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ABSTRACT 

Nowadays many types of gas sensors have been used to identify and detect the presence of 

various gases in industrial plants. However, these gas sensors are still facing the problem of 

lack selectivity and sensitivity for gas detection in ambient temperature and also slow in 

response time. The objective of this research is to develop multi-walled carbon nanotubes 

(MWCNTs) film for ionization based gas sensing application. In this study, MWCNTs film is 

proposed to be used as the active component due to its remarkable electronic and field 

emission properties for generating ionization mechanism on the gas. 

MWCNTs were synthesized by the decomposition of ethylene over metal coated, oxidized 

silicon substrate in thermal chemical vapor deposition CVD system. Structure and 

morphology of grown MWCNTs were examined using Raman spectroscopy, scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) whilst the 

electrical properties of nanotubes film were characterized by Van der Pauw and Hall Eff()ct 

technique. Gas sensing properties testing ofMWCNTs film are carried out by identifying gas 

breakdown voltage between nanotubes film cathode and aluminum film anode. Gasses that 

have been tested are helium, argon, air, hydrogen 2% in air mixture, and ammonia. 

MWCNTs grown using this CVD technique are found to have high crystallinity with typical 

diameter of 18 nm and length of 1.5 Jlm. Testing the sensing properties at room temperature 

reveals that the utilization of MWCNTs film as cathode was able to scale down the air 

breakdown voltage by a factor of about 58 % as compared to aluminum cathode. On the I 0 

mL gas volume, helium gas gives the lowest breakdown voltage of about 134 V, whilst air 

gives the highest value of about 320 V. Further experiment shows that the breakdown volt,.ge 

is not significantly affected by the gas volume content in testing chamber. Reducing 'he 

interelectrode separation by 60 Jlm results the lowering of the breakdown voltage of helium 

gas by 122 V. It is concluded that utilization of MWCNTs film as cathode in the ionization 

based gas sensing configuration is capable to detect helium, argon, air, 2% hydrogen in air 

mixture, and ammonia at room temperature. 

VI 



ABSTRAK 

Pada masa kini, terdapat pelbagai jenis sensor gas yang digunakan untuk mengenalpasti dan 

mengesan kehadiran gas di industri perkilangan. Walau bagaimanapun kebanyakan sensor gas ini 

masih berhadapan dengan masalah sifat pemilihan dan kepekaan untuk mengesan gas pada suhu 

persekitaran dengan cepat dan pantas. Objektif penyelidikan ini adalah untuk menghasilkan fit em 

pelbagai-lapisan karbon tiub nano (MWCNTs) untuk ionisasi berdasarkan aplikasi pengesan gas. 

Dalam kajian ini, filem MWCNTs dicadangkan sebagai komponen aktif oleh kerana ia 

merupakan komponen elektronik dan mempunyai medan pancaran yang istimewa untuk 

menghasilkan mekanisma ionisasi kepada gas. 

MWCNTs dihasilkan melalui proses pereputan ethelene ke atas lapisan metal, oksida silikon 

substrat dalam system CVD terma. Struktur dan morfologi pertumbuhan MWCNTs dikaji dengan 

menggunakan mikroskop Raman, mikroskop elektron imbasan (SEM) dan mikroskop elektron 

pancaran (TEM) manakala ciri elektrikal filem tiub nano dapat diukur dengan menggunakan 

teknik Van der Pauw dan Hall Effect. Sifat pengesanan gas filem MWCNTs dilakukan dengan 

mengesan voltan runtuh antara katoda filem nano tiub dan anod filem aluminum. Gas yang telah 

diuji setakat ini adalah helium, argon, udara, ammonia, dan 2% Hidrogen dalam udara. 

MWCNTs yang dihasilkan daripada teknik CYD didapati mempunyai ciri pengkristalan yang 

tinggi dengan purata diameter 18 nm dan panjang 1.5 mikron. Uji pengesan gas pada suhu bilik 

dengan menggunakan filem MWCNTs sebagai katod dapat mengurangkan kadar voltan runtuh 

sebanyak 58 % berbanding dengan katod Aluminium. Helium pada isipadu I 0 mL memberi ke~an 

voltan runtuh yang rendah iaitu lebih kurang 134 V, manakala gas ammonia pula memberi nilai 

yang paling tinggi iaitu 310 V. Tambahan pula, ujikaji ini membuktikan bahwa voltan runtuh ini 

tidaklah dipengaruhi oleh isipadu gas pada camber. Pengurangan pemisahan antara eletrod 

sebanyak 60 mikron menghasilkan pengurangan voltan runtuh gas helium sebanyak 122 V. 

Secara kesimpulannya, penggunaan filem MWCNTs sebagai katod dalam pengesanan gas secara 

ionisasi boleh mengesan helium, argon, udara, 2% hidrogen dalam larutan air, dan gas ammonia 

pada suhu bilik. 
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Chapter 1 :Introduction 

1.1 Research Background 

In view of the rapid growth of industry and transportation using gas as alternative energy 

source instead of petroleum, the demand of gas sensor as the integrated part of gas 

appliances increases in recent decades. From the safety point of view, outstanding 

properties of gas sensor to detect and to identify the presence of gas in environment are 

critical. Fast response gas sensor property is required in the hazardous environment to 

trigger early warning system once gas leakage is detected on a system. Highly selective 

gas detection is one of the important properties of the gas sensor that would prevent miss 

identification of gas in sensor system which can further lead to system disruption. 

Currently, metal oxide based gas sensor is widely used to detect and identify the presence 

of gas. Unfortunately, this sensor is still encountering drawback such as low selectivity 

and sensitivity at room temperature operation. Typical metal oxide gas sensors are known 

to operate at about 300°C to 750°C. High temperature operation will lead to high power 

consumption. Furthermore the high temperature operation could be hazardous since the 

sensor may get ignited [I]. The sensitivity of metal oxide based gas sensor has been 

increased by doping the metal catalyst into sensor active component [I] whereas the 

selectivity is achieved through gas filtration using the membrane [2). 

Rapid technological development of material for electronic, composite, and sensor 

applications results in the discovery of various materials with remarkable properties. Qne 

material which is mostly developed due to extraordinary properties within the two 

decades is carbon nanotubes. Carbon nanotubes have been developed into many novel 

electronic devices such as field emitter, transistor, and chemical sensor [3, 4). Carbon 

nanotubes has also been used to reinforced polymer composites [5). Mixture of carbon 
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nanotubes and composites has also been used as the electrode in polymer based super 

capacitor [ 6]. 

One promising applications of carbon nanotubes is as the active component m gas 

sensing devices. There are several mechanisms used to detect gases using carbon 

nanotubes. The shifting in resonant frequency of carbon nanotubes resonators as exposed 

to organic solvent vapors can be used for identifying the gas [7]. The phenomenon of 

volumetric changing on matrix carbon nanotubes mixed polymer due to gas vapor 

absorption which lead to percolation of conductivity type has been reported able to detect 

the presence of gases [8]. 

Due to the demand of gas sensor in many fields that require high safety standard, sensing 

properties such as high selectivity and sensitivity, fast response time, and operating at 

room temperature become of paramount importance to be developed. Carbon nanotube, 

considered to be 21 51 century material has extraordinary properties believed to give better 

sensing properties. 

1.2 Research Objective 

Both different types of carbon nanotubes, single walled carbon nanotubes (SWCNTs) and 

multi-walled carbon nanotubes (MWCNTs) have already been utilized in different sensing 

applications [9, I 0]. However, in order to get highly sensitive carbon nanotubes based 

sensing device, low defect and highly crystalline CNTs are believed to give better sensing 

properties. 

The objective of this research are: 

I. Synthesizing and characterizing carbon nanotubes film for the sensing element in 

ionization based gas sensor application. 

2. Testing gas breakdown voltage over various gases in metal -carbon nanotubes film 

electrodes 
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1.3 Scopes of Work 

The work scopes in this research are divided into following section: 

1.3.1 Carbon Nanotubes Synthesis 

The initial stage of this work is the synthesis of carbon nanotubes which will be used as 

the active component in gas sensor. The synthesis is carried out using catalytic thermal 

chemical vapor deposition (CVD) technique. Various metal catalysts layer are used in the 

growth of carbon nanotubes in order to study the effect of catalyst on the structure and 

morphology of the nanotubes. 

1.3.2 Carbon Nanotubes Characterization 

The structural characteristic of carbon nanotubes such as defect and crystallinity can be 

characterized by Raman spectroscopy. Carbon nanotubes film morphology can be 

analyzed using field emission scanning electron microscopy (SEM) from various angles. 

The internal structure of carbon nanotubes such as layers and its diameter are obtained 

through transmission electron microscopy (TEM). Electrical characterization using Van 

der Pauw and Hall Effect technique give information on the resistivity and charge 

mobility of carbon nanotubes film respectively. 

1.3.3 Testing of Carbon Nanotubes as a Gas Sensing Element 

Once synthesis and characterization of carbon nanotubes have been carried out, the next 

stage is the evaluation of carbon nanotubes as the active component for gas sensing 

application. Testing of the gas sensor is carried out in gas testing chamber which is 

connected to high voltage power supply to generate electric field in-between electrodes. 

Voltmeter and ammeter are also connected to power supply to identify gas breakdown 

voltage on carbon nanotubes - aluminum electrodes. In order to monitor the amount of 
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gas flow into the testing chamber, gas flow meter and controller module is outfitted in 

between the gas testing chamber and the gas source. Gases used to investigate the sensing 

mechanism are oxygen, argon, helium, ammonia, and 2% hydrogen in air mixture. 

1.4 Thesis Outline 

This thesis is organized into five chapters. Chapter I elucidates research backgrounds 

which include recent issue and development in carbon nanotubes based gas sensor 

applications. The objectives of this research and the scope of work are also outlined 

within this chapter. The final part of the first chapter describes the layout of the theses. 

Chapter 2 reviews current research and development of carbon nanotubes properties, 

synthesis, analyzing technique, and its application. Field emission from metallic solid 

state surface, ionization, and gas breakdown voltage in between electrodes literature 

review is also reviewed within this chapter. 

Chapter 3 elucidates research methodology on carbon nanotubes synthesis using catalytic 

thermal chemical vapor deposition technique. Carbon nanotubes characterization using 

Raman spectroscopy, SEM, TEM, Vander Pauw, and Hall Effect technique are discussed 

in detail. This chapter also covers the testing procedure of carbon nanotubes as the active 

component in the gas sensor. 

Chapter 4 discusses the results acquired from this work. The structures of carbon 

nanotubes will be revealed by Raman spectroscopy whilst nanotubes film morphology 

will be explained by SEM and TEM analysis. Electrical properties of carbon nanotubes 

film obtained from Van der Pauw and Hall Effect measurement technique are also 

explained thoroughly. Discussion on the testing of carbon nanotubes as the sensing 

component is covered in the last part of this chapter. 

Chapter 5 encompasses conclusion of the research along with recommendations for 

future work. 



Chapter 2: Literature Reviews 

2.1 Introduction 

Since the discovery of fullerenes in 1985 using vaporization laser technique by Kroto, 

et al [II] followed by the discovery of carbon nanotubes by Sumio lljima using 

arc-discharge evaporator technique [12], both fullerenes and carbon nanotubes have 

attracted much attention of researcher and industry all over the world due to their 

remarkable physical, chemical and electronic properties. At present, carbon nanotubes 

(CNTs) have been used in many novel functional devices [3, 4]. 

Carbon nanotube can be illustrated as a seamless rolled graphite sheet with closed end 

cap. Its structure is defined by chiral vector c which pointed the graphite rolled direction 

as shown in figure 2.1. The chiral vector is shown in equation 2.1 

Where: a1 & a2: unit vectors of graphene in real space. 

n, m : number of unit vectors 

' . 

.... ... ... 
(11.11) Drmcholr (a) 

(b) 

(2.1) 

Figure 2-1 (a) Rolled graphite sheets direction [13]. (b) Single-walled carbon nanotubes 

[ 14]. 

5 
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Carbon nanotubes chiral angle is determined by its chiral vector. Chiral vector angle to 

base vector a 1 is shown in equation 2.2. 

Where: e 

() n+m/2 
cos = r=~===,= 

.Jn2 +nm+m 2 

: carbon nanotubes chiral angle 

n, m : number of unit vectors 

(2.2) 

Carbon nanotubes diameter is given by the chiral vector length m circumference as 

shown in equation 2.3. 

(2.3) 

Where: d : carbon nanotubes diameter 

a0 : 0.1424 nm 

The smallest graphene lattice vector perpendicular to chiral vector defines the 

translational period (T) along tube axis. The equation 2.3 shows the translational vector 

in nanotubes. The x in equation 2.4 is greatest common divisor of (m, n) whereas 

91 =3 if [(n-m) I (3)] is integer and 91 = I otherwise. 

T= (2,4) 

The nanotubes with m = 0 is called zigzag nanotubes since this chiral vector will give 

zigzag pattern along the circumference. Nanotubes with n = m is armchair nanotuqes 

[15]. 

Carbon nanotubes can be classified into two type's namely multi-walled carbon 

nanotubes (MWCNTs) and single walled carbon nanotubes (SWCNTs). MWCNT is 

formed by individual layers making up the concentric tubes. MWCNTs cap contain 

pentagonal carbon rings but sometimes in practice complex cup structure is observed 

such as heptagonal carbon rings. The appearance of SWCNTs as shown in figure 2.1 (b) is 
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quite different to MWCNTs since SWCNTs only have single rolled graphite sheet and 

have small diameter (typically- I nm) [ 16]. 

2.2 Carbon Nanotubes Properties 

2.2.1 Electronic Properties 

Carbon nanotubes electronic properties can either be semiconducting or metallic. The 

nanotubes chiral vector determines its properties. Carbon nanotubes is metallic as the 

vector unit value on chiral vector equal to n-m = 3i (i is integer). If the vector unit value 

n-m f. 3i (i is integer), the nanotubes electronic properties is semiconducting. 

SWCNTs have remarkable properties and have been implemented in many electronic 

applications. One of its superior properties is the electrical transport which is reported to 

be up to I 09 A/cm2 [17]. High electrical transport property is very suitable for 

superconductor application. 

Resistivity measurement on bundle MWCNTs of -21 0 J.lm in length and -15 nm in 

diameter result in 0.009 n em [18]. The resistivity of carbon nanotubes is influenced by 

its substrate. Growing MWCNTs over Ah03 as substrate resulted in higher resistivity of 

nanotubes compared to growing over silicon dioxide substrate. The reason behind this 

peculiar property is the roughness of Al20 3 surface which is higher than Si02 surface 

[19]. Since the resistivity of MWCNTs is affected by the defect, resistivity measurement 

of CNT can be used for knowing the carbon nanotubes crystallites [20] 

2.2.2 Field Emission Properties 

Carbon nanotubes have been utilized for field emission device applications. This 

application is highly influenced by electronic properties at the nanotubes tips since the 

open ended SWCNTs work function on the tips is lower than closed ended SWNT [21]. 
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The simulation using average current density with simplified Fowler Nordheim formula 

shows that the field emission properties of carbon nanotubes array is influenced by its 

array density and its height [22]. Self-assembly structure of carbon nanotubes technique 

had been developed to be implemented on field emission application based nanotubes. 

The enhancement of emission site and more uniform emission can be achieved by post 

treatment to the sample using ethanol. This suggests that the treatment affects the surface 

morphology of the sample [23]. The synthesis and catalyst also affect the field emission 

properties since different synthesis process yields different characteristics of nanotubes 

[24]. 

2.2.3 Mechanical Properties 

Carbon nanotubes have been used to reinforce the composite material because of their 

extraordinary mechanical properties. Simulation using MWCNTs model as individual 

nested SWCNTs layer with Van der Waals force in between the layer results average 

modulus young of 1.05 ± 0.05 Terra Pascal and shear moduli of 0.4 ± 0.05 Terra Pascal. 

The simulation shows that both Young modulus and shear moduli are affected by 

nanotubes chirality and number of walls on MWCNTs. Young Modulus increase as the 

number of walls increases. The different number of layer gives different Young modulus. 

As obtained form simulation, zigzag nanotube gives higher Young modulus than arm 

chair nanotubes with the same wall number. Shear moduli obtained is 0.4 Terra Pascal. 

Furthermore, nanotubes shear moduli decreases as the nanotube diameter increases. It 

was found that the effect of tube chirality to shear moduli is not significant. For both 

zigzag and armchair MWCNTs, the shear moduli are reduces as the number of tube 

layers increases [25]. 

2.3 Growth Mechanism of Carbon Nanotubes 

Solid liquid solid model is suggested by Gorbunov et a] (2002) to describe carbon 

nanotubes growth mechanism. The metal catalyst acts as the medium for growing 

nanostructure in this model. The supersaturated decomposed atom carbon is precipitated 
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through molten catalytic particle to form tubular structure (26). In addition, the size of 

catalyst particles affects the yield of carbon nanotubes. The diffusion of carbon atom on 

big catalyst particle is not efficient hence results in low yield of carbon nanotubes [27]. 

The atom carbon diffuses along the metal catalyst and precipitates on the opposite half, 

around, and below the bisecting diameter to form nanotubes wall. Since the atom carbon 

does not precipitate from the apex of the catalyst hemisphere, the carbon atoms create the 

hollow core with the circumference of seamless graphite sheet (28]. 

Typically the growth type of carbon nanotubes can be classified into two type namely 

base growth and tip growth. On the base growth type, the carbon atoms extrude through 

the metal catalyst hence which then creating nanotube wall. The metal catalyst remain 

attached to the substrate on the base type growth whist the particle detach and move at 

the tips of the growing nanotubes on tip growth type (28]. Schematically the growth 

mechanism is shown in figure 2.2. 

Metal catalyst 

a b 

Figure 2-2 Growth type of carbon nanotubes. (a) Base growth, (b) Tip growth. 

2.4 Synthesizing Technique for Producing Carbon Nanotubes 

Four main techniques commonly used for synthesizing carbon nanotubes are arc 

discharge, laser ablation, plasma enhancement chemical vapor deposition (PECVD), and 

thermal chemical vapor deposition (CVD). Detail explanations of synthesizing technique 

on thermal CVD technique will be given whilst other techniques are explained briefly. 
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2.3.1 Arc Discharge 

Carbon nanotube was first obtained from arc discharge technique [ 12]. The method arc 

evaporation of two graphite rod electrodes with separation of about I mm is carried out 

by creating plasma in the electrode. The outcomes of this synthesis technique are in 

carbon nanotubes bulk form. 

The structure of carbon nanotubes produced using arc discharge technique is influenced 

by synthesis pressure, gas atmosphere, electrode type, voltage, and current on graphite 

electrode. To obtain high quality single walled carbon nanotubes using arc discharge 

technique, nickel and yttrium compound are utilized as catalyst in graphite electrode. The 

synthesis is carried out in helium atmosphere at 530-550 Torr in pressure [29]. Carbon 

nanotubes synthesis using DC arc discharge utilizing pure graphite electrode can also be 

carried out in dry air atmosphere. The nanotubes synthesized in air atmosphere have a 

great reduction in carbon soot compared to the ones synthesized in helium atmosphere. 

The optimum pressure to produce high yield multiwalled carbon nanotubes using this 

technique is 300 Torr [30]. 

2.3.2 Laser Ablation 

Another synthesis technique to produce carbon nanotubes in bulk form is through laser 

ablation. The nanotubes are obtained through graphite evaporation assisted by laser 

which can be carried out in either high temperature or in room temperature reactor. In 

addition, either continues or pulse laser can be used in this technique. 

In order to obtain high yield SWCNTs, compressed graphite mixture of nickel and cobalt 

catalyst with addition of either nitrates or acetates is used as targeted material. The 

synthesis is carried out in I bar of pressure in nitrogen atmosphere. A pulse energy of 
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2.5GW Q-switched Nd:YAG laser with wavelength of 1.064 nm and frequency of I 0 Hz 

is used to decompose carbon in targeted material [31 ]. Multiwalled carbon nanotubes can 

be obtained by laser ablation technique at room temperature using 248 nm KrF laser. This 

technique is performed in oxygen atmosphere pressure of 2 Torr. Both Ni-doped and 

Ni-Co doped graphite is utilized as carbon source in this technique. The yield of this 

ablation technique is carbon nanotubes with diameters of I 00 nm to 200 nm and length of 

1.0 mm to 3.5 mm [32]. 

2.3.3 Plasma Enhancement Chemical Vapor Deposition 

Carbon nanotubes synthesis can be carried using plasma enhancement CVD (PECVD) 

technique. Both nickel and cobalt ultra thin films were be utilized as catalyst in this 

technique [33]. Either ethylene or methane can be used as the carbon feedstock on carbon 

molecule decomposition over the catalyst film. For the hot filament PECVD that used 

methane, ammonia was added during the process of growing nanotubes in order to 

improve the diffusion of carbon atom in catalyst particles [34]. The synthesis temperature 

influences the nanotubes diameter in such a way that higher temperature leads to increase 

the diameter [35]. 

2.3.4 Thermal Chemical Vapor Deposition 

Thermal CVD technique is able to synthesis carbon nanotubes. One advantage using this 

technique is that the row product already in film form hence no further processing is 

required to form nanotubes in film. In addition, no purification subjected to nanotubes 

film after the synthesis since very low amorphous carbon formed over the film. Thermal 

CVD reactor, substrate preparation, and synthesizing process would be described in detail 

in the following subsection 
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2.3.4.1 Thermal CVD Reactor 

Heating technique for thermal CVD can either be cold wall or hot wall reactor. On cold 

wall CVD reactor, substrate is heated directly by either induction heating or radiant 

heating while the rest of reactor remains cool. On hot wall CVD reactor the substrate is 

placed on isothermal furnace. 

Carbon nanotubes synthesis can be carried out in cold wall CVD reactor. The substrate is 

heated directly and uniformly in this reactor system. Heater is placed below the substrate 

causing the heating to take place only on the substrate. The distance between substrate 

and gas source outlet is about 2 em. Carbon feedstock for synthesizing nanotubes using 

this method is methane. Hydrogen is flown into the system while synthesizing taking 

place. All gasses which involve during nanotubes synthesis are controlled by using gas 

flow controller. The pressure in cold wall CYD chamber is kept constant while 

synthesizing nanotubes [36]. 

Hot wall CVD can also be used for synthesizing carbon nanotubes. Typical hot wall 

thermal CVD is shown in figure 2.3. The schematic shows that heating process induced 

to all furnace tubes. Since higher yield CNT can be produced by thermal CVD technique, 

this technique becomes one of the most promising techniques in term of large industrial 

scale. 

I ·Heating zone I 
Substrate 

Gas Inlet [:. . Heating i:one .I -··· 

Figure 2-3 Typical thermal CVD reactor. 
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2.3.4.2 Sample Preparation 

Catalyst particles are required in carbon nanotubes synthesis. Catalyst can be deposited 

onto substrate using sputtering machine, spin coater, electron beam evaporator, sol gel, 

and thermophoresis apparatus. Either single transition metal catalyst or mixtures from 

several metals can be deposited using those equipments. The thickness of nano film 

catalyst is controlled by the deposition parameter of the respective equipments. 

Sputtering technique is able to deposit metal catalyst directly onto the substrate. Not only 

single metal catalyst but also mixed metal catalyst with another chemical element, such 

as molybdenum, can be deposited using this technique. Two sputtering techniques can be 

used to deposit catalyst particle, namely multilayer sputtering and co-sputtering 

techniques. In the first technique, nano metal catalyst particle and other chemical element 

are deposited layer by layer over the substrate prior to nanotubes synthesis in CVD 

system. In the second method, metal catalyst is mixed with another chemical element 

prior to the deposition process onto the substrate. Well dispersed mixture in the second 

method gives better uniformity of nanotubes yield compared to the first method [3 7]. 

Spin coating technique can be utilized to deposit metal catalyst film onto the substrate. 

Nano particle catalyst is first diluted in toluene solution before the coating process on the 

substrate by spin coater. The concentration of nano particle catalyst in dispersed solution 

will affect the yield ofCNTs [38] 

Nano particle catalyst can also be deposited by using electron beam evaporator. In order 

to avoid interaction between silicon wafer and catalyst layer, catalyst buffer layer is 

formed on the substrate. The buffer layer, such as Al20 3, and metal catalyst particle can 

be deposited using the same equipment [39]. The experiment shows that Alz03 buffer 

layer gives more defective nanotubes compare to nanotubes grown over SiOz buffer layer 

[19]. 
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Sol gel technique can be used for depositing metal catalyst particle onto AI203 layer. The 

metal catalyst is prepared from different metal precursor, specifically Fe(N03)J, 

Fe(acac)J, Co(0Ac)2, and Co(acac)2. Bimetal catalyst particle can be formed either from 

the mixture of Fe(N03)3 and Co(OAc)2 or mixture of Fe(acac)3 and Co(acac)2. Ethylene 

gas is used as carbon feedstock in growing CNT using this technique. This technique had 

shown that the metal precursor Fe(N03)3 gives better activity compare to Fe(acac)3 [40]. 

Another technique to deposit iron catalyst onto Si02 substrate is thermophoresis. In this 

technique, iron catalyst is deposited by using hot wire generator (HWG). The catalyst 

deposition process can be carried out either as ex situ process where HWG is separated 

from precipitator or as in situ process. The particle size is affected by HWG temperature, 

flow rate and separation between HWG and thermophoretic precipitator. Iron catalyst on 

substrate is subjected to reduction process by flowing in H2/N2 gas for 5 minute. The 

carbon feedstock for growing CNT in this method is CO gas. The catalyst deposition by 

using ex situ HWG proven to produce double walled carbon nanotubes whilst in situ 

HWG process, SWNT is produced instead [41]. 

Transition metal such as nickel, cobalt, and iron can be used as catalyst in synthesizing 

carbon nanotubes by using thermal CVD technique. Molybdenum can also be added into 

the catalyst in order to produce high yield nanotubes. Catalyst option is depending on the 

carbon feedstock and temperature while growing CNT. 

Nickel can be used as catalyst in the synthesis of carbon nanotubes. Electron beam 

evaporator has the capability to deposit nickel catalyst onto substrate with the thickness 

variation of I nm to 50 nm. This technique utilized methane as carbon feedstock for 

growing nanotubes. Prior to synthesis process, the catalyzed coated substrate is soaked in 

nitrogen atmosphere at 740°C for 15 minutes. For thick catalyst film of 50 nm, the 

catalyst formation island is not happening hence no carbon nanotubes are synthesized. 

Formation of carbon nanotubes can only be observed at temperature below 700°C [ 42]. 
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Instead of nickel, iron can also be used as catalyst in synthesizing carbon nanotubes. 

Metal vapor vacuum arc with adjustable deposition angle can be used to deposit iron 

catalyst onto the substrate. Nanotubes synthesis is started by flowing in hydrogen for one 

hour in 580°C prior to carbon decomposition. Temperature is elevated until it reached the 

growing temperature in hydrogen atmosphere. Acetylene and hydrogen gas is flown over 

the substrate during nanotubes growing process. The result showed that the deposition 

angle catalyst determines the catalyst particle size which further affect nanotubes 

diameter [ 43]. 

Another catalyst that can be used to grow carbon nanotubes is cobalt. Cobalt deposition 

can be carried out by using spin coating technique. Higher molar catalyst solution creates 

higher particle density over Si02 substrate. The high density catalysts over the substrate 

produce well aligned CNT. The carbon feedstock for this process is acetylene with the 

synthesis temperature of 850°C [ 44]. 

Mixtures of two transition metals have been used for catalyst instead of single metal 

catalyst. Bimetal catalyst in non oxidative atmosphere is prepared by impregnation of 

nickel and iron nitrate. Catalyst reduction process is carried out in hydrogen atmosphere 

for 6 hours at 600°C prior to nanotubes synthesis. In non oxidative environment, mixture 

of two metals as catalyst was found to increase the catalyst activity. Nickel catalyst 

activity can be suppressed when mixture of nickel and iron catalyst being used in 

growing CNT in oxidative environment [45]. In addition carbon nanotubes can also be 

grown over bimetal cobalt iron catalyst coated substrate. The carbon decomposition 

process is carried out at temperature in the range of 823 to 1023 K with ethylene gas as 

carbon feedstock. The main product from ethylene decomposition over AI203 supported 

catalyst is MWCNTs. Without Ah03 supporting layer, graphite crystal is formed [46]. 

Catalyst thickness plays an important role in carbon nanotubes synthesis. The catalyst 

thickness has to proper with nanotubes growing parameter and growing technique. The 

carbon nanotubes are only produced if acetylene is able to diffuse into catalyst cluster. 

Higher temperature results longer diffusion length inside catalyst cluster. Therefore 
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thicker catalyst cluster requires higher temperature for growing carbon nanotubes using 

thermal CVD method [47]. 

2.3.4.3 Synthesizing Process 

Several gases can be utilized as carbon feedstock in carbon nanotubes synthesis namely 

methane, ethylene, acetylene, and carbon monoxide. In addition, ethanol vapor can also 

be used as carbon feedstock for growing nanotubes over nano metal catalyst substrate. 

Methane gas can be used as carbon feedstock in carbon nanotubes synthesis using nickel 

particle catalyst. The respective carbon feedstock and catalyst composition produce 

carbon nanotubes either with bamboo defect or nanofiber form. Nanotubes produced 

using this technique is affected mainly by the growing temperature [ 48]. Growing 

nanotubes using methane as carbon feedstock can also produce "Y" type junction 

nanotubes. The "Y" junction nanotubes are formed on NiO-CuO-MoO coated silicon 

oxide substrate with methane decomposition at 700°C in atmospheric pressure [ 49]. 

MWCNTs have also been reported to be produced by methane decomposition over 

CuS04 coated AI203 substrate [50]. 

Acetylene gas can be utilized as carbon precursor for nanotubes growing process over 

cobalt catalyst on MgO powder. Carbon decomposition over cobalt supported MgO at 

600°C results in MWCNTs. The percentage of cobalt in MgO mixture affects both yield 

and quality of nanotubes. Loading 50% cobalt into MgO gives optimum yield of carbon 

nanotubes whilst loading 25% cobalt results in high quality carbon nanotubes [51]. 

Ethylene gas can be used as carbon feedstock in synthesizing carbon nanotubes. The 

synthesis is carried out in atmospheric pressure with temperature of 600°C. Combination 

ethylene and cyclopentadienly iron lead to MWCNT with typical diameter of 40 nm to 

80 nm [52]. 
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Ethanol is one of the carbon precursors which can be used for synthesizing nanotubes 

over cobalt and iron coated conducting glass, quartz or porous alumina substrate. Ethanol 

decomposition at 700°C over nickel plate has been found to produce carbon nanotubes. 

The yield of carbon nanotubes was found to be affected by supported substrate catalyst. 

Ethanol decomposition over conducting glass produces MWCNTs whilst curled 

SWCNTs would be obtained if nickel plate is used as substrate. Moreover, Cervanteza 

(2005) had discovered the nanotubes diameter grown over porous alumina is smaller than 

the ones on nickel plate [53]. Ethanol decomposition over 5 nm iron catalyst coated 

quartz at atmospheric pressure and oxidizing atmosphere of 850°C yields MWCNTs [54]. 

Temperature and pressure during the synthesis of carbon nanotubes are two factors that 

can affect the yield. Variation of temperature and pressure during the synthesis of carbon 

nanotubes lead to different structure and nanotubes types. 

One of the potential applications of carbon nanotubes is field emission display (FED). 

This application requires hollow carbon nanotubes rather than bamboo shaped nanotubes. 

Decomposition of acetylene gas over nickel catalyst at 550°C for I 0 minutes results in 

hollow nanotubes. The use of lower pressure lower than the atmospheric pressure 

increases the nanotube growth rate [55]. 

Carbon nanotubes synthesis can be carried out at the pressure of 90 Torr. Ethylene is 

flown over nickel catalyst coated substrate for 20 minutes. This technique resulted in well 

aligned nanotubes at 400°C growing process. Higher temperature i.e. 500°C and 600°C 

produced poor alignment with higher growth rate [56]. 

Synthesis of carbon nanotubes over iron catalyst coated Si/Si02 substrate can be carried 

out in CVD rapid heating and cooling system. The synthesis is carried out at I 0 Torr 

pressure with acetylene as carbon feedstock and the growth temperature range of 700°C 

to 900°C. In this technique cooling process to 250°C takes less than 25 seconds. The 

nanotubes growth rate over Si02 was found to increase if the temperature increases. 

Thicker deposited catalyst was found to give larger diameter nanotubes [57]. 
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Carbon nanotubes can be synthesized at 350°C and 500°C using cold wall CYD system. 

Iron and aluminum/iron/aluminum (AI!Fe/AI) thin film can be used as the catalyst. It was 

found that AI!Fe/AI thin catalyst film layer produce high yield nanotubes compared to 

iron catalyst film. Annealing process in NH3 atmosphere was carried out prior to growing 

nanotubes on acetylene atmosphere. At the growth temperature of 500°C narrower 

diameter distribution was obtained compared to the one growing at 350°C. Moreover, 

nanotubes defect was found to be lower when the nanotube synthesis was carried out at 

500°C [58]. 

2.5 Carbon Nanotubes Film Characterization Technique 

2.5.1 Raman Spectroscopy 

Raman Spectroscopy was founded by Sir Chandrasekhar Venkata Raman in 1928. At the 

early stage of spectroscopy development, sunlight collected by telescope was used as 

light source. Various lamp developments have been taken into account in order to achieve 

better excitation source. Mercury lamp was practically used for excitation source. 

Nowadays lasers with variety of wavelength such as Ar+ (351 nm - 514.5 nm) and Y AG 

(1.064 nm) are available for Raman spectroscopy. Starting with detection of Raman 

spectra with naked eye by the inventor, the detector gradually improved to detect more 

sensitive Raman scattering. The detection techniques continuously developed starting 

with the use of photographic plate to photo electronic [59]. 

In order to find out its Raman spectra, the material should be irradiated by high intensity 

laser. The scattered light from sample consist of two components namely Rayleigh 

scattering and Raman scattering. The photon frequency of laser remains the same in 

Rayleigh scattering since there is no photon frequency shifting before and after collision 

with the electron on sample. The photon frequency shifting merely occurs when Raman 

scattering is involved. The scattering frequency of photon is equivalent to the vibrational 

frequency of the molecules in the sample [59]. The displacements of the carbon atoms in 
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radial direction which occur around 165 cm- 1 is calculated as radial breathing mode 

(RBM). Cyclic boundary condition on rolled graphite sheet into tube causes degeneration 

in CNT. The degeneration of tangential mode in nanotubes Raman scattering is 

represented by two peaks around 1582 cm-1
• Disordered band (0-Band) on SWCNTs 

Raman spectra is observed around 1300 cm- 1
• D-Band mode is similar with vibrational 

mode seen in graphite in term of its position and dispersive mature [60]. Hence, Raman 

spectrum analysis with the frequency shift in the of range I 00 to 1800 cm-1 can be used to 

determine nanotubes structure through RBM, D-Band and graphitic band (G-band) 

analysis. 

One of the distinctive properties of SWCNTs is the coherent vibration occurring in radial 

direction known as radial breathing mode (RBM) with the presence of splitting peak in 

G-band region. The information of RBM frequency can be used to extract diameter and 

chirality of CNT [61]. The RBM peaks can occur in several frequency numbers in one 

spot observation. Raman spectra with sufficient intensity can be observed as the 

separation energy Eii and Van Hove singularities is very close to laser excitation energy. 

The observed SWNT must have energy Eii in the range of± 0.10 eV. In nanotubes 

Raman experiment, armchair, and chiral nanotubes have biggest probability to give 

highest signal within resonant energy window [62]. 

Structure and diameter characterization of isolated SWNT can be carried out using 

resonant confocal micro Raman spectroscopy within frequency range of 100 cm- 1 to 

1800 cm-1
. SWCNTs diameter (d1) can be resolved using inverse proportional relationship 

Raman shift frequency to SWNT diameter, accordingly to equation 2.4. 

(2.5) 

Where: ffiRsM: Radial breathing mode frequency 

d1: Single walled carbon nanotubes diameter 
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SWCNTs structural assignment can be ascertained by identifying laser excitation energy 

resonance with the nanotubes. A nanotube is predicted to be in resonance with laser 

within the range of ± 0.1 e V. Nanotubes with specific structure would have high 

resonance possibilities to be selected. SWNT with big chiral angle have higher 

probabilities to give higher Raman intensities [62]. 

Diameter assignment on bundle SWNT can also be determined using Raman 

spectroscopy. Since inter-tubes interactions affect SWNT electronic density of state, the 

correlation between Raman frequencies shifting on bundle SWNT is shown in equation 

2.5 [63]. 

244cm-1 
_1 

OJRBM = +14cm 
d, 

(2.6) 

Where: WRsM: Radial breathing mode frequency 

d1: Single walled carbon nanotubes diameter 

The D-band occurring in the first order Raman spectra is due to a defect induced on 

carbon nanotubes. D-band peak in spectra occurs around 1350 cm· 1
• The peak position is 

affected by laser excitation energy given to the sample. The energy shift of the main peak 

increases with decreasing tube diameter [64]. The graphitic band (G-Band) is observed 

within the range of 1500 to 1600 cm·1 in Raman spectra. The shape and intensity of this 

mode is also affected by laser excitation energy [65]. 

Raman spectroscopy can also be used to characterize the structure of MWCNTs. Zhang 

(2001) found that on highly crystalline MWCNTs, the ratio of D-Band toG-Band (ldllg) 

is less than one [66]. Furthermore Singjai (2007) reported that Raman spectroscopy can 

be utilized to determine MWCNTs on bulk form qualitatively. The higher value of (ld/lg) 

ratio leads to higher conductivity of the bulk nanotubes [20]. 
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2.5.2 Scanning Electron Microscopy 

Since human eyes ability to observe an object is limited beyond the resolution of about 

I 00 iJm, an additional device is required to study micro and nano structure. Scanning 

electron microscopy is a magnification tools which uses electron beam instead of visible 

light to reveal micro or nano structure. 

The electrons source is focused into a fine probe that is rastered over the surface of the 

specimen in vacuum chamber. As the electrons penetrate the surface, a number of 

interactions occur that result in the emission of electrons or photons either from or 

through the surface. A reasonable fraction of the electrons emitted from specimen 

collected by detectors can be used to modulate the brightness image of sample shown in 

display screen [67]. 

Field emission scanning electron microscopy (FESEM) is another type of SEM that can 

be used for studying nano material structure. One of the advantages of using FESEM is 

that the observation result is acquired faster compared to scanning probe m1croscopy 

(SPM). Nanotubes observation using FESEM shows that differences in surface 

electrostatic potential are responsible for the contrast between the nanotubes and 

substrate observed. Increasing magnification, or increasing beam current are found to 

reduce the image contrast [68]. 

2.5.3 Transmission Electron Microscopy 

Transmission electron microscopy can be utilized to observe micro and nano structure 

due to its very high image resolution. On some high voltage TEM instrument the 

resolution higher than 0.2 nm can be acquired. Image captured by TEM is obtained from 

both undeflected and deflected electron that penetrate thin sample (less than 200 nm). A 

series of magnetic lenses over and below the sample position are responsible for 

delivering the signal to a detector. A fluorescent screen, a film plate, or a video camera 

usually used as a detector. TEM offers two methods of specimen observation, diffraction 
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mode and image mode. In diffraction mode, an electron diffraction pattern is obtained on 

the fluorescent screen whilst the image mode produces an image of the illuminated 

sample area. The image can contain contrast brought about by several mechanisms: mass 

contrast, due to spatial separations between distinct atomic constituents; thickness 

contrast, due to non uniformity in sample thickness; diffraction contrast, which in the 

case of crystalline materials results from scattering of the incident electron wave by 

structural defects; and phase contrast [67]. 

Due to the capability of acquiring nano scale high resolution picture, the TEM is widely 

used to characterize the internal structure of carbon nanotubes such as internal diameter, 

growth type and defect on nanotubes wall. In addition, TEM is preferred to be used as 

one of various characterization techniques because of simple preparation and the 

characterization will not make any damage to the nanotubes structure. 

2.5.4 VanDer Pauw Thin Film Resistivity Measurement 

Since film thickness affects the film resistivity and also current flow laterally on thin 

layer, sheet resistance (ohm/square) is used for measuring resistance in thin film. 

A method to measure sheet resistivity is by using Van der Pauw method. One of the 

advantages of using Van der Pauw method is the sheet resistivity measurement that can 

be carried for irregular shape sample. The sheet resistance Rs measurement is given by 

equation 2.6. 

(2.7) 

Where: 
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Van der pauw functionj{R.,!Rb) is equal to one as the contact placed symmetrically about 

a line through any pair of nonadjacent contact [69]. Van der Pauw schematic diagram is 

shown in figure 2.4. 

(a) 

... 
L 

(b) 

Figure 2-4 Vander Pauw technique for thin film resistivity measurement (a) horizontal 

resistivity measurement (b) vertical resistivity measurement. 

Lia et al (2002) reported sheet resistivity measurement using on well oriented carbon 

nanotubes continuous ribbon results in 12.6 x 104 ncm-2 [70]. 

2.5.5 Hall Effect on The Sample 

Hall Effect was discovered by Edwin Hall in 1897. The effect occurs when the magnetic 

field is applied perpendicular to the electron flow on conductance sheet as shown in 

figure 2.5. Due to Lorenz force experienced by charge, the electrons accumulate on a side 

of conductance sheet. Since the conductance sheet is neutral before, then some positive 

ion at another side will be deprived of their compensating electron. The polarity on the 

sheet results in internal electric field between two sheet sides [71]. 
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Figure 2-5 Hall Effect schematic: (1) electron, (2) thin film, (3) Magnet, (4) Magnetic 

field, (5) power supply (72]. 

The internal electric field in correlation with Hall coefficient , current density and 

magnetic field (B) are shown in equation whilst the electron density correlation to hall 

coefficient are shown in equation (2.7) and (2.8) respectively [71]. 

(2.8) 

(2.9) 

Where: & H : Internal electric field RH : Hall coefficient 

J : Current Density 8: Magnetic field 

Ne: Charge carrier density 
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2.6 Carbon Nanotubes Application 

2.6.1 Field Emission Display 

One of the potential applications of nanotubes based devices is field emission display 

(FED) fabricated by using nanotube organic binders. The paste of well dispersed carbon 

nanotubes is squeezed onto the metal patterned sodalime glass through the metal mesh of 

20 f!m in size and subsequently heat treated in order to remove the organic binder. 

Phosphor coated glass is placed over dispersed nanotubes with spacer thicknesses of 

200 f!m. Choi et al (1999) reported that the turn-on field of FED less than I V/mm and 

emission currents of 1.5 rnA at 3 V/mm with current density J 590 mA/cm2 were 

achieved using this technique. Further observation results in the brightness of 1800 cd/m2 

at 3.7 V/mm [73]. 

2.6.2 Solar Cell 

Carbon nanotubes can be used to improve conversion efficiency in dye sensitized solar 

cells (DSCs). Purified nanotubes mixed with sol gel solution, which formed from mixture 

of isoperoxide, isopropanol, nitride acid, and distilled water, followed by drying in 80°C 

for one hour to get Ti02-CNT filtrate. Nanotubes coating over Ti02 improve conversion 

efficiency value around 50% in DSCs [74]. 

2.6.3 Super Capacitor 

Another interesting application of carbon nanotubes is high capacitance electronic device 

for energy storage. Mixing purified carbon nanotubes with phenolic resin powder 

followed by molding process for 15 minutes in I 00°C is the first stage of obtaining high 

capacitance capacitor. The processing then continued with carbonization process of 

sample at 850°C. Chemical treatment using nitride acid and sulfuric acid subjected to the 

sample was found to increase the capacitance of H2S04 electrolyte based capacitor [75]. 
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2.6.4 Molecular Transistor 

Since carbon nanotubes represent new building blocks in nanotechnology, many 

application based on nanotubes have been made using nano manipulation devices. AFM 

can be utilized to make field effect transistor using single SWCNTs. The AFM tip with 

very low force, I 0-50 nN, is employed to interpose the nanotubes in Au electrode [76). 

Dielectrophoresis is another technique to make carbon nanotubes field emission 

transistor. In order to connect nanotubes between electrodes on substrates, purified 

nanotubes are suspended using isopropyl alcohol (IPA) followed by dropping nanotubes 

suspension and subjected to frequency I 0 MHz AC bias. The number of nanotubes 

connects two electrode is affected by dielectrophoresis deposition time, longer deposition 

time results more nanotubes connected in between two electrodes [77]. 

MWCNT can also be used as single electron transistor instead SWCNT. The carbon 

nanotube is positioned on top of two 20-nm thick gold leads using AFM manipulation. 

Contact resistance of 10-20 kV is obtained from heat treatment at 1000 K for 10- 30 s 

after manipulation using AFM. The measured equivalent background charge noise is in 

the range 2x I o·5
- 6xl0·6 /Hz y, at frequencies of I 0-45 Hz [78]. 

2.7 Gas Sensor Based Carbon Nanotubes 

Carbon nanotubes can be used as active sensing element in either chemical or physical 

sensor application [79). The frequency shifting of nanotubes resonator can be utilized to 

detect the presence of gas in a system. One of mostly used techniques is the measurement 

of resistivity or conductance over gas exposure to nanotubes film. The other technique is 

through gas finger print obtained from breakdown voltage in nanotubes electrode. The 

nanotubes based gas sensing method will be explained in detail in following section. 



27 

2.7.1 Carbon Nanotubes Resonators 

Since resonant frequency of a resonator depends on the dielectric constant of the material, 

the shifting frequency of disk resonator due to dielectric changing can be employed for 

sensing application. Carbon nanotubes can be utilized to improve sensitivity on micro 

strip circular disk resonator. Circular disk resonator coated with carbon nanotubes 

0.5 mm in thickness results frequency shifting once exposed to ammonia whilst uncoated 

disk gives no frequency shifting. The shifting is attributed by the changes on effective 

dielectric constant on carbon nanotubes coated substrate since ammonia interacts with 

carbon nanotubes wall. Single walled carbon nanotube was found to give more sensitive 

response compared to multi walled carbon nanotubes disk resonator [80]. 

2. 7.2 Resistivity Variation 

One of implemented technique for gas identification is by detection of resistance 

variation due to gas exposure to nanotubes film. This technique was applied using 

MWCNTs film grown over cobalt catalyst through thermal CVD technique. Upon 

nanotubes sensing element is exposed to NH3, the electrical resistance of the sensors was 

found to increase. Yoon Taek Jang et al (2004) reported that the resistance of test sample 

has slowly recovered to its original state with the typical recovery time was 20 hours. 

Heating treatment in argon atmosphere exposed to sensor at I 00°C leads to faster 

recovery time [81]. 

Mixture carbon nanotubes with Sn02 can be used as active sensing component in gas 

sensing application. In order to get MWCNTs coated Sn02, purified nanotubes was 

dispersed in SnCh solution mixture with HCI. The precipitate was separated from the 

mother liquor by centrifugation. The coating process then followed by drying and 

calcinations respectively. The compound material then dispersed in terpineol to form gas 

sensing element. The sensing method of this sensor is by observation of film resistivity 

due to gas exposure over the substrate. This sensor is very suitable for polluting gaseous. 

The working temperature ofMWCNTs coated Sn02 is 335°C [82]. 



28 

Carbon nanotubes dispersed on polymer composite also can be utilized for sensing 

application. SWCNTs polymer composite is made of mixing the nanotubes with the ethyl 

cellulose solution. The mixed solution then was sprayed sensor substrate to form thin 

films. It was found that polymer mixed nanotubes film exposure to benzene and ethanol 

affect its resistivity. Higher gas concentration exposed to the film results in higher film 

resistivity. The response time to identify gas using material is reported of about 

I 00 seconds [8). 

2.7.3 Ionization 

Another technique to identify gas is through gas ionization technique. The gas ionization 

takes place in between anode and cathode which is connected to high voltage power 

supply. Since breakdown voltage due to gas ionization occurs at particular value, the 

voltage fingerprint can be used for gas identification. The utilization of vertically aligned 

carbon nanotubes as anode results in the lowering of the breakdown voltage due to high 

linear electric field near nanotubes tips. This hastens breakdown process because of the 

formation of conducting filament of highly ionized gas surround nanotubes tips. The 

conducting filament promotes the formation of electron avalanche that bridges the gap 

between the electrodes and allows a self sustaining interelectrode discharge to be created 

at low voltages [83). The gas breakdown voltage will be discussed in more detail in the 

following section 

2.8 Theory of Gas Breakdown Voltage 

2.8.1 Field Emission on Metallic Surface 

Electron on metal surface may leaves when it is subjected to heat or radiated with light. 

Certain threshold electron energy should be possessed or added to the electron in order to 

be able to escape from metal. The energy then named as the work function and denoted 

by¢. The work function value is affected by temperature, surface condition and the 

direction of crystallographic axes. The required minimum energy by the electron to 
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escape from metal is EF +¢where EF is Fermi energy. This energy should be available as 

kinetic energy [84]. 

There are three mechanisms that distinguish electrons released from metal surface, 

specifically thermionic emission, field assisted thermionic emission, and field Emission. 

With thermionic emission, the electron will be released from metal surface as the energy 

in the form of heat is subjected to metal. The current density of thermionic emission is 

calculated using Richardson-Dushman equation as shown in equation 2.9. 

(2.1 0) 

Where: J : Current density 

R: reflection coefficient T: Temperature 

Field assisted thermionic emission occurs in the presence of a strong electric field in the 

heated metal. The metal work function in this mechanism is reduced due to strong 

electric field presence and the current density is given by equation 2.1 0. 

Where: 

J" B,T' •+ (¢-{;£\) l 
/],: 3.79xlo·5 (eVN 11' m .y,) , 

E: Electric field 

(2. I I) 

In ambient temperature, the electron still can be released from metal surface in the 

presence of high electric fields. The current density for field emission is calculated by 

Fowler Nordheim formula as given by equation 2.11. 
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(2.12) 

Where: m: electron mass (9.10938188 X 10-31 Kg) 

h: Planck constant (6.626068 x 10-34 m2 kg/s) 

h: h/2Jr 

The electric field over metal surface is affected by tips radius of surface imperfection. 

The smaller radius will result in higher electric field at the tips. This effect is called as 

field intensification factor and denoted as p. The intensification factor is affected by the 

height and the radius of the tips [85]. 

2.8.2 Gas Ionization 

The process of liberating an electron from a gas molecule with the simultaneous 

production of a positive ion is called ionization. Ionization mechanisms transpire due to 

either collision, photo ionization or the secondary ionization process between electron 

and molecules. In the process of ionization by collision, a free electron collides with a 

neutral gas molecule and gives rise to a new electron and new positive ion. When an 

electric field applied on two parallel electrodes at low pressure gas column, any electron 

at the electrode would be accelerated. Collision occurs between electron and gas 

molecule during the travel toward the anode. If the energy gained during the travel 

between collisions exceeds the energy required to dislodge an electron from its molecular 

atomic shell, then ionization takes place. On the ionization attributed by light, the 

ionization occurs when the amount of radiation energy absorbed by an atom or molecules 

exceed ionization potential. Secondary ionization occurs after collision ionization or 

photo ionization takes place. Positive ions are formed due to ionization. If the total 

energy of positive ion is greater than twice the work function of the metal, then one 

electron will be ejected and secondary electron will neutralize the ion [86]. 
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2.8.3 Gas Breakdown Voltage 

Electrical breakdown of the gas occur due to the regeneration of secondary electrons 

attributed by electron multiplication at low gas pressure under sufficient high electric 

field. Each primary electron results in a secondary electron. The breakdown voltage does 

not occur instantly although the applied electrical field has the critical magnitude to 

regenerate secondary electron. The time interval from the instant of application of voltage 

to complete breakdown is called time lag. The lag arise out of two reasons specifically, 

initial electron require time to be in a favorable position in the gap to lead avalanche 

process and electrons require to build primary avalanche and succeeding generation that 

leads to a current rise at breakdown [85]. 

Hassouba found that gas breakdown voltage is influence by cathode material in the 

electrodes. The measurements show that lower breakdown potentials are associated with 

lower work function of the cathode material. in addition, he found that he minimum 

breakdown potential increases with the increase of the work function of the cathode 

materials [87]. It can be explained that in the material with low work function properties, 

the electron will able to release from the surface of the material on influence relatively 

low electric field. The released electron will then collide with the gas molecule in the 

electrode which further leads to ionization. 

Gas compositions on the electrodes highly influence the gas breakdown voltage. Penning 

effect explain that addition of any gas to a pure gas is able to reduce gas breakdown 

voltage. One of the examples is the addition of small amount argon to neon which lead to 

reduction breakdown voltage argon and neon. The reason of reduction of gas breakdown 

voltage is that the lowest excited state of neon is metastable. The metastable atoms have a 

long life in neon gas, and on hitting argon atoms there is a very high probability of 

ionizing them [88]. 
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Gas breakdown voltage is also influenced by the distance of interelectrode separation. In 

the breakdown field strength is inversely proportional to the distance of interelectrode 

separation. The closer distance of the interelectrode separation, the higher field strength 

will produce in the electrode [88]. Hence, due to the higher electric field over the 

cathode, the electron going to be easier to release from the cathode surface and gain the 

energy for moving to anode. Furthermore, the electron will gain energy in the influence 

of high electric field which further able to ionize gas once collision with gas molecule 

take places 



Chapter 3 :Experimental Procedure 

3.1 Introduction 

This chapter will describe the research methodology of this work followed by explanation 

of carbon nanotubes film substrate preparation, synthesis and characterization 

respectively. The testing of carbon nanotubes film as active sensing element will be 

explained at the end of this chapter. 

3.2 Methodology 

This section describes experimental method of substrate preparation, synthesis, 

characterization and testing of carbon nanotubes film as an active component on 

ionization based gas sensing application. The flow chart of the experimental procedure is 

shown in figure 3.1. 

In this work, carbon nanotubes film was grown over oxide layer of cleaned silicon wafer 

substrate. The dioxide layer was prepared in two different thicknesses in order to study 

the effect of the layer thickness to carbon nanotubes structure. The utilization of iron and 

nickel catalyst film with different catalyst treatments over oxidized silicon substrate was 

aimed to know how the catalysts and its treatment affect the nanotubes structure. The 

synthesis of carbon nanotubes prepared from two different catalysts with various catalyst 

treatments are carried out in the same synthesis parameters. The structural properties of 

synthesized nanotubes were examined using Raman spectroscopy, SEM and TEM. In 

addition, the electrical properties of carbon nanotubes film were examined by Van der 

Pauw and Hall Effects technique. The testing of high crystalline nanotubes film as active 
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component in gas sensor was carried out in testing chamber using ionization mechanism. 

The complete process of this work will be described in detail in following sections. 

Substrate Preparation 

Vander Pouw 

H~ll Ellllc:l 

Characte ization 

Figure 3-l Flow chart of synthesizing high crystalline carbon nanotubes film. 
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3.3 Substrate Preparation 

The silicon wafer substrate was prepared using standard RC cleaning procedure. The 

cleaning process is necessary to remove any contaminants over the wafer substrate such 

as dust, organic contaminant or metallic ion which able to obstruct carbon nanotubes 

synthesis. 

The first stage of RCA cleaning procedures is to remove residual organic contaminants 

particle over the wafer. This process was started by immersing the wafer into 

H20/H20iNH40H solution for 15 minutes. The solution was prepared by mixing 60 mL 

NH40H (27%) and 300 mL of H20. The dissolved ammonia hydroxide then heated to 

70 ± 5°C. Once the mixing solution reached set point temperature, 60 mL of H20 2 (30%) 

was added to the solution. In order to remove ammonia peroxide, the wafer was soaked in 

H20. Dissolve HF solution was introduced to silicon wafer after removing organic 

contaminant process to remove native oxide layer on the wafer. Removing ion and 

metallic contamination particle from wafer was the final stage of RCA cleaning 

procedures. This stage was carried out by immersing the wafer into H20/H20 2/HC1 

solution for 15 minutes. The solution was prepared by mixing 50 mL HCl (37%) with 

200 mL H20 in a Pyrex beaker followed by heating up to 70 ± 5°C over hot plate heater. 

After removing from the heater, H20z (30%) was added into dissolved hydrochloric acid 

solution. The wafer was washed by H20 in order to remove residual hydrochloric acid the 

substrate. 

The silicon dioxide layer was grown over cleaned silicon wafer. The oxide layer is 

required to prevent metal catalyst film reacts with silicon wafer which lead to silicide 

formation. Dry oxidation technique was chosen rather than wet oxidation technique in 

order to obtain better quality of silicon dioxide layer. The relation between dioxide layer 

thickness and oxidation time is shown in figure 3.2. 
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Figure 3-2 Silicon wafer thickness dry oxidation graph [89]. 
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Dry oxidation process is started by heating furnace temperature to 11 00°C. While heating 

to the set point of oxidation temperature, the furnace tube was soaked with argon gas. 

The aim of this process was to remove contaminant inside the tube and to create inert 

atmosphere. The inert atmosphere inside the tube was necessary to prevent prior 

formation of oxide and nitride layer over silicon wafer by ambient oxygen and nitrogen 

respectively. When the furnace temperature reached 11 00°C, the 0 2 gas is introduced into 

the furnace tube for the oxidation process to start. The oxidation is performed at two 

different time, 60 minutes and 210 minutes respectively as shown in figure 3.3 and figure 

3.4. Argon gas is introduced into the furnace after the oxidation process to stop the oxide 

from further growth. 
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Figure 3-3 Silicon wafer oxidation process schematic for 60 minutes. 



37 

r 
Celcius 0 Argon Gas 

1100 - - - . 

~'""':.:: v //////// //////// osph"" 

//////// 
25 //////// 

//////// 

145 Mintrtesf-- 210 Mimrt" ' 180 Mintrtes-J 

Figure 3-4 Silicon wafer oxidation process schematic for 210 minutes. 

3.4 Catalyst Preparation 

The metal catalysts films were deposited over oxidized silicon wafer using electron beam 

evaporator in the pressure of about 3x 10·5 
- 5x l o·5 Torr. The coated catalysts substrates 

were then subjected into two different catalyst treatments. The first group of the catalyst 

coated substrate was loaded into thermal CVD furnace directly for synthesizing process 

without any NH3 etching treatment whilst the second group was annealed in NH3 

atmosphere at 800°C for 20 minutes prior to nanotubes synthesis. Heating up the 

substrate to 800°C and cooling down to ambient temperature was carried in argon 

atmosphere. Flushing furnace chamber by argon gas prior to substrate annealing was to 

ensure there were no trapped contaminants particle inside the chamber and there were no 

reaction between catalysts and undesired gases during heating, annealing and cooling 

down process. The time frame of ammonia annealing process is shown in figure 3.5. 
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Figure 3-5 Catalyst annealing process over argon and ammonia atmosphere. 
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3.5 Carbon Nanotubes Synthesis 

The synthesizing carbon nanotubes film was carried out in quartz tube of 8 em in 

diameter and 40 em in length. Prior to loading catalyst coated substrate into thermal CVD 

furnace, the furnace tube was soaked by argon flow rate of 500 seem for 5 minutes to 

remove contaminant such as dust from quartz tube. The substrate was placed in furnace 

tube followed by heating to 700°C in argon gas atmosphere. Argon gas was required to 

remove trapped oxygen and nitrogen inside the tube and create inert atmosphere. 

Hydrogen with the flow rate of 500 seem was soaked over catalytic coated sample for 

10 minutes prior to MWCNTs synthesis. The substrate reduction process by hydrogen 

convert Fe20 3 and Fe304 become Fe particle over Si02 substrate. The nanotubes synthesis 

was carried out by decomposition of ethylene for 10 minutes at 700°C. Cooling down as 

synthesized nanotubes to 300°C and room temperature was carried out sequentially in 

hydrogen and argon atmosphere respectively. The time sequence diagram of synthesizing 

nanotubes is shown in figure 3.6 whilst the CVD furnace quartz tube is shown in 

figure 3.7. 
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Temp 

Figure 3-6. Carbon nanotubes synthesis process sequence. 
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Figure 3-7 Thermal CVD furnace tube. 

3.6 Scanning Electron Microscopy 

Carbon nanotubes film is assembled of billion individual tubes in nano size diameter, 

therefore the film surface morphology and its cross sectional image is not able to be 

examined through visible light optical microscope. Consequently, higher magnification 

microscope is required to capture image from the nanotubes film. Since SEM use shorter 

wavelength than the optical microscope to capture image from the sample, higher image 

magnification can be obtained by SEM. 

3.6.1 Image Capturing Technique 

The preparation of SEM sample commonly is started by coating the sample with 

conductive material. Since carbon nanotubes film already conductive, sample coating 

with conductive material is not required prior to image capturing. The nanotubes film 

placed inside SEM vacuum column and adhered to sample holder using conductive 

carbon tape. High vacuum was highly necessary to prevent interaction between electrons 

and air particle which impede image capturing from the sample since the image captured 

due to interaction between electron and the sample. Air inside the SEM chamber was 

evacuated using vacuum pump until the chamber pressure reached of l 0-6 mbar. In order 

to capture finest image from the sample, low speed image scanning mode was maintained 
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while capturing Image. Leo 1525 model was used to capture Image from carbon 

nanotubes film. The SEM picture is shown in figure 3.8 

Figure 3-8. Leo 1525 scanning electron microscopy. 

3. 7 High Resolution Transmission Electron Microscopy 

Liquid Nitrogen 

Tank 

Computer 

Sample Column 

The carbon nanotubes sample was then observed using TEM to measure its outer and 

inner diameter. Since TEM resolution is capable up to 0.144 run, the defect inside 

nanotubes layer can be disclosed through TEM image analysis. The analysis of TEM 

image can also be use to reveal growth type of carbon nanotubes, specifically base or tip 

growth type. In this work TEM image was captured using Tecnai 20 transmission 

electron microscopy. 

3.7.1 Sample Preparation for TEM Observation 

Since carbon nanotubes grown over silicon substrate were on agglomerate form whilst 

TEM characterization has to be carried out on thin film, the nanotubes should be 
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dispersed over copper grid to form thin film prior to TEM observation. The nanotubes 

were dissolved into isopropanol solution followed by sonification for 15 minutes in ultra 

sonic bath. A drip of the solution placed over receptacle copper matrix in ambient 

temperature and atmospheric pressure for drying process. The nanotubes image capturing 

was carried out inside TEM chamber at 10·6 mbar in pressure. TEM image of crystalline 

material was obtained mainly through diffraction mechanism between electron and atom. 

Since the diffraction intensity depends on the orientation of crystal atoms planes relative 

to the electron beam, specimen holders was tilted to variety of angles to obtain specific 

diffraction conditions which results in the clearest nanotubes image. 

3.8 Structural Characterization using Raman Spectroscopy 

Raman spectroscopy is a preeminent tool to investigate carbon nanotubes properties since 

SWCNTs diameter, chirality, electronics properties, crystallinity, and sample 

homogeneity revealed through carbon nanotubes Raman spectra analysis. Furthermore, 

Raman spectra of carbon nanotubes can be obtained rapidly in ambient room temperature 

and atmospheric pressure without any sample preparation which may cause damage to 

the sample. 

3.8.1 Carbon Nanotubes Spectra Measurement 

Raman spectroscope uses visible light emitted from laser to investigate spectra of any 

samples. The laser is utilized to excite electron from ground state to virtual state through 

scattering process between photon and electron of a sample. The scattered photon passes 

notch filter before detected by CCD detector. The signal processing system then process 

the signal obtained from detector. In most Raman spectroscope, microscope is attached to 

the spectroscope in order to reduce fluorescence during Raman spectra measurement on 

the sample [90]. 

The calibration of Raman spectroscope pnor to acquire Raman spectra is to obtain 

precise spectra. The first stage of calibration was adjustment of spectra shift. The aim of 
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this stage was to ensure spectra peak only occur in appropriate frequency shift. The 

calibration of Raman spectra detector was carried out after spectra shift calibration. The 

detector calibration was aimed to guarantee that detector only acquire laser with specific 

wavelength. The final stage of Raman spectroscopy calibration was test out the signal 

intensity which can be acquired by detector. Standard bare silicon wafer was utilized as 

testing material in calibration process. If the frequency peak acquired from silicon wafer 

was the same with standard Raman frequency shifting for silicon, the Raman 

spectroscope ready to be used for carbon nanotubes characterization tool. 

Structural characterization of carbon nanotubes was carried out by Raman spectroscope 

(Horiba Jvon). The frequency shifting was traced in the range of 100 cm-1 to 1800 cm-1 

with laser excitation energy of 2.41 eV. The sample was exposed to laser line through 

1 OOx focus lens. There was no sample preparation applied to pristine carbon film prior to 

acquire the Raman spectra. Raman spectroscopy is shown in figure 3. 9 

Raman 

Spectroscopy 

Microscope 

Sample Holder 

Computer 

Figure 3-9 Raman spectroscopy (Horiba Jvon) 



43 

3.9 VanDer Pouw Film Resistivity Measurement 

rn order to obtain sheet resistivity of carbon nanotubes film van der pouw measurement 

technique was applied to the film. Fully automatic [-V meter dedicated for measuring 

sheet resistance was used to reduce error during measurement hence precise measurement 

can be achieved. 

3.9.1 Sample Preparation and Measurement Technique 

Van der Pauw technique was carried out by measuring horizontal and vertical resistivity 

of the sample. In order to reduce ohmic contact as low as possible between sample holder 

connector and carbon nanotubes film, silver paste was used as medium to connect the 

film and the connector. Furthermore, the influence of connector resistivity was 

minimized through short wire connection between sample and measurement system. The 

wire connection was placed so that they were symmetrical about a line through any pair. 

Sheet resistivity of carbon nanotubes film was calculated through 1-V curve measurement 

ofV34 vs 112 and V 14 vs h3 to obtain RA and R8 value, respectively. The sheet resistivity 

can be calculated and obtained using equation 3.1. 

where: R.= V34/I,2 

Rb= v,4/h3 

(3.1) 

The schematic of wire connection to 1-V meter and sample holder is shown in figure 3.10 

and figure 3.11 respectively. 
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Figure 3-10 Vander Pauw measurement connection 

Figure 3-11 Sample connection on Vander Pauw resistivity measurement. 

3.10 Hall Effect Electron Mobility Measurement 

Hall Effects measurement on carbon nanotubes film was carried out to reveal charge 

mobility on the sample. The mobility was quantified using Ecopia Hall Effect 

measurement system as shown in figure 3.12. 
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Figure 3-12 Ecopia Hall Effect measurement device 

3.10.1 Sample Preparation and Measurement Technique 
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The measurement was started by quantify sheet resistance of carbon nanotubes in the 

absence of perpendicular magnetic field pass the film. The ohmic contact between 

nanotubes film and sample holder connector was minimized through silver paste 

soldering. The electron mobility of carbon nanotubes film was measured by placing 

0.510 Tesla magnetic fields perpendicular to the nanotubes film with diagonally current 

injection on the film. This current was required to generate hall voltage across the film. 

Schematically, Hall Effect measurement configuration is shown in figure 3.13. 
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Figure 3-13 Hall Effect measurement configuration. 
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Hall voltage was obtained by applying current to the edge number one and three (1 13) 

whilst the measurement of voltage was carried out in edge number two and four (V 24p) in 

the presence of positive magnetic field. The opposite Hall voltage ( V42p) was obtained by 

applying reverse current to edge number three and one (131 p)· The measurement of VI3P 

and Vm with /42 and / 24, respectively, ware carried out with the same technique. In order 

to obtain V24N, V42N, V13N, and V31 N. reserve magnetic field was applied to the sample. The 

Hall Effect measurement was carried out in room temperature with the absence of light. 

3.11 Gas Ionization Sensor using Carbon Nanotubes Film Testing 

Electric field in between anode and cathode can be generated by connecting conductive 

electrodes plate to voltage source. The electric field over electrodes surface is affected by 

its geometry. The rougher surface and the smaller tips lead to higher electric field. Since 

carbon nanotubes have high aspect ratio and have tiny dimension, the carbon nanotubes 

film is able to create high electric field over the cathode. 

On very high electric field, electron on the cathode is able to release from its orbital. The 

released electrons gain energy from the electric field to move along the electrodes. In non 

elastic collisions between electrons and gas molecules on the electrodes, the internal 

energy level of gas molecule changes. In state of electron energy exceeds ionization 

potential of a gas molecule, gas ionization occur in the electrodes. The ionization 

potential is unique in wide range of gases. This property can be used for sensing presence 

of any gas. 

The schematic of gas sensmg application based on ionization method usmg carbon 

nanotubes film is shown in figure 3.14. 
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Figure 3-14 Carbon nanotubes as active component on gas sensor. 
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The active component of gas sensor was made of carbon nanotubes film cathode and 

aluminum (99%) film anode. Carbon nanotubes film used in this experiment was 

10 mm x 10 mm in size whilst the typical individual nanotubes diameter length of about 

18 to 40 nm with length of about 1.5 IJ.m. 

3.11.1 Gas Sensor Apparatus Setup 

In order to test carbon nanotubes as active component on gas sensmg application, 

prepared MWCNTs film was placed inside gas testing vacuum chamber made of stainless 

steel. The chamber was connected to oil free turbo vacuum pump for evacuating air 

inside the camber prior to testing. Moreover, vacuuming process aim to ensure there was 

no other contaminant gas involve during the testing. The active component of gas sensor 

was connected to ammeter and variable DC high voltage power supply capable of 500 V. 

In order to reduce as low as possible ohmic contact between MWCNTs film and wire, 

silver paste was used as connector instead standard tin. The gap between MWCNTs 

anode film to metallic film was controlled by high precision micrometer connected to the 

electrodes holder. The volume of flown gas into chamber was measured and controlled 

through gas flow controller. In order to identify gas breakdown voltage, ammeter was 

serially connected to high voltage power supply whilst volt meter was connected parallel. 

Schematically, the testing process is shown in figure 3.15 whilst complete setup is shown 

in figure 3.16. 
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Figure 3-15 Gas sensor testing schematic. 
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Figure 3-16 Complete setup of carbon nanotubes based gas sensor testing. 

3.11.2 Gas Sensor Testing Process 
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Prior to testing process, gas testing chamber was vacuumed. The process then continued 

by flowing gas into testing chamber which is controlled by gas flow controller. High 

voltage power supply connected to the electrodes was increased gradually until 

breakdown voltage occurs. The voltage was switched off promptly once gas breakdown 

voltage detected in between the electrodes. 



Chapter 4 :Results and Discussions 

4.1 Introduction 

This chapter will explain the result and discussion of this work. The discussion is started 

by the explanation of silicon oxide thickness effect to carbon nanotubes morphology 

followed by the discussion of catalyst effect to nanotubes structure using SEM. The 

discussion then continued by revealing the effect of carbon nanotubes catalyst and its 

treatment to nanotubes structure using Raman spectroscopy. In addition, the effect of 

catalyst to nanotubes structure will also be disclosed using TEM analysis. The resistivity 

and electron mobility of carbon nanotubes film will be discussed through Vander Pauw 

and Hall Effect technique analysis. The results of testing carbon nanotubes film as active 

sensing element on ionization based gas sensing will be discussed of this chapter. 

4.2 Scanning Electron Microscopy Analysis of CNTs Film 

The morphology of carbon nanotubes grown over various substrate preparations are 

presented in this section. The discussion was begun with the observation of carbon 

nanotubes yield as the effect of oxide thickness. The effect of utilization iron and nickel 

catalyst film to nanotubes film morphology was also discussed. The morphology of the 

nanotubes film was revealed through SEM images. 

4.2.1 Effect Si02 Layer Thickness to CNTs Film Morphology 

The analysis of carbon nanotubes grown over two different thickness of silicon dioxide 

layer is presented. The oxide layer of the first substrate was prepared by 60 minutes 
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oxidation whilst the second substrate was prepared by 21 0 minutes oxidation. The 

estimated thickness of oxide layer grown over silicon substrate according to silicon 

oxidation chart was about of 100 run and 200 run respectively. Carbon nanotubes grown 

on two different substrates are shown in figure 4.1 and figure 4.2. 

Figure 4-1 shows carbon nanotubes and granular particles formed over the substrate. 

EDX measurement reveals that the granular particles are mainly composed of silicon and 

iron compounds. The formation of iron silicide particle is due to insufficient silicon 

dioxide layer to prevent reaction between deposited iron film and silicon wafer while 

synthesizing carbon nanotubes. Although silicon dioxide layer have been formed over 

silicon substrate, heavy reduction process in high temperature ammonia and hydrogen 

atmosphere prior to carbon nanotubes synthesis are expected to etch the oxide layer and 

further exposed the underlying silicon layer. The absence of silicon dioxide layer as 

buffer layer causes metal catalyst to react with silicon substrate. Hence reaction between 

silicon and iron catalyst at high temperature produces iron silicide and iron compound, 

which is catalytically inactive that can hinder carbon nanotubes growth [91]. However a 

number of carbon nanotubes can be observed interposed between silicide granules. The 

small amounts of carbon nanotubes grown in between silicide are due to iron clusters 

attached to iron silicide [92]. 

Figure 4-1 Carbon nanotubes grown over 100 run Si02. 
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Figure 4-2 Carbon nanotubes grown over 200 run Si02. 

As notice in figure 4.2, thicker silicon dioxide layer (200 run) leads to higher yield carbon 

nanotubes without any silicide formation. The absence of silicide formation is due to 

thicker silicon dioxide layer that is sufficient to prevent chemical reaction between iron 

and silicon wafer. Since iron catalyst film does not react with silicon dioxide at high 

temperature hydrogen and ammonia atmosphere, the continuous iron thin film 

transformed into isolated catalyst islands [93]. Due to chemical stability, iron particles 

become saturated or supersaturated with carbon atoms at the growth temperature. This 

condition allows precipitation of carbon from the surface of the iron particle which leads 

to the formation of tubular carbon solids in sp2 structure [91]. 

4.2.2 Catalyst Effect on Carbon Nanotubes Growth 

Structure and morphology of carbon nanotubes are highly influenced by the metal 

catalyst used and synthesis technique. The effects of various metal catalysts to nanotubes 

morphology grown using thermal CVD technique were examined through utilization of 

iron and nickel as the catalysts. Field emission scanning electron microscopy (FESEM) 

images of carbon nanotubes grown over iron and nickel catalyst are shown in figure 4.3 

and figure 4.5 whilst higher magnification image of iron and nickel catalyzed carbon 

nanotubes grown are shown in figure 4.4 and figure 4.6 respectively. 
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Figure 4-3 Cross sectional view ofCNT obtained using iron catalyst. 

Figure 4-4 Higher magnification of carbon nanotubes grown over iron catalyst film. 
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Figure 4-5 Cross sectional view of CNT grown on nickel coated silicon wafer. 

Figure 4-6 High magnification of carbon nanotubes grown over nickel catalyst. 

Figure 4-3 and figure 4.4 show cross sectional image of carbon nanotubes grown over 

iron catalyst at low and high magnification respectively. Figure 4-3 shows carbon 

nanotubes are some vertically random grown whilst other area of image shows more 

random growth. From figure 4.3, typical nanotubes lengths grown over iron catalyst film 

are of about 1.5 IJ.m. The random growth of carbon nanotubes is expected due to the 
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widely spread nano particle islands resulting in either vertically or horizontally growth of 

carbon nanotubes. In this experiment wide catalyst island spacing is attributed to 

ammonia etching treatment. J.I Sohn (2002) found that continuous iron catalyst film 

transforms into either nano or submicron sized particle islands under ammonia treatment 

atmosphere of about 800°C. [94]. Figure 4-4 shows smooth shape carbon nanotubes 

obtained from carbon feedstock decomposition over iron catalyst layer. Visual 

observation of FESEM indicates that typical diameter of carbon nanotubes is 18 run. This 

finding of reasonably narrow diameter carbon nanotubes is agreed with the analysis 

obtained from Raman spectroscopy. 

Figure 4-5 shows carbon nanotubes grown over nickel catalyst coated Si02 substrate. 

Carbon nanotubes synthesized over nickel catalyst are found to be more defective than 

the nanotubes synthesized over iron catalyst film. Nanotubes appear to be curlier 

compared to the one obtained using iron catalyst. 

Higher magnification image of carbon nanotubes grown over nickel film catalyst is 

shown in figure 4.6. Typical diameters of synthesized carbon nanotubes are measured 

here is around 34 run. Nickel catalyst film had deformed into nano catalyst islands after 

been subjected to ammonia etching process at high temperature. The deformations of 

catalyst size also take place prior to carbon nanotubes synthesis. Chunnian He et a! 

(2006) show annealing temperature of nickel catalyst particle in hydrogen atmosphere 

highly influences the nickel catalyst particle size. The annealing of nickel colloid at 

temperature in the range of 400°C to 600°C in hydrogen atmosphere was reported to 

increasing nickel catalyst particle to the range of II to 15 run [95]. 

4.3 Raman Spectroscopy 

The crystallinity of nanotubes structure grown over iron and nickel thin film with 

different catalyst treatment is discussed in following section. The discussion is started by 

elucidating the effect of two metallic catalysts to the nanotubes structure. The discussion 

of the influence of ammonia etching to nanotubes crystallinity is also discussed. 
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4.3.1 Effect of Different Catalyst on Carbon Nanotubes Structure 

The evaluation of nanotubes crystallinity grown on different catalyst layer was carried 

out by Raman spectroscopy in frequency resonant range of 100 cm· 1 to 1800 cm·1 with 

laser excitation energy of 2.41 eV. Raman spectrum of carbon nanotubes obtained from 

iron and nickel catalysts are shown in figure 4.7 and figure 4.8 respectively. 

! 

I 

Figure 4-7 Raman spectroscopy ofMWCNTs grown on iron coated Si02 substrate. 
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Figure 4-8 Raman spectroscopy ofMWCNTs grown on nickel coated Si02 substrate. 
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Table 4-1 Raman Detail of MWCNTS Sample Grown on Different Catalysts 

Catalyst RBM D-band G-band Id/Ig Iglls 

Fe 220 cm- 1 1350 cm- 1 1578 cm- 1 0_83 6_83 

Nickel - 1351 cm- 1 1592 cm- 1 1.13 0.12 

The spectra in figure 4.7 and figure 4.8 show the absence of peak splitting of G-band. 

The appearance of the G-band splitting in the spectrum is an indication of single walled 

type of carbon nanotubes. The G-band of SWCNTs consist of two main components, one 

peak at 1590 em-' (G+) and the other peak close to 1570 em-' (G-) [96]. Since G-band 

peak splitting was not found in the nanotubes spectra, ethylene decomposition over iron 

and nickel catalyst yield MWCNTs instead of SWCNTs. 

Since the D-band on nanotubes Raman spectra arise from its structural defect [64] whilst 

G-band indicating formation of well graphitized carbon nanotubes [97], the ratio of 

G-band to D-band (Id/Ig) is commonly used to determine crystallinity of nanotubes 

sample [20, 51, 98, 99]. From Table 4-1, crystallinity ofMWCNTs grown over iron and 

nickel catalyst layer is IJig ratio 0.83 and 1.13 respectively. Since utilization of iron 

catalyst gives lower ratio of IJig than nickel catalyst, carbon nanotubes sample with iron 

catalyst gives higher crystallinity nanotubes compared to the one with nickel catalyst. 

This result agrees with the observation of FESEM image which shows that utilization of 

iron catalyst gives suave shape nanotubes compared to the nickel catalyst which results in 

defective nanotubes. 

In addition, Young Soo Park et al (200 1) suggested that the low intensity ratio of D­

band toG-Band on Raman spectroscopy indicates that nanotubes sample contain a small 

amount of amorphous carbon [97]. This implies that the synthesis utilizing iron catalyst 

film yield better quality nanotubes with lower amorphous carbon compared to MWCNTs 

synthesized over nickel catalyst layer. 
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The Raman signal appeared as two prominent peaks occurnng around 521 cm-1 and 

1000 em -I. Those peaks originate from the first and second order Raman spectrum of 

silicon. The first order peak of silicon can be utilized for calibration of nanotubes spectra 

[62]. Since the silicon peak obtained in spectrum is the same as standard silicon peak, the 

measurement of nanotubes spectra was carried out accurately. Furthermore the intensity 

ratio of G-band to first order peak intensity of silicon (Iglls) can be utilized to 

approximate the yield of carbon nanotubes [39]. Obviously, on the spectrum of nanotubes 

grown over iron catalyst layer, prominent silicon peak is hardly observed. This is to be 

expected that the silicon substrate is fully covered by densely populated nanotubes. 

Therefore Raman spectroscopy laser has not been able to penetrate passes the nanotubes 

layer to produce silicon peak. The intensity ratio of lg/15 on carbon nanotubes grown over 

iron catalyst is 6.83, whilst lower ratio (Iglls = 0.12) is obtained by carbon nanotubes 

grown over nickel catalyst. Hence utilizing iron as the catalyst will give higher yield of 

carbon nanotubes compared to the one using nickel catalyst. 

Raman spectrum obtained from the nanotubes grown over iron catalyst film shows RBM 

peak of around 200 cm- 1
• The low frequency of Raman spectra observed in MWCNTs is 

also suggested from the same origin as SWNT (100]. The presence RBM peak in 

MWCNTs indicate small diameter of carbon nanotubes. The smaller diameter leads to 

less number of walls inside the nanotubes. As the consequence, most inner diameter of 

MWCNTs is able to vibrate which result RBM peak on Raman spectra [100]. The 

appearance of RBM on MWCNTs sample was also obtained by Y. Ando et al (2002) 

from MWCNTs produced through Helium DC arc discharge technique [101]. J.M Benoit 

et al (2002) suggested that the purification method plays an important role since the RBM 

peak on Raman spectra is only observe on pure nanotubes sample. On unclean nanotubes 

sample RBM peak could not be observed due to the presence of carbonaceous compound 

[100]. The presence of RBM peak on the MWCNTs sample implies that the synthesis 

technique in this work is able to produces nanotubes with less carbonaceous compound. 
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4.3.2 Effect of Ammonia Etching on Carbon Nanotubes Structure 

The effect of catalyst etching at high temperature ammonia on the crystallinity of carbon 

nanotubes through Raman analysis will be discussed in this section. Raman spectrum of 

nanotubes grown over etched iron and nickel catalyst are shown in figure 4.9 and 

figure 4.10 respectively. 
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Figure 4-9 Raman spectra of carbon nanotubes grown on etch and non etch iron catalyst. 
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Figure 4-l 0 Raman spectra of carbon nanotubes grown on etch and non etch nickel 

catalyst. 
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Table 4-2 Ratio ofid/Ig for Carbon Nanotubes Subjected to Ammonia Etching 

Catalyst ld/IgRatio 

Treatment Iron Catalyst Nickel Catalyst 

Etching 0.85 1.2 

Non Etching 1.15 1.1 

Table 4-2 shows that carbon nanotubes grown over etched iron catalyst gives the highest 

crystallinity value whilst non etched iron and nickel catalyst give about the same value. 

Cheol et al (2002) reported that carbon nanotubes sample with iron catalyst subjected to 

ammonia etching results in higher crystallinity carbon nanotubes compared to the one 

obtained from nickel catalyst with the same treatment. Cheol (2002) suggested that low 

Id/Ig ratio represents low defective nanotubes as confirmed by TEM which showed high 

crystalline nanotubes wall [102]. Jung Inn Sohn et al (2002) had printed out that 

ammonia treatment prior to carbon nanotubes growth has been able to break the 

continuous catalyst film into nano particle islands and reduce oxide layer formed over 

metal catalyst. The absence of oxide layer and the presence of nano particles reactive lead 

to reactive carbon atom to dissolve efficiently and precipitated into highly crystalline 

nanotubes [94]. 

4.4 Transmission Electron Microscopy 

Since SEM is unable to observe the inner structure of nanotubes which would be reveal 

its growth type, further nanotubes structure observation should be carried out by 

transmission electron microscopy. 

4.4.1 Catalyst Effect on Carbon Nanotubes Structure 

Figure 4-ll and figure 4.12 show carbon nanotubes grown over iron and nickel catalyst 

film respectively. 



Figure 4-11. TEM image of carbon nanotubes grown over iron catalyst. Inset: carbon 

nanotubes tips. 

Figure 4-12. TEM image of carbon nanotubes grown over nickel film catalyst. 
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As shown in the inset of figure 4.11 there is no catalyst particle found at nanotube tip 

hence it is suggested that carbon nanotubes growth is growth base type. As seen in 

figure 4.11 and figure 4.12, carbon nanotubes grown over iron catalyst gives better 

crystallinity than nanotubes grown over nickel catalyst. TEM results agree with Raman 

spectroscopy analysis which show higher crystallinity obtained from carbon nanotubes 

grown over iron catalyst. Moreover smaller inner diameter observed in carbon nanotubes 

grown over iron catalyst is well confirmed with Raman spectroscopy result which shows 

the presence of RBM peak. Similar observation of better crystallinity with iron catalyst 

had been reported by Cheol et al (2002) who had use thermal CYD technique [102]. 

From this result, it is suggested that catalyst affects the nanotubes crystallinity with 

higher crystallinity is obtained by using iron film catalyst. 

4.5 Carbon Nanotubes Film Resistivity Measurement 

The sheet resistivity of carbon nanotube film from different metal catalyst was examined 

by using Van der Pauw resistivity measurement technique in four point probe 

configuration. In this experiment it is found that the sheet resistivity value of carbon 

nanotubes film grown over iron and nickel catalyst is 51xl04 and 75x104 ncm·2 

respectively. This value is agreeable with the value obtained by using four point probe 

resistivity technique for well oriented nanotubes ribbon [70]. Singjai et al (2007) 

suggested that there is a correlation between resistivity and carbon nanotubes 

crystallinity. Higher nanotubes crystallinity was found to have smaller sheet resistance 

value [20]. This can be explained by the high mobility electrons in high crystallinity 

nanotubes since no structural defects obstruct their movement in the nanotubes wall. In 

addition, on the deformed carbon nanotubes, the chemical bounding of nanotubes in some 

region had transformed from sp2 to sp3 mode [ 103 ]. Since electrical transport on carbon 

nanotubes is dominated by spz, the transformation of chemical bounding to sp3 mode 

would lead to the reduction of nanotubes conductivity. 
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4.6 Hall Effect on Carbon Nanotubes Film 

The transport properties of nanotubes film such as carrier type and mobility were 
examined through Hall Effect measurement using configuration shown in figure 4.13. 
The obtained result is tabulated in table 4-3. 

Iron 

2 2 

T T 

3 3 

(a) (b) 

Figure 4-13 Hall effect measurement configuration (a) Yxxp measurement 

(b) V xxn measurement 

Table 4-3 Hall Voltage of Carbon Nanotubes Film 

Vc Vd Ve Vf Hall voltag_e offset (mV) 
-0,039 0,029 0,029 -0,026 -0,007 

Nickel -0,007 -0,003 -0,008 0,009 -0,009 

The carrier types in carbon nanotubes film, whether n-type or p-type, are determined 

from total summation of Hall offset voltage which is shown in equation 4.1. 

Where: 

{
Total Hall offiet Voltage < 0 ;n- type 

Vc + Vd + v. + v1 - - -
Total_ Hall_ offiet _Voltage > 0 ; p- type 

= v24p- v24n 

= v13p- v13n 

= v42p- v42n 

= v31p- v31n 

(4.1) 

As shown in table 4-3, both carbon nanotubes grown on nickel and iron catalysts give 

negative total offset voltage. Therefore carrier type on carbon nanotubes film is of n-type. 



Sheet carrier density (ns) of nanotubes film is calculated using equation 4.2 

Where: 

8x1o-s IB 
n = 1--------1 

s q(Vc + Vd + V, + VI) 

J1 = Hall mobility 

q = electrical charge = 1.602 X 1 o-19 Coulomb 

I =Current 

B= Magnetic field 
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(4.2) 

(4.3) 

From equation 4.3, electron mobility of iron and nickel catalyzed MWCNTs are found to 

be 3.36 x 103 cm2/Vs and 2.94 x 103 cm2Ns respectively. This result is observed to be 

lower than vertically aligned MWCNTs film reported by Saravanan (2005) which the 

value is 14.4 x 103 cm2Ns [104]. The lower electron mobility on nanotubes film is 

expected due to by not well oriented nanotubes which hinder electron movement on the 

film. 

4.7 Carbon Nanotubes Based Gas Sensor Application 

The sensing properties discussion is started by analyzing the breakdown voltage of 

various gases followed by the effect of interelectrode separation on the gas breakdown 

voltage. The next following section will discuss the effect of the gas volume content on 

the testing chamber to the sensing properties of nanotubes. The other output sensing 

properties discussion namely operating temperature is also included in this chapter. 

4.7.1 Gases Breakdown Voltage 

In order to study the breakdown voltage of various gases, the sensor setup with 80 ).lm 

interelectrode separation was subjected to the 10 mL gas. The result is shown in figure 
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4.13 and tabulated in table 4-4. Detail measurement of gas breakdown voltage can be 

found in Appendix B. 
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Figure 4-14. Breakdown voltage of 10 mL gas on 80 J.Lm interelectrode separation. 

Table 4-4 Gas Breakdown Voltage of Various Gases at 80 J.Lm Interelectrode Separation 

Gas Breakdown voltage (Volt) 

Helium 134 

Argon 236 

Air 320 

2% hydrogen in air 260 

Ammonia 298 

Modi et al (2003) found that utilization of aluminum on both anode and cathode film with 

interelectrode separation of 30 to 160 J.Lm leads to air breakdown voltage of about 350 to 

1050 V. Air breakdown voltage was found of about 950 V in 140 J.Lm interelectrode 
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separation of aluminum anode and cathode [83]. On this work, the same 140 11m 

interelectrode configuration with utilization of carbon nanotubes film cathode and 

aluminum film anode lead to air breakdown voltage of about 440 volt. Hence, the use of 

carbon nanotubes film had managed to reduce the breakdown voltage by about 58%. 

As observed in figure 4.3, helium gives the lowest breakdown value of 134 V whilst the 

highest value is obtained for air. The breakdown voltage of respective gas can be 

explained through molecule mean free path approach. The gases mean free path value is 

ordered from the highest value to lowest as follow: Attclium > Attydrogcn > Aargon > Aair > 

Aammonia· Higher mean free path lead to higher energy gained by the electron [ l 05]. Since 

helium mean free path is the highest among the other gases, electron move due to electric 

field on helium gas gain the highest energy compare to other gases in the same electric 

field. Hence, in the same electric field, helium is easier to be ionized by high energy 

electron collision. Naturally, the breakdown voltage of argon and air will have higher 

value. 

It is obvious in figure 4.13, that 2% hydrogen mixture in air is capable of reducing air 

breakdown voltage by about 60 V. The reduction in the breakdown voltage is due to prior 

ionization of hydrogen in air, since hydrogen mean free path is higher than air. Moreover, 

the reduction of breakdown voltage is attributed to the penning effect on the mixture gas. 

The effect explains that the lowering of gas breakdown voltage is due to lower ionization 

energy of one species gas in the gas mixture. Since hydrogen have lower ionization 

energy compared to other gas components (nitrogen and oxygen) in dry purified air, at 

the same electric field the ionization of hydrogen molecules occur earlier than nitrogen or 

oxygen molecules. Hence the 2% mixture hydrogen in air results in lower breakdown 

voltage compared to breakdown voltage in purified air. 

The breakdown voltage of ammonia was found to be lower than atr, despite having 

higher mean free path than air. The reduction of breakdown voltage is attributed to 

molecule polarization properties of ammonia. Comparing to air, ammonia molecule has 

dipole moment which leads to molecule polarization. Ionization in polar molecule 
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requires less energy compared to non polar molecule such as nitrogen and oxygen. 

Therefore, collisions between ammonia molecules and electron would ionize the gas at 

lower electric field compared to the air. 

As shown in table 4-5, the breakdown voltage difference of each gas to the other is quite 

prominent. The smallest difference occurs between ammonia and air (22 V) whilst the 

highest occurs between helium and air ( 186 V). Although breakdown voltage deviation 

between ammonia and air quite small, this sensor still can be used to distinguish these 

gasses. Explanation relating to the effect gas volume content on the breakdown voltage 

will be discussed in detail in section 4.6.3. 

Table 4-5 Difference of Gasses Breakdown Voltage. 

Gas Helium Argon Air 2% Hydrogen in Air Ammonia 

Helium 102 186 126 164 
' 

Argon 84 24 62 

Air 60 22 

2% hydrogen in air 38 

Ammonia 

4. 7.2 lnterelectrode Separation Effect 

To study the effect of interelectrode separation on the breakdown voltage, a number of 

interelectrode separations of nanotubes cathode and aluminum anode are examined. A 

plot of interelectrode gap to breakdown voltage is shown in figure 4.14 and the values are 

tabulated in table 4-6. 
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Figure 4-15 Effect of interelectrode separation to breakdown voltage. 

Table 4-6 Breakdown Voltage on Various Interelectrode Separation 

lnterelectrode Gas Breakdown Voltage_iVolt) 
separation (mm) Helium Ar!lon Air 2% Hvdro!len in Air Ammonia 

80 134 236 320 260 298 
100 144 264 364 286 328 
120 194 300 388 340 374 
140 256 335 440 392 408 
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It can be seen from figure 4.14 that the increments in interelectrode separation lead to 

higher breakdown voltage. Increasing the electrode gap would result in the reduction of 

electric field between anode and cathode. As the effect, energy gained by the electron 

from electric field is not sufficient to ionize gas molecule since the electron kinetic 

energy is lower than gas molecule ionization potential. Hence, for wider interelectrode 

separation, higher electric field is required to generate gas ionization caused by the 

collision between electrons and gas molecules. 
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4.7.3 Gas Volume Content Effect 

The sensitivity of gas sensor to detect the presence of gas is examined by flown in 

various gases into the vacuum chamber in the different gas volume content. The volume 

is controlled by gas flowrate outfitted to the chamber. Figure 4-16 shows the testing 

result of this sensing property whilst the exact values of breakdown voltage of gas 

sensors are tabulated in table 4-7. 
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Figure 4-16. Effect of gas volume content to breakdown voltage. 

Table 4-7 Breakdown Voltage on Various Gas Volume Content. 

Gas Volume (ml) 
Gas Breakdown Voltage (Volt) 

Helium Argon Air 2% Hydrogen in Air Ammonia 
5 122 232 310 254 296 
10 .134 "236 320 260 ,298 
20 134 236 316 250 298 
40 132 .226 318 2"52 304 
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It is observed in figure 4.15 that the additional gas volume content does not significantly 

affect the breakdown voltage of each gas. Modi et a! (2003) suggest that the behavior of 

breakdown over nanotubes and aluminum plate is dominated by highly nonlinear electric 

field over nanotubes cathode. This phenomenon reduces the sensitivity of the breakdown 

voltage to the number of the gas molecule [83]. 

4.7.4 Time Lag and Operating Temperature 

In this work, transition time from zero current to the appearance of the breakdown 

voltage is defined as the response time. For accurate measurement, interelectrode voltage 

increases gradually at about 2 Volt/second. In our experiment it was recorded that the 

transition time of current happens within a second. 

The experiment was carried out at room temperature without applying any heat treatment 

to the nanotubes film which is used as the active component in the gas sensor setup. 

4.8 Summary 

This work can be classified into three main stages specifically synthesis, characterization, 

and testing carbon nanotubes as active component on gas sensor. The experiment shows 

that the oxide layer of silicon substrate influence the carbon nanotubes yield. The yield of 

carbon nanotubes grown over the oxide layer thickness of about 100 run is very low and 

dominated by silicide formation. However, on the oxide layer thickness of about 200 run 

high yield carbon nanotubes film is obtained without any silicide formation. The study of 

catalyst effect to nanotubes structure and electrical properties using Raman spectroscopy 

shows that carbon nanotubes grown over iron catalyst give better crystallinity compare to 

nanotubes grown over nickel catalyst. In addition, utilization of iron thin film as the 

catalyst leads to higher conductivity and mobility nanotubes film compare to utilization 

of nickel thin film catalyst. The examination of catalyst treatment discloses that the high 

temperature ammonia atmosphere subjected to iron catalyst coated substrate gives better 

crystallinity than the one without any catalyst treatment. Testing carbon nanotubes film 
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as active component in gas sensor reveals that the reduction of interelectrode separation 

results in the lowering of breakdown voltage. The testing also shows that the breakdown 

voltage over 5 rnL to 40 mL would lead to no significant breakdown voltage variation of 

tested gases. Breakdown voltage testing over various 10 rnL gases on 80 J.Lm 

interelectrode separation reveals that helium gives the lowest breakdown voltage of 

134 V whilst the highest breakdown voltage is obtained for air. The mixture of 2% 

hydrogen in air is capable of reducing gas breakdown voltage by about 60 V. The gas 

sensor is also found to operate at room temperature. 
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Chapter 5 :Conclusions and Recommendations 

5.1 Introduction 

The conclusion of synthesis, characterization and testing carbon nanotubes film for 

sensing application is discussed at the beginning of this chapter. The section after 

conclusion will be recommendation for future work. The benefit of this work will be 

explained at the end of this chapter. 

5.2 Conclusions 

The development of carbon nanotubes film has been carried out by synthesizing carbon 

nanotubes and characterizing its properties. The optimum parameter for synthesizing 

carbon nanotubes film by ethylene decomposition over the metal catalyst using thermal 

CVD technique had been found. Testing gas breakdown voltage over metal - carbon 

nanotubes film electrode has been carried out successfully. The testing reveals 

breakdown voltage over various gases, and also discloses the effect of interelectrode 

separation and gas volume content to the breakdown voltages 

The high yield carbon nanotubes film without any silicide formation is obtained from the 

decomposition of carbon feedstock on metal catalyst over oxide layer thickness of about 

200 nm. Highly crystalline carbon nanotubes are obtained by utilization of iron as 

catalyst in the nanotubes synthesis. In addition, utilization of iron thin film as catalyst 

results in higher conductivity and mobility of carbon nanotubes film compared to the one 

using nickel catalyst. Hollow and less defective site of carbon nanotubes is also obtained 

from the use of iron catalyst on the nanotubes synthesis. The iron catalyst treatment on 
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high temperature ammonia atmosphere was found to give high crystalline carbon 

nanotubes. 

The testing of metal - nanotubes film electrodes in room temperature over various gases 

reveals that the breakdown voltage is unique for every gas. The breakdown voltage of 

each gas is ordered from the lowest to the highest value as the following order: helium, 

argon, 2% hydrogen in air, ammonia, and air. The testing also reveals that gas volume 

content does not affect the gas breakdown voltage. Furthermore, it was shown that the 

gas breakdown Voltage can be decreased by reducing interelectrode separation. From 

these results it can be concluded that carbon nanotubes film promising to be used for gas 

sensing application. 

5.3 Recommendations 

Based on this work, some recommendations for future work that may gives deeper insight 

into ionization based gas sensor using carbon nanotubes are listed in this section. 

At first, further study on the synthesis of vertically aligned carbon nanotubes is highly 

necessary. The vertically aligned carbon nanotubes as cathode are believed to give lower 

breakdown voltage since it is expected to give higher electric field in-between the 

electrodes. In order to obtain the aligned nanotubes, either Ah03 [1 06] or thick Si02 is 

suggested to be used as catalyst buffer. Porous Ah03 layer suppose to give better support 

area which is expected to improve the capability of diffusion of atom carbon to metal 

catalyst hence better alignment nanotubes can be obtained. 

Secondly, since the breakdown voltage on mixture gas is affected by its composition, the 

testing on various concentrations with two or more mixture gas is suggested to be carried 

out. Hence more gases can be identified using this sensing mechanism. 
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5.4 Benefits 

The benefits of ionization mechanism based gas sensing application using multiwalled 

carbon nanotubes are: 

I. The utilization of carbon nanotubes film as cathode is able to reduce breakdown 

voltage of about 58% compared to aluminum film cathode. 

2. The gas breakdown voltage creates finger print that can be used for identifying 

various gases using single sensor. 

3. The ionization mechanism for gas detection capable of operating at room 

temperature. 

4. Due to the design of sensing element is not complicated and easy integration with 

sensor electrical part, this sensing configuration is promising for low cost production .. 
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Appendix A: Vander Pauw Sheet Resistance Measurement 
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Second Run [Sample subjected to Positive Voltage] 
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Appendix B: Gas Breakdown Voltage 
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Gas Gap Distance Gas Volume (ml) Breakdown voltaae (Vol!}_ 
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Appendix C: EDX Result 
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