actually there are many semantic web tools that can be

used to generate semantic web model, either using graphical or non graphical tool.

In this thesis, Swoop OWL editor is connected to Pellet OWL DL reasoner to reason

the CIS context ontology. Swoop is chosen since it is able to display the source of

inconsistency of ontology when reasoning has been performed.

3.3.1 OWL Header Definition

In OWL semantic web document, first of all the uri (Uniform Resource Identifier) has

to be defined. In CIS context ontology, the uri is defined as cis, which reflects CIS

context ontology model. The cis namespace is declared in OWL semantic web header

by declaring the uri as http://context.org/cis.

Another header in OWL semantic web document that should be declared is XML

names paces, because OWL is written in XML document. XML namespaces are used

for providing uniquely named elements and attributes in an XML document. They

are defined by a W3C recommendation. An XML instance may contain element or

attribute names from more than one XML vocabulary. In OWL document, vocabulary

such as owl, rdf, rdfs, and xsd have to be defined as well. Those vocabularies are used

for describing OWL semantic web syntax and language. They are defined in semantic

web W3C recommendation (http://www. w3.org/2004/0WL). The xsd vocabulary is

used to support XML Schema Oatatype definition (http://www. w3.org!TR/xmlschema-

2). The following lines describe the header of OWL semantic web of CIS context

model.

<?xml version:"l.O" encoding•"UTr-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY cis "htcp://context.orq/cis">

<!ENTITY owl "http://www.w3.org/2002/07/owll">

<!ENTITY rdf "http://www.w).org/1999/02/22-rdf-syntax-nsl">

3.3. SEMANTIC WEB MODEL

I>

<!ENTITY rdfs "http://www.w3.org/2000/0l/rdf-schemal">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchemaf">

<rdf:RDF xml:base•"&cis;"

xmlns:owl•"&owl;"

xmlns:rdf•"&rdf;"

xmlns:rdfs•"&rdfs;">

42

With respect to DLs model, the OWL semantic web of CIS context ontology is

also composed of 5 main classes: Person, Device, Activity, Location, and Network.

The concept in DLs are implemented as class in semantic web language, while role as

property. This section briefly describes all the 5 main class and their related properties.

In the following subsection, the description of OWL semantic web model for each

particular main class will be discussed. The complete OWL semantic web language

model is provided in the Appendix B.

3.3.2 Semantic Web of Class Person

In CIS context ontology, the DLs axioms of Person and its sub concepts are defined

as follow:

(Lecturer, Staff, Postgrad, Student)!;;; Person

Profile!;;; (Lecturer, Staff, Postgrad, Student)

From those DLs axioms, the OWL semantic web model can be directly generated.

Most of semantic web developers use visual OWL editors, e.g. Protege and Swoop,

because those editors are visual and very useful for rapid development with very com

plex taxonomy and ontology. For that purpose, in this thesis, Swoop OWL editor is

also used to generate OWL semantic web of CIS context ontology. Besides the vi

sual interface, Swoop also provides the textual interface to see the XML document

of ontology being written. The following Figure 3.5 shows the OWL semantic web

notation of class Person and its sub classes definition.

Class Person also relates some data type properties. OWL: DatatypeProperty de

termines the relation between data type property with XSD data format. Regarding

to OWL document specified in [61], the data type uses XML Schema Data type def

inition. To express identity of a user, person's profile class is created and it requires

context information like full name, person's address, person's email address, instant

messenger 10, phone number, etc. All of that user's profile information is not de

clared as sub classes. Instead, they are declared as data type property, which relates

class Profile with XSD data. The description of data type property related to class

3.3. SEMANTIC WEB MODEL 43

~~0 <ovl:Cla~a rdt:abou~··IPer•on"/>

'161 <ovl:Class rdt:about;••ut.ectu1'er">

~62 <rdta:aubClaaaot rdt:reaource•"UPer•on"/>
'163 </ovl:Class>

'16'1 <owl: C lasl!l rd!: a!Jout•"IPo•tGrad" >

'165 <rdts:suhCias:~ot rdt:resource•"IPet·•on"/>
4~6 </ovJ:Class>
467 <ovl:Ciass rdt:about•"IStudent">
468 <rdts:suhCiassot rdt:resource•"NPerson"/>
469 </ovl:Cla.ss>

'170 <ovl:Ciass rdt:~out•"ISt~~·>
471 <rdts:subClassot rdt:resource•"IPer•on"/>
'17~ </ovl :Class>

4?3 <owl:Class rdt:about•"IProt.i~e·>
'174 <rdts:subCLaasot rdt:resource•"HLeoturer"/>
475 <rdts:subClasaOt rdt:reaource•"IPo•lGrad"/>
476 <rdts:aubClaaaot rdt:resource•"IStatr"/>
'177 <rdta:aubClassot rdt:resource•"IStudent'/>

476 </ovl:Clo.l!5>

Figure 3.5: OWL Notation of Class Person and its Sub Classes

person are depicted in Figure 3 .6.

For example, to express information of person's full name, xsd:string is used and

directed with jid!Name owl:DatatypeProperty. As in Figure 3.6, class Person is the

domain of this fullName data type property, whereby xsd:string is the range. The

complete OWL code of class Person is presented in Apendix B.

SBB <oul: Do.t.o.t.ypePropert.y rd.t: o.bout.•'l:tu.U..H-· >

569 <rd.ts:domo.1n rd.t:resource•'IPro.ti~e'/>

590 <rdt:~:ro.nqe rdt:resource•''x•d:•tring'/>

591 </ovl:Do.t.o.t.ypePropert.y>
592 <ovl: Do.t.o.t.ypePropert.y rd.t: o.l:Jout.•'lema.llAddre••" >

593 <rdt!!:domo.tn rdt:l·esource•"IPro:!:Ue'/>

594 <rdts:ranqe rdt:resource•''x•d:•tring'/>
595 </ovl: Dato.typePropert.y>

59~ <ovl:DatatypeProperty rdt:o.bout•'lgender">

597 <rdts:domo.in rdt:resource•"IPro!Ue'/>

5~8 <rdts:ranqe rd.t:resource•"'x•d:•tr1ng'/>

599 </ovl: Dllto.typeProperty>
&00 <oul:Dat.at.ypePropert.y rdr:o.bout.•'lh~ddre••">

tiOl <rci.C:~:cl.omain rd1':resoucce•"1Prof'i~e'/>

602 <rd1'!!:ranqe rdt::reaource•'IOx•d:•t.riniJ'/>

003 </ovl: Dato.typePropert.y>

604 <ovl: DatatypePropert.y rdt :about •"t-••enqeriD' >
605 <rdt:s: do:natn rdt:: resource•"IPro.!Ue'/>

~0~ <rdt~:ro.nqe rdt:re:~ource•''x•d:•trinq'/>

607 </owl:DatatypeProperty>
606 <ow 1; Oat at ypePropert y rdt: about• • lo:t:tice.Acldre••" >

609 <rdts: domain rdt: resource•'IPl"O!i~e·/>

610 <rdt.:~:ro.ng-e rdt.:resource•"'x•d:•t.ri.nu'/>
till </owl:DatatypeProperty>

512 <owl:DatetypeProperty rd.t:about•'lphoneHumber">

613 <rdt.:~:domo.1n rd.t:resource•'IProf'Ue'/>

614 <rdt:~:ro.nqe rdt::resource•"~<x•d:•tr1n1J'/>

615 </ovl:Do.tl!lt.ypeProperty>

Figure 3.6: owi:DatatypeProperty of class Profile

owl:locaTedln and owl:currenrAcriviry connect class Person with class Location

and class ActiviTy, respectively. Both properties are defined as owl:ObjectProperty.

3.3. SEMANTIC WEB MODEL 44

As can bee seen in Figure 3.7, the domain of owl:locatedln is class Person, and the

range is class Location. By observing this example, OWL semantic web language

distinguishes ontology properties into data type and object properties. However, as

described in the previous section, OWL standard defines both properties have different

interpretation domain, and both properties are also disjoint each other. Figure 3.7

shows object properties related to class Person in CIS context ontology model.

S£11 <ov 1: Object Property rctt: about• • I connect edTo' >
69:: <rd.:!': type rcl:t': re..!lc>U.&::c:e•'limrl.;Tran•i t.iwflPro[oert.y• />

693 <~::d:t~:dome.in rdt:re:~ource•'IDevice'/>

594 <rd:ts :domain rd:t: re.!lource•'IPer•on'/>

595 <rd:ts:ranoe rd:t:resource•'IDewice'/>
696 <rd:ts:ranoe rdt:resource•'IHet.work'/>
697 </ovl :CtlJectProperty>
&9S <ovl:ObJCCtProperty rdt:about•"tcurrentAol1Ytly'>
699 <tdtll: dome.1n rd:t: re:~~ource•'IPer•on'/>

700 <rdt.e: ranoe rd:t: re5ource•"IAcliY1 ty• />
701 </ovl:ObjectProperty>
70.2 <ovl :CtlJectProperty n;l.:t: Mout•'ll.ocatedln' >
703 <rd1'.!1:domatn rdf:t:ellourc'!•'IPe-.:•on'/>
70•1 <rd..t:ll: ranoe rd!: reaource•• ILocation"/ >
705 </ovl:ObJectProperty>
706 <owl:ObJeCtProperty rdt:about•'l~oqlnto'>
707 <rd~a:do=atn rd~:reaource•'IPerson'/>

70a <rd:ta:ranoe rd::':re:~ource•'IServer'/>
709 </owl :ObJCCtProperty>
710 <ovl :ObjectProperty rdt :about.•'lownedBy' >
711 <owl:tnveraeOt rd!:reaource•'luse"/>
714: </owl:Object.Property>
713 <ov 1 : ObjectPropert v rd! : about.•• I run• >
71~ <rd:ta:ranoe rd!:r~aource•"ISn~t•~re"/>
715 <rd!a:aubPropertyO:t rd!:re:~ource•'luse'/>
710 </ovl :ObJectPropertv>
717 <owl:ObJectProperty rd!:about•'luse">
718 <rd!a:dom.tn rd!:reaource•'IPer•on"/>
719 <rd!a:ranoe L'd:t:re.!lource•"IDevice'/>
720 <ov1:1nverse0! rd~:reaource•'lownedBy'/>
7::!1 </owl:ObjectPropen.y>

Figure 3.7: owi:ObjectProperty Related to Class Person

3.3.3 Semantic Web of Class Network

Class Network describes the available network resources that a person can exploit

and communicate using his/her computer devices, e.g. computer desktop, notebook,

and mobile device as well. This class also to describe that a person may initiate a

conversation through the existing network resource such as GSM or 30 Network.

He/she may access the available Internet (or Intranet) by means of the existing network

and Internet resources as well.

As depicted in Figure 3.8, class Internet describes a condition in which the class

Ne/IVork connects to the Internet. We accommodate this requirement by representing

Proxy and Gateway sub class of Internet (sec line 336-347). As UTP policy, to uti-

3.3. SEMANTIC WEB MODEL 45

317 <ovl:Claii:J rdt:about.•'lllo::lwot"k"/>

116 <ovl:Cla:ill rdt:e.b.:.ut.•'llntel."net'>
319 <rdtl!l:subCta:~s01' rdf:•·e:~ou~Cce•'IRr.twork'/>

320 </ovl:Cla.s:J>
321 <ovl:Clas:J rdt:about.•'IUMTSJG">

322 <rdts::~ubCla:~:.Ot rdt:re:~ource•'IMetwork'/>

Hl </oul:Cle.ss>

324 <ovl:Clas:J rdt:about.•'IV~iHetwork'>
JZS <rdtll:subClassOt rd~:resource•'IRetwork'/>
326 </ovl:Cla:J!I>

3Z7 <ovl:Class rdi:about•'IGPRS'>

3<:6 <rdtS:IIubCla:~sO! cdt:re:~oun:e•'IRo::lwork'/>

329 </ovl:Cla:ts>
.BO <owl:Clal!ll!l rdt:l\bout•'IGSII'>

JJl <rdt11:11ubCla111101' rdf:re:Jource•'IRetwork'/>

332 </ovl:Class>
333 <ovl:Cl&llll rdt:about•'llntranet'>

334 <rdts: subC lassO! rdf: L"0::5ource•"llletwork'/>

115 </ovl :Cl.sll>
JJ6 <ovl:Cl••• rdt:about•'IProKY">
337 <rd~s:subClas~Ot ~dt:re~ou~ce•"llnternet"/>

))8 <ovl:ooeot rdt:parseType••Co~ecLion">
3J~ <~;dt:Descriptton rdt:abo:.out.•••t60.0.226.206"/>
140 <rdt:De~cription rclt:about•'I16D.0.226.207'/>
3'11 <rdt:Descr1pt1on rdt:about•••t60.0.226.208"/>
3'12 </ovl :oneot>
343 </ovl:Claali!>
34'1 <ovl:Cllllil3 rdt:about•"IOatewlly">
1'15 <rdts:aubClasaOt ~dt:resource•'IInterneL"/>
346 </ovl:Class>
3'17 <cdt:Getevay rdt:~out•"ll60.0.226.202"/>

Figure 3.8: OW Notation of Class Network and its Sub Classes

lize the Internet resource, a person who uses computer devices should configure the

Internet Gateway and Proxy as well.

3.3.4 Semantic Web of Class Device

Class Device is composed of MohileDevice, NetworkDevice, and Desktop as its sub

classes. Class Software is sub class of Desktop, Notebook and PDA. This entity is

used to model software used by a person. The software resource is distinguished into

process run and application run, which are described by class ProcessRun and class

ApplicationRun, respectively.

Class ApplicationRun reflects the applications executed by a person. When de

ducing CIS context model in the implementation later, context-aware application can

deduce the software that is being run by a person. The various applications run are dis

tinguished into EmailApplication, OjjiceApplication, lntemetApplication, and !MAp

plication (Instant Messenger Application).

Class NetworkDevice is to describe computer network devices used to connect

to the available network resources. The network devices comprises 3 sub classes,

namely Server, Rower, and AccessPoint. Figure 3.9 show~ OWL semantic web of

class Device and its sub classes. The complete OWL specification related to class

3.3. SEMANTIC WEB MODEL 46

Device can be seen in the Appendix B.

'3 ,~.

330 <ovl:Cl~~ cdt:about•"IDeYiee'/>
311 <ovl:Class tdf:about•'IDe•ktop'>
332 <rdts:sUbCtassOt rdt:resour~e·"IDevice'/>
333 </owl:Cli!UIIs>

33~ <ovl:Class rdf:about•'IHobileDeYice">
335 <rdta:aubClaaa~ rdt:reaource•'IDevioe'/>

336 </ovl:Clas:~>

337 <owl:Clo.:~a t:dt:lllbout•'llletvorkDevice'>
33S <rdts: :!lubC lassOt rdf: re:!loucce•'IDI'wtce' />

339 </ovl:Clasa>
J'iO <ovl:Class rdt:about•'IRoutet·'>
Jil <rdta:aubClaaaOt rdt:reaource•"IHetworkDevice'/>
3'42 </ovl:Clasa>
Jil <ovl:Cl~s rdt:about•'NPDA'>
Ji4 <rdta:!lubCla:~li!Ot rdt:reaource•"lrlobiJ..eDevice•t>

345 </ovl:Cla:~a>

3i6 <ovl:Claaa rdt:about•'IRotebook">
347 <rdts:aubClaaaOt rdt:reaouree•'IDeYice'/>
3i8 </oul:Cl$SS>
349 <oul:Class rrl!:ahout.•'ISottw•re">
350 <~d~a:subClas•O~ rd~:~esouree•"IDe•ktop"/>

351 <rd~s:subClassOt rdt:resouree•"IHotebook"/>
352 <rdts:subClass~ rdt:resouree•'IPDA'/>
353 <owl:disJointllith rdt:resourc:e•"IH41'ftare'/>
35'\ </oul:Clas:r>
3 55 <ov 1: C las:~ rdt :about • • ltHardware• >
356 <rdts:subClassOt rdt:resouree•"ltDe•ktop"/>
357 <rd~s:subClasll~ ~dt:resource•"IHotebook"/>

358 <rdt:~::rubClassOt rdt:resouree•'IPDA"/>
J59 <oul:d1sjotnt111th rdt:resour~e·"ISottware'/>
360 </ovl:Class>
'Hl

Figure 3.9: OWL Notation of Class Device and its Sub Classes

The relation between user and computing resources is modeled by object prop

erty use, which relates class Person with class Device. Object property connectedTo

relates Person with Network resource. The connectedTo object property also models

a relation between Network entity that connects to the Internet. This relation makes

connectedTo property as Transitive property.

3.3.5 Semantic Web of Class Location

Class Location describes location related to a person. Outdoor is a sub class of Loca

tion. A position of user is indicated by longitude and latitude values. Class Indoor,

which is also a sub class of Location, describes a user's position related to its geo

graphical position, e.g. in a room when a user or a person is inside a building. In

CIS context, indoor location is derived into Room, which is to distinguish room func

tionality used by CIS Department, Universiti Teknologi PETRONAS (UTP). Object

property owl: locatedln is used to model a person that exists at a certain location, either

at outdoor space or indoor.

3.3. SEMANTIC WEB MODEL 47

Class Ou1door reflects a situation where a person exists in outdoor environment

surrounding UTP Campus. Assume that the position of latitude and longitude are ac

quired through a GPS-enabled gizmo. To represent the value of longitude and latitude

position, the DalalypeProperly owl:longilude and owl:latitude are used. Figure 3.10

shows OWL semantic web of class Location description. The complete OWL code is

provided in the Appendix B.

210

2'11 <owl:Cla:~~~ rdt:about•"ILocotion•/>

l'l: <owl:Claas cd.t:about•"llndoor'>

2'13 <rdt:J::n.lbCla:~~:~O.t t:clt:re~ource•'ILocotion'/>

::i'l </ovl:Cla.tus>

245 <ovl:Cla!l!l rdt:about•"IHeetinuRoa.'>
2i0 <ovl:Class rd!:about•'ILaboratory">
Z'li <rdts:subClassO.t rd!:resouL·ce•'IImloor'/>
2'16 <ovl:oneot rdt:parseTy~e-•Co11ection'>
;:49 <rdt:Descriptton rd.t:ahout•'IDat.aC.-"/>

2 SO <:rd.t: De:~cr 1 pt ion rdt: about• • 1Hu1li.lnedia"/>

251 <rd.t:Descriptton rd.t:about•"1Progr~ng1&b'/>
.0:52 <rdt:Descriptton rdt:about•"IVRL&b"/>
253 </ovl:oneOt>

25'1 </ovl:Cla!l!l>
255 <ovl:Class rd::about•'IC.la.vRo ... '>
250 <rd~~=~ubCla~~O~ rdt:resoure~·'IIndoor'/>

25'7 <ovl:on~ot rd!:parseType•'Collection'>

zse <rdt:De~cr1pt1on rctt:about"'ICDl'/>
;:s9 <rdt:De~cr1ption rdt:about•'IC'02"/>

260 <tdt:De:-ertptton tdt:about•'IC03'/>

~61 <tdt:Desetiption rdt:about•'IC04'/>

262 <rdt:Descrlptlon rdt:about•'IC0.5'/>

263 <rdt:Desctillt.ion rdt:about•'IC06'/>
Z6'1 <rdt:Deserlptlon rcLt:about•'IDOl'/>

265 <rdt:De:-crlpt.ion rdt:about•"ID02'/>

::66 <tdi::Desctipt.ion rdt:about.•'ID03'/>

26'7 <rdt:Descrlpt1on tdt:about•'ID04'/>

26e <rdt:De:!lcrlption rdt:about•"ID0.5'/>
Z 69 <tdt: Descr lpt 1on rdt: about•'ID06'/>

2'70 </ovl :oneOt>

::71 </ovl:Cl-s>
m

Figure 3.10: OWL Notation of Class Location and and its Sub Classes

3.3.6 Semantic Web of Class Activity

Like in the DLs model, practically activities related to a person in CIS context model

are categorized into scheduled and deduced activities. In this subsection, the OWL

semantic web model of class activity is briefly discussed. Activities lecluring and

meeting are classified as planned or scheduled activities.

3.3.7 Class Restriction

As described in DLs model of CIS context, some classes are composed and restricted

by class axioms. For example, to express that a person can only have one activity at

3.4. OWL SEMANTIC CHECKING 48

" 22 <oul:Class rd.!:abou~:•'IActit'ily'>
23 <rdts: :tubCl~sO.t rdt: resourceoo't<owl.;Thing'/>

24 <ovl:equ~valentCle.ss>

25 <ovl:Restrictlon>

2 6 <Ow 1: ceu::d ina lit y rdt: de tat ype•• '"'•" ;non.lleuati velntevcr• >1</ ow 1: carclinall t y>
27 <ovl:onProperty rdt reso•Jrce•'tcurrent..AottYtty'/>

::a </ovl:Restt:ictlon>

29 </OVJ:C(IUlVlllcntCli!UIS)

30 </ovl:Cla.:~s>

31 <ovl:Clal!lls t:dt::~out•"IPJ.anned'>

32 <rdt:s:subCla:~~sOt: cdt::resourcc•'IActivit.y'/>

33 <owl:Cla:~~s rdt:about•'fiSendnar'>
.34 <rdt:s: subCla:a:sOt rdt: rcsource•'IPJ.anned" />
JS </ovl:Cle.:ts>
3S <ovl:Ctass rdt:ab.;.ut•'tiLecturing'>
37 <rdts:sul:IClo.:~sOt rctt:resource•"IPJ.anned'/>

36 </owl:Cla.=is>
39 </owl :Class>

40 <ovl:Class rdt:about•'tiDeduced'>
"ll <rdts: :'lubCla:~sOt rd:!: resottl"C:<!•'IAcliw i ly"/>

"12 </ovl:Cla:~s>

il <owl:Cla:'l:'l rdt:about•'IFree'>
"14 <rdt!l: !lubC l~!!Ot rdt: resourc:e•'IDeduced"/>

'IS </owl:Clli.:'IZ!I>

"

Figure 3.11: OWL Notation of Class Activity and its Sub Classes

a certain time, the cardinality restriction can be used in axiom= l.currentActivity.

The OWL semantic web syntax of this restriction axiom can be seen in Figure 3.11

(see line 26).

For example, class Busy is declared to express situation of a user when he/she is

busy, i.e. by assuming a user is busy if his/her is doing his daily planned activities

or a user is working on his workstation by running some related office application

software. OWL semantic web code for class Busy axiom is depicted in Figure 3.12.

The busy situation could be expressed by means of axioms in DLs syntax as follows.

3.4

Busy = Person n 3 currentActivity. Planned

Busy= Person n 3 rv.n.OfficeApplication

Busy= Person n 3 run.(WORDPOCESSOR u SPREADSHEETU

PDFREADER).

OWL Semantic Checking

As discussed in Chapter 2, semantic consistency checking is carried out to detect

whether unsatisfiable concepts exist in ontology model. Unsatisfiable concept is equiv

alent to concepts and axioms that belong (members of) to the empty set (0). In this

3.4. OWL SEMANTIC CHECKING

lCl

lC~

"' ...
'"' '" '" ...
'" 110
u:

"'

~OWl: Oq\IIVoh•<~ I<•••>
<nl>hn<>e<><>oo>

cniLoroPco~.r•' ,,...,, • ..,,.,., ••• ,,..,..,,

<lo•l '""otclc~toa>
<IO•I !Oq\Uvoln~Ciou>
COWIIO'l"I-IU<I;I I>

cooiLI'uu '"''""'
'""''"""'""'" r<U•ou<>•«e~··•..,,,_,_..,, , .. ,,,..,,
•o•••-V••-~"'- <M••~..,,.,.., ••. ,,.,.._ ••• ,,

</o•l•""nrtetlen>
</DOI;oq•Unioa<CIOU>
<o-l;o..,.lV10intCia.o>

<O•I; Put<>et >o•> , , ,,_.,,

"' It::

·~· . LH I
IH [

IH I

49

«>viL,.nlonOt ""I ~~·~~Tv ... •• fOUPCL ·-· >

<<>•I ,o..eor ,.,,,,~,8~Tno••uu•ct •-· >
<rol 1hocr ll't I an «\f 1 _,,., •• n.,r•a«D>ul 'I>

</00)10-ooi>

</<01' On·C<IP< '"""
<«1.1.1,.

<ewi:O~ <<11:~...-nTyu••<oU•e••-·•

uao :lie ocr lptiOI> nU , ,., •. ,.,,,.,.,,.,,,,,,'I>

'''"'''"'..,u'''""" <rd.I>Puerlptlo..,.

<ewl>D-of '"''f""'••TYF9•"t•l .. b<>lt-">
«<It 1 h•c•••~'"" • .uo..no~<•"IPDFaoa<Ou"/>

</o-1•<>-0t>

</UI lluHIC<IO""

<lo~• '"lll''"•'""•e•..o•>
</ooloelouo>

Figure 3.12: OWL Notation of Class Restriction on Class Busy

thesis, Pellet reasoner is used for semantic consistency checking, which involves con

sistency, subsumption, and instance checking. Pellet works based-on Tableau Rea

soning Algorithm [48)-[62].to detect any inconsistency of logical axioms in semantic

web model.

3.4.1 Consistency checking

The intention is to check whether the knowledge m ontology is consistent or not.

Therefore, the ontology 0 is consistent such that 0 satisfies the interpretation of I.

In other word it can be said that I I= 0. For checking purpose, three examples

of checking strategy have been defined to be assigned to context ontology and to be

reasoned by Pellet version 1.5.

The first strategy consists of axioms that correspond to the class disjointness and

quantifier restriction.

Definition 3.1. Let c1 , c2 , c3 E C be concept name, r E R be role name, c2 is the

range of l;f c1 n r.c2 , whereas c2 ~ ~ c;~, such that c:1 cannot be applied for the range

of r that causes property concerned of r contradicts each other.

The axioms in Definition 3.1 guard if two classes are disjoint each other, then both

class cannot be restricted either by existential or a universal quantifier. For example,

class restrictions (and axioms) are defined in our context ontology as follow (using

DLs notation).

Person, Indoor, Outdoor ~ Class

Indoor = ~ Outdoor

Person n 31ocatedin.Indoor

Person n 3/ocatedin. Outdoor

3.4. OWL SEMANTIC CHECKING 50

In DLs, a value constraint (value restriction or existential quantifier restriction)

puts constraints on the range of the property when applied to a particular class de

scription. Once Pellet reasoned class restriction above, the reasoner discovers incon

sistency in the ontology. It is because of the disjointness of the two classes (Indoor !;

~ OutdoorS pace) that is used as the range of property locatedln.

Proof. Value restriction defines individual of class Person for which holds that

if the pair (x, y) is the property concerned of locatedln, then y should be an instance

of the class Indoor. Since Indoor is disjoint with Outdoor, hence the the property

concerned (value of property) of locatedln is not be an instance of the class Outdoor

(Outdoor = ~ Indoor or Indoor = ~ Outdoor). Given the constraints above, it

can be proved by means of Tableaux Reasoning Algorithm [62] that the axioms in

Definition 3.1 is clash.

(Person n 3locatedln.Outdoor)(x), (Person n 3locatedln.Outdoor)(x)

Person, 3locatedln.lndoor, Person, locatedln. Outdoor I nrule

located!n(x, y), located!n(x, y) I 3 rule

!ndoor(y), ~ Indoor(y)

(CLASH)

The axioms in Definition 3.1 is further addressed into CIS context ontology. The

axioms are reasoned by Pellet through Swoop interface. Surprisingly, Pellet cannot

detect the inconsistency of the object property locatedln caused of the disjointness of

Outdoor and Indoor. The result of reasoning process (indicated by ellipse line) is

further visualized by Swoop ontology editor, as depicted in Figure 3.13.

The second consistency checking corresponds to the consistency of cardinality

constraints. A cardinality constraint puts constraints on the number on property con

cerned, in the context of this particular class description.

Definition 3.2. Let C be concept name, D = { d, e} be individuals, r E R be role

name, and = n. r is restricted role with cardinality constraint. As for in restricted role

with= n, i.e. n = 1, such that d1 = lir.(dn e) does not hold, because the cardinality

of property concern is assigned with instances in two classes.

Lecturing !; Class

= 1. currentActivity

Lecturing= {!CIS, CO, DATACOM}

Lecturer= li currentActivity.(ICIS nCO)

3.4. OWL SEMANTIC CHECKING

sjolnt with: (AQQ)
(C) (Q.WmJ

Subclass of: ~
~(ll.oi&J

Superclass of: (8W1)

©rurgd.!!!Room ~
©Li!bpratgry (~
®ctas:;Bgpm (~
®l:ectureHaU (~
©SeminarRogm ~
®MntingRoom (~
©otfir:eBgpm ~

OWL-Class:~

Disjoint with: (e.w1)

~~
Subclass of: (~

~~

Domain of: (SUl)

(f)-~
(f)- (ll.oi&J

Figure 3.13: Undetected Inconsistency Reasoned by Pellet OWL DL Reasoner

51

In the above axioms, there exists a case whereby a person has two activities that is

impossible to be done at the same time. Once Pellet reasoned the logical restrictions

above, this reasoner still returns with inconsistent ontology. A conjunction of individ

ual cardinality value is violated, i.e. restriction equals to 2, not I as required above.

Such that, cardinality on object property = 1. currenlActivily has been violated.

3.4.2 Concept Subsumption

The intention is to check the structure of knowledge in ontology and to obtain the

taxonomy of ontology, so that C [;; D i.e. cr c;; DI iff I f= 0. In other words,

subsumption checking discovers concept inclusion or sub class definition.

Definition 3.3. Let c1, c2 , c3 , c., E C be concept name, c2 [;; ~ C4 , c1 [;; c2 , c3 [;; c.,,

such that c1 cannot be assigned to be equivalent with c2 .

This definition corresponds to equivalence checking of two subsumed classes.

However, the superclasses are disjoint. The intention of this example is to check if

two classes or concepts denote the same set of instances, or equivalence, such that

c1 = c1, so that cf = Cf iff If= 0.

As in 3.3, the ontology will be evaluated whether the condition of c1 = c2 holds, if

their super class is disjoint each other. For this purpose, some class axioms that have

been generated previously in context ontology are used and the restriction in sub class

of Activity is given as follows.

Once Pellet reasoned the logical restrictions above, this reasoner can detect and

3.4. OWL SEMANTIC CHECKING 52

Not_At_Desk c Deduced
Lecturing I; Planned
Planned c ~Deduced

Not_ A LDesk = Lecturing

returns with inconsistent ontology, as can be seen in Figure 3. I 4.

Proof. Since the superclass of NoLA LDesk and Lecturing are disjoint each other,

i.e. Planned I; ~ Deduced, when equivalent condition is assigned to NoLALDesk

with class Lecturing, hence, the context ontology will not be consistent. Pellet will

detect inconsistency and it displays the reasoning result as in depicted in Figure 3. I 4.

OWL-Class: C9Lecturing
Unsatisfiable concept
Axioms causing the problem:
1) (©Lecturing .. ©planned)

2) I (©Planned " ~ ©Deduced)
3) (©Not At Desk = ~ecturing)
4) [_(@Not At Desk <;@Deduced)

OWL-CI•ss: (SlNot At Desk
Unsatisfiable concept
Axioms causing the problem:
1) (©Not At Desk .. ©Deduced)
2) (©Not At Desk = ~ecturing)
3) U~ecturing <;@planned)
4) [_(@Planned <0 ~ @Deduced)

Figure 3.14: Subsumption Checking for Definition 3.3

Subsumption can be performed as necessary axiom<= checking, like in the above

example) and sufficient axiom (!;;). Logical constraints can be assigned to a class

for subsumption purpose. Depending on the assigned logical constraints, ontology

reasoner will classify the result of subsumption checking as intersection, union, or

equivalent. Given is an example of subsumption checking, as depicted in Figure 3.15.

In CIS context ontology class Busy is restricted with the following axioms:

Person n 3 currentActivity.Planned

Person n 3 run. OfficeApplication n V locatedln.OfficeRoom

The above axioms is to define that a person is assumed to be busy when he/she

is doing a planned activity, working with computer by running office applications,

e.g. word processor application, reading some paper or journal using PDF viewer in

his workstation (at office room). When Pellet reasons those axioms, it concludes that

class Busy is subsumed as sub class of class Person; this is because of the following

3.4. OWL SEMANTIC CHECKING

axioms:

= 1. currentActivity

Person n :3 currentActivity.Planned

domain(currentActivity) = Person

range(currentA ctivity) = Activity

Thus, class Busy and Activity is subsumed by class Person:

Busy I; Activity I; Person

53

The result of subsumption checking through Pellet reasoner is visualized by Swoop

editor as depicted in Figure 3.15

OWL-Cillss: @~ Axioms causing the Inference
Activity !;; Person:

EquivGientto: (MQ) 1) (©~:: ~ 1IIJcurrentA~)
(~ 1 lfJrurrentActivjty) ~ 12~)~)_=C·(I!JC:P:::l<llllcu~rr~e!::ntA~dJ:!::!.Y:;itv=-:::do::::m:.:a::in:.:_.::~::=;~~
Subclass of: (6QQ)

@~ (.l'ill.W

Superclt~ss of: (8illt)

~(~
<Speduced ~

Figure 3.15: Busy and Activity is subsumed by class Person, Visualized by Swoop

3.4.3 Instantiation Checking

Instantiation checking is performed to check if individual i is instance of concept C.

i.e. i E cz iff I I= 0. In CIS context model, some individuals belong to two

classes have been declared. For example, Figure 3.16 shows some instances that are

assigned to two class. i.e. to class LectureR all and class ClassRoom. Previously both

classes are defined disjoint each other. Once Pellet reasoned this instance assignment,

it returns with inconsistent individuals. This is because an instance cannot belong to

two or more disjoint classes.

Therefore, if the instance of class room would be assigned similar to the instances

in lecture hall, thus the disjointness of two classes should be removed. This is to reflect

the situation at CIS Department that both classes room and lecture hall are allocated

for lecturing. The result of instantiation checking is visualized by Swoop as depicted

in Figure 3.16.

3.4. OWL SEMANTIC CHECKING

OWL-Class: ©classRgom

Subclass of: ~
~ (lalili)

Instances: (~
.c.22. (~
Qll(~

~~
Q.Q.i ~
~~
.C.O..Z.(~
.t..O..l (i2.lliW
Q.Q2. (~
.t..O.l.(~ = llalilil
~ (laliliJ
~~

OWL-Class: C9t.ectureHgll

Subclass of: ~
©B&.Qm(~

OWL Ontology: ~ (f2it.!..!BJJ

Annotations: ~

Imports: (Aad.)

Inconsistent ontology

LtrturtHfll

.1nd ltl complement
#Udoms c-'ng th<t !M"'bMm1

I) tl2.2.!.rdf1typt @peuR©l
l) 1 c©ct•uBggm !i: -. C,rty .. Helll

l) ~-CR..2..:!. rdf:typt @, •QyrtHtlll

Figure 3.16: Instance Definition (left). Inconsistency Detected (right)

54

From the modeling point of view, nominal is used to describe enumeration of

membership of a class. Peter F. Patei-Schneider et al. in OWL DL W3C Reference

Standard [33] define that the OWL DL or SHOIN contains two modeling con

structs specific for nominal, namely owl:oneOf and owl:hasValue. The ow/:oneOf

construct allows defining finite enumeration of elements in a concept or class. In

this case, the individuals of class Browser is declared withe type of browser applica

tions. By using DLs notation, individuals in class Browser can be written as follow:

Browser= {FIREFOX, MOZZJLA, IE, SAFARI}. The OWL semantic web nota

tion to express the same enumeration above is presented follows.

<owl:Class rdf:about•"tBrowser">

<rdfs:subClassOf>

<owl:Class rdf:about•"IInternetApplication~/>

</rdfs:subClassOf>

<owl:oneOf rdf:parseType•"Collection">

<cdf:Browser rdf:about•"tFirefox"/>

<cdf:Browser rdf:about•"IIE"/>

<cdf:Browser rdf:about•"IMozila"/>

<cdf:Browser rdf:about•"JSafari"/>

</owl:oneOf>

</owl:Class>

The owl: has Value is OWL construct used in an existential restriction on a nominal

concept. Regarding the CIS context ontology, we define a class Server in such a

way to restrict a person that has to login to Novel Netware server prior to use etwork

3.5. CHAPTER SUMMARY 55

resources. This situation in which a Person must login to the Nove/Netware server as

the individual of class Server is declared in OWL as follow.

<owl:Class rdf:about•"tServer">

<rdfs:subClassOf>

<owl:Class rdf:about•"tNetwork"/>

</rdfs:subClassOf>

<owl:equivalentClass>

<owl:Restriction>

<owl:hasValue>

<cd f: Server rdf: about •" I NovelNetware" />

</owl:hasValue>

<owl:onProperty>

<owl:ObjectProperty rdf:about~·ltoginto"/>

</owl:onProperty>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

3.5 Chapter Summary

The main issues in this chapter are summarized as follows.

I. This chapter explains the modeling of context ontology using Description Log

ics notation and OWL semantic web language. It shows that DLs notation are

more expressive than OWL semantic web model, context model in DLs nota

tion can directly be generated for implementation language, like OWL semantic

web. It is because OWL semantic web is fully supported by DLs semantics.

Our OWL context ontology is generic; hence it can be modified or adjusted

depending on the user's needs.

2. It is shown that DLs notation of context ontology is built on top of formal or

mathematical model. By describing context ontology in DLs notation, we actu

ally provide a context specification that is independently from the implementa

tion language level. Nevertheless, many researchers are concerned with OWL,

therefore they are focusing on developing DL reasoner that is based-on OWL se

mantic web language instead of developing automated reasoning tool based-on

DLs notation.

In the next chapter, the usc of Z formal specification to construct context ontology

will be presented. By using formal specification, hopefully the context ontology can

be expressed independently from OWL semantic web format. The Z specification is

fully supported by ZJEYES automatic theorem prover.

Chapter 4

Z Specification of Context Model

This chapter begins with the description of mapping process to generate context on

tology in Z formal specification. Thereafter, a process of how to express OWL se

mantics in Z semantics, how to map OWL context ontology onto Z notation, and how

to perform semantic checking of context ontology in Z environment are presented,

respectively.

4.1 Mapping Process

In the previous chapter, context ontology model is prepared in OWL semantic web

language. In this chapter, the use Z specification language to address the formal speci

fication of context ontology will be presented. The process of mapping OWL semantic

web of context ontology onto Z specification is illustrated in Figure 4.1.

The Z syntaxes and semantics for OWL semantic web have been defined in [13]

[15]. In this thesis, the semantics are rewritten by taking from OWL W3C semantic

theoretic [33], which are to define the semantics of Z syntax for each particular OWL

language. For this purpose, this thesis use the term of OWL-Z to express the Z syn

taxes and semantics for OWL language. Either Z syntax or Z semantics are prepared

in I:ITE'(format(see box no (D) in order to be parsed by ZJEVES tool. This is because

ZJEVES read I:ITE'(format as input for specification and proofing process. The follow

ing Table 4.1 briefly describes the OWL W3C abstract syntax and its corresponding Z

syntax used to define ontology in Z specification.

Once the OWL-Z notation has been type-checked and semantically proved, thus,

the semantic web of context ontology which has been prepared in OWL can then

be mapped onto Z specification by referring to OWL-Z syntax. Now, the context

ontology structure is presented in Z. As the result of mapping process, the Z notation

56

4.1. MAPPING PROCESS

••
Z Spaclflcation Ia Formally

Conalatant @)

Context Ontology
In OWL

Ontology
Refinement

57

Figure 4.1: Process of Generating and Checking of Context Model in Z Formal Spec
ification

of context ontology should be prepared in !5ff0)(format (see box no (D). Once the

context ontology has been written in Z, the type checking to detect the trivial syntax

error should then be prepared.

The further step is to prepare the rule and proof/test command, i.e for inconsis

tency checking purpose (see step G)). In this step, some assumption rule and defined

theorem will be used to prove the Z specification. Once the specification of context

ontology is proved by ZIEVES, and it returns with true, it means that our context Z

specification of context ontology is formally consistent (see box noGJ). Otherwise,

once the inconsistency source has been discovered, it means that the specification of

context ontology in OWL semantic web has to be redefined to remove errors that have

been detected by Z/EVES. The inconsistency is detected because the current OWL DL

reasoner previously might not able to detect the logical inconsistency in the seman

tic web model. Thus, to conclude, by mapping OWL definition of context ontology

and performing semantic checking in Z/EVES, this thesis has use formal specification

technique as the complementary approach to design and verify context ontology.

4.2. Z SYNTAX AND SEMANTICS (OWL-Z) 58

Table 4.1: OWL Syntax and Z Syntax

OWL Abstract Syntax Z Syntax
subClassOf(C1, C,) subClassOf(ct, c2)
disjoint With disjoint With (c1, c2)
intersection OJ(Ct, C,) intersectionOJ(CJ, c2)
union OJ(Ct, Cn) unionOJ(ct, c2)
complementOf(C) (cl, c2) E complementOJ
oneOf(oJ ... on) oneOf(X) = Ct
restriction (R all ValuesFrom(C)) all ValuesFrom(Ct, R) - c2
restriction(R some ValuesFrom(C)) some Values From(CJ, R) = c2
[Transitive J (R) E Transitive
[SymetricJ (R) E Symetric
[inverseOJ(Ro)l (Rt, R2) E inverseOf
restriction(C maxCardinality(n)) maxCardinality(n, R) = c
restriction(C min Cardinality(n)) minCardinality(n, R) = c
restriction(C Cardinality(n)) Cardinality(n, R) = c

4.2 Z Syntax and Semantics (OWL-Z)

Regarding the OWL semantics, everything is a model of resource. DLs models this

kind of resource as interpretation domain, or C:,.7 . To express this interpretation do

main, the basic Z type definition is used as follows.

[DELTA]

As in DLs SHOIN semantics, the OWL-Z semantics model basically define the

meaning and interpretation of concept (Class), role (Property), and Individual.

A class provides a mechanism to group instances with similar characteristics.

Therefore, every class is associated with a set of individuals, called the class exten

sion or class instance. In DLs, a class is, or atomic class, is a member of domain

interpretation. The semantic of an atomic class in DLs is expressed as C 7 <; C:,.7 .

Role or property is also defined as subset of interpretation domain. In DLs se

mantics, a property is defined as cross product of interpretation domain, expressed as
RI s; e:,.z_e:,.z.

In DLs semantics, individual is also defined as subset of interpretation domain.

DLs defines individual as the power set of all instances exist in interpretation domain

C:,. 7 . The semantic of individual is expressed as a E C7 .

Those syntaxes and semantics definition above are prepared in ~EX format. This

format is further parsed by Z/EVES tool for type and semantics checking. Z/EYES

command prove by reduce is further defined, which is used to check the semantics of

4.2. Z SYNTAX AND SEMANTICS (OWL-Z)

our Z specification.

\begin{axdef}

Class: \power DELTA

Property: \power DELTA

Individual: \power DELTA

\where

Property \cap Class = \emptyset

Property \cap Individual = \emptyset

Individual \cap Class = \emptyset

\end{axdef}

proof

prove by reduce

•

59

In this thesis, Z/EVES style is used to render the 15fp< format. Thus, upon render

ing the 15fp< format, Z specification becomes readable for human. For example, the

above definition of class, property, and individual in OWL-Z are rendered as follows:

Class :II' DELTA

Property :II' DELTA

Individual : II' DELTA

Property n Class = 0
Property n Individual = 0
Individual n Class = 0

We use instances syntax to map a class with class extension (instances).

instances : Class -> II' Individual

To describe a property concerned, or value of a property, either as Object Property

or Datatype Property, individual has to be defined by mapping it as a property, either

object property (propval) or data type property (propvalD). For instance, a and b are

Individuals, p is a property, and prelates a with b, such that a and b are the property

concerned of p, or formally (a, b) E Rr. Further, in Z specification such property

values are declared as (a, b) E propval(p).

4.2. Z SYNTAX AND SEMANTICS (OWL-Z) 60

I propval : ObjectProperty ~ (Individual, Individual)

)XSD)=================
propvalD : DatatypeProperty ~(Individual...., XSD)

4.2.1 Class Description

Class axioms typically contain additional components that state necessary andfor suf

ficient characteristics of a class. Regarding to OWL W3C Document, there are three

syntaxes for combining class descriptions into class axioms as follows:

I. subClassOf If a class description c is defined as a subclass of another class

description d, then the set of individuals in the class extension of c should be

a subset of the set of individuals in the class extension of d. DLs semantic of

this statement is ~ 5:; dz. From the OWL abstract syntax and DLs semantics,

the OWL-Z syntax and semantic for the subClassOJ statement is declared as

follow.

subClassOJ : Class...., Class

'ric, d: Class •

(c, d) E subClassOJ ¢»instances(c)<;; instances(d)

2. equiva/enrC!ass. The two class descriptions involved have the same same set

of individuals. DLs semantic of this statement is ~ = dz. From the OWL

abstract syntax and DLs semantics, the OWL-Z syntax and semantic for the

equivlentClass statement is declared as follows.

equivalentClass : Class Class

'rl c, d : Class • (c, d) E equivalent Class ¢»

instances(c) = instances(d)

4.2. Z SYNTAX AND SEMANTICS (OWL-Z) 61

3. disjoint With. This statement asserts that the class extension of the two class

descriptions involved have no individuals in common. OWL abstract syntax of

this statement is disjoint With(c, d), and semantic of this statement is CI n di =

0. From the OWL abstract syntax and DLs semantics, the OWL-Z syntax and

semantic for the disjointOJ class statement is declared as follows.

disjoint With : Class - Class

'I c, d : Class •

{c, d) E disjoint With<*

instances(c) n instances(d)= 0

4.2.2 Properties

OWL distinguishes between two main categories of properties. First is object property

that relates individual of a class with individuals in another class. Second is data type

property that relates individual of a class with data values that refers to XML Schema

Data type definition (XSD). Object property and data type property are declared in

OWL-Z as follows:

ObjectProperty : lP Property

DatatypeProperty : lP Property

ObjectProperty n DatalypeProperly = 0

In OWL, subpropertyOJ reflects that a property is a sub property of another prop

erty. Formally this means that if p1 is a subproperty of J12, then the property concerned

(property value or extension) of p1 should be a subset of the property concerned p2 .

DLs semantic of sub property statement is {a E Ll.IIIf b E RI _, (a, b) E sr}. From

the OWL abstract syntax and DLs semantics, the OWL-Z syntax and semantic for

subpropertyOJ statement is declared as follows.

4.2. Z SYNTAX AND SEMANTICS (OWL-Z)

[XSD)=================

subPropertyOJ : Property ~ Property

'rlr,s: Property • (r,s) E subPropertyOJ ¢'>

(r E ObjectProperty II s E ObjectProperty => prop val(r) ~

prop val (s)) II

(r E DatatypeProperty II s E DatatypeProperty =>
propvalD[XSD)(1·) ~ propvalD[XSD)(s))

62

Another OWL property statement, i.e. equivalentProperty, is used to state that two

properties have the same property concerned (property value). OWL syntax of this

statement if equivalentProperty(c, d), and DLs semantic of this statement is {a E

~T[V bERT<* (a, b) EST}. From the OWL abstract syntax and DLs semantics,

the OWL-Z syntax and semantic for equivalentProperty is declared as follows.

[XSD)=================
equivalentProperty : Property ~ Property

V r, s : Property • (r, s) E equivalentProperty ¢'>

(r E ObjectProperty II s E ObjectProperty

=> propval(r) = propval(s)) II {r E DatatypeProperty II s

E DatatypeProperty => propvalD[XSD)(r) = propvalD[XSD)(t))

Properties have a direction, from domain to range. In practice, people often find

it useful to define relations in both directions: persons own cars, cars are owned by

persons. Regarding this matter, OWL uses inverseOf syntax as an inverse relation

function between properties. Formally, it can be said that p1 is inverse of p2 , thus it

asserts that for every pair (x, y) in the property extension of p1, there is a pair (y, x)

in the property extension of p2, and vice versa. DLs syntax of inverseOf statement is

R = R;;. From the OWL abstract syntax and DLs semantics, the OWL-Z syntax and

semantic for inverseOf property is declared as follows.

inverseOf : ObjectProperty <-> ObjectProperty

V pi, p2 : ObjectProperty • {pi, p2) E inverse OJ ¢'>

propval(pl) = (propval(p2))-

4.2. Z SYNTAX AND SEMANTICS (OWL-Z) 63

In OWL, a property is defined as being transitive by making use of OWL class

TransitiveProperty syntax. From the OWL abstract syntax and DLs semantics, the

OWL-Z syntax and semantic for Transitive property is declared as follows.

Transitive : IP ObjectProperty

V prop : ObjectProperty • prop E Transitive ¢>

(V x, y, z : Individual • (x, y) E prop val (prop) 1\

(y, z) E propval(prop) =? (x, z) E propval(prop))

A symmetric property is a property for which holds that if the pair (x, y) is an

instance of property P, then the pair (y, x) is also an instance of P. The domain

and range of a symmetric property are the same. From the OWL abstract syntax and

DLs semantics, the OWL-Z syntax and semantic for Symetric property is declared as

follows.

Symetric : P ObjectProperty

V prop : ObjectProperty • prop E Symetric ¢> (V x, y : Individual • (x, y)

E subVal(prop) =? (y,x) E subVal(prop))

4.2.3 Value Constraint

A property can also be restricted by constraints. OWL distinguishes two kinds of

property restrictions: value constraints and cardinality constraints.

The value constraint ai/ValuesFrom is an OWL statement that relates a restriction

class to either a class description or a data range. Formally, it defines individual x

for which holds that if the pair (x, y) is a value of R (the property concerned), then

y should be an instance of the class description (or a value in the data range for data

type property). DLs semantics of this value restriction is a E LJ.II V b.(a, b) E R:r ->

bE c:r. The OWL-Z syntax and semantics of this allValuesFrom property statement

are declared as follows.

4.2. 2 SYNTAX AND SEMANTICS (OWL-Z)

all Values From : Class x ObjectProperty ~ Class

V c, d: Class; p: ObjectProperty • allValuesF'rom(c, p) = d ¢'>

instances(d) = {a : Individual I V b : Individual •

(a, b) E propval(p) ~bE instances(c))

64

The value constraint someVa/uesFrum is a OWL property that relates a restriction

class to a class description (or a data range for data type property). Formally, it defines

individual x for which there is at least one y (either an instance of the class description

or value of the data range) such that the pair (x, y) is value of R. DLs semantics of

this value restriction is a E t,.Ij V b.(a, b) E RI 1\ bE cr. The following are OWL-Z

syntax and semantic for someValuesFrom property statement.

some Values From : Class x ObjectProperty ~ Class

\fc,d: Class; p: ObjectProperty • someValuesF'rom(c,p) = d ¢'>

instances(d) = {a : Individual I 3 b : Individual •

(a, b) E propval(p) AbE instances(d)}

The value constraint hasVa/ue is an OWL property that relates a restriction class

to a value V, which can be either an individual or a data value. DLs semantic of this

property statement is a E t,.Ij If b.(a, b) E Rr. The following are OWL-Z syntax and

semantics for has Value property statement.

has Value : (Individual x ObjectProperty) ~ Class

V ind : Individual; c : Class; p : ObjectProperty •

hasValue(ind,p) =class¢'> instances(c)=

{a: Individual I ind E propval(p)Q {a} D)

The cardinality constraint maxCardinality constraint describes a class of all indi

viduals that have at most N semantically distinct values (individuals or data values)

for the property concerned, where N is the value of the cardinality constraint. DLs Se

manticsofthiscardinalitystatementisa E t,.Ij{b E t,.Ij(a,b) E Rz/\b E cr} ~ n.

OWL-Z syntax and semantics for this property statement is declared as follows:

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION

maxCardinality : {N x ObjectProperty) ~ Class

V c: Class; n: N; p: ObjectProperty • maxCardinality(n, p) = c ¢>

instances(c) = (x: Individual I #((propval(p)Q {x} D)}::; n}

65

Another cardinality constraints are minCardinality and Cardinality, which are

almost the same meaning (semantics) with maxCardinality, except the number of N

as constraint values.

4.2.4 Individual

The OWL syntax sameAs links an individual of a class to an individual of another

class. This statement indicates that two individuals have the same identity. OWL-Z

syntax and semantic of sameAs statement are declared as follows.

sameAs : II' Individual - II' Individual

Vx, y: II' Individual • (x, y) E sameAs ¢> x = y

Like same As, the OWL differentFrom statement links an individual to an indi

vidual. However, this statement indicates that two individuals have different identity.

OWL-Z syntax and semantic of of differentFrom statement are declared as follows.

differentFrom : II' Individual - I' Individual

V x, y :II' Individual • (x, y) E differentFrom

¢>X~Y

4.3 Mapping Context Ontology onto Z Notation

This section presents the mapping of OWL semantic web context ontology onto Z

notation. To generate context ontology in Z notation, this thesis uses the rewritten

OWL-Z, which has been defined in the previous section. The overall specification of

context ontology will not be discussed in this section, the complete specification is

provided in the Appendix D.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 66

As in the OWL semantic web version, context ontology consists of Person, Net

work, Activity, Device, Network, and Location as main concepts. Every classes de

fined in OWL semantic web are sub class of Thing (or T in DLs). Those classes are

modeled in Z using axiomatic box as follows.

Person, Network,

Activity, Location, Device : Class

(Person, Thing) E subClassOf

(Network, Thing) E subClassOf

(Device, Thing) E subClassOf

(Activity, Thing) E subClassOf

(Location, Thing) E subClass Of

4.3.1 Specification of Class Person and Its Related Property

As in OWL semantic web version of CIS context model, class Person is composed

of lecturer, staff, post graduate student, and undergraduate student. Z axiomatic box

is used to declare all classes since the dynamic context model is not to be a concern

in this thesis. Some assumption rule labels are defined well, e.g. as indicated by

((grule LecturerlnPerson)). The purpose of this assumption rule is to be used (re

called) later with command to test the consistency of the axioms (declared with test

command).

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION

Lecturer, Student, Postgrad, Staff, Profile: Class

((grule StudentlnPerson))

(Student, Person) E subClassOJ

((grule LecturerlnPerson))

(Lecturer, Person) E subClassOf

((grule PostgradlnPerson))

(Postgrad, Person) E subClassOf

((grule StafflnPerson))

(Staff, Person) E subClassOf

((grule ProfileofStaff))

(Profile, Staff) E subClassOf

((grulc ProfileofLecturer))

((grule ProfilelnLecturer))

(Profile, Lecturer) E subClassOJ

((grule ProfileofStudent))

(Profile, Student) E subClassOf

((grule ProfileofPoslgrad))

(Profile, Postgrad) E subClassOf

67

Person's related object properties are declared in Z notation using Z axiomatic

box. Because object property links a class with another class, therefore its domain

and range hav to be determined as well. Some assumption rules are introduced in this

specification. The following Z axiomatic box shows a part of specification of object

properties related to class Person.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION

use, run, connectedTo, currentActivity, locatedln,

login To, locatedfn,

ownedBy : ObjectProperty

domain(use) = Person

range (use) = Device

domain(run) =Person

range(run) = ApplicationRun

domain(connected To) = Person

range(connectedTo) = Device

domain(connectedTo) = Device

range(connectedTo) = Network

domain(connected To) = Person

range(connectedTo) =Network

((grule runSubProp))

(run, use) E subPropertyOJ

((grule uselsTransitive))

(connected To) E Transitive

((grule ownedBylslnverse))

(use, ownedBy) E inverseOJ

68

Regarding the specification of class Person related properties, three properties that

determine the expressiveness of Z specification of context ontology model have been

declared. Axiom (run, use) E subPropertyOJ determines the hierarchy of properties,

or labeled with 7-l in DLs. Axiom (connected To) E Transitive determines that this

property is transitive, or or labeled with S in DLs. The label I in DLs language is

determined by inverse role axiom (use, ownedBy) E inverseOf.

Data type properties related to class Person can also be specified in Z notation.

Actually Z has no specific data type definition, such as to express string, date, integer,

etc. By referring to OWL definition of XSD data type for semantic web, a new free

type definition, i.e. [XSD], is issued to express data type in Z specification of context

model ontology. Data type property is used to relate instances of a class with literal.

For example, the Z specification to relate data type properties in class Prr~file with

a data type is written as follows.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION

[XSD)===================================
fuiiName, officeAddress, phoneNumber,

emaiiAddress, imAddress : DatatypeProperty

name, office, phone, email, im :II" XSD

domainUuiiName) = Profile

rangeD(fuiiName) = name

domain(officeAddress) = Profile

rangeD(officeAddress) =office

domain(phoneNumber) = Profile

rangeD(phoneNumber) =phone

domain(emailAddress) = Profile

rangeD(emaiiAddress) = email

domain(imAddress) = Profile

rangeD (imAddress) = im

69

Let us take an example. Axiom domain(imAddress) = Profile determines the

domain of imAddrress property. This property is used to relates class Profile with

the literal of person instant messenger address, e.g. anybody@yahoo.com. The axiom

rangeD(imAddress) = im describes that the range of property imAddress it literal

im with common data type namely XSD. As in the implementation language, such

as in OWL, the XSD can further be defined as string, or character. However, in this

formal specification of context model, there is no need a detail or specific of data type

in the property value, since data type is considered not to affect the whole consistency

of context ontology model.

4.3.2 Specification of Class Device

A part of Z specification of class device is discussed is this subsection. As in OWL

semantic web model, the three distinct devices used by a person in CIS context model

are declared as well. Subclasses of device are also declared in this axiomatic box.

Assumption rule ((grule HardwareSoftwareDisjoint)) is declared to assert class dis

jointness definition (Hardware, Software) E disjoint With in the command for testing

consistency of axioms.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION

Desktop, MobileDevice, NetworkDevice,

Hardware, Software, MobilePhone, Notebook, PDA,

AccessPoin(Router, SeT1ler, ... :Class

(Desktop, Device) E subClassOJ

(MobileDevice, Device) E subClassOf

(NetworkDevice, Device) E subClassOJ

(Notebook, MobileDevice) E subClassOf

(PDA, MobileDevice) E subClassOf

(MobilePhone, MobileDevice) E subClassOJ

(AccessPoint, NetworkDevice) E subClassOJ

(Server, NetworkDevice) E subClassOJ

(Router, NetworkDevice) E subClassOf

((grule HardwareSoftwareDisjoint))

(Hardware, Software) E disjoint With ...

4.3.3 Specification of Class Activity

70

Like in the OWL semantic web of context model, activities related to a person are

declared as Planned and Deduced. The specification of both deduced and planned

activities are declared using Z axiomatic box. In Chapter 3 Figure 3.11, Planned and

Deduced have been defined to be disjoint each other.

Planned, Deduced, Available, Busy, Pree, ... : Class

(Planned, Activity) E subCiassOJ

(Deduced, Activity) E subClassOf

((grule PlannedRule))

(Deduced, Planned) E disjoint With

(Available, Deduced) E subClassOJ

(Free, Deduced) E subClassOf

(Busy, Deduced) E subClassOJ

((grule BusyFreedisjointWith))

(Busy, Pree) E disjoint With

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 71

Disjointness restriction is also used during the consistency checking in Chapter 3

Section 3.4.1. For the purpose of testing the class disjointness between Planned and

Deduced in Z specification, the assumption rule label ((grule PlannedRule)) is de

fined. Another assumption rule is also defined, i.e. ((grule BusyFreedisjointWith.))

that is to test the disjointness between class Busy and Free.

4.3.4 Specification of Class Location

Location context model are declared in Z specification by distinguishing indoor loca

tion and outdoor location, as the with OWL semantic web model. Class Outdoor and

Indoor is also declared disjointness each other. For the purpose of testing the class

disjointness between Outdoor and Indoor in Z specification, the assumption rule la

bel ((gmle OutDoorindoorDisjoint)) is issued to test the disjointness between class

Indoor and Outdoor.

Indoor, Outdoor, Building, Room, ClassRoom, LectureHall,

OfficeRoom, ... : Class

(Indoor, Location) E subClassOJ

(Outdoor, Location) E subCiassOJ

((grule OutDoorlndoorDisjoint))

(Indoor, Outdoor) E disjoint With

(Building, Indoor) E subClass Of

(Room, Building) E subClass OJ

(Lab, Room) E subClassOJ

(ClassRoom, Room) E subCiassOJ

(LectureHall, Room) E subCiassOJ

The complete mapping from OWL semantic theoretic onto Z syntax and semantics

is provided in the Appendix C.

4.3.5 Specification of Class and Property Constraint

In Chapter 3, the activity of Busy is sub classes of Dedcued. This class is declared

to describe an activity in which a person is busy, by assuming he is running the office

application, e.g. word processor application while he is located at his office room, or

4.3. MAPPING CONTEXT ONTOLOGY ONTO 2 NOTATION

he is doing a planned activity. This class Busy is restricted with axioms:

Busy = Person n V run.OfficeApplication n V located. OfficeRoom

Busy = Person n V currentActivity.Planned

72

To express class Busy restriction in Z specification, the Z axiomatic box can be

issued as follow.

Busy = some ValuesFrom(Person, run) = OfficeApplication II

allValuesForm(Person, loctedln) = Office Room

Busy= someValuesFrom(Person, currentActivity) =Planned

Another restriction that are defined in OWL semantic web language of the context

ontology is cardinality restriction, which describes a class of all individuals that have

at most N semantically distinct values (individuals or data values) for the property

concerned.

As defined in OWL semantic web language in Chapter 3, for example, a per

son can only have one activity at a certain time (either doing planned activity or de

duced activity), cardinality restriction= l.currentActivity is used to restrict property

currentActivity. The Z specification of this property restriction is declared in Z ax

iomatic box as follow.

Cardinality(!, currentActivity) = Person

maxCardinality(l, run)= ApplicationRun

The above Z axiomatic box also defines a cardinality restriction on property run,

that restricts a person is able to run at least 2 application software on that computer

(including operating system).

•
4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 73

4.3.6 Specification of Individuals

In OWL semantic web language, owi:OneOf is a syntax used to define enumerated

instances of a class. In OWL-Z specification, oneOJ can also be issued to define

the memberships of a concept or a class. For example, class ClassRoom is defined to

describe room entities used in lecturing activity. CIS context model define a classroom

into class name, e.g. CO I ,C02. Name of the classes also describes a room located in

Block C and Din our university. Some related instances of ClassRoom are defined in

Z specification as follows.

COl, C02, C03, C04, C05, C06, DOl, D02, D03, D04, D05, D06: Individual

COl E instances(ClassRoom);

C02 E instances(ClassRoom);

C03 E instances(ClassRoom);

D05 E instances(ClassRoom); D06 E instances(ClassRoom);

4.4 Checking Z Specification of Context Ontology

Once the ontology has been written in formal specification language, there is a need

to verify such specification whether conform to a given property. Further, this thesis

follows the previous works the way how to reason the ontology beyond the existing

semantic web reasoner, as described in [14]-[I 7].

4.4.1 Consistency Checking

In this section, the demonstration of verification of context ontology model beyond

the semantic web reasoner is presented. The intention of verification is to explore the

undetected inconsistent class with respect to Definition 3.1 in Chapter 3. In Chapter 3,

Pellet OWL DL reasoner is already used to detect the unsatisfiable concepts of contest

ontology model. The reasoner concludes that the OWL version of context ontology

model is consistent, though it does not satisfies the Definition 3.1.

After declaring the Z specification of class Indoor and Outdoor, a rule label in the

specification, i.e. ((gruleOutDoorlndoorDisjoint)), is issued to be used by ZJEVES

during the proof process. Following is Z specification of class Indoor and Outdoor.

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY

Indoor, Outdoor : Class

(Indoor, Location) E subCiassOJ

(Outdoor, Location) E subCiassOf

((grule OutDoorlndoorDisjoint))

(Indoor, Outdoor) E disjoint With

74

The rule label is also put in the specification of class Person and value restriction

of property locatedln. The rule label is declared as follows .

... ,Person, ... : Class

... , locatedln, ... : ObjectProperty

((grule PersonLocatedlnlndoor))

allValuesF'rom(Person, locatedln) =Indoor

The Definition 3.1 in Chapter 3 is expressed in Z theorem that will be used to

guard Z axioms used during proof process. The Definition 3.1 is written in Z theorem

as follows.

theorem grule allvaluedisjointrule

'lc, d, e: Class; p: Property • (d, e) E disjoint With 1\

all ValuesF'rom(c, p) = d => ~ (all ValuesF'rom(c, p) = e)

To test the inconsistency of the above definition, the following goal should be is

sued as follows: try((all ValuesF'rom(Person, locatedln) = Indoor) => (all Values From

(Person, located!n) = Outdoor)). Our goal is to prove that property locatedfn will

be applied in the disjoint class that are in the range property concerned. The proof

command to test the axiom should be prepared in 15I'[3X script, and the sequence of Z

proof command are issued as follows:

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY

proof

try all Values Prom(Person, locatedin) = Outdoor;

use OutDoorfndoorDisjoint;

use PersonLocatedinindoor;

use allvaluedisjointrule

[c := Person, d := Indoor, e := Outdoor, p := locatedin);

prove by reduce;

•

75

The first command (try) is the goal to test, second command (use) is to recall the

assumption rule to assert that class Indoor and Outdoor are disjoint each other, the

last command reduce is to let ZIEVES to perform simplification, rewriting, and reduce

the goal. The testing result of ZIEVES in ~EX mode interface has also been captured

and provided in the Appendix.The result of testing (or reasoning) of consistency is

presented in the following lines (non rendered ~EX scripts).

Beginning proof of ...

allValuesFrom(Person, locatedin) =Indoor

"* allValuesF'rom(Person, locatedin) = Outdoor

A ssu1ning OutDoor Indoor Disjoint generates ...

(!ndoor, Outdoor) E disjoint With

1\ allValuesFrom(Person, locatedin) =Indoor

"* allValuesFrom(Person, locatedin) = Outdoor

Substituting allValuesProm(Person, locatedin) =Indoor produces ...

(Indoor, Outdoor) E disjoint With

1\ allValuesFrom(Person, locatedin) = Indoor

"* Indoor = Outdoor

Proving gives ...

Location = Indoor

"* Indoor = Outdoor

ZIEVES returns with Indoor = Outdoor (see Appendix E Figure E.l). This

means that the goal contains a contradiction. This is because previously Planned and

deduced are defined to be disjoint each other. Regarding to DLs semantics, value

restriction defines individual of a class Indoor for which holds that if the pair (x, y)

is the value of property locatedin (property concerned), then y should be an instance

of the class Indoor. Since Indoor is disjoint with Outdoor, hence the the value of

property locatedin, should not be an instance of the class Outdoor. Regarding to

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 76

proof given by ZJEVES, our context model contains inconsistent class, hence class

disjointness should be removed between class Indoor and Outdoor with respect to

the property concerned of locatedfn. The preparation and process in Figure 5.1 can

be repeated again.

4.4.2 Subsumption Checking

The task of subsumption checking is to infer that a class definition is sub class of

another class, or to obtain the taxonomy of knowledge, such that C !;;; D i.e. cr ~ DI

iff I J= 0, where 0 is the ontology. In other words, subsumption checking discovers

concept inclusion.

Previously, an entity Person is defined as a sub class of Class:

Person, Network,

Activity, Location, Device : Class

(Person, Thing) E subClassOf

and a Profile entity is also decalred as a sub class of Lecturer:

Lecturer, Student, Postgmd, Staff, Profile: Class

(Student, Person) E subClassOf

((rule LecturerlnPerson))

(Lecturer, Person) E subClassO[

((grule ProfilelnLecturer))

(Profile, Lecturer) E subClassOf

Thus, the goal is defined, i.e. to prove the inclusion that the class Person is super

class of class Profile. The two assumption rules are then recalled , and the command

prove by reduce are then recalled as well to find out the solution.

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY

proof

try (Profile, Person) E subClassOf;

use Lecturer!nPerson;

use ProfilelnLecturer;

reduce;

•

77

Having executed the prover command, Z/EVES concludes that (Profile, Person) E

subClassOf (see Appendix E Figure E.2).

4.4.3 Instantiation Checking

Instantiation checking asserts that an individual is an instance of a class. It is demon

strated through an example that Z/EYES can also perform instantiation checking in Z

specification of context model.

In the Z notation of context ontology specification, NOVELNETWARE id de

clared as an instance of class Server. This is to describe the situation in which a

person has to login to this server first prior to using network resource in our depart

ment, such as accessing Intranet or Internet resource. Thus, the instance of Server is

specified as follows:

NOVELNETWARE: Individual

((grule Serverlnstance))

NOVELNETWARE E instances(Server)

To test the instance assignment of a class, the try command of Z/EYES is used,

followed by provebyreduce command. Upon running Z/EVES to test this instance

assignment, Z/EVES is able to detect that NOVELNETWARE is instance of Server

concept, and it returns true (see Appendix E Figure E.3).

proof

tn; NOVELNETWARE E instances(Server);

prove by reduce;

•
Another proof of instantiation reasoning will be presented as well. From the

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 78

given individual DOl is the instance of class ClassRoom. The assumption label rule,

((DOlinClassRoom)) is also defined to test the consistency of the axiom later on dur

ing the proofing process. The Z specification of this instance DOl is given as follow:

... , DOl, ... : Individual

((grule DO I inCiassRoom))

DOl E instances(ClassRoom);

D02 E instances(ClassRoom);

Previously, specification of ClassRoom and Room entity should also be declared,

and the rule label ((ClassRoominRoom)) is used to test the axiom during the proof

process .

... , ClassRoom, Room, ... : Class

((grule ClassRoominRoom))

(ClassRoom, Room) E subClassOJ

(OfficeRoom, Room) E subClassOf

.,

Another definition to be used during the proof process needs to be issued as fol

lows:

Definition 4.1. Let c, d E C be class name, c !;;; d, and i E c,.z be individual. If i is

instance of cit implies that i is also instance of d or i : d.

The Definition 4.1 is then written in Z specification as Z theorem as follow.

theorem grule instancesubclass

'V c, d : Class; ind : Individual • (c, d) E subClass Of 1\

ind E instances(c):;. ind E instances(d)

The following goal needs to be issued as well: DOl E instances(Room). The in

tention is to test the inconsistency of the above (Z specification) definitions. The goal

issued is to prove that if DOl belongs to ClassRoom, then it also belongs to its super

class, i.e. Room. The proof command, includinng sequence of Z proof command, to

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY

test the axiom should be prepared in l1T!Y(as follows:

proof

try DOl E instances(Room);

use DOl inClassRoom;

use ClassRoominRoom;

use instancesubclass[c :=ClassRoom, d :=Room, ind :=DOl];

prove by reduce;

•

79

and having proved such commands, VEVES returns true (see Appendix E Figure

E.4)

Another example is also given i.e. to address the process of individual property

reasoning with has Value syntax. In the beginning of this section, it is known that

NOVELNETWARE is the server than a person has to login prior to using the Net

work resource. The OWL semantic model to express such condition is declared as

follows:

<owl:Class rdf:about=''#Server">

<rdfs:subClassOf>

<owl:Class rdf:about="#NetworkDevice"/>

</rdfs:subClassOf>

<owl:equivalentClass>

<owl:Restriction>

<owl:hasValue>

<cdf:Server rdf:about="#Netware''/>

</owl:hasValue>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#log!nto''/>

</owl:onProperty>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

Either in the DLs model or OWL model of CIS context ontology, it is already

defined that the class Lecturer is sub classes of class Person. It is required to know

whether a lecturer has to login to the novel netware server if she/he wants to use the

network resource. In Z specification, the above goal is established as follows: try

hasValue(Lecturer,loginTo) = NOVELNETWARE. By issuing the test commands for

4.5. CHAPTER SUMMARY 80

proofing purpse, ZIEVES returns the above goal to be true. The screenshot of proofing

process is provided in Appendix E Figure E.5.

proof

try has Value(Lecturer, login To) = NOVELNETWARE;

use LecturerfnPerson;

use subclass Has Value;

[c :=Lecturer, d :=Person, p :=login To, ind := NOVELNETWARE];

prove by reduce;

•
It is demonstrated that ZIEYES is able to check and reason instantiation, which

means that instantiation checking of context ontology model have been performed be

yond the semantic web reasoner, and all individuals are proved to be the membership

of a class.

4.5 Chapter Summary

The main contribution of this chapter can be summarized as follows:

I. This chapter addresses the development of context ontology using Z notation.

The context ontology is taken from the previous Chapter 3, and mapped onto Z

notation by using the OWL-Z syntax and semantics (OWL-Z).

2. It is shown that the separation of modeling language to develop context ontology

model has been addressed in this thesis. Modeling language for design I spec

ification is distinguished from the modeling language for application run-time

(or implementation) purpose. In another word, separation of modeling language

also requires an alternative method to check I validate the model. Context on

tology checking in this chapter has been performed beyond the current semantic

web reasoning tool.

3. Previously, in Chapter 3, ontology checking is carried out in OWL semantic

web environment. For the context ontology which is prepared in OWL format,

semantic checking is carried out using Pellet, the OWL DL reasoner. For context

ontology in Z formal notation, therefore, to validate the correctness of ontology,

Z/EVES tool is used. The undetected error of concept in Chapter 3 could be

discovered in Z/EVES environment, and the source of error could also been

4.5. CHAPTER SUMMARY 81

displayed. It shows that ZIEVES (Z theorem prover) has the ability to perform

ontology checking, the task that is usually done by semantic web reasoner.

The next chapter will be presenting the discussion on the process of developing

context ontology using semantic web language and formal specification. It will be

shown that formal specification technique is proposed as complementary technique to

detect inconsistency of context ontology, thus the refinement process could take place

upon detecting the inconsistency.

Chapter 5

Discussion

This chapter presents the discussion on the overall process of developing context on

tology using semantic web language and formal specification. The reflection on the

proposed methods ends the discussion on this chapter.

5.1 Context Development Process

As with the conducted survey in [I], the list of context modeling approaches are quite

comprehensive. It was also observed that the further emerging approaches might exist

in the following decades. To date, it can be concluded that the most promising method

for context modeling is using ontology. However, this does not mean that the other

approaches are unsuitable for ubiquitous computing environments.

In the previous context ontology modeling approach, as proposed in [4]-[3]-[5]

[7], they defined semantic web as the executable format or to be executed directly by

application run-time (or for implementation level purpose). During the ontology de

velopment, they rely on the semantic web reasoner to check the correctness of context

ontology being designed.

This thesis proposes a formal specification technique as a complementary ap

proach to the semantic web ontology modeling. Figure 5.1 shows the context ontology

development process presented in this thesis. Context requirement capturing (process

CD in Figure 5.1), DLs representation and OWL semantic web definition (process CD
in Figure 5.1) are presented in Chapter 3.

The context ontology development approach in this thesis leads to the use of for

mal specification technique (process G) in Figure 5.1) that suits to check the correct

ness of ontology beyond the semantic web model. Mapping process to generate Z

specification from OWL context ontology is presented in Chapter 4. The prepared

82

5.2. CONTEXT MODELING USING OWL 83

Figure 5.1: Process of developing context ontology in this thesis

OWL semantic web format is mapped to formal specification to enable reasoning pro

cess using formal verification technique, e.g. in Z/EVES environment. Refinement of

context ontology will take place once the formal verification process discovered in

consistency concept. Afterward, the refined semantic web model of context ontology

can then be prepared for instantiation process, or to be used directly by application

run-time (process 0 in Figure 5.1). To conclude, this thesis proposes formal verifica

tion technique as a complementary step to develop context ontology.

5.2 Context Modeling Using OWL

Formalizing context ontology in OWL not only contains the vocabularies of concepts,

but involving relationships among them as well. OWL semantic web allows us to

achieve this goal in two steps. First, it allows us to define concepts and their inter

relationships, e.g. describing person, location, devices. etc in our context ontology.

Second, it allows us to define instance data pertaining to some specific class.

The strengths of visual ontology modeling as used in Chapter 3 are definitely help

ful on the modeling context ontology. To date, Swoop version 2.3, as well as Protege

version 4, is connected to Pellet OWL DL semantic web reasoner. The feature to visu

alize context ontology in OWL semantic web language could assist the context-aware

designer to define context ontology along with checking process, hence the inconsis

tency can be detected at the early modeling process.

By benchmarking both ontology editor mentioned above, Swoop has more strength

point in modeling and evaluating the ontology.

1. Swoop has the interface to show the axiom causing the inference result after rea

soning process, such for subsumption and instantiation checking. The example

of this feature is depicted in the Figure 5.2.

2. Upon detecting the inconsistency, Swoop can show the source of inconsistency

and come up a proposed options to fix the inconsistency (see Figure 5.3). This

5.2. CONTEXT MODELING USING OWL

OWL-Clan: lSfrn

Intersection of: ~
{jtlrurrentAcrjyjty. (.., ~) (~
~(llO!m)

Subdass of: (8ml)
~ (lle.l.at.a)
©E!JmJxl (Yih:ill

Axioms causing the Inference
Fr~e ~ Person:
1) (~!!! cdE1rurrentActiyjty. (-.~) ~)

Figure 5.2: Explanation of axioms causing the inference in Swoop

84

is a very promising feature for rapid context ontology development using OWL

semantic web model. ..
.._, ---

.......... _ ... __
= 1)(~1(&1~) - ,,.~-·~:~
~-:=... l){S-'Ill:l:i.U:IIQI~)

. ' .
\ln;(I.J

li-~r-s==~II•Jt'J·nu•r:l!lrmtrnAUjm.l~'~lll = 5). [_(.f.'wJ I IUJ!lom .(~Q!I(MrzWM'inolv (J!lnmrtN!Ixp .'~)
ri~J

o) t_fS.biJ:c~t?t~~:~r

7) Li'-?lw c~~~

. . - .. . ·--(1)) --(11 EJt.i--

-··- -·- ... Jo--... s---
·-· :~o~omo~c-1 ::::tal ll<t'<:>=l r_.c 11 v<~o: .u

PRE\IIEW:
U•o•d<n•~l• F",_.<I:O_;14
EnC•U..•h t.o.t: 0 ~:'

2: ~ J.i 2.4 [fJ(l] :

z z t o.•o tr.Hu 1

' z D. 30 1.2 lt!W ' 1

z • tua:lall-'. I
.1 -1.7 l

z z z o.~

'"''~ z • ·>' '"''~
' ·>' '"'"' ·~

Figure 5.3: Depicting the source of error and option to fix

To conclude, OWL semantic web language provide a standard representation to

structure contextual information. OWL can associate semantics to represent concepts

like class hierarchy, sets, restriction on class, etc. Using this semantics, the inference

engine application can act upon OWL document to derive fact, to answer the query

about semantic entity, and to deduce the context upon the reasoning process.

The OWL Web semantic web language is designed to be used directly by applica

tion entity that needs to process the information instead of just presenting information

to human. For this purpose, OWL facilitates machine interpretability of document

content than that supported by XML, RDF, and RDF Schema (RDF-S)[63].

5.3. ONTOLOGY EXPRESSIVENESS 85

5.3 Ontology Expressiveness

Practically, the existing OWL semantic web editor and OWL reasoner could be used to

get the statistic and expressiveness of ontology being modeled. To do so, the modeling

approach provided in this thesis, Swoop and Protege editor are connected to Pellet

OWL DL reasoner. Those tool could reflect the statistic and expressiveness of our

semantic web model, as depicted in Figure 5.4 .

. a..- -- -- -- .. -

~--- ----IJ-~ :~....;~-~ -;l5
011100"11___ l

.~-- - .
GCI-..1 0
I· - '
-GO CAI1I ,20 . - ·- . - - - -- -- ----~-~~~M--------,.---,

•• --- + j
f--GIIIOCI~-- 0

·-·""'""'"'~--·- -~ I ~~~P,.;:~_..;.... :a
,~ablocl~-- :a
!r'w.Mfu'w:tlonolablocl~-- 'o . - .
~Tt-ablocl~-~ ~
'-cOiod~-- 0

~~ablocl~,.;.....- :o
~~~....,~-- a 
>-~- - - --- ; 
lnol.-ablocl~v-co.rt o 

Figure 5.4: Semantic Web Statistic of CIS Context Model, rendered by Pellet OWL 
DL Reasoner through Protege Editor 

As can be seen in Figure 5.4, OWL semantic web model of CIS context ontology 

conforms to SHOIN(D) family. The language family or expressiveness of DLs are 

determined by language constructors and axioms we use, as described in Chapter 3. 

The summary of axioms that form expressiveness in CIS context model are in the 

following table. 

5.4 Reflection on the Proposed Method 

Compared to the semantic web reasoning tool, the apparent disadvantage of ZJEVES 

is that it has a lower degree of automation and can only perform reasoning tasks inter

actively. 

Prior to verify the Z specification of context ontology, some assumption rule labels 

have to be defined, including the theorem, and calling all relevant assumption rule and 



5.4. REFLECTION ON THE PROPOSED METHOD 86 

Table 5.1: Context Ontology Statistic 

Name DLs Syn- Axiom Example Language 
tax 

Top T 6" A£ 
Bottom ..L 0 A£ 
Atomic Concept A Location AL 
Atomic Role R currentActivity A£ 
Disjoint ~c Hardware = ~ Software c 
Intersection CnD 3 run. Browser n A£ 

3 connectedTo.Internet 
Value Restriction 'IR.C 'I currentActivity .Planned A£ 
Existential Quant. 3R.C 3 located in. Location A£ 
number restriction :0:: nR ;::: 2.run N 
Role-value Rf;S run~ use 1t 
Nominal I 'I login To.{ Netware) 0 
Inverse Role \-IR use .,;\ -1 ownedBy I 
Transitive Role \+IR \+lconnectedTo ALC+ Tran-

sitive Role = 
s 

theorem for the proofing process. It is because of ZJEVES is general theorem prover, 

not only intended to check the conceptual specification like ontology, but can also be 

used to check another logical theorem. With regard to semantic web checking, the 

overall checking process are automatically performed by OWL reasoner, hence the 

designers no need to prepare assumption rule like in ZJEVES tool. 

As can be seen from the last section in Chapter 4, the proof process using ZJEVES 

approach is very interactive and it requires substantial user expertise in interacting 

with the theorem prover. Although Semantic Web reasoners such as FaCT++ and 

Pellet can only carry out with a limited number of reasoning tasks (concept consis

tency, subsumption and instantiation reasoning), due to the expressivity limitation of 

the ontology languages, they are fully automated reasoners. It is advantageous to use 

semantic web reasoners to perform reasoning tasks that can be automated. 

However, the high degree of expressiveness of Z language implies that it can cap

ture properties beyond the OWL ontology languages and applying ZJEVES to check 

ontologies will give us more confidence on the correctness of ontology. Moreover, 

since ontology languages are based on description logics, certain complex properties 

cannot be represented in the semantic web language. It is required to express and 

verify the desirable properties, which may be critical to assure the correctness of the 

ontology. 

Comparing the language or notation used to develop context ontology, Z speci-



5.5. CHAPTER SUMMARY 87 

fication is not intended for application-run time (not executable format). Instead of 

that, context ontology in Z is designed to be expressive and human understandable for 

formal specification purpose. Due to its feature, Z formal specification is suitable for 

complementary approach to specify and check ontology beyond the OWL semantic 

web modeling. On the contrary, OWL notation is intended to be executable formal, 

because it is written on top of XML notation. Hence, during the implementation phase, 

the context-aware developer can directly execute ontology in OWL format by using 

the available OWL APis. 

5.5 Chapter Summary 

In the previous context ontology modeling approach, during the ontology develop

ment, the semantic web reasoner is used to check the correctness of context ontology 

being modeled. In Chapter 4, the Z notation of context ontology model has been spec

ified, which is generated by mapping from the OWL semantic web context ontology 

version. 

Some limitations have also been identified, where the complementary checking 

still needs more user interaction in term of defining rule, theorem and command to 

perform semantic checking in ZJEVES environment. Comparing to semantic web rea

soner, all semantic checking process are performed automatically once the ontology 

has been written completely. In the next chapter, the conclusion and future research 

direction will be presented, which formally conclude the research work presented in 

this thesis. 



Chapter 6 

Conclusion and Future Works 

This final chapter presents a conclusion of the whole thesis, including the summary of 

contributions, followed by recommendations on future work, including limitation of 

our research work. 

This thesis concludes that the method of context modeling approach for distributed 

and ubiquitous computing environments with respect to the requirements listed in 

Chapter 3 can be accommodated by ontology model. However, this does not mean 

that the other approaches are unsuitable for ubiquitous computing environments. 

To develop context ontology model, OWL Semantic Web Language has been de

fined that was derived from DLs conceptual model. Semantic web is chosen since it 

is currently promising context model for the implementation or application run-time 

purpose. 

The syntax and semantic of OWL-Z is used to map semantic web version of CIS 

context ontology onto Z formal specification. Z notation was chosen as a formal 

specification language, since the semantics of OWL language could be expressed in Z 

specification language. 

Current version of Swoop editor is combined with Pellet OWL DL reasoner to 

carry out semantic checking of OWL context ontology. It was demonstrated that 

Swoop OWL editor is a very helpful to since it provides features to quickly model 

a very complex ontology. Swoop is connected to Pellet reasoner, therefore, the cor

rectness of OWL context ontology can be carried out on the fly. During the modeling 

process, context ontology needs to be refined to achieve the consistent ontology model. 

In this thesis, ZIEVES theorem prover is used to carry out semantic checking 

of context ontology model in Z notation. It was demonstrated that validation of Z 

specification of context ontology surprisingly could be performed beyond the semantic 

web reasoner. It was also demonstrated that ZIEVES theorem prover was able to detect 

88 



6.1. THESIS CONTRIBUTION 89 

the inconsistency error that was presence in the previous OWL version of context 

ontology. 

6.1 Thesis contribution 

The contributions of this thesis can be summarized as follows: 

l. Thesis address context ontology development approach by employing formal 

specification as a complementary technique to specify and verify context on

tology. By defining this context ontology development process, the refinement 

of context ontology is performed by utilizing formal specification technique. 

Thus, any inconsistency error that was undetected by semantic web reasoner is 

hopefully to be discovered by means of this formal specification technique. 

2. The use of Z formal notation is proposed in this thesis as the complementary 

technique to specify context ontology (see Chapter 4 ). By mapping semantic 

web ontology onto Z notation, this has enabled formal methods tool (theorem 

prover tool such as ZIEVES) to perform semantic checking and reasoning be

yond semantic web reasoner. The use of formal specification language also 

affects to the separation of modeling language. Modeling language used by 

context developer for application run-time (implementation purpose) is distin

guished from language used by context designer for specification/design con

cern. Well defined context ontology in semantic web language (after refined) is 

then prepared for the context developer to further develop context-aware appli

cation. Meanwhile, the Z specification of context ontology model is prepared 

for the refinement process of ontology model using formal specification tech

nique. 

3. It was demonstrated in this thesis that the validity of context ontology model 

can be checked by means of ZIEVES tools. It was shown in Chapter 3 that the 

inconsistency of context ontology cannot be detected by current Pellet OWL DL 

reasoner. Having mapped onto Z notation and performed semantic checking in 

ZIEVES tool, this tool could discover inconsistency in context ontology, such as 

explained in Chapter 4. Z /EVES could also display the source of inconsistency 

in context ontology definition. 



6.2. FUTURE WORK DIRECTIONS 90 

6.2 Future Work Directions 

Based on the works in this thesis, there are a number of directions of future research 

that may be beneficial to the Context-Aware Community and Semantic Web Commu

nities. 

1. In this thesis, context ontology is constructed which conforms to SHOIN(D) 

family. For further research, it is feasible to construct more expressive context 

ontology. Consequently, the OWL-Z syntax and semantics have to be redfined to 

accommodate the expressiveness of ontology language (beyond SHOIN(D), 

or using OWL 2 language construct SHR.OIQ(D)) 

2. Another interesting follow-up is how to model ontology that will involve in 

dynamic context-aware interaction system. The interaction system, including 

its ontology, should be prepared in formal specification manner. Further, the 

mapping onto implementation language can then be provided as well. 

3. This thesis excluded an automatic tool to map context ontology in OWL se

mantic web onto Z specification. This transformation tool is another research 

interests that can be addressed in the future work, such as by utilizing XSLT 

technology. 

4. This thesis excluded the implementation or development of context-aware sys

tem. For further implementation, many of context-aware application frame

works are available for free and our context ontology model can be attached 

after doing some modifications I adjustments. 



References 

[I] T. Strang and C. Linnhoff-Popien, "A context modeling survey," in Workshop on 

Advanced Context Modelling, Reasoning and Management as part of UbiComp 

2004- The Sixth International Conference on Ubiquitous Compllling, September 

2004. 

[2] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca, "A data

oriented survey of context models," Journal of ACM SIGMOD, vol. 12, no. 36, 

pp. 19-26, December 2007. 

[3] H. Chen, T. Finin, and A. Joshi, "An ontology for context-aware pervasive com

puting environments," Journal of The Knowledge Engineering Review, vol. 18, 

no. 13, pp. 197-207, September 2003. 

[4] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, "Ontology based context mod

eling and reasoning using owl," in Proceeding of the second IEEE Annual Con

ference on Pervasive Computing and Communication Workshops (PERCOMW 

04), 2004. 

[5] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, "An ontology-based context 

model in intelligent environments," Department of Computer Science, National 

University of Singapore, Singapore, Tech. Rep., 2005. 

[6] T. Gu, H. K. Pung, and D. Zhang, "A service-oriented middleware for building 

context-aware services," Elsevier Journal of Network and Complller Applica

tions, vol. 28, no. I, pp. 1-18, 2005. 

[7] D. R. de Almeida, C. de Souza Baptista, and F. G. de Andrade, "Using ontologies 

in context-aware application," in Proceeding oft he 17th International Conference 

on Database and Expert System Applications (IEEE DEXA 06), 2006. 

[8] K. Jensen, Coloured Petri Net. basic Concept, Analysis Methodsand Practical 

Use. Springer, 1997. 

91 



REFERENCES 92 

[9] R. Sharp, Principle of Protocol Design. Springer-Verlag, 2008. 

[I 0] D. Bj~mer and M. C. Henson, "An overview of specification language," in Logics 

of Specification Longuages. Springer, 2008, pp. 3-12. 

[I I] N. Nissanke, Formal Specification: Technique and Applications. Springer-

Verlag, London, 1999. 

[ 12] J. Bowen, Formal Specification and Docume/llation using Z: A Case Study Ap

proach. Open University, UK, 2003. 

[13] J. S. Dong, C. H. Lee, H. B. Lee, Y. F. Li, and H. Wang, "A combined approach 

to checking web ontologies," in Proceeding of 13th ACM 1memational World 

Wide Web Conference (WWW'04). New York, USA: ACM Press, May 2004, 

pp. 714-722. 

[14] J. S. Dong, Y. Feng, and Y. F. Li, "Verifying owl and orl ontologies in pvs," 

in Proceeding of 1st International Colloquium on Theoretical Aspects of Com

puting (/CTAC'04), val. 3407. Guiyang, China: Springer-Verlag, 2005, pp. 

265-279. 

[15] J. S. Dong, J. Sun, and H. Wang, "Z approach to semantic web," in !CFEM 2002, 

C. George and H. Miao, Eds., val. LNCS 2495. Berlin: Springer-Verlag, 2002, 

pp. 156-167. 

[16] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang, "Verifying daml+oil and beyond 

in zleves," in Proceeding of 26th International Conference on Software Engi

neering (/CS£'04). Edinburgh, Scotland, UK: ACMIIEEE Press, 2004, pp. 

201-210. 

[17] H. Wang, J. S. Dong, J. Sun, and J. Sun, "Reasoning support for semantic web 

ontology family languages using alloy," International Journal of Multiagent and 

Grid Systems, Special issue on Agent-Oriented Software Development Method

ologies, val. 2, no. 4, pp. 455-471, December 2006. 

[18] B. N. Schilit, N. I. Adams, and R. Want., "Context-aware computing applica

tions," in Proceedings of the Workshop on Mobile Compwing Systems and Ap

plications, December 1994, pp. 85-90. 

[19] A. K. Dey, "Understanding and using context," Journal of Personal Ubiquitous 

Computing, val. 5, no. I, pp. 4-7, February 2001. 



REFERENCES 93 

[20] S. Loke, Context-Aware Pervasive System: A New Breed ofApplications. Auer

bach Publication, 2006. 

[21] H. V. Kranenburg, A. H. Salden, H. Eertink, R. van Eijk, and J. de Heer, "Ubiq

uitous attentiveness- enabling context-aware mobile applications and services," 

in £USA!, 2003, pp. 76-87. 

[22] Q. Weijun, S. Yuanchun, and S. Yue, "Ontology-based context-aware middle

ware for smart spaces," Journal of Tsinghua Science and Technology, vol. 12, 

no. 6, pp. 703-711, December2007. 

[23] C. B. Anagnostopoulos, A. Tsounis, and S. Hadjiefthymiadesl, "Context

awareness in mobile computing environments," Journal of Wireless Personal 

Communications, vol. Volume 42, no. Number 3, pp. 445-464, August 2007. 

[24] E. Kim and J. Choi, "An ontology-based context model in a smart home," in 

Proceedings of lmernational Conference in Computational Science and Its Ap

plications -ICCSA 2006, vol. 3983. Springer, May 8-11 2006, pp. 11-20. 

[25] R. Krummenacher and T. Strang, "Ontology-based context modeling," in Pro

ceedings of Context Awareness for Proactive Systems (CAPS 2007), Guildford, 

United Kingdom, 2007. 

[26] W. Hai, "Semantic web and· formal design methods," Ph.D. dissertation, Depart

ment of Computer Science, National University of Singapore, 2004. 

[27] Y. F. Li, "A formal modeling approach to ontology engineering," Ph.D. disserta

tion, Department of Computer Science, National University of Singapore, 2006. 

[28] D. Lucanu, Y. F. Li, and J. S. Dong, "Soundness proofofz semantics of owl using 

institutions," in Proceeding of 14th International World Wide Web Conference 

(WWW'05). Chiba, Japan: ACM Press, 2005. 

[29] C. Lucanu, Y. F. Li, and J. S. Dong, "Semantic web languages toward an institu

tional perspective," Journal of Algebra, Meaning, and Computation, vol. LNCS 

4060,pp.99-123,2006. 

[30] K. Henricksen, J. Indulska, and T. McFadden, "Modelling context information 

with orm," On the Move to Meaningful Internet Systems Journal, pp. 626-{)35, 

2005. 



REFERENCES 94 

[31] K. Henricksena and J. lndulska, "Developing context-aware pervasive comput

ing applications: Models and approach," Journal of Pervasive and Mobile Com

puting, vol. 2, pp. 37-64, 2006. 

[32] A. Borgida and R. 1. Brach man, "Conceptual modeling with description logics," 

in The Description Logics Handbook: Theory, Implementation and Application. 

Cambridge University Press, 2004, ch. I 0. 

[33] P. F. Patei-Schneider, P. Hayes, and I. Horrocks, "Web ontology language (owl) 

abstract syntax and semantics section 3. direct model-theoretic semantics," W3C, 

W3C, W3C Recommendation, 2004, http://www.w3c.orgffR/owl-semantics/. 

[34] B. Remmache, "Specification and analysis of context-aware system," Ph.D. dis

sertation, Dependable Systems and Software Engineering, School of Electronics 

and Computer Science, University of Southampton, October 2007. 

[35] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, 

"Towards a better understanding of context and context-awareness," in Proceed

ing 1999 1st International Symposium on Handheld and Ubiquitous Computing, 

1999, pp. 304-307. 

[36] S. Domnitcheva, "Location modeling: State of the art and challenges," in Work

shop on Location Modeling for Ubiquitous Computing Ubicomp 2001, 200!. 

[37] T. Strang, C. Linnhoff-Popien, and K. Frank, "Integration issues of an ontology 

based context approach," in Proceedings of the lAD IS International Conference 

WWW/Intemet 2003, ICWI 2003, Portugal, 2003, pp. 361-368. 

[38] D. Zhang, T. Gu, and X. Wang, "Enabling context-aware smart home with se

mantic technology," International Journal of Human-friendly Welfare Robotic 

Systems, vol. 6, no. 4, pp. 233-248, 2005. 

[39] T. Gu, H. K. Pung, and D. Zhang, ''Towards an osgi-based infrastructure for 

context-aware applications in smart homes," Journal of IEEE Pen•asive Com

puting, vol. 3, no. 4, 2004. 

[40] J. C. Augusto and C. 0. Nugent, Smart Homes Can Be Smarter. School of 

Computing and Mathematics, University of Ulster at Jordanstown, UK: Springer 

Verlag, 2006, ch. I, pp. 1-15. 

[41] C. L. Gal, Smart Office. Wiley, 2005, ch. Chapter 14, p. 323. 



REFERENCES 95 

[42] M. Schmidt-SchauB and G. Smolka, "Attributive concept descriptions with com

plements," Journal of Artijiciallntelligent, val. 48, no. I, pp. 1-26, 1991. 

[43] F. Baader, R. Kusters, and F. Wolter, "Extension to description logics," in The 

Description Logics Handbook: Theory, Implementation and Application. Cam

bridge Uniersity Press, 2004, ch. 6. 

[44] J. de Bruijn, A. Polleres, R. Lara, and D. Fensel, "Owl-dl vs. owl flight: 

Conceptual modeling and reasoning for the semantic web," in Proceedings of 

the 14th International conference on World Wide Web, November 2005, pp. 623 

- 632. [Online]. Available: http://www.deri.ie 

[45] S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, 

M. Klein, and S. Melnik, "The semantic web: The roles of XML and RDF," 

IEEE Internet Computing Journal, val. 4, no. 5, pp. 63-74, 2000. [Online]. 

Available: http://www.compuler.org/internell 

[46] A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau, "Swoop: A web ontology 

editing browser," Journal of Web Semantics, vol. 2, p. 144?53, 2006. 

[ 47] K. K. Breitman, K. K. Breitman, and W. Truszkowski, Semantic Web: Concepts, 

Technologies and Applications, M. Hinchey, Ed. Springer Verlag, 2007. 

[48] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, "Reasoning in description 

logics," Journal of Principles of Knowledge Representation and Reasoning, pp. 

193-238, 1996. 

[49] I. Horrocks, P. F. Patei-Schneider, and F. van Harmelen, "From SHIQ and RDF 

to OWL: The making of a web ontology language," Journal of Web Semantics, 

vol. I, no. I, pp. 7-26, 2003. [Online]. Available: download/2003/HoPH03a.pdf 

[50] R. J. Brachman and H. J. Levesque, Knowledge Representation and Reasoning. 

Elsevier B.V, 2004. 

[51] 6. Corcho, A. G6mez-Perez, R. Gonzalez-Cabero, and M. del Carmen Suarez

Figueroa, "Odeval: A tool for evaluating rdf(s), daml+oil and owl concept tax

onomies," in Proceeding of Artijiciallntelligence Applications and Innovations, 

IFIP 18th World Computer Congress(A/AI-2004), 2004, pp. 369-382. 

[52] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, "Pellet: A practical 

owl dl reasoner," Journal of Weh Semantics, vol. 5, no. 2, p. 51 ?3, 2007. 



REFERENCES 96 

[53] D. Tsarkov and I. Horrocks, "Fact++ description logic reasoner: System descrip

tion," Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4130 LNAI, pp. 

292-297' 2006. 

[54] "Renamed abox and concept expression reasoner," August 2008. [Online]. 

Available: http://www.sts.tu-harburg.de/-r.f.moeller/racer 

[55] "Pellet owl -dl reasoner," August 2008. [Online]. Available: http://www.pellet. 

org 

[56] "Protege owl editor," August 2008. [Online]. Available: http://protege.stanford. 

edu/ 

[57] "Swoop owl dl editor," August 2008. [Online]. Available: http://www. 

mindswap.org/2004/SWOOP/ 

[58] J. Jacky, The Way of Z: Pracical Programming with Formal Me/hods. Cam

bridge University Press, 1997. 

[59] J. M. Spivey, The Z Nota/ion: A Reference Manual, 2nd ed., ser. International 

Series in Computer Science. Prentice-Hall, 1992. 

[60] I. Meisels and M. Saaltink, "The zleves reference manual," ORA Canada, One 

Nicholas Street, Suite 1208- Ottawa, Ontario KIN 7B7- CANADA, Technical 

Report TR-97-5493-03d, September 1997. 

[61] S. Bechhofer, F. van Harmel en, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. 

Patei-Schneider, and L. A. Stein, "OWL Web Ontology Language reference," 

W3C Recommendation, 10 February 2004, http://www.w3.org/TR/owl-ref. 

[62] F. Baader and U. Sattler, "An overview of tableau algorithms for description 

logics," Journal of Studia Logica, pp. 5-40, 2001. 

[63] D. L. McGuiness and F. van Harmelen, "Owl web ontology language 

overview," W3C, Tech. Rep., 2004. [Online]. Available: http://www.w3c.org/ 

TR/owl- features/ 



Appendix A 

DLs Specification of CIS Context 

Model 

Domain interpretation= t,T 

Following is high level concept of CIS Context Model 

(Location, Person, Activity, Device, Network) !;;;; (:,'I 

A.l Person Conceptual Model 

Following is definition of Person concept and its related roles restriction. 

(Lecturer, Staff, Postgrad, Student) !;;;; Person 

Person n 'r/ use.Device 

Device n 'r/ ownedBy.Person 

Person n 'r/ locatedln.Location 

Person n 'r/ currentActivity.Activity 

Person n 'rl loglnto.Server 

Server= 'rl login To( {NETWARE}) 

2: 2.run 

= 1. currentA ctivity 

Person n 'r/ connectedTo.Device 

Person n 'r/ connectedTo.Network 

97 



A.2. LOCATION CONCEPTUAL MODEL 

A.2 Location Conceptual Model 

Following is definition of Location concept and its individuals. 

(Indoor, Outdoor) [;;: Location 

(Longitude, Latitude) [;;: Outdoo·r 

(Room, Building) [;;: Indoor 

(Room) [;;: Building 

ClassRoom, SeminarRoom, LectureHall, MeetingRoom, 

OfficRoom, Lab) [;;: Room 

98 

ClassRoom= ( {COl}, { C02}, { C03), { C04}, { C05}, { C06}, {DOl), { D02}, 

{D03}, {D04}, {D05}, {D06}) 

LectureHall = ({LI10l}, {LI102}, {£1103}, {£1104}, {£1104}, {LI106}) 

Meeting Room= ( {010310}, {010210}, {0203010}) 

OfficeRoom = ({LECTUREROOM}, {POSTGRADROOM}) 

Laboratory:: ({DATACOM}, {MULTIMEDIA}, {PROGRAMMING}, { VR}) 

SeminarRom = ( {010202}, {010310}) 

Indoor n V equiped With. Desktop 



A.J. DEVICE AND NETWORK CONCEPTUAL MODEL 

A.3 Device and Network Conceptual Model 

Following is definition of Device concept. 

(MobileDevice, Desktop, NetworkDevice) ~ Device 

(Laptop, PDA, MobilePhone) ~ MobileDevice 

(Software, Hardware)~ Laptop 

Software ~ ~ Hardware 

(Software, Hardware)~ PDA 

(Software, Hardware)~ Desktop 

(Software, Hardware)~ MobilePhone 

(ApplicationRun, ProcessRun) ~Software 

(EmailApp, OfficeApp, lnternetApp) ~ ApplicationRun 

(Browser, EmailClient, 1M Application)~ lnternetApplication 

Browser= ( { FIREFOX), {MOZILLA}, {SAFARI}, {IE), {OPERA)) 

1M Application= ( {MSNChat), { YM), { GTALK}, {CAlM)) 

99 

EmailClient = ( {THUNDERBIRD), {OUTLOOK}, { WEBMAIL)) 

OfficeApp = ({ WORDPROCESSOR}, {PDFREADER}, {SPREADSHEET}) 

Process Run= ({ANTIVIRUS}, {SERVICE), {TRAY)) 

(AccessPoint, Server, Router)~ NetworkDevice 

Device n V connectedTo.Network 

( Wifi.Network, Server, GSM, 3G) ~Network 

GSM u 3G = ({DIG!}, {MAXIS}, { CELCOM)) 

Wifi.Network n 3 SSIDName.XSD 

Gateway= ( {160.0.226.202} 

Proxy= ( {160.0.226.206}, {160.0.226.207}, {160.0.226.208}, 

{160.0.226.19} 



A.4. ACTIVITY CONCEPTUAL MODEL 100 

A.4 Activity Conceptual Model 

Following is a definition of Activity concept and its sub classes. 

( PlannedActivity, DeducedActivity) !;;;; Activity 

(Meeting, Lecturing, Seminar, LabActivity, Tutotial)!;;;; PlannedActivity 

(Busy, Pree, Chating, Bowsing, Not_At_Office, Available, On_the_Phone, 

Opening_Email)!;;;; DeducedActivity 

A.S Axioms of Restriction 

Following is definition of axioms of class and property restrictions. 

Class Browsing Restriction 

Browsing= Person n \;/ connectedTo.Intentet n \;/ run.Browsern 

l;f connectedTo.Intemet 

Browsing= Vrun.({IE}, {FIREFOX}, 

{MOZILLA}, {SAFARI}, {OPERA}) n Person n l;f connectedTo.Intemet 

Class Busy Restriction 

Busy = Person n V run. OfficeApplication n V located.OfficeRoom 

Busy = Person n 3 currentActivity. Planned 

Pree !;;;; ~ Busy 

Class Chatting Restriction 

Chatting= Person n (V conectedTo.Intemet) n (3 run.IMApplication) 

Chatting= Person n (V conectedTo.Intemet) n (3 .run( { YM} U {CAlM} 

u{MSN} u {GTALK})) 

Class Not_At_Office Restriction 

NoLA t_Office = Person n l;f locatedfn.~ OfficeRoom 

Not_At_Office = Person n V located!n.~ ( { PostgradRoom}, { LectureRoorn}) 



A.6. CLASS AND ROLE DATA TYPE 101 

Class On,hephone Restriction 

On_the_Phone = Person n \1 use.MobilePhone n 3 connected To( GSM U 3G) 

Class Opening_Email 

Opening_Email = Person n (\/ conectedTo.Jnternet) n (3 run.EmailApplication) 

Opening_Email =Person n (\/ conectedTo.Jnternet) n (3 .run( { OUTLOOK}u 

{THUNDERBIRD} u { WEBMAJL}) 

A.6 Class and Role Data Type 

We assume that XSD is a class of data containing data type, because DLs notation 

has no definition of data type role (for implementation modeling like OWL, roles are 

distinguished for object and data type). Following is a definition of role restricted with 

XSD, which is used to describe a data type definition. 

(Lecturer u Staff u PostGrad u Student):: Person n 3fullName.XSD 

(Lecturer U Staff u PostGrad) =Person n 3 officeAddress.XSD 

(Lecturer u Staff U PostGrad U Student)= Person n 3 emailAddress.XSD 

(Lecturer u Staff u PostGrad u Student):: Person n 3 imAddress.XSD 

(Lecturer u Staff u Post Grad u Student)= Person n 3 phoneNumber.XSD 

( GSM u 3G) n \1 cellJD.XSD 

Indoor n \1 buildingName.XSD 

Indoor n \1 roomNumber.XSD 

Planned n \1 startTime.XSD 

Planned n \1 endTime.XSD 

Gateway n \1 gaewayJP .XSD 

Proxy n \1 proxy! P .XSD 

Outdoor n \llatitude.XSD 

Outdoor n \/longitude .XSD 

Hardware n \1 memorySize.XSD 

Software n \1 operatingSystem.XSD 

Hardware n \1 processorType.XSD 

( GSM u 3G) n \1 signalStrength.XSD 

Device n \1 ipAddress.XSD 



Appendix B 

Context-Aware Ontology Specification 

<?xml version•~l.O~?> 

<!DOCTYPE rdf:ROF [ 

I, 

<!ENTITY cis ~http://context.org/cisl~ > 

<!ENTITY owl "http://www.wJ.org/2002/07/owll" > 

<!ENTITY owlll "http://www.wJ.org/2006/12/owllll" > 

<!ENTITY xsd "http://www.wJ.org/2001/XMLSchemat" > 

<!ENTITY owlllxml "http://www.wJ.org/2006/12/owlll-xmll" > 

<!ENTITY rdfs "http://www.wJ.org/2000/01/rdf-schemal" > 

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-nsl" > 

<rdf:RDF xmlns•"http://context.org/cisf" 

x~l:base•"http://context.org/cis" 

x~lns:rdfs•"http://www.wJ.org/2000/01/rdf-schemal" 

xmlns:owlll•"http://www.wJ.org/2006/12/owlllt" 

xmlns:owlllxml•"http://www.w3.orgl20061121owlll-xmlf~ 

xmlns:owl•whttp:llwww.w3.orgl20021071owlfM 

xmlns:xsd•Mhttp:l/www.w3.orgi20011XMLSchemaf~ 

xmlns:rdf-~http:llwww.w3.orgll999102122-rdf-syntax-nsfM 

xmlns:cis•"http:llcontext.orqlcisl~> 

<owl:Ontoloqy cdf:about-~"1> 

<!--

111111111111111111111111111111111111111111111111111111111111111111111111 II 
II Object Pcoperties 

II 

llllllllllllllllllllllllllllll/llllllllllllllllll/1111111111111111111111 __ , 
<!-- http:llcontext.ocqlcislassociatedWith --> 

<owl:ObjectProperty rdf:about•"&cis;associatedWith"> 

<cdfs:ranqe rdf:resource•M&cis;AccessPointwl> 

<rdfs:DELTA rdf:resource-~&cis;WifiNetworkMI> 

</owl:ObjectProperty> 

<!-- http:l/context.orqlcisfconnectedTo --> 

<owl:ObjectProperty rdf:about-~&cis;connectedTo"> 

102 



<rdf:type rdf:resource•"&owl;TransitiveProperty~/> 

<rdfs:DELTA rdf:resource•"&cis;Device"/> 

<rdfs:range rdf:resource•"&cis;Device"/> 

<rdfs:range rdf:resource•"&cis;Networr."/> 

<rdfs:DELTA rdf:resource•"&cis;Person"/> 

</owl:ObjectProperty> 

<!-- http://context.org/cisfcurrentActivity --> 

<owl:ObjectProperty rdf:about~"&cis;currentActivity"> 

<rdfs:range rdf:resource•"&cis;Activity"/> 

<rdfs:DELTA rdf:resource•"&cis;Person"/> 

</owl:ObjectProperty> 

<!-- http://context.org/cisfequipedWith --> 

<owl:ObjectProperty rdf:about•"&cis;equipedWith"> 

<rdfs:DELTA rdf:resource•"&cis;ClassRoom"/> 

<rdfs:range rdf:resource•"&cis;Desktop"/> 

<lowl:ObjectProperty> 

<!-- http:llcontext.orglcistlocatedin --> 

<owl:ObjectProperty rdf:about•"&cis;locatedln"> 

<rdfs:range rdf:resource•"&cis;Location•l> 

<rdfs:DELTA rdf:resource•"&cis;Person•t> 

</owl:ObjectProperty> 

<!-- http://context.org/cistloglnto --> 

<owl:ObjectProperty rdf:about••&cis;loginto"> 

<rdfs:DELTA rdf:resource•"&cis;Person•l> 

<rdfs:range rdf:resourcec"&cis;Server"/> 

</owl:ObjectProperty> 

<!-- http://context.orglcistownedBy --> 

<owl:ObjectProperty rdf:about••&cis;ownedBy"> 

<owl:inverseOf rdf:resource•"&cis;use•t> 

<lowl:ObjectProperty> 

<!-- http:llcontext.org/cistrun --> 

<owl:ObjectProperty rdf:about••&cis;run"> 

<rdfs:range rdf:resource•"&cis;Software"/> 

<rdfs:subPropertyOf rdf:resource•"&cis;use"/> 

<lowl:ObjectProperty> 

<!-- http:l/context.orglcistuse --> 

<owl:ObjectProperty rdf:about•"&cis;use"> 

<rdfs:range rdf:resource•"&cis;Device"/> 

<rdfs:DELTA rdf:resource•"&cis;Person"/> 

<lowl:ObjectProperty> 

<!--

103 

lll/llllll!llllllllllllllll!llll/lllllll/!lllllllll/lllllll//ll/ll/!lll!ll/lll/1/lll//1 
II 

II Data properties 

II 

ll!ll!llllllll/llllll/llll/l//llllllllllllllllll!lllllllll!lllllllllllll/l//lll/l!ll/11 
--> 

<!-- http:/lcontext.org/cislbuildingName --> 

<owl:OatatypeProperty rdf:aboutc"&cis;buildingName"> 

<rdfs:DELTA rdf:resource•"&cis;Indoor"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:DatatypeProperty> 

<!-- http://context.orglcistemailAddress --> 

<owl:DatatypeProperty rdf:about•"&cis;emailAddress"> 

<rdfs:DELTA rdf:resource•"&cis;Person"/> 



<rdfs:range rdf:resource="&xsd;string"/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cisfendTime --> 

<owl:DatatypeProperty rdf:about•"&cis;endTime"> 

<rdfs:DELTA rdf:resource•"&cis;Activity"/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cislfullName --> 

<owl:DatatypeProperty rdf:about•"&cis;fullName"> 

<rdfs:DELTA rdf:resource•"&cis;Person"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:Datatype?roperty> 

<!-- http://context.org/cisfipAddress --> 

<owl:DatatypeProperty rdf:about•"&cis;ipAddress"> 

<rdfs:DELTA rdf:resource•"&cis;Device"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:OatatypeProperty> 

<!-- http://context.org/cistlatitude --> 

<owl:OatatypeProperty rdf:about•"&cis;latitudew> 

<rdfs:OELTA rdf:resource•"&cis;Outdoor"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:OatatypeProperty> 

<!-- http://context.org/cisflongitude --> 

<owl:OatatypeProperty rdf:about•"&cis;longitude"> 

<rdfs:DELTA rdf:resource•"&cis;Outdoor"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:OatatypeProperty> 

<!-- http://context.org/cisfmemorySize --> 

<owl:DatatypeProperty rdf:about•"&cis;memorySize"> 

<rdfs:OELTA rdf:resource•"&cis;Hardwarew/> 

<rdfs:range rdf:resource•"&xsd;integer"/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cisfmessengeriD --> 

<owl:DatatypeProperty rdf:about•"&cis;messengeriDw> 

<rdfs:OELTA rdf:resource•"&cis;Profile"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:OatatypeProperty> 

<!-- http://context.org/cisfofficeRoom --> 

<owl:DatatypeProperty rdf:about•"&cis;officeRoom"> 

<rdfs:DELTA rdf:resource•"&cis;Profile"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cisfoperatingSystem --> 

<owl:DatatypeProperty rdf:about•"&cis;operatingSystem"> 

<rdfs:DELTA rdf:resource•"&cis;Software"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:OatatypeProperty> 

<!-- http://context.org/cisfphoneNumber --> 

<owl:DatatypeProperty rdf:about•"&cis;phoneNumber"> 

<rdfs:DELTA rdf:resource•"&cis;MobilePhone"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:OatatypeProperty> 

<!-- http://context.org/cistprocessorType --> 

<owl:DatatypeProperty rdf:about•"&cis;processorType"> 

<rdfs:DELTA rdf:resource•"&cls;Hardware"/> 

<rdfs:range rdf:resource•"&xsd;stringR/> 

</owl:OatatypeProperty> 

104 



<!-- http://context.org/cislproxNumber --> 

<owl:OatatypeProperty rdf:about•"&cis;proxNumber"> 

<rdfs:DELTA rdf:resource•"&cis;Proxy"/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cisfroomNumber --> 

<owl:DatatypeProperty rdf:about•"&cis;roomNumber"> 

<rdfs:DELTA rdf: resource•"&cis;OfficeRoom"/> 

<rdfs:range rdf:resource~"&xsd;string"/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cisfsignalStrength --> 

<owl:DatatypeProperty rdf:about•"&cis;signalStrength"> 

<rdfs:DELTA rdf:resource•"&cis;MobileDevice"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cisfssidName --> 

<owl:OatatypeProperty rdf:about-~&cis;ssidName~> 

<rdfs:DELTA rdf:resource~~&cis;AccessPoint"/> 

<rdfs:range rdf:resource-~&xsd;string~/> 

</owl:DatatypeProperty> 

<!-- http://context.org/cisfstartTime --> 

<owl:DatatypeProperty rdf:about•"&cis;startTime~> 

<rdfs:DELTA rdf:resource-~&cis;Activity"/> 

<rdfs:range rdf:resource•"&xsd;string"/> 

</owl:DatatypeProperty> 

<!--

105 

ll//l!ll!ll/1/llllll/llll//l/ll/l!ll!llllllll//l//lll!/llllllllllllll//ll//lll!lll/l/1/ 
II 

II Classes 

II 

llllllllll/ll/ll//l//l!ll/1/llllllllllll/ll/l//l//llll/llllll/lll!//!llll//l//lll/11/!/ 
--> 

<!-- http://context.org/cisiAccessPoint --> 

<owl:Class rdf:about-~&cis;AccessPoint~> 

<rdfs:subClassOf rdf:resource-~&cis;NetworkOevice~/> 

</owl:Class> 

<!-- http://context.org/cistActivity --> 

<owl:Class rdf:about•~&cis;Activity"> 

<owl:equivalentClass> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;currentActivity"/> 

<owl:cardinality rdf:datatype•"&xsd;nonNegativelnteger">l</owl:cardinality> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource-~&owl;Thing"/> 

</owl:Class> 

<!-- http://context.org/cisfApplicationRun --> 

<owl:Class rdf:about•"&cis;ApplicationRun"> 

<owl:equivalentClass> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;run"/> 

<owl:minCardinality rdf:datatype•"&xsd;nonNegativelnteger">l</owl:minCardinality> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Software"/> 

</owl:Class> 

<!-- http://context.org/cistBrowser --> 



<owl:Class rdf:about•"&cis;Browser~> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;IE"/> 

<rdf:Oescription rdf:about•"&cis;Safari"/> 

<rdf:Description rdf:about•"&cis;Opera"/> 

<rdf:Oescription rdf:about•"&cis;firefox"/> 

</owl:oneOf> 

</owl :Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cls;InternetApplication"/> 

</owl:Class> 

<!-- http://context.org/cisiBrowsing --> 

<owl:Class rdf:about•"&cls;Browsing"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:intersectionOf rdf:parseType="Collection"> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;run"/> 

<owl:someValuesrrom> 

<owl:Class> 

<owl:unionOf rdf:parseType•wCollectionw> 

<owl:Class> 

106 

<owl:oneOf rdf:parseType•wCollection~> 

<rdf:Description rdf:about•M&cis;Opera"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•wCollectionM> 

<rdf:Description rdf:about•"&cis;Safari"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType-~collection"> 

<rdf:Description rdf:about•w&cis;rirefox~/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType-~collection"> 

<rdf:Description rdf:about•"&cis;IE"/> 

</owl:oneOf> 

</owl:Class> 

</owl:unionOf> 

</owl:Class> 

</owl:someValuesrrom> 

</owl:Restriction> 

<owl:Restriction> 

<owl:onProperty rdf:resource~"&cis;connectedTo"/> 

<owl:allValuesrrom rdf:resource•"&cis;Internet"/> 

</owl:Restriction> 

</owl:intersectionOf> 

</owl:Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•~&cis;Deduced"/> 

</owl:Class> 



<!-- http://context.org/cisiBusy --> 

<owl:Class rdf:about•ft&cis;Busyft> 

<owl:equivalentClass> 

<owl:Class> 

<owl:intersectionOf rdf:parseType•"Collection"> 

<owl:Restriction> 

107 

<owl:onProperty rdf:resource•"&cis;run"/> 

<owl:someValuesFrom rdf:resource•"&cis;OfficeApplication"/> 

</owl:Restriction> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;locatedln"/> 

<owl:allValuesFrom rdf:resource•"&cis;OfficeRoom"/> 
</owl:Restriction> 

</owl:intersectionOf> 

</owl:Class> 

</owl:equivalentClass> 

<owl:equivalentClass> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;currentActivity"/> 

<owl:someValuesFrom rdf:resource•"&cis;Plannedft/> 

</owl:Restriction> 

</owl:equivalentClass> 

<owl:equivalentClass> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;runft/> 

<owl:someValuesfrom> 

<owl:Class> 

<owl:unionOf rdf:parseType•ftCollection"> 

<owl:Class> 

<owl:oneOf rdf:parseType•RCollection"> 

<rdf:Description rdf:about•"&cis;SpreadSheet"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;PDFReaderft/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;WordProcessor"/> 

</owl:oneOf> 

</owl:Class> 

</owl:unionOf> 

</owl:Class> 

</owl:someValuesfrom> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Deduced"/> 

</owl:Class> 

<!-- http://context.org/cisfChatting --> 

<owl:Class rdf:about•"&cis;Chattingft> 

<owl:equivalentClass> 

<owl:Restriction> 



<owl:onProperty rdf:resource•~&cis;run~/> 

<owl:someValuesfrom> 

<owl:Class> 

<owl:intersectionOf rdf:parseType-~collection"> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;connectedTo"/> 

<owl:allValuesFrom rdf:resource•"&cis;Internet"/> 

</owl:Restriction> 

<owl:Class> 

<owl:unionOf rdf:parseType•"Collection"> 

<owl:Class> 

108 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;GTalk"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;YM"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;GAIM"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;MSNChat"/> 

</owl:oneOf> 

</owl:Class> 

</owl:unionOf> 

</owl:Class> 

</owl:intersectionOf> 

</owl:Class> 

</owl:someValuesrrom> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Deduced"/> 

</owl:Class> 

<!-- http://context.org/cistClassRoom --> 

<owl:Class rdf:about•"&cis;ClassRoom"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;DOS"/> 

<rdf:Description rdf:about•"&cis;004"/> 

<rdf:Description rdf:about•"&cis;D03"/> 

<rdf:Oescription rdf:about•"&cis;002"/> 

<rdf:Oescription rdf:about•"&cis;COl"/> 

<rdf:Description rdf:aboutz"&cis;COS"/> 

<rdf:Description rdf:about•"&cis;D06"/> 

<rdf:Description rdf:about•"&cis;C06"/> 

<rdf:Description rdf:about•"&cis;C03"/> 

<rdf:Description rdf:about•"&cis;C02"/> 



<rdf:Description rdf:about~"&cis;DOl"/> 

<rdf:Description rdf:about•"&cis;CO~"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource••&cis;Indoorft/> 
</owl:Class> 

<!-- http://context.org/cisiOeduced --> 

<owl:Class rdf:about•R&cis;Oeducect•> 

<rdfs:subClassOf rdf:resource••&cis;Activity"/> 

</owl:Class> 

<!-- http://context.org/cisiDesktop --> 

<owl:Class rdf:about•"&cis;Desktop•> 

<rdfs:subClassOf rdf:resource••&cis;Device"/> 

</owl:Class> 

<!-- http://context.org/cisiDevice --> 

<owl:Class rdf:about•"&cis;Device"/> 

<!-- http://context.org/cisfEmailApplication --> 

<owl:Class rdf:about•"&cis;EmailApplication"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Oescription rdf:about•"&cis;Outlook"/> 

<rdf:Description rdf:about•"&cis;Thunderbird"/> 

<rdf:Oescription rdf:about•"&cis;MSN"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;InternetApplication"/> 

</owl:Class> 

<!-- http://context.org/cistfree --> 

<owl:Class rdf:about•"&cis;free"> 

<rdfs:subClassOf rdf:resource•"&cis;Deduced"/> 

</owl:Class> 

<!-- http://context.orq/cistGSM --> 

<owl:Class rdf:about•"&cis;GSM"> 

<rdfs:subClassOf rdf:resource•"&cis;Network"/> 

</owl:Class> 

<!-- http://context.orq/cistGateway --> 

<owl:Class rdf:about•"&cis;Gateway"> 

<rdfs:subClassOf rdf:resource•"&cis;Internet"/> 

</owl:Class> 

<!-- http://context.org/cistHardware --> 

<owl:Class rdf:about•"&cis;Hardware"> 

<rdfs:subClassOf rdf:resource•"&cis;Desktop"/> 

<rdfs:subClassOf rdf:resource•"&cis;Notebook"/> 

<rdfs:subClassOf rdf:resource•"&cis;PDA"/> 

<owl:disjointWith rdf:resource•"&cis;Software"/> 

</owl:Class> 

<!-- http://context.orq/cistiMApplication --> 

<owl:Class rdf:about•"&cis;IMApplication"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:aboutc"&cis;GAIM"/> 

109 



<rdf:Description rdf:about•"&cis;GTalk"/> 

<rdf:Description rdf:about•"&cis;YM"/> 

<rdf:Description rdf:about•"&cis;MSNChat"/> 

<rdf:Description rdf:about•"&cis;WebMessenger"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalent.Class> 

< t·dfs: subClassOf rd f: resource•" & cis; I nt.e rnet.Appl icat ion"/> 

</owl:Class> 

<!-- http://context.org/cisiindoor --> 

<owl:Class rdf:about•"&cis;Indoor"> 

<rdfs:subClassOf rdf:resource="&cis;Location"/> 

</owl:Class> 

<!-- http://context.org/cisflnternet --> 

<owl:Class rdf:about~"&cis;Internet"> 

<rdfs:subClassOf rdf:resource•"&cis;Network"/> 

</owl:Class> 

<!-- http://context.org/cisflnternet.Application --> 

<owl:Class rdf:about•"&cis;lnternetApplication"> 

<rdfs:subClassOf rdf:resource•"&cis;ApplicationRun"/> 

</owl:Class> 

<!-- http://context.org/cisflntranet --> 

<owl:Class rdf:about•"&cis;Intranet"> 

<rdfs:subClassOf rdf:resource.,"&cis;Network"/> 

</owl:Class> 

<!-- http://context.org/cisfLabWork --> 

<owl:Class rdf:about•"&cis;LabWork"> 

<rdfs:subClassOf rdf:resource•"&cis;Planned"/> 

</owl:Class> 

<!-- http://context.org/cisfLaboratory --> 

<owl:Class rdf:about•"&cis;Laboratory"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Oescription rdf:about•"&cis;Multimedia"/> 

<rdf:Oescription rdf:about•"&cis;Programminglab"/> 

<rdf:Oescription rdf:about•"&cis;VRLab"/> 

<rdf:Oescription rdf:about•"&cis;OataCom"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Indoor"/> 

</owl:Class> 

<!-- http://context.org/cisfLectureHall --> 

<owl:Class rdf:about•"&cis;LectureHall"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Oescription rdf:about•"&cis;LHS"/> 

<rdf:Oescription rdf:about="&cis;LH2"/> 

<rdf:Oescription rdf:about•"&cis;LH3"/> 

<rdf:Oescription rdf:about="&cis;LH6"/> 

<rdf:Oescription rdf:about•"&cis;LH4"/> 

<rdf:Oescription rdf:about•"&cis;LHl"/> 

</owl:oneOf> 

</owl:Class> 

110 



</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Indoor"/> 

</owl:Class> 

<!-- http://context.org/cisiLecturer --> 

<owl:Class rdf:about•"&cis;Lecturer"> 

<rdfs:subClassOf rdf:resource•"&cis;Person"/> 

</owl:Class> 

<!-- http://context.org/cisfLecturing --> 

<owl:Class rdf:about•"&cis;Lecturing"> 

<rdfs:subClassOf rdf:resource•"&cis;Planned"/> 

</owl:Class> 

<!-- http://context.org/cisfLocation --> 

<owl:Class rdf:about•"&cis;Location"/> 

<!-- http://context.org/cisfMeeting --> 

<owl:Class rdf:abouta"&cis;Meeting"> 

<rdfs:subClassOf rdf:resource•"&cis;Planned"/> 

</owl:Class> 

<!-- http://context.org/cisiMeetingRoom --> 

<owl:Class rdf:about•"&cis;MeetinqRoom"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•MCollectionM> 

<rdf:Description rdf:about•"&cis;Ol0312"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•M&cis;Indoor"/> 

</owl:Class> 

<!-- http://context.org/cisfMobileDevice --> 

<owl:Class rdf:about•"&cis;MobileDevice"> 

<rdfs:subClassOf rdf:resource•"&cis;Device"/> 

</owl:Class> 

<!-- http://context.org/cisiMobilePhone --> 

<owl:Class rdf:about•"&cis;MobilePhone"> 

<rdfs:subClassOf rdf:resource•"&cis;MobileDevice"/> 

</owl:Class> 

<!-- http://context.org/cisiNetwork --> 

<owl:Class rdf:about•"&cis;Network"/> 

<!-- http://context.org/cisiNetworkDevice --> 

<owl:Class rdf:about•"&cis;NetworkDevice"> 

<rdfs:subClassOf rdf:resource•"&cis;Device"/> 

</owl:Class> 

<!-- http://context.org/cisiNot_At_Oesk --> 

<owl:Class rdf:about•"&cis;Not_At_Desk"> 

<owl:equivalentClass> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;locatedln"/> 

<owl:someValuesfrom> 

<owl:Class> 

<owl:complementOf> 

<owl:Class> 

<owl:unionOf rdf:parseType="Collection"> 

<owl:Class> 

I I I 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;LectureRoom"/> 

</owl:oneOf> 



</owl:Class> 

<owl:Class> 

112 

<owl:oneOf rdf:parseType-~Collection~> 

<rdf:Description rdf:abouta~&cis;PGLab~/> 

</owl:oneOf> 

</owl:Class> 
</owl:unionOf> 

</owl:Class> 

</owl:complementOf> 

</owl:Class> 

</owl:someValuesfrom> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource-~&cis;Oeduced"/> 

</owl:Class> 

<!-- http://context.org/cisjNotebook --> 

<owl:Class rdf:about•"&cis;Notebook"> 

<rdfs:subClassOf rdf:resource-~&cis;MobileDevice"/> 

</owl:Class> 

<!-- http://context.org/cistOfficeApplication --> 

<owl:Class rdf:about•"&cis;OfficeApplication"> 
<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:DescripLion rdf:abouL•"&cis;WordProcessor"/> 

<rdf:DescripLion rdf:abouL•"&cis;SpreadSheeL"/> 

<~df:DescripLion rdf:about•"&cis;PDFReader"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalenLClass> 

<rdfs:subClassOf rdf:resource•"&cis;ApplicationRun"/> 

</owl:Class> 

<!-- http://context.org/cisfOfficeRoom --> 

<owl:Class rdf:about•"&cis;OfficeRoom"> 

<rdfs:subClassOf rdf:resource•"&cis;Indoor"/> 

</owl :Class> 

<!-- http://context.org/cisfOn_the_Phone --> 

<owl:Class rdf:about•"&cis;On_the_Phone"> 

<owl:equivalentClass> 

<owl:Restriction> 

<owl:onProperLy rdf:resource•"&cis;use"/> 

<owl:someValuesFrom> 

<owl:Class> 

<owl:intersectionOf ~df:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;MobilePhone"/> 

<ow1:Restriction> 

<owl:onProperty rdf:resource•"&cis;connectedTo"/> 

<owl:someValuesFrom> 

<owl:Class> 

<owl:unionOf rdf:parseType~"Collection"> 

<rdf:Description rdf:about•"&cis;UMTS3G"/> 

<rdf:Description rdf:about~"&cis;GSM"/> 

</owl: unionOf> 

</owl:C1ass> 

</owl:someValuesF~om> 

</01d :Restriction> 



</ow1:incersection0f> 

</owl:Class> 

</owl:someValuesrrom> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource-~&cis;Deduced"/> 

</owl :Class> 

<!-- http://context.org/cisfOpeningEmail --> 

<owl:Class rdf:about•"&cis;OpeningEmail"> 

<owl:equivalentClass> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;run"/> 

<owl:someValuesFrom> 

<owl:Class> 

<owl:intersectionOf rdf:parseType•"Collection"> 

<owl:Class> 

<owl:unionOf rdf:parseType•"Collection"> 

<owl:Class> 

113 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;Outlook"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;Thunderbird"/> 

</owl:oneOf> 

</owl:Class> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;MSN"/> 

</owl:oneOf> 

</owl:Class> 

</owl:unionOf> 

</owl:Class> 

<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;connectedTo"/> 

<owl:al!Valuesrro~ rdf:resource•"&cis;Internet"/> 

</owl:Restriction> 

</owl:intersectionOf> 

</owl:Class> 

</owl:someValuesrrom> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Deduced"/> 

</owl:Class> 

<!-- http://context.org/cisfOutdoor --> 

<owl:Class rdf:about•"&cis;Outdoor"> 

<rdfs:subClassOf rdf:resource•"&cis;Location"/> 

</owl:Class> 

<!-- http://context.org/cisfPDA --> 

<owl:Class rdf:about•"&cis;PDA"> 

<rdfs:subClassOf rdf:resource•"&cis;MobileDevice"/> 

</owl:Class> 

<!-- http://context.org/cisfPerson --> 

<owl:Class rdf:about•"&cis;Person"/> 

<!-- http://context.org/cisfPlanned --> 



<owl:Class rdf:about•"&cis;Planned"> 

<rdfs:subClassOf rdf:resource•"&cis;Activity"/> 

</owl:Class> 

<!-- http://context.org/cisiPostGrad --> 

<owl:Class rdf:about•"&cis;PostGrad"> 

<rdfs:subClassOf rdf:resource•"&cis;Person"/> 

</owl:Class> 

<!-- http://context.org/cistProcessRun --> 

<owl:Class rdf:about•"&cis;ProcessRun"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;Service"/> 

<rdf:Description rdf:about•"&cis;IMTray"/> 

<rdf:Description rdf:about~"&cis;VirtualMachine"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalentC!ass> 

<rdfs:subClassOf rdf:resource•"&cis;Software"/> 

</owl:Class> 

<!-- http://c~ntext.orq/cistProfile --> 

<owl:Class rdf:about•"&cis;Profile~> 

<rdfs:subClassOf rdf:resource•"&cis;Lecturer"/> 

<rdfs:subClassOf rdf:resource•"&cis;PostGrad"/> 

<rdfs:subClassOf rdf:resource•"&cis;Staff"/> 

<rdfs:subClassOf rdf:resource•"&cis;Student"/> 

</owl:Class> 

<!-- http://context.org/cisfProxy --> 

<owl:Class rdf:about•"&cis;Proxy"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collection"> 

<rdf:Description rdf:about•"&cis;160.0.226.206"/> 

<rdf:Description rdf:about•"&cis;160.0.226.207"/> 

<rdf:Description rdf:about•"&cis;l60.0.226.208"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Internet"/> 

</owl:Class> 

<!-- http://context.org/cisfRouter --> 

<owl:Class rdf:about•"&cis;Router"> 

<rdfs:subClassOf rdf:resource•"&cis;NetworkOevice"/> 

</owl:Class> 

<!-- http://context.org/cisfSeminar --> 

<owl:Class rdf:about•"&cis;Seminar"> 

<rdfs:subClassOf rdf:resource•"&cis;Planned"/> 

</owl:Class> 

<!-- http://context.org/cisfSeminarRoom --> 

<owl:Class rdf:about•"&cis;SeminarRoom"> 

<rdfs:subClassOf rdf:resourcec"&cis;Indoor"/> 

</owl:Class> 

<!-- http://context.org/cisfServer --> 

<owl:Class rdf:about•"&cis;Server"> 

<owl:equivalentClass> 

114 



<owl:Restriction> 

<owl:onProperty rdf:resource•"&cis;loginto"/> 

<owl:hasValue rdf:resource•"&cis;Netware"/> 

</owl:Restriction> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;NetworkDevice"/> 

</owl:Class> 

<!-- http://context.org/cisfSoftware --> 

<owl:Class rdf:about•"&cis;Software"> 

<rdfs:subClassOf rdf:resource•"&cis;Desktop"/> 

<rdfs:subClassOf rdf:resource•"&cis;Notebook"/> 

<rdfs:subClassOf rdf:resource•"&cis;PDA"/> 

</owl:Class> 

<!-- http://context.org/cisiStaff --> 

<owl:Class rdf:about•"&cis;Staff"> 

<rdfs:subClassOf rdf:resource•"&cis;Person"/> 

</owl:Class> 

<!-- http://context.org/cisfStudent --> 

<owl:Class rdf:about•ft&cis;Studentft> 

<rdfs:subClassOf rdf:resource-~&cis;Person"/> 

</owl:Class> 

<!-- http://context.org/cisfTutorialRoom --> 

<owl:Class rdf:about••&cis;TutorialRoom"> 

<owl:equivalentClass> 

<owl:Class> 

<owl:oneOf rdf:parseType•"Collectionw> 

<rdf:Oescription rdf:about•"&cis;TR2"/> 

<rdf:Description rdf:about•"&cis;TRS"/> 

<rdf:Oescription rdf:about•"&cis;TR3"/> 

<rdf:Oescription rdf:about•"&cis;TR6"/> 

<rdf:Oescription rdf:about•"&cis;TR4~/> 

<rdf:Oescription rdf:about•"&cis;TRl"/> 

</owl:oneOf> 

</owl:Class> 

</owl:equivalentClass> 

<rdfs:subClassOf rdf:resource•"&cis;Indoor"/> 

</owl:Class> 

<!-- http://context.org/cisfTutoring --> 

<owl:Class rdf:about••&cis;Tutoring"> 

<rdfs:subClassOf rdf:resource•~&cis;Planned"/> 

</owl:Class> 

<!-- http://context.org/cisfUMTS3G --> 

<owl:Class rdf:about•"&cis;UMTS3G~> 

<rdfs:subClassOf rdf:resource••&cis;Network"/> 

</owl:Class> 

<!-- http://context.org/cisfWifiNetwork --> 

<owl:Class rdf:about•"&cis;WifiNetwork•> 

<rdfs:subClassOf rdf:resource•ft&cis;Network"/> 

</owl:Class> 

<!-- http://www.wJ.org/2002/07/owlfThing --> 

<owl:Class rdf:about•"&owl;Thingft/> 

<!--

l/!!l!!l//l//!llll/lll!!l!l!l/lll/l///l///!//!l!!l/!!l/lllll/ll/l//l/1/1 

II 

II Individuals 

II 

liS 



lll!/l!ll/!//llllll/lll/ll///llll/llll/l/lllll/l/ll//lll/lll/ll/l!ll!lll 
--> 

<!-- http://context.org/cisl010202 --> 

<cis:SeminarRoom rdf:about•"&cis;Ol02Q2•t> 

<!-- http://context.org/cisf010312 --> 

<owl:Thing rdf:about•"&cis;010312"/> 

<!-- http://context.org/cisf020212 --> 

<cis:OfficeRoom rdf:about•"&cis;020212"/> 

<!-- http://context.org/cisll60.0.226.202 --> 

<cis:Gateway rdf:about~"&cis;l60.0.226.202"/> 

<!-- http://context.org/cisf160.0.226.206 --> 

<owl:Thing rdf:about•"&cis;l60.0.226.206"/> 

<!-- http://context.org/cisfl60.0.226.207 --> 

<cis:Proxy rdf:about•"&cis;160.0.226.207"/> 

<!-- http://context.org/cist160.0.226.208 --> 

<cis:Proxy rdf:abouc•"&cis;l60.0.226.208M/> 

<!-- http://concext.org/cisiAntiVirus --> 

<cis:ProcessRun rdf:about•"&cis;AntiVirusM/> 

<!-- http://contexc.org/cisiCOl --> 

<cis:ClassRoom rdf:about•"&cis;COl"/> 

<!-- http://context.org/cisiC02 --> 

<cis:ClassRoom rdf:about•"&cis;C02"/> 

<!-- http://concext.org/cisfCOJ --> 

<cis:ClassRoom rdf:about•"&cis;C03"/> 

<!-- http://context.org/cistC04 --> 

<cis:ClassRoom rdf:about•"&cis;C04"/> 

<!-- http://context.org/cisiC05 --> 

<cis:ClassRoom rdf:about•"&cis;C05"/> 

<!-- http://context.org/cisfC06 --> 

<cis:ClassRoom rdf:about•"&cis;C06"/> 

<!-- http://context.org/cisiCelcom --> 

<cis:GSM rdf:about•"&cis;Celcom"> 

<rdf:cype rdf:resource•"&cis;UMTS3G"/> 

</cis:GSM> 

<!-- http://context.org/cisiDOl --> 

<cis:ClassRoom rdf:about•"&cis;DOl"/> 

<!-- http://context.org/cistD02 --> 

<cis:ClassRoom rdf:about:"&cis;D02"/> 

<!-- http://context.org/cisfD03 --> 

<cis:ClassRoom rdf:about•"&cis;DOJ"/> 

<!-- http://context.org/cisfD04 --> 

<cis:ClassRoom rdf:about•"&cis;D04"/> 

<!-- http://context.org/cisfD05 --> 

<cis:ClassRoom rdf:about•"&cis;DOS"/> 

<!-- http://context.org/cistD06 --> 

<cis:ClassRoom rdf:about•"&cis;D06"/> 

<!-- http://context.org/cisfDataCom --> 

<cis:Laboratory rdf:about•"&cis;DataCom"/> 

<!-- http://context.org/cisfOigi --> 

<cis:UMTS3G rdf:about•"&cis;Digi"> 

<rdf:type rdf:resource•"&cis;GSM"/> 

</cis:UMTS3G> 

<!-- http://context.org/cisirirefox --> 

<cis:Browser rdf:about•"&cis;rirefox"/> 

<!-- http://context.org/cistGAIM --> 

116 



<cis:IMApplication rdf:about•"&cis;GAIM"/> 

<!-- http://context.org/cisfGTalk --> 

<cis:IMApplication rdf:about•"&cis;GTalk"/> 

<!-- http://context.org/cisi!E --> 

<cis:Browser rdf:about•"&cis;IE~> 

<rdf:type rdf:resource•"&cis;InternetApplication"/> 

<cis:loglnto rdf:resourcez"&cis;Netware"/> 

</cis:Browser> 

<!-- http://context.org/cisiiMTray --> 

<cis:ProcessRun rdf:about•"&cis;IMTray"> 

<rdf:type rdf:resource•"&owl;Thing"/> 

</cis:ProcessRun> 

<!-- http://context.org/cisi!PAddress --> 

<owl:Thing rdf:about•"&cis;IPAddress"/> 

<!-- http://context.org/cisfLHl --> 

<cis:LectureHall rdf:about•"&cis;LHl"/> 

<!-- http://context.org/cisfLH2 --> 

<cis:LectureHall rdf:about•"&cis;LH2"/> 

<!-- http://context.org/cisiLH3 --> 

<cis:LectureHall rdf:about•"&cis;LH3"/> 

<!-- http://context.org/cisiLH4 --> 

<cis:LectureHall rdf:about•"&cis;LH4"/> 

<!-- http://context.org/cisfLHS --> 

<cis:LectureHall rdf:about•"&cis;LHS"/> 

<!-- http://context.org/cisiLH6 --> 

<cis:LectureHall rdf:about~"&cis;LH6"/> 

<!-- http://context.org/cisfLectureRoom --> 

<cis:OfficeRoom rdf:about•"&cis;LectureRoo~"/> 

<!-- http://context.org/cisiMSN --> 

<cis:EmailApplication rdf:about•"&cis;MSN"/> 

<!-- http://context.org/cisfMSNChat --> 

<cis:IMApplication rdf:about•"&cis;MSNChat"/> 

<!-- http://context.org/cistMaxis --> 

<cis:GSM rdf:about•"&cis;Maxis"> 

<rdf:type rdf:resource•"&cis;UMTS3G"/> 

</cis:GSM> 

<!-- http://context.org/cisfMozila --> 

<cis:Browser rdf:about•"&cis;Mozila"/> 

<!-- http://context.org/cisiMultimedia --> 

<cis:Laboratory rdf:about•"&cis;Multimedia"/> 

<!-- http://context.org/cistNetware --> 

<cis:Server rdf:about•"&cis;Netware"/> 

<!-- http://context.org/cisiOpera --> 

<cis:Browser rdf:about•"&cis;Opera•f> 

<!-- http://context.org/cistOutlook --> 

<cis:EmailApplication rdf:about•"&cis;Outlook"/> 

<!-- http://context.org/cisfPDrReader --> 

<cis:OfficeApplication rdf:about•"&cis;PDCReader"/> 

<!-- http://context.org/cisfPGLab --> 

<cis:WifiNetwork rdf:about•"&cis;PGLab"> 

<owl:sameAs rdf:resource•"&cis;020212"/> 

</cis:WifiNetwork> 

<!-- http://context.org/cisfProgramminglab --> 

<cis:Laboratory rdf:about•"&cis;Programminglab"/> 

<!-- http://context.org/cisfSafari --> 

<cis:Browser rdf:about="&cis;Safari"/> 

117 



<!-- http://context.org/cisfService --> 

<cis:ProcessRun rdf:about•"&cis;Service"/> 

<!-- http://context.org/cisJSpreadSheet --> 

<cis:OfficeApplication rdf:about•"&cis;SpreadSheet"/> 

<!-- http://context.org/cisfTMNet --> 

<cis:WifiNetwork rdf:about•"&cis;TMNet"/> 

<!-- http://context.org/cisfTRl --> 

<cis:TutorialRoom rdf:abouta"&cis;TRl"/> 

<!-- http://context.org/cisfTR2 --> 

<cis:TutorialRoom rdf:about•"&cis;TR2"/> 

<!-- http://context.org/cisfTR3 --> 

<cis:TutorialRoom rdf:about•"&cis;TR3"/> 

<!-- http://context.org/cisfTR4 --> 

<cis:TutorialRoom rdf:about•"&cis;TR4"/> 

<!-- http://context.org/cisfTRS --> 

<cis:TutorialRoom rdf:about•"&cis;TRS~/> 

<!-- hccp://concexc.org/cistTR6 --> 

<cis:TutorialRoom rdf:about•"&cis;TRG"/> 

<!-- http://context.org/cisfThunderbird --> 

<cis:EmailApplicacion rdf:abouc-~&cis;Thunderbird"/> 

<!-- http://context.org/cisfVRLab --> 

<cis:Laboracory rdf:about="&cis;VRLab"/> 

<!-- http://context.org/cisfVirtualMachine --> 

<cis:ProcessRun rdf:about•~&cis;VirtualMachine"/> 

<!-- http://context.org/cistWebMessenger --> 

<cis:IMApplication rdf:about-~&cis;WebMessenger~/> 

<!-- http://context.org/cisfWordProcessor --> 

<cis:OfficeApplication rdf:about•"&cis;WordProcessor"/> 

<!-- http://context.org/cisiYM --> 

<cis:InternetApplication rdf:about•"&cis;YM"> 

<rdf:type rdf:resource•~&cis;IMApplication~/> 

</cis:InternetApplication> 

<!--

118 



Appendix C 

OWL-Z Semantic Definition 

This section describes complete transformation from OWL W3C syntax into Z Model. 

All descriptions related to OWL contructs ans axioms in this section are taken from 

http://www. w3.org/TR/owl-refl. 

JDOMA!NJ 

Class :II' DELTA 

Property :II' DELTA 

Individual : II' DELTA 

Property n Class = 0 

Property n Individual = 0 
Individual n Class = 0 

I instances : Class ~ II' Individual 

ObjectProperty : II' Property 

DatatypeProperty : II' Property 

ObjectProperty n DatatypeProperty = 0 
ObjectProperty U DatatypeProperty = Property 

I propval: ObjectProperty ~(DELTA ....., DELTA) 

119 



[XSDJ================= 
propvalD : DatatypeProperty ~ (Individual ~ XSD) 

subClassOJ : Class ~ Class 

V class 1, class2 : Class • 

(class!, class2) E subClassOf <=>instances( class!)~ instances(class2) 

equivalentClass : Class ~ Class 

V class!, class2: Class • (class!, class2) E equivalentClass <=> 

instances( class!) = instances( class2) 

domain : Property ~ Class 

V prop : Property; class : Class • domain(prop) = class <=> 

prop E ObjectProperty =:> dom(propval(prop)) ~instances( class) 

range : ObjectProperty ~ Class 

'/prop: ObjectProperty; class: Class • range(prop) =class<=> 

ran(propval(prop)) <;; instances( class) 

[XSDJ================= 
rangeD : DatatypePmperty ~ II' XSD 

V dprop: DatatypeProperty; data: II' XSD • rangeD(dprop) =data<=> 

ran(propvalD(dprop)) <;;data 

disjoint With : Class ~ Class 

V class 1, class2 : Class • 

120 

(class!, class2) E disjoint With <=> instances( class!) n instances( class2) = 0 



inverseOJ : ObjectProperty - ObjectProperty 

V prop!, prop2 : ObjectProperty • (prop!, prop2) E inverse OJ """ 

propval(propl) = (propval(prop2))-

[XSDJ=================================== 
subPropertyOJD : Property - Property 

V prop 1, prop2 : Property • (prop 1, prop2) E subPropertyOJD """ 

prop I E DatatypePmperty A prop2 E DatatypeProperty =:. 
pmpvalD[XSDJ(propl) <;; propva1D[XSDJ(prop2) 

subPropertyOJ : Property ~ Property 

V prop!, prop2 : Property • (prop!, prop2) E subPropertyOJ """ 

prop 1 E ObjectProperty A prop2 E ObjectProperty =:. 

prop val (prop 1) <;; 
propval(prop2) 

[XSDJ================== 
equivalentProperty : Property - Property 

Vpropl,prop2: Property • (propl,prop2) E equivalentProperty # 

(prop 1 E ObjectProperty A prop2 E ObjectProperty '* 
propval(propl) = propval(prop2)) A 

(prop 1 E DatatypeProperty A prop2 E DatatypeProperty =:. 

propvalD[XSDJ(propl) = prapva1D[XSDJ(prop2)) 

one OJ :II' Individual- Class 

Vx: II' Individual; class: Class • oneOf(x) =class'* x = instancesclass 

some ValuesFrom : Class x ObjectProperty - Class 

121 

V class I, class2 : Class; prop : ObjectProperty • some ValuesFrom( class], prop) 

= class2 """ instances( class2) = {a : Individual I 3 b : Individual • (a, b) E 

propval(prap) AbE instances(classl)) 



122 

all Values Prom : Class x ObjectProperty ~ Class 

'I class 1, class2 : Class; prop : ObjectProperty • all ValuesProm( class 1, prop) = 

class2 ¢> instances( class2) = {a : Individual I 'I b : Individttal • (a, b) E 

propval(prop) =>bE instances(class1)} 

prove by reduce; 

min Cardinality : (N x ObjectProperty) ~ Class 

'I c: Class; n: N: prop: ObjectProperty • minCardinality(n,prop) = c ¢> 

instances(c) = {x: Individual I #{(propval(prop)G {x) Dll ~ n) 

prove by reduce; 

maxCardinality : (N x ObjectPmperty) ~ Class 

'I c: Class: n: N; prop: ObjectProperty • maxCardinality(n, prop)= c ¢> 

instances(c) = {x: Individual I #{(propval(prop)G {x} D)} :S n) 

prove by reduce; 

Cardinality : (N x ObjectProperty) ~ Class 

'I c: Class; n: N: prop: ObjectProperty • Cardinality(n, prop)= c ¢> 

instances(c) = {x: fndividuall #{(propval(prop)G {x) D)}= n} 

prove by reduce; 

sameAs : I' Individual <--> I' Individual 

'lx,y: !'Individual• (x,y) E sameAs ¢> x = y 

differentProm : I' fndividual ,_, I' fndividual 

'lx,y: Pfndividual• (x,y) E differentFrom ¢>Xi" y 

Transitive : I' ObjectProperty 

'I prop : ObjectProperty • prop E Transitive ¢> 

('lx, y, z: Individual• (x, y) E propval(prop) A (y, z) E propval(prop) => 

(x, z) E propval(prop)) 



Syrnetric : 1P ObjectProperty 

V prop : ObjectProperty o prop E Symetric ¢0> 

(Vx, y: Individual• (x, y) E propval(prop) =? 

(y, x) E propval(prop)) 

Inverse Functional : lP ObjectProperty 

V prop : ObjectProperty • prop E Inverse Functional ¢0> 

(V a, b, c: Individual I (a, c) E propval(prop) II 

(b, c) E propval(prop) • a= b) 

complementOf : Class - Class 

V classl, class2: Class o (classl, class2) E complementOf ¢0> 

Individual\ instances( class!)= instances(class2) 

intersectionOJ : seq Class ~ Class 

V cseq: seq Class; class: Class o intersectionOJ(cseq) =class ¢0> 

instances(class) = n{x: ran cseq 0 instances(x)} 

Thing, Nothing : Class 

instances( Thing) = Individual 

instancesNothing = 0 
V c: Class • instances( c)<:;; Individual 

has Value : (Class x ObjectProperty) ~ Individual 

'lind: Individual; c: Class; p: ObjectProperty • hasValue(c,p) = ind ¢0> 

instances( c)= {a: Individual I ind E propval(p)G {a) Dl 

123 



Appendix D 

Z Specification of Context Ontology 

Person, Network, 

Activity, Location, Device : Class 

(Person, Thing) E subClassOf 

(Network, Thing) E subClassOf 

(Device, Thing) E subClass Of 

(Activity, Thing) E subClassOf 

(Location, Thing) E subClassOf 

124 



Desktop, MobileDevice, NetworkDevice, 

Hardware, Software, MobilePhone, Notebook, PDA, AccessPoint, Router, 

Server : Class 

(Desktop, Device) E subClassOf 

(MobileDevice, Device) E subClassOf 

(NetworkDevice, Device) E subClassOf 

(Notebook, MobileDevice) E subClass Of 

(PDA, MobileDevice) E subClassOf 

(MobilePhone, MobileDevice) E subClassOf 

(AccessPoint, NetworkDevice) E subClassOf 

(Server, NetworkDevice) E subClassOf 

(Router, NetworkDevice) E subClass Of 

(Software, Desktop) E subClassOf 

(Software, Notebook) E subClassOf 

(Software, PDA) E subClassOf 

(Hardware, Desktop) E subClassOf 

(Hardware, Notebook) E subClassOf 

(Hardware, PDA) E subClassOf 

(( grule HardwareSoftwareDisjoinl )) 

(Hardware, Software) E disjoint With 

Lecturer, Student, Postgrad, Staff, Profile : Class 

(Student, Person) E subClassOf 

(( grule LecturerlnPerson )) 

(Lecturer, Person) E subClassOf 

(Postgrad, Person) E subCiassOf 

(Staff, Person) E subClassOf 

(Profile, Staff) E subClassOf 

(( grule ProfilelnLecturer )) 

(Profile, Lecturer) E subClassOf 

(Profile, Student) E subClassOf 

(Profile, Postgrad) E subCiassOf 

125 



ProcessRun, ApplicationRun, EmailApplication, OfficeApplication, 

IMApplication, InternetApplication, Browser, MailClient: Class 

(ApplicationRun, Software) E subClassOf 

(ProcessRun, Software) E subClassOf 

(EmailApplication, ApplicationRun) E subClassOf 

( OfficeApplication, ApplicationRun) E subClass Of 

(InternetApplication, ApplicationRun) E subClassOf 

(Browser, InternetApplication) E subClassOf 

(1M Application, InternetApplication) E subClassOf 

(MailClient, InternetApplication) E subClassOf 

Internet, Ethernet, GSM, Intranet, UMTS, WiFi: Class 

(Internet, Network) E subClassOf 

(Intranet, Network) E subClassOf 

( GSM, Network) E subClassOf 

( UMTS, Network) E subClassOf 

( WiFi, Network) E subClassOf 

(Ethernet, Network) E subClassOf 

Planned, Deduced : Class 

(Planned, Activity) E subClassOf 

(Deduced, Activity) E subClassOf 

(( grule Planned Rule)) 

(Deduced, Planned) E disjoint With 

126 



Available, Busy, Free, Browsing, Chatting, NotAtOffice, 

Open Email, On ThePhone, is Busy : Class 

(Available, Deduced) E subCiassOJ 

(Free, Deduced) E subCiassOJ 

(Browsing, Deduced) E subCiassOf 

(Busy, Deduced) E subCiassOf 

(Chatting, Deduced) E subClassOf 

(NotAtOffice, Deduced) E subCiassOJ 

(OnThePhone, Deduced) E subClassOJ 

( OpenEmail, Deduced) E subCiassOJ 

(( grule BusyFreedisjointWith )) 

(Busy, Free) E disjoint With 

Lecturing, Meeting, Research, Seminar, Tutoring, LabActivity 

: Class 

(Seminar, Planned) E subClassOJ 

(Meeting, Planned) E subCiassOf 

(Lecturing, Planned) E subClass Of 

(Research, Planned) E subCiassOJ 

(Tutoring, Planned) E subCiassOJ 

(LabActivity, Planned) E subCiassOJ 

Indoor, Outdoor : Class 

(Indoor, Location) E subCiassOJ 

(Outdoor, Location) E subClassOf 

(( grule OutDoorlndoorDisjoint )) 

(Indoor, Outdoor) E disjoint With 

127 



Building, Room, Lab, ClassRoom, SeminarRoom, LectureHall, 

MeetingRoom, OfficeRoom, notOfficeRoom : Class 

(Indoor, Location) E subClassOJ 

(Outdoor, Location) E subClass OJ 

(Building, Indoor) E subClassOf 

(Room, Bu-ilding) E subClassOf 

(Lab, Room) E subClassOJ 

(( grule ClassRoominRoom )) 

(ClassRoom, Room) E s1tbClassOJ 

(LectureHall, Room) E subClassOJ 

( OfficeRoom, Room) E subClass Of 

(MeetingRoom, Room) E subClassOJ 

(SeminarRoom, Room) E subClassOf 

(notOfficeRoom, OjjiceRoom) E complementOJ 

128 

COl, C02, C03, C04, COS, C06, DOl, D02, D03, D04, DOS, D06 : Individual 

COl E instances( ClassRoom); 

C02 E instances( ClassRoom); 

C03 E instances( ClassRoom); 

C04 E instances( ClassRoom); 

COS E instances( ClassRoom); 

C06 E instances( ClassRoom); 

(( grule OOlinC!assRoom )) 

DOl E instances( ClassRoom); 

D02 E instances( ClassRoom); 

D03 E instances( ClassRoom); 

D04 E instances( ClassRoom); 

DOS E instances( ClassRoom); 

D06 E instances( ClassRoom); 

FIREFOX, IE: Individual 

(( grule App I )) 

IE E instances(Browser); FIREFOX E instances( Browser); 



[XSDJ================= 
fullName, officeAddress, phoneNumber, 

emailAddress, imAddress : DatatypeProperty 

name, office, phone, email, im : P XSD 

domain(fullName) = Profile 

rangeD(fullName) = name 

domain( officeAddress) = Profile 

rangeD(officeAddress) =office 

domain(phoneNumber) = Profile 

rangeD(phoneNumber) =phone 

domain( emailAddress) = Profile 

rangeD(emailAddress) =email 

domain( imAddress) = Profile 

rangeD( imAddress) = im 

NOVELNETWARE: Individual 

(( grule Serverlnstance )) 

NOVELNETWARE E instances( Server); 

129 



use, run 1 connectedTo, currentActivity, locatedln 1 

login To, currentSSI D, associated With, 

ownedBy, equipped With : ObjectProperty 

domain( use) = Person 

range( use) = Device 

domain(run) =Person 

range( run) = Software 

domain( connectedTo) = Person 

range(connectedTo) =Internet 

range( connected To) = Intranet 

domain( currentActivity) = Person 

range( currentActivity) = Activity 

domain( associated With) = Device 

range(associatedWith) =Network 

domain( associated With)= Person 

range( associated With)= Server 

domain( equipped With) = Room 

mnge(equippedWith) =Desktop 

domain(currentSSID) = AccessPoint 

range (currentS SID) = WiFi 

domain(loginTo) =Person 

range( login To) = Server 

domain( ownedBy) = Device 

range( owned By) = Person 

(( grule runsubprop )) 

(run, use) E subPropertyOJ 

(( grule usclsTransitive )) 

(use) E Transitive 

(( grule PersonRunningBrowser )) 

(allValuesFrom(Person, run)= Browser) 

(( grule PersonConnectedTolntemet )) 

(allValuesFrom(Person, connectedTo) =Internet) 

(( grule PersonConnectedTolntranet )) 

( allValuesFrom( Person, connectedTo) = Intranet) 

(( grule PersonRunningOffice )) 

allValuesFrom(Person, run)= OfficeApplication 

130 



(( grule PersonCurrentActivitylsPlanned )) 

atlValuesProm(Person, currentActivity) =Planned 

(( grule PersonRunningiM )) 

allValuesProm(Person, run)= 1M Application 

(( grule PersonRunningEmail )) 

allValuesProm(Person, run)= EmailApplication 

(( grule PersonUseDevice )) 

allValuesProm(Person, use)= Device 

(( grule PersonLocatedln )) 

allValuesProm(Person, locatedln) =Location 

(( grule PersonLocatedlnlndoor )) 

allValuesFmm(Person, locatedfn) = fndoor 

allValuesProm(Person, located!n) = Outdoor 

(( grule PersonLoginTo )) 

someValuesProm(Person, login To)= Server 

Browsing = some ValuesProm(Person, run) = Browser A 

some ValuesFrom(Person, connectedTo) = lnternet 

Busy = some ValuesProm(Person, run) = OfficeApplication A 

some ValuesProm(Person, currentActivity) = Planned 

Chatting= someValuesFrom(Person, run)= !MApplication A 

someValuesProm(Person, connectedTo) =Internet 

(( grule cardinal)) 

Cardinality(!, currentActivity) = Person 

(( grule max Run)) 

minCardinality(3, run) = ApplicationRun 

(( grule Has Value)) 

hasValue(Person, loginTo) = NOVELNETWARE; 

131 



Appendix E 

Screenshoot of Proof Process 

·~. 

• Indoor '' 
~>::::.;:;~:::;: . O..tdco:r 

Figure E. I: Proofing Process in 15fE)( Mode of Section 4.4.1 

132 



133 

Figure E.2: Proofing Process in !5f&C Mode of Section 4.4.2 

Figure E.3: Proofing Process in !5f&C Mode of Section 4.4.3 



Cla-Roooo ,;,. Claaa '' 
q..,d Roo. ,;, Cl•- '' 
'ialld DOl ,;, lDdh•id""'l '" 
'ind (Ct ... llo:>•. Rlooa) ,;, aubCI .. aOI 
q..,,d DOl 'in ;., •• ...., .. CiaaaRcoa "' 

"•Pli- DOl ,;., iA8taDC .. Rcoa) ' ' 
'1....0 (Cta..aoo. . ...,_) ''" .W.Cla..OI '' 
'lalld DOl '-in i1>Ua-• C! .... aRDo:. ' ' 

li;~.~;;;,;';;Ot9~!:. inaLanceot Roooo 

(Cia-Roo.. Roo:>.) "" S\lbCla..Ot 
'i•Ad 001 'in i~>•••-• CLuaRDo. '' 
'ial>d ( ClaaaRoooo ''" Claaa '' 

'-lalld Rcoa 'in Cia- '' 
'i..,d DOl ,;.,. hcHt~idiWII '' 
"laod (CJ ... Rooa. Rooa) ,;,. ..,bClaa.Ot 
'inc! DOl ''" uat...cn ChaaRI:Ic. ' ' 

'>apli .. DOl ''" ;,.. • ....,_ Roo•) ' ' 
'>a lllStarw;esl Jlooa 

~;..:;;;;,,;;; -"-
(Cia-Roo.. Ro;>o.) ,;, av.bCiaa.OI ' ' 

'dal>d DOl ''" inat•-• CJ .. aAoooo ' ' 
'\I&Ad t Cla..Aooa ,;., Claaa '' 

'-lud lllcoa '-in ct ... '' 
'-laiOd DOl 'in hdi•idU&I '' 

'uph- DOl "" ;,.. • .....,_ llboa) ' ' 
...... _. Ro;. 

Ka.,........,boor'W.cl.orati.,.,Part, lula-nW..t..r. 

,. 

Figure E.4: Proofing Process in 15fp<: Mode of Section 4.4.3 

Figure E.5: Proofing Process in 15fp<: Mode of Section 4.4.3 

134 


