STATUS OF THESIS

Context-aware Modeling Using Semantic Web and Z Notation
Title of thesis

I BAYU ERFIANTO

hereby allow my thesis to be placed at the Information Resource Center (IRC) of
Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP.
2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

I:I Confidential
Non-confidential

[f this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for - years.

Remarks on disclosure:

Endorsed by
N “\L %A sob. Prof. D;/Ahmad Kamli Bin Mahmood
3

s on Scuences Department

BAYU ERFIANTO ASSOC. PR tiﬂ? ner & mformauéjﬂ?m MAHMOOD
Komplek Bumi Adipura 1V Universiti Teknologi PETRONAS

Jalan Pinus V No 28 Gedebage, Bandar Seri Iskandar, Perak,

Bandung, Indonesia Malaysia

Date: G’Q['/O’/mj Date: 50 /O/ /2083

UNIVERSITI TEKNOLOGI PETRONAS
Approval by Supervisor (s)
The undersigned certify that they have read, and recommend to The Postgraduate

Studies Programme for acceptance, a thesis entitled “Context-aware Modeling

Using Semantic Web_and 7Z Notation” submitted by Bayu Erfianto for the

fulfillment of the requirements for the degree of Master of Science in Information

Technology.

Date

Signature : ‘ -

Assoc. i Bi
Heagc Prof. Dr. Ahmad Kamii Bin Mahmood

Computer & Information Scie
Universiti Teknologi PETRONrACE‘?S Deperiment

Main Supervisor

o/
Date : 30 / ([Io0g
T
Co-Supervisor : o
Abdullah Sani B. Abdﬁhman
Lectures

In‘eemation Technalogy/lnformation Systems
1 - -=ti Teknelogi PETRONAS
r: iekandar,
|, Parak Daruk Ridzuan, MALAY S

UNIVERSITI TEKNOLOGI PETRONAS

Context-Aware Modeling Using Semantic Web and Z Notation

By
Bayu Erfianto

A THESIS
SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME
AS A REQUIREMENT FOR THE
DEGREE OF MASTER OF SCIENCE
INFORMATION TECHNOLOGY
BANDAR SERI ISKANDAR,
PERAK
AUGUST, 2008

DECLARATION

1 hereby declare that the thesis is based on my original work except for quotations and
citations which have been duly acknowledge. [also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

Signature _ .

Name : BAYU ERFIANTO

Date : 2 [0/ (200G

Acknowledgement

First of all, the praise should be for Allah for all His grace and bounty, hence I could
finish my study in UTP by writing up this thesis.

This work would not have been possible without the support of Dr. Ahmad Kamil
and Mr. Abdullah Sani under whose supervision [finish this thesis. The gratitude
expression would also be addressed to Post Graduate Studies - Universiti Teknologi
PETRONAS for providing the graduate research assistantship grant and facilities dur-
ing my study.

In my daily work I have been blessed with a friendly and cheerful group of fellow
IT students in Postgraduate Lab room 02-02-12. T would like to extend my grateful-
ness to my colleagues for providing fun environment in which I could learn and grow
like the normal person.

Finally, I cannot end without thanking my family, on whose constant encourage-
ment and love I have relied throughout my time in UTP. I am grateful also to my
parents, my beloved wife lhamdaniah, and my daughters Zahra and fzza. Their smile
will always inspire me, in my unpredictable way. It is to them that I dedicate this
work.

Abstract

Surveys in user context modeling have shown that the semantic web is one of
the promising approach to represent and structure the contextual information captured
from user’s surrounding environment in a context-aware application. A benefit of
using semantic web language is that it enables application to reason user contextual
information in order to get the knowledge of user’s behavior. However, regarding its
notation format, semantic web is suitable for implementation level or to be consumed
by application run-time.

Context-aware application is a part of distributed computing system. In distributed
computing system, the language used for specification should be distinguished from
the implementation / run-time purpose. This is known as separation of modeling lan-
guage. Regarding the context-aware application, for those who are concerned with
specification of context modeling, the language that is used for specification should
also be distinguished from the implementation one.

This thesis aims at proposing the use of formal specification technique to develop
a generic context ontology model of user’s behavior at the Computer and Information
Sciences Department, Universiti Teknologi PETRONAS. Initially, the context ontoi-
ogy was written in OWL semantic web language. The further process is mapping onto
a formal specification language, i.e. onto Z notation. As a result, specification of con-
text ontology and its consistency checking have been developed and verified beyond
the semantic web language environment. An inconsistency of context model has been
detected during the verification of Z model, which cannot be revealed by current OWL
DL reasoner.

The context-aware designers might benefit from the formal specification of context
ontology, where the designers could fully use formal verification technique to check
the correctness of context ontology. Thus, the modeling approach in this thesis has
shown that it could complement the context ontology development process, where the
checking and refinement are performed beyond the semantic web reasoner.

Abstrak

Kajian terhadap pemodelan konteks pengguna menunjukkan bahawa web seman-
tik adalah salah satu pendekatan yang mempunyai harapan untuk mewakili dan men-
struktur maklumat konteks yang diambil daripada persekitaran pengguna dalam ap-
likasi sedar-konteks. Manfaat menggunakan bahasa web semantik ialah ianya mem-
bolehkan aplikasi untuk memikirkan maklumat kontekstual pengguna untuk menda-
patkan pengetahuan mengenai kelakuan pengguna. Walaubagaimanapun, berkaitan
dengan format notasinya, web semantik lebih bersesuaian untuk paras pelaksanaan
atau untuk digunakan oleh aplikasi masa-lari.

Aplikasi sedar-konteks merupakan sebahagian daripada sistem pengkomputeran
teragih. Dalam sistem pengkomputeran teragih, bahasa yang digunakan untuk spesi-
fikasi harus dibezakan daripada pelaksanaan / tujuan masa-lari. Hal ini dikenal seba-
gai pemisahan bahasa pemodelan. Berkaitan dengan aplikasi sedar-konteks, untuk hal
yang berkaitan dengan spesifikasi pemodelan konteks, bahasa yang digunakan untuk
spesifikasi juga harus dibezakan dari pelaksanaannya.

Tesis ini bertujuan untuk mencadangkan penggunaan teknik spesifikasi formal un-
tuk membangunkan model ontologi konteks generik kelakuan pengguna pada Jabatan
Komputer dan Sains Maklumat, Universiti Teknologi PETRONAS. Mula-mula, on-
tologi konteks ditulis dalam bahasa web semantik OWL.. Seterusnya adalah pemetaan
terhadap bahasa spesifikasi formal, seperti notasi Z. Dan hasilnya adalah, spesifikasi
ontologi konteks dan semakan kekonsistenan dibangunkan dan disahkan diluar dari-
pada persekitaran bahasa web semantik. Ketidakkonsistenan model konteks telah
dikesan semasa pengesahan model Z, yang mana ianya tidak dinampakkan oleh pemikir
OWL DL sedia ada.

Percka bentuk sedar-konteks mendapat manfaat dari spesifikasi formal ontelogi
konteks, dimana pereka bentuk dapat menggunakan sepenuhnya teknik pengesahan
untuk menyemak ketepatan ontologi konteks. Pendekatan pemodelan dalam tesis ini
menunjukkan ianya dapat melengkapi proses pembangunan ontologi konteks, dimana
penyemakan dan penapisan dapat dilakukan diluar daripada pemikir web semantik.

Contents

1 Introduction

1.1 Research Background L.

1.1.1 State of the Art of Context-Awareness Modeling

1.1.2 Semantic Web and Formal Specification
1.2 Objectives
1.3 ResearchQuestions
1.4 Approach e
1.5 Scope of the Study and Limitation,
1.6 Structure ofthe Thesis

2 Literature Review
2.1 Context-Aware Computing
2.1.1 The General Architecture
2.1.2 Context Modeling Issue
2.1.3 Related Works on Context-Aware Deployment
2.2 Description Logics and Semantic Web Language
2.2.1 Overview of DescriptionLogics
2.2.2 Description Logic: Syntax and Language
2.2.3 OWL Semantic Web Language
2.2.4 OWL Semantic Web Language Tool
2.3 Z Formal Specification 0L
23.1 ZSyntaxandLanguage
232 Z/EVESToolo
2.4 ChapterSummary

3 Semantic Web Context Model
3.1 Modeling Process Lo
3.2 Representing Context OntologyinDLs

OO 00 Wh Lh B o L LD e

10
10
12
14
15
16
17
17
21
26
27
27
30
31

CONTENTS iii
3.2.1 Identify the concepts and develop its taxonomy 34

3.2.2 Identify the individuals belongtoconcept 36

3.2.3 Distinguish Role to link theconcepts 37

324 Identifysubroles oo 39

3.2.5 Determine concept and role constraints 39

33 SemanticWebModel L 41
3.3.1 OWL Header Definition 41

3.3.2 Semantic WebofClassPerson 42

333 Semantic Webof ClassNetwork 44

33.4 Semantic WebofClassDevice, 45

33.5 Semantic Webof ClassLocation 46

3.3.6 Semantic Web of Class Activity 47

337 ClassRestriction, 47

34 OWLSemanticChecking 48
3.4.1 Consistencychecking. 49

342 Concept Subsumptiono 51

343 Instantiation Checking 53

35 ChapterSummary 55
4 7 Specification of Context Model 56
4.1 Mapping Process L L 56
4.2 Z Syntax and Semantics (OWL-Z) 58
421 ClassDescription 60
422 Properties e 61

4323 ValueConstraint, 63

424 Individualo 65

4.3 Mapping Context Ontology onto Z Notation 65
4.3.1 Specification of Class Person and Its Related Property 66

4.3.2 Specification of Class Device 69

433 Specification of Class Activity o 70
4.3.4 Specification of Class Location 71

4.3.5 Specification of Class and Property Constraint 71

43.6 Specification of Individuals, 73

4.4 Checking Z Specification of Context Ontology 73
4.4.1 Consistency Checking 73

442 Subsumption Checking, ... 76

4.4.3 Instantiation Checking 77

CONTENTS iv
45 Chapter SUMmMAry o o v v v e 80
5 Discussion 82
5.1 Context Development Process, . 82
52 Context Modeling Using OWL 83
5.3 Oniology Expressiveness 85
5.4 Reflection on the Proposed Method 85
5.5 Chapter Summary e 87
6 Conclusion and Future Works 88
6.1 Thesiscontribution L L e 89
6.2 Future Work Directions 90
Appendix 97
A DLs Specification of CIS Context Model 97
A.l Person Conceptual Model, 97
A2 Location Conceptual Medel L. 98
A.3 Device and Network Conceptual Model 99
A4 Activity Conceptual Modelo L 100
AS AxiomsofRestriction. 100
A6 ClassandRoleDataType 101
B Context-Aware Ontology Specification 102
C OWL-Z Semantic Definition 119
D Z Specification of Context Ontology 124
E Screenshoot of Proof Process 132

Chapter 1
Introduction

In a context-aware computing system, the term "context” is used to describe infor-
mation about user’s surrounding environment. Context information might be gath-
ered from sensors and software agents and modeled by means of the available context
modeling approach. Surveys in context modeling, conducted by Strang and Linnhoff-
Popien [1] and Bolchini et al. [2], have shown that context-aware computing applica-
tion is now fully supported by semantic web. This implies that semantic web is one
of the promising modeling language to represent, structure user contextual informa-
tion captured. Chen et al. {3] have developed context-aware application framework
(CoBrA), which was also supported by semantic web as its user context modeling
approach. Another works initiated by Xiao [4], Gu [5]-[6], and Almeida et al. [7] pro-
posed semantic web as their contextual information model {context model) as well.
Context-aware computing is a part of distributed computing. With regards to the
design in distributed computing, many works used formal specification to distinguish
modeling language at specification/design level and implementation / run-time level.
For example, in his work, Jensen [8] used Colored Petri Net (CPN). Another example
of application of formal specification language is CSP (Communicating Sequential
Process), which is discussed in [9]). The intention is to design a protocol interaction
in distributed system. With regards to formal specification tanguage, Bjgner and Hen-
son [10], summarized that formal specification is a mathematical description about
the software or hardware which is used to develop an implementation. Given such
a specification, it is possible to use formal verification techniques to look at the cor-
rectness of the system being designed or realization of implementation with respect
to the specification. Regarding this matter, Nissanke (11] and Bowen [12] used Z no-
tation, and Jackson Jakson2006 used Alloy notation as formal specification language
in distributed system design. Based-on description above, it is summarized that the

language used for specification/design purpose is separated from the language for the
implementation level. This is also known as separation of modeling language,

As a part of research works in ontology and semantic web, formal specification
is further taken into account to express ontology beyond the semantic web language.
Many works have been proposed as the basis foundation of the logical transformation
from semantic web onto another formal specification language. Various formal speci-
fication languages have been addressed such as Alloy [13], PVS [14], and Z Notation
[13]-[15]-[16]. Once mapped onto formal specification language, their following task
was dealing with checking the consistency and reasoning the ontology beyond the
semantic web reasoner [14]-[17].

The fundamental issue in this thesis is to address formal specification technique to
develop context ontology model and checking the correctness of context ontology be-
yond the semantic web reasoner. The research domains mentioned above have become
a motivation to propose context ontology model by using formal specification tech-
nique. In this thesis, context ontology is describing the user’s behavior in the Com-
puter and Information Science Department (CIS) environment, Universiti Teknologi
PETRONAS.

Initially, CIS context ontology is wrilten in semantic web language format using
Web Ontology Language (OWL). Once validated in OWL reasoner, this context on-
tology model is then mapped onto Z specification by adopting Z syntax and semantics
(13]-[16]. Consistency, subsumption, and instance checking of context ontology is
further demonstrated in Z environment by making use of Z/EVES, a tool for check-
ing and proving Z specification. As a result, context ontology is expressed in Z formal
specification and ontology checking are carried out beyond the semantic web language
reasoner, i.e. using Z/EVES.

The context-aware designers might benefit from the formal specification of con-
text ontology model, by which the designers could use formal verification technique
to check the correctness of context ontology. Thus, it becomes a complementary ap-
proach to develop and check context ontology beyond the semantic web reasoner.
During the demonstration, an undetected inconsistency of ontology model has been
discovered by Z/EVES. The refinement process might be taken into account to rede-
fine the context ontotogy prior to the implementation process. The Z context ontology
is formally specified hence the correctness of context ontology can be guaranteed not
only from the syntactical point of view, but from logical point of view as well. An-
other benefit of using formal specification is that it is able to specify more expressive
logical constraint involved in context ontology model.

In this chapter, an introduction to the conducted research is discussed. It begins

1.1. RESEARCH BACKGROUND 3

with a research background that contains state of the art of context-aware modeling
and semantic web and formal specification. An overview of problems and a proposed
sclution are also presented in the later section. This chapter ends by presenting the
outline of the thesis.

1.1 Research Background

1.1.1 State of the Art of Context-Awareness Modeling

Context-aware computing is a part of ubiquitous computing that is collaboratively
able to provide, share, and exchange relevant information {or context) from surround-
ing user’s environment. Context-aware computing concept, which was introduced by
Schilit et al. in [18], defines a computing system that was able to acquire context
information.

In context-aware computing, it is also important to define what context can be cap-
tured. Further, in [19]-[20]-[21]-[22]-[23], a context information incorporates user’s
surrounding information, such as location information, user profile, time, user ac-
tivities, existence of computing devices, execution of application and services, and
physical condition of the environment.

Upon acquiring data from the user’s environment, a run-time application will pro-
cess such context information hence user can use it for further reasoning purpose.
Various knowledge-representation techniques, e.g. using ontalogy in semantic web
tanguage, have also contributed to address those challenges, as deployed by [3)-[4]-
[51-[7]1-[24]-{25]. They use ontology using semantic web language because it provides
a vocabulary of concepts for describing context. The context can be defined as the se-
mantic representation of user’s real-world in a machine understandable format. The
common format used is OWL, written in XML notation. Further representation and
structuring of context become the challenges which are the interest of the researcher

to answer 1n this thesis.

1.1.2 Semantic Web and Formal Specification

Semantic web language family, i.e. DAML+OIL and OWL, are actually developed
based-on Description Logics (DLs) semantics. Therefore, specifying ontology in se-
mantic web language is the implementation of ontology model in DLs. Though ex-
pressing ontology in DLs can be independent from the implementation concern or

run-time application phase, nevertheless, the automated tools to explore (specify and

1.2. OBJECTIVES 4

proof) DLs syntax and languages are not available yet.

Current ontology reasoners, such as Pellet and Fact++, are able to classify taxon-
omy of ontology and able to detect inconsistency of ontology. Unfortunately, such
reasoners yet have to carry out ontology checking based-on implementation-oriented
language, such as OWL DL, because the current DLs reasoner still rely on semantic
web language, e.g. OWL DL reasoner.

Dong [13] and Wang [26} proposed formal Z notation, Alloy and PVS as the al-
ternative ways to express ontology beyond the semantic web model. Dong in [17] and
Li in [27] then continued the previous works to combine Z Notation with Alloy to
design and check Military Plan Ontology. They previously generated Military Plan
ontology using DAML+OIL, and then mapped this ontology onto Z notation. In their
approach, Z/EVES is then used to check the consistency of their ontology to remove
some trivial syntax errors. They further transformed DAML+OIL Military Plan on-
tology into Alloy. Continuing their works, Lucanu et al. [28]-[29] also came up with
the institution morphism approach to prove the similarity between semantic of OWL
semantic web language and logical semantic used in Z/EVES, as the common tool to

check and prove Z specification.

1.2 Objectives

The aim of this thesis is to provide a methodology to develop context ontology model
by addressing the formal specification technique as mentioned in the previous section.
This aim can be further expanded into the following objectives.

1. Developing a context ontology model using formal specification language.
» To represent context ontology model using DLs notation and OWL Se-
mantic Web Language
» To map the context ontology in semantic web onto Z formal specification

{notation)

2. Checking the correctness of context ontology medel {consistency, subsumption
checking, and instantiation checking)

* To carry out semantic checking of context ontology in semantic web lan-

guage using semantic web reasoner

* To carry out semantic checking of context ontclogy model in Z notation.

1.3. RESEARCH QUESTIONS 5

1.3 Research Questions

Several research questions are defined to assist in the fulfillment of the objectives
presented in the previous section. To be able to address formal specification technique

in developing context ontology, the following research questions are come up.

. What are the requirements to represent contextual information into ontology?

2. What are the modeling processes involved to develop context ontology using

formal specification language?

3. How to validate the context ontology model?

1.4 Approach

The research presented in this thesis is about conceptual work in context ontology
modeling. Problems related to this have been raised in the research question presented
in the previous section, and the approach to answer those research questions have been
proposed as follows:

1. Context information describes relevant aspects of the user’s physical environ-
ment including its computing devices. Such information can be obtained from
the available computing resources, such as from sensors and software agents.
The environment to be modeled in this thesis is the behavior and situation of
Computer and Information Sciences Department (CIS), Universiti Teknologi
PETRONAS. As described in [19]-[20]-(21], information about location, activ-
ity, and the presence of computing devices are considered as the aspects to be
included into context ontology model in this thesis.

As in Strang and Linhoff-Popien [1], they classified the context modeling ap-
proaches into relational data base model, graphical model, logic-based model,
mark-up scheme model, and ontology model. This thesis focuses on the use of
ontology model to represent and structure contextual information. Ontology is
chosen because it can represent the knowledge of the user’s behavior in a hier-
archical manner to be used for reasoning purpose. Since many context-aware
frameworks widely support ontology using semantic web language, hence the
reasoning process of contextual information could be carried out in an unambi-

guity manner.

1.4. APPROACH 6

2. Context information in this thesis is supposedly obtained from sensors and soft-
ware agents. Such contextual information should be described in an abstraction
manner, intentionally designed to be easy to understand by human. This mod-
eling approach can be explored by using either the graphical notation to meet
the requirement of context information conceptual modeling, such as described
in [30]-[31]. Nevertheless, as the alternative, this thesis presents the abstraction
of context information using conceptual modeling in Description Logics (DLs)
notation. DLs are chosen because it is the logical foundation of semantic web.
Hence, by expressing conceptual model in DLs it could be easily transformed
into semantic web language (OWL format). The further detail of the context
modeling approach used in this thesis is defined as illustrated in Figure 1.1. The

methodology involves the following steps:

Conceptual (DLs)

——Wrinten | owL
Context Model —yewriies— Conlext Ontology e In—p-

4_§_

Z Semantics for vasd—p FOmal Context

owL Specification Exprusndio—e 2

Figure 1.1: Context modeling approach used in this thesis

+ Construction of conceptual context model using DLs
Before writing user context ontology in OWL notation, the conceptual
model of context is initially written in DLs notation as described in [32].
DLs notations are very helpful to describe conceptual model of context
ontology, which is composed of concepts, roles, and individuals. Since
DLS is the logical basis of OWL, once completed writing context ontol-
ogy model in DLs, it could be directly mapped ontc OWL. notation.

» Writing of DLs model in OWL semantic web language
Semantic web language, e.g. OWL, is the realization of DLs. Due to its
feature, the OWL semantic web language of context ontology model can
be directly written from DLs notation. As described in the previous sec-
tion, semantic web language is actually the realization of DLs conceptual
model. Therefore, once the context ontology model has been written in se-
mantic web language, it can directly be used by the run-time application.

1.4. APPROACH 7

» Mapping of the OWL context model onto Z notation
Regarding the distributed system modeling described in the previous sec-
tion, modeling language should be distinguished from the application run-
time or implementation language. For cxample, in the purpose of specifi-
cation or design, modeling language (or specification language} is not in
the executable manner. Semantic web language has widely been used as
the context modeling approach. However, since it can directly be instanti-
ated or be used by the application run-time, and due to its notation format
as well, in this thesis, it is considered not suitable for context modeling
purpose.
Therefore, this thesis adopts the concept initiated by [16]-[28]-[29] to
specify ontology beyond the semantic web language format. They de-
fined Z syntax and semantics for each of corresponding OWL syntax. Z
formal specification is a chosen language because its logical formalism is
derived from set theory and first order logic, which is similar to the DLs
logical foundation as well. In this thesis, the Z syntax and semantics to
express OWL syntax are redefined and rewritten by directly taking from
OWL semantics definition in [33].
The semantic web language consists of class constructors, properties and
axioms. They were then mapped onto Z formal notation as well. After-
ward, to achieve one of the objectives presented in this thesis, the context
ontology model written in semantic web language are mapped onto Z for-
mal notation by using the redefined OWL-Z syntax.

3. This thesis addresses semantics checking to evaluate the correctness of con-
text ontology. Semantics checking covered in this thesis includes inconsistency
checking, subsumption checking, and individual checking.

Pellet, as OWL DL reasoner, is used to validate the context ontology written in
OWL semantic web language. Pellet is chosen since it has the ability to perform
terrn checking and instantiation checking (a.k.a TBox and ABox) in a semantic

web language document.

Z notation is not an implementation-oriented language (be prepared for run-time
application) like OWL, instead, it is a formal specification language built on top
of set theory and First Order Predicate Logic (FOL). Z features are also able
to support concepts relation, role, and instantiation. Inconsistency, subsump-
tion, and instance checking is then demonstrated in Z environment by means of

1.5. SCOPE OF THE STUDY AND LIMITATION 8

Z/EVES tool. Due to its features, Z notation has been selected to be used in this
thesis. As a result, it is demonstrated that context ontology can be expressed
in Z formal notation, thus, ontology checking is carried out further in Z envi-
ronment, i.e. using Z/EVES tool. This shows that context ontology checking
independent from OWL DL reasoner (Pellet, FACT++,Racer,etc.).

1.5 Scope of the Study and Limitation

Throughout the work and from the modeling results, some limitations of the thesis
were identified. The discussion in this thesis is restricted to as follows:

1. This thesis excluded the context acquisition system, i.e. how to capture con-
textual information from user’s surrounding environment. Due to the limitation
of the context-aware and ubiquitous infrastructure in CIS department, there-
fore, it is assumed that all context information provided in this thesis have been
captured by means of sensors and agents. The context was only limited to de-
scribe user’s surrounding information in CIS Department, Universiti Teknologi
PETRONAS.

2. This thesis excluded the development of context-aware application. All context
ontology are defined for the verification purpose.

3. This thesis excluded the dynamic context-aware modeling such as how to model
interaction system among the context-aware computing elements. However, this
concern is suitable to address by using another formal specification language
such as 7 calculus [34].

1.6 Structure of the Thesis

This thesis 1s organized as follows:

1. Chapter 1: Introduction. This chapter discusses research background, aims
of the research, problem statements, solution appreach and the outline of the
thesis.

2. Chapter 2: Literature Review. This chapter briefly discusses the background
of study and the state of the art in context-aware computing application, seman-
tic web and description logics as foundation of ontology.

1.6. STRUCTURE OF THE THESIS 9

3. Chapter 3: Description Logics and Semantic Web of Context Ontology.
This chapter presents the process of constructing a context ontology using OWL
semantic web language. The discussion within this chapter includes a design of
class (concept), properties and individuals in OWL. This chapter ends with a
semantic consistency checking of the context ontology.

4. Chapter 4;: Z Specification of Context Ontology. This chapter presents a
briefly discussion on Z formal specification. The mapping process of OWL
semantic web syntax and axioms onto OWL — Z model is further presented.
Context ontology given in Chapter 3 is mapped onto Z specification. To check
the correctness of the z specification, the Z typed checking has been performed,
i.e. to detect typical syntax error, and use Z theorem prover perform ontology
reasoning in Z/EVES.

5. Chapter 5: Discussion. This chapter presents the discussion on the process
of developing context ontclogy using semantic web language and formal spec-
ification. The reflection on the proposed methods ends the discussion on this

chapter

6. Chapter 6: Conclusion. This final chapter concludes the whole thesis high-
lighting the summary of contributions followed by a discussion on future and
including limitation of the research work.

Chapter 2
Literature Review

The discussion in this chapter begins with the background study and the state of the
art of context-aware computing and context modeling approaches. Thereafter, the
overview of Description Logics (DLs) as the logical foundation of ontology and Se-
mantic Web Language as the implementation of DLs are presented as well, which is
followed by an overview of Z formal specification.

2.1 Context-Aware Computing

In computer science, the term of context-aware computing refers to the situation that
computing devices can sense and react to the user environment. Computing devices
may have information about the situation, where they are able to operate and based-
on given rules to react accordingly. Context-awareness devices may also try to make
assumptions (depending on the given deduction rule) about the user’s current situation.
The term context-awareness is a part of ubiquitous computing, which was introduced
by Schilit [18]. They introduced distributed system from the perspective of context-
aware computing . Schilit defined the term of context-aware computing as follow ([18]
page 85):

"...a compuler application that can adap! according 1o the location of
user, the colleciion of nearby users and objects, as well as the dynamic

changes of those objects in the environment...”

For example, Computer and Information Science Department at Universiti Teknologi
PETRONAS in the future plan is going to deploy a context-aware meeting room.
In a given scenario, the context-aware application automatically recognizes a meet-

ing place and schedule it associates with specific agenda. To achieve this behavior,

10

2.1. CONTEXT-AWARE COMPUTING 1l

context-aware application program will execute the rule that has been defined in on-
tology. Once a person enters the meting room, by recognizing the RFID tag used by
a person, hence the context-aware application may detect the presence of person, it
will turn on the light, projector, microphone, and other relaied meeting equipment. A
context-aware mobile phone may also know that it is currently in the meeting room
(e.g. using position sensors to perceive the position of a user), and the mobile phone
will condition its profile for a meeting scenario such as by activating vibrate mode
and will reject any unimportant calls, This scenario could be possible by deploying
context-aware computing application,

In context-aware computing system, the term “context” is used to describe infor-
mation about user’s surrounding environment. Context information is gathered from
sensors and software agents which is then represented by means of the available mod-
eling approach [1]-[30]. Abowd and Dey [19]-[35] defined context as

V...any information that can be used to characterize the situation of enii-

ties "

Research community in context-aware computing initially perceives that the term con-
text is a matter of user’s location, as in Dey [19]. However, in the last few years the
term context has been considered not simply as a location only, but might also in-
volves computing environment, as explained in [20]-[21]-[22}-[23]. Based-on their
investigation, what aspects that might be constructed in a context are identified as
follows:

1. Service and application context: context information that describes application
and service currently used and run by a user, e.g. email client application, web
service run, etc. Kranenburg et al. in [21] also consider context information of
all properties in user’s desktop that are relevant to running application, running
process, display size, percentage of memory and processor usage (computing
hardware context).

2. Access Network context: context information that describes all properties of
available network resources, e.g. network traffic, bandwidth usage, QoS, status
of connected devices, e.g. Bluetooth, WiFi, etc.

3. User profile context: is context information that typically describes about per-
son’s environment (people nearby, light, humidity), profile, task, social and
spatio-temporal (outdoor and indoor position).

2.1. CONTEXT-AWARE COMPUTING 12

4, User's position context: is usually indicated by location where a person is pres-
ence. With regard to the location-awareness in context-aware computing, Dom-
nitcheva in [36] differentiates into physical location model and geographical
model. Physical location model is about the earth coordinate system and typi-
cally provides a magnitude in a latitude and longitude. Geographical location is
about geographical objects on earth, such as countries and cities, etc. Both of
location models are considered to be used in our context ontology.

5. Personal context: health, mood, schedule, and activity
6. Social context: group, activity, social relationship, and people nearby

7. Physical context: contextual information related to physical aspect of the con-

text aware system

8. Environmental context: weather, altitude, light, etc

2.1.1 The General Architecture

In his book, Loke {20] mentions at least there are three basic functiconalities exist
in a context-aware computing application. Those three layers are sensing, thinking
and acting. Sensing layer in context-aware computing comprises many sensors, for
instance a position and a light intensity sensor. Those are together categorized as
physical sensors which are used to capture user’s physical related information.

Loke also identifies various data processing and analysis techniques considered
to process context information. Those techniques involve mathematical modeling,
cognitive-based models, and knowledge-based model combined with logical reason-
ing, and fuzzy logic. Prior to Loke with his idea of modeling and processing context
information, Chen et al. [3] and Eunhoe Kim and Jaeyoung Choi [24] have also pro-
posed a context modeling using semantic web ontology, that was identical to knowl-
edge bases model.

Processing context using knowledge-based technique fully utilizes ontology writ-
ten in semantic web language. Therefore, context-aware computing application can
further react upon sensing and reasoning process. Actions to be taken are defined in
application by means of executing rule via software APIs. As in Dey [19], context is
considered in the relation of tasks (or static context model in this thesis) rather than
interactions between users and application {(dynamic context-aware model).

For the implementation purpose, software agents or sensors might be attached to

the existing context-aware application framework. To do so, for example, an instant

2.1, CONTEXT-AWARE COMPUTING 13

messenger-like application can be made context-aware by adding agents or attaching
sensors to acquire the information of awareness from user behavior. Thus, this appli-
cation may deduce the information about user’s position (including room name, floor
and building name), who is in the room (users nearby), what are activities related to
a user (he/she is away from the desktop or he/she is in meeting room), etc. By using
context-aware instant messenger-like application, it enables a user to deduce current
activities of a person according to his/her current location.

Figure 2.1 illustrates a general context-aware computing architecture. A client
can be a mobile device, like PDA or smart phone, personal computer, or notebook.
To enable context exchange among the users, context-aware computing application is
required to be deployed in a client computing. The application may consist of core
context-aware application (including user interface) and sofiware agents {20].

Figure 2.1: General context-aware computing architecture

The core of context-aware computing application can be like an instant messen-
ger application as described in the previous paragraph. An agent is required to cap-
ture contextual information related to user’s surrounding information. Context-aware
server usually acts like a mediation server to receive information from software agents
and temporarily store in the database. Mediation server can also receive and process
queries from a client who wants to deduce information related to a user, such as infor-

mation about current location, current activities, etc.

2.1. CONTEXT-AWARE COMPUTING 14

2.1.2 Context Modeling Issue

Upon acquiring context from sensors and software agents, the following task is how to
process such user context so that it does make sense for reasoning purpose, Represent-
ing, structuring, managing and using context further become the interested challenges
and many research are still underway. To address those challenges, various context
modeling and representation formalisms and techniques have been proposed such in
[3]-[4]-[5]-[71-[24]-[37]. They used semantic web language ontology since semantic
web provides a vocabulary for describing context-awareness and it also enable reason-
ing with formal logical representations.

Strang et. al. {1] classify context modeling approaches into relational data base
model, graphical model, logic-based model, mark-up scheme model, and ontology se-
mantic web model. They also denoted another modeling, i.e. object-oriented model
that is intentionally developed to support web-based ubiquitous computing applica-
tion. Another important thing, which is also mentioned in their findings, is the easiness
to build application derived from the object-oriented model. Nevertheless, the object
oriented model still lacks with logical expressiveness for context reasoning purpose,
because it is not supported by logical form,

Context modeling using semantic web language, as introduced in [5]-[24]-[38],
aims at overcoming the lack of formality and logical expressiveness of the previous
context model. They build context model in semantic web language because it en-
ables knowledge sharing in dynamic context-aware application, and also well-defined
semantic web language model which provides a mechanism for context-aware appli-
cation to reason or deduce awareness information.

The context modeling approach identified by Gu in [5)-[6] and Eunhoe Kim and
Jaeyoung Choi in [24] are summarized as follows:

1. Application oriented approach: the specific application programming interface
functionalities were developed for context-aware system application,

2. Model oriented approach: a conceptual model commonly used to represent the
context. Many researches proposed context model based-on ER (entity relation-

ship).

3. Ontology Oriented Approach: since OWL was introduced by W3C, many context-
aware computing applications make use of OWL semantic web language as its
ontology language to represent and structure context model. The context-aware
application also makes use the OWL APIs to reason the information captured

from the sensors and software agents.

2.1. CONTEXT-AWARE COMPUTING 15

2.1.3 Related Works on Context-Aware Deployment

In this section, some examples of works on developing of context-aware applications
using semantic web context model are presented. In this thesis, the identified domain
of context-aware applications are mostly deployed for smart home [24]-[38]-[39]-
[40], smart office [41], smart space [22].

CONON is OWL ontology developed by Wang et al. {4]. They developed CONON,
dedicated for home and office ubiquitous environment. Context in CONON was struc-
tured in semantic web ontology because the use of logical reasoning in ontology can
detect inconsistency of context information using logical deduction.

Figure 2.2 shows CONON ontology presented using OWL graphical notation,
which are grouped into home domain and office domain, and folded into upper and
lower ontology for each particular domain. With regard to what can be a context,
CONON already accommodated user context as discussed in the previous section.

"
DeducedActivil

chaduledAc tivil

nd Imn i @-:' o ‘._,_.... oLl
5 Location), [~
nesmy q s . TR >
M.“ :I n - Room Doy ard
Person . -
nrma | gL Comidor [poars ams
T T - N .
Uppes Class Spacific Clans owi:P roperty s subClaseOf
ogeoc: €S CO — —

Figure 2.2: Context ontology model in CONON. This picture is taken from [4]

Chen et al. [3] proposed CoBrA infrastructure for context representation and
knowledge sharing. In CoBrA, context information is shared by all devices in smart
space computing application. CoBrA provides ontology written in OWL semantic
web language. CoBrA architecture is illustrated in Figure 2.3, Regarding to its ar-
chitecture, CoBrA has four functional components: context knowledge base, context
reasoning engine, context acquisition module, and context policy management mod-
ule.

The following reasons are the motivation of why CoBrA architecture makes use

of semantic web as its context model.

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 16

Information Servers Semantic Web &
(Exchange Server, iCal, Web Services
YahooGroups, etc.) (RDF, DAML+O1L & OWL)

Contexts in External Sources
Context-Aware Devices f Context-Aware Agents

£ 3 Context Broker
2y =S L
e

Context
knonledge base

2\ SOAP + RDFOWL Context

Ressoning Engine
Ethernei Context

@. - ﬂ m Acquisiton Module
y "o Meregement podule
& / v \

Contexts in the Intelligent Spaces

TKRCK;

Smart Tag Sensars Environment Sensors Device & Gadget Sensors
{Radio Frequency Identfication) (Xanboo & X10 technology) {Java Ring, SmartCard etc.)

Figure 2.3: COBRA Architecture. Taken from [3]

1. Semantic web ontology provides a mean to develop context-aware computing
application that is able to share context knowledge with minimum redundancy.

2. OWL as ontology is expressive enough to model contextual information ontol-
ogy in CoBrA, e.g. information about person, events, devices, places, time,

etc.

3. Context ontology has explicit semantics, hence they can be reasoned by current
semantic web ontology reasoners to detect the inconsistency of concepts.

There are three types of reasoning purposes provided in CoBrA, i.e. reasoning with
physical location ontology, reasoning with device ontology, and reasoning with tem-
poral ontology. In CoBrA architecture, context-aware device may include device pro-
file, device ownership relation, user temporal properties associated with device, and

spatial properties of associated device.

2.2 Description Logics and Semantic Web Language

This section discusses the Description Logics (DLs}, which are used as logical foun-
dation of semantic web language. Regarding the DLs, semantic web language is the
implementation of DLs. Related ontology tools are discussed as well in this section.

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 17

2.2.1 Overview of Description Logics

The term of Description Logics (DLs) refer to concept descriptions used to describe a
domain and to the logic-based semantics which can be given by a translation into first-
order logic. Description logic was designed as an extension to semantic networks.
DLS was introduced in the 1980s as terminological systems and concept languages
[42]. Today Dls have become a basis of the semantic web in the design of ontologies
[43].

With regard to Baader et al.[43]), DLs are designed to represent and reason about
knowledge in an application domain. DLs language provides a set of constructor to
build a concept (¢lass) and role (property) description. Description language consists
of distinct concept name {C}, role name (R), and individual or object names (/).

Nowadays, DLs become a foundation of ontology language. In computer sci-
ence, an ontology is data model that represents a set of concepts within an application
domain and the relationships between those concepts [43]. Besides semantic web,
ontologies are also used in artificial intelligence, software engineering, biomedical in-
formatics and information architecture as a form of knowledge representation about
the world or some part of it [43].

2.2.2 Description Logic: Syntax and Language

DLs are built on top of theoretical semantics, which are defined in term of interpreta-
tion. An Interpretation Z is composed of a domain AZ and an interpretation function
Z. Interpretation function also maps object or individual name a ¢ € [into an element
ol € AT

Definition 2.1. Let A € C be an atomic concept name, 7 € R be a role name, C and
D are the concept name. Regarding to [42], this concept and role are defined by the
DLs syntax;

C,D — A|T|L|-~ C[CADICUDIVR.C|3R.C @2.1)

where A is atomic concept, T is top concept, L is bottom concept, R is an atomic
relation,C and D are concepts name, ¥ is universal quantifier and 3 is existential quan-
tifier.

The family of DLs language above is known as ALC, which stands for Attributive
Language with Complements. ALC has been introduced by Manfred Schmidt-Schaufl
and Gert Smolka in [42]. Other constructors may also include restrictions on roles
such as inverse, transitivity, and functionality. The other DLs languages are extended

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 18

from ALC language. To understand the relation between ALC and its semantics, the

examples are given as follows.

Example 2.1. Let {Professor, PhDStudent, AcademicStaff , FullTimeStaf} € C
be concept name, supervise € R be role name, thus the constraints could be deter-
mined

Professor = 3 superwise. PhDStudent

Professor T AcademicStaff N FullTimeStaff

therefore, a deduction can be made such that

Y supervise. PhDStudent © AcademicStaff N FullTimeStaff

The above DLs axioms describe a situation in a University that a Professor, who
has a PhD student, must be a full time academic staff accordingly. Such description is
composed of concept conjunction (M), existential quantification ¥ R.C. Such compo-
sition forms minimum DLs language, which is described in Definition 2.1.

To perceive the semantics of 2.1, the second example is given below.

Example 2.2. Interpretation of Z = (A%,7) is model of ¥ supervise. PhDStudent
where the facts or individual{in capital) could be determined as follows:

AcademicStaff = {ARTALE, MCGUINESS, HAVERKORT, BAADER,
SATLER}

FullTimeStaff = {ARTALE, HAVERKORT, BAADER, HORROCKS'}
Professor? = {HAVERKQRT, BAADER)

PhDStudent™ = {KHATTRI, KATOEN, JEFF}

supervise? = {{HAVERKORT, KATOEN) ,{(BAADER, JEFF})}

According to Definition 2.1, the individuals can be involved in the axiom:
3 supervise. PhDStudent = { HAVERKORT, BAADER, KATOEN , JEFF'}

The interpretation function and interpretation domain are illustrated in Figure 2.4.
In that figure, individual HAVERKORT and BAADER are subset of domain AT, The
concept of Professor, PhDStudent, and Student are also sub set of AZ. The role or
property supervise is sub set of cross function of interpretation domain AT x AZ,

Table 2.1 shows DLs concepts and constructors. From this table, the minimal DLs
ALC can be extended to form another more expressive language, e.g. with notation
R* as Transitive Role, Z as Inverse Role, @ is Qualified cardinality restriction, F

2.2, DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 19

Interpretation function T Interpretation domain AZ

Individuals aT g A7

Baader = — — —— . = emTe T
e

Katoen --——-——-.__-__-

Concepts C7C af =~

.

AcademicStaff —— e -

FullTimeStaff — — — — — —

PhDStudent — — — — — B

Roles RT C Af x af

supervise —— —— — — — "

Professor = {AcademicStaff 1 FullTimeStafl)

Professor = (AcademicStaff NYsupervise PHDStudent)

Figure 2.4: An Illustration of concept, role and individual interpretation in DLs

is Features functionality, and O is Individuals enumeration. The extension of DLs
determines the expressiveness of DLs language.

Typically, knowledge-base in Description Logics comes into two parts, namely
terminological concept (TBox), i.e. knowledge about problem domain and assertional
concept {ABox), i.e. knowledge about specific situation.

Terminological Box

Terminelogical Box (TBox) is set of axioms describing how concepts are related to
each other in a problem domain. TBox can be built in the form of concept inclusion
(C T D), role inclusion (R T §), concept equality C = D and role equality R = S

[43]. For example, the axiom
I supervise. PhDStudent C Professor U Doctor

determines a policy in a university that only Professor and Doctor who can supervise
a PhD Student.

In TBox, interpretation 7 satisfies A = C iff CF = D% and A C C. Definition
axioms in TBox introduces names for concept suchas A = Cand A C C. In
definition axioms, A = C isequivalentto AC C and C C A,

Assertional Box

ABox, or Assertional Box, is set of axioms describing concreie situation of concept
and role. In ABox, concept assertion is described as a : C, where a is an individual
and C is a concept. The example of this concept assertion is Haverkor!l : Professorn

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 20

Table 2.1: Description Logic Concepts and Constructors, taken from [44]

Name DLs Syn- | DL Semantics Language

tax
Top T AT AL
Bottom 1 @ AL
Atomic Concept | A AT C At AL
Atomic Role R RT C ATzp? AL
Union cub ctupt u
Negation -C AT\ (C? c
Intersection cnp CTn DT AL
Value Restriction | VR.C {a € AT|Vb.(a.b) € RT — b e CT) AL
Existential Quant | 3R.C {a € AT|Vb.(e,b) € RT A b€ CT) AL
Ungqualified > nR {a € AZ[{b € A%[(e,b) € RT} > n}
number < nR {a € AT|{b € A%|{e,b) € R} < n} N
restriction =nR {e € AT|{b € AT|(e,b) € RT} = n}
Qualified > nR.C lae AT|{be AT|{a, b} e RT A b e CT} 2 n)
number <nR.C la e AT|{be AT|(a,b) € RT Anbe CT} < n} Q
restriction =nR.C {a e AT|{b € A%|(a,b) € RZ Abe CT} < n}
Role-value RC S {a e ATwb e Rt — {a,b) € ST}
map R=S5 {a € AT|Vb € RT = (a,b) € 57}
Agreement and U = up {a € AT|3b € AT uf(e) = b = uf(a)} F
disagreement u # Uup {la € ATj3b,by € AT uf(e) = b # by =

uj (a)}

Nominal] JIC AT =1]
Inverse Role -p {{z.y) |{y,z) € R*} T
Transitive Role | (IR R = (RT)T R

V supervise. PhDStudent. Role assertion is described as (a, b) : R. The example
of this axiom is {Baader, Jeff} : hasPhDStudent, which describe that BAADER
supervise a PhD Student named JEFF.

In Assertional Box the interpretation Z satisfies a : C iff aZ € C%, and {a, b} : R
iff {a”, b7) & RZ.

Ontology Checking

In DLs, reasoning with DLs ontology is based on process of discovering implicit
knowledge entailed by the ontology. Reasoning in ontology will involve the checking
of the truth of statements or axioms exists in ontology.

Let O is the knowledge bases in ontology, C and D € AZ, and ¢ € AT/ is
individual name,

The DLs basic reasoning service provides:

I. Consistency checking. The intention is to check whether the knowledge is
meaningful or not, so that ontology O is consistent, thus Z = O, or concept

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 21

C is consistent, thus CT £ B iffZ = O

2. Subsumption checking. The intention is to check the structure of knowledge
and to obtain the taxonomy of knowledge, so that C C D i.e. ct C DT iff
IEO.

3. Equivalence reasoning. The intention is to check if two concepts denote the
same set of instances, sothat C = Die. CT = DT iff T = O

4. Instannation reasoning. The intention is to check if individual ¢ 15 instance of
concept C, ie. i € CTiff T E O

2.2.3 OWL Semantic Web Language

OWL, or Web Ontology Language, is semantic web tanguage initiated by W3C. This
semantic web language provides ontology vocabularies for implementation of De-
scription Logics. Prior to OWL, semantic web language has been introduced by
the Defense Advanced Research Projects Agency (DARPA), which was known as
DARPA Agent Markup Language (DAML +OIL)}.

OWL now becomes W3C recommendation for semantic web language model. The
aim of OWL W3C semantic web language is to share the knowledge by means of
web environment. Since then, OWL is widely used as a common ontology language
to share information in distributed application by means of web environment, which
replace the functionality of DAML+OIL. Both DAML+OIL and OWL are constructed
based-on Description Logics.

OWL is split up into 3 distinct language distinguished by its logical constructors,
i.e. Lite, DL, and Full. The sub language OWL Lite supports simple constructs fea-
ture that conforms to DLs (§HZF) family. Meanwhile, OWL DL supports all OWL
Lite features with some extension on logical constructs. OWL DL conforms to DLs
SHOIN (D) family. OWL DL fully supports DLs logical constructs, hence this lan-
guages is decidable and commonly supported by OWL DL reasoner. OWL Full sub
language is meant for user who wants to express syntactic freedom of ontology specifi-
cation. OWL Full supports both OWL Lite and OWL DL. However, this sub language
cannot be used to reason the ontology due to the undecidable of OWL Full syntax.

With respect to ontology language in Table 2.2, DLs SHZ Q becomes the corner-
stone language for W3C Web Ontology Language. SHZQ is DLs extension with $ +
role hierarchy H + inverse role Z + qualified number restrictions Q. & is often used
to describe ALC extended with Transitive Roles (*)R.

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 22

OWL Lite extends DLs ALC with Transitive restriction on role, inverse role,
and functional restriction. Thus the logical expressiveness of OWL Lite is equivalent
to DLs SHIF (SHIQ extended with functional number restriction). Meanwhile,
OWL DL extends SHZQ with nominals,i.e. SHOZN). As described in the previous
paragraphs, additional letters indicate other extensions of DLs family (see Table 2.2).

Table 2.2: OWL Family Extensions

Symbol | Meaning | Example

H role hierarchy hasDaughter © hasChild
T inverse roles isChildOf = hasChild~

O nominals/singleton classes Mars

N number restrictions > 2hasChild, < 3hasChild
Q qualified number restrictions = hasMother. Actrees

F functional number restrictions < lhasMother

Class, Property and Individual Axioms and Description

A Class in OWL reflects a concept in DLs. A Class can also contains individuals or
class instances. In OWL class description, there is class owl:Thing that superclass of
all OWL class and owl:Nothing as inverse of owl:Thing (sce Table 2.6). The axiom
subClassOf is rdfs vocabulary to express class hierarchy in OWL. An owl class may
be classified as a sub class of another class.

As described in the previous section, DLs falls into two parts, namely TBox and
ABox. TBox consists of a number of class axioms (see Table 2.3) and property ax-
ioms (see Table 2.4); meanwhile ABox consists of a number of individual assertions
(see Table 2.5). In Table 2.3, Table 2.4, and Table 2.5, letters C, 2 refer to class, T
refers to a concrete data type, whereas R refers to an object property, U refers to data
type property; P refers to an object or data type property, o and ¢ refer to object and
concrete values.

A class axiom in the TBox consists of two class descriptions, separated with the
GClI (General Class Inclusion, or class subsumption C) symbol or the equivalence
symbol (=), which is equivalent to GCI in both direction (i.e. C C D equivalent to D
CO).

Like in DLs, a property in OWL semantic web language is used to state:

1. Relationship between class instances, this relation refers to owl: ObjectProperty.

2. Between class or instance of class with instance data type, and this second rela-
tion is owl:Datarype Property

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE

23

Table 2.3: OWL DL Class Axioms, taken from [44]

[[OWL Abstracts Syntax DL Syntax Example
subClassOf (G, (o) G CG Human C Animal
equivalentClass{C,...C;) O=.=C Man = Human N Male
disfoint With{C,...C}) ane,cL Male C — Female
enumeratledClass(Aoy...on) | A= 0,..., 04 Animal = Cat, Dog, Bear

Table 2.4: OWL DL Property Axioms. Taken from [44]

OWL Axioms DL Syntax | Example I
subPropertyOf (Py, P2) P, E P2 hasDaughter T hasChild
equivalentPropertyOf(Py..P) | PL=..= P; hasCost = hasPrice
ObjectProperty (R

super(A1)...super{Ry,) RC R,)
[inverseOf (R,)] R =Ro" hasChild = hasParent™
domain(C))...domain{C,) TCYR™.C;

range(C))...range(Cy) TCVYAR.C;

[Symetric] R=R"

[Functionall TCE<1R T E< 1hasMother
[Inverse Functional] TCE<1R™ T C< lhasChild~

[Prunsitive]) Rt ancestort T ancestor
Datatype(T) XS§SD

DatatypeProperty (U

super(Uy)}...super(U,) ULCR;

domain(C1)...domain(C,) TCYU-.T;

range(C))...range(C,,) TCVYU.T,

[Functional)) TCL1V T E< lhasNeme

A property P is said to be Transitive such that P(x,y) and P(y,z) implies P(x,z). A
property is said to be symmetric property such that P{x,y) iff P(y,x). P is functional
property such that P(x.y) and P(x,z) = y =z. P is inverse functional property such that
P(y,x} and P(z.x) = y = z. Similarly with Class axioms, property axioms consists of
a two property names, separated with subsumption C or the equivalence (=) symbol.

In DLs, the abstract and concrete properties are distinguished by describing the
range of the property, i.e. is abstract or concrete. OWL DL reflects this distinction
by using object properties and datatype properties, where an object property may only
have a class description as its range and a data type property may only have a datatype
as its range. Class descriptions and data type are disjoint each other.

A description in the TBox is either a named class (A), an enumeration (o,...0,),
a property restriction (3R.D,VR D 3 R.0,> nR,< nR, analogously for datatype
property restrictions), or an intersection (C'M 0}, union (C'U D) or complement (— C)
of such descriptions (see Table 2.6). Individual assertions in the ABox are either class
membership (0 € C;), property value ({01, 02) € Ry, hol, 0,,; € U)), or individual

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 24
Table 2.5: OWL DL Individual Assertion

OWL Abstract Syntax DL Syntax Example |
Individual (o type(C,...type(CL)) | 0 € C;
value(R1(01))..value{ R (om)) | {0, 0:) € @
value(Uy (4))...value{ U (6n)) {0, ;)€ U;
Samelndividual{o,...0,) 0] =..= 0q God = Grealg reator
Differentindividual(o,...0,) 0] # ... # 0On Zubair £ Ackerman

Table 2.6: Description in OWL DL SHOZAN, taken from {44]

[OWL Abstract Syntax | DL Syntax | Example
A(URI Reference) A
owl:Thing T
owl:Nothing L
intersectionOf (Cy...Cy) G NGy
unionOf (Cy...Cp) Ciu..nCy)
complementOf (C) -C - Male
oneQf(o,...0,) 01...05 john, zubair, dalton
restriction{ RallValuesFrom{C)) YRC ¥ hasStudent. Teacher
restriction{ Rsome ValuesFrom{C)) | 3R.C 3 hasStudent. Professor
restriction{ Rvalue(o}) IR0 V hasStudent. JOHN
restriction(UmaxCardinality(n)) < nR < lhasStudent
restriction(UminCardinality{n}) > nR > 3hasStudent
restriction(Uall Velues From{T)) vU.T YV hasName BOB
resiriction{ Usome ValuesFrom(T)) | 3R.T 3 hasStudent. BABA
resiriction(Uvalue(t)) JRo ¥ hasStudent. JOHN
restriction{ UmezCardinality(n}) <nl < lhasStudent
restriction{ UminCardinality(n)) > nl > 3hasStudent

(inYequality (0, = o9, 0y # o2) assertions (see Table 2.5).

OWL semantic web language is written in XML format. Such that, it contains

header that must be declared first. OWL header consists of name space definitions.

Name space indicates the identifiers of what specific vocabularies are being used in

semantic web ontology. In the example, the built in OWL W3C namespace, namely

owl, rdf, rdfs, and zsd must be declared. Further, the specific name space for our

semantic web ontology model are defined as well. In the following example, the

specific name space is declared as prf.

OWL Headers

<!-- Ontology Information -->

<?xml version="1.0* encoding="UTF-B"7?>

<!DOCTYPE rdf:RDF |

<IENTITY owl "http://www.w3.org/2002/0%/owlf">

<'ENTITY prf "prfi®>

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 25

<!ENTITY rdf "hrtp://www.w3.0rg/199%/02/22-rdf-syntax-nsi">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schemat®>
<1ENTITY xsd "http://www.w3.0rg/2001/XMLSchemal">
B
<rdf:RDF xml:base="prf"
xmlns:owle"gowl; "™
xmins:prf="⪯ "
amins:rdf="grdf;"
amins:rdfs="&rdfs; ">
<owl:Ontology rdf:abougsn"/>

The OWL header must be followed by ontology declaration. In the previous ex-
ample 4 classes have been declared: Professor, PhDStudeni, FulltimeStaff, and
AcademicStaff. Class Professor represents academic staff that supervise some PhD
students. Class AcademicStaff represents a person (or individual) who works as aca-
demician, while class FullTimeStaff is for full time staff who are non academician.
Those above description are written in QWL semantic web as follows,

Classes Definition

<owl:Class rdf:about="#%AcdemicScaff*/>
<owl:Class rdf:about="4FullTimeStaff"/>
<owl:Class rdf:about="dPhDStudent™/>
<owl:Class rdf:about="lProfessor">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#suvervise"/>
<owl:someValuesFrom rdf:resource="#PhDStudent™/>
</owl:Restriction>
</owl:equivalentClass>
<owl;intersectionQf rdf:parseType=*Collection®>
<rdf:Description rdf:about="f#AcdemicStaff"/>
<rdf:Description rdf:abcut="#FullTimeScaff"/>
<fowl:intersectionQf>
</owl:Class>

Object Properties Definition

Relation between concept or class with other class is defined by OWL built in Object
property, i.e. owl : ObjectProperty. In the previous example, a given object property
is declared as superuvise. This object property is determined by its domain and range,
which restrict the source and destination of object property. Domain and range of a
owl : supervise object property is defined using rdfs (Resource Description Format
Schema) name space, defined as follows,

<owl:ObjectProperty rdf:about="#supervise">
<rdfs:domain rdf:resource="#Professor™/>
<rdfs:range rdf:resocurce="JPhDStudenc™/>

</owl:0ObjectPropercy>

2.2. DESCRIPTION LOGICS AND SEMANTIC WEB LANGUAGE 26

Instances Definition

Instance in OWL reflects with the individuals which are the member of a class. In the
previous example, the name of Professors with the name of PhD Students are linked.
The name of Professor, full time staff, academic staff, and PhD student are defined as
individuals, and declared in OWL semantic web as follows.
<prfi:PhDStudent rdf:about="FKatoen™/>
<prf:AcdemicStaff rdf:about="fBaaderr">
<rdf:type rdf:resource="#FullTimeScaff™/>
</prf:AcdemicStaff>
<prf:PhDStudent rdf:about="#Kahttri™/>
<prf:FullTimeStatf rdf:about="#Faizal"/>
<prf:AcdemicStaff rdf:about="}Baader™>
<rdf:type rdf:resource="#FullTimeScaff"/>
</prf:AcdemicStatf>
<prf:FullTimeStaff rdf:abour=*§James"/>
<prf:AcdemicStaff rdf:about="fSatler">
<rdf:vype rdf:resocurce="#FullTimeScaff"/>
</prf:AcdemicStaff>
<prf:FullTimeStaff rdf:about="#Nancy"/>
<prf:PhDStudent rdf:about="§Jeff"/>
<prf:PhDStudent rdf:about="#0thman"/>
<prf:FullTimeSctatf rdf:about="#5tacy"/>

2.2.4 OWL Semantic Web Language Tool

OWL semantic web language tools are distinct into editor and reasoners [45]. Various
OWL tools have been developed to support features such as composing ontology,
management, merging, reasoning, and checking {46]-[47]. In the rest of this section,
briefly introduction of semantic web tools that are used in this research are discussed.

The core reasoning in DLs are concepts satisfiability, concept subsumption, and
instantiation [48]-[49]-[50}. Those DLs core reasoning is used as the basis of OWL
semantic web language core ontology reasoning. Many tools are available to carry
out semantic web ontology core reasoning through a DLs reasoner application, such
as discussed in [46}-(51]-{52].

FaCT++ (Fast Classification of Terminologies) is the implementation of descrip-
tion logics reasoner developed at University of Manchester. FaCT++ supports concept
subsumption and satisfiability checking [53]. However, this tool only supports TBox
checking and reasoning, and has no support for individual level reasoning (ABox rea-
soning} [52]. Currently FaCT supports both DAML+OIL and OWL semantic web
language.

RACER (Renamed ABox and Concept Expression Reasoner) [54] is an commer-
cial DLs reasoner and support DLs ACCQHIR + (D). It has a much richer set

2.3. ZFORMAL SPECIFICATION 27

of functionalities than FaCT++ has, including ontelogy creation, query, retrieval and
evaluation, knowledge base conversion to DAML+OIL/OWL.

Pellet [55] is also free software for ontology reasoner. It has more features than
FaCT++. Pellet can be used to check and reason ontology either in TBox or Abox
[52]). This DLs reasoner can be connected to many ontology editors, such as Protege
[56] and SWOOQP [57]. Pellet is able to check ontologies with various DLs language
such as SHI(D), SHOIN(D), and SHOZQ. In this thesis, SWOOP and Pellet
reasoner are used to evaluate and reason the context ontology written in OWL format.

2.3 Z Formal Specification

The Z notation (formally pronounced zed) is a formal specification language used for
describing and modeling computing systems. “/1 is targeted at the clear specification
of computer programs and the formulation of proofs about the intended program be-
havior” [12). Z is a formal specification language which is based on ZF set theory
and and first-order predicate logic [12]-[58]. Z contains a standardized mathematical
toolkit of commonly used logical {(mathematical) functions and predicates. Express-
ing system specification in Z is to describe what a system docs. The way of specifying
system in Z can be distinguished from another specification language, such as imper-
ative programming and functional programming language. Imperative programming
pays attention on how it does, while all functional programming concentrate on how
the outcome is to be achieved [12]. Both imperative and functional programming

language are executable [12]-[58].

2.3.1 Z Syntax and Language

Z is not a programming language. In Z, a name must be declared before it is refer-
enced. Properties of systems are stated using Z predicates. Hence, declarations and

predicates form Z specifications.

Z Declaration

The basic form of Z declarations is x : A, where « is the introduced variable of the
free type A. This type A, however, should be defined previously. In Z, a variable can
be declared either as global or local. A global variable can be used by Z specification
from the point of declaration to the end of specification. For more details are provided
in Spivey [59].

2.3. ZFORMAL SPECIFICATION 28

Predicatesin Z

Predicates in Z are Boolean-valued. Z predicates can be the forms of;

Equality and Set Membership

Basic predicates in Z notation are equalities, which is denoted by = and membership
relationships, which is denoted by €. For example, the predicate p € | states that
variable p is a member of natural numbers .

In Z, a set relationship operator such as subset (C) can be derived using set mem-
bership. In general, the subset relationship 4 C B can be expressed as A € P B {59],
where P is the power set symbol. The expression [P B denotes all the sets that are
subsets of B.

Propositional Operators
These include propositional logic connectives, i.e. —, A, V, =, and <. Logical con-
nectives are used to connect simpler predicates to construct more complex predicates.

Quantifier

Z language also defines quantifiers in predicates, like in first order logic. These in-
clude the universal quantifier ¥, the existential quantifier 3 and the unique existential
quantifier 3,.

Z Language Constructs

Z also defines language constructs. These include basic type definition, axiomatic
box, schematic box, constraints, theorems and proofs.

Basic Type Definition

This language construct introduces uninterpreted basic types, which are treated as sets

in Z. For example:
[{dentity]

introduces a given type of /dentity, which are a set.

2.3. ZFORMAL SPECIFICATION 29

Axiomatic Definition

An axiomatic definition is used to define global variables, and optionally constrains
their values using predicates. These global variables cannot be globally reused.

For example, the following axiomatic definition declares two variables Name and
Address as subsets of Identity. Furthermore, these two sets are also defined mutually
disjoint, which means that their intersection is an empty set. By using Z axiomatic
definition, such variables could be defined as follows.

Name : P Identity
Address : P [deniity

Name N Address = @

Generic Axiomatic Definition

A generic axiomatic definition is a generic form of axiomatic definition, parameterized
by a parameter.

The formal generic parameters are local to the definition, and each variable intro-
duced by the declaration becomes a global generic constant. These identifiers must not
previously have been defined as global variables or generic constants, and their scope
extends from here to the end of the specification. The predicates must determine the
values of the constants uniquely for each value of the formal parameters.

— [XSD]
gatewayNumber, prozyNumber : DetatypeProperty
gateway!P, proxylP : P XSD

domnain(gatewayNumber) = Gateway
range D{gateway Number} = gatewaylP
domain(Prozy) = prozyNumber
rangeD(prozyNumber) = proxyl P

In the above generic axiomatic definition, gatewayNumber and proxyNumber are
defined with a type of DatatypeProperty, while gatewayIP and proxylP as a type of
XSD.

2.3. ZFORMAL SPECIFICATION 30

2.3.2 Z/EVES Tool

In this research, Z/EVES tool is used to evaluate the correctness of Z specification.
It is a common automated prover that provides integrated interface for composing,
checking, and analyzing Z specification. Z /EVES supports syntax checking, type
checking in structured specification (using schema), and general theorem proving [60].
Z/EVES supports editing of Z specification in ISTEX format and GUI interface as well.
In Z/EVES, properties about a specification can be specified as theorems. These prop-

allvnl.nul'ron\ld-:hrulm wubProperivOistdeclaration, salects 251,
[salacty_2%_2, Transitive‘tdaclaratiocn, ViFintdeclaratios.
AcceasPointddeclaration, DeskiopSdeclaretion, Ruom\Sdeclaratiom.
[Serverstdeclaration, Hatvork\tdeclaration, Activitysideclaration.
Intranatsfdeclaration, Internet’sdeclaration. Sofivars tdeclaration,
Davice“tdsclaration, ranga“idaclaration, Parson‘tdeclarstion,
[CLass™ddeclarstion, Properiyvideciaration. fun™_type. dosain’tdeclaretion.
“hdoatdeclarstion” . ObjectPropertystdeclaration. '[intarnsl iteas)' ta ...
true

Proving gives .. .

trua

|Peginning proct of ...

all¥aluesfroa (Purson. curresthetivity) = Planned NN\
Miaplies allValussFroa (Person, currestlctivity) « Deduced
liesuning PlannedRule gensrates ...

{Deduced. Plannad) “in disjoini%ith
~dand allYaluasfros (Person, curreathctivily) + Planned
Miaplies allValussFyos (Parson. curreatictivity} = Deduced
[Substituting allValussFroa (Parsom, curreatdctivity) = Planned produces ...

(Deduced. Planned) “in disjoiotVith
“land ailValuesFrom (Perscn, currentdctivity) - Planned

“implies Planned = Deduced

Which ainpliiiss

lorvard chaining using KnovolesberddeclarstionPari. knownMesber,

“{intmroal iteas]”

with tha assusptions emu\llclwuy\id.:hra\mn Parson™$daclaration,
lat1VelussFroastdeclarast ion. PersonRunniogfhrowser, ParscoConnsctedTolntesrnat,
PerscnConnectedTolntranst, P-r-.'nhnmn tiice. ParsonCurrentictivitylsPlanned.
PearscnRunningIi, PumRuumeull PersooUssbwvica, PersonlocatadIn
JdinjointVith\ideclaration, setect™ 2% 1. select™_ 2 2. Planned-$dec laration,
Dl “$declaration., PlannedRule, (murml itesa] 1o ...

Planned = Deduced

Proving gives ...

Flanngd = Deduced
|Bcyinning pooel ot ...

NOVEL “in instances Server

Vhich sinplifies s
10::‘!.:'\‘] chaining ulmg KnownXeaberstdeclaraticoPart, koovnXeaber,

‘[fintarnal itens)”
jwith the sssunptions Serverstdecliaration. instances‘ddeclaratiom,
INOVEL\$declaration, Serverinstance. '[internal items)’ to ...

trus

- >

1]

Figure 2.5: Proofing Process Using Z/EVES (Z/LaTeX Mode)

erties include facts and expected facts that are to be facts. By proving theorems of a
particular specification, the confidence about its correctness can be gained. To prove
the specification, Z/EVES provides general commands to use, described as follows
{take from Z Reference Manual).

Proof Command: Simplification

The simplifications performed by the simplify command are equality, integer, and
predicate calculus reasoning, together with tautology checking. Simplification is af-
fected by grules and frules whenever their hypothesis matches a sub-formula.

The conclusion of these lemmas are then included as assumptions. Simplification
offers the user the opportunity to perform direct proofs because it allows the smallest

2.4, CHAPTER SUMMARY 31

of the transformations.

Proof command: Rewriting

Rewriting is given by the rewrite command. It performs simplifications together with
automatic application of enabled rewriting rules that rnatches any sub-formula.
Forexample, e € {z: T |z C f(z)} isrewrittenas e € T A e C f(e).

Proof Command: Reduction

Reduction is the most complex transformation scheme and is given by the reduce
command. It performs rewriting together with further clever, but simple deduction
schemes. This leads to the biggest step on the transformation of formula with the
worst performance. In fact reduction is more than simply expansion together with
rewriting. It recursively performs these activities until the formula stops changing.

Proof Command: Prove by Reduce

There two commands that implicitly combine tactics. They are prove by reduce and
prove by rewrite. Both commands can also be written as prove. They repeatedly
apply tactics on the formula until no effect is observed.

2.4 Chapter Summary

In this chapter, first of all, the state of the art of context-aware computing are dis-
cussed. Many works have contributed to this research domain, including context
modeling, ‘context acquisition, and the deployment of context-aware computing ap-
plication. One of the promising model is using ontology in semantic web format.
The merits of using semantic web model is that it provides a mechanism to reason
the information structured in the context model. Therefore, context-aware application
can sense and react based-on the reasoning process which is supported by the logical
form (DLs). Another feature is that semantic web provides vocabulary to describe the
DLs conceptual model using XML format. Regarding the XML notation, semantic
web language could be categorized as an executable language during the application
run-time. From the reasoning point of view, some DLs reasoners also still rely on
semantic web language instead of on DLs syntax (with mathematical symbol) it self.
Since context-aware is a part of distributed system, designing and specification of
a context model must consider a language that is not executable at design or specifi-

2.4, CHAPTER SUMMARY 32

cation level. Thus, semantic web language still lacks of formality, due to its notation
that could not express more expressive logical constraint. Therefore, researchers have
proposed another way to express ontology beyond the semantic web language, hence
the consistency of ontology can be verified independently from the such executable
notation. Z notation, Alloy, PVS are the formal specification language which are pro-
posed io specify ontology. As the consequence, consistency of ontology will be verify
beyond the semantic web reasoners.

In the next chapter, the development of CIS context ontology will be presented.
First of all, the ontology is specified in DLs notation. Once completed, mapping of
context ontology from DLs notation onto OWL semantic web language is take place

Chapter 3

Semantic Web Context Model

This chapter presents the development of context ontology. Context ontology is firstly
specified in DLs notation. Thereafter, the generation of context ontology from DLs no-
tation intoc OWL semantic web language is discussed. Semantic consistency checking
is further carried out to detect inconsistency, subsumption checking, and instantiation
checking. This ends up the discussion in this chapter.

3.1 Modeling Process

In this section, the main steps for developing context ontology is presented. Dur-
ing the requirement step, the behavior to model context ontology is also identified .
As mentioned in Chapter 1, the intention of this section is to model the behavior of
CIS Department environment, at Universiti Teknologi PETRONAS. The remainings
of the thesis will use the term "CIS context ontology” to refer to the ontology of CIS
contextual information.

Capturing information about context, such as information about user’s profile, ac-
tivities, location, and computing device are still fundamental entity to be included in
the context ontology. Further in the implementation, sensors and software agents are
used to capture context information about user’s surrounding information. This thesis,
however, excludes a context acquisition system, e.g. to acquire context information
from software agents and sensors. Context information provided in this thesis is sup-
posedly acquired from agents and sensors.

The further step is about conceptual modeling with Description Logics as men-
tioned in [32). The intention is to represent context information by classifying concept
and sub concepts, defining relations among concepts, and defining individuals belong

to a concept(s)(see step (@) in Figure 3.1).

33

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 34

The OWL semantic web of CIS context ontology is generated from the conceptual
model which is initially presented in DLs notation (see () in Figure 3.1). As depicted
in Figure 3.1, Swoop 2.3.1 and Protege 4.0 are chosen to support modeling context
ontology in OWL semantic web format. Both ontology editors are featured with visual
interface, which is very helpful to develop rapid and complex ontology.

Steps / Methods Supporting Activities / Tools

Reguirement
1. Behavior of the Contaxt
2. Aspects to capture

|Representation id DLs @
1. Concept definition ULs Conceptual
2. Relationshlp Definition ‘ Model

3. Individual Definltion

T

Repressntotion in OWL _ adeling with Swoep

land Protégé

L‘E'valulllon and Chacking @
Reasoning with Pellet

1. Consistency <l:through simp

2. Expressiveness

L

Figure 3.1: Steps to develop context ontology in OWL semantic web language

Once context ontology has been completely defined, it is further required to eval-
uate the ontology (3). To do so, Swoop OWL editor is connected to Pellet OWL DL
reasoner. The evaluation of context ontology will arrive to the conclusion of consis-
tency of CIS context ontology (see step (a)}, and the expressiveness of CIS context
ontology being designed could also be identified.

3.2 Representing Context Ontology in DLs

Borgida [32] mentioned about the steps to create conceptual modeling in DLs. Be-
sides using DLs syntax, Borgida also proposed abstract syntax Lo construct conceptual
model, which is further used as OWL semantic web syntax. This section discusses the
steps to create conceptual modeling as mentioned by Borgida.

3.2.1 Identify the concepts and develop its taxonomy

By referring to [20)-(21]-[22)-[23], 5 aspects have been defined to be included in
the CIS context ontology, namely Person, Device, Activity, Location, and Network.

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 35

Concept Person is used to describe involved user or person profile, such as full name
and email address, in CIS Department. The computing devices used by a person are
described by concept Device. Concept Network is used to draw the computer network
infrastructures and resources belong to the CIS Department. Activities belong to a
person is described in concept Activity. And the last, concept Location describes the
person current position around CIS Department building or UTP campus.

Figure 3.2 shows the highest level of CIS context ontology presented in informat
RDF graphical notation. Person, Device, Activity, Location, Network are defined as
main concepts, which are sub class of ContextAware ontology.

DeducsdActivity
PlannedActivity
®- Maesting

bClaas.
tnternat
wifl

Ethernaet

Lecturer
Student

Postgrad
Staff

ubClass.

Dssktop

MoblileDavice
—e $ubClassOf

------- —» objectProperty

Figure 3.2: Highest Level CIS Context Ontology

The CIS context ontology describes user’s environment surrounding Computer and
Information Science Department (CIS) at Universiti Teknologi PETRONAS. The con-
cepts involved in CIS context ontology are declared using DLs (Description Logics)

notation as follows:
(Location, Person, Activity, Device, Network) C AT

where A7 is CIS context interpretation domain.

CIS context model distinguishes location into Qutdoor and Indoor place. Indoor
place indicates location inside the CIS building. If the position of a person is outside, it
is indicated by longitude and latitude point, which can be acquired from GPS-enabled
device.

Indoor location is composed of room, which can be a class room, seminar room,

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 36

tutorial room, office room, and laboratory room, as depicted by ontology graphical no-
tation in Figure 3.4. The concept of Location, including its sub classes, are composed
in DLs notation as follows:

{Indoor, Outdoor) C Location

(Longitude, Latitude) C Qutdoor

(Room, Building) C Indoor

{ Room) C Building

Class Room, SerninarRoom, LectureHall, MeetingRoomn,
OfficRoom, Lab) C Room

—p subClassOf
st ObjectProperty

Figure 3.3: Description of Person, Device, and Network Concept

3.2.2 Identify the individuals belong to concept

Once the concepts and their taxonomy have been defined, the individuals belongs to a
concept(s} can further be identified. For example, the concept ClassRoom describes
the class room used by CIS Department for lecturing activity. Following DLs axioms
describe the memberships or individuals exist in ClassRoom concept.

ClassRoom = { C01, C02, C03, C04, C05, C0G, D01, D02, D03, D04, D05, DOG}
LectureHall = {LHO1, LH02, LH03, LH04, LH04, LH0G}

MeetingRoom = {010310, 010210, 0203010}

OfficeRoom = {LECTURERCOM , POSTGRADROCOM }

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 37

ubClass.

ClassRoom
OfficeRoom
Laboratory
TutorlalRoom
LectursHall

bClassN,

“"’
Closaion g™
auDl
equippedWith '°°'r'"

o

s Actlvity z
subClansOl le]

b »
Busy
Not_ai_Office
Fres
On_the_Phone
Browsing

bl lass.

Lacturing
Seminar
Meeting

— subClassOf
st QDj@CtPTOpPerty

Figure 3.4: Description about Person, Activity, and Location Concept

A small number of existing browsers application are accommodated as individuals
in concept Browser such as [E, FIREFOX , MOZILA, SAFARI, OPFRA. Thus, the

axiom above can also involve individuals of concept Browser to be dectared in DLs
notation as follow:

Browser = {IE, FIREFOX, MOZILLA, SAFARI, OPERA}
The complete specification of individuals can be seen in the Apendix A.

3.2.3 Distinguish Role to link the concepts

A concept is directed with another concept by means of a role, as depicted by highest
level of context ontology in Figure 3.2, In DLs, a role can be distinguished by its
domain and range. The description of roles related to the concept of Person presented

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 38

in the previous subsection are declared in DLs notation as follows.

Person M 3 use. Device

Person MV locatedin. Location

Person MY current Activity. Activity
Person MY loginto.Server

Person 1V connectedTo. Internet

Person MY connected To. Intranet

Person MY run. Application Run

Deuvice MV ownedBy. Person

Person MY loginto { NOVELNETWARE}

Role use is declared to describe the relation between concept Person and Device.
For example, to describe there exists a Desktop used by a person is reflected by DLs
axiom Person M 3 use. Deskiop.

In CIS context model, Profile is composed of concepts that declare full name, of-
fice address, phone number, and email address. Those context information are used
to describe person's profile. For example, a role fullName is declared, which is to
describe person’s full name. Actually, the value of this role fullName can be related
to literal name or data items such as strings. Nevertheless, DLs do not distinguish
the role whose value is concept or associated with data type. Therefore, in CIS con-
text model, the XSD is introduced as a concept name whose instances are data type
definition. This is to describe data type value range. In the implementation of OWL
language later, XSD can be transformed into data type like string, date, alphanumeric
etc. Therefore, it is defined that the role whose value is instance of XSD is categorized
as data type property.

XSD = {STRING, TIME, DATE, ..., INTEGER, DECIMAL, BOLEAN}

In OWL data type role and object role are distinguished and disjoint each other,
hence their interpretation domain are also separated. In OWL, object property is sub
set of AZ, while data type property is subset of AZ. OWL adopts XML Schema
Datatype (X SD)definition to describe data type used in data type property. Following
axioms describe the person’s profile declared as role with data type definition.

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 39

Lecturer = Person M 3 fullName {STRING'}
Staff = Person 3 officeAddress {STRING}
PostGrad = Person N 3 emailAddress {STRING}

3.2.4 Identify sub roles

The role run is defined to describe some application software run by‘a person. The
concept of Software is previously declared as subclass of Device. This role is defined
as sub role of use. The family of DLs in which role hierarchy is used is specified as
H. In another word, role run determines the DLs expressiveness of ontology being

specified.

3.2.5 Determine concept and role constraints

Regarding to Figure 3.3, the domain and range of role ownedBy is inverse of role
use. Therefore, it can also be written in DLs notation as use = ~ownedBy. The
use of inverse role indicates the expressiveness of DLs specification. Thus, for DLs
specification that has inverse role is categorized as Z language.

The axiom Person MV loginto {NOVELNETWAREY} relates role loginTo with
nominal, This axioms describes a condition in which a person has to log in o the
Netware server prior to accessing the network resource. {NOVELNETWARE]} is
declared as instance of concept Server. This expressiveness reflects the use of nominal
in DLs language, expressed with letter O .

Another role, namely connectedTo, is used to describe a person that is connected
to a network device. This role also is used to describe concept Device that is connected
to the Internet, as sub concept of Network. Regarding its relation, this role transitive
that makes Person is connected to Network. The characteristic of transitive role ’
makes the minimum ALC language in our CIS context model become S.

Number restriction is assigned in axiom = l.currentActivity and > 2.run. Ax-
iom = l.currentActivity restricts role currentActivity with one role value (role con-
cerned), meaning that person is restricted with only one possible activity that he can
do within a specific time. Meanwhile, > 2.run restricts the role run with 2, meaning
that a person can run more than two application in his computing devices. The use of
number restriction indicates DLs language with A,

Practically, in CIS context model, activities related to a person is distinguished
into scheduled and deduced activities, which are declared as concept Planned and
Deduced, respectively. Planned concept is to describe a situation when a person is

3.2. REPRESENTING CONTEXT ONTOLOGY IN DLS 40

doing activities that have been on schedule. Activities like meeting and lecturing are
classified as planned activities.

Assume that a user is required to put his schedule into the calendar or organizer
application. The context related to user’s scheduled activity actually can be acquired
by means of the information sent by software agents that are attached to the existing
calendar or organizer application software, e.g. Sunbird, Outlook, iCal, etc.

(Planned, Deduced) C Activity

(Meeting, Lecturing, Seminar, LabActivity, Tutotial) T Planned

(Busy, Free, Chatting, Bowsing, Not_At_Office, Available, On_the_FPhone,
Opening_Email) C Deduced

Free = - Busy

Context information pertaining to deduced activity is obtained by deducing the
rules that are already defined in the context model. For example, a person is assumed
to be busy if the context-awareness system (including the application} get the infor-
mation of what is person doing and where. Hence, the context-aware system deduce a
person is busy according to the given deduction rule about the person’s current activity
and the venue of activity to take place.

For example, in deduced activity, the concept of Browsing in declared to describe
an activity in which a person is running an Internet application, e.g. web browser to
surf information throughout the Internet. This activity requires a person that is con-
nected to the Internet. To express this activity, the concept of Browsing is restricted
as follows.

Browsing = Person MY connected To. Internet M 3 run. Browser

Several existing browser applications are accommodated as individuals in concept
Browser, declared as Browsing = [F, FIREFOX , MOZILA, SAFARI K OPERA.
Hence, in the axiom above individuals of concept Browser could be declared in the
DLs axiom as follows:

Browsing = Person MV connectedTo. Internet N Arun.({IE}, { FIREFOX},
{MOZILLAY}, {SAFARIY}, {OPERA})

In CIS context, the concept of Not_Ai_Office is to describe a person where hefshe
is not in the office room. At CIS Department, assumed that all of lecturer room

and postgraduate room are categorized as office room. Therefore, OfficeRoom =

3.3. SEMANTIC WEB MODEL 41

{POSTGRADROOM , LECTUREROOM}. In DLs, the Not._At_Office situation is
described as follows.

Not_At_Office = Person MY locatedIn.—~ OfficeRoom
Not_At_Office = Person MV locatedin.— ({ POSTGRADROOMY},
{LECTUREROOM})

3.3 Semantic Web Model

The DLs specification of CIS context model becomes the starting point to generate
OWL semantic web model. Actually there are many semantic web tocls that can be
used to generate semantic web model, either using graphical or non graphical tool.
In this thesis, Swoop OWL editor is connected to Pellet OWL DL reasoner to reason
the CIS context ontology. Swoop is chosen since it is able to display the source of
inconsistency of ontology when reasoning has been performed.

3.3.1 OWL Header Definition

In OWL semantic web document, first of all the uri (Uniform Resource Identifier) has
to be defined. In CIS context ontology, the urt is defined as cis, which reflects CIS
context ontology model. The cis namespace is declared in OWL semantic web header
by declaring the uri as http://context.org/cis.

Another header in OWL semantic web document that should be declared is XML
namespaces, because OWL is written in XML document. XML namespaces are used
for providing uniquely named elements and attributes in an XML document. They
are defined by a W3C recommendation. An XML instance may contain element or
attribute names from more than one XML vocabulary. In OWL document, vocabulary
such as owl, rdf, rdfs, and zsd have 10 be defined as well. Those vocabularies are used
for describing OWL semantic web syntax and language. They are defined in semantic
web W3C recommendation (http://www.w3.0rg/2004/OWL). The zsd vocabulary is
used to support XML Schema Datatype definition (http://www.w3.org/TR/xmlschema-
2). The following lines describe the header of OWL semantic web of CIS context
model.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [

<!ENTITY cis "http://context.org/cis">»

<!ENTITY owl "heotp://www.w3,org/2002/07/owli">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-nsk">

3.3. SEMANTIC WEB MODEL 42

<!ENTITY rdfs "http://www.wl.org/2000/01/cdf-schemaf">
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
1>
<rdf:RDF xml:base="&cis;"
xmlns:iowl="Gowl;"
xmlns;:rdf="&rdf;"
xmlns:rdfs="ardfs; ">

With respect to DLs model, the OWL semantic web of CIS context ontology is
also composed of 5 main classes: Person, Device, Activity, Locaiion, and Network.
The concept in DLs are implemented as class in semantic web language, while role as
property. This section briefly describes all the 5 main class and their related properties.
In the following subsection, the description of OWL semantic web model for each
particular main class will be discussed. The complete OWL semantic web language
model is provided in the Appendix B.

3.3.2 Semantic Web of Class Person

In CIS context ontology, the DLs axioms of Person and its sub concepts are defined
as follow:

(Lecturer, Staff, Postgrad, Student) C Person
Profile C (Lecturer, Staff, Postgrad, Student)

From those DLs axioms, the OWL semantic web model can be directly generated.
Most of semantic web developers use visual OWL editors, e.g. Protege and Swoop,
because those editors are visual and very useful for rapid development with very com-
plex taxonomy and ontology. For that purpose, in this thesis, Swoop OWL editor is
also used to generate OWL semantic web of CIS context ontology. Besides the vi-
sual interface, Swoop also provides the textual interface to see the XML document
of ontology being written. The following Figure 3.5 shows the OWL. semantic web
notation of class Person and its sub classes definition.

Class Person also relates some data type propertics. OWL:DatatypeProperty de-
termines the relation between data type property with XSD data format. Regarding
to OWL document specified in [61], the data type uses XML Schema Data type def-
initicn. To express identity of a user, person’s profile class is created and it requires
context information like full name, person’s address, person’s email address, instant
messenger ID, phone number, etc. All of that user’s profile information is not de-
clared as sub classes. Instead, they are declared as data type property, which relates
class Profile with XSD data. The description of data type property related to class

3.3. SEMANTIC WEB MODEL

43

Figure 3.5: OWL Notation of Class Person and its Sub Classes

é‘ <owl:Class rdf:abouc="WPerson”/>

<owl:Class rdf:about®*"NLecturer=>
<rdfs:aubClass0f rdf:resource="WPerson/>
</owl:Class>

S} <owl:Class rdf:abouc="#PostGrad<>

<rdfs:aubClasalt rdf:resoucce=*§Pervsan/>
I </owl:Class>

[<ow!:Class rdf:abouc="#Student®>

<rdfs:aubClasadt rdif:resoucce=*WPrrson/>
[</owl:Class>

B <owl:Class rdrf:ebout="§#Stafr">

<rdfs:subClassQf rdfivesoucrce=*kPerson®/>

. <fowl:iClams>
H <owl:Claas rdf:about="§Profile”>

<rdfs:subCless0f rdf:iresource="HLecturer*/>
<rafs:aubClassOf rdf:rescurce=*HPostGrad*/>
<rdfs:subClasadf rdf:resource=“f#stafr"/>»
<rdfs:subClassOf rdf:iresoucce="jstudent”/>
F </owl:Class»

person are depicted in Figure 3.6,

For example, to express information of person’s full name, xsd:string is used and

directed with filiName owl:DatatypeProperty. As in Figure 3.6, class Person is the

domain of this ful/lName data type property, whereby xsd:string is the range. The

complete OWL. code of class Person is presented in Apendix B.

588
589
5850

" 591
592
593
594

" 598
595
597
san
592
500
601
502
503
604
505
506
607
508
408
510
511
512
513
614
615

[

maem o —

<owl:DatacypePropercy rdf:about=*Nfulllame*>
<rdfs:domain rdi:rescucrce=*jProfile’'/>
<rdfs:range rdf:resource="&xsd:string*/>

</owl:DacatypePropecty>
<ow]:DatecypeProperty cdf:aboug=* .mmﬂdl‘:!l L]
<rdfs:domain rdf:rescucrce="NProfile"/>
<rdfs:range rdf:resource=*&xsd:string"/>

</ow]l:batatypePropecty>

<owvl:DatacypePropercy rdf:aboucr="Ngender®>
<tdrs:domain rdf:resoucce="#Profile/>
<rdfs:range rdf;resource="Exsd;string"/>

</owl:DatatypePropercty>

<owl:DareatypeProperty rdr:about="jhomcAddress" >
«<rdfa:domain rdf:resoucce=*NProfile"/>
<rdfs:range rdf;resgurce="Lxsd;string"/>

</owli:DatatypePropectyr

<owl:DatatypePropecty rdf:about=“#mecssengerlD'>
<rdfs:domain rdf:resource="§Profile"/>
<rdfa:range rdf:i:resource="&xsd:sbtring"/>

<foui:baca:ype?r0pe:ty>

<owl;DatatypeProparty crdf:abour='NofficeAddress”>
<rdfs:domain rdf:resoucce="NProfile"/>
<rdfs:range rdf:cesource="Lxsd:siring*/>

<foul:DatatypeProperty>

<owl:DacacypeProperty rdf:about="Mphonefumber®>
<rdfs:domain rdf:resource=*NProfile"/>
<rdfs:range rdf:resgurce="&xsd:string"/>

<fowl:DatatypeProperty>

Figure 3.6: owl:DatatypeProperty of class Profile

owldocatedin and owl:currentActiviry connect class Person with class Location

and class Activity, respectively. Both properties are defined as owl:ObjectiProperry.

3.3. SEMANTIC WEB MODEL 44

As can bee seen in Figure 3.7, the domain of ow{:locatedin is class Person, and the
range is class Location. By observing this example, OWL. semantic web language
distinguishes ontology properties into data type and object properties. However, as
described in the previous section, OWL standard defines both properties have different
interpretation domain, and both properties are also disjoint each other, Figure 3.7
shows object properties related to class Person in CIS context ontology model.

691 Ia <ovl:0bjeccProperty cdf:abour="#oconnectedTo" >

592 <rdf:type rdf;resource= howl;:TransiliveProperty"/>
£93 <cdfa:domain crdf:ceavurce="@bevice/>

E94 <rdfs:domein cdf:resgurce=~jPerson”/>

595 <rdfs:range rdf:resource=*#Device*/>

£96 <rdfs:range rdrfiresourcev'§Hetwork*/>

597 I </owl:ObjectPropertiy>

698 [<ovl:CbjectPraoperty rtdt:ebout="#currentAotivity">
695 <rdfs:domain rdf:respurce="WPerson’/>

700 <rdfs:range rdf:resource="@Activity"/>

701 - </ovl:ObjeccPropeccy?

M0 &G <ouwl:CbjectPropercy rdrf:enout="#locatedIn®>
703 <cdfs:domain rdf:cesource="§Person*/>

704 <rdfs:range rdf:resource=*QLoocation'/>

705 I </ovl:0ObjectPropercy>

706 <ow]:QbjectProperty rdf:about*"#loglinto™>

707 <rdfs:domain cdf:resource="NPerson*/>

wna <rdfs:range rdl:resource="#Server"/>

70% </oul:ObjeciPropercy>

mne <ovl:ObjeccProperty rdf:about="#ownedBy">

711 <owl:inverseOf rdf:cesource="fuse"/>

Ti2 </owl:ChiectPropertcy>

713 [<owl:ObjeccProperty rdf:ebout="#run®>

714 <rdfs:range rdi:resource=‘gSottware"/>

715 <rdfs:;sutProperty0f rdf:resoucce="juse®/>
715 - </owl:ObjectProperty>

717 H <owl:ObjectProperty cdf:about="#use">

718 <rdfs:domein rdf:respurces*jPersan=/>

718 <rdfa:range vdtf:resource="#Device"/>

T20 <owl:inverseQf rdf:resource="$ownedBy"/>
721 ' % </owl:CbjectPropecty>

Figure 3.7: owl:ObjectProperty Related to Class Person

3.3.3 Semantic Web of Class Network

Class Nenvork describes the available network resources that a person can exploit
and communicate using his/her computer devices, e.g. computer desktop, notebook,
and mobile device as well. This class also to describe that a person may initiate a
conversation through the existing network resource such as GSM or 3G Network.
He/she may access the available Internet (or Intranet) by means of the existing network
and Internet resources as well.

As depicted in Figure 3.8, class Internet describes a condition in which the class
Nernwork connects to the Internet. We accommodate this requirement by representing
Proxy and Gateway sub class of Internet (see line 336-347). As UTP policy, to uti-

3.3. SEMANTIC WEB MODEL 45

317 <owl;Class rdf:abouc="fHetwork"/>

318 <owl:Clasa cdf:;ebout="#Internet*>

319 <rdfs:subClassOf rdf:cesource="f§Hetwork®/>
3z0 </ovliClass>

321 <pul:Class rdf:abhouts"glUMTSIG">

322 <rdfs:subClass0f rdf:resource=*NRetwork"/>
3z} </ovl:Class>

324 «<owliClass raf:about="NWiriNetwork">

zs <rdfs:isubClass0f rdf:resoucce="#Hetwork®/>
326 </owl:Class>

27 <oul:Class rdI:abouc="gGPRS">

ize <rdfs:subClass0f rdf:iresoucce="fNetwark"/>
129 - </owl:Clasa>

330 <gwl:Clasa cdf:mbour="gG3N">

an <rdfs:subClasalf cdf:resource="§Hetwork’/>
33z </owl:Class>

33) <owl:Class rdf:about="#Intranet’>

334 <rdis:subClassOrf rdt:cesource="#gNetwork'/>
335 I </owl:Clasa>

36 <ovwl:Cloass rdr:abouc="Froxy*>

337 <rdfs:auhClasa0f rdf:resoucce="fInLernet"/>
38 <ovl:oneQ? rdf:parseType="Collection®>

33e <cdf:Descripiion rdf:about="#160.0.226.206"/>
340 <rdf:Descriprion rdf:ebout="#160.0.226.207"/>
341 <rdf:Description rdf:abouct="#160.0.226.208"/>
34z i </owl:pneQr>

343 [</owl:Class>

344 = <owl;Class rdi:abouc=*HGateway">

345 <rdfs:aubClassOrf raf:resource=*NInternet*/>
46 - </owi:iClass>

347 <¢df:Gatevay rdf:about=“#160.0.226.202" />

Figure 3.8: OW Notation of Class Network and its Sub Classes

lize the Internet resource, a person who uses computer devices should configure the

Internet Gateway and Proxy as well.

3.3.4 Semantic Web of Class Device

Class Device is composed of MobileDevice, NetworkDevice, and Desktop as its sub
classes. Class Software is sub class of Desktop, Notebook and PDA. This entity is
used to model software used by a person. The software resource is distinguished into
process run and application run, which are described by class ProcessRun and class
ApplicationRun, respectively.

Class ApplicationRun reflects the applications executed by a person. When de-
ducing CIS context model in the implementation later, context-aware application can
deduce the software that is being run by a person. The various applications run are dis-
tinguished into EmailApplication, OfficeApplication, InternetApplication, and IMAp-
plication (Instant Messenger Application).

Class NetworkDevice is to describe computer network devices used to connect
to the available network resources. The network devices comprises 3 sub classes,
namely Server, Router, and AccessPoint. Figure 3.9 shows OWL semantic web of
class Dewice and its sub classes. The complete OWL specification related to class

3.3. SEMANTIC WEB MODEL 46

Device can be seen in the Appendix B.

EES -

%0 <owl:Class rdf:abouc="#Device"/>

I <ouli:Class rdf:mbour="#Dasktop”>

332 <rdfs:subClassOf rdf:resource="#Device"'/>
333 </ovl:Class>
' 334 <oul:Clasa cdf:ahout=“§MabileDevice">

335 <rdfs:subClassdr rdf:resource="g#bevice*/>
3136 </owl:Clasa>

137 <owi:Class rdf:sbour="fHetworkDevice®>

ass <rdisisubClassdt rdf:resoucce="#bevice”/>
339 </ovl:Class>

3150 = <ouwl:Class rdr:about=*fRouter”>

T41 <rdfsisubl lass0f rdf:resource='§Networkbevice”/>
342 </fowl:Class>

34 <ovl:iClass rdf:abour="WPDA">

344 <rdfs:subClessQr rdf:cesource="#lfobileDevice"/>
345 <fowliClasa>

346 <owl:Class rdIf:mbout="NRotebook=>

347 <rdf=s:subClass0f rdf:ceacurce="#Device"/>
348 I </oul:iClass>

349 4 <owl:Class rdf;ahout="fSoftware">

350 <rdfs:subl!ass0r rdf:resource="#Desktop™/>
351 <rdfs;:subClasalf rdf:resource="§HoLebook”/>
3sz <rdia:subClassOf rdf:cesoucrce="#PDA"/>

353 <gul:disjointVWith rdf:resource="fHardware®/>
3154 [</owl:Claas>

355 B <ovl:Class rdf:ahout="WHardware>

356 <rdfs:subClassOrf rdf:resource="#besktop"/>
357 <rdrs:sunClassOf rdf:resource="jNotebook"/>
358 <rdfs:sunClass0f rdf:resource=*MHPDA*"/>

ER-13 <owl:disjoint¥ith rdf:cesource="§Software*/>
360 [</owk:Clasas>

3461

Figure 3.9: OWL Notation of Class Device and its Sub Classes

The relation between user and computing resources is modeled by object prop-
erty use, which relates class Person with class Device. Object property connectedTo
relates Person with Network resource. The connectedTo object property also models
a relation between Nerwork entity that connects to the /nternet. This relation makes

connectedTo property as Transitive property.

3.3.5 Semantic Web of Class Location

Class Location describes location related to a person. Quidoor is a sub class of Loca-
tion. A position of user is indicated by longitude and latitude values. Class Indoor,
which is also a sub class of Location, describes a user’s position related to its geo-
graphical position, e.g. in a room when a user or a person is inside a building. In
CIS context, indoor location is derived into Room, which is to distinguish room func-
tionality used by CIS Department, Universiti Teknologi PETRONAS (UTP). Object
property owl:locatedin is used to model a person that exists at a certain location, either

at outdoor space or indoor.

3.3. SEMANTIC WEB MODEL 47

Class Outdoor reflects a situation where a person exists in outdoor environment
surrounding UTP Campus. Assume that the position of latitude and longitude are ac-
quired through a GPS-enabled gizmo. To represent the value of longitude and latitude
position, the DataiypeProperty owl:longitude and owl:latitude are used. Figure 3.10
shows OWL semantic web of class Locafion description. The complete OWL code is
provided in the Appendix B. '

240 e

241 <owl:Class rdf:abouc="#location”/>

242 <owl:Class rdf:abouc=*§Indoor">

242 <rdfs:aubClass0f cdf:resaurce="NLocation™/>
244 <fowl:Claas>

245 <gwl:Claas rdf:about="#MeetingRoom">

248 <owl:Class rdi:abouct="MLaboratory">

247 <rdfs:subClassOf cdf:resoucrces’#Indooe® />
2498 H <owlionedt rdf:parseTypa="Collection®>
249 <rdf:Descripoion rdf:about="@#bDataCam® />
250 <rdf:Description rdf:abour=*§Multimedia®/>
281 <rdf:bescripcion cdf:abouc="SPrograsminglah” />
252 <rdf:Description cdf:about="8#VRLah"/>
253 I </ovi:oneQr>

254 </owl:Claas>

255 <ovl:Class rdz:abouc=*jClassRoom™>

254 Z <rdrfs:aubClassQf rdr:resource="MIndoar®/>
257 <owl:oneOf cd?:paraeType="Collection”>
258) <rdf:bescription rdf:about="gcol*/>

259 <rdf:Description cdf:mbout="§Cc02"/>

250 <rdr:Deacripoion rdf:about=="gCo3*/>

Zol <rdf:deacription cdf:abouc="8C04"/>

262 <rdf:Description cdf:about="gCcas*/>

203 <rdf:Description vdf:about=“#C06"/>

z64 <rdf:Pescriprion cdr:akout="§00L1"/>

265 <rdf:Description cdf:about="§bD02*/>
266 <rdf:Deacription cdf:mbout="8D03"/>

267 <rdf:Descriprtion cdf:about="fD04"/>

268 <rdf:Description cdf:about=*#D05*/>

L69 <rdf:Desacription cdf:about="#DO06"/>

270 - </ovl:oneQr>

i [</owl:Class>

272

Figure 3.10: OWL Notation of Class Location and and its Sub Classes

3.3.6 Semantic Web of Class Activity

Like in the DLs model, practically activities related to a person in CIS context model
are categorized into scheduled and deduced activities. In this subsection, the OWL
semantic web model of class acfivily is briefly discussed. Activities fecturing and
meeting are classified as planned or scheduled activities.

3.3.7 Class Restriction

As described in DLs model of CIS context, some classes are composed and restricted

by class axioms. For example, to express that a person can only have one activity at

3.4. OWL SEMANTIC CHECKING 43

21 e

22 = <owl:Clmss rdf:sbouc="#Activity">

z3 <rdfa:subClassOf rdf:resource~*Lowl :Thing®/>
24 <owl:sguivalencClass>

25 | <owl:Reatriction>

26 <owl:cardinalicy rdf:detarype="Lxsd nonllegativeInteger®>1</ovl:cardinality>
a7 <owl:onProperty cdf:iresourca=*fourrenthoLivity®/>
- <fowl:Restricrion>

249 </ouw]l:equivalencClaas>

30 </owl:iClass>

31 <oul:Class rcdf:about="§Planned’>

az <rdfs:subClassOf cdf:resources"BActivity* />
33 <owl:Clasxd rdf:abouc="#Seminar=>

349 <rdfs;:subClassQf crdf:resources"§Planned=/>
35 </owl:Class>

35 <owvl:Clasg cdf:ebsut="§Lecturing”>

i <rdfs:suhClass0r oot irescurce="WPlanncd*/>
kL) [</owl:Class>

39 ' </owl:Class>

40 <oul;Class rdfrabouc=*j§beduced”>

41 <rdfs:subClmasadf rdf:resource="NAclivity=/>
42 </ovl:Clasar

43 - <pwl:Class rdf:about="§Free*>

44 <rdta:subClassOf cdf:resource=~"#Deduced* />
%S r </owl:Clasa>

46

Figure 3.11: OWL Notation of Class Activity and its Sub Classes

a certain time, the cardinality restriction can be used in axiom = 1.currentActivity.
The OWL semantic web syntax of this restriction axiom can be seen in Figure 3.11
(see line 26).

For example, class Busy is declared to express situation of a user when he/she is
busy, i.e. by assuming a user is busy if his/her is doing his daily planned activities
or a user is working on his workstation by running some related office application
software. OWL semantic web code for class Busy axiom is depicted in Figure 3.12.
The busy situation could be expressed by means of axioms in DLs syntax as follows.

Busy = Person N 3 currentActivily. Planned

Busy = Person N 3 run.OfficeApplication

Busy = Person N 3 run.(WORDPOCESSOR U SPREADSHEETU
PDFREADER).

3.4 OWL Semantic Checking

As discussed in Chapter 2, semantic consistency checking is carried out to detect
whether unsatisfiable concepts exist in ontology model. Unsatisfiable concept is equiv-
alent to concepts and axioms that belong (members of) to the empty set (@). In this

3.4. OWL SEMANTIC CHECKING 49

41
143 |
143

</oulzequiveientClesr>
<owliClasn>

133 11 CONlTunienOf [IpATAETYpA®r Callrnthon)
2 <owi:Clasy rad:spont- 8Nyt L5 § €raftbesCripCions
1353 <rdfa:auClagsQr cdliresource="Ebsdered’ /> 1z | 40wl OPe0T rarigaranlypes CoLIcat1on" >
104 <owl:uguiveientClass® 14§ <rd?IIEBCT IBELON CATIABOULS " AXpreadShesl "/
108 <owliFestcaceion> ELN] </ew)1ona0ty
156 <pwlionProperi¥ FAficamowrgr-"§rwn®s> 1y </ragipercriptionr
o <pulsnosaValvesProm tdfiiendurce="BREL tanhpplioal don' /> 117 CCOaf:iDeaCTLPLIOLS
08 c/owiiReatriction> 120 E covi:oneGe cdi:iparseTypes Callectieny
125 </0wlrequivelents Lean> bzw <cal:Descr Lption rdsiarout=* INeraPrecensar’ s>
e <OVLIBqUIve LeBES T kpad (e[</oulionadtr
113 cowlibeste sgtiany !\.u 1] «frafiDasoripe ion>
[LEN 1OUIiORPrOperLY [AfITERONICE= " BTHFTARLACIITLILY /> |13z g <rdf:Dascriptiony
(S I 10U1130maYaluealrom rdLITERNUrCE = HFLARAEA Sy JEL I <ow!ioneCf cdfiFarseTyprs'Callrotian'>
11 </owlrRestcieciony (L1 <rdf1DesCCLPLiOn 1dLsmnouLe’ BFOFErader' />
[T </owliequiveienceians> [EELIN cfom1i6neOrs
e <owliequivalentClassy lui { </ ragsbrocTiptions
117 <oul:Festriction® LAY 3 </ow)tunienory
513 vovi:onProperty Tdlicasource="#runts> 1128 { cfaviiClansy
[R14 <owlivomeatuesFroms RN <fowl:scmeVaiueslyomr
o soulilass> 1o «/aviikescciceidn>
l
b
I

Figure 3.12: OWL Notation of Class Restriction on Class Busy

thesis, Pellet reasoner is used for semantic consistency checking, which involves con-
sistency, subsumption, and instance checking. Pellet works based-on Tableau Rea-
soning Algorithm [48]-[62].to detect any inconsistency of logical axioms in semantic
web model.

3.4.1 Consistency checking

The intenticn is to check whether the knowledge in ontology is consistent or not.
Therefore, the ontology O is consistent such that O satisfies the interpretation of Z.
In other word it can be said that Z = O. For checking purpose, three examples
of checking strategy have been defined to be assigned to context ontology and to be
reasoned by Pellet version 1.5.

The first strategy consists of axioms that correspond to the class disjointness and
quantifier restriction.

Definition 3.1. Let ¢, ¢2, c3 € C be concept name, r € R be role name, ¢ is the
range of ¥ ¢ M 7.cz, whereas ca © — ¢y, such that ¢4 cannot be applied for the range
of r that causes property concerned of r contradicts each other,

The axioms in Definition 3.1 guard if two classes are disjoint each other, then both
class cannot be restricted either by existential or a universal quantifier. For example,
class restrictions (and axioms) are defined in our context ontology as follow (using
DLs notation).

Person, Indoor, Ouldoor T Class
Indoor = - Outdoor

Person M JlocatedIn. Indoor
Person M 3 locatedin. OQutdoor

3.4. OWL SEMANTIC CHECKING 50

In DLs, a value constraint (value restriction or existential quantifier restriction)
puts constraints on the range of the property when applied to a particular class de-
scription. Once Pellet reasoned class restriction above, the reasoner discovers incon-
sistency in the ontology. It is because of the disjointness of the two classes (/ndoor C
- OutdoorSpace) that is used as the range of property located/n.

Proof. Value restriction defines individual of class Person for which holds that
if the pair {xz, y) is the property concerned of located/n, then y should be an instance
of the class /ndoor. Since fndoor is disjoint with Outdoor, hence the the property
concerned (value of property) of located/n is not be an instance of the class Outdoor
(Qutdoor = — Indoor or Indoor = — Qutdoor). Given the constraints above, it
can be proved by means of Tableaux Reasoning Algorithm [62] that the axioms in
Definition 3.1 is clash.

(Person N 3 locatedin. Outdoor)(x}, (Person M 3 locatedin. Outdoor }(x)
Person, 3 locatedin. Indoor, Person, locatedIn. Outdoor | Mrule
locatedin(z, y), locatedIn(z, y) | 3 rule

Indoor(y}, ~ Indoor(y)

(CLASH)

The axioms in Definition 3.1 is further addressed into CIS context ontology. The
axioms are reasoned by Pellet through Swoop interface. Surprisingly, Pellet cannot
detect the inconsistency of the object property located/n caused of the disjointness of
Qutdoor and Indoor. The result of reasoning process (indicated by ellipse line) is
further visualized by Swoop ontology editor, as depicted in Figure 3.13.

The second consistency checking corresponds to the consistency of cardinality
constraints. A cardinality constraint puts constraints on the number on property con-
cerned, in the context of this particular class description.

Definition 3.2. Let C be concept name, D = {d, e} be individuals, r € R be role
name, and = n.7 is restricted role with cardinality constraint. As for in restricted role
with = n, i.e. n = 1, such that d; = Vr.(d M e) does not hold, because the cardinality
of property concern is assigned with instances in two classes.

Lecturing C Class

= 1.currentActivity

Lecturing = {ICIS, CO, DATACOM }
Lecturer =V currentActivity (/CIS M CO)

3.4. OWL SEMANTIC CHECKING 51

OwL-Class: (@mﬂm OWL-Class: @Q_u_:dg_g;

sjoint with: (Add) Disjoint with: (add)
C (Delote) ©1ngoor @

Subclass of: (add) Subclass of: (Add)
ion (Detete) ©tocation (Relete)

Superclass of: {(Add)

Damain of: (add)
Plangitude (peteta)
(Eliatitude (petete)
Range of: (Add)
Plocatedin (pelete)

Figure 3.13: Undetected Inconsistency Reasoned by Pellet OWL DL Reasoner

In the above axioms, there exists a case whereby a person has two activities that is
impossible to be done at the same time. Once Pellet reasoned the logical restrictions
above, this reasoner still returns with inconsistent ontology. A conjunction of individ-
ual cardinality value is violated, i.e. restriction equals to 2, not 1 as required above.
Such that, cardinality on object property = 1.currentActivity has been violated.

3.4.2 Concept Subsumption

The intention is to check the structure of knowledge in ontology and to obtain the
taxonomy of ontology, so that C C Die. CT C D? iffZ = O. In other words,
subsumption checking discovers concept inclusion or sub class definition.

Definition 3.3. Let ¢, ¢, ¢35, ¢4 € C be concept name, ¢ C = Cy, ¢; C 3, ¢ C o,
such that ¢ cannot be assigned to be equivalent with ¢;.

This definition corresponds to equivalence checking of two subsumed classes.
However, the superclasses are disjoini. The intention of this example is to check if
two classes or concepts denote the same set of instances, or equivalence, such that
c =cp,sothat of = o iff T | O.

As in 3.3, the ontology will be evaluated whether the condition of ¢; = ¢; holds, if
their super class is disjoint each other. For this purpose, some class axioms that have
been generated previously in context ontology are used and the restriction in sub class
of Activity is given as follows.

Once Pellet reasoned the logical restrictions above, this reasoner can detect and

3.4. OWL SEMANTIC CHECKING 52

Not_At_Desk C Deduced
Lecturing C Planned
Planned C - Deduced
Not. At Desk = Lecturing

returns with inconsistent ontology, as can be seen in Figure 3.14.

Proof. Since the superclass of Not _At_Desk and Lecturing are disjoint each other,
i.e. Planned C - Deduced, when equivalent condition is assigned to Not_At_Desk
with class Lecturing, hence, the context ontology will not be consistent. Pellet will
detect inconsistency and it displays the reasoning result as in depicted in Figure 3.14.

OWL-Class: ‘O ecturing OwWL-Class: ©not AL Desk
Unsatisfiable concept Unsatisfiable concept

Axloms causing the problem: Axioms causing the problem:

1) (OLecturing «©planned) 1) (Onot At pesk =@peduced)
2) | (Oplanned = ~ ©peduced) 2) (Ongt_at Desk = Oracturing)
3) (Onot ot pesk= Olectuing) 3) |_(©Lecturing £©planned)

4) 1_(©not ar Desk s©peduced) 4) |_(©planned = ~ ©paduced)

Figure 3.14: Subsumption Checking for Definition 3.3

Subsumption can be performed as necessary axiom (= checking, like in the above
example) and sufficient axiom (C). Logical constraints can be assigned to a class
for subsumption purpose. Depending on the assigned logical constraints, ontology
reasoner will classify the result of subsumption checking as intersection, union, or
equivalent. Given is an example of subsumption checking, as depicted in Figure 3.15.

In CIS context ontology class Busy is restricted with the following axioms:

Person M 3 currentActivity. Planned
Person M A run. OfficeApplication TV locatedin. Office Room

The above axioms is to define that a person is assumed to be busy when he/she
is doing a planned activity, working with computer by running office applications,
¢.g. word processor application, reading some paper or journal using PDF viewer in
his workstation (at office room). When Pellet reasons those axioms, it concludes that
class Busy is subsumed as sub class of class Person; this is because of the following

3.4, OWL SEMANTIC CHECKING 53

axioms:

= l.currentActivity
Person N 3 currentActivity. Planned
domain(currentActivity) = Person

range(currentActivity) = Aclivity
Thus, class Busy and Activity is subsumed by class Person:
Busy € Activity C Person

The result of subsumption checking through Pellet reasoner is visualized by Swoop
editor as depicted in Figure 3.15

OWL-Class: @A;;j!i;x Axioms causing the inference
Activity < Person:

Equivalent to: (Add) 1) (©5 (= 1] ntACtyity))

(= 1 Plourrensacsivity) (Detet) |2) |- (Blourrentadivity domain

Subclass of: (Add)
©porson (vihy?)

Superclass of: {Add)
(Relete)
Cheduced (Dslete)

Figure 3.15: Busy and Activity is subsumed by class Person, Visualized by Swoop

3.4.3 Instantiation Checking

Instantiation checking is performed to check if individual i is instance of concept C,
ie. 1 € CTiff Z = O. In CIS context model, some individuals belong to two
classes have been declared. For example, Figure 3.16 shows some instances that are
assigned to two class, i.e. to class LectureHall and class ClassRoom, Previously both
ciasses are defined disjoint each other. Once Pellet reasoned this instance assignment,
it returns with inconsistent individuals. This is because an instance cannot belong to
two or more disjoint classes.

Therefore, if the instance of class room would be assigned similar to the instances
in lecture hall, thus the disjointness of two classes should be removed. This is to reflect
the situation at CIS Department that both classes room and lecture hall are allocared
for lecturing. The result of instantiation checking is visualized by Swoop as depicted
in Figure 3.16.

3.4. OWL SEMANTIC CHECKING

OwL-Class: ©§I§§§gggm OoWe-Class: reHall
Subclass of: (Add) Subclass of: {add)
(Dalztz) ©goom (Dalzt2)

Instances: {Add)
£06 (Dszlets)
091 (Dalexg)
€05 (Ralere)
D04 (D2lets)
05 (Dzlegz)
€02 (Dzlote)
€03 (D=lzg2)
D02 (Daleta)
€01 (D2let2)
003 (Delste)
C04 (Dealate)
006 (Dalaga)

Instances: (Add)
LH4 (Dalgte)
LH3 (Delate)
£05 (Delate)
LH3 (Deleta)
D_Q_AL “2.: a;n)
002 (Delste)
€01 (Delets)
D43 (Dalatz)
LH2 (Ralate)
LH1 (Delate)
£06 (Dalete)
001 (Deolete)
003 (Batetz)
€03 (Raleta)
€02 (Dalxtz)
LHE (Delste)
€04 (Daterz)
DO6 (D2lera)

OWL Ontology: ¢df (Edig VR]}
Annotations: (add)
Imports: (Agdd)

Inconsistent ontology
Resson: Individual D04 is Forced to balong to dass

LectureHall
and Its camplamaent
Axioms causing the problem:
1) {DQ4 rfitype iggyR
) I_ﬁ:%ﬂxxzﬁsnnas\H
1) 1_(R0s rdfitypa Spactyramaiy

Figure 3.16: Instance Definition (left). Inconsistency Detected (right)

From the modeling point of view, nominal is used to describe enumeration of
membership of a class. Peter F. Patel-Schneider et al. in OWL DL W3C Reference
Standard [33] define that the OWL DL or SHOZIA contains two modeling con-
structs specific for nominal, namely owl:oneOf and owl:-hasValue. The owl:oneOf
construct allows defining finite enumeration of elements in a concept or class. In
this case, the individuals of class Browser is declared withe type of browser applica-
tions. By using DLs notation, individuals in class Browser can be written as follow:
Browser = {FIREFOX, MOZZILA, IE, SAFARI}. The OWL semantic web nota-

tion to express the same enumeration above is presented follows.

<owl:Class rdf:about="#Browser"™>
<rdfs:subClassOf>

<owl:Class rdf:about="FInternetaipplication”/>

</rdfs:subClassQf>

<owl:oneOf rdf:
<cdf:Browser
<cdf:Browser
<cdf:Browser
<cdf:Browser
<fowl:oneOf>
<fowl:Class>

The owl:hasValue is OWL construct used in an existential restriction on a nominal
concept. Regarding the CIS context ontology, we define a class Server in such a
way to restrict a person that has to login to Novel Netware server prior to use etwork

parseType="Collection">
rdf:about="#rirefox”/>
rdf:about="#1IE"/>
rdf:about="#Mozila"/>
rdf:about="#5afari"/>

3.5. CHAPTER SUMMARY 55

resources. This situation in which a Person must login to the NovelNetware server as
the individual of class Server is declared in QWL as follow.
<owl:Class rdf:about="#Server”>
<rdfs:subClassDf>
<owl:Class rdf:abour="§Necwork"/>
</rdfs:subClassOf>
<owl:equivalentClass>
<owl:Restriction>
<owl:hasValue>
<cdf:Server rdf:about="¥NovelNetware"/>
</owl:hasValue>
<owl:onProperty>
<owl:0bjectProperty rdf:abour="lloglnto™/>
</owl:onProperty>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

3.5 Chapter Summary

The main issues in this chapter are summarized as foltows.

1. This chapter explains the modeling of context ontology using Description Log-
ics notation and OWL semantic web language. It shows that DLs notation are
more expressive than OWL semantic web model, context model in DLs nota-
tion can directly be generated for implementation language, like OWL semantic
web. It is because OWL semantic web is fully supported by DLs semantics.
Our OWL context ontology is generic; hence it can be modified or adjusted
depending on the user’s needs.

2. It is shown that DLs notation of context ontology is built on top of formal or
mathematical model. By describing context ontology in DLs notation, we actu-
ally provide a conlext specification that is independently from the implementa-
tion language level, Nevertheless, many researchers are concerned with OWL,
therefore they are focusing on developing DL reasoner that is based-on OWL se-
mantic web language instead of developing automated reasoning tool based-on
DLs notation.

In the next chapter, the use of Z formal specification to construct context ontology
will be presented. By using formal specification, hopefully the context ontology can
be expressed independently from OWL semantic web format. The Z specification is
fully supported by Z/EVES automatic theorem prover.

Chapter 4

Z. Specification of Context Model

This chapter begins with the description of mapping process to generate context on-
tology in Z formal specification. Thereafter, a process of how to express OWL se-
mantics in Z scmantics, how to map OWL context ontology onto Z notation, and how
to perform semantic checking of context ontology in Z environment are presented,
respectively.

4.1 Mapping Process

In the previous chapter, context ontology model is prepared in OWL semantic web
language. In this chapter, the use Z specification language to address the formal speci-
fication of context ontology will be presented. The process of mapping OWL semantic
web of context ontelogy onto Z specification is iliustrated in Figure 4.1.

The Z syntaxes and semantics for QWL semantic web have been defined in [13]-
[15]. In this thesis, the semantics are rewritten by taking from OWL W3C semantic
theoretic [33], which are to define the semantics of Z syntax for each particular QWL
language. For this purpose, this thesis use the term of OWL-Z to express the Z syn-
taxes and semantics for OWL language. Either Z syntax or Z semantics are prepared
in HTEX format(see box no () in order to be parsed by Z/EVES tool. This is because
Z/EVES read IATEX format as input for specification and proofing process. The follow-
ing Table 4.1 briefly describes the OWL W3C abstract syntax and its corresponding Z
syntax used to define ontology in Z specification.

Once the OWL-Z notation has been type-checked and semanticaily proved, thus,
the semantic web of context ontology which has been prepared in OWL can then
be mapped onto Z specification by referring to OWL-Z syntax. Now, the context
ontology structure is presented in Z. As the result of mapping process, the Z notation

56

4.1. MAPPING PROCESS 57

Preparg OWL-Z Synlax
and Samantica in L.T.é

Format

y

X
Prepars Context
L
Spacification using Z Syniax c:mtcl:lé)‘::-o oQ¥
' in LaTeX Format @

h 4

Prepars Theorem and Proof
Command for Inconsistency,
subsumption, instantistion checking

Ontology
Reflnement

nconsistency
Detectad?

Z Spacliication ls Formally
Conslstent @

Figure 4.1: Process of Generating and Checking of Context Model in Z Formal Spec-
ification

of context ontology should be prepared in ISTEX format (see box no (@)). Once the
context ontology has been written in Z, the type checking to detect the trivial syntax
error should then be prepared.

The further step is to prepare the rule and proof/test command, i.e for inconsis-
tency checking purpose (see step (). In this step, some assumption rule and defined
theorem will be used to prove the Z specification. Once the specification of context
ontology is proved by Z/EVES, and it returns with true, it means that our context Z
specification of context ontology is formally consistent { see box no(®). Otherwise,
once the inconsistency source has been discovered, it means that the specification of
context ontology in OWL semantic web has to be redefined to remove errors that have
been detected by Z/EVES. The inconsistency is detected because the current OWL DL
reasoner previously might not able to detect the logical inconsistency in the seman-
tic web model. Thus, to conclude, by mapping OWL definition of context ontology
and performing semantic checking in Z/EVES, this thesis has use formal specification

technique as the complementary approach to design and verify context ontology.

4.2. ZSYNTAX AND SEMANTICS (OWL-Z) 58

Table 4.1: OWL Syntax and Z Syntax

OWL Abstract Syntax Z Syntax

subClassOf (C, &) subClassOf (ey, ¢2)
disjoint With disjoint With(c, c2)
intersectionOf (Cy, 3) intersectionOf (cy, c2)
unionOf (Ch, Cy) unionOf (¢, cz)
complementOf (C) (cl, ¢2} € complementOf
oneOf{0)...05) oneOf(X) = o

restriction(R allValuesFrom(C)) allValuesFrom(c), R) = c2
restriction(R some ValuesFrom(C)}) | some ValuesFrom{c,, R} = 2

[Transitive) (R) € Transitive
[Symetric] (R) € Symetric
[inverseOf{R,)] (Ri1, R} € inverseOf
restriction(C mazCardinality(n)) mazCardinality(n, R) = ¢
restriction{ C minCardinality(n)) minCardinality(n, R} = ¢
restriction(C Cardinality(n)) Cardinality(n, R) = ¢

4.2 Z Syntax and Semantics (OWL-Z)

Regarding the OWL semantics, everything is a model of resource. DLs models this
kind of resource as interpretation domain, or AZ. To express this interpretation do-
main, the basic Z type definition is used as follows.

[DELTA}

As in DLs SHOZIN semantics, the OWL-Z semantics model basically define the
meaning and interpretation of concept (Cluss), role (Property), and Individual.

A class provides a mechanism to group instances with similar characteristics.
Therefore, every class is associated with a set of individuals, called the class exten-
sion or class instance. Tn DLs, a class is, or atomic class, is a member of domain
interpretation. The semantic of an atomic class in DLs is expressed as C7 € AZ,

Role or property is also defined as subset of interpretation domain. In DLs se-
mantics, a property is defined as cross product of interpretation domain, expressed as
RI C AT AT,

In DLs semantics, individual is also defined as subset of interpretation domain.
DLs defines individual as the power set of all instances exist in interpretation domain
AT, The semantic of individual is expressed as a € CZT.

Those syntaxes and semantics definition above are prepared in IXTEX format. This
format is further parsed by Z/EVES tool for type and semantics checking. Z/EVES
command prove by reduce is further defined, which is used to check the semantics of

4.2. ZSYNTAX AND SEMANTICS (OWL-Z) 59

our Z specification.

\begin{axdef}

Class: \power DELTA

Property: \power DELTA

Individual: \power DELTA

\where

Property \cap Class = \emptyset
Property \cap Individual = \emptyset
Individual \cap Class = \emptyset
\end{axdef}

proof
prove by reduce
[|

In this thesis, Z/EVES style is used to render the IATgX format. Thus, upon render-
ing the [#TEX format, Z specification becomes readable for human. For example, the
above definition of class, property, and individual in OWL-Z are rendered as follows:

Class : P DELTA
Property : PDELTA
Individual : P DELTA

Property N Class =0
Property N Individual = §
Individual N Class = @

We use instances syntax to map a class with class extension (instances).
instances : Class — P Individual

To describe a property concerned, or value of a property, either as Object Property
or Datatype Property, individual has to be defined by mapping it as a property, either
object property (propval) or data type property (propvelD). For instance, ¢ and b are
Individuals, p is a property, and p relates a with b, such that a and b are the property
concerned of p, or formally (@, b) € RE. Further, in Z specification such property
values are declared as (a, b) € propval(p).

4.2. ZSYNTAX AND SEMANTICS (OWL-Z) 60

l propval : ObjectPreperty — {Individual — Mdividual)

[XSD]
rpropvalD : DatatypeProperty — (Individual « X5D)

4.2.1 Class Description

Class axioms typically contain additional components that state necessary and/or suf-
ficient characteristics of a class. Regarding to OWL W3C Document, there are three
syntaxes for combining class descriptions into class axioms as follows:

1. subClassOf. If a class description ¢ is defined as a subclass of another class
description d, then the set of individuals in the class extension of ¢ should be
a subset of the set of individuals in the class extension of d. DLs semantic of
this statement is ¢ € d%. From the OWL abstract syntax and DLs semantics,
the OWL-Z syntax and semantic for the subClassOf statement is declared as
follow.

subClassOf : Class «— Class

Yc,d: Class e
(¢, d) € subClassOf & instances{c) C instances(d)

2. equivalentClass. The two class descriptions involved have the same same set
of individuals. DLs semantic of this statement is ¢ = d%. From the OWL
abstract syntax and DLs semantics, the OWL-Z syntax and semantic for the
equivlentClass statement is declared as follows.

equivalentClass : Class — Class

Ve, d: Class o (¢, d) € equivalentClass &

instances(c) = instances(d)

4.2. ZSYNTAX AND SEMANTICS (OWL-Z) 61

3. disjointWith. This statement asserts that the class extension of the two class
descriptions involved have no individuals in common. OWL abstract syntax of
this statement is disjoint With(c, d), and semantic of this statement is ¢FNd? =
@. From the OWL abstract syntax and DLs semantics, the OWL-Z syntax and
semantic for the disjointOf class statement is declared as follows,

disjoint With : Class — Class

Ve,d: Class e
{c, d) € disjointWith &

instances(c) N instences(d) = ¢

4.2.2 Properties

OWL distinguishes between two main categories of properties. First is object property
that relates individual of a class with individuals in another class. Second is data type
property that relates individual of a class with data values that refers to XML Schema

Data type definition (XSD). Object property and data type property are declared in
OWL-Z as follows:

ObjeciProperty : P Property
Datatype Property : P Property

ObjectProperty N DalatypeProperty = @

In OWL, subpropertyOf reflects that a property is a sub property of another prop-
erty. Formally this means that if p, is a subproperty of p,, then the property concerned
(property value or extension) of p, should be a subset of the property concerned p,.
DLs semantic of sub property statement is {a € A*|Vb € RT — (a,b) € ST}, From
the OWL abstract syntax and DLs semantics, the OWL-Z syntax and semantic for
subproperiyOf statement is declared as follows.

4.2. ZSYNTAX AND SEMANTICS (OWL-2) 62

— [XSD]
subPropertyCf : Properly — Property

Y r,s: Property o (r,s) € subPropertyOf «

(r € ObjectProperty A s € ObjectProperty = propvel(r) C
propual(s)) A

(r € DatatypeProperty A s € DatatypeProperty =
propualD|XSD|(r) C propvalD[XSD](s))

Another OWL property statement, i.e. equivalentProperty, is used to state that two
properties have the same property concerned (property value). OWL syntax of this
statement if equivalentProperty(c, d), and DLs semantic of this statement is {a €
AT|vb € R?T & (a,b) € ST}, From the OWL abstract syntax and DLs semantics,
the OWL-Z syntax and semantic for equivalentProperty is declared as follows.

— [XS5D)
equivalentProperty : Property — Properly

Y¥r,s: Property e (r,s) € equivalentProperty <

(r € GbjectProperty A s € ObjectProperty

= propval{r) = propual(s)) A (r € DatalypeProperty A s

€ DatatypeProperty = propvelD[XSD)(r) = propvalD[XSD](t))

Properties have a direction, from domain to range. In practice, people often find
it useful to define relations in both directions: persons own cars, cars are owned by
persons. Regarding this matter, OWL uses inverseOf syntax as an inverse relation
function between properties. Formally, it can be said that p; is inverse of p,, thus it
asserts that for every pair (z, y) in the property extension of py, there is a pair (y, z)
in the property extension of p;, and vice versa. DLs syntax of inverseOf statement is
R = R;. From the OWL abstract syntax and DLs semantics, the OWL-Z syntax and
semantic for inverseOf property is declared as follows.

inverseQf : ObjectProperty — ObjectProperty

¥ pl, p2 . ObjectProperty o (pl, p2) € inverseOf &
propual{pl) = (propvai(p2))~

4.2. ZSYNTAX AND SEMANTICS (OWL-Z) 63

In OWL, a property is defined as being transitive by making use of OWL class
TransitiveProperty syntax. From the OWL abstract syntax and DLs semantics, the
OWL-Z syntax and semantic for Transitive property is declared as follows.

Transitive : P Object Property

Y prop : ObjectProperiy o prop € Transitive
(Vz,y, z: Individue! « (x,y) € propval(prop) A
(y, 2} € propvel(prop) = (z, z) € propval(prop))

A symmetric property is a property for which holds that if the pair (z, y) is an
instance of property P, then the pair (y, z) is also an instance of P. The domain
and range of a symmetric property are the same. From the OWL abstract syntax and
DLs semantics, the OWL-Z syntax and semantic for Symeiric property is declared as
follows.

Symetric : P Object Property

¥V prop : ObjectProperty e prop € Symetric & (Vz,y : Individual o (z,7)
€ subVal(prop) = (y, z) € subVal(prop))

4.2.3 Value Constraint

A property can also be restricted by constraints. QWL distinguishes two kinds of
property restrictions: value constraints and cardinality constraints. 7

The value constraint allValuesFrom is an OWL statement that relates a restriction
class to either a class description or a data range. Formally, it defines individual z
for which holds that if the pair (z, y) is a value of R (the property concerned), then
y should be an instance of the class description (or a value in the data range for data
type property). DLs semantics of this value restriction is a € AT}V b.(a, b) € RT —
b € C%. The OWL-Z syntax and semantics of this all ValuesFrom property statement
are declared as follows,

4.2. ZSYNTAX AND SEMANTICS (OWL-Z) 64

aliValuesFrom : Class x ObjectProperiy — Class

Vc,d: Class; p: ObjectProperty o allValuesFrom{c.p) = d &
instances(d) = {a : Individual | V b : Individual e
{a, b) € propval(p) = b € instances{c)}

The value constraint someValuesFrom is a OWL property that relates a restriction
class to a class description (or a data range for data type property). Formally, it defines
individual z for which there is at least one y (either an instance of the class description
or value of the data range) such that the pair (z, ¥) is value of R. DLs semantics of
this value restriction is a € AZ|Vb.(a, b) € RT A b € CT. The following are OWL-Z
syntax and semantic for someValuesFrom property statement.

some ValuesFrom : Class x ObjectProperty — Class

Ve, d: Class; p: ObjectProperty » someValuesFrom(c,p) = d &
instances(d) = {a : Individual | 3 b : Individual »
(a, b) € propvel(p} A b € instances(d)}

The value constraint hasValue is an OWL property that relates a restriction class
to a value V', which can be either an individua! or a data value. DLs semantic of this
property statement is a € AZ|V b.(a,b) € RT. The following are OWL-Z syntax and
semantics for has Value property statement.

hasValue : (Individual x ObjectProperty) — Class

¥ ind . Individual; ¢ : Class; p : ObjectProperty
hasValue(ind, p) = class < instances(c) =
{a : Individual | ind € propval(p)({e} D}

The cardinality constraint maxCardinality constraint describes a class of all indi-
viduals that have at most N semantically distinct values (individuals or data values)
for the property concerned, where N is the value of the cardinality constraint. DLs Se-
mantics of this cardinality statement is a € AZ|{b € AZ|(a,b) € RTAbe C?} > n.

OWL-Z syntax and semantics for this property statement is declared as follows:

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 65

mazCardinality : (N x ObjectProperiy) — Class

¥ ¢ : Class; n:N; p: ObjectProperty » mazCardinality(n,p) = c &
instances(c) = {z : Individual | #{(propval(p)}({z} })} < n}

Another cardinality constraints are minCardinalify and Cardinality, which are
almost the same meaning (semantics) with mazCardinality, except the number of ¥
as constraint values.

4.2.4 Individual

The OWL syntax sameAs links an individuat of a class to an individual of another
class. This statement indicates that two individuals have the same identity, OWL-Z
syntax and semantic of sameAs statement are declared as follows.

sameAs : P Individual — P Individual

Vz,y:PIndividual e (z,y) € sameds & x =y

Like sameAs, the OWL differentFrom statement links an individual to an indi-
vidual. However, this statement indicates that two individuals have different identity.
OWL-Z syntax and semantic of of differentfrom statement are declared as follows.

differentFrom : P Individual — P Individual

Yz,y: P Individual o (z,y} € differentfrom
SzThy

4.3 Mapping Context Ontology onto Z Notation

This section presents the mapping of OWL semantic web context ontology onto Z
notation. To generate context ontology in Z notation, this thesis uses the rewritten
OWL-Z, which has been defined in the previous section. The overall specification of
context ontology will not be discussed in this section, the complete specification is
provided in the Appendix D.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 66

As in the OWL semantic web version, context ontology consists of Person, Nel-
work, Activity, Device, Network, and Location as main concepts. Every classes de-
fined in OWL semantic web are sub class of Thing {or T tn DLs). Those classes are

modeled in Z using axiomatic box as follows.

Person, Network,
Aclivity, Location, Device : Class

(Person, Thing) € subClassOf
(Network, Thing) € subClassOf
(Device, Thing) € subClassOf
{ Activity, Thing) € subClassOf
{Location, Thing) € subClassOf

4.3.1 Specification of Class Person and Its Related Property

As in OWL semantic web version of CIS context model, class Person is composed
of lecturer, staff, post graduate student, and undergraduate student. Z axiomatic box
is used to declare all classes since the dynamic context model is not to be a concern
in this thesis. Some assumption rule labels are defined well, e.g. as indicated by
{({grule LecturerinPerson)). The purpose of this assumption rule is to be used (re-
called) later with command to test the consistency of the axioms (declared with test

command).

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 67

Lecturer, Student, Postgrad, Staff, Profile : Class

{{ grule StudentInPerson })
(Student, Person) € subClassOf
{{ grule LecturerinPerson
{Lecturer, Person) € subClassOf
{{ grule PostgradInPerson })

{ Postgrad, Person) € subClassOf
{{ grule ScaffInPerson })

(Staff, Person) € subClassOf

{ grule ProfileofStaff)}

{Profile, Staff) € subClassOf

{(grule ProfileofLecturer)

{{ grule ProfilelnLecturer })
(Profile, Lecturer) € subClassOf
{{ grule ProfileofStudent)

(Profile, Student) € subClassOf
{{ grule ProfileofPostgrad)}
(Profile, Postgrad) € subClassOf

Person’s related object properties are declared in Z notation using Z axiomatic
box. Because object property links a class with another class, therefore its domain
and range hav to be determined as well. Some assumption rules are introduced in this
specification. The following Z axiomatic box shows a part of specification of object
properties related to class Person.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 68

use, run, connected To, currentActivity, localedin,
loginTo, locatedin,
ounedBy : ObjectProperty

domain(use) = Person
range(use) = Device
domain(run) = Person
range(run) = ApplicationRun
domain(connectedTo) = Person
range(connectedTo) = Device
domain(connectedTo) = Device
range{connectedTo) = Network
domain{connectedTo) = Person

range(connectedTo) = Nelwork

{ grule runSubProp }

(run, use} € subPropertyOf
{ grule uselsTransitive))
{connectedTo) € Transitive
{{ grule ownedBylsInverse)
{use, ownedBy) € inverseOf

Regarding the specification of class Person related properties, three properties that
determine the expressiveness of Z specification of context ontology model have been
declared. Axiom (run, use) € subPropertyQf determines the hierarchy of properties,
or labeled with H in DLs. Axiom {connectedTo) € Transitive determines that this
property is transitive, or or labeled with & in DLs. The label Z in DLs language is
determined by inverse role axiom (use, ounedBy) € inverseOf.

Data type properties related to class Person can also be specified in Z notation.
Actually Z has no specific data type definition, such as to express string, date, integer,
ctc. By referring to OWL definition of XSD data type for semantic web, a new free
type definition, i.e. [XSD], is issued to express data type in Z specification of context
model ontology. Data type property is used to relate instances of a class with literal.

For example, the Z specification to relate data type properties in class Profile with
a data type is written as follows.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 69

— [XSD]
SfullName, officeAddress, phoneNumber,
emailAddress, imAddress : Datatype Property

name, office, phone, email, tm : P XSD

domain{fullNaeme) = Profile
rangeD(fullName) = name
domain(officeAddress) = Profile
rangeD (officeAddress} = office
domain(phoneNumber) = Profile
rangeD{phoneNumber) = phone
domain{emailAddress) = Profile
rangeD(emailAddress) = email
domain(imAddress) = Profile
rangeD (imAddress) = im

Let us take an example. Axiom domain{imAddress) = Profile determines the
domain of imAddrress property. This property is used to relates class Profile with
the literal of person instant messenger address, e.g. anybody@yahoo.com. The axiom

rangeD(tmAddress) = im describes that the range of property imAddress it literal
im with common data type namely XSD. As in the implementation language, such
as in OWL, the XSD can further be defined as string, or character. However, in this
formal specification of context model, there is no need a detail or specific of data type
in the property value, since data type is considered not to affect the whole consistency
of context ontology model.

4.3.2 Specification of Class Device

A part of Z specification of class device is discussed is this subsection. As in OWL
semantic web model, the three distinct devices used by a person in CIS context model
are declared as well. Subclasses of device are also declared in this axiomatic box.
Assumption rule {{grule HardwareSoftwareDisjoint}} is declared to assert class dis-
jointness definition { Hardware, Software) € disjoint With in the command for testing
consistency of axioms.

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION

70

Desktop, MobileDevice, NetworkDevice,

AccessPoint, Router, Server, ... : Class

{Desktop, Device) € subClassOf
(MobileDevice, Device) € subClassOf
(NetworkDevice, Device) € subClassOf
(Notebook, MobileDevice) € subClassOf
(PDA, MobileDevice) € subClassQf
(MobilePhone, MobileDevice) € subClassOf
(AccessPoint, NetworkDevice) € subClassOf
(Server, NetworkDevice) € subClassOf
(Router, NetworkDevice) € subClassOf
{ grule HardwareSoftwareDisjoint))
{Hardware, Software) € disjointWith...

4.3.3 Specification of Class Activity

Hardware, Software, MobilePhone, Notebook, PDA,

Like in the OWL semantic web of context model, activities related to a person are

declared as Planned and Deduced. The specification of both deduced and planned
activities are declared using Z axiomatic box. In Chapter 3 Figure 3.11, Planned and

Deduced have been defined to be disjoint each other.

Planned, Deduced, Available, Busy, Free, ... : Class

{ Planned, Activity) € subClassOf
{Deduced, Activity) € subClassOf
{{ grule PlannedRule }

(Deduced, Planned) € disjoint With

{Available, Deduced) € subClassOf
{ Free, Deduced) € subClassOf

{ Busy, Deduced) € subClassOf

{{ grute BusyFreedisjointWith
{Busy, Free) € disjoint With

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 71

Disjointness restriction is also used during the consistency checking in Chapter 3
Section 3.4.1. For the purpose of testing the class disjointness between Planned and
Deduced in Z specification, the assumption rule label {{grule PlannedRule)) is de-
fined. Another assumption rule is also defined, i.e. {{grule BusyFreedisjoint With))
that is to test the disjointness between class Busy and Free.

4.3.4 Specification of Class Location

Location context model are declared in Z specification by distinguishing indoor loca-
tion and outdoor location, as the with OWL. semantic web model. Class Ouidoor and
Indoor is also declared disjoininess each other. For the purpose of testing the class
disjointness between Outdoor and Indoor in Z specification, the assumption rule la-
bel {{grule OutDoorindoorDisjoint}) is issued to test the disjointness between class
Indoor and Outdoor.

Indoor, Outdoor, Building, Room, ClassRoom, LectureHall,
OfficeRoom, ... : Class

{Indoor, Location) € subClassOf
(Qutdoor, Location) € subClassOf
{ grule QutDoorlndoorDisjoint)
{(ndoor, Outdoor) € disjoint With
(Building, Indoor) € subClassOf
{Room, Building) € subClassOf
{Lab, Room) € subClassOf

{ ClassRoom, Room) € subClassOf
(LectureHall, Room) € subClassOf

The complete mapping from OWL semantic theoretic onto Z syntax and semantics
is provided in the Appendix C.

4.3.5 Specification of Class and Property Constraint

In Chapter 3, the activity of Busy is sub classes of Dedcued. This class is declared
to describe an activity in which a person is busy, by assuming he is running the office
application, e.g. word processor application while he is located at his office room, or

4.3. MAPPING CONTEXT ONTOLOGY ONTO Z NOTATION 72

he is doing a planned activity. This class Busy is restricted with axioms:

Busy = Person MY run. CfficeApplication MV located. Office Room
Busy = Person MV currentActivity. Planned

To express class Busy restriction in Z specification, the Z axiomatic box can be
issued as follow,

Busy = someValuesFrom(Person, run) = Office Application A
allValuesForm(Person, loctedIn) = OfficeRoom
Busy = someValuesFrom(Person, currentActivity) = Planned

Another restriction that are defined in OWL semantic web language of the context
ontology is cardinality restriction, which describes a class of all individuals that have
at most N semantically distinct values (individuals or data values) for the property
concerned.

As defined in OWL semantic web language in Chapter 3, for example, a per-
son can only have one activity at a certain time (either doing planned activity or de-
duced activity), cardinality restriction = 1.currentAclivity is used to restrict property
currentActivity. The Z specification of this property restriction is declared in Z ax-
iomatic box as follow.

Cardinality(1, currentActivity) = Person

mazCardinality(l, run} = ApplicationRun

The above Z axiomatic box also defines a cardinality restriction on property run,
that restricts a person is able to run at least 2 application software on that computer
(including operating system).

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 73

4.3.6 Specification of Individuals

In OWL semantic web language, owl:OneOf is a syntax used to define enumerated
instances of a class. In OWL-Z specification, oneOf can also be issued to define
the memberships of a concept or a class. For example, class ClassRoom is defined to
describe room entities used in lecturing activity. CIS context mode! define a classroom
into class name, e.g. C01,C02. Name of the classes also describes a room located in
Block C and D in our university. Some related instances of ClassRoom are defined in
Z specification as follows.

C01, C02, C03, C04, CO5, C06, D01, D02, DO3, D04, D05, D06 : Individual

€01 € instances{ClassRoom);
C02 € instances{ ClassRoom);
C03 € instances{ ClassRoom);

D05 € instances(ClassRoom); D06 € instances(ClassRoom);

4.4 Checking Z Specification of Context Ontology

Once the ontology has been written in formal specification language, there is a need
to verify such specification whether conform to a given property. Further, this thesis
follows the previous works the way how to reason the ontology beyond the existing
semantic web reasoner, as described in [14]-{17].

4.4.1 Consistency Checking

In this section, the demonstration of verification of context ontology model beyond
the semantic web reasoner is presented. The intention of verification is to explore the
undetected inconsistent class with respect to Definition 3.1 in Chapter 3. In Chapter 3,
Pellet OWL DL reasoner is already used to detect the unsatisfiable concepts of contest
ontology model. The reasoner concludes that the OWL version of context ontology
model is consistent, though it does not satisfies the Definition 3.1.

After declaring the Z specification of class /ndoor and Outdoor, a rule label in the
specification, i.e. ((gruleOutDoor/ndoorDisjoint)), is issued to be used by Z/EVES
during the proof process. Following is Z specification of class /ndoor and Qutdoor.

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 74

Indoor, Qutdoor : Class

{ Indoor, Location) € subClassOf
(Qutdoor, Location) € subClassOf
{ grule QutDoorIndoorDisjoint)
{Indoor, Outdoor) € disjoint With

The rule label is also put in the specification of class Person and value restriction
of property locatedin. The rule label is declared as follows.

...y Person, ... : Class
.., locatedIn, ... : ObjectProperty

{{ grule PersonLocatedInIndoor

allValuesFrom{ Person, locatedIn) = Indoor

The Definition 3.1 in Chapter 3 is expressed in Z theorem that will be used to
guard Z axioms used during proof process. The Definition 3.1 is written in Z theorem
as follows.

theorcm grule allvaluedisjointrule
Ye,d,e: Class: p: Property o (d, e} € disjoint With A
allValuesFrom(c,p) = d = — (allValuesFrom(c, p) = €)

To test the inconsistency of the above definition, the following goal should be is-
sued as follows: {ry((aliValuesFrom(Person, located/n) = Indoor) = (allValuesFrom
(Person, localedin) = Qutdoor)). Our goal is to prove that property locatedin will
be applied in the disjoint class that are in the range property concerned. The proof
command to test the axiom should be prepared in ISTEX script, and the sequence of Z
proof command are issued as follows:

4.4, CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 75

proof
try allValuesFrom(Person, locatedin) = Qutdoor;
use QutDoorindoorDisjoint;
use PersonLocaled/nIndoor;
use allvaluedisjointrule
[c:= Person,d := Indoor, e := Outdoor, p := locatedIn],
prove by reduce;
|

The first command (¢ry) is the goal to test, second command (use) is to recall the
assumption rule to assert that class [ndoor and Qutdoor are disjoint cach other, the
last command reduce is to let Z/EVES to perform simplification, rewriting, and reduce
the goal. The testing result of Z/EVES in ISTIEX mode interface has also been captured
and provided in the Appendix.The result of testing (or reasoning) of consistency is
presented in the following lines (non rendercd IKTEX scripts).

Beginning proof of ...
allValuesFrom(Person, locatedIn) = Indoor
= allValuesFrom{ Person, locatedIn) = Outdoor
Assurning OutDoorindoorDisjoint generates...

(Indoor, Qutdoor) € disjoint With

A allValuesFrom(Person, locatedin) = Indoor

= allValuesFrom(Person, localedIn) = Outdoor

Substituting allValuesFrom(Person, locatedin) = Indoor produces...
(Indoor, Gutdoor) € disjoint With

A allValuesFrom(Person, locatedin) = Indoor

= Indoor = QOutdoor

Proving gives...
Location = Indoor
= Indoor = Qutdoor

Z/EVES returns with /ndoor = Outdoor (see Appendix E Figure E.1). This
means that the goal contains a contradiction. This is because previously Planned and
deduced are defined to be disjoint each other. Regarding to DLs semantics, value
restriction defines individuat of a class fndoor for which holds that if the pair (z, y)
is the value of property locatedIn (property concerned), then y should be an instance
of the class [ndoor. Since Indoor is disjoint with Qutdeor, hence the the value of

property locatedin, should not be an instance of the class Quidoor. Regarding to

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 76

proof given by Z/EVES, our context model contains inconsistent class, hence class
disjointness should be removed between class Indoor and Outdoor with respect to
the property concerned of located/n. The preparation and process in Figure 5.1 can

be repeated again.

4.4.2 Subsumption Checking

The task of subsumption checking is (o infer that a class definition is sub class of
another class, or to obtain the taxonomy of knowledge, such that C C Die. CT C DI
iff Z = O, where Q is the ontology. In other words, subsumption checking discovers
concept inclusion.

Previously, an entity Person is defined as a sub class of Class:

Person, Network,

Activity, Location, Device : Class

{Person, Thing) € subClassOf

and a Profile entity is also decalred as a sub class of Lecturer:

Lecturer, Student, Postgrad, Staff, Profile : Class

(Student, Person) € subClassOf

{{ rule LecturerInPerson)}
(Lecturer, Person) € subClassOf

{{ grule ProfileInLecturer)}
(Profile, Lecturer) € subClassQf

Thus, the goal is defined, i.e. to prove the inclusion that the class Person is super-
class of class Profile. The two assumption rules are then recalled , and the command

prove by reduce are then recalled as well to find out the solution.

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 77

proof
try { Profile, Person) € subClassOf;
use LecturerinPerson;
use ProfileInLecturer;
reduce;
[|

Having executed the prover command, Z/EVES concludes that { Profile, Person) €
subClassOf (see Appendix E Figure E.2).

4.4.3 Instantiation Checking

Instantiation checking asserts that an individual is an instance of a class. It is demon-
strated through an example that Z/EVES can also perform instantiation checking in Z
specification of context model.

In the Z notation of context ontology specification, NOVELNETWARE id de-
clared as an instance of class Server. This is to describe the situation in which a
person has to login to this server first prior to using network resource in our depart-
ment, such as accessing Intranet or Internet resource. Thus, the instance of Server is

specified as follows:

NOVELNETWARE : Individual

{{ grule Serverlnstance })
NOVELNETWARE € instances(Server)

To test the instance assignment of a class, the try command of Z/EVES is used,
followed by provebyreduce command. Upon running Z/EVES to test this instance
assignment, Z/EVES is able to detect that NOVELNETWARE is instance of Server
concept, and it returns true (see Appendix E Figure E.3).

proof
try NOVELNETWARE € instances(Server),
prove by reduce,
' |

Another proof of instantiation reasoning will be presented as well. From the

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 78

given individual D01 is the instance of class ClassRoom. The assumption label rule,
{{D0linClassRoom)) is also defined to test the consistency of the axiom later on dur-
ing the proofing process. The Z specification of this instance 01 is given as follow:

., D01, L Individual
{ grule DO1inClassRoom)

D01 € instances{ClassRoom);
D02 € instances(ClassRoom);

Previously, specification of ClassRoom and Room entity should also be declared,
and the rule label {(ClassRoominRoom}) is used to test the axiom during the proof

process.

..., ClassRoom, Room, ... : Class

{{ grule ClassRoominRoom }
{ ClassRoom, Room) € subClassQf
(OfficeRoom, Room) € subClassOf

1)

Another definition to be used during the proof process needs to be issued as fol-

lows:

Definition 4.1. Let ¢, d € C be class name, ¢ C d, and i € A? be individual. If i is
instance of ¢ it implies that ¢ is also instance of d or 7 : d.
The Definition 4.1 is then written in Z specification as Z theorem as follow.

theorem grule instancesubclass
V¢, d : Class; ind : Individual e (c, d} € subClassOf A
ind € instances(c) = ind € instances(d)

The following goal needs to be issued as well: D01 € instances(Room). The in-
tention is to test the inconsistency of the above (Z specification) definitions. The goal
issued is to prove that if 201 belongs to ClassRoom, then it also belongs to its super-
class, i.e. Room. The proof command, includinng sequence of Z proof command, to

4.4. CHECKING Z SPECIFICATION OF CONTEXT ONTOLOGY 79

test the axiom should be prepared in KTEX as follows:

proof
iry D01 € instances{ Room);
use DOlinClassRoom;
use ClassRoominRoom;
use instancesubclass(c := ClassRoom, d := Room, ind := DO1];
prove by reduce;
|

and having proved such commands, Z/EVES returns true (see Appendix E Figure
E.4)

Another example is also given i.e. to address the process of individual property
reasoning with hasValue syntax. In the beginning of this section, it is known that
NOVELNETWARE is the server than a person has to login prior to using the Net-
work resource. The OWL semantic model to express such condition is declared as
follows:

<owl:Class rdf:about="#Server">
<rdfs:subClassCf>
<owl:Class rdf:about="#NetworkDevice"/>
</rdfs:subClassOf>
<owl:equivalentClass>
<owl:Restriction>
<owl:hasValue>
<cdf:Server rdf:about="#Netware"/>
</owl:hasValue>
<owl:onProperty>
<owl:ObjectProperty rdf:about="flogInto"/>
</owl:onProperty>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

Either in the DLs model or OWL model of CIS context ontology, it is already
defined that the class Lecturer is sub classes of class Person. It is required to know
whether a lecturer has to login to the novel netware server if she/he wants to use the
network resource. In Z specification, the above goal is established as follows: 1ry
hasValue(LecturerloginTo) = NOVELNETWARE. By issuing the test commands for

4.5. CHAPTER SUMMARY 80

proofing purpse, Z/EVES returns the above goal to be true. The screenshot of proofing
process is provided in Appendix E Figure E.5.

proof
try hasValue(Lecturer, loginTo) = NOVELNETWARE,
use LecturerinPerson;
use subclassHas Value;
[c := Lecturer, d := Person, p := loginTo, ind := NOVELNETWARE],
prove by reduce;

It is demonstrated that Z/EVES is able to check and reason instantiation, which
means that instantiation checking of context ontology model have been performed be-
yond the semantic web reasoner, and all individuals are proved to be the membership

of a class.

4.5 Chapter Summary

The main contribution of this chapter can be summarized as follows:

1. This chapter addresses the development of context ontology using Z notation.
The context ontology is taken from the previous Chapter 3, and mapped onto Z
notation by using the OWL-Z syntax and semantics (OWL-Z).

2. Itis shown that the separation of modeling language to develop context ontology
model has been addressed in this thesis. Modeling language for design / spec-
ification is distinguished from the modeling language for application run-time
(or implementation) purpose. In another word, separation of modeling language
also requires an alternative method to check / validate the model. Context on-
tology checking in this chapter has been performed beyond the current semantic

web reasoning tool.

3. Previously, in Chapter 3, ontology checking is carried out in OWL semantic
web environment. For the context ontology which is prepared in OWL format,
semantic checking is carried out using Pellet, the OWL DL reasoner. For context
ontology in Z formal notation, therefore, to validate the correctness of ontology,
Z/EVES tool is used. The undetected error of concept in Chapter 3 could be
discovered in Z/EVES environment, and the source of error could also been

4.5. CHAPTER SUMMARY 81

displayed. It shows that Z/EVES (Z theorem prover) has the ability to perform
ontology checking, the task that is usually done by semantic web reascner.

The next chapter will be presenting the discussion on the process of developing
context ontology using semantic web language and formal specification. It wiil be
shown that formal specification technique is proposed as complementary technique to
detect inconsistency of context ontology, thus the refinement process could take place
upon detecting the inconsistency.

Chapter 5
Discussion

This chapter presenis the discussion on the overall process of developing context on-
tology using semantic web language and formal specification. The reflection on the
proposed methods ends the discussion on this chapter.

5.1 Context Development Process

As with the conducted survey in [1], the list of context modeling approaches are quite
comprehensive. It was also observed that the further emerging approaches might exist
in the following decades. To date, it can be concluded that the most promising method
for context modeling is using ontology. However, this does not mean that the other
approaches are unsuitable for ubiquitous computing environments.

In the previous context ontology modeling approach, as proposed in [4]-[3]-[5]-
[7], they defined semantic web as the executable format or o0 be executed directly by
application run-time (or for implementation level purpose). During the ontology de-
velopment, they rely on the semantic web reasoner to check the correctness of context
ontology being designed.

This thesis proposes a formal specification technique as a complementary ap-
proach to the semantic web ontology modeling. Figure 5.1 shows the context ontology
development process presented in this thesis. Context requirement capturing {process
(D in Figure 5.1), DLs representation and OWL semantic web definition (process @)
in Figure 5.1) are presented in Chapter 3.

The context ontology development approach in this thesis leads to the use of for-
mal specification technique (process (@) in Figure 5.1) that suits to check the correct-
ness of ontology beyond the semantic web model. Mapping process to generate Z
specification from OWL context ontology is presented in Chapter 4. The prepared

82

5.2. CONTEXT MODELING USING OWL 83

Context Ontology
tn OWL Notation

C
Figure 5.1: Process of developing context ontology in this thesis

OWL semantic web format is mapped to formal specification to enable reasoning pro-
cess using formal verification technique, ¢.g. in ZZEVES environment. Refinement of
context ontology will take place once the formal verification process discovered in-
consistency concepl. Afterward, the refined semantic web model of context ontology
can then be prepared for instantiation process, or to be used directly by application
run-time (process (3) in Figure 5.1). To conclude, this thesis proposes formal verifica-
tion technique as a complementary step to develop context ontology.

5.2 Context Modeling Using OWL

Formalizing context ontology in OWL not only contains the vocabularies of concepts,
but involving relationships among them as well. OWL semantic web allows us to
achieve this goal in two steps. First, it allows us to define concepts and their inter-
relationships, e.g. describing person, location, devices. etc in our context ontology.
Second, it allows us to define instance data pertaining to some specific class.

The strengths of visual ontology modeling as used in Chapter 3 are definitely help-
ful on the modeling context ontology. To date, Swoop version 2.3, as well as Protege
version 4, is connected to Pellet OWL DL semantic web recasoner. The feature to visu-
alize context ontology in OWL semantic web language could assist the context-aware
designer to define context ontology along with checking process, hence the inconsis-
tency can be detected at the early modeling process.

By benchmarking both ontology editor mentioned above, Swoop has more strength
point in modeling and evaluating the ontology.

1. Swoop has the interface to show the axiom causing the inference result after rea-
soning process, such for subsumption and instantiation checking. The example
of this feature is depicted in the Figure 5.2

2. Upon detecting the inconsistency, Swoop can show the source of inconsistency
and come up a proposed options to fix the inconsistency {see Figure 5.3). This

5.2. CONTEXT MODELING USING OWL 84

OwL-Class: (Cfrag

Intersection of: (Add)
(;‘Emcmnx.azixj:x-(w@aum} {Delete)
©parson (peletg)

Subclass of: (Add)
Elpeduced (Delate)

Axioms causing the inference
Free © Person:

llﬁhnsttiﬂmnmm.h@mw) nSperson))

Figure 5.2: Explanation of axioms causing the inference in Swoop

is a very promising feature for rapid context ontology development using OWL

semantic web model.

T & Dtology < 4 REASE IR Ry Feat i oy T2 s . " n
omary 'wu(mnln--m'm.m-m.n-mw:.{n.-]n:lu [wuloa |Macompure farks (] iaer ackotet Cisbady .
;:,., Asimrns 4 mmamirng Wen prplslorrss Planrsad ~
r— 1 Lxboms artte | imoact [Usage [Rack [Stetus |||
b 1) (€ Pmen 1 o 1 Bngrencaanite I EN 3 N CTT
gl 2 oy inify Comain ‘Cperion) e 2z |17 [lmw
ot D —
n_the_Prera 3) (50eawed 1 6 $ Pougeacon 2z s 14 s Jlmw
Lopareglmal =

1) Cree 1 S irgy . (~ Shusi z |2 R
e = e — IR " 1
Tamrs s} 1wy o (o Eon (3 Optagned] L]
¥ Epecsrm) 2 e n |12 |mBw
o) LB e - Eran 2 e T R }mﬂ[‘ |
[
7)1 {P¥ren ofC0emmnt) FlE 2 oo [1
o) 6Satwort cChuama 2 g 8 |12 [EHw | f
93 68" Turnging ' Splnned) 2 o 8 |1z [\ |
ot Amerm (0 || Wemcrved Axowa (1} |] Caforcied ot
G ate Phurs Rigpr 4 Rercts el B A

 M—) flvru Al L it

L) (T -=waprrery

wumnm:_l&:%-.—-m‘-?ﬂ’-zm tArty:2 Impact. 0 Usage: 1)

PREVIEW:
sl Focd 0 R girunag: 14
Entalmants Lost: 0 Retained: 3

Figure 5.3: Depicting the source of error and option to fix

To conclude, OWL semantic web language provide a standard representation to
structure contextual information. OWL can associaie semantics to represent concepts
like class hierarchy, sets, restriction on class, etc. Using this semantics, the inference
engine application can act upon OWL document to derive fact, to answer the query
about semantic entity, and to deduce the context upon the reasoning process.

The OWL Web semantic web language is designed to be used directly by applica-
tion entity that needs to process the information instead of just presenting information
to human. For this purpose, OWL facilitates machine interpretability of document
content than that supported by XML, RDF, and RDF Schema (RDF-8)[63].

5.3. ONTOLOGY EXPRESSIVENESS 35

5.3 Ontology Expressiveness

Practically, the existing OWL semantic web editor and OWL reasoner could be used to
get the statistic and expressiveness of ontology being modeled. To do so, the modeling
approach provided in this thesis, Swoop and Protege editor are connected to Pellet
OWL DL reasoner. Those tool could reflect the statistic and expressiveness of our
semantic web model, as depicted in Figure 5.4.

b e e e s v
ToietiTa e e - et

‘l_!iho_ammmtm
Yrafanies cliect propey sxicms count
s — TTrr———

Figure 5.4: Semantic Web Statistic of CIS Context Maodel, rendered by Pellet OWL
DL Reasoner through Protege Editor

As can be seen in Figure 5.4, OWL semantic web model of CIS context ontology
conforms to SHOIN (D) family. The language family or expressiveness of DLs are
determined by language constructors and axioms we use, as described in Chapter 3.
The summary of axioms that form expressiveness in CIS context model are in the

following table.

5.4 Reflection on the Proposed Method

Compared to the semantic web reasoning tool, the apparent disadvantage of Z/EVES
is that it has a lower degree of automation and can only perform reasoning tasks inter-
actively.

Prior to verify the Z specification of context ontology, some assumption rule labels
have to be defined, including the theorem, and calling all relevant assumption rule and

5.4. REFLECTION ON THE PROPOSED METHOD 86

Table 5.1: Context Ontology Statistic

Name DLs Syn- | Axiom Example Language
tax

Top T At AL

Botiom L @ AL

Atomic Concept A Location AL

Atomic Role R currentActivity AL

Disjoint - C Hardware = - Software [

Intersection cnp 3 run. Browser nj| AL

JconnectedTo.Internet

Value Restriction | VR.C ¥ currentActivity. Planned AL

Existential Quant. | 3R.C Jlocatedin. Location AL

number restriction | > nR > 2.run N

Role-value RCS run C use H

Nominal I ¥ loginTo.{ Netware} O

Inverse Roie =R use =(-) ownedBy I

Transitive Role (+}R (+) connected To ALC+ Tran-
sitive Role =
S

theorem for the proofing process. It is because of Z/EVES is general theorem prover,
not only intended to check the conceptual specification like ontology, but can also be
used to check another logical theorem. With regard to semantic web checking, the
overall checking process are automaticalty performed by OWL reasoner, hence the
designers no need to prepare assumption rule like in Z/EVES tool.

As can be seen from the last section in Chapter 4, the proof process using Z/EVES
approach is very interactive and it requires substantial user expertise in interacting
with the theorem prover. Although Semantic Web reasoners such as FaCT++ and
Pellet can only carry out with a limited number of reasoning tasks (concept consis-
tency, subsumption and instantiation reasoning), due to the expressivity limitation of
the ontology languages, they are fully automated reasoners. It is advantageous to use
semantic web reasoners to perform reasoning tasks that can be automated.

However, the high degree of expressiveness of Z language implies that it can cap-
ture properties beyond the OWL ontology languages and applying Z/EVES to check
ontologies will give us more confidence on the correctness of ontology. Moreover,
since ontology languages are based on description logics, certain complex properties
cannot be represented in the semantic web language. It is required to express and
verify the desirable properties, which may be critical to assure the correctness of the
ontology.

Comparing the language or notation used to develop context ontology, Z speci-

5.5. CHAPTER SUMMARY 87

fication is not intended for application-run time (not executable format). Instead of
that, context ontology in Z is designed to be expressive and human understandable for
formal specification purpose. Due to its feature, Z formal specification is suitable for
complementary approach to specify and check ontology beyond the OWL semantic
web modeling, On the contrary, OWL notation is intended to be executable format,
because it is written on top of XML notaiion. Hence, during the implementation phase,
the context-aware developer can directly execute ontology in OWL format by using
the available OWL APIs.

5.5 Chapter Summary

In the previous context ontology modeling approach, during the ontology develop-
ment, the semantic web reasoner is used to check the correctness of context ontology
being modeled. In Chapter 4, the Z notation of context ontology model has been spec-
ified, which is generated by mapping from the OWL semantic web context ontology
version.

Some limitations have also been identified, where the complementary checking
still needs more user interaction in term of defining rule, theorem and command to
perform semantic checking in ZZEVES environment. Comparing to semantic web rea-
soner, all semantic checking process are performed automatically once the ontology
has been written completely. In the next chapter, the conclusion and future research
direction will be presented, which formally conclude the research work presented in
this thesis.

Chapter 6
Conclusion and Future Works

This final chapter presents a conclusion of the whole thesis, including the summary of
contributions, followed by recommendations on future work, including limitation of
our research work.

This thesis concludes that the method of context modeling approach for distributed
and ubiquitous computing environments with respect to the requirements listed in
Chapter 3 can be accommodated by ontology model. However, this does not mean
that the other approaches are unsuitable for ubiquitous computing environments.

To develop context ontology model, OWL Semantic Web Language has been de-
fined that was derived from DLs conceptual model. Semantic web is chosen since it
is currently promising context model for the implementation or application run-time
purpose.

The syntax and semantic of OWL-Z is used to map semantic web version of CIS
context ontology onto Z formal specification. Z notation was chosen as a formal
specification language, since the semantics of OWL tanguage could be expressed in Z
specification language.

Current version of Swoop editor is combined with Pellet OWL DL reasoner to
carry out semantic checking of OWL context ontclogy. It was demonstrated that
Swoop OWL editor is a very helpful to since it provides features to quickly model
a very complex ontology. Swoop is connected to Pellet reasoner, therefore, the cor-
rectness of OWL context ontology can be carried out on the fly. During the modeling
process, context ontology needs to be refined to achieve the consistent ontology model.

In this thesis, Z/EVES theorem prover is used to carry out semantic checking
of context ontology model in Z notation. It was demonstrated that validation of Z
specification of context ontology surprisingly could be performed beyond the semantic
web reasoner. It was also demonstrated that Z/EVES theorem prover was able to detect

88

6.1. THESIS CONTRIBUTION 89

the inconsistency error that was presence in the previous OWL version of context

ontoltogy.

6.1 Thesis contribution

The contributions of this thesis can be summarized as follows:

L.

[RS]

Thesis address context ontology development approach by employing formal
specification as a complementary technique to specify and verify context on-
tology. By defining this context ontology development process, the refinement
of context ontology is performed by utilizing formal specification technique.
Thus, any inconsistency error that was undetected by semantic web reasoner is
hopefully to be discovered by means of this formal specification technique.

The use of Z formal notation is proposed in this thesis as the complementary
technique to specify context ontology (see Chapter 4). By mapping semantic
web ontology onto Z notation, this has enabled formal methods tool {theorem
prover tool such as Z/EVES}) to perform semantic checking and reasoning be-
yond semantic web reasoner. The use of formal specification language also
affects to the separation of modeling language. Modeling language used by
context developer for application run-time (implementation purpose) is distin-
guished from language used by context designer for specification/design con-
cern. Well defined context ontology in semantic web language (after refined) is
then prepared for the context developer to further develop context-aware appli-
cation. Meanwhile, the Z specification of context ontology model is prepared
for the refinement process of ontology model using formal specification tech-
nique.

It was demonstrated in this thesis that the validity of context ontology model
can be checked by means of Z/EVES tools. It was shown in Chapter 3 that the
inconsistency of context ontology cannot be detected by current Pellet OWL DL
reasoner. Having mapped onto Z notation and performed semantic checking in
Z/EVES tool, this tool could discover inconsistency in context ontology, such as
explained in Chapter 4. Z /EVES could also display the source of inconsistency
in context ontology definition.

6.2. FUTURE WORK DIRECTIONS 90

6.2 Future Work Directions

Based on the works in this thesis, there are a number of directions of future research
that may be beneficial to the Context-Aware Community and Semantic Web Commu-

nities.

1. In this thesis, context ontology is constructed which conforms to SHOZN (D)
family. For further research, it is feasible to construct more expressive context
ontology. Consequently, the OWL-Z syntax and semantics have to be redfined to
accommodate the expressiveness of ontology language (beyond SHOIN (D),
or using OWL 2 language construct SHROZ Q(D}))

2. Another interesting follow-up is how to model ontology that will involve in
dynamic context-aware interaction system. The interaction system, including
its ontology, should be prepared in formal specification manner. Further, the
mapping onto implementation language can then be provided as well.

3. This thesis excluded an automatic tool to map context ontology in OWL se-
mantic web onto Z specification. This transformation tool is another research
interests that can be addressed in the future work, such as by utilizing XSLT
technology.

4. This thesis excluded the implementation or development of context-aware sys-
tem. For further implementation, many of context-aware application frame-
works are available for free and our context ontology model can be attached
after doing some modifications / adjustments.

References

(1]

(2]

(3]

[4]

(5]

[6]

(7)

(8]

T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in Workshop on
Advanced Context Modelling, Reasoning and Management as part of UbiComp
2004 - The Sixth International Conference on Ubiquitous Computing, September
2004.

C. Bolchini, C. A. Curing, E. Quintarelli, F. A. Schreiber, and L. Tanca, “A data-
oriented survey of context models,” Journal of ACM SIGMOD, vol. 12, no. 36,
pp. 19-26, December 2007.

H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive com-
puting environments,” Journal of The Knowledge Engineering Review, vol. 18,
no. 13, pp. 197-207, September 2003.

X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology based context mod-
eling and reasoning using owl,” in Proceeding of the second IEEE Annual Con-
Sference on Pervasive Computing and Communication Workshops (PERCOMW
04), 2004.

T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, “An ontology-based context
model in intelligent environments,” Department of Computer Science, National
University of Singapore, Singapore, Tech. Rep., 2005.

T. Gu, H. K. Pung, and D. Zhang, "A service-oriented middleware for building
context-aware services,” Elsevier Journal of Network and Computer Applica-
tions, vol. 28, no. |, pp. 1-18, 2005,

D. R. de Almeida, C. de Souza Baptista, and F. G. de Andrade, “Using ontologies
in context-aware application,” in Proceeding of the 1 7th International Conference
on Database and Expert System Applications (IEEE DEXA 06), 2006.

K. Jensen, Colouwred Petri Net. basic Concepr, Analysis Methodsand Practical
Use. Springer, 1997.

21

REFERENCES 92

(9]
(10]

(1]

(12]

(13]

(4]

[15]

[16]

(17]

[18]

[19]

R. Sharp, Principle of Protocol Design. Springer-Verlag, 2008.

D. Bjgrner and M. C. Henson, “An overview of specification language,” in Logics
of Specification Languages. Springer, 2008, pp. 3-12.

N. Nissanke, Formal Specification: Technigue and Applications. Springer-
Verlag, London, 1999.

1. Bowen, Formual Specification and Documentation using Z: A Case Study Ap-
proach. Open University, UK, 2003.

I.S. Dong, C. H. Lee, H. B. Lee, Y. F. Li, and H. Wang, “A combined approach
to checking web ontologies,” in Proceeding of 13th ACM International World
Wide Web Conference (WWW'04). New York, USA: ACM Press, May 2004,
pp. 714-722.

J. S. Dong, Y. Feng, and Y. E. Li, “Verifying owl and orl ontologies in pvs,”
in Proceeding of Ist International Colloquium on Theoretical Aspects of Com-
puting (ICTAC’04), vol. 3407. Guiyang, China: Springer-Verlag, 2005, pp.
265-279.

J. S. Dong, J. Sun, and H. Wang, “Z approach to semantic web,” in ICFEM 2002,
C. George and H. Miag, Eds., vol. LNCS 2495. Berlin: Springer-Verlag, 2002,
pp. 156-167.

J. 8. Dong, C. H. Lee, Y. F. Li, and H. Wang, “Verifying daml+oil and beyond
in zfeves,” in Proceeding of 26th International Conference on Software Engi-
neering (ICSE’'04), Edinburgh, Scotland, UK: ACM/IEEE Press, 2004, pp.
201-210.

H. Wang, J. 8. Dong, J. Sun, and J. Sun, “Reasoning support for semantic web
ontology family languages using alloy,” International Journal of Multiagent and
Grid Systems, Special issue on Agent-Oriented Software Development Method-
ologies, vol. 2, no. 4, pp. 455-471, December 2006.

B. N. Schilit, N. I. Adams, and R. Want., “Context-aware computing applica-
tions,” in Proceedings of the Workshop on Mobile Computing Systems and Ap-
plications, December 1994, pp. 85-90.

A. K. Dey, “Understanding and using context,” Journal of Personal Ubiquitous
Computing, vol. 5, no. 1, pp. 47, February 2001.

REFERENCES 93

[20]

(21]

[22)

(23]

(24]

[25]

(26]

[27)

(28]

[29]

(30]

S. Loke, Context-Aware Pervasive System: A New Breed of Applications. Auer-
bach Publication, 2006.

H. V. Kranenburg, A. H. Salden, H. Eertink, R. van Eijk, and J. de Heer, “Ubig-
uitous attentiveness - enabling context-aware mobile applications and services,”
in EUSAI 2003, pp. 76-87.

Q. Weijun, S. Yuanchun, and S. Yue, “Ontology-based context-aware middle-
ware for smart spaces,” Journal of Tsinghua Science and Technology, vol. 12,
no. 6, pp. 703-711, December 2007.

C. B. Anagnostopoulos, A. Tsounis, and S. Hadjiefthymiades!, “Context-
awareness in mobile computing environments,” Journal of Wireless Personal

Communications, vol. Volume 42, no. Number 3, pp. 445-464, August 2007.

E. Kim and I. Choi, “An ontology-based context model in a smart home,” in
Proceedings of International Conference in Computational Science and Its Ap-
plications - ICCSA 2006, vol. 3983. Springer, May 8-11 2006, pp. 11-20.

R. Krummenacher and T. Strang, “Ontology-based context modeling,” in Pro-
ceedings of Context Awareness for Proactive Systems (CAPS 2007), Guildford,
United Kingdom, 2007.

W. Hai, “Semantic web and‘formal design methods,” Ph.D. dissertation, Depart-
ment of Computer Science, National University of Singapore, 2004,

Y. F. Li, “A formal modeling approach to ontclogy engineering,” Ph.I}. disserta-
tion, Department of Computer Science, National University of Singapore, 2006.

D. Lucanu, Y. F. Li, and J. 8. Dong, “*Soundness proof of z semantics of owl using
institutions,” in Proceeding of 14th International World Wide Web Conference
(WWW05). Chiba, Japan: ACM Press, 2005.

C. Lucanu, Y. F. Li, and J. 8. Dong, “Semantic web languages toward an institu-
tional perspective,” Journal of Algebra, Meaning, and Computation, vol. LNCS
4060, pp. 99-123, 2006.

K. Henricksen, J. Indulska, and T. McFadden, “Modelling context information
with orm,” On the Move to Meaningful Interner Systems Journal, pp. 626635,
2005.

REFERENCES 94

(31]

(32]

[33]

(34)

(35]

(36]

[37]

(38]

(39]

[40]

(41]

K. Henricksena and J. Indulska, “Developing context-aware pervasive comput-
ing applications: Models and approach,” Journal of Pervasive and Mobile Com-
puting, vol. 2, pp. 37-64, 2006.

A. Borgida and R. J. Brachman, “Conceptual modeling with description logics,”
in The Description Logics Handbook: Theory, Implementation and Application.
Cambridge University Press, 2004, ch. 10.

P F. Patel-Schneider, P. Hayes, and 1. Horrocks, “Web ontology language (owl)
abstract syntax and semantics section 3. direct model-theoretic semantics,” W3C,
W3C, W3C Recommendation, 2004, http://www.w3c.org/TR/owl-semantics/,

B. Remmache, “Specification and analysis of context-aware system,” Ph.D. dis-
sertation, Dependable Systems and Software Engineering , School of Electronics
and Computer Science, University of Southampton, October 2007.

G. D. Abowd, A. K. Dey, P. 1. Brown, N, Davies, M. Smith, and P. Steggles,
“Towards a better understanding of context and context-awareness.” in Proceed-

ing 1999 Ist International Symposium on Handheld and Ubiquitous Computing,
1999, pp. 304-307.

S. Domnitcheva, “Location modeling: State of the art and challenges,” in Work-
shop on Location Modeling for Ubiquitous Computing Ubicomp 2001, 2001.

T. Strang, C. Linnhoff-Popien, and K. Frank, “Integration issues of an ontology
based context approach,” in Proceedings of the IADIS International Conference
WWW/Iniernet 2003, ICWI 2003, Portugal, 2003, pp. 361-368.

D. Zhang, T. Gu, and X. Wang, “Enabling context-aware smart home with se-
mantic technology,” International Journal of Human-friendly Welfare Robotic
Systems, vol. 6, no. 4, pp. 233-248, 2005.

T. Gu, H. K. Pung, and D. Zhang, “Towards an osgi-based infrastructure for
context-aware applications in smart homes,” Journal of IEEE Pervasive Com-
puting, vol. 3, no. 4, 2004,

J. C. Augusto and C. D. Nugent, Smart Homes Can Be Smarter. School of
Computing and Mathematics,University of Ulster at Jordanstown, UK: Springer
Verlag, 2006, ch. 1, pp. 1-15.

C. L. Gal, Smart Office. Wiley, 2005, ch. Chapter 14, p. 323.

REFERENCES 95

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

[50)

[51]

[52]

M. Schmidt-SchauB and G. Smolka, “Attributive concept descriptions with com-
plements,” Journal of Artificial Intelligent, vol. 48, no. |, pp. 126, 1991.

F. Baader, R. Kusters, and F. Wolter, “Extension to description logics,” in The
Description Logics Handbook: Theory, Implementation and Application. Cam-
bridge Uniersity Press, 2004, ch. 6.

J. de Bruijn, A. Polleres, R. Lara, and D. Fensel, “Owl-d] vs. owl flight:
Conceptual modeling and reasoning for the semantic web,” in Proceedings of
the 14th International conference on World Wide Web, November 2005, pp. 623
— 632, [Online]. Available: http://www.deri.ie

S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks,
M. Klein, and S. Melnik, “The semantic web: The roles of XML and RDF”
IEEE lnternet Computing Journal, vol. 4, no. 5, pp. 63-74, 2000. {Online].
Available: htip://www.computer.orgfinternet/

A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau, “Swoop: A web ontology
editing browser,” Journal of Web Semantics, vol. 2, p. 1447153, 2006.

K. K. Breitman, K. K. Breitman, and W. Truszkowski, Semantic Web: Concep!ts,
Technologies and Applications, M. Hinchey, Ed. Springer Verlag, 2007.

F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, “Reasoning in description
logics,” Journal of Principles of Knowledge Representation and Reasoning, pp.
193-238, 1996.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen, “From SHZQ and RDF
to OWL: The making of a web ontology language,” Journal of Web Semantics,
vol. 1, no. 1, pp. 7-26, 2003. [Online]. Available: download/2003/HoPHQ3a.pdf

R. J. Brachman and H. J. Levesque, Knowledge Representation and Reasoning.
Elsevier B.V, 2004.

O. Corcho, A. G6émez-Pérez, R. Gonzdlez-Cabero, and M. del Carmen Sudrez-
Figueroa, “Odeval: A tool for evaluating rdf(s), daml+cil and owl concept tax-
onomies,” in Proceeding of Artificial Intelligence Applications and Innovations,
IFIP 18th World Computer Congress(AIAI-2004), 2004, pp. 369-382.

E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical
owl dl reasoner,” Journal of Web Semantics, vol. 5, no. 2, p. 5173, 2007.

REFERENCES 96

[53]

[54)

(55]

(56]

(57]

(58]

(59]

[60]

[61]

(62]

[63]

D. Tsarkov and 1. Horrocks, “Fact++ description logic reasoner: System descrip-
tion,” Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bivinformatics), vol. 4130 LNALI, pp.
292-297, 2006.

“Renamed abox and concept expression reasoncr,” August 2008. [Online].
Available: http://www.sts.tu-harburg.de/~r.f.moeller/racer

“Pellet owl -dl reasoner,” August 2008. [Online]. Available: http://www.pellet.
org
“Protege owl editor,” August 2008. [Online]. Available: http://protege.stanford.

edu/

“Swoop owl dl editor,” August 2008. [Online]. Available: htp://fwww.
mindswap.org/2004/SWOOP/

J. Jacky, The Way of Z: Pracical Programming with Formal Methods. Cam-
bridge University Press, 1997.

J. M. Spivey, The Z Notation: A Reference Manual, 2nd ed., ser. International
Series in Computer Science. Prentice-Hall, 1992.

1. Meisels and M. Saaltink, “The z/eves reference manual,” QORA Canada, One
Nicholas Street, Suite 1208 - Ortawa, Ontario KIN 7B7 - CANADA, Technical
Report TR-97-5493-03d, September 1997,

S. Bechhofer, F. van Harmelen, J. Hendler, 1. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein, “OWL Web Ontology Language reference,”
W3C Recommendation, 10 February 2004, http://www.w3.org/TR/owli-ref.

F. Baader and U. Sattler, “An overview of tableau algorithms for description
logics," Journal of Studia Logica, pp. 540, 2001.

D. L. McGuiness and F. van Harmelen, “Owl web ontology language
overview,” W3C, Tech. Rep., 2004. [Online]. Available: http://www.w3c.org/
TR/owl-features/

Appendix A

DLs Specification of CIS Context
Model

Domain interpretation = AZ.
Following is high level concept of CIS Context Model

(Location, Person, Aclivity, Device, Network) C A%

A.1 Person Conceptual Model

Following is definition of Person concept and its related roles restriction.

(Lecturer, Staff , Postgrad, Student) C Person
Person MY use. Device

Device NV ownedBy. Person
Person M ¥ locotedin. Location
Person MV currentActivity. Activity
Person MV loginto. Server

Server =V loginTo({ NETWAREY})
> 2.run

= l.currentAclivily

Person MV connectedTo. Device
Person MV connectedTo. Network

97

A.2. LOCATION CONCEPTUAL MODEL 68

A.2 Location Conceptual Model

Following is definition of Location concept and its individuals.

{Indoor, Outdoor) C Location

(Longitude, Latitude) T Outdoor

(Room, Building) C Indoor

(Room)} T Building

ClassRoom, SeminarRoom, LectureHall, MeetingRoom,

OfficRoom, Lab) © Room

ClassRoom = ({CO1}, {C02}, { C03}, {C04}, {CO5}, {CO6}, { DO1},{ D02},
{ D03}, { D04}, { DO5Y, { DOGY)

LectureHall = ({LHO1}, {LH02}, {LHO3}, {LHO04}, {LH04}, {LHO6})
MeetingRoom = ({010310}, {010210}, {0203010})

OfficeRoomn = ({LECTUREROOM }, {POSTGRADROOM })

Laboratory = ({ DATACOM }, {MULTIMEDIA}, {PROGRAMMING}, { VR})
SeminarRom = ({010202}, {010310})

Indoor MV equiped With. Deskiop

A.3. DEVICE AND NETWORK CONCEPTUAL MODEL 99

A.3 Device and Network Conceptual Model

Following is definition of Device concept.

{MobileDevice, Desktop, NetworkDevice) E Device

(Laptop, PDA, MobilePhone) T MobileDevice

(Software, Hardware) T Laptop

Software € - Hardware

(Software, Hardware) T PDA

(Software, Hardware) T Desktop

(Software, Hardware) & Mobile Phone

(ApplicationRun, ProcessRun) C Software

(EmailApp, OfficeApp, InternetApp) C ApplicationRun

(Browser, EmailClient, IM Application) C InternetApplication
Browser = ({ FIREFOX}, {MOZILLA}, {SAFARI}, {IE} {OPERA})
IMApplication = ({MSNChat}, {YM} {GTALK},{GAIM})
EmailClient = ({THUNDERBIRD},{OUTLOOK}, { WEBMAIL})
OfficeApp = ({WORDPROCESSOR} { PDFREADER}, {SPREADSHEET})
ProcessRun = ({ANTIVIRUS)}, {SERVICE}, {TRAY }}
(AccessPoint, Server, Router) C NetworkDevice

Device MV connectedTo. Network

(WifiNetwork, Server, GSM,3G) C Network

GSM U3G = ({DIGI}, {MAXIS}, {CELCOMY})
WifiNetwork M3 SSTDName XSD

Gateway = ({160.0.226.202}

Prozy = {{160.0.226.206}, {160.0.226.207}, {160.0.226.208},
{160.0.226.19}

A.4. ACTIVITY CONCEPTUAL MODEL 100

A.4 Activity Conceptual Model

Following is a definition of Activity concept and its sub classes.

(PlannedActivity, DeducedActivity) C Activity

(Meeting, Lecturing, Seminar, LabActivity, Tutotial) T PlannedActivity
(Busy, Free, Chating, Bowsing, Not_At_Office, Available, On_the_.Phone,
Opening_Email) C DeducedActivity

A.5 Axioms of Restriction

Following is definition of axioms of class and property restrictions.
Class Browsing Restriction

Browsing = Person MV connectedTo. Internet MY run. BrowserM

Y connectedTo. Internel
Browsing =V run.({IE},{ FIREFOX},
{MOZILLAY}, {SAFARI}, {OPERA}) M Person MV connectedTo. Internet

Class Busy Restriction

Busy = Person NV run. OfficeApplication MV located. Office Roomn
Busy = Person M 3 currentActivity. Planned
Free C - Busy

Class Chatting Restriction

Chatting = Person N (¥ conectedTo. Internet) M (3 run. /M Application)
Chatting = Person N (V conectedTo. Internet) 01 (3. .run{{ YM} U {CAIM}
D{MSN}U{GTALKY}))

Class Noi_ Al_Office Restriction

Not_At_Office = Person MY localedIn.— OfficeRoom
Not_At_Office = Person MY locatedin.— ({ PostgradRoom}, { Lecture Room})

A.6. CLASS AND ROLE DATA TYPE 101

Class On hephone Restriction
On_the_Phone = Person MY use. Mobile Phone M 3 connectedTo(GSM LI 3C)
Class Opening_Email

Opening.Email = Person M (¥ conectedTo. Internet) M (3 run. EmailApplication)
Opening_Email = Person M (¥ conectedTo. Internet) N (3 .run({ OUTLOOK }J
{THUNDERBIRD} U { WEBMAIL})

A.6 Class and Role Data Type

We assume that X8D is a class of data containing data type, because DLs notation
has no definition of data type role (for implementation modeling like OWL, roles are
distinguished for object and data type). Following is a definition of role restricted with
XSD, which is used to describe a data type definition.

{Lecturer U Staff U PostGrad U Student) = Person M 3 fullName. XSD
(Lecturer U Staff U PostGrad) = Person M 3 officeAddress. XSD

(Lecturer U Staff U PostGrad U Student) = Person M 3 emailAddress. XSD
(Lecturer U Staff U PostGrad U Student) = Person M 3 imAddress. XSD
(Lecturer U Staff U PostGrad U Student) = Person M 3 phoneNumber XSD
(GSM U3G)NY celllD. XSD

Indoor OV butldingName . XSD

Indoor MY roomNumber XSD

Planned NV slartTime XSD

Planned NV endTime XSD

Gateway MY gaewayl/P.X5D

Prozy MV proxylP.XSD

Cutdoor MY latitude. XSD

OQutdoor MV longitude. XSD

Hardware MY memorySize. XSD

Software MY operatingSystem.XSD

Hardware MV processor Type. XSD

(GSM U 3G) NV signalStrength. XSD

Device 1V ipAddress. XSD

Appendix B

Context-Aware Ontology Specification

<?xml version="1.0"7>
<!DOCTYPE rdf:RDF |
<!ENTITY cis "http://context.org/cisé” >
<!ENTITY owl "http://www.w3.org/2002/07/owli" >
<!ENTITY owlll "http://www.w3.org/2006/12/owlllik"™ >
<!ENTITY xsd “http://www.w3.org/2001/XMLSchemai™ >
<!ENTITY owlllxml “http://www.w3.orqg/2006/12/0owlll-xmLti" >
<!ENTITY rdfs “htitp://www.w3.0rg/2000/01/rdf-schemaf"™ >
<!ENTITY rdf "http://www.w3.o0rg/199%/02/22-rdf~syntax-nsk" >
1>

<rdf:RDF xmlns="http://context.org/cisk”
xml:base="http://context.org/cis”
xmlns:rdfs="hcep://www.w3.0org/2000/01/cdf-schemal”
xmlnsiowlll="hetp://www.wl.org/2006/12/0wll114"
xmlnsiowlllxml="http://www.w3.org/2006/12/0wlll-xmlé"
xmlns:owl="http://www.wl. org/2002/07/owli"
xmlns:xsd="htip://www.wl, org/200l/XMLSchema#”
xmlous:cdf="http://www.wd.org/199%/02/22-rdf-syntax-nsé”
xmlnsicis="http://concext.org/cisd">
<owl:0Ontoleogy cdf:about=""/>

<t--
FELREFIELI T IEL TP TTES TR PR E BT I IR I i i LT i i i iiiriitrs /i
// Object Properties

/7
FILVELTEIELLETIELTELIT LI ETES IR LI T AP II RIS I AL RE AL i T i d7ihitid

-->

<!=- hetp://context.org/cisfassociatedWith -->

<owl:0ObjectProperry rdf:about="&tcis;associatedWith"™>
<rdis:range rdf:resources="scis;AccessPoint™/>
<rdfs:DELTA rdf:resource="§cis;WifiNetwork"/>
<fowl:ObjectProperty>

<!-- http://context.crg/ciséconnectedTo -->

<owl:0bjectProperty rdf:about="&cis;ceonnectedTo">

102

103

<rdf:type rdf:resource="gowl;TransitiveProperty"/>
<rdfs:DELTA rdf:rescurce="Lcis;Device”/>
<rdfs:range rdf:rescurce="4cis;Device”/>
<rdfs:range rdf:resource="fcis;Network"/>
<rdfs:DELTA rdf:resource="icis;Person”™/>»

</owl:0ObjectProperty>

<!-- hrtp://context.org/cistcurrentActivicy =-=->

<owl:0ObjectPreoperty rdf:about="&cis;currentActivicy®>
<rdfs:range rdf:rescurce="4cis;Activicy"/>
<rdfs:DELTA rdf:resource="4cis;Person”/>

</owl:ObjectProperty>

<!-- http://context.org/cisteguipedWwith --»

<gwl:0ObjectProperty rdf:about="gcis;equipadWith">
<cdfs:DELTA rdf:rescurce="icis;ClassRoom™/>
<rdfs:range rdf:resocurce="4cis;Desktop™/>

</owl:ObjectProperty>

<!-- http://context.org/cistlocatedln -->

<owl:ObjectProperty rdf:about="&cis; locatedIn">
<rdfs:range rdf:resource="4cis;Location"/>
<rdfs:DELTA rdf:rescurce="4cis;Person”/>

</owl:0bjectProperty>

<!-- htip://context.org/cistleglnto -->

<owl:0ObjectPreoperty rdf:about="gcis; loglnto™>
<rdfs:DELTA rdf:resource="&cis;Person™/>
<rdfs:range rdf:rescurce="&cis;Server”/>

</owl:0bjectProperty>

<!-— http://context.org/cisfownedBy -->

<owl:0ObjectProperty rdf:about="&cis;ownedBy">
<owl:inverseQf rdf:resource="&cis;use”/>

</owl:ObjectProperty>

<!==- http://context.org/cistrun -->

<owl:ObjectProperty rdf:about="&cis;run">
<rdfs:range rdf:rescurce="icis;Software"/>
<rdfs:subPropertyOf rdf:resource="scis;use”/>

</owl:0ObjectProperty>

<!-- hrup://context.org/cisfuse -->

<owl:0ObjectPreoperty rdf:about="icis;use">
<rdfs:range rdf:rescurce="kcis;Device"/>
<rdfs:DELTA rdf:rescurce="4cis;Person”/>

</owl:0bjectProperty>

<l--
FELEELTIELIIII 20 FT 08T R LI EI LS R E PR P PR PP TE TP i iiftitiitiiiiie
//
// Data properties
//
PEEELTER LTI P EIETET T ILI I FITEET LA IR I 3R EF PR IF AP LTI ELA PP Erirritits
-->
<!== http://context.org/c¢cisdbuildingName -->
<owl:DatatypeProperty rdf:about="scis;buildingName">
<rdfs:DELTA rdf:resdurce="&tcis; Indoor™/>
<rdfs:range rdf:resource="sxsd;string"/>
</owl:DatatypeProperty>
<!-- htep://context.crgfcisfemailAiddress -->
<owl:DatatypeProperty rdf:about="4icis;emailAddress™>
<rdfs:DELTA rdf:resource="fcis;Person®/>

104

<rdfs:range rdf:resources"&ixad;string"/>

</owl:DatatypeProperty>

<!-- nttp://context.org/cisdendTime -->

<owl:DacatypeProperty rdf:about="icis;endTime">
<rdfs:DELTA rdf:resource="&cis;Activicy~/>

</owl:DatatypeProperty>

<i-- htep://context.org/cistfullName -->

<owl:DatatypeProperty rdf:abouta"scis; fullName™>
<rdfs:DELTA rdf:resource="4Lcis;Person®/>
<rdfs:range rdf:resource="fxsd;string"/>

</owl:DatatypeProperty>

<!-- http://context.org/cistiphddress -->

<owl:DatatypeProperty rdf:about="&cis;ipAddress”™>
<rdfs:DELTA rdf:resource="gcis;Device”/>
<rdfs:range rdf:rescource="Lixsd;string®/>

</owl:DatatypeProperty>

<!-- http://context.org/cistlaticude -->

<owl:DatatypeProperty rdf:about="g¢cis;latitude”>
<rdfs:DELTA rdf:resource="icis;Cutdoor"/>
<rdfs:range rdf:resource="&xsd;string”/>

</owl:DatatypePropercy>

<!-- hrep://context.org/cistlongitude -->

<owl:DatatypeProperty rdf:about="&cis;longitude”>
<rdfs:DELTA rdf:resource="gcis;Ourdoor"/>
<rdfs:range rdf:resource="&ixsd;string”™/>

</owl:DatatypeProperty>

<!-- hrtp://context.org/cistmemorySize -->

<owl:DatatypeProperty rdf:about="icis;memorySize™>
<rdfs:DELTA rdf:resource="g¢cis; Hardware™/>
<rdfs:range rdf:resourcea"§xsd; integer”/>

</owl:DatatypeProperty>

<!-- http://context.org/cistmessengerliD -->

<owl:DatatypeProperty rdf:about="gcis;messengeriD™>
<rdfs;DELTA rdf:resource="gcis;Profile”/>
<rdfs:range rdf:resource="g¢xsd;string"™/>

</owl:DatatypeProperty>

<!-- http://context.org/cistofficeRoom -->

<owl:DatacypeProperty rdf:about="fcis;officeRoom">
<rdfs:DELTA rdf:resource="icis;Profile”/>
<rdfs:range rdf:resource="{xsd;string"/>

</owl:DatatypeProperty>

<l=w http://context.org/cistoperatingSyscem =-->

<owl:DatatypeProperty rdf:about="gcis;operatingSyscem™>
<rdfs:DELTA rdf:resource="gcis;Software®/>
<rdfs:range rdf:resource="fxsd;string™/>

</owl:DatatypeProperty>

<l-- http://context.org/cistphonelumber -->

<owl:DatatypeProperty rdf:about="&tcis;phoneNumher™>
<rdfs:DELTA rdf:resource="4{cis;MobilePhone"/>
<rdfs:range rdf:resource="&xsd;string”/>

</owl:DatatypePropercy>

<!-- http://context.org/cisfprocessorType -->

<owl:DatatypeProperty rdf:aboui="fcis;processorType®>
<rdfs:DELTA rdf:resource="4cis;Hardware" />
<rdfs:range rdf:resource="ixsd;string"/>

</owl:DatatypeProperty>

105

<!-- htep://context.crg/cisiproxNumber -~=->

<owl:DatatypeProperty rdf:about="&cis;proxNumber™>
<rdfs:DELTA rdf:resource="&cis;Proxy"/>

</owl:DatatypeProperty>

<!-- htep://context.org/cisfroomilumber -->

<owl:DatatypeProperty rdf:about="&cis; roomNumber™>
<rdfs:DELTA rdf:rescurce="&Lcis;OfficeRoom"/>
<rdfs:range rdf:resource="f¢xsd;string™/>

</owl:DatacypeProperty>

<1-- hrep://context.org/cis#signalScrength -->

<pwl:DatatypeProperty rdf:about="scis;signalStrength”>
<rdfs:DELTA rvdf{:rescurce="scis;MobileDevice®/>
<rdfs:range rdf:resource="gxsd;string™/>

</owl:DatatypeProperty>

<'-- http:/fcontext.oryg/cisdssidName -->

<owl:DatatypeProperty rdf:about="4cis;ssidName™>
<rdfs:DELTA rdf:resource="icis;AccessPoine"/>
<rdfs:range rdf:resource="gxsd;string"/>

</owl:DatatypePropercy>

<t-- hrep://context.org/cis#starcTime -->

<owl:DatatypeProperty rdf:about="icis;startTime">
<rdfs:DELTA rdf:resource="gscis;Activity"/>
<rdfs:range rdf:resource="ixsd;scring"/>

</owl:DatatypeProperty>

<l--

FELTELTTRETEIEETELIIET I I PLI IS ET I PP E LT P00 P00 P00 00000007 h it ririrel

f/

// Classes

//

FLLPRELSTEFPESEFRTEL RS LR DRI II T ETERR LI i i ia il Ei i direlirdiriiririiiiierri/
-

<!=- http://context.org/cistAccessPoint -->

<owl:Class rdf:about="¢c¢is;AccessPoint">
<rdfs:subClassOf rdf:resource="icis;NetworkDevice"/>
<fowl:Class>
<!-- htip://context.org/cisbhctivity -->
<owl:Class rdf:aboute"&cis;Activity">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="&cis;currenthctivicvy™/>
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1</owl:cardinality>
</owl:Restriction>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="sowl; Thing"/>
</owl:Class>
<)== http://context.org/cistApplicationRun ~->
<owl:Class rdf:about="&cis;ApplicationRun">
<owl:equivalentClass>
<owl:Restriction>»
<owl:conProperty rdf:resource="gcis; run"/>
<owl:minCardinalicty rdf:datatype="&xsd; nonNegativelnteger">1</owl:minCardinality>
</owl:Restriction>
</owl:equivalentClass>
<rdfs;subClassOf rdf:resource="Lcis;Software”/>
</owl:Class>
<!-= hetp://contexc.org/cisfBrowser -->

106

<gwl:Class rdf:about="g&cis;Browser">
<owl:equivalentClass>
<owl:Class>
<owl:oneQf rdf:parseType="Colleccion">
<rdf:Description rdf:about="&cis;IE"/>
<rdf:bescription rdf:about="gcis;Safari®/>
<rdf:Description rdf:abouts"&cis;Opera™/>
<rdf:Description rdf:about="¢cis;Firefox"/>
</owk:oneQf>
<fowl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="icis;InternetApplication™/>
</owl:Class>
<!i-- http://context.org/cisiBrowsing -->
<owl:Class rdf:about="icis;Browsing">
<owl:equivalentClass>
<gwl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl :Restriction>
<owl:onProperty rdf:resource="&¢is; run"/>
<owl:someValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collecticn®>
<owl:Class>
<owl:oneQf rdf:parseType="Collection™">
<rdf:Descripticn rdf:about="&cis;Opera”/>
</owl:oneOf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collectcion">
<rdf:Description rdf:about="&cis;Safari™/>
</owl:oneQf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="&4cis;Firefox"/>
</owl:oneQf>
</owl:Class>
<pwliClass>
<owl:0neQf rdf:parseType="Collection">
<rdf:Description rdf:about="4cis; IE"/>
</owl:oneQf>
<fowl:Class>
</owl:unionOf>
<fowl:Class>
</fowl:someValuesFrom>
</owl:Restricrion>
<owl:Restriction>
<owl:onProperty rdf:resource="6cis;connectedTo”™/>
<owl:allValuesFrom rdf:resource="&4cis;Internet”™/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:eguivalentClass>
<rdfs:subClassOf rdf:resource="icis;Deduced"/>
</owl:Class>

107

<!-- http://context.erg/cisiBusy -->
<owl:Class rdf:about="&cis;Busy">
<owl:equivalentClass>
<powl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="gcis;run®/>
<owl:someValuesFrom rdf:resource="&cis;OfficeApplication™/>
</owl:Restriction>
<owl:Restric¢tion>
<owl:onProperty rdf:resource="gcis; locatedIn®/>
<owl:allvValuesFrom rdf:resource="g4cis;OfficeRoom™/>
</owl:Restriction>
<fowl:intersectionOf>
<fowl:Class>
</owl:equivalentClass>
<owl:equivalenctClass>
<owl:Restriction>
<owl:onProperty rdf:resource="&cis;currentdctivicy™/>
<owl:someValuesfFrem rdf:resource="§cis;Planned"/>
</owl:Restriction>
</owl:equivalentClass>
<owl:equivalentClass>
<gwl:Restriction>
<owl:onProperty rdf:resource="&cis;run"/>
<owl:someValuesFrom>
<owl:Class>
<owl:union0Of rdf:parseType="Collection™>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Pes¢riptien rdf:about="4cis;SpreadSheer”/>
</owl:cneQf>
</owl:Class>
<pwl:Class>
<owl:ioneQf rdf:parseType="Collection®>
<rdf:Description rdf:about="&cis;PDFReader®/>
</owl:oneOf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="&4cis;WordProcessor"/>
</owl:ioneQf>
</owl:Class>
<fowl:unionOf>
<fowl:Class>
</owl:someValuesFrom>
</owl:Restriction>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="&cis;Deduced™/>
</owl:Class>

<!-- http://context.org/cis#Chatcing --»
<owl:Class rdf:about="&cis;Chatting™>

<owliequivalentClass>
<owl:Restriction>

108

<gwl:onProperty rdf:resource="&gis;run"/>
<owl:someValuesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection"»>
<owl:Restriction>
<owl:onProperty rdf:resource="&cis;connectedTo”/>
<owl:allValuesFrom rdf:resource="&¢is;Internet"/>
</owl:Restricrion>
<owl:Class>
<owl:unionOf rdf:parseType="Cecllection">
<owli:Class>
<owl:oneDf rdf:parseType="Collection">
<rdf:Description rdf:about="&cis;GTalk"/>
</owl:oneQf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collection®>
<rdf:Description rdf:about="&cis;YM"/>
</owl:oneQf>
</owl:Class>
<owl:Class>
<awl:one0f rdf:parseType="Collection">
<rdf:Description rdf:about="£cis;GAIM"/>
</owl:oneGf>
</owl:Class>
<owl:Class>
<owl:oneQf rdf:parseType="Collection">
<rdf:Description rdf:about="fcis;MSNChat"/>
<fowl:oneQft>
</owl:Class>
<fowl:unionoOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>
</owl:someValuesFrom>
</owl:Restriction>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="&cis;Deduced"/>
</owl:Class>

<!-- hrep://context.org/cis#ClassRoom -->

<owl:Class rdf:about="&cis;ClassRoom">
<owl:equivalentClass>
<owl:Class>
<owl:oneOf rdf:parseType=“"Collecrion™>
<rdf:Description rdf:about=“&cis;D05"/>
<rdf:Description rdf:about="&cis;D04"/>
<rdf:Description rdf:about="§cis;D03"/>
<rdf:Description rdf:about="§cis;D02"/>
<rdf:Description rdf:about="§cis;C01"/>
<rdf:Description rdf:about="§cis;C05"/>
<rdf:Description rdf:about="&cis;D06"/>
<rdf:Description rdf:about="acis;C06"/>
<rdf:Description rdf:about="&c¢is;CO03"/>
<rdf:Description rdf:about="&tcis;C02"/>

109

<rdf:Description rdf:about="§cis;D0O1"/>
<rdf:Description rdf:about="&cis;C04a"/>

</owl:oneOf>
</owl:Class>

</owl:equivalentClass>

<rdfs:subClassQf rdf:resource="&cis; Indoor"/>
<fowl:Class>
<!-- htrp://context.orgfcisiDeduced -->
<owl:Class rdf:about="gcis;Deduced™>

<rdfs:subClassOf rdf:resource="scis;Activity"/>
<fowl:Class>
<!-- htrp://context.orgfcisiDeskrop =-=->
<owl:Class rdf:about="Lcis;Desktop™>

<rdfs:subClassQf rdf:resource="gcis;Device"/>
<fowl:Class>
<!-- http://context.erg/cisdDevice -->

<owl:Class rdf:about="4cis;Device™/>
<!-- http://context.org/cisfEmailApplication =--~>
<owl:Class rdf:about="Lcis;EmailApplication">
<owl:;equivalentClass>
<owl:Class>
<owl:oneQf rdf:parseType="Collection">

<rdf:Description rdf:about="gcis;0utlook"/>
<rdf:Description rdf:about="&cis;Thunderbird™"/>
<rdf:Description rdf:about="&cis;MSN"/>

</owl:oneOf>
<fowl:Class>
</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="&cis;InternetApplication®/>

</owl:Class>
<l== htecp://context.org/cislFree -->
<owl:Class rdf:about="§cis;Free”>
<rdfs:subClassQOf rdf:resource="icis;deduced”/>
<fowl:Class>
<!-- htep://context.org/cisiGSM ==->
<owl:Class rdf:about="gfcis;GSM">
<rdfs:subClassOf rdf:resource=™icis;Network"/>
</owl:Class>
<!e- htrp://context.org/cisiGateway -->
<owl:Class rdf:about="gcis;Gateway™>
<rdfs:subClassOf rdf:resource="icis;Internet"/>
</owl:Class>
<!-- http://context.crg/cisfHardware -->
<gwl:Class rdf:about="gcis;Hardware">
<rdfs:subClass0f rdf:resource="&cis;Desktop™/>
<rdfs:subClassOf rdf:resource="4cis;Notebook"/>
<rdfs:subClassOf rdf:resource="§cis;PDA"/>
<owl:disjointWith rdf:resource="&cis;Software"/>
</owl:Class>
<!-- htop://context.org/cis#IMApplication -->
<owl:Class rdf:about="scis; IMApplication”>
<owl:equivalentClass>
<owl:Class>
<owl:one0f rdf:parseType="Collection">

<rdf:Description rdf:about="6cis;GAIM"/>

110

<rdf:Description rdf:about="&cis;GTalk"/>
<rdf:Description rdf:about="scis;YM"/>
<rdf:lbescription rdf:about="&cis;MSNChat™/>
<rdf:Description rdf:about="gcis;WebMessenger™/>
<fowl:oneQf>
</owl:Class>
</owl:equivalentClass>
<rdfs:subClassQf rdf:resource="tcis; InternetApplication”/>
</owl:Class>
<'-- hrep://context.org/cisdIndoor -->
<owl:Class rdf:about="§cis; Indoor">
<rdfs:subClassOf rdf:resvurce="4cis; Location™/>
</owl:Class>
<!-- http://context.org/cistInternet —->
<gwl:Class rdf:about="&cis;Internet™>
<rdfs:subClassCf rdf:resources"icis;Network™/>
<fowl:Class>
<!-- htep://context.org/ciséInternecApplication --»
<owl:Class rdf:about="&cis;InternetApplication”>
<rdfs:subClassOf rdf:resource="gcis;ApplicationRun"/>
</owl:Class>
<!~- http:/fcontext.org/cistintranet —->
<owl:Class rdf:about="&cis;Intranet™>
<rdfs:subClassQOf rdf:resource="gcis;Network™/>
</owl:Class>
<!-- htep://context.org/cis#LabWork -->
<gwl:Class rdf:abouts"gcis; LabWork">
<rdfs:subClassOf rdf:resource="gcis;Planned"/>
</owl:Class>
<!-- http://context.org/cisflaboratoery -->
<owl:Class rdf:about="&cis; Laboratory”>
<owl:equivalentClass>
<gwl:Class>
<owl:oneQf rdf:parseType="Collection™>
<rdf:Description rdf:about="4cis;Multimedia™/>

<rdf:Description rdf:about="icis;Programminglab"/>

<rdf:Description rdf:about="4cis;VRLab"/>
<rdf:Description rdf:about="&cis;DataCom™/>
</owl:oneQf>
</owl:Class>
</ow]l:equivalencClass>
<rdfs:subClassOf rdf:resources="&cis;Indoor™/>
<fowl:Class>
<!-- http://context.org/cistlectureHall -->
<owl:Class rdf:about="&cis;LectureHall">
<owl:equivalentClass>
<owl:Class>
<owl;oneQf rdf:parseTypea"Collection”>
<rdf:Description rdf:about="6tcis;LH5"/>
<rdf:Description rdf:about="6cis; LH2"/>
<rdf:Description rdf:about="&cis;LHI"/>
<rdf:Description rdf:about="&cis;LH6"/>
<rdf:Description rdf:about="&cis;LH4"/>
<rdf:Descripticon rdf:about="§cis;LH1"/>
</owl:oneQf>
</owl:Class>

111

<fowl]l iequivalentClass>
<rdfs:subClassOf rdf:resource="&cis;Indoor™/>
</owl:Class>
<!-- http://context.org/cistLecturer -->
<owl:Class rdf:about="&cis; Lecturer™>
<rdfs:subClassQOf rdf:resource="&cis;Person™/>
</owl:Class>
<!-- hrtp://contexc.org/cisktLecturing -->
<owl]l:Class rdf:about="§cis;Lecturing”>
<rdfs:subClassQOf rdf:resource="gcis;Planned"/>
</owl:Class>
<!-=- nrrp://context.org/cisilocation ==->
<owl:Class rdf:about="&cis;Location™/>
<l-w« hrtp://context.org/cisiMeering -->
<owliClass rdf:abouta"icis;Meering”>
<rdfs:isubClassOf rdf:resource="gcis;Planned”/>
</owl:Class>
<!-- http://context.org/cisiMeetingRoom -->
<owl:Class rdf:about="&cis;MeetingRoom”>
<owl:equivalentClass>
<eowl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="&cis;010312"/>
</owl:oneQf>
</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="§cis; Indoor”™/>
</owl:Class>
<!-- http://context.org/cisiMobileDevice -->
<owl:Class rdf:about="6cis;Mobilebevice">
<rdfs:subClassOf rdf:resource="4cis;Device"/>
</owl:Class>
<!-=- http://context.crg/cistMobilePhone -->
<owl:Class rdf:about="&cis;MobilePhone™>
<rdfs:subClassOf rdf:resource="&cis;MobileDevice"/>
</owl:Class>
<!-- http://context.org/cisiNetwork -->
<owl:Class rdf:about="gcis;Network™/>
<!-- http://context.grg/cisiNetworkDevice -->
<owl:Class rdf:about="scis;NetworkDevice">
<rdfs:subClassOf rdf:resource="&cis;Device™/>
</fowl:Class>
<!-- hotp://context.org/cisiNot_At_besk --»
<owl:i:Class rdf:about="4cis;Not_AtL _Desk"™>
<owl:equivalentClass>
<owl:Restriction>
<awl:onProperty rdf:rescurce="écis;locatedIn”/>
<owl:someValuesFrom>
<owl:Class>
<owl:complementQf>
<owl:Class>
<owl:unionQf rdf:parseType="Collection">
<gwl:Classg>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="&¢is;LectureRoom"/>
</owl:oneOf>

112

</owl:Class>
<owl:Class>
<owl:oneQf rdf:parseType="Collection">
<rdf:Descripticon rdf:about="&¢is;PGLab"/>
</owl:oneQf>
</owl:Class>
</owl:union0f>
</owl:Class>
</owl:complementOf>
<fowl:Class>
</owl:someValuesFrom>
</owl:Restriction>
</owl:equivalentClass>
<rdfs:subClassOf rdf:rescurce="scis;Deduced” />
<fowl:Class>
<!-- http://context.crg/ciséNotebook -->
<owl:Class rdf:about="g&cis;Notebook">
<rdfs:subClassOf rdf:resource="gcis;MobileDevice"/>
</owl:Class>
<!-- hrtp://context.org/cis#Cfficeapplication -->
<owl:Class rdf:about="gcls;Qfficeapplication”™>
<owl:equivalentClass>
<gwl:Class>
<owl:oneCf rdf:parseType="Collection™>
<rdf:Description rdf:about="&cis;WordProcessor™/>
<rdf:Description rdf:about="&4cis; SpreadSheet"/>
<rdf:Description rdf:about="&cis;PDFReader™/>
</owl:oneQf>
</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="g¢cis;ApplicationRun™/>
<fowl:Class>
<l-~= http://context.org/cis#OfficeRoom —-->
<owl:Class rdf:about="scis;0fficeRoom”™>
<rdfs:subClassOf rdf:resource=§cis;Indoor”/>
</owl:Class>
<!-- htip://fcontext.org/cis#0On_the_Phone -->
<owl:Class rdf:about="&cis;On_the_Phone">»
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="&cis;use™/>
<owl:someValuesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection”>
<rdf:Descripticn rdf:about="4cis;MobilePhone"/>
<owl:Restriction>
<owl:onProperty rdf:resource="icis;connectedio”/>
<owl:someValuesFrom>
<pwl:Class>
<owl:unionOf rdf:parseType="Coliection”>
<rdf:Descriptien rdf:aboure"&cis;UMTSIG"/>
<trdf:Description rdf:about="8cis;GSM"/>
</owliunionQf>
</owl:Class>
</owl:someValuesFrom>
</owl:Restriction>

113

<fowl:intersectionQf>
</owl:Class>
</owl:someValuesFrom>
<fowl:Restriction>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="§cis;Deduced"/>
</owl:Class>
<!=- http://context.org/cistOpeningEmail -->
<owl:Class rdf:about="écis;OpeningEmail">
<owl:equivalentClass>
<owl:Restricrtion>
<owl:onProperty rdf:resource="fcis;run"/>
<owl:someValuesFrom>
<owl:Class>
<pwl:interseccionQf rdf:parseType="Collection">
<owl:Class>
<owl:unionOf rdf:parseType="Collection®>
<owl:Class>
<owl:oneQf rdf:parseType="Cecllection®>
<rdf;:Description rdf:about="gcis;Outleook™/>
</owl:oneOf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="&cis; Thunderbird"/>
</owl:oneOf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<rdf:Description rdf:about="4icis;MSN"/>
</owl:oneQf>
</owl:Class>
</owl:unianOf>
</owl:Class>
<owl:Restriction>
<owl:onProperty rdf:resource="&cis;connectedto™/>
<owl:allValuesFrom rdf:resource="&cis; Internec™/>
</owl:Restriction>
</owl:intersectionQf>
<fowl:Class>
<fowl:someValuesFrom>
</owl:Restriction>
</owl:equivalentClass>
<rdfs:subhClassOf rdf:respurce="&cis;Deduced"/>
</owl:Class>
<!-- http://context.orgfcis#Ourdoor -->
<owl:Class rdf:about="gcis;Outdoor">
<rdfs:subClassCf rdf:resource="écis; Location™/>
</owl:Class>
<!-- hotp://context.org/cisfPDA -->
<owl:Class rdf:about="&cis;PDA">
<rdfs:subClassOf rdf:resource="&cis;MobileDevice®/>
</owl:Class>
<!-- http://context.org/cis#Person -->
<owl:Class rdf:about="&cis;Person™/>
<!-- hctp://context.org/cisfPlanned -->

114

<owl:Class rdf:about=*tcis;Planned®>
<rdfs:subClassOf redf:resource="§cis;Activity"/>
<fowl:Class>)
<!-- http://context.crg/cisFPostGrad -->
<owl:Class rdf:about="&cis;PostGrad™>
<rdfs:subClassOf rdf:resource="gcis;Person”/>
<fowl:Class>
<!=-- http://context.crg/cisfProcessRun =-->
<owl:Class rdf:about=*&cis;ProcessRun™>
<pwl:equivalentClass>
<owl:Class>
<owl:oneQf rdf:parseType="Collection®>
<rdf:Description rdf:about="&cis;Service"/>
<rdf:bescription rdf:about="&cis; IMTray"/>
<rdf:Description rdf:about="&cis;virtualMachine"/>
</owl:oneQf>
</owl:Class>
<fowl:egquivalentClass>
<rdfs:subClassOf rdf;resource="&cis;Software"/>
</owl:Class>
«!-- http://context.org/cisfProfile =-->
<owl:Class rdf:abouts®ccis;Profile®>
<rdfs:subClassQf rdf:resource="gcis; Lecturer™/>
<rdfs:subClassOf rdf:resource="gcis;PostGrad”/>
<rdfs:subClassOf rdf:resource="scis;staff"/>
<rdfs:subClassOf rdf:resource=<"&cis;Student”/>
</owl:Class>
<t-- htep://context.org/cis#Proxy =-->
<owl:Class rdf:about="4cis;Proxy™>
<owl:equivalentClass>
<owl:Class>
<owl:oneOf rdf:parseTypes="Collection™>
<rdf:Description rdf:about="4cis;160.0.226.206"/>
<rdf:Description rdf:about="&cis;160.0.226.207"/>
<rdf:Description rdf:about="&cis;160.0.226.208"/>
</owl:oneQf>
</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resources="&cis;Internec/>
<fowl:Class>
<!-- http://context.org/cis#Router -->
<owl:Class rdf:about="scis;Router”™>
<rdfs:subClassQf rdf:resource="§cis; NetworkDevice"/>
</owl:Class>
<!-- hrep://context.org/ciséSeminar ~-»>

<owl:Class rdf:aboute"&cis;Seminar">
<rdfs:subClassOf rdf:resource="&cis;Planned”/>

</owl:Class>

<!=« hrtp://context.org/cis#SeminarRoom -->

<owl:Class rdf:abeoui="&cis;SeminarRoom™>
<rdfs:subClassOf rdf:resource="&cis; Indoor"/>

<fowl:Class>

<!-- hctp://context.ory/ciskiServer -->

<owl:Class rdf:about="&cis;Server™>
<owl:equivalentClass>

115

<owl:Restriction>
<owl:onProperty rdf:resources"gcis; logInco™/>
<owl:hasValue rdf:resource="g§cis;Netware™/>
</owl:Restriction>
</owl:equivalentClass>
<rdfs:subClassQOf rdf:resource="fcis;NetworkDevice"/>
</owl:Class>
<!-- http://context.org/cis#Software -->
<owl:Class rdf:abour="tcis;Seftware™>
<rdfs:subClassOf rdf:rescurce="tcis;Desktop”™/>
<rdfs:subClassOf rdf:resource="écis;Notebook"/>
<rdfs:subClassOf rdf:resource="Lcis;PDA"/>
</owl:Class>
<!-- hrtp://context.org/cisdscaftf -->
<owl:Class rdf:about="§cis;Scaff">
<rdfs:subClassQf rdf:resources"scis;Person™/>
<fowl:Class>
<!-- hrep://context.crg/cisiStudent -->
<owl:Class rdf:about="scis;Student">
<rdfs:subClassOf rdf:resource="&cis;Person™/>
</owl:Class>
<!-- htep://context.crg/ciséTutorialRoom --»
<owl:Class rdf:about="&cis; TutorialRoom">
<owl:equivalentClass>
<owl:Class>
<owl:oneQf rdf:parseType="Collection">
<rdf:Description rdf:about="écis; TR2"/>
<rdf:Description rdf:about="4cis; TRS"/>
<rdf:Description rdf:about="gcis; TRI"/>
<rdf:Description rdf:about="&cis; TR6"/>
<rdf:Description rdf:about="&cis; TR4"/>
<rdf:Descriprion rdf:abouc="fcis; TR1"/>
</owl:oneCf>
</owl:Class>
<fowl:;equivalencClass>
<rdfs:subClassOf rdf:resourcex"scis;Indoor"/>
</owl:Class>
<!-- htep://context.org/cis#Tutoring =-->
<owl:Class rdf:about="gcis; Tutaring”>
<rdfs:subClassOf rdf:resource="fcis;Planned”/>
</owl:Class>
<!-- http://context.org/cisfUMTS3GC -->
<owl:Class rdf:about="&cis;UMTSIG">
<rdfs:subClassOf rdf:resource="&cis;Network"/>
</owl:Class>
<!-- http://context.org/cistWifiNerwork -->
<owl:Class rdf:about="ccis;WifiNetwork™>
<rdfs:subClass0f rdf:resource="§cis;Network"/>
</owl:Class>
<!-= http://www.wl. org/2002/07/0wlkThing -->
<owl:Class rdf:about="&owl; Thing"/>
<t -

PEEEELLLPN AT AT LTS EL T I P08 ETTL AR I PR 0 b i i 0 iiiiriritizies

/
// Individuals
£/

116

PHELVEL PP LESLAELRAELT TP R I Rt Ed iR i P E i i ittt riiritiriiitsi

-2

<i-- http://context.org/cisi0l0202 -->
<cis:SeminarRoom rdf:abour="&cis;010202"/>
<!'-- htrp:/fcontext.orgfcis#0l0312 --»
<owl:Thing rdf:about="gcis;010312"/>

<!-- http://context.org/cis#020212 -->
<cis:QfficeRoom rdf:about="gcis; 020212%/>
<!-- http://context.org/cisdl6.0.226.202 -->

<cis:Gateway rdf:about="&cis;160.0.226.202"/>
<!1-- hrip://context.org/cis#l60.0.226.206 -->
<owl:Thing rdf:about="6cis;160.0.226.206"/>
<!'-- hrep://context.org/cist#l160.0.226.207 -->
<cis:Proxy rdf:about="§cis;160.0.226.207/>
<t—- http://context.org/cis#160.0.226.208 -->
<cis:Proxy rdf:about="&cis;160.0.226.208"/>
<!-- http://context.org/cisfAncivirus =-=->
<gis:ProcessRun rdf:about="§cis;AntivVirus"/>
<!-- http://context.org/cis#C0l --»
<cis:ClassRoom rdf:about="&cis;C01%/>

<!=« http://context.org/cis#ciz -->
<cis:ClassRoom rdf:abouts”&cis;C02"/>

<!-- hetp://context.org/fcisiC0d --»
<cis:ClassRoom rdf:about="&cis;C03"/>
<!-- htip://context.oryg/cisiChd -->
<cis:ClassRoom rdf:about="&cis;C04"/>
<!-- htep://context.org/ciskC03 -->
<cis:ClassRoom rdf:about="&cis;CO05"/>
<!-- http://context.org/cispC06 -->

<cis:ClassRoom rdf:about="gcis;C06"/>

<!1-- hrep://context.org/cisiCelcom -->

<cis:GSM rdf:about="4cis;Celcom”>
<rdf:type rdf:resource="&cis;UMTS3G"/>

</cis:GSM>

<!-- htep://context.org/cis#D0l -->

<gcis:ClassRoom rdf:about="gcis;D01%/>

<'==- htrp://context.org/cis#Doz -->

<gis:ClassRoom rdf:about="&cis;D02"/>

<!t-- http://context.org/ciséD03 -->
<cis:ClassRoom rdf:about="&cis;D03"/>
<!-- http://context.org/cisiD0d -->

<cis:ClassRoom rdf:about="§cis;D0O4"/>
<!-= hrtp://context.org/cistdids -->
<cis:ClassRoom rdf:about="&cis;DOS"/>
<i—- htep://context.org/cisiDds -->
<cis:ClassRoom rdf:about="§cis;D06"/>
<!-- http://context.org/cisfpataCom -->
<¢is:lLaboratory rdf:about="&cis;DataCom™/>
<!-- htep://context.ory/ciskDigi -->
<cis:UMTS3G rdf:about="&cis;Digi">
<rdf:type rdf:resource="gLcis;GSM"/>
</cis:UMTS3G>
<!-- hrtp://context. org/cisiFirefox -->
<cis:Browser rdf:about="gcis;Firefox"/>
<!-=- htep://context.orqg/cis#GAIM -->

117

<cis:IMApplication rdf:about="fcis; GAIM"/>
<!-~ http://context.org/cistGTalk -->»
<cis:IMApplication rdf:about="&cis;GTalk"/>
<!-- http://context.org/cis¥§IE -->
<cis:Browser rdf:about="gcis; IE">

<rdf:type rdf:resource="scis; Internethpplication™/>

<cis:logIinto rdf:resource="§cis;Netware"/>
</cis:Browser>
<'-~ http://fcontext.org/cistIMTray --»
<cis:ProcessRun rdf:about="&cis; IMTray">
<rdf:type rdf:resource="fowl; Thing™/>

</cis:ProcessRun>

<!-- htup://context.org/cisfIPAddress -->
<owl:Thing rdf:about="&cis; IPAddress" />
<t-- http://context.org/cis#LHl -->

<¢cis:LectureHall rdf:about="&cis;LH1"/>
<!-=- http://context.org/cis#LH2 -->
<cis:LectureHall rdf:aboutr="§cis;LH2"/>
<!-- htrp://context.org/cisELH3 -—>
<cis:LectureHall rdf:about="&cis;LH3"/>
<!-- http://context.org/cistLEd -->
<cis:LectureHall rdf:about="&cis;LH4"/>
<!-- http://context.org/cistlLHS -->
<cis:;LectureHall rdf:abour="&cis;LH5"/>
<!=- http://context.org/cis#LHE -->
<cis:LectureHall rdf:about="&cis; LH6"/>

<!-- http://context.org/cistlectureRoom -->
<cis:QfficeRoom rdf:about="&¢is; LectureRoom"/>
<!-- http://context.org/cisiM5N -->
<cis:EmailApplication rdf:about="&cis;MSN"/>
<!-- htep://context.org/cistMSNChat -->
<cis:IMApplication rdf:about="§cis;MSNChat"/>
<!-- hetp://context.org/cis#Maxis -->

<cis:GSM rdf:about="&cis;Maxis">

<rdf:type rdf:resource="g(cis;UMTS53G"/>
</cis:GSM>
<!-- http://context.org/cis#Mozila -->
<cis:Browser rdf:about="icis;Mozilta"/>
<!-- hrtp://context.org/cisfMultimedia =-->
<cis:Laboratory rdf:abouts®Ecis;Multimedia®/>
<!-- htetp://context.crg/cistNetware -->
<¢cis:Server rdf:about="g&cis;Netware"/>
<!-- http://context.org/cistOpera -->
<cis:Browser rdf:about=*&cis;0Opera"/>
«!-- http://context.org/cis#Cutlook -->
<cis:EmailApplication rdf:about="&cis;Outlook"/>
<!-- http://context.org/cistPDFReader -->
<cis:OfficeApplication rdf:about="&cis; PDFReader™/>
<!-=- hetp://context.org/cis#PGLab -->
<cis:WifiNetwork rdf:about="&cis;PGLab">

<owl:sameAs rdf:resource="&cis;020212"/>
</eis:WifiNetwork>
<!-- http://context.org/ciséProgramminglab -->
<cis:Laboratory rdf:abouc="&4cis;Programminglab™/>
<!-- http://context.crg/cistSafari --»
<cis:Browser rdf:abour="fcis;Safari™/>

118

<t-=
<cis:
<!l--
<cis:
<l--
<cis:
<l--
<cis:
<l--
<cis:
<l-=
<cis:
<l--
<cis:
<t--
<cis:
<l--
<cis:
<l-=
<cis:
<l=--
<cis:
<1--
<cis:
<r--
<cis:
=
<gis:
<l--

<gis:

http://context.org/cis#Service ==>

ProcessRun rdf:about="scis;Service"/>
hetp://context . org/cis¥SpreadSheer -->
OfficeApplication rdf:about="itcis; SpreadSheer™/>
http://context.org/cisETMNet -->

WifiNetwork rdf:about="&cis;TMNet"/>
htep://context .org/ciskTRl -->

TutorialRoom rdf:abouts"&cis;TR1I™/>
http://context.org/cis#TR2 -->

TutorialRoom rdf:about="&cis; TRZ"/>
hrtecp://context.org/cisdtTRI -->»

TutcrialRoom rdf:about="4cis; TR3"/>
http://context.org/cis#TRg -->

TutorialRoom rdf:about="gcis; TR4A"/>
http://contert.org/cisdTRS -->

TutorialRoom rdf:about="gcis; TRS"/>
http://context.org/cist¥R6 -->

TutorialRoom rdf:about="&cis; TRE"/>
http://context.org/cis#Thunderbird -->
EmailApplication rdf:about="gecis; Thunderbird™/>
http://context.crg/ciséVRLab -->

Laboratory rdf:about="4cis;VRLab"/>
http://context.org/cis#vVirtualMachine --»
ProcessRun rdf:about="4cis;VirtualMachine"/>
htep://context . .org/cisfwWwebMessenger -->
IMApplication rdf:about="gcis;WebMessenger”/>
http://context.org/cis#WordProcessor -->
OfficeApplication rdf:about="scis;WordProcessor"/>
http://fcontext .orgfcisfyM -->
InternetApplication rdf:about="gcis; YM">

<rdf:type rdf:resource="icis; IMApplication"/>
</cis:InternetApplication>

<l--

Appendix C

OWL-Z Semantic Definition

This section describes complete transformation from OWL W3C syntax into Z Model.
All descriptions related to OWL contructs ans axioms in this section are taken from
http:thwwwow3 org/TR/owl-reff.

[DOMAIN)|

Class : P DELTA
Property : PDELTA
Individual : P DELTA

Property N Class = @
Property N Individual = 0
Individual N Class =

instances : Class — P Individual

Object Property : P Property
DatatypeProperty : P Property

Object Properiy N DatatypeProperiy =
ObjectProperty U Datatype Property = Property

propual : ObjectProperty — (DELTA «— DELTA)

119

120

— [XSD]
propuvalD : DatatypeProperty — (Individual — XSD)

subClassOf : Class — Class

¥ elass], class2 : Class o
(classl, class2) € subClassOf <> instances(classl) C instances(class2)

equivaleniClass : Class «— Class

V classl, class2 : Class e (classl, class2) € equivalentClass <

instances{classl} = instances(class2)

domain ; Property — Class

¥ prop : Property; class : Class o domain{prop) = class &
prop € ObjectProperty = dom(propval{prop)) C instances{class)

range : ObjectProperty — Class

¥ prop : ObjectProperty; class : Class o range(prop) = class <

ran(propual(prop)) C instances{class)

— [XSD]
rangeD : DatatypeProperty — P XSD

¥ dprop : Datatype Property; date : P XSD e rangeD{dprop) = dala <
ran{propvalD(dprop)} C data

disjoint With : Class — Class

¥ classl, class2 : Class
(class1, class2) € disjoint With < instances(classl) N instances{class2) = @

121

inverseOf : ObjectProperty — ObjectProperty

¥ propl, prop2 : ObjectProperty » (propl, prop2) € inverseOf &
propval(propl) = (propvai(prop2))™

= [XSD]
subPropertyOfD : Property — Property

¥ propl, prop2 : Property e (propl, prop?} € subPropertyOfD <
propl € DatalypeProperty A prop2 € DatatypeProperty =
propvalD [XSD|{propl} C propuvalD[XSD|(prop2)

subPropertyOf : Property — Property

¥ propl, prop2 : Property e (propl, prop2) € subPropertyOf <
propl € ObjectProperty A prop2 € ObjectProperty =
propval(propl) C

propval{prop2)

— [XSD]
equivalentProperty : Property «— Properiy

V propl, prop2 : Property » (propl, prop2) € equivalentProperty &
(propl € ObjectProperty A prop2 € ObjectProperty =
propual(propl) = propval(prop2)) A

(propl € DatatypeProperty A prop2 € DatatypeProperty =
propval D[XSD](propl) = propvalD[XSD|(prop2))

oneOf : P Individual — Class

¥z : P Individual; class : Class e oneQOf(z) = class = z = instancesclass

some ValuesFrom : Class x ObjectProperty — Class

¥ classl, class2 : Class; prop : ObjectProperty ¢ someValuesFrom(classl, prop)
= class2 < instances(class2) = {a : Individuel | 3 b : Individual » (a,b) €

propval{prop) A b € instances(class1)}

122

allValuesFrom : Class x ObjectProperty — Class

¥ class], class2 : Class; prop : ObjectProperty o allValuesFrom{classl, prop) =
class2 < instances(class2) = {a : Individual |V b : Individual e (a,b) €
propval({prop) = b € instances{classl)}

prove by reduce;

minCardinality ; (N x ObjectProperty) — Class

¥ c: Class; n: N; prop : ObjectProperty » minCardinality(n, prop) = ¢ &
instances(¢c) = {z : Individual | #{(propval(prop}{ {z})} = n}

prove by reduce;

maxCardinality : (N x ObjectProperty) — Class

¥ ¢ Class; n: N; prop : ObjectProperty » mazCardinality{n, prop) = ¢ &
instances(c) = {z : Individual | #{(propval(prop}{ {z} [} < n}

prove by reduce;

Cardinality : (N x ObjectProperty) — Class

V¢ : Class; n: N; prop : ObjectProperty o Cardinality(n, prop) = ¢ &
instances(c) = {z : Individual | #{(propval(prop}({z} [})} = n}

prove by reduce;

sameAs : P Individual — P Individual

Ve, y:PIndividual e (xz,y) € sameds &z =1y

differentFrom : P Individual — P Individual

Vz,y: P Individual e (z,y) € differentFrom &z # y

Tronsitive : P ObjectProperty

¥ prop : ObjectProperty » prop € Transitive <
(Vz,y, z : Individual e (z,y) € propval(prop) A (y, z) € propuval(prop) =
(z,z) € propval(prop))

123

Symetric : P Object Property

¥ prop . ObjectProperty » prop € Symetric &
(v, y : Individual » (z,y) € propval(prop) =
(v, z) € propval(prop))

MverseFunctional : P ObjectProperty

¥ prop : ObjectProperty « prop € InverseFunctional &
(Va,b,c: Individual | {a, c) € propval(prop) A
(b, ¢) € propual(prop} « a = b)

complemnentOf . Class — Class

Y elassl, class2 - Class » {class1, class2) € complementOf &
Individual \ instances(classl) = instances(class2)

intersectionOf : seq Class — Class

¥ cseq : seq Class; class : Class e inlersectionOf (cseg) = class &

instances(class) = N{z : ran cseq o instances(x)}

Thing, Nothing : Class

instances(Thing) = Individual
instancesNothing = §
V¢ : Class e instances(c) C Individual

hasValue : (Class x ObjectProperty) — Individual

¥ind : Individual, ¢ : Class; p: ObjectProperty « hasValue(c,p) = ind &
instances(c) = {a : Individual | ind € propuval(p)({a} |}

Appendix D

Z. Specification of Context Ontology

Person, Network,
Activity, Location, Device : Class

{Person, Thing) € subClassOf
{ Network. Thing) € subClassOf
{ Device, Thing) € subClassOf
{ Activity, Thing) € subClassOf
{ Location, Thing) € subClassOf

124

125

Desktop, Mobile Device, NefworkDevice,
Hardweare, Software, MobilePhone, Nolebook, PDA, AccessPoint, Router,

Server : Class

(Desktop, Device) € subClassOf
(MobileDevice, Device) € subClassOf
{ NetworkDevice, Device) € subClassOf
{ Notebook, MobileDevice) € subClassOf
(PDA, MobileDevice) € subClassOf
{ Mobile Phone, Mobile Device) € subClassOf
{ AecessPoint, NetworkDevice) € subClassOf
(Server, NetworkDevice) € subClassOf
(Router, NetworkDevice) € subClassOf
(Saftware, Desktop) € subClassOf
(Software, Nolebook) € subClassOf
(Software, PDA) € subClassOf
(Hardware, Desktop) € subClassOf
{ Hardware, Notebook) € subClassOf
{ Hardware, PDA) € subClassOf
{({ grule HardwareSoftwareDisjoint)}
{Hardware, Soflware) € disjoint With

Lecturer, Student, Posigrad, Staff , Profile : Class

{Student, Person) € subClassOf
{{ grule LecturerinPerson)
{ Lecturer, Person) € subClassOf
(Postgrad, Person) € subClassOf
(Staff . Person) € subClassOf
(Profile, Staff) € subClassOf
{ grule ProfileInLecturer %
(Profile, Lecturer) € subClassOf
(Profile, Student) € subClassOf
(Profile, Postgrad) € subClassOf

126

ProcessRun, ApplicationRun, EmailApplication, Office Application,
IMApplication, InternetApplication, Browser, MailClient : Class

{ ApplicalionRun, Software) € subClassOf
{ ProcessRun, Software) € subClassOf
(EmailApplication, ApplicationRun) € subClassOf
(OfficeApplication, ApplicationRun) € subClassOf
(ImternetApplication, ApplicationRun) € subClassOf
(Browser, InternetApplication) € subClassOf
(IMApplication, InternetApplication) € subClassOf
(MailClient, InternetApplication) € subClassOf

Internet, Fthernet, GSM, Intranet, UMTS, WiFi : Class

{ Internet, Network) € subClassOf
(Intranel, Network) € subClassOf
(GSM, Network) € subClassOf
(UMTS, Network) € subClassOf

(WiFi, Network) € subClassOf
(Ethernet, Network) € subClassOf

Planned, Deduced : Class

(Planned, Activity) € subClassOf
(Deduced, Activity) € subClassOf
{(grule PlannedRule)

(Deduced, Planned) € disjoint With

127

Available, Busy, Free, Browsing, Chatting, NotAtOffice,

OpenFEmail, OnThePhone, isBusy : Class

(Available, Deduced) € subClassOf
(Free, Deduced) € subClassOf
{ Browsing, Deduced} € subClassOf
{ Busy, Deduced) € subClassOf
(Chatting, Deduced) € subClassOf
(NotALOffice, Deduced) € subClassOf
{OnThePhone, Deduced) € subClassOf
(OpenEmail, Deduced) € subClassOf
{{ grule BusyFreedisjointWith })
{ Busy, Free) € disjoint With

Lecturing, Meeting, Research, Seminar, Tutoring, LabActivity

: Class

(Seminar, Planned) € subClassOf
(Meeting, Planned) € subClassOf
(Lecturing, Planned) € subClassOf
{ Research, Planned) € subClassOf
{ Tutoring, Planned) € subClassOf
(LabActivity, Planned) € subClassOf

Indoor, Outdoor : Class

(Indoor, Location) € subClassOf
(Outdoor, Location) € subClassOf
{({ grule OutDoorIndoorDisjoint)
(Indoor, Qutdoor) € disjoint With

128

Building, Room, Lab, ClassRoom, SeminarRoom, Lecture Hall,
MeetingRoom, Office Room, notOffice Room : Class

{Indoor, Location) € subClassOf

{ Outdoor, Location) € subClassOf
(Building, Indoor) € subClassOf

{ Room, Building) € subClassOf
{Lab, Room) € subClassOf

{ grule ClassRoominRoom }
(ClassRoom, Room) € subClassOf
(LectureHall, Room) € subClassOf

{ OfficeRoom, Room) € subClassOf

{ MeetingRoom, Room) € subClassOf
{SeminarRoom, Room) € subClassOf
{(notOfficeRoom, OfficeRoom) € complementOf

C01, C02, C03, C04, CO5, C06, D01, DO2, D03, D04, D05, D06 : Individual

CO1 € instances(ClassRoom),
C02 € instances(ClassRoom);
€03 € instances(ClassRoom);
C04 € instances(ClassRoom);
CO05 € instances{ ClassRoom};
C06 € instances(ClassRoom);
{{ grule DOlinClassRoom })

D01 € instances(ClassRoom);
D02 € instances(ClassRoom);
D03 € instances(ClassRoom);
D04 € instances(ClassRoom);
D05 € instances{ ClassRoom);
D06 € instances(ClassReom);

FIREFOX | IE : Individual

{ grule Appl })
IE € instances{Browser); FIREFOX € instances(Browser);

129

— [XSD]
fullName, officeAddress, phoneNumber,
emailAddress, imAddress : DatatypeProperty

name, office, phone, email, im : P XSD

domain{fullName) = Profile
rangeD{fullName) = name
domain(officeAddress} = Profile
rangeD(office Address) = office
domain(phone Number) = Profile
rangeD(phoneNumber) = phone
domain(emailAddress) = Profile
rangeD{emailAddress) = email
domein(imAddress) = Profile

rangeD(imAddress) = im

NOVELNETWARE : Individual

{{ grule Serverlnstance)
NOVELNETWARE € instances(Server);

130

use, run, connectedTo, currentActivity, located/n,
loginTo, currentSSID, associated With,
ownedBy, equipped With . ObjectProperty

domain(use) = Person

range{use) = Device

domain(run) = Person
range{run) = Software
domain(connectedTo) = Person
range(connectedTo) = Internet
range{connectedTo) = Intranet
domain(currentActivity) = Person
range{currentActivity) = Activity
domain{essociated With) = Device
range(associated With) = Network
domain(associated With) = Person
range(associated With) = Server
domain(equipped With) = Room
range{ equipped With) = Desktop
domain(currentSSID) = AccessPoint
range(currentSSID) = WiFi
domain{loginTo) = Person
range(loginTo) = Server
domain{ownedBy) = Device
range{ ownedBy) = Person

{ grule runsubprop)

(run, use) € subPropertyOf

{{ grule uselsTransitive)

(use) € Transitive

{({ grule PersonRunningBrowser }
{allValuesFrom(Person, run} = Browser)

{{ grule PersonConnectedTolnternet %

{allValuesFrom{ Person, connectedTo) = Internet)

{ grule PersonConnectedTolntranet)

(ellValuesFrom(Person, connectedTo) = Intranet)

{ grule PersonRunningOffice }
allValuesFrom{ Person, run) = OfficeApplication

131

{ grule PersonCurrentActivitylsPlanned)
allValuesFrom(Person, currentActivity) = Planned

{{ grule PersonRunningIM)

allValuesFrom(Person, run) = IMApplication

{{ grule PersonRunningEmail)

allValuesFrom{ Person, run) = EmailApplication

{(grule PersonUseDevice })

allValuesFrom(Person, use} = Device

{ grule PersonLocatedIn })

aliValuesFrom(Person, locatedin) = Location

{ grule PersonLocatedInIndoor })

allValuesFrom(Person, locatedIn) = Indoor
allValuesFrom(Person, locatedIn) = Outdoor

{ grule PersonLoginTo)

some ValuesFrom({Person, loginTo) = Server

Browsing = some ValuesFrom(Person, run) = Browser A
some ValuesFrom(Person, connectedTo) = Internet

Busy = some ValuesFrom(Person, run) = OfficeApplication A
some ValuesFrom{ Person, currentAclivity) = Planned
Chatting = some ValuesFrom(Person, run) = IMApplication A
some ValuesFrom{ Person, connectedTo) = Internet

{ grule cardinal })

Cardinality(1, currentActivity) = Person

{ grule maxRun)

minCardinality(3, run) = ApplicationRun

{ grule HasValue)

hasValue(Person, loginTe) = NOVELNETWARE:

Appendix E

Screenshoot of Proof Process

dinalitystfdeclarstion. Chatting‘tdeclarsati:on, Busy\tdeclaration,
BusyFreedizjointVith. Browsing“tdeclaration, sosaValueaFroa‘ddeclaratios.
tion“idactsration, Easilipplicetion\tdec!iaratiom,

1l¥aluesFronttdec laration. -uhPmp-rtyO!\!d-:]-r-li.m;. select™_In_1.

Am-?bxnt\‘d-clucucn Deskiopfdeclerstion, RooaMideclaration.
var:bdeclaraticon, Hetvork sdeclaratiom, dctivilynideclarstiom,

Intranst tdeclarstion. Internat’tdeclarstion. Softvarasfdeclaration,

[fovicortdoclaration, rangezddeclarstion, Person:ideclaration.

IClass tdaclaration. Properipisdaclarstion. fums_ Lype. donan\ld.chnuen

“idontdeclaration®, ObjmctProperty\sdeclaration. ‘[internal itesa)]”

2al

Proving gives .. .
!m .

[Baginning proef of

Snot allValuvesFroa (Person, locatsdIn) = Indoor S
Niaplics allVslucafrom (Person, locatedin) + Outdoor
|Azsuning OutDoorindoorDisjoint genarstes . ..

(Indoor, Qutdoor) “in dimjoiatWith

~land “inot allValuesFros (Parson. locatedIn) » landoor W

[“implins allValusaFros (Person. locatedln) « Qutdoar

[Which siapliliga

lm-n.rd chaining unnq Knownteabsr ideclarationPart, koownieaber,

"[internal itesn}”

[*ith the assumptions locatedIn“ddaclaration. F-r-:n\!d.:llr‘lxcn_
11ValussFroastdeclaration. ParsocRuns r. PerstnConnestedTolaternet.
rescnCannectedTolntranet l‘lrmhmln:g!nc. PorsonCurrentictivitylsPlannad,
racmRunoinglH. PerstuRunningEssil. PerscolseDevice, Perscnlocatedin
du)mnuluh\ld.;luouoa saleci™ 2N 1. nl.-:t\ ™_2, Cmtdmr\‘d-chnnou
Indearsbdec laration, DutD:l:rlnd::lrbl:JD:nt [:nl-rn.ll. itess]* to ...

Location = Indoor s\
I“ior Locetion » Outdoer
[Proving givas . .
Location = Indoor “»
Mor Locstion = Outdoor
[Dooa .

-
=
< »

Figure E.1: Proofing Process in I£TEX Mode of Section 4.4.1

132

133

. axipm axioa“88] a~
. exiom axiom #54
. ax)ol axios 855
on HardvareSof tvarsDisjoint

duclor.uun of lacturer, Postgrad. Profila, Staff. Studeat
. axios Lecturer“tdeclerstion
. axios Studenthtdeclaration
. axios Postgradiideclaration
. axios Stati’tdeclsration
. axiom Profile\sdaclaration
. oxiom axiom 356
. axion lmcturerioPurscn
. axiom axiom\#
. axion sxioa\i%E
. axiom axiom“$59%
. axion Prolilelnlecturer
. axios axiom“360

axios axiom~$61
IB-gmmno proot of .
(Prolile. Parson} Nin subClaseOt
issuniong Lecturar[aPerstn generates ...

{lecturnr. Persem) “in subClassQf N
Nisplies {Profile. Person) “in subClassOf
[Assuning Profilelnlecturer generates ...

{Prolile, Lecturer) “in subClaseQ!

~land (Lacturer, Pearsoc) “io subClassOf

[vimpliss {Profile, Parsca) “in subClassOf

Which simplilies

torvard chaining using Knovnisabar-bdeclarationPart, kecwniesbar,
"[internal items]’

with the assuspticons Porson“ddeclaration, subllasaOf~3daclaration.
select™__1, selects_2v_2, lecturer\tdeclaration, LectursrinPerscn.
Prohl.\lda:lnraum thlo[nl..:mrar lmurml itens]” o ...
{Preiile. Parson) “in subClazsOf

[Dona .

-

Lk me Cl ; 1 IEA

~land (“local run, “local use) “an luhPrvprlyOl S

Sland “locsl use Nin Transitive SN

wland allValuseFrom {Parson, “[local run) = Browsar

“land a!lValuwsFrom {Person. “Local conoeciedTo) - Iotarnet S

Nland a})lValupsFrom {Person. “Local cocnsciedTo) = I[ntranst

~land a!iValuesFroa (Person. “Local rwn) - Officedpplicetion S
Parson 1 currentictivity) - Planned W

run) * INApplication M
Tun) = Easildpplication “\

N
Llocal locatedin) » OQutdoor S
“Mand -auv-lu-}'m (P-r-an ~Local logioTa) - Server S
“land Browsing = someValussFrom {FPerscen. “Local run)
“land -u-?-lu-?m {Person, “Local run) = Browser “\
roa (Pearson. “Local conpaciedTo)} » Iaternst N
Bu.ry -x-?ah—?m (Parson, “local run}
Aland soamValussFras (Parsen, “Lecal rua) = Ofliceipplicatian
“land scamValussFroa {Parson, “Local currantbclivity) = Plaoned *
“tand Chatting + moneValuesFrom {Perwoo. “local run)
Sland scasVsluesFros (Porscom, “local run) = {Mipplication S\
“land scasVelussFros {(Person. “Local coaneciedTo) » Internet
“land Cardinality (1, “Local currentdetivity) = Persoa
Sland sinCardinality (J. “Locel run) =+ ApplicationRun N\
\1lp1:u (P.x-m “focal loginTo) “in “dos basValus)
nning proaf of
hl ELN ARE “in instsnces Server
Wsich simplilies
lornrd chaining u-uw KnownXanhar~ddeclarationPart, kaownMsabar,
‘[intersal itessx)’
with the aswusptions Server‘tdecleraticn, instences‘idecleration.
NOVELNETVARENSdaclaration. Serverlastance, “[internal iteas] o ...

true
Prowing gives ...
true

-2
< f I i | L

Figure E.3: Proofing Process in I5TgX Mode of Section 4.4.3

134

3

VLS [I1.aTeX meds) ERREEEEENNN e B
Beginning proof of ...
Reon

DJL “in iostances
Assuning DOlinClazzRoos generates .. .

DOL “in instances ClasaRoom
Nimpliss DOl “in inwtances Room
Awsuning ClassRoosinRoos generates

(ClasaRoow, Roox) “in subllazsOf SN
“land D01 Nin instances ClamsRoos
~impliws DOl “in iostances
Assuning instencesubcloss vith tha instantiations:
e+ CtessRoos. d - Roos. ind + DO! genarstes ...

{ ClassRoca “in Class ™
iand Roos Min Class NN
“land DO “in lodividual N
Stand (ClassRoos. Roos) Nin subClassOf
“land DOt “in iomtances ClaseRoos N
Siaplies DO! “in instances Room) S\
Niapd (ClamsRoos. Room) “in subllassQf
“land DOl \in inxtances ClassRoom N
japlias D01 “in instances
Rearranging gives ...

{ClaszRoon. Room) “in subClasedt “»
“land 00l Nin ipstances ClassReoa N\
~band | Clazafoos “in Class
“land Rooa Vim Clasw N
Stand DOL “im Individual
“land {ClassRoon. Fowm) “in subClaessOf N
Miasd DOl “ino instances ClessRoocm
~impliss DL Nin instances Room)
“implics DO “in inatances
ubstituting produces ...

{ClangRoga. Room} “in -ubC.ln-Dl A
~land DL “in ulll.ac-l Clax
Sland o lanzRoon \ln Clan A
Sland Rma “in Class ™
Slapd DOL “in Endividual S
“implims DO! \in instances Roos}
\implies DO! “in instonCes
[Yhich simplifies
larvu-d. chaining using KncwnksnburstdeclarationPart. knownieaber.
“[ioteroal items)’
[vith the assuspticaz lndxnd\u!\‘d-:hrqllon Clasa“tdeclaration.
instances \tdeclaration, DOl Sdecieration. DOlinClasxRoos.
tion. melect™_ 2% 1. -llct\ ~_2, hu-\hllel.r.tan‘
iom. ClassRoominfoos. llnller itexs]’ to

RN Y AR

FBLE ZEVLS (E ATEX 11080 b et et it stk it s e, = |[EF K]
Sland hagValue (Permoa, loginTo) = NOVELNETVARE N (o
vimpliss basValue (Lecturer, logiaTo) = NGVELNETVARE)
“land {lecturer, Person) “in subClamsQd N
implies hasValus (lecturer. loginTa) = NOVELKETVARE
[Rearranging gives ...

{lscturer, P-m) “in subClassOf s
“land { Laciurer “in Class %
vland Parson ‘in Class ™
Aland loginTo Sin ObjectProparty SN
Sland MOVELNETVARE “:in Individual
Nland (Lecturer. Person) “in subClassOL
Sland hasValua (Person, loginTe) = WOVELNETWARE
“implies hazValue {Letturwr. logiaT n) = NOVELNETVARE) “~
Nimpliss basValus {Lacturer. loginfo) = HOVELNETVARE
[Substituting produces ...

{Lacturar. Parson) “in subClaswDf
“land lacturer Sin Class N
“land Parson “in Class %
“lapd loginTe “ip ObjectProparty
Sland ELNETVARE “in lnd:vxdul. N
“land hasValus (Permoo. loginTo) = ROVELHETWARE
“iaplies basValua (Lacturar. loginToe) * NOVELNKETVARE) \\
Nimpliss hasValus (Lecturer. loginTo} = NOVELNETVARE
Vhich sinplif{ies
torvard chaining using KnownNesbersddeclaratiooPart, knovolesber.
“[internal iveas)”
wvilth Lhe assusptioas hasValuestdeclaration. HasVelue. IndividualsSdeclaratis
NOVELRETVAREN¢daclaration, Serverinstence. O?é-c!hnwrty\ld:lunion.
loginTos$daclaration, Class‘tdeclaration, subClassOivddeclaration
OT-:L\ ol welecty 2. Parsoo\bdaciaration, Lecturersbdeclaration.
Le:wrar[n?arm “(intoTnal iteas)' ta .

lPrcwing gives .

1rus

Dona .

b4

= P - P e | 177

e

Figure E.5: Proofing Process in IS[gX Mode of Section 4.4.3

