
6502 emulator on FPGA

by

Khoo Eng How (1268)

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

Jan 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

6502 emulator ou FPGA

by

Khoo Eng How

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Khoo Eng How

ii

Abstract

6502 microprocessor was once used in almost all of the microcomputer in the 80s,

including the Apple II lines of computer, the Commodore PET, the Commodore 64,

the Atari 8-bit series and even on the Nintendo Entertainment System (NES) video

game console.

The objective of this project is to emulate the once famous 6502 microprocessor onto a

FPGA chip. The FPGA-based 6502 microprocessor had to emulate the functionality of

a real 6502 microprocessor. Accurate pinouts emulation is desired but not a must.

The 6502 assembly language is easy to learn and building a computer based on this

microprocessor requires very few parts, thus making this project a great experiential

learning process.

The scope of this project requires the student to have an in-depth understanding on

computer system architecture, especially on 6502 architecture; V erilog to understand

existing 6502 source code from Bird Computer and also FPGA development process

(synthesis tools) to transfer the Verilog code to the FPGA chip.

Thus far, the resources and information on 6502 microprocessor looks promising. The

student earlier scope was to come up with the 6502 code in Verilog HDL, but as there

is available code from Bird Computer (State Machine coded) so the student had

chanced his objectives to understand the existing code and implement it on FPGA

only. But as along the way, problems occur on hardware implementation, focus had

been switched again to simulate the existing code or ALU or simple processor to build

up student understanding and for documentation for future project expansion. To test

the functionality of the 6502 system, the student will either find existing application or

come up with simple program to run using the FPGA-based 6502 system.

iii

Acknowledgement

I would like to take this opportunity to express my greatest gratitude and thanks to

several parties who have facilitated me at one stage or another throughout this project.

My family and friends, for giving me encouragement and bear with me during this

rather difficult and time consuming project.

Mr. Abu Bakar Sayuti, my project supervisor, for sparing his time to supervise and

guide me throughout the duration of the project.

EE Lab Technician, especially Mr. Musa for providing the necessary assistance during

the several stages of the projects.

Universiti Teknologi PETRONAS, for providing me with the necessary foundation,

resources and facility to embark this project.

Mr Polur Kir, an undergraduate from India for providing his time and advice on matter

pertaining to FPGA designing.

Bird Computer for providing their 6502 source code for education purposes.

Others core designers, for sharing their their work, which allow me to learn more

about hardware design.

Not forgetting my other course mate who working on with FPGA for sharing with me

their problem faced and solution for it along the process.

Thank you all!

iv

TABLE OF CONTENTS

Certification

ABSTRACT

Acknowledgement

CHAPTER 1: INTRODUCTION .

1.1 Background of Study.

1.2 Problem Statement .

1.2.1 Problem Identification

111

IV

1-4

I

2

2

1.2.2 Significant of the Project . 2

1.3 Objectives and Scope of Study 3

1.3.1 Objectives . 3

1.3.2 Scope of Study 3-4

CHAPTER 2: LITERATURE REVIEW 5-9

2.1 6502 Microprocessor/Computer Architecture. 5-7

2.2 6502 Machine Language . 7-8

2.3 Hardware Description Language 8-16

2.3.1 Verilog vs VHDL 9-10

2.3.2 HDL for Synthesis 10-11

2.3.3 Introduction to Verilog 11-12

2.3.4 Veri1og format . 13-14

2.3.5 Veri1og Data Type- Wire/Reg 14-15

2.3.6 Testbench . 15-16

2.4 System-on-chip (SoC) 16

2.4 FPGA Design Stage . 17-18

CHAPTER 3: METHODOLOGY/PROJECT WORK. 19-2

3.1 Procedure Identification . 19-20

v

3.2 Tools Required 20

3.3 Project Work 21-23

CHAPTER4: RESULTS AND DISCUSSION 24-38

4.1 Findings and Discussion . 24-38

4.1.1 V erilog Model Examples . 24-30

4.1.2 6502 source code 30

4.1.3 Verification 30-32

4.1.4 Arithmetic Logic Unit 74381. 32-35

4.1.5 FPGA Development Board 35

4.1.6 B-3Spartan2+ QuickStart Guide 2.0 35-36

4.1.7 Problem Faced . 36-38

4.1.7.1 Verilog HDL. 36-37

4.1. 7.2 Equipment Condition 37-38

4.1.7.3 Incomplete Implementation 38

CHAPTERS: CONCLUSION AND RECOMMENDATION 39-41

5.1 Conclusion . 39-40

5.2 Recommendation. 40-41

5.2.1 Design Tools 40

5.2.2 Prototyping Tools 40

5.2.3 Proper Support . 40-41

5 .2.4 Soft Copy Submissions 41

REFERENCES . viii - ix

APPENDIXES . X

vi

LIST OF FIGURES

Figure 2.1 6502 Block Diagram

Figure 2.2 Generic structure of a testbench and a design under test

Figure 2.3 General FPGA Design Stages

Figure 2.4

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3

Synthesis Process

Verilog Coding Digital Design Flow

Timing Simulation forD type flip-flop

Timing Simulation for D type flip-flop with asynchronous reset

Timing Simulation forD type flip-flop with synchronous reset

Figure 4.4 Timing Simulation forD type flip-flop with asynchronous reset and

clock enable

Figure 4.5 Timing Simulation for an ALU

Figure 4.6 Timing Simulation for 74381 ALU

LIST OF TABLE

Table 4.1 Functionality of74381 ALU

vii

CHAPTER!

INTRODUCTION

1.1 Background of Study: 6502 Microprocessor

6502 was once found in almost every personal computer in the late 70's and early 80's

including the Apple I, Apple II and Apple III, Commodore Pet and Atari 400 and Atari

800. 6502 microprocessor gained popularity mainly because of its low price. [B2]

6502 microprocessor is an 8 bit processor, this mean that it had an 8 bit data bus. As it

instruction set consists of 8 bit operation, so for complex operation such as 16 bits or

32 bits arithmetic and memory transfer can only be performed by sequences of simpler

operations. 6502 had a 16 bits address bus, meaning that the address space is only 64K

bytes. This limitation was addressed by using memory banks. The original clock speed

for 6502 was 1 MHz, but later version comes with better clock speed at 1.2MHz and

1.4MHz.

The 6502 is not really a register oriented microprocessor as its processing power

comes from its addressing modes. An addressing mode is a method for generating the

address (effective address) for a particular instruction value.

1.2 Problem Statement

1.2.1 Problem Identification

It is almost impossible to find a new 6502 microprocessor on the market now as it

had stop its production for some time already. If a customer now wanted to use the

6502 microprocessor, he/she can either found it in the second hand computer shop

or needs to order in bulk amount from the manufacturer which is a waste as

normally only one or two units is/are needed for experiment or testing purposes.

So it makes practical sense to emulate the 6 502 microprocessor I system onto

FGP A so that the processor can be fabricated as needed.

1.2.2 Significant of the Project

This project will be a great learning experience to learn the architecture and

functionality of a microprocessor down to the machlne language level. This will be

a stepping stone to better understand other microprocessor as 6502 assembly

language is relatively easy to learn compared to others microprocessor assembly

language. Besides learning about microprocessor, the student will also learn how

to program a FGP A chip according the needed specification and also on how to

emulate a microprocessor using hardware. The student will also Jearn and be more

proficient in Verilog Hardware Description Language (Verilog HDL) which is

important in microprocessor prototyping design.

2

1.3 Objectives and Scope of Study

1.3.1 Objectives

• To gain a better understanding on microprocessor especially on 6502.

• To study an earlier computer system design.

• To emulate the 6502 microprocessor I system onto a FPGA chip.

• To have a better understanding on machine language, assembly, Verilog and

also on FPGA development tools.

1.3.2 Scope of Study

The scope of this projects cover the basic understanding on 6502 microprocessor,

its architecture, its operation in assembly language and also its physical layout. As

ultimately the student needs to emulate 6502 microprocessor /system onto a

FPGA, knowledge on one of the HDL is essential to transfer all function of the

6502 onto FPGA. A lot of time and effort will also be required to study similar

works done by computer/electronic enthusiasts around the world on 6502 so that

time and effort can be saved from starting this project from the scrap.

As the project progress, a complete 6502 System-on-Chip (SoC) source code

(coded in hard coded state machine) in Verilog HDL for evaluation and education

purposes is available from Bird Computer [8]. So the scope of the project now is to

implement the 6502 SoC with an additional FIFO module and modification of

UART module to utilize the FIFO on FPGA that will be connected to keyboard,

mouse (fori nput) and monitor (foro utput) if the time is still feasible. But the

minimum is being able to write test benches to simulate ALU or a simple

processor code. Being able to simulate the 6502 processor core to the check its

functionality is an added bonus.

3

To test the real functionality of the 6502 system on FPGA, some application (in

6502 machine language) will be used. Butt his will be implemented by future

student continuing this project on hardware implementation. This matter is

discussed further in Chapter 4.

4

CHAPTER2

LITERACTURE REVIEW AND THEORY

Some literature revtew had been done on 6502 miCroprocessor including it

architecture and its operation and also FPGA design techniques.

Basically the knowledge that should be picked up in order to finish this project are:

1. 6502 Microprocessor/ Architecture

2. 6502 Machine Language

3. Hardware Description Language (HDL)

4. System-on-Chip (SoC)

5. FPGA Design Stage

Each of the above will be further discussed in the following sections.

2.1 6502 Microprocessor/Computer Architecture [6]

In every computer, there are three main parts, a Central Processing Unit (CPU),

memory which can be divided into ROM and RAM and input and output devices such

as keyboard, monitor, mouse and etc. In a microcomputer, all function of a CPU are

contained in a microprocessor unit.

Early CPU had very limited processing power if compare with today's CPU. Earlier

CPU like 6502 are only 8 bit processor. Other 8 bit processors are Z80, 8086, 6800

and etc. After that comes more powerful CPU with 16 bit processing power like the

68000 from Motorola. After 16 bit come 32 bit and the current processing power of a

CPU in personal computer (PC) is 32 bit but 64 bit CPU are getting more and more

common to the end user. 64 bit CPU for PC is now available in the market from both

5

Intel and AMD (the main rival in microprocessor market).

Although 8 bit CPU is now consider outdated system but it is a good starting point for

student to have a better understanding on microprocessor as it is always good to learn

from the basic. Although 8 bit CPU cannot be of much usage already in PC but 8 bit

CPU is still powerful enough to be the core of a microcontroller to be put in electronic

appliances like washing machine, rice cooker and etc. So there are actually still

market and usages for 8 bits CPU.

Now let have a look at 6502 block diagram. Below is a block diagram of a 6502

microprocessor.

DATA BUS

,....-''--- ,---f- -'-- ,....-''--- Accumulator
N
v

f;y) Input! p s p B X y
Output c p D

I
z
c

,---.- '---cc- '---f- ,---.- L_c-
i

ADDRESS BUS

Figure 2.1 6502 Block Diagram [16]

As can be seen from Figure 2.1, the 6502 microprocessor contains seven main parts:

an Arithmetic Logical Unit (ALU) and six addressable registers. Data is moved

around in side the 6502 chip and between other components in the computer over

transmission lines called buses. There are two kinds ofbuses in the 6502, an 8-bit data

bus and a 16-bit address bus. The data bus is used for passing 8-bit data and

instruction bytes from one 6502 register to another, and also for passing data and

instructions back and forth between 6502 and memory (RAM). The address bus in the

6

M
E
M
0
R
y

mean time is used to keep track of CPU's 16-bit memory addresses. Memory

addresses are the addresses that instructions and data are coming from, and the

addresses that instructions and data are being sent to.

6502 have 16-bit address bus, thus the address is in the range of 0000000000000000

to 1111111111111111 in binary or $0000 to $FFFF in hex that can be accessed by the

processor. Addressable memory is therefore 64 Kb. Addresses are stored by least

significant byte first (Little Endian method). A 16 bit address needs to be stored in

two consecutive bytes. A little endian processor will store the address $458D as $8D

followed by the byte $45.

Memory mean while is view as a set of 256 byte pages. The first page ($0000 to

$00FF) is called the 'Zero page', and can be accessed by using a special addressing

mode which enables shorter and therefore faster executing instructions. This makes it

useful for storing tables of values or addresses that are going to be accessed

frequently by your program. The second page ($0100 to $01FF) is used to hold the

system stack. This is used to keep track of values, especially during subroutine calls.

It cannot be moved.

2.2 6502 Machine Language

Machine language is the lowest possible level of programming. It's called machine

language because it involves working directly with the computer hardware. Different

computers use different hardware and so those differences are reflected in the machine

language of each computer. Typically when people say "Machine Language" they are

actually referring to Assembly Language. Machine language is just the electrical

signals bouncing around on the circuit board of your computer. Because these

electrical signals have two possible states, On or Off, we use binary numbers as an

abstract representation of these electrical signals. Assembly language is a second level

of abstraction from the same electrical signals. [!7]

7

To enable a person to program in Machine Language, knowledge and understanding

on the machine instruction set and addressing mode is a must. For 6502 there are a

total of 56 different instructions and 13 different addressing modes. Execution of each

instruction will takes 2-7 cycles depending on the types of instructions. The time taken

for each instruction can be referred to the table in Appendix E - 6 502 Instruction

Encoding. The execution of each instruction was always in order one after each other.

For 6502, all opcodes are I byte in size while the operand may wary from 0 to 2 bytes.

Implied, Accumulator, Immediate, Zero Page just to name a few are the different types

of 6502' s 13 addressing modes. Further information on 6502 Machine Language and

its instruction set can be referred to Appendix C, D and E.

2.3 Hardware Description Language (HDL)

One of the major drawbacks of traditional design method is the manual translation of

design description into a set of! ogical equations or a schematic. This step can be

eliminated using HDL like Verilog and VHDL.

But what is HDL? HDL actually stands for hardware description language. It is used to

describe the logic functionality of a circuit. HDL can also describe the behavioral

aspects of a circuit function. It is also used sometime to show the netlist of a circuit. As

mention above, there are two types ofHDL, Verilog and VHDL (VHSIC HDL- Very

High Speed Integrated Circuit Hardware Description Language). Beside Verilog and

VHDL, there are actually others type ofHDL language which is one of the latest like

the C/C++ code but not widely accepted and Superlog which is very new and are still

under research.

Before going further to discuss the different between Verilog and VHDL, let's have an

understanding first on some background ofVerilog and VHDL.

8

Verilog or Verilog HDL as it is called in full is a HDL developed in the 1984-1985 by

Philip Moorby who needed a simple, intuitive and effective way of describing digital

circuit for modelling, simulation and analysis purposes. The language later becomes

the property of Gateway Design Automation, which was later acquired by Cadence

Design Systems. From 1990 Cadence opened the language to the public, which led to

the standardisation of the language by the IEEE in 1995. Do take note that Verilog is a

registered trademark of Cadence Design Systems, Inc. and all information that the

student obtain refers to Verilog HDL as defined by IEEE Standard 1364. [3] Verilog is

easy to learn. It has syntax reminiscent of C (with some Pascal syntax thrown in for

flavour). About half of commercial HDL work in the U.S. is done in Verilog, making

it a compulsory requirement for digital hardware designer.

VHDL in the mean time is a U.S. Department of Defence (DOD), mandated language

that is used primarily by defence contractors. Although most of the concepts in VHDL

are not different from those in Verilog, VHDL is much harder to learn. It has a rigid

and unforgiving syntax strongly influenced by Ada (which is an unpopular

conventional programming language that the DOD mandated defence software

contractors to use for many years before VHDL was developed). Although there are

more academic papers published about VHDL than Verilog, only less than one-half of

commercial HDL work in U.S. is done in VHDL as VHDL is more popular in Europe

when compare to U.S. [B4 - pg 65]

2.3.1 Verilog vs VHDL

There always argument on which one is a better form ofHDL. Actually both had its

advantages and disadvantages. There is no clear cut on which is a better HDL. Let's

start by looking at some characteristic on Verilog.

V erilog is easier to write, to read and to understand as it is similar to C. It is also

easier to learn if compared to VHDL. For situation in Malaysia, all design centers

9

uses V erilog as their preferred HDL. This situation maybe due to many research

and design centers are own by U.S company which prefer the usage of Verilog

HDL.

VHDL in the mean while is more complicated and more difficult to learn when

compared to Verilog. There are more coding rules to follow. Although there are

more rules to follow, VHDL is in fact more flexible when compared to Verilog and

it also can reflect the real design more efficiently.

So which one is better? Actually whichever is more suitable to be used as the

standard HDL depends largely on individual designer preference. As both HDL

have its advantages and disadvantages. Furthermore most design tools in the

market support both Verilog and HDL.

For this project, Verilog HDL was chosen simply because Verilog is used more

widely in Malaysia and its similarity to C language.

2.3.2 HDL for Synthesis

A powerful and the most often used method of HDL. HDL for synthesis eases

design by allowing the functionality of a circuit to be described. By describing the

functionality of a circuit, HDL allows designers to design larger amounts of circuit

functionality within a short period of time.

Previously, conventional design was done through schematic capture. With the

amount of gates count in the numbers of hundred of thousand, manual drawing of

transistors and logic gates and connecting them up becomes unmanageable as

human error is unavoidable during the process thus making debugging a big issue.

Furthermore large designs with hundred of thousands or even millions of

10

transistors take too long time to simulate usmg conventional SPICE type of

simulation.

In the mean time, synthesizing ofHDL for logic circuits are always misunderstood

to be 2X or more complex when compared to conventional schematic capture

which is NOT true. The outcome in area and performance of synthesis varies

deeply with the coding style and synthesis optimization performed. In fact using

different synthesising tools will produce different results in term of performance

also. If a design is coded to be in a bad architecture, obviously the synthesized

circuit will be huge. But efficient architecture, coding and synthesis can produce a

very good area utilization for a design.

There are some important aspects of coding for synthesis that is often over-looked

by designer. The designer must understand that coding for synthesis requires a

different form of style than just to simulate it. Code that can simulate correctly does

not necessarily can be synthesized to the logic that is required. One common

mistake that many designers do is writing code that simulates accordingly but may

generate "garbage" circuits.

Bad/inefficient coding will synthesize to inefficient circuits that have more logic

gate than necessary. This causes larger than required die size for the design and

therefore an increase in the cost of the design which is unnecessary. Inefficient

coding also increases path timing delay, thereby reducing the performance ability

of the synthesized circuit.

2.3.3 Introduction to V erilog

Verilog can be divided into 3 different types. Structural that is in n etlist form.

Behavioral that describes the behavioral of a circuit, mostly used for analog circuit

design. The last type is RTL that describe the functionality of the circuit and is

II

synthesizable by any available synthesis tool. It is very important to have a good

coding style when writing in RTL, so that most optimized synthesized logic can be

obtain.

Let's start by having a inside into Behavioral type ofVerilog or HDL in that sense.

Behavioral HDL describes the behaviour of a "black box" circuit. The "black box"

circuit can be any circuit (analog, digital or mixed signal). The advantages of using

behavioral HDL is that simulation using HDL is much faster compared to

conventional method of SPICE like simulations. It is also easier to integrate a

"black box" with other designs. This allows the ease of system level simulation to

check a system's functionality. With this, HDL can also be used to describe

behaviour of an analog circuit. This would allow the combination of analog circuits

and digital circuits in a full chip level. This type of simulation is fast and accurate.

Structural HDL on the other hand is used as a netlist. It describes the components in

a design with the interconnects between them. Commonly used as a netlist of a

design being used by different tools (simulation, synthesis, layout), a bridging

factor between different design tools.

Then finally is the RTL. RTL stands for register transfer level. This is the

synthesizable code which becomes the golden model of a design. There are some

design tools in the market that auto generates RTL based on a graphical mode of

entry like flowcharts, truth table and state diagram. With good RTL coding style,

timing and area can be greatly optimized. It is therefore essential that any new

designs coded by inexperienced designer be checked by experienced Verilog

designers.

2.3.4 Verilog format

12

Unlike VHDL that have entity, architecture and configuration, Verilog only have

module declaration. The module declaration declares the name of the module being

coded and have a list of all the interface signals (input, output or inout). This form

of declaration is significantly different from VHDL since in VHDL an ENTITY is

required to specify the interface signals.

All Verilog code starts with the keyword "module". It is used to describe the name

of a module together with the interface signals. Let's have a look at the following

example of a module named test with 3 input ports (inputA, inputB, inputC) and 2

output ports (outputA, outputB).

module test (inputA, inputB, inputC, outputA, outputB);

//enter your Verilog code

//more of your Verilog code

endmodule

From the above example, we can see that all Verilog code ends with the keyword

"endmodule". It is the terminating keyword for a module declaration.

Now let's look at module declaration.

module testmodule (inputA, inputB, inputC, outputAO;

The module declaration is then followed by the declaration of the direction of the

interface signals: input inputA, inputB, inputC; output outputA;

V erilog also allows for bidirectional ports.

module testrnodule (inputA, inputB, inputC, outputAO;

input inputA, inputB;

inout inputC;

output outputA;

endmodule

Many designers always neglect to put comments in the code. Comments are an

important form of documentation on the functionality/objective of the code. The

13

comment helps make the code readable to other designer. It can also serve as

reminder when performing debugging on the code. Single line comments begins

with the symbol I I while multiple line comments begins with /* and ends with * /.

Numbers meanwhile can be represented in Verilog as real numbers, integer number

and base numbers (binary, octal, hex, decimal). Let's have a look at the following

example.

integer A, B, C;

A~4'b0101; II 4 bit binary

B~5'ol4; II 5 bit octal

c~8'ha5; II 8 bit hex

D~5'dl4 II 5 bit decimal

2.3.5 Verilog Data Type- Wire/Reg

Interface signals are declared as either type reg or wire. Type reg means that it will

be able to hold a value in the Verilog code. Type wire means that it will be assigned

a value in the Verilog code. However please be noted that using reg does not

necessary means that the signal is flopped or latched.

Another way to differentiate reg and wire is to view usage of wire as real physical

wire connection between two gates, whereby the contents/value on the wire is

consistently updated (continuous). A reg on the other hand can be viewed as a

signal being assigned values during certain circuit conditions.

So the question now is, when to use wire and when to use reg? A common method

to differentiate these two is the "assign" statement and "always" block. When using

"assign" statement, always use "wire" declaration. When using assignment of

values in an "always" block, use "reg" declaration.

Let's look at an example on the usage of wire. Using an AND gate as an example.

14

module ANDgate (inputA, intputB, outputA);

input inputA, inputB;

output outputA;

wire outputA;

assign outputA=inputA & inputB;

endrnodule

From the example, the value of outputA is constanly updated with the value from

inputA and inputB. The"&" symbol is used to represent AND Boolean.

Let's look at an example on the usage of reg using the same AND gate example.

module ANDgate (inputA, intputB, outputA);

input inputA, inputB;

output outputA;

reg outputA;

always @(inputA or inputB)

deign

outputA~inputA & inputB;

end

endmodule

The code @(inputA or inputB) is known as sensitivity list. This example shows that

the "always" block will be evaluated whenever there is a change in the signals listed

in the sensitivity list. Sensitivity list is associated with an "always" block. Signals

that will cause an evaluation of the "always" block must be included in the

sensitivity list.

2.3.6 Testbench

When explaining about Verilog or HDL, we must also discuss about Testbench. So

what is a testbench and what is its function? A testbench is an environment which

surrounds a DUT (design under test) and forces stimulus into the DUT while

monitoring the output ports if the DUT. In other words, a testbench is an

15

environment to verify the functionality of a design. It will be explain better with the

following diagram.

v DUT ~

r----. ----
Testbench

Figure 2.2 Generic structure of a testbench and a design under test

To get a better picture on how a testbench is, please refer to Appendix G for all the

Testbenches written for the Verilog Model examples ofD flip-flop in Chapter 4.

2.4 System-on-chip (SoC)

Advanced ASIC and FPGA technologies allow us to integrate complex systems on a

single chip, embedding standard processor devices, dedicated processing blocks,

interfaces to various peripherals, on-chip bus structures in a SOC, or even analog

blocks in a mixed-signal device. Moving away from the use of traditional components

towards SOC technology will help to satisfy the ever-increasing demands for high

processing performance, while reducing mass and power consumption [IlO].

For 6502SoC, this design come with 6502 processor (6502 CPU) code that are

compatible with all the 6502 instruction. It also includes a memory module with RAM

and ROM, Universal Asynchronous Receiver Transmitter (UART) to connect the

6502 CPU with its Input/Output, and Video module to display simple text line. Thus

instead of having just a 6502 core, now it is possible to have an Apple II CPU within

one FPGA chip. This design is referred to the code available from Bird Computer.

2.5 FPGA Design Stage

16

The general FPGA Design Stages is shown at Figure 2.2 below:

Design Specification

J
Simulate/Synthesis

l
Design Implementation

Figure 2.3: General FPGA Design Stages.

From Figure2.2 above, the first step for FPGA Design Stage is design specification.

Design specification had to be done in HDL, either in Verilog HDL or VHDL which is

the more popular HDL used. The designer needs to be able to transfer their design

specification to HDL. For some examples on Verilog HDL coding, please feel free to

have a look at Chapter 4. There are Veri log Model Examples [I9] for references or just

to have a feel on how the coding is being done. For beginner it is always better to learn

and see others implement the model or project.

After writing the code in HDL it is time now to check the functionality of the written

code. One important thing to remember is that, what ever result in simulation that

showed the design is functioning can only be proved or make sure when the deign is

downloaded to FPGA. From experience, normally what working in simulation will not

and normally would not be I 00% working in real hardware implementation.

Furthermore, the same code that can be simulated maybe not necessary can be

synthesis without error. There are certain rules to follow when writing the code to

ensure the code is synthesisable. For more information please refer to the HELP file in

Project Navigator. For the simulation of codes, a test bench is needed to provide the

17

necessary input or stimulus to the code. The output of the code will then be showed as

waveform in Waveform Editor from Aldec Active-HDL.

After the design has been successfully analyzed, the next step is to translate the design

into gates and optimize it for the target architecture. This is the synthesis phase. XST

(Xilinx Synthesis Technology) is a Xilinx tool that synthesizes HDL designs to create

an NGC file. An XST flow project can contain either VHDL (XST VHDL) or Verilog

(XST Verilog) modules, but not a mix of both. A functional VHDL model (XST

VHDL) or Verilog model (XST Verilog) is created for schematics prior to synthesis.

Process properties can be set to control XST synthesis. Actually after the code is

synthesis, it is a good practice to simulate the code again to check for its functionality

and finally timing diagram. Shown below is a diagram on synthesis [I9]

Design
described

inHDL

Constfaints T ecl>noloiJ!I
and

Porometero
Ubraoy

--.... --jM!thesiS'

.,../
l Re:orts I Schematics Net list

Figure 2.4 Synthesis process

The final stage is to implement the design on FPGA or sometime called downloading

the design. This is accomplished by using iMPACT tool from Project Navigator. The

steps needed to take will be shown in Chapter 4 and Appendix H.

18

CHAPTER3

METHODOLOGY/PROJECT WORK

3.1 Procedure Identification

The project is being carried in 4 stages. The first stage is literature review and

background study on 6502 microprocessor and its architecture. The second stage starts

with understanding of Verilog HDL. This is then followed by familiarising with

simple Verilog code or module and understanding others works on microprocessor.

The third stage starts with understanding on 6502 code from Bird Computer and

understanding on a simple processor. Work is being done on writing Testbenches on

ALU and simple processor to demonstrate student understanding on the Verilog code.

The fourth stage is to familiarise with FPGA development board and implement the

design to FPGA. Unfortunately the final steps can only be implemented by future

student as time had run out.

The following steps need to be taken as parts of the route to complete this project.

• Literature review of 6502 microprocessor, computer architecture, HDL (either

VHDL or Verilog).

• Fully understand 6502 architecture and its instructions in assembly language.

• Understand how to code in either VHDL or Verilog.

• Understand the works of other computer/enthusiastic on 6502 microprocessor or

other microprocessor, especially on the coding.

• Learn to write test bench.

• Simulate simple module like ALU.

• Understand the 6502 code from Bird Computer.

• Start to familiarise with FGPA development tools.

• Search for 6502 application.

19

o Search for information on Spartan-II and Virtex-II FPGA board.

o Download design to FGPA chip.

o Try out the FGPA chip using existing application or own program.

o Simulate the 6502 CPU code.

o Add in FIFO module for UART.

3.2 Tools Required

The tools required are:

Simulation: Active-HDL, ModelSim XE

Synthesising: Project Navigator (XST Verilog HDL)

FPGA Board: Spartan-II Prototyping Board

Active-HDL software is needed to enable coding and examination of existing Verilog

code. The said software can be obtained free for evaluation for 2 0 days from the

company website or from the Computer System Research laboratory. All simulations

are being implemented using this software.

Xilinx Integrated Software Enviromuent (IS E) 6.1 i Project Navigator software is

needed to synthesis and simulates (ModelSim XE) the available code. ModelSim XE

is a simulation tool that comes along with Project Navigator. As the university do not

purchase the license for ModelSim, the student can only rely on Aldec Active-HDL

software in the laboratory for simulation.

To download the design to FPGA, there are iMPACT from project Navigator that can

be used. Steps on how to download a design to Spartan-II prototyping board is

included in Chapter 4 and Appendix H.

6502 compiler is also needed create or modify existing 6502 application to test the

functionality of the FPGA-based 6502.

20

3.3 Project Work

The design flow for this project is as below:

Schematic
Capture

Testbench

N

Constraints

Tech Lib

Digital
Design

Verilog/VHDL
Coding

Simulation

Simulation Pass?

Gate Level
Simulation

Simulation Pass?

IC Design

Mix Signal
Design

N

y

Figure 3.1 Verilog Coding Digital Design Flow

21

Analog
Design

Graphical
Design

Synthesized
Logic Verified

From Figure 3.1, in IC Digital Design, for coding using Verilog!VHDL, this is the

path needed to be taken in order to have a design successfully implemented onto

FPGA. After the code have been completed or for this project obtained from other

source, the code needed to be simulated to check its functionality by providing

stimulus thru testbench. If the code didn't pass the simulation, then either the code

needs modification or the testbench needs to be redefined to suit the code. After the

code had pass simulation then only it will be synthesized. Constraints and Tech Lib

will be included for synthesis. After synthesising, then the synthesized code needs to

be simulated again, but this time at gate level. After gate level simulation, the code

also need to be check for its timing characteristic to make sure that the propagation

delay in any path will not jeopardise the output results. Only after all this steps that we

can say the code logically verified and are ready to be transfer to hardware

implementation.

For this project, the student can only go until first stage of simulation, which is to

check the functionality of the code using Active-HDL software. For gate level

simulation, Active-HDL software is not suitable and instead ModelSim Xe should be

use. But as the license in the laboratory for ModelSim is not complete so gate level

simulation is not possible at this stage.

Meanwhile in the process of code writing, to have a better understanding on Verilog

HDL tutorial on Verilog was being taken. To better understand on how a processor

code in Verilog was being implemented, the code written for 6502 microprocessor by

Bird Computer using hardcoded state machine (better optimisation) was being

studied. But before this, a simple processor code was being studied from the reference

book titled "Fundamentals of Digital Logic with Verilog Design". The ultimate goal is

to fully understand the available 6502 CPU code, simulate the code to get its

functionality and timing diagram and finally implement it on FPGA to make it a

working 6502 SoC on FPGA. But the minimum is to simulate simple ALU code and

the simple processor code using ModelSimXE or Aldec Active-HDL to demonstrate

22

student understanding on writing test benches. It had to be understood that before a

test bench can be written, comprehensive understanding on the code written is a must

in order to produce the correct timing simulation.

Knowledge on Xilinx Integrated Software Enviromnent (IS E) 6.1 i software especially

on Project Navigator was very important as this is the only software available in the

laboratory that can be used for both simulation (with ModelSimXe) and synthesising

(XST) for Verilog HDL as the license for Active-HDL in the lab only enable

simulation but not synthesis. This program will be used also to modify the existing

UART module so that the FIFO module created using CORE GEN can be utilised.

After synthesising it is time to transfer the design to FPGA using iMP ACT from

Project Navigator. During these processes, experience on some troubleshooting

technique needed to make sure the design really working will be acquired. In this

project, the ultimate goal is to integration of some inputs and outputs to the FPGA core

to test the functionality of the 6502 SoC implemented. Beside original ,modify 6502

application can also be used to be run on the FPGA-chip to ensure the chip is working

as a 6502 processor based system.

Before implementing the design on FPGA, research had to be done on the available

FPGA development board in the laboratory, like Spartan-II and Virtex-II to determine

which board is a better choice. For this project, Spartan-II board will be used as the

added I/0 add-on board is an added advantage for future expansion purposed beside

the available code is said being successfully implemented on this board.

As a lot of experience will be learned throughout this project, it is therefore very

important that proper documentation is being done to enable future expansion of this

project become easier and also served as a guideline for future student doing on FPGA

to have a know how on the FPGA development stages, the possible problem faced and

ways to solve it.

23

CHAPTER4

RESULTS AND DISCUSSION

The main progress or work done for this project was on picking up the knowledge on

Verilog HDL, understanding existing Verilog HDL code and implement simple circuit

coding in Verilog and writing Testbenches to simulate all these codes.

So in this section, a lot of Verilog codes with their timing simulation result will be

display to show student understanding on Verilog HDL and techniques on writing

Testbenches for the codes.

Progress also had been made on documenting down the procedure needed to download

the design to FPGA especially on Spartan-II development board.

In this section, the student will also discuss on the problems faced during the duration

of this project and ways and recommendation to overcome all arising issues. This will

definitely be very useful for future student who wish to continue this project until

implementation on FPGA.

4.1 Findings and Discussion

4.1.1 Verilog Model Examples [19]

Below are different types ofD flip-flop with its Verilog code and timing simulation

of each code to show that different condition and specification set to the D flip-flop

and the different it will make to the code to represent the circuit and its simulation

result.

24

D Type Flip-flop:

datil --oj

clock --f;:>':>

D
Flip-flop

A sample code is shown below.

module dff (data, clock, q);
II port list
input data, clock;
output q;

q

II reg I wire declaration for outputs I in outs
reg q;

II logic begins here
always @(posedge clock)

q <~data;
endmodule

The timing simulation of the above code is as shown below.

Name 5 .. 1~0 I 1~0 I 150 I 3~0 I 3~0 I 4~0 I 1450 I 5~0 I 510 I ~~0 I

R• data iJ I
R· clock l n n n n n n n n
"q J I

Figure 4.1 Timing Simulation forD type flip-flop

~~0 I 7~ I r----1
741 ps ~

I
"'"'"""""""'

n J u
I

From the timing simulation we can know that the data input is only loaded to output

q at the starting edge of positive clock cycle as indicated in the code.

25

D Type Flip-flop with asynchronous reset:

data q

D -FF
With

Asynch.
I'E>oUI!t

clock

reset _____ _.

Example of D type Flip flop with asynchronous reset

module dff_async (data, clock, reset, q);
II port list
input data, clock, reset;
output q;

II reg I wire declaration for outputs I inouts
reg q;

II reg I wire declaration for internal signals

//logic begins here
always @(posedge clock or negedge reset)

if(reset~~ I 'bO)
q <~ l'bO;

else
q <=data;

endrnodule

The timing simulation of the above code is as shown below.

Name I S .. I ,5_D, L o1Q0 I •1~0

·······························t'···~

4QD

Figure 4.2 Timing Simulation forD type flip-flop with asynchronous reset

26

'

From the timing simulation in Figure 4.2, we can justify that the code is

functioning as plan. With reset input, we can now set the output q to 0 by setting

reset=O regardless of the data input. From the simulation, after the reset input had

been set to 0, the output q will only change to 0 at the falling edge of reset clock set

by the always @(negedge reset) thus making this asynchronous reset as it need not

wait for next positive clock cycle to change its output.

D Type Flip-flop with Synchronous reset:

data
{I q

0 Flip.H011
with

reset Synch.
Reset

clock

Example of D type Flip flop with synchronous reset.

module dff_sync (data, clock, reset, q);
II port list
input data, clock, reset;
output q;

II reg I wire declaration for outputs I inouts
reg q;

II reg I wire declaration for internal signals

//logic begins here
always @(posedge clock)

if(reset~ I 'bO)
q <~ l'bO;

else
q <=data;

endmodule

27

The timing simulation of the above code is as shown below.

Name \ 5 .. 1 • ~.0 • 1 • 1Q0 I • 1~0 ' zgo ' 2!0 ' ········:·1 '
274 ps

3~0 ' 1oo ' !jO ' 5p0 ' ljO '
R' data I I I I I
R, clock lJ1J1J1J1J1J1 1J1J1J1J1J1J1J1
R= reset I I

•q n I I I

Figure 4.3 Timing Simulation forD type flip-flop with synchronous reset

The different between Timing Simulation in Figure 4.2 and Figure 4.3 shown the

different in asynchronous and synchronous reset. In Figure 4.2, we can notice that

the output q change to 0 when reset is set to 0. But with synchronous design, after

reset had been set to 0, the output will only change to 0 at the next positive clock

edge.

D Type Flip-flop with asynchronous reset and clock enable

data D -FF q
with

eke
ASVII(h,
reset and

clock enable
c:lock ;;>

reset _j

Example of D type Flip flop with asynchronous reset and clock enable.

module dff_cke (data, clock, reset, eke, q);
II port list
input data, clock, reset, eke;
output q;

II reg I wire declaration for outputs I inouts
reg q;

28

II logic begins here
always @(posedge clock or negedge reset)

if (reset~ 0)
q <~ l'bO;

else if(cke ~ l'bl)
q <~data;

endmodule

The timing simulation of the above code is as shown below.

Name I 5 ..

]······ ... ··················•···+
R' clock iii ~···~··

'''"''''''''''''''''''''i'"A

R' eke U

Figure 4.4 Timing Simulation forD type flip-flop with asynchronous reset and clock enable

From Figure 4.4, we can know that when the reset input is set to 0, the output q will

also be set to 0. This is true as it had been set in the code to check for reset input

first before checking for clock enable input. From simulation, we can see that only

when reset is set to 1 that the clock enable input, eke will be of useful. If we notice

clearly, from the timing simulation, we can see that the output q did not change its

value when the data value change (when reseFI and eke=!), this due to the

condition set that the output will only change its value at the next positive clock

cycle. When the eke input is set to 0, the output q value will not change and retain

the value it obtains before eke is set to 0.

From the above D flip-flop Verilog model examples, it clearly shown that the

understanding of the component functionality is very important. Without this

knowledge, the code written will not represent the real function of the component.

But for beginner, it is always recommended to learn from existing code to

understand how others implement the model or module. The testbenches written

29

for all the above Verilog code which generate the timing simulation waveform will

be attached together in the Appendix G for reference.

4.1.2 6502 source code

The complete 6502 compatible core source code was obtained from Bird

Computer. The current version available is said to contain bugs and is provided free

for evaluation and education purposes. This available code does not support

undocumented instruction but this is acceptable as only one 6502 family of

processor supported this.

As at this stage, the scope of this project had change to focus on simulation and not

synthesising, the full code for this 6502 SoC from Bird Computer will not be

attached along with this report as it takes up too many pages. The code can be

obtained from the internet at www.birdcomputer.ca/index.html.

Some modification still needed to be done on the available code as a FIFO module

is missing from the files accompanied. To synthesis and download the design to

FPGA for a working 6502 SoC, the UART module needed to be slightly modified

to utilise the FIFO module created using CORE GEN. But as time is running out,

this will be put as future plan only.

4.1.3 Verification [BlS]

There are general confusion between the term verification and testbench.

Verification is not a testbench, nor is it a series of testbenches. Verification is a

process used to demonstrate the functional correctness of a design.

The term "testbench", in VHDL and Verilog, usually refers to the code used to

create a pre-determined input sequence to a design so that the response of the code

30

can be observed. It is commonly implemented using either VHDL or Verilog, but

may also include external data files or C routines.

The testbench provides inputs to the design (code) and monitors any expected

outputs. The verification challenge is to determine what input patterns to supply to

the design and what is the expected output of a properly working design to check

the functionality of the HDL models.

Simulation of design had to be done before implementing it to prevent unnecessary

troubleshooting. Simulators are the most common and familiar verification tools

used. They are known as simulators as their role is only limited to approximating

the reality. A simulation should never been the final goal of a project. Although for

this project, the student will stop at simulation, but this didn't mean the project will

stop at this stage as time is running out to continue the project until hardware

implementation. Simulation lets the designers to interact with the design and

correct the flaws if any before implementation on FPGA.

The testbench needs to provide a representation of the inputs observed by the

design so that the simulator can emulate the design's responses based on its model

description. But one thing need to remember is that simulators have no idea or

knowledge on the functionality of the design. The simulator will not know if a

design is being simulated correctly or not. Correctness is a value judgement on the

outcome of a simulation that must be made by the designer. So it is very important

for the designer to know how the design should be functioning, if not the design

will not match the desire specification.

The most common verification tools used together with simulators are waveform

viewers. Waveform viewers visualize the transitions of multiple signals over time

and their relationship with each other transition. With such tool, you can zoom in

and out over particular time sequences, measure time differences between tow

31

transitions, or display a collection of bits as bit strings, hexadecimal or as symbols

values. The waveform showing the timing simulation of an ALU is shown in Figure

4.5 below.

. 1~0 2?0 3~0

2 3

A

c 0 c E 2 F c •
Figure 4.5 Timing Simulation for an ALU

With a viewer, a designer can inspect the output from the simulator to make sure

that the code is behaving as expected. The timing diagram on Figure 4.5 is only a

simple timing simulation of an ALU.

4.1.4 Arithmetic Logic Unit (ALU) 74381

An ALU is a logic circuit that performs various Boolean and arithmetic operations.

One example of ALU chip is the 74381. Table 4.1 below specifies the functionality

of this chip. It has 2 four-bit data inputs, A and B, a three-bit select input, S, and a

four-bit output, F. As the table shows, F is defined by various arithmetic or

Boolean operations on the inputs A and B. Each Boolean operation is done in a

bitwise fashion. For example, F = A AND B produces the four-bit result fo = a0b0,

f1 =alb!, fz = aobz and f3 = a3b3.

32

Input Output
Operation S2 S! so F

Clear 0 0 0 0000
B-A 0 0 I B-A
A-B 0 I 0 A-B
ADD 0 I I A+B
XOR I 0 0 AXORB
OR I 0 I 'AORB

AND I 1 0 AANDB
Preset I I I 1111
Table 4.1 Functionality of74381 ALU

The Verilog representation of this ALU is showed in below. It can be seen that this

was rather an easy code to understand.

module alu (s,A,B,F);
input [2:0] s;
input [3:0] A,B;
output [3:0] F;
reg [3:0] F;

always @(sorA or B)
case (s)

O:F~4'b0000;

I:F~B-A;

2:F~A-B;

3:F~A+B;

4:F~AAB;

S:F~AjB;

6:F~A&B;

7:F~4'bllll;

endcase

endmodule

The testbench to produce the timing simulation in Figure 4.6 is as shown below. It

can be noticed that the testbench is ttying to supplying the necessary input to the

ALU so that the timing simulation of the waveform from the input and output can

be compare. From the result obtained, it is certain that the code is functioning as

expected. For example for the select input equal 2, the result from the timing

simulation showing the output F=4 which is true for A (equal 10 in decimal) minus

33

6, the answer is 4. For the same select input equal 2, when A=B (equal II in

decimal) and B=5, the output F=5 which is true also as 11-5=6. So from here we

can prove that the ALU code is performing as expected.

11--
//
II Title : alu tb
II Design : ALU
II Author : KEH
II Company : UTP
I I---
11
II File : alu TB.v
//From : alu_TB_settings.txt
II By : tb_verilog.pl ver. ver 1.2s
11---
//
II Description: Testbench for ALU
II
I I---

'timescale lns /lns
module alu_tb;

//Internal signals declarations:
reg [2:0]s;
reg [3:0]A;
reg [3:0]B;
wire [3:0]F;

II Unit Under Test port map
alu UUT (

.s(s),

.A(A),

.B(B),

.F(F));

always
begin

#50 s~'bOOO;
#50 s~'bOOI;
#50 s~'bO I 0;
#50 s~'bOll;
#50 s~'b!OO;
#50 s~'b!Ol;
#50 s~'bi!O;
#50 s~'blll;

end

34

initial
begin
#450 A~'b!OIO; B~'bOIIO;
#450 A~'blOII; B~'bOIOI;
end
endmodule

Name j1j S .. j 1 • 590 1 • 690 1 • 190 1 • 890 1 • soo 1 IDPD 1 1190 1 1290 1 13

1±: ... , is! i xo x1 x2 x• x• xs xs x1 xo x1 x2 X3 x• xs xs x1 xo ; ... ; , ... : .. ==.:=::::= .. : .. =.:
[+'R•A i i i vA vs

··' :··: f.-• ;"':~===========C:A'~=========::=j 1£·~ .. 8 . .,J5Lr~·····:·: :::·:.,··.,::·.,:::·::·.,··xi"" .,·:·.·.·:··· ··:::·::·"
[f1• F iF! i Xo Xc X•)(o xc XE X2 XF Xo XA xs xo XE XF XI 'If Xo A
............................... ~ ••• ~ !'"'"''""'"'"'"""'""'"'"'""'"'""'"'""'""'"""""'""''"'""'''""''"''"'"''"'""'"''"'""""''"""''"'"'''""'''"""'""''"""'""'''""'"'"'""'"''""'"''"'"""'

Figure 4.6 Timing Simulation for 74381 ALU

4.1.5 FPGA Development Board

There are currently two types of FPGA board in the laboratory. Spartan-II

Proto typing Board and Virtex-II XC2V 40/XC2VI 000 Reference Board. After

much consideration on the pros and cons of both boards, preference will be given to

Spartan-II board as there is add-on board available like FPGA-CPU-IO board

which will be very useful when expanding this project at later stage. Furthermore

the code from Bird Computer had been claimed implemented on Spartan-II. So

implementing this project on Spartan-II board will be more secured for successful

implementation. For more information on Spartan-II FPGA family, do refer to

Appendix F.

4.1.6 B3-SPARTAN2+ QuickStart Guide 2.0 [11,12]

For the purposes of documentation on how the FPGA designing process should be

done, or better known as Best Known Method (BKM), a QuickStart guide [12] will

be provided on how to use B3-Spartan2+ (200K and 300K) FPGA board. The used

35

guide available for B3-Spartan2+ board is absolute and need some modification

especially on the Downloading of design section.

This quickstart guide takes you through the steps for creating and compiling a new

project with the Xilinx WebP ACK ISE Design software. This can also be a guide to

make sure the Spartan-II board used is a working board. Shown in this part of report

is just an overview of all the steps. For full documentation, please refer to Appendix

H

The steps are as below:

I. Install the WebPACK_6l_fcfull_i software

2. Create a new project

3. Assign the pinouts of the device

4. Create the bitfile (.rbt) for downloading

5. Download the .rbt file to your FPGA

If the LEDFLASH.rbt example file has been downloaded, the LED on the

BED-SPARTAN2+ board will be flashing at a rate of about !.4Hz.

4.1.7 Problem faced

4.1.7.1 Verilog HDL

Verilog HDL was chosen to be used in this project as it is the most commonly

used language in the hardware designing world. Learning V erilog is not as

easy as it may seem to understand it. For beginner who had no previous

36

experience on HDL, it is always recommended to start by understanding others

work.

Understanding a simple logic operation like flip-flop or even ALU is relatively

easy to understand the code written. But for an 8 bit 6502 processor, which had

13 addressing mode and 56 different insttuction sets; this is a huge project for

an amateur. Although some may argue that this is relatively a "simple"

processor by today standard, but for someone who just started to learn Verilog,

this is not a simple task all together.

So the student will instead of starting on the real work, will try to understand

the functionality of a simple processor to have a feel of how the control signal

and buses is being implemented in a processor. The student believes that by

starting on something simpler, the understanding on the subject will be more.

With the limited time, the student may just being able to demonstrate its ability

to understand a simple processor code only by producing the relevant timing

simulation.

4.1.7.2 Equipment Condition

All the equipment at the laboratory initially is not ready when the student

needs to use it. Precious time has been wasted to set up the equipment. Time

again was wasted when all the operating system had been upgraded to

Windows XP system, the initial program used for downloading to the Spartan2

FPGA board encounter problem in the new environment. After some research

on the internet and from the supplier, only did the student knew that the

existing program used for download is now being obsolete and being replace

by the iMPACT from Project Navigator.

37

There are also no proper user manuals on the Spartan2 Prototyping Board. The

only manuals available are the circuit diagram of the board which is not much

use to understand and the know how on how to use the board. Downloading the

design into FPGA is one thing, but to test the programmed FPGA is another

issue as the student will need to build its own hardware interface to the FPGA.

This all will need to consume times and the student initially oversee this issue

in the project planning stage as wrong impression had been given to the student

believing all things are there to be utilize.

4.1.7.3 Incomplete Implementation

Due to constraint on resources and times, the student cannot implement the

design to FPGA. Implementation on FPGA without proper hardware

interfacing is like programmed a said working chip which cannot be verified.

A logic analyzer can be used to monitor simple output from a chip, but with a

processor, it is no longer a feasible equipment for testing already.

So the student will only implement the timing simulation of a simple processor

to demonstrate student understand on the code and if possible produced the

timing simulation on the existing 6502 CPU code. By proper documentation on

a simple processor in Verilog code, the student hope future student continuing

this project will have a better understanding on processor to start with and

hopefully can complete this project within 2 semester time.

38

CHAPTERS

CONCLUSSION AND RECOMMENDATION

5.1 Conclusion

In conclusion, this project looks promising with a lot of learning curve during the

process. A lot of skills and experience will be picked up along the way in order to

complete the project. After the completion of this project, the student will had a better

standing on a microprocessor construction, its assembly language and also on how to

emulate a microprocessor using a FPGA. On the way, the student knowledge on

Verilog HDL language will also be improved. This will be a good project to

undergone to learn about microprocessor as 6502 architecture and its assembly

language as it was simpler and easier to learn.

During the project planning stage and along the way the project was being carried out,

the student had actually did some mistake by making assumption that the facility in the

laboratory is in good condition and functioning and will not encounter any unforeseen

issue like downloading issue and no support from the supplier. The student should

have taken this all into account when making decision on the project planning. With

all these obstacles, the student can only do code functionality simulation as the code

obtain from Bird Computer were not complete with one file missing which prevent it

from being able to synthesis. The student really got not enough time to complete this

project within the given timeline. The student can only provide the available 6502

processor code but not the whole 6502 SoC, which is not feasible to download the

code to FPGA as there are no interfaces to test the functionality of the programmed

FPGA. The student will only provide the necessary background study and proper way

for future student to continue this project like how to do testbenches to test the

functionality of the code. The student hopes with proper documentation on all works

39

done, it will make it easier for future student to continue this project and complete the

initial goal of emulating a 6502 on FPGA.

5.2 Recommendation

5.2.1 Design Tools

The student would like to recommend that UTP obtain some proper design tools as

soon as possible. The student would like to suggest UTP to obtain these tools from

Open Source instead. Their advantages are first of foremost, it's free of charge and

since it is Open Source, there will be more help and support from others designer

worldwide that the student can source help from when faced with problems. UTP

should also consider switching from windows based system to L inux or UNIX

system as these systems are used widely in the industry. UTP management should

also make sure that all licenses are obtained and training is provided to both staffs

and student.

5.2.2 Prototyping Tools

The student would like to recommend to UTP to purchase better prototyping kits as

most of our available proto typing kits are consider outdated and are of the low end

type. The cost for better prototyping board is of course higher but they also have

better support and easier to used and can get reference or assistance from the

supplier. The FPGA prototype board should be purchased with accompanying I/0

devices to allow integration and communication with external devices if there are

none on the prototyping board like Spartan2 prototyping board.

5.2.3 Proper Support

The student would also like to suggest that more staff should be employ to take care

of the laboratory and the management should give the trust to student to come to the

40

lab on weekend also as prototyping board is not cheap and most of the time the

board is needed for testing and debugging of the written code. Without this, time on

weekend will be wasted with no progress on the project work.

Proper training should also be given to the personal taking care of the laboratory as

the personal now got no training on the design tools like Aldec Active-HDL or

Project Navigator. Training should be given to all student involved if possible to

make the student had a better start on the project. Equipment training also should be

conducted on a regular basic to enable the staff and student to know how to use the

available prototyping board in the laboratory. As far as student understand, there

are some boards which until today had not been given demonstration by the

supplier!

5.2.4 Soft Copy Submissions

The student would also suggest that the FYP submission of reports be done in PDF

or DOC format instead of the present hard copy submission especially on logbook

reports. So many papers are being generated. If UTP can move toward paperless

submission, UTP can help to save the environment and also the hassle of

submission. With the well establish UTP network, the management can establish a

local server dedicated for FYP submission and distribution of FYP reports.

41

REFERENCES

Books I User Guide

1. 6502 Software Design by Leo SoanLon, Blackburg, 1980.

2. CS301 Lecture Notes by Glenn G. Chappell, U. of Alaska Fairbanks, Dec 2001.

3. Enhanced Verilog tutorial with Application by EVITA TM

4. Verilog Digital Computer-Algorithms to Hardware, Prentice Hall, by Mark

Gordon Arnold, University of Wyoming, 1999.

5. VHDL Reference Manual, 096-0400-003, by Synario Design Automation, March

1997.

6. Verilog Digital System Design, Me Graw Hill, by ZainalabedinNavabi, 1999.

7. Computer Design and Architecture, Marcel Dekker, by Sajjan G. Shiva, 2000.

8. Commodore 64 Programmer Reference Manual.

9. Spartan-II Demo Board User's Guide, Insight MEMEC, Version 1.1 Jan 2001.

10. Virtex-II XC2V40/XC2Vl000 Reference Board User's Guide, Insight MEMEC,

Version 1.1, July 2001.

11. B3-SPARTAN2+ Quickstart Guide 1.0

12. B5e-Super-Value-Pack Tutorial Updated 7 August 2002

13. Spartan-II 2.5V FPGA Family: Complete Data Sheet DSOO 1 September 3, 2003

14. Fundamental of Digital Logic with Verilog Design, Me Graw Hill by Stephen

Brown and Zvonko Vranesic, 2003.

15. Writing Testbenches- Functional Verification of HDL Models, Kluwer Academic

Publishers by Janick Bergeron, 2000.

viii

Internet Resources I WebPages

I. www.geocities.com/oneclkruns/AssemblyinOneStep.htm (August 2003)

2. www.izabella.freeuk.com/6502CPU.htm (August 2003)

3. www.free-ip.com/6502/ (August 2003)

4. www. stanford.edu/-acylinffheKarenA 16B itRISCMicroprocessor .htm (September

2003)

5. www.cast-inc.com (October 2003)

6. www.artariarchieves.org (October 2003)

7. http://www.geocities.com/profdredd/cprogram/6502 ml.html (February 2004)

8. www.birdcomputer.ca/index.html (December 2003)

9. www.anglefire.com/infverilogfaq/page3.html (March 2004)

10. http://www.estec.esa.nlfwsmwww/core/soc.html (March 2004)

ix

Appendix A:

Gantt chart

!D fTask Name

-----·-1--·------~-------------~-
1

1
Selection of Project Topics

-l - - - - ---,_2_, Title: 6502 emulator on FPGA
3 ' .

!~Preliminary Research Work
,~, Understanding Problem Statement

Literacture Review on Proposed Project

- 7 _]Project Planning
8 I Prepare Preliminary Report --gl

·-,0-[Submission of Preliminary Report

~~~ I 11 

' 
12 Project Work 

·--·-r:r- Understand 6502 microprocessor architecture 

Research on Hardware Description Language 14 

15 I Learn the choosen HDL (either VHDL or Verilog) 

, -. ,-.----j Study on other's works on 6502 
17 Prepare Progress Report 

18--

19 

-26-1 

Submission of Progress Report 

Understand the coding from other's work 

Try to write code for register using HDL 
Do some simulation with the code 
Prepare interim Report Final Draft 

-----v---1 Submission of interim Report Final Draft -2,--, . . 
'~29-·l Prepare Oral Presentation 
:-- :ro-... , 

~Oral Presentation ·---3,-1 . 
"]Submission of Interim Report 

5th Year 1st Semester Gantt Chart 
I_ 03 I Jul 20, '03 1 Jul27, '03 I Aug 3, '03 I Aug 10 '0 I Aug 17 '0 :Aug 24 '0 _ Aug 31, '0 I Sep 7 03 , Sep 14, '0 'Sep 21, '0 Sep 28, '0 1 Oct 5 '03 1 Oct 12 031 Oct 19, 'f@_j Oct 26, '03l N~~ 
~f:J~L§_I T 1 F M 1 T s TViTl s I TIFIM I_T _' s [WI s-[___I__j F-IMTT] s 1 w , s 1 T TIJ.~_,_l_j_~.§_J _!_} F-ffilll r ~ 
' c~ ' 
, ~ • 7/25 r

1

· 

I i 

! ~ ~ r.r' I I I ,, 
, I' 

CJ 11 

I' 

•~· I 

~ 

I~ 

c __ _j 

CJ 

• 9112 

----:----=------

----

• 10/10 

- II> 

CJ 

~-~ 

c=J 

• 10/24 

i 

II 

!I 

il 

II 

I 

Project: FYP 1st Semester Gantt Char 
Date: Wed 6/2/04 

Task c::=-~ Progress Summary ....... --------------.-­
~~ii.'W$'W'~ 

External Tasks Deadline 

Split Milestone • Project Summary External Milestone 



5th Year 2nd Semester Gantt Chart 
ID i Task Name 

!Project Work·~~--~---------

1 Understand available 6502 code 

i J3iluary_?.Q.9~---===- J£,~bruary 2004 _ _ _ ---~j~~rch 2004 __ ------:- _ i April 2004 _ ! May 2004 - .., June 2664~-, 
··m·---- __ ----filij 1 !1o:13L~2.;~212sT2BI?..:!~~_; e_;_=...~~~l~J27JJj__til_j~.§J_13i1BI19I2~25i28i31J._!j_6 i9l12l15118i21 i24l27)3oi3JJ1l~zr1Si1Bi21 [24!27 ~..Ql_;J sis i!.1_

1 

1

__:_]-ReSearCh_ 0~--~-~GA"-D-evelopment Board 

:_~Learn up Pro __ ~_ect Na·v·i-gator and FPGA Express 
5 Prepare Progress Report I -. -

-r-lsubmission of Progress Report 1 

'-~--~Project WorkContinue -
, ___ Learn up 6502 assembly language 

'i Research on avalilable 6502 application 
] chooS_e_ WhiCh F'PGA Board- to use 

-"[Transfer the desigo to FPGA 
, __ 14 __ 1 Des-ign application fof the design 

15 jPfepare~PfOgjess Report 2 -
16 i 

-,7 lSubmission of Progress Report 2 
~---,,1 

~Project Work Contii'lUe 
Tourbleshooting on FPGA 

I Try out the FPGA.wiilithe application 

22 i validate the functionality of the FPGA 

1231 Pl"epare Draft Report __ . · 
-,.--~Prepare Extended Abstracts 

I 25 ~ 
~"_jSubmission of Draft Report 

27 !Submission of Final Report (Soft Cover) 

Project: FYP 1st Semester Gantt Char 
Date: Wed 6/2/04 

Split 

~~---~ I 
I .-----r---

1 

9 
• 2113 

-I 
~~. __ ..,. 

Milestone • 

I I 

c::::J 
D 

cc----, 

Project Summary .F9f'f"'iRW«A{$ 

~ 
• 3/19 

1--- --- -,_ 

I ~1 

D 

I 

~-1' i 
i 

II 
li ,, 

.:~~> 

il 

D 

I • 4121 

• 517 

i 
I' 

i' D 

I 



Appendix B 

Overview on 6502 microprocessor [!2] 

PIN ASSIGNMENT 

Vss 1 40 RES 
RDY 2 39 02(0UT) 

01 (OUT) 3 38 s.o. 
IRQ 4 37 00 (IN) 
N.C. 5 36 N.C. 
NMI 6 35 N.C. 

SYNC 7 34 R/W' 
Vee 8 33 DO 
AD 9 32 01 
A1 10 31 02 
A2 11 30 03 
A3 12 29 04 
A4 13 28 05 
A5 14 27 06 
AS 15 26 07 
A7 16 25 A15 
A8 17 24 A14 
A9 18 23 A13 

A10 19 22 A12 
All 20 21 Vss 

Figure B 1: 6502 Microprocessor Layouts 



Pin layout 

I Ground 
2 A negative transition halts the MPU. Allows for single step 

cycling etc. 
3 CK I OUT Phase I clock output 
4 /IRQ. If interrupt mask flag is not set, program counter jumps to 

FFFE&FFFF 
5 n/c-
6 /NMI. Non-maskable interrupt requires low condition to jump to 

FFFA&FFFB 
7 Sync Identifies the op-code fetch instructions 
8 Vee +5V 

9-20 A0-11 
22-25 A12-15 Address bus 

21 Vss Ground 
26-33 D0-7 Bi-directional I tristate data bus 

34 R/W Read I Write line 
35 n/c-
36 n/c-
37 CKin Single phase clock input 
38 ISO Neg. input sets the overflow flag. Must be in sync. 

with CKI trailing edge 
39 CK 2 OUT Phase 2 clock output 
40 /RES A low initialises the MPU and sets the program 

counter to FFFC & FFFD 

Table Bl: Pin Layout of6502 



Block Diagram of 6502 

- REGISTER SECTION CONTROL SECTION ---
r 

REI IT rMI 
AO +---

1 

INDEX r 
REG~!ITER 

INTERRUPT 
LOGIC 

A1 +-- l 
A2 +-- I INOEX F REG fER 

A3 +-- :c L "' ~ 

A4+- <( CH """' r ROY 
< POINTER 

REGISTER 

A5 +--
(S! L__ 

"' 
AS .,._ H I. INs:TRUCTION 

:::l OLU 

~ 
DECODE 

"' A 7 .,._ '-----

"' ][ I 1!1< 
0:: 

A8 .,._ ,----0 ~ IACCUM~LATC~ 0 c 

G= 
s TIMING I 

<( < CONTROL 
A9 .,._ ~ 

< 
2 
~ 
w 

A10 .,._ ~ ¢===:{ _j<l==: • PCL 

ll A11 .,._ PCH ~ I CLOCK 
_j GENERATOR !fiCIN 

~ 4 PROCESSOR I "' r= REGISTER 
A12 .,._ <( 

STATUS 

FJ INPUT p !!tOUT 
D .... TA 

f==t A13 .,._ LATCH ~2DUT 
{01.) 

RIQ 

A14 .,._ 
I DATABUS ~ INSTRUCTION 

A15 .,._ _ BUFFERS REGISTER 

\_ LEGEND 

11' C BIT LINE sr} 8~ OAT;. 

t = 1 BIT LINE 
04 BUS 
OS 

8~ 

Figure B2: Block Diagram of 6502 [B8] 



Appendix C 

6502 Machine Language Overview [B2] 

Instruction: 

• 56 different instructions. 

• 13 different addressing modes. 

• Total of !5llegall-byte opcodes. 

• And one bug (indirect Jump at end of page). 

• Execution of each instruction takes 2-7 cycles. 

• Every instruction has a base execution time. 

• Successful branch: +I. 

• Sometimes, + 1 if indexing crosses page boundary. 

• We know exactly how long execution will take. 

• Execution is always in-order. 

Opcodes and Operands: 

• All opcodes are I byte. 

• Operands are 0, I, or 2 bytes. 

• !-byte operands 

• 8-bit constant 

• Zero-page address 

• Zero-page addresses were those that began OOh. 

• Zero-page addressing shorter & faster than normal. 

• Thus, zero-page space was in demand. 

• 1-byte offset from current address 

• Used in branch instructions. 

• 2-byte operands 



• 16-bit memory location 

Registers: 

• 16-bit program counter and five 8-bit registers: 

• A (accumulator) 

• General purpose. 

• Stores arithmetic results. 

• X & Y (index registers) 

• Limited functionality. 

• Similar, but not identical in use. 

• S (stack pointer) 

• Prepend 01h to get the current top-of-stack address. 

• Can be accessed directly by transferring to X register. 

• 8 bits! So the stack is limited to 256 bytes. 

• P (processor status) 

• Holds seven 1-bit status flags. 

• Can be accessed directly by pushing on the stack. 

Addressing Modes: 

• 13 Addressing Modes: 

• Implied 

• No operand (example: register-to-register transfers) 

• Accumulator 

• No operand; instruction affects A register 

• Immediate 

• Operand: !-byte constant. 

• Zero Page 



• Operand: 1-byte zero page address. 

• Relative 

• Operand: 1-byte offset from current address. 

• Used in branch instructions. 

• Absolute 

• Operand: 2-byte address. 

• Zero Page, X & Zero Page, Y 

• !-byte zero page address+ X [or Y, as appropriate]. 

• Absolute, X & Absolute, Y 

• 2-byte address +X [or Y, as appropriate]. 

• (Zero page indirect, X) & (Zero page indirect), Y 

• 1-byte zero-page address, contents of this & following address used as 2-

byte address. 

• X added before dereferencing; Y added after. 

• (Indirect) 

• 2-byte address, contents of this & following byte used as 2-byte address. 

• Available only in JuMP instruction. 

Example of an assemble code: 

START LDY #$05 Load Y: constant 

LOOP LDA STRING,Y Get char to print 

JSR$FDED Print char in A 

DEY DecrementY 

BPLLOOP If plus, continue 

RTS Return 

STRING HEX 21 6F6C Reverse order 

HEX 6C 65 48 ASCII codes for ... 



The 6502 Instruction Set [B8] 

Load and Store Group 

LDA 
LDX 
LDY 
STA 
STX 
STY 

Load Accumulator 
Load X Register 
Load Y Register 
Store Accumulator 
Store X Register 
StoreY Register 

Arithmetic Group 

ADC 
SBC 

Add with Carry 
Subtract with Carry 

AppendixD 

N,Z 
N,Z 
N,Z 

N,V,Z,C 
N,V,Z,C 

Increment and Decrement Group 

INC 
INX 
!NY 
DEC 
DEX 
DEY 

Increment a memory location 
Increment the X register 
Increment the Y register 
Decrement a memory location 
Decrement the X register 
Decrement theY register 

Register Transfer Group 

TAX 
TAY 
TXA 
TYA 

Transfer accumulator to X 
Transfer accumulator to Y 
Transfer X to accumulator 
Transfer Y to accumulator 

Logical Group 

AND 
EOR 
ORA 

Logical AND 
Exclusive OR 
Logical·Inclusive OR 

Compare and Bit Test Group 

CMP 
CPX 
CPY 

Compare accumulator 
Compare X register 
Compare Y register 

N,Z 
N,Z 
N,Z 
N,Z 
N,Z 
N,Z 

N,Z 
N,Z 
N,Z 
N,Z 

N,Z 
N,Z 
N,Z 

N,Z,C 
N,Z,C 
N,Z,C 



BIT Bit Test 

Shift and Rotate Group 

ASL Arithmetic Shift Left 
LSR Logical Shift Right 
ROL Rotate Left 
ROR Rotate Right 

Jump and Branch Group 

JMP Jump to another location 
BCC Branch if carry flag clear 
BCS Branch if carry flag set 
BEQ Branch if zero flag set 
BMI Branch if negative flag set 
BNE Branch if zero flag clear 
BPL Branch if negative flag clear 
BVC Branch if overflow flag clear 
BVS Branch if overflow flag set 

Stack Group 

TSX Transfer stack pointer to X 
TXS Transfer X to stack pointer 
PHA Push accumulator on stack 
PHP Push processor status on stack 
PLA Pull accumulator from stack 
PLP Pull processor status from stack 

Status Flag Change Group 

CLC Clear carry flag 
CLD Clear decimal mode flag 
CLI Clear interrupt disable flag 
CLV Clear overflow flag 
SEC Set carry flag 
SED Set decimal mode flag 
SEI Set interrupt disable flag 

Subroutine and Interrupt Group 

JSR 
RTS 
BRK 
RTI 
NOP 

Jump to a subroutine 
Return from subroutine 
Force an interrupt 
Return from Interrupt 
No Operation 

N,V,Z 

N,Z,C 
N,Z,C 
N,Z,C 
N,Z,C 

N,Z 

N,Z 
All 

c 
D 
I 
v 
c 
D 
I 

B 
All 



Load & Store Instructions 

$TZ ... "'··· .. \~t~re zero 

iPHY 

;PHP 

IPLA 

!Txs !transfer stack pointer to X 

Stack Operations 

Increment & Decrement Operations 

!rillA. 

accumulator 

I increment X index 

idecrement accumulator 

X index 

DEY jdecrement Y index 
iiNC !i·~-~~ement m····.·····m········o··,··y······l···o·····c····.·····t··t···o···n························································································· :Nz 

F~E:::::-:1;;;;~~~~~ ~:~~2_~~~~=--~=~=:::::::-:~:::::::-:::-:~::::: . (DEC memory location 
~=-~~· _7 ___ -··········-·················-·=-· 

Shift Operations 
iAsL Jarithmet.•i·c·s 'hi'ft :·:l··.····ft', h•i ···g···:h 'b .. i.·t·i ··n·····~···o·····c·arry ················ ··························· 

ILSR !logical shift right, low bit into carry 

Logical Operations 

!AND :and accumulator 



with accumulator 

with X index 

CPY compare with Y index 

,TSB 
-w-"'"""'~"'"'~~ 

:RMB 

SMB 

illNE 

IilEs 
lllvE 

........ . ••···• 
!test and reset bits 

<test and set bits 

jreset memory bit 

Math Operations 

accumulator, with carry 

accumulator, with borrow 

from Subroutine 

from Interrupt 

Always 

on equal (zero set) 
....................................................................................................................................................................................... 

]branch on not equal (zero clear) 

on carry clear (1) 

ihranch on carry set (~) 
!branch on overflow clear 

on overflow set 

on minus 

on plus 

IBBR jbranch on bit reset (zero) 

!TAX 

on bit set (one) 

Processor Status Instructions 

decimal mode 

interrupt disable bit 

Transfer Instructions 

!tnmsfer accumulator to X index 

accumulator toY index 

X index to accumulator 



:TY A !transfer Y index to accumulator 

Mise Instructions 

Table D 1: 6502 Instruction Set 

Notes: 
1. The BIT instruction copies bit 6 to the V flag, and bit 7 to tbe N flag (except 

in immediate addressing mode where V & N are untouched.) The 
accumulator and the operand are ANDed and the Z flag is set appropriately. 

2. The BCC & BCS instructions instructions are sometimes known as BLT 
(branch less than) and BGE (branch greater or equal), respectively. 



AppendixE 

6502 Instruction Encoding [B8] 

Mnemonic Addressing mode 
iADC .. 
! 

' . jlmmedJate #Oper 

Page Zpg 

jz~~~i'~8~.X ..... [A.ricz;;i,:X 
[Ab;olute ················································ jA.ric A' 'bs··························································· 

f::-:~·~ 
Abs,X 

······ ·[AricAbs,Y 

Page),Y 

[(z~~~ P~ge l 
(Zpg),Y 

· · · · · · · · · · · jAne (Zpg• ')···· ················································ 

#Oper 
~~~~·····~·····~""~···~~-~~,~"~~~"~" 

Page Zpg
jzero Page,X jA'N':D:z=p:.g:: .. , .. X,.,

[Absolute [AND Abs

jAb;~i~te,x jAND Abs,x j:lri [3
[A.b~;;i~!e,Y-~·~~·-"~ [A.N'n-Ab;;y-~~~~ [39~-"T3~-~- ~~·--"~"~·"~

liz~;~!'~8~56 · ·· ·· · [AND (Zpg,x) " 121
j(z~;;;Page),Y jAND(Zpg),Y

r-~----~~-~~~c~-~"·-r----~
Page) (Zpg)

!ASL [Accumulator [AS ''L···A··"
;

'BBRO

!BBRl

IBBR2

jBBR3

Page

rz·~ro Page,X

[Absolute

Zpg

Zpg,X

Abs

Abs,X
-!R~i;(;-;;~~ ~ .~.~~" jBBRO Oper

[Relative [BBRl Oper

[R:~i~ti~~ [BBR2 Oper

[Relative jBBR3 Oper [3F
[BsR4 ~- ·~ [R~~~;i,;; ~ ~--"" ~-" " fBBR4 Op;;;------~F--·" fz"- -- [2-~ . . ~"·-·
lssRs · ···· · · ···rR:~~~~;~~ · ··· · ···rssRso;;~;
[BBR6 jR~l~tive jBBR6 Oper j6F
[88'R7"--· . ~~;;;~~-- ""~~"· -[BBR_7_0_p~~---~---~~7-F ____ [2-~-~2-·"""'""~-
,.............................. f
1BBSO !Relative Oper

··'·········"·~···'"··············"·'·'····························'··············

[BBSI !Relative

1Iiiis3 · · ·rR:~i~live
\BBS4 IR:~i~li~~
jBBS5 --~R~l~ti~~ .. ····-····-·· .

!BBS6 IR:~i~tive

Abs,X
:BMl[Relative . [BMiOIJ~r

, ·· ····· ········r· ··· · ········ ~---·······r······················
:BNE Relative BNE Oper
·-·-··················-·· r,···-······························-······ 1:::::::·-::·· ... ··-··········· ·-·,:·:········· ;:················
BPL :Relative Oper

[Relative [BRA Oper
r···········--·

[zero Page,X

IA:b~~T~;~:x ····- ·· ········ fcM"?A:J;;:x
[Ab~~lute,Y jCMP Abs,Y

IDEA

[::~~~~;~~~~~~~~~:!- ~~~ !3 ~~r----~~~1~ [A~~umulator foliA ·····························

I DEC [:i~;~Page [riEcccz=p···g········ [c6 · ···· [z !5 · · ·· '
l:i~~~ i'~i~.x~ ·lolic.Z;;;;,·x ~-~ --fo6·---··:z- ---- 16-- ~ · · -- ~

[Ab~~lute frilicAb; jc!l 3
fAI,-;;;l;;;~:x~ · -------fn!lc-Ab~:x·~-------- foE: --- -r.J·- ~ -T------ · -··r

' ~~~ ~~ I~ I
[DEY·~-- --fl;;pi;;I _______ ---jDEY·-------·-jss~----[1 -----~2-----~----~

fim~~diat~---· ~:--~jEOR#o;;;·-~-------- ~9~~-~- 12 ---~-'----------~

I INC
' I
'

i
[INX

[Zero Page . fEOR Zpg [45 iz 1
fzeroPage-:-x·---~--fEOR-Zpg,X ~-~~- /55-----lz -----[4--------~
[Absolute ··················llioiAJ;;····- ·· -------~n····· ·····················1

[Ab;~~~;;,~x- - ·---- f!loi Ab;,x--~-----~fsn----~3 -~-~4----------1

\tl:;~:;,:-----~:~ t::~~X) f~~ ~~~~-==~~~~ ·=:-=i
~~:;g::~F~~=~=:-~~~~~~~:Y-~::::=~:::::~ r:::=~:-::~:::::rl
[A~~;;;;;~Iator ···············-·-·-i,NA····································-··----·-···············IiA ····················r~ ···········.

-r~;o P~g~----------·[iNCZpg~-------,E6---·-·rz·~--:s-··----l
fz~;~ Page,X Zpg,X fF6 !
[At;;~i~te [iJ.icAb; [!l!l 13 16
[Abs~lut~x··-----~----jiNC Ab;,-x-- -wE-~ ~----·-·r·--~---

J!mplied · jiNx [lis
IINv · ---!I;;;l>!ied________ ___ fiNv··- -- · ·----·res· ·--~~----~--

!Absolute ··· · /iMPAb~ · · · ·· [4c ············ ·;:·'·························· IJMP
' (Abs)

(Abs,X)
'isi [Ab;~i;;ie [!siAbs

~~~~;c!;~;~ ------ -~~j)A-#o;;;;-r-·----

!.Z;;-;;;:p;g,~ ~~~ - Zpg 
f:i~;;; P~g~:x fi:riAzpgX [85 \2 
[Absoiu!e __________ [i:oA-Abs·---------~-[AD~-----3~-~~4------
IAb~;;i;;;~-:-x· ........ ---
[At;;;;Iute,v 
!(z~;;; :r~;;~:xi 



Page 

Page,Y 

[zero Page [LDY Zpg .................... . 

,·~··~·-···-~·-··~··~···· ...• ,---··-·-···~· !Zero Page,Y LDY Zpg,X 

[A:);;~~~~~ '[l...ri:YA:);; 

Page,X Zpg,X 
[A:);;~~~~~ ···· · · · · ··········· ··· ······· ·rl...sR:At;;· ····-··············· ·· 

Abs,X 

[Absolute Abs 

Page,X 

[A:i,;~i~;~· 

[Absolute,X 
[ii.OR ..... .... . .. . [A:~~~;;;~~~~~; 

Page 

~~~-,·-,·~·c::-·~·-··---·r•~--·~·-··-··~~---.. ·' 
Abs,X

.. [OR:AA:i,;,Y
............................ ;

(Zpg,X)

(Zpg),Y

(Zpg)

Abs

[ii.oi..Abs,X
... [ii.OR:A ..

Zpg

Zpg,X

Abs

iRTS

iss<::

:SEC

\sTA

I

ji~plied
[i~~~diate

STX [zero Page
r=···~:···~, - ...

Page,Y

[Absolute

ISTY Page

!:Zero Page,X

[Absolute

ITAY

Page
i""

!Absolute

TSB
[:Ze~o Page··························

!irs
·r
1SBC#Oper

Abs,Y
JsiA(zpg····,·x''l' ······················

.... JsiA(zpg),Y

... ('"'""''"'

ISTX Abs
~,,,,,,,,,.,.-.

Zpg

Zpg

I,TRBAbs

/TSB Zpg

\Absolute [TSB Abs lac j3 !6 I
i+sx [Implied [+sx [EIA I
ffxA~~~~~~~~ ~ plied~~---~-~~-[TXA____ [BA---~~----[2----- --~

'Txs !Implied ['Txs 19A [2 !
;+YA lim plied [l'YA [98 li 1

~~---- --~----------------~---~------~-~---------~-~-~--------~----------J

Table E I: 6502 Instruction Encoding

Appendix F

Spartan-11 FPGA Family [B13]

Introduction

The Spartan-II 2.5V Field-Programmable Gate Array family g1ves users high

performance, abundant logic resources, and a rich feature set, all at an exceptionally

low price. The six-member family offers densities ranging from 15,000 to 200,000

system gates, as shown in Table I. System performance is supported up to 200 MHz.

Spartan-II devices deliver more gates, I/Os, and features per dollar than other FPGAs

by combining advanced process technology with a streamlined Virtex-based

architecture. Features include block RAM (to 56K bits), distributed RAM (to 75,264

bits), 16 selectable VO standards, and four DLLs. Fast, predictable interconnect

means that successive design iterations continue to meet timing requirements. The

Spartan-II family is a superior alternative to mask-programmed ASICs. The FPGA

avoids the initial cost, lengthy development cycles, and inherent risk of conventional

ASICs. Also, FPGA programmability permits design upgrades in the field with no

hardware replacement necessary (impossible with ASICs).

Features

o Second generation ASIC replacement technology

-Densities as high as 5,292 logic cells with up to 200,000 system gates

- Streamlined features based on Virtex architecture

-Unlimited reprogrammability

- Very low cost

o System level features

- SelectRAM+™ hierarchical memory:

· 16 bits/LUT distributed RAM

· Configurable 4K bit block RAM

· Fast interfaces to external RAM

- Fully PCI compliant

- Low-power segmented routing architecture

- Full readback ability for verification/observability

- Dedicated carry logic for high-speed arithmetic

- Dedicated multiplier support

-Cascade chain for wide-input functions

- Abundant registers/latches with enable, set, reset

-Four dedicated DLLs for advanced clock control

-Four primary low-skew global clock distribution nets

-IEEE 1149.1 compatible boundary scan logic

• Versatile 1/0 and packaging

- Low cost packages available in all densities

-Family footprint compatibility in common packages

- 16 high-performance interface standards

- Hot swap Compact PCI friendly

- Zero hold time simplifies system timing

• Fully supported by powerful Xilinx development system

-Foundation ISE Series: Fully integrated software

-Alliance Series: For use with third-party tools

- Fully automatic mapping, placement, and routing

t1ble 1· Spartan-11 FPGAFamily Members

CLB Maximum Total Total
logic System Gates Array Total Available Distributed RAM Block RAM

Device Cells (Logic and RAM) (R x C) CLBs Userlf0(1) Brts Bits
XG2S15 432 15,000 8 X 12 96 86 6,144 16K

XC2S30 972 30,000 12 X 18 216 13-2 13,824 24K

XC2S50 1.728 50,000 16x 24 384 176 24,576 32K

XC2S100 2.700 100.000 20 X 30 600 196 39.400 40K

XC2S150 3,8$8 150.000 24x 36 864 260 55.296 48K

XC2S:200 5,292 200.000 28x 42 1.176 284 75.264 56K

General Overview

The Spartan-II family ofFPGAs have a regular, flexible, programmable architecture

ofConfigurable Logic Blocks (CLBs), surrounded by a perimeter of programmable

Input/Output Blocks (lOBs). There are four Delay-Locked Loops (DLLs), one at

each comer of the die. Two columns of block RAM lie on opposite sides of the die,

between the CLBs and the lOB columns. These functional elements are

interconnected by a powerful hierarchy of versatile routing channels (see Figure Bl).

Spartan-II FPGAs are customized by loading configuration data into internal static

memory cells. Unlimited reprogramming cycles are possible with this approach.

Stored values in these cells determine logic functions and interconnections

implemented in the FPGA. Configuration data can be read from an external serial

PROM (master serial mode), or written into the FPGA in slave serial, slave parallel,

or Boundary Scan modes.

Spartan-II FPGAs are typically used in high-volume applications where the

versatility of a fast programmable solution adds benefits. Spartan-II FPGAs are ideal

for shortening product development cycles while offering a cost-effective solution

for high volume production.

Spartan-II FPGAs achieve high-performance, low-cost operation through advanced

architecture and semiconductor technology. Spartan-II devices provide system clock

rates up to 200 MHz. Spartan-II FPGAs offer the most cost-effective solution while

maintaining leading edge performance. In addition to the conventional benefits of

high-volume programmable logic solutions, Spartan-II FPGAs also offer on-chip

synchronous single-port and dual-port RAM (block and distributed form), DLL clock

drivers, programmable set and reset on all flip-flops, fast carry logic, and many other

features.

The Xilinx XC17SOOA PROM family is recommended for serial configuration of

Spartan-II FPGAs. The In-System Programmable (ISP) XC18VOO PROM family is

recommended for parallel or serial configuration.

~oooooooooooooooooooooooo~
8~ DDDDDD DDDDDD ~8
8~ ~ DDrdDDD DDQ[lDD ~8
8~ s DDDCJDD DDDLJDD ~8
8~ ~ DDDDDD DDDDDD ~8
8~ ~ DDDDDD DDDDDD ~8
8~ ~ DDOCLBns DO DDQL[1DD ~8
8° 9 DDDDDD DDDLJDD ~8
§ CD DDDDDD DDDDDD §§

'10 LO:: ~~~~~X~S~,~~~~~~~~~~~~ 0::_,
Figure Fl: Basic Spartan-II Family FPGA Block Diagram

For more information on Spartan-II FPGA, please refer to Spartan-II 2.5V FPGA

Family: Complete Data Sheet DSOO! September 3, 2003. There is around 100 pages

information on this device. The softcopy of this Data Sheet is easily available from

Xilinx website.

Appendix G

D Flip-flop Verilog Model Testbenches

Testbench for Timing Simulation in Figure 4.1

11--
// Title : dff_tb
II Design : DFlipFiop
II Author : KEH
II Company : UTP
/1---
l/ Description :
1/---

'timescale Ips I Ips
module dff_tb;

//Internal signals declarations:
reg data;
reg clock;
wtreq;

II Unit Under Test port map

always
begin

dffUUT (
.data(data),
.clock(clock),
.q(q));

//Clock initial
#30 clock<~ l'bO;
#30 clock<~ l'bl;
end

initial
begin

end

data= l 1b0;
#!50 data~ l'bl;
#250 data ~1 'bO;
#300data~l'bl;

endmodule

Testbench for Timing Simulation in Figure 4.2

I I--
11 Title : dff_async_tb
II Design : DF!ipF!op
II Author : KEH
If Company : UTP
11---
// Description:
!1---

'timescale Ips I Ips
module dff_async_tb;

//Internal signals declarations:
reg data;
reg clock;
reg reset;
wire q;

II Unit Under Test port map

always
begin

dff_async UUT (
.data(data),
.clock(clock),
.reset(reset),
.q(q));

//Clock initial
#20 clock<~ I 'bO;
#20clock<~ l'bl;
end

initial
begin

end

data~ I 'bO;
#60 data~ l'bl;
reset= l'bl;
#60 data ~l'bO;
#60 data~l'bl;
#lOreset~l'bO;

#60 data ~l'bO;
#60 data~l'bl;

endmodule

Testbench for Timing Simulation in Figure 4.3

11--
// Title : dff_sync_tb
II Design : DFlipFlop
II Author : 0
II Company : 0
11---
l/ Description :
11---

"timescale Ips I Ips
module dff_sync_tb;

//Internal signals declarations:
reg data;
reg clock;
reg reset;
wireq;

II Unit Under Test port map

always
begin

dff_sync UUT (
.data(data),
.clock(clock),
.reset(reset),
.q(q));

//Clock initial
#20 clock<~ I 'bO;
#20 clock<~ l'bl;
end

initial
begin

end

data= 1 'bO;
#60 data~ l'bl;
reset= l'bl;
#60 data~ 1 'bO;
#60data~!'bl;

#!Oreset~l'bO;

#60 data~ 1 'bO;
#60 data ~!'bl;

endmodule

Testbench for Timing Simulation in Figure 4.4

11--
II Title : dff eke tb
II Design : DF!ipF!op
II Author : KEH
II Company : UTP
11---
// Description:
11---

'timescale Ips I Ips
module dff_cke_tb;

//Internal signals declarations:
reg data;
reg clock;
reg reset;
reg eke;
wireq;

II Unit Under Test port map

always
begin

dff_cke UUT (
.data(data),
.clock(clock),
.reset(reset),
.eke(eke),
.q(q));

//Clock initial
#20 clock<~ I 'bO;
#20 clock<~ l'bl;
end

initial
begin

eke~ l'bO;
data~ l'bO;
#40 data~ l'bl;
reset= l'bl;
#10 reset ~l'bO;
cke~l'bl;

#40 data~ I 'bO;
reset=l'bl;
#40 data ~l'bl;
#40 data ~l'bO;
#40 data~l'bl;
#40 data~ I 'bO;
#40 data ~l'bl;
#40 data~ I 'bO;

end

eke= l 1b0;
#40 data ~J'bl;
#40 data~ I 'bO;
#40 data ~J'bl;
reset = 11b0;

endmodule

Appendix H

B3-SPARTAN2+ QuickStart Guide 2.0 [11,12]

1. lustall the WebP ACK 61 fcfull i software - - -
Just follow all the graphical user interface instruction and select all

component or devices.

2. Create a new project

Start:

WebPACK Project Navigator

Do:

File

New Project

Type in a new Project name:

LED FLASH

For the Top-Level Module Type, choose HDL.

Then fill in the Table as shown in FigureR I below:

Projm:1 Properties ~

IT <>P::L:•.vel .. ~dui~ .. T.Yf"'.~.. _
:Synthesis Tool
l~!ti.~:>r~:~:.::.···.··_····.--.. --.... ··.· ... ···.·.··_·· .. .
i<.lenereted Slmulatlon .. L•.~~.•

OK I Cancel Default

Figure H. I New Project

Help

For the rest steps just press Next button until you will see the information as

shown in Figure H.2 below:

Nc>w Project Information ' ' ~j

Project Name: ledllash
Project Location: c:l><ifmlledllash
Project T J>Pe: HDL

Devite:
Device FamUJ>: SP"fian2
Device: xc2s200
Package;pq200
Speed Grade: ·5

Top-Level Module TI!Pe: HDL
S)'llhe<o T ott XST [VHDLNeriogJ
Simulator: Modelsim
Generale:d Simulalioo Language; Veriog

< Back I Finish Cancel

Figure H.2 New Project Information

Do:

Project

New Source

Then choose on VHDL Module.

File name= LEDFLASH

Fill in the table with

CLKin

LED out

Next > Finish

Help

A window will pop up with the start of the new LEDFLASH.vhd code.

Modify it so that it looks like the code in Figure H.3.

ll'i ledflac,h " £I ~~I']
~ -~- - - ~ ~

+ .. ·.library IEEE;
2 use IEEE.STD_LOG!C_II&4.ALL;
S' use IEEE.STD_LOGIQ.ARITH.ALL;
4 .use IEEE.STD_LOGIC..UNSIGNED.Al.L;
'o.
>6
: .. 7.
. a
g

10
11·
r::a
113
1"1
1lf.

-- Uncomment the followint I ines to use the declarations thet are
-- provided for lnstanliatlnc Xi llnx primitive components •
--I I brary UNISIM;
--use UNISIM. VComponents.all;

entity ledflash Is
Port (CU< : in slrllogic;

LEO : out slrllotic);
end ledf lash;

~ei·: archlte<:ture Behavioral of Jedflash is
{7·, 'sitnal counll : slrLJogic_veclor(23 downlo 0);
16. · be!;ln
19'. Increment: process (CLIO betin

Cl lf(clk'evenl and elk= '1') then
1' .. countl <= counll + I;

::!11. end If;
:!3' · end process:
24 LED<= strl10%ic(countl(23));
2et
:;16
27

end Behavioral;

Figure H.3 LEDFLASH VHDL code

3. Assign the pinouts of the device

You will now need to tell the compiler which pins you want associated with

which signals in your design. The compiler reads the UCF (user c ontraints

file) file to get this information. You can use the Constraints Editor process to

enter the information that is written to the UCF file. In the following

procedure, you will write the pinout I location information into the UCF

file, using the Constraints Editor Process. Single click on the LEDFLASH. vhd

item in the "Sources in Project" box, on the top left of the design

environment. The "Processes for Source" box on the bottom left of your

design environment now contains all of the processes that can operate on this

design. Expand out the processes so that you can see the Constraints Editor

process. Click on Edit UCF file process. Have a look at the UCF file, and then

close this window.

Double click on the Implement Design process. You should get green-ticks on

all of the Translate, Map and Place-and-Route process items, as these

processes complete. Your design has now been implemented. All that remains

is the creation of the bitfile for downloading, and the downloading

process itself.

4. Create the bitfile (.rbt) for downloading

Right click on the Create Programming File process item and select Properties.

Make sure the Create ASCII Configuration File checkbox is checked (this tells

the bitstream creator program to write out the .rbt rawbit file, which the

iMPACT utility reads for downloading).

Double click on the Create Programming File process. A .rbt file is written out

to your design folder.

5. Download the .rbt file to your FPGA

Connect the download pod board to the parallel port of the PC using the

parallel port flat-cable. Connect the B3-SPARTAN2+ board to the download

pod board using the I 0-way flat-cable.

Make sure that your regulated DC power supply is +5V before you

connect it to your SP ARTAN2+ board Then connect the power supply to the

SPARTAN2+ board.

In the "Processed for Source" box, double click on "Configure Device

(iMPACT)" Then the figures below will appear, just follow the information in

the Figure shown to download your design or test the FPGA board.

J want 1o coriigure device via;

t.' Boundaty-Sean Mode

r SlaYo,S:MMode
r SeleciMAPMOde
f> Desktop Configuration Modo

_<~~) Next> Cancel J: . _'!!LJ

Figure H.4 iMPACT flow I

to select operations

""200
-Fie?- 01(

Figure H.5 iMPACT flow 2

Assign Newt:onf1guralwn Hie - [#?]~~

.,200
-Filo?- i,e::J--"""""

i(:)_ngo
tG'.:J6S(n_So<:
;Qjc_ver
;:2::)jc_llhd

:2:lmt

!Gixst
:;!l!e&"'h.b<

Figure H.6 iMPACT flow 3

.:]
I o,.., I
~_j
I ,,..., I

Di.i:&if
Boundary-Scan

rv..,
r !~>?J ;,o,._-JI-<.<'

r \\'V?; de<}
PROM
J -!.t.v.<~ FP•J,;

r f'.:~,; •'-li<t-<'-'

Figure H.7 iMP ACT flow 4

r::f untilled [Con!ig.ura!Jon Model 1MPACl ~rrtfl'~
File Edt View' Mode ¢p«olltlon5 output:- 'Help

: o ~ Iii: ,~, ilii·~·:·~·:i ~ :: ~:, o ·lilli·!i!~a·6f~ ~?
. Boundary-Scan l Sieve Serial f SelettMAP) Q_~sbop_Conflg_uratt9n I

TDI

P1ograrm11mg Succeeded

Figure H.8 iMPACT flow 5

If you have downloaded the LEDFLASH.rbt example file, the LED on your

BED-SPARTAN2+ board will be flashing at a rate of about !.4Hz.

