

Multivariate Process Monitoring Of Structural Changes in A CSTR

System

by

Mohd Hanif Bin Ishak

Dissertation submitted in partial fulfilment of

 the requirements for the

Bachelor of Engineering (Hons)

(Chemical Engineering)

MAY 2013

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

Multivariate Process Monitoring Of Structural Changes in A CSTR System

by

Mohd Hanif Bin Ishak

A project dissertation submitted to the

Chemical Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(CHEMICAL ENGINEERING)

Approved by,

(Ir. Dr. Abdul Halim Shah bin Maulud)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2013

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MOHD HANIF BIN ISHAK

iii

ABSTRACT

Process monitoring traditionally using univariate process monitoring approach where

each of individual variables is monitored separately. In this approach process variables

interaction is difficult to be monitored and therefore multivariable statistical process

monitoring (MSPM) was introduced to cater the drawback of univariate process

monitoring. MSPM has a major advantage in detecting change in variables relationship

or also known as structural changes. Despite of the advantage, most of studies are

focusing on change in variables rather than the variables interaction. In this study, PCA

based detection techniques performance including PCA, dynamic PCA and nonlinear

PCA has been evaluated under change in reaction kinetic and change in heat transfer

coefficient. Hotelling T2 and SPE chart are employed as the fault detection techniques.

The project mainly focusing on fault detectability and fault detection time. All the PCA

based approaches are able to detect the structural changes. Nonlinear PCA shows the

fastest detectability followed by dynamic PCA and PCA. For highly nonlinear system,

Nonlinear PCA are able to detects the fault the fast but the nonlinear PCA not

performing the best when encounter with lesser degree of nonlinear data set.

iv

ACKNOWLEDGEMENT

First and foremost, I would like to express my highest gratitude to God for without his

blessing and guidance, I would not be able to complete this Final Year Project (FYP).

I would like to thank my supervisor, Ir. Dr. Abdul Halim Shah bin Maulud for his

invaluable guidance and advice throughout my FYP period that tremendously

contribute to this project. I strongly believe the time allocated by him in sharing his

thoughts, ideas and experience on the project greatly contribute to completion of

Multivariate Process Monitoring of Structural Changes in A CSTR System. Indeed it

as a pleasure working with him throughout the project period.

Besides, I would like to express my deepest appreciation to anyone whose name are

not mentioned but involved directly or indirectly in the completion of this project.

Thank you for all of your support.

v

TABLE OF CONTENT

CERTIFICATION OF APPROVAL .. i

CERTIFICATION OF ORIGINALITY .. ii

ABSTRACT .. iii

ACKNOWLEDGEMENT .. iv

TABLE OF CONTENT ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

CHAPTER 1: INTRODUCTION .. 1

1.1 Background Study ... 1

1.2 Problem Statement .. 3

1.3 Significant of the Project ... 4

1.4 Objectives .. 5

1.5 Scope of Study .. 5

CHAPTER 2: LITERATURE REVIEW ... 6

2.1 Multivariable Statistical Process Monitoring (MPSM) 6

2.2 Principle Component Analysis (PCA) ... 8

2.3 Fault Detection Using PCA ... 9

2.3.1 Hotelling’s T2 ... 9

2.3.2 SPE/Q-Statistic .. 10

2.4 Dynamic Principle Component Analysis (DPCA) 12

2.5 Nonlinear PCA (Kramer, 1991) ... 13

2.5.1 Neural Network .. 13

2.5.2 Autoasscociative Neural Network ... 16

2.5.3 T2 and SPE Chart for Nonlinear PCA.. 17

CHAPTER 3: METHODOLOGY ... 18

3.1 Project Methodology ... 18

3.2 Tool ... 19

3.3 Gantt Chart .. 20

3.4 Key Milestone ... 20

vi

CHAPTER 4: RESULT AND DISCUSSION ... 22

4.1 Modeling and Simulation .. 22

4.1.1 CSTR Model and Simulation ... 22

4.1.2 Fault Detection using PCA .. 23

4.1.3 Fault Detection using DPCA ... 23

4.1.4 Fault Detection using NLPCA ... 26

4.2 SPE and T2 Statistic for Normal Data ... 27

4.3 SPE and T2 Statistic for Structural Fault Data .. 30

4.3.1 Change in Reaction Kinetics .. 30

4.3.2 Change in Heat Transfer Coefficient ... 32

4.4 Summary of fault detection time ... 34

CHAPTER 5: CONCLUSION AND RECOMMENDATION 36

REFERENCES .. 37

APPENDIX I: CSTR MODEL IN SIMULINK ... I

Input Block Diagram For The CSTR Model ... I

APPENDIX II: MATLAB SOURCE CODE .. II

PCA for Normal Data ... III

PCA for Kinetic Change .. VI

PCA for Heat Transfer Coefficient Change .. VIII

DPCA (ALL Column) for Normal Data ... X

DPCA(ALL Column) for Change In Kinetic .. XIII

DPCA(ALL Column) for Change In Heat Transfer Coefficient XVI

Neural Network Training and Simulation for Kinetic and Heat Transfer Coefficient

Change ... XIX

T2 and SPE for Data From the Neural Network .. XXI

vii

LIST OF FIGURES

Figure 1: Interaction of variables that cannot be detected by traditional univariate

statistical process control charts ... 3

Figure 2 Individual control charts for Y1 and Y2 (Runger, 1996a) 7

Figure 3 Joint plot of Y2 vs. Y1 (Runger, 1996a) ... 7

Figure 4 Hotelling T2 for 2PC model ... 10

Figure 5 Q residual for 2PC model .. 11

Figure 6: Graphical illustration for fault detection using Q and T2 statistics (Chiang &

Russell, 2001) ... 11

Figure 7 Neural Network ... 13

Figure 8: Graph of sigmoid function ... 14

Figure 9: combined mapping and demapping in NLPCA ... 16

Figure 10: Project phase/methodology .. 19

Figure 11: Network structure preview generated by MATLAB 26

Figure 12: Function used for layers in the network ... 26

Figure 13: SPE and T2 Chart for Normal Operation Data Using PCA approach 27

Figure 14: SPE and T2 Chart for Normal Data Using DPCA (all column with time lag

shift expansion) ... 27

Figure 15: SPE and T2 Chart for Normal Data Using DPCA (two output column with

time lag shift expansion) ... 28

Figure 16: SPE and T2 Chart for Normal Data Using NLPCA 28

Figure 17: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using

PCA .. 30

Figure 18: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using

DPCA (all column with time lag shift expansion) ... 30

Figure 19: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using

DPCA (two output column with time lag shift expansion) 31

Figure 20: SPE and T2 Chart for Fault data due to Change in Reaction Kinetic Using

NLPCA ... 31

Figure 21: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using

PCA .. 32

Figure 22: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient

Using DPCA (all column with time lag shift expansion) 32

viii

Figure 23: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient

Using DPCA (two output column with time lag shift expansion) 33

Figure 24: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient

Using NLPCA ... 33

LIST OF TABLES

Table 1: Steady-state and operating condition ... 18

Table 2: Gantt chart ... 21

Table 3: Input/output variable of the CSTR model ... 22

Table 4: Explained Variance of Normal Data ... 23

Table 5: Explained Variance of Normal Data with Time Lag Shift of All Variables

(DPCA) ... 24

Table 6: Explained Variance of Normal Data with Time Lag Shift of Two Output

Variables (DPCA) ... 25

Table 7: Summary of Fault Detection Time Using T2 and SPE statistic 34

1

CHAPTER 1: INTRODUCTION

1.1 Background Study

In past decades, chemical industry was focusing only on producing product as much

as possible. Nowadays, as the competition in industrial market grows fierce, the

objective of industry was shift to produce higher product yield and quality. At the same

time, they also are aiming for higher production efficiency, less pollution and waste.

All these can be satisfied with a better understanding of the process with a better

process control. This implies to a need of attention to condition monitoring strategies.

Process monitoring is commonly based on single variable statistics and it is difficult

and time consuming for everyone to find out the problem and evaluate the performance

of operation. The existence of multivariable and tremendous amount of data adds up

the difficulties of the monitoring process and this is more complicated with the highly

interacted nature of chemical process. Because of that, a range of statistically based

condition monitoring approach was developed and known as Multivariate Statistical

Process Monitoring (MSPM) was introduced.

One of the MSPM objectives is to identify any assignable causes that result in a shift

in the process mean that cannot be detected by univariate monitoring approach. A

process is said to be in control only when common causes of variation are present.

Based on the assumption that data collected are uncorrelated and normally distributed,

a multivariate control chart can be utilised to detect abnormal changes in the system

that causing shift in process mean.

In process monitoring, there are two types of faults which are faults in variable and

faults in structure (Venkat , Raghunathan , Kewen , & Surya, 2002). Variables fault is

a change of variable parameter that exceeds the acceptable range of the observed

variables. The parameters failures arise when there is disturbance enter the process

from environment through one or more variables. An example for such fault is a

change in temperature and concentration of reactant from its steady state value in

reactor feed. The change might due to disturbances that enter the process.

2

On the other hand, fault in structure is change of process relationship between variables

in a process that depart from in-control region defined by confidence limits calculated

from a reference set. Example for structural fault is drift in reaction kinetic which

might due to catalyst deactivation and change in heat transfer coefficient due to fouling

in heat exchanger.

As large quantity of multivariate data required to be analysed, MSPM have to remove

redundancy in the data by introducing a reduced set of statistically uncorrelated

variables. Principal component analysis (PCA) is an example of the basic approach

applied in MSPM. A good MSPM can provide insight about the stability of the process

in individual variables as well as the relationship between the variables (or known as

structure).

The purpose of this paper is to investigate few monitoring methods that applicable to

promptly detect fault in structural change. The investigation will be using non-

isothermal continuous stirred tank reactor (CSTR) system as the case study.

3

1.2 Problem Statement

Major advantage of multivariate statistical process monitoring (MSPM) is to detect the

change in the structure rather than change in process variables.

Figure 1 shows an example of typical situation where two process variables are both

inside their control limit in univariate control charts but fails to detect general trend of

correlation between these two variables is broken (sample in red).

Figure 1: Interaction of variables that cannot be detected by traditional univariate statistical

process control charts

4

However, in past research works most of the case studies concentrate on change in

process variable. For example:

i. (Chen & Liao, 2001) For Tennessee Eastman control problem, 12 out of

the 15 are process variable shift.

ii. (Xiong, Liang, & Qian , 2007) For Polyethylene process catalyser reactor

case, only variables change are monitored,

iii. (Chen, Kruger , Meronk , & Leung, 2004) For debutanizer process case, all

the focus are on the variables change.

Despite MSPM are specifically used to detect the structural change, but most

techniques are tested on variable change. Therefore there is a need to identify the

potential of these techniques for detection of structural change specifically.

1.3 Significant of the Project

The benefit that can be obtained from the detecting structural changes is it will allow

the next level in process monitoring i.e. fault identification and fault diagnosis that will

lead to identification of the root causes.

Structural fault monitoring could be expend to the level where it able to

describe the severity of the fault for example how much catalyst have been deactivated.

And therefore will help in production or operation planning on deciding when would

be the most economical to change the catalyst.

Nevertheless, the big objectives in the structural fault monitoring must be

started with the fault detection i.e. detecting the changes or fault that occoured.

5

1.4 Objectives

The objectives of this project to investigate the structural fault detectability using PCA

based approaches. To achieve the objective, the sub-objectives this project are as the

following:

1. To develop structure change fault case study using CSTR in MATLAB

simulation environment.

2. To simulate structural change faults in the model using potential structural

change detection approaches.

3. To compare fault detectability performance among potential PCA based

approaches.

1.5 Scope of Study

The scope of this project is fault detection in kinetic and heat transfer coefficient

changes in non-isothermal CSTR system. The MSPM techniques that will be evaluated

on the CSTR system will be using PCA based approaches. Modelling involves in this

project will be done using MATLAB software.

6

CHAPTER 2: LITERATURE REVIEW

2.1 Multivariable Statistical Process Monitoring (MPSM)

Process controllers such as PID controller are designed to maintain operation by

cancelling out effect of disturbance. However, there are changes in the process that the

controller unable to rectify. These changes are known as faults and it defined as

unpermitted deviation of at least one characteristic property or variable of the system

(Isermann & Ball, 1996).

In ensuring process operation is at performance specification, the faults need to be

detected, diagnosed and removed and these is associated with process monitoring. This

process monitoring also called as statistical process control (SPC), but due to

confusion with standard process control, some reference use statistical process

monitoring (SPM).

The objective of SPM is to ensure success of the planned operation by recognizing

anomalies of the behaviour (Chiang & Russell, 2001). The information from SPM not

only provides the status of the process but also plant personnel to make appropriate

corrective action to eliminate the disturbances. A good monitoring system will result

in minimum downtime, lower production cost and higher reliability in operational and

safety aspect.

Modern process control system becoming more complex and the current SPM is not

adequate to monitor the faults using univariate control chart. Univariate statistical

charts (Shewhart, CUSUM, and EWMA) ignore the correlation among other variables

and measurements; they do not able to accurately characterize the behaviour of the

current industrial process (Chiang & Russell, 2001).

Because of this reason, Multivariable SPM (MSPM) emerges and gaining acceptance

in process monitoring as it can provide more accurate information about the process.

MPSM can provide monitoring charts that can detect fault and gives warning signal

earlier than the classical univariate chart (Chiang & Russell, 2001).

7

The strongest benefit of MSPM is the ability to exploit relationship between variables

(Jackson, 1985). Example of this can be seen by comparing results of Figure 2 and

Figure 3. Figure 2 demonstrates univariate charts showing both variables within

control limit. Figure 3 using the same data considered jointly to demonstrate that one

data record is violating the usual relationship.

Figure 2 Individual control charts for Y1 and Y2 (Runger, 1996a)

Figure 3 Joint plot of Y2 vs. Y1 (Runger, 1996a)

8

2.2 Principle Component Analysis (PCA)

PCA is utilised in MSPM as it can greatly simplify data into lower-dimensional space

without any loss of variance between variables. It preserves the correlation structure

between process variables and captures variability of the data. In addition, PCA could

also eliminate the noise effects.

Application of PCA in MSPM can be seen as taking the enormous amount of data from

the process, and transforming it into new set of variables called principle components.

These principle components are sets of new uncorrelated variables.

PCA determines a set of orthogonal vectors called loading vector and it is ordered by

the amount of variance explained in the loading vector direction. PCA decomposition

of training X matrix is as follows:

𝑋 = �̂� + 𝐸 = ∑ 𝑡𝑘𝑝𝑘
𝑇

𝐿

𝑘=1

+ 𝐸

in which,

�̂� = ∑ 𝑡𝑘𝑝𝑘
𝑇𝐿

𝑘=1

Where,

𝑋 is the matrix that store k number of observations and L number of process variables.

�̂� is the prediction X on m retained principal components (PCs).

𝐸 is the residual matrix that represents the PCA model prediction error.

𝑡 is score matrix that describe significant process variation

𝑝 is loading matrix that reveal the interrelationship between process variables

Loading matrix, 𝑝 can be easily determined through the eigenvalue decomposition of

sample covariance matrix. After obtaining the loading matrix, the score matrix can be

computed as it is given by:

𝑡𝑘 = X𝑝𝑘
𝑇

9

2.3 Fault Detection Using PCA

2.3.1 Hotelling’s T2

Hotelling’s T2 plot can detects small shifts and deviations from normal operation

defined by the model. This statistic technique includes contribution of all variables

deviation that becomes significant faster than the deviation of an individual variable.

This T 2 will measure the variation in each sample within PCA model and only indicate

deviation that can be explained by model.

The T2
 statistic can be calculated as the following,

𝑇𝑗
2 = 𝑡𝑗λ

−1𝑡𝑗
𝑇

Where,

tj refers to j-th jow of tk score matrix

λ-1 is a diagonal matrix of the inverse of the eigenvalue associated with k principal

component

The threshold of T2 statistic can be computed using the equation below

𝑇𝛼
2 =

𝑎(𝑛 − 1)(𝑛 + 1)

𝑛(𝑁 − 𝑎)
𝐹𝑎(𝑎, 𝑛 − 𝑎)

n ≡ number of observation

a ≡ degree of freedom or the number of sample

α ≡ level of significant or the confidence limit

10

Figure 4 is the Hotelling T2 for 2PC model. The dotted line indicates the control limit

and the value of T2 that exceed the line indicate the presence of fault.

Figure 4 Hotelling T2 for 2PC model

2.3.2 SPE/Q-Statistic

The squared prediction error (SPE) is also known as Q-statistic indicates how well

each sample conforms to PCA model. The SPE chart shows indication of significant

deviation that cannot be explained by the model. The SPE can be calculated from the

residual matrix which is the sum of squares for each row of the matrix.

𝑄 = 𝑒𝑗𝑒𝑗
𝑇

Where 𝑒𝑗 is components j row of residual matrix.

After obtaining the SPE, the threshold should be then calculated.

𝑄𝛼 = 𝜃1 [
ℎ0𝑐𝛼√2𝜃2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2]

1
ℎ0

⁄

Where 𝜃𝑖 = ∑ 𝜎𝑗
2𝑖𝑛

𝑗=𝑎+1 , ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2 , and Cα is the normal deviate corresponding

to the (1-α).

11

Figure 5 illustrate the Q residual for 2PC model. The residual that exceed the dotted

horizontal line indicate presence of fault.

Figure 5 Q residual for 2PC model

Since the T2 and SPE statistic along their appropriate thresholds can detect different

types of faults, thus the advantage of both statistics can be used together.

Figure 6 shows a graphical illustration for fault detection that utilise T2 and Q statistics.

The two statistics produce cylindrical in-control region that ‘x’ indicated in-control

operation data, ‘o’ data indicate violation of T2 statistic, and ‘+’ data show Q statistics

violation.

Figure 6: Graphical illustration for fault detection using Q and T2 statistics (Chiang & Russell,

2001)

12

2.4 Dynamic Principle Component Analysis (DPCA)

Monitoring system based on PCA approach assumes observations at one time instant

statistically independent to observations in the past time. However, in typical industrial

processes, assumption is only valid for long sampling time i.e. 2 to 12 hours. Therefore

this suggests that a monitoring method with fast sampling require serial correlation

data to be considered.(Chiang & Russell, 2001)

Let 𝑋 be a set of data with nt observation of p variables.

𝑋 = ⌊𝑋1 𝑋2 ⋯ 𝑋𝑝⌋(𝑛𝑡×𝑝)

Then, to include the serial correlation of data, it is constructed trajectory matrix

applying lime lag shift of order 𝑤 on each of the columns 𝑝 of the matrix 𝑋.

𝑋𝑡
𝑤 =

[

𝑋𝑖(1) 𝑋𝑖(2) ⋯ 𝑋𝑖(𝑤)

𝑋𝑖(2) 𝑋𝑖(3) ⋯ 𝑋𝑖(𝑤 + 1)
⋮ ⋮ ⋱ ⋮

𝑋𝑖(𝑛𝑡 − 𝑤 + 1) 𝑋𝑖((𝑛𝑡 − 𝑤 + 2)) ⋯ 𝑋𝑖(𝑛𝑡)]

(𝑛×𝑤)

𝑋𝑤 = ⌊𝑋1
𝑤 𝑋2

𝑤 ⋯ 𝑋𝑝
𝑤⌋(𝑛×𝑚)

where = 𝑛𝑡 − 𝑤 + 1 ; 𝑚 = 𝑝𝑤

Value for w is made based on compromise between information content and statistical

confidence. It is common to select 𝑤 in the same way as is defined the number of lags

to use when constructing an auto-correlation function, 𝑤 = 𝑛𝑡/4 (J. & C, 2005).

Applying the PCA to the above 𝑋𝑡
𝑤 matrix is known as dynamic PCA (DPCA). The

DPCA can be expected to have higher fault detectability compared to PCA for serially

correlated data.

13

2.5 Nonlinear PCA (Kramer, 1991)

2.5.1 Neural Network

Neural networks are information processing paradigm that is inspired by the way

biological nervous system process information. Neural network is also known as

artificial neural network (ANN) attempts to recreate the computational mirror of

biological neural network. The neural network can be created by modelling a network

of model neurons using computer. Neural Network have basic building block which is

artificial neuron is often called as nodes. The nodes are connected to each other and

their connection is to one another is assigned a value based on their weight: inhibition

(maximum being -1.0) or excitation (maximum being +1.0). Higher value of the

weight indicates there is strong connection. Within each node’s design, a transfer

function is built in. The structure of neural network have input nodes, hidden nodes,

and output nodes as illustrated in Figure 7

Figure 7 Neural Network

Input nodes take in information in numerical form. The information is presented as

activation values, where the each of the nodes will be assigned a number, the higher

the number, the greater the activation. This information is then passed throughout the

14

network. Based on the connection strengths (weights), inhibition or excitation, and

transfer functions, the activation value is passed from node to node. Each of the nodes

sums the activation values it receives; it then modifies the value based on its transfer

function. The activation flows through the network, through hidden layers, until it

reaches the output nodes. The output nodes then reflect the input in a meaningful way

to the outside of the neural network model.

Additional class of weight is known as biases. Biases are values that are added to the

sums calculated at each node (except input nodes) during the feedforward phase.

Biases are commonly visualized simply as values associated with each node in the

intermediate and output layers of a network, but in practice are treated in exactly the

same manner as other weights. The use of biases in a neural network increases the

capacity of the network to solve problems by allowing the hyperplanes that separate

individual classes to be offset for superior positioning. (Leverington, 2009)

The neurons can be having either linear or non-linear transfer function. For non-linear

transfer function, the commonly used function is Sigmoid and Log-sigmoid transfer

function (LOGSIG) (Dorofki, Ahmed H. Elshafie, Othman, & Othman , 2012).

Figure 8: Graph of sigmoid function

To prevent the saturation in output of sigmoid function, the data use in input neuron

need to be scaled. Un-scaled input data to sigmoid function will result in useless output

information whenever the corresponding output falls under saturated region in sigmoid

function. An example of scaling method is to use mean centred at zero with standard

deviation of one.

15

Before building a model, available data need to be partitioned (Frontline Solvers,

2013). Data partitioning will yields mutually exclusive data sets: a training dataset, a

validation dataset and test dataset. Training dataset will be used to obtain the network

weights. The weight can be determined through linear regression; the training dataset

is used to fit the linear regression model, i.e. to compute the regression coefficient.

Validation set on the other hand will be used to find the accuracy of the model after

the model is built previously using the training data. For this, the model in put should

be using a dataset that was not used in training process but it is a dataset where you

know the actual value of target variable. The different between the actual and predicted

value is the error in prediction.

Test set is actually just another validation set which often used to fine-tune models.

For example, you might try out neural network models with various architectures. And

test accuracy of each on the validation dataset to choose among the competing

architecture. The accuracy of the model on the test data gives a realistic estimate of the

performance of the model on completely unseen/random data.

16

2.5.2 Autoasscociative Neural Network

Nonlinear PCA (NPCA) includes nonlinear mappings between the original and

reduced dimension spaces which are not accounts by the PCA. If non-linear correlation

between variables exist, NLPCA are able to explain the data with higher accuracy than

PCA, provided there is sufficient data to support formulation of more complex

mapping function (Kramer, 1991). NLPCA able to uncovers both linear and nonlinear

correlations without restriction on character of the nonlinearities present in the data.

NLPCA is accomplished by training a feedforward neural network to carry out identity

mapping on which the network inputs are reproduced at the output layer. There is a

“bottleneck” layer that contains fewer nodes than input or output layer and it forces

the network to produce reduced representation of the input data and two additional

hidden layers (Kramer, 1991). The center of hidden neurons of a bottle-neck neural

network can be used to perform nonlinear MPSM (Thissen, Melssen, & Buydens,

2001). The representation of NLPCA can be clearly seen from Figure 9.

Figure 9: combined mapping and demapping in NLPCA

From this auto-associative neural network, the output of the bottle neck layer will be

monitored using the Hottling T2. The error which is the residual between Y and Y’

will be monitored using SPE/Q-statistic chart. The analysis can be performed using

Matlab software and the neural networks can be implemented easily by using Neural

Network Toolbox (feedforwardnet).

17

2.5.3 T2 and SPE Chart for Nonlinear PCA

From the auto-associative neural network, output of bottleneck neurons is monitored

using T2 chart where the residuals from the estimated and the real process are

monitored using SPE-chart (Thissen, Melssen, & Buydens, 2001). The charts are

constructed similar to regular T2 chart and SPE-chart.

T2 statistic is calculated as the following,

𝑇2 = ∑
𝑡𝑖
2

𝑠𝑡𝑖
2

𝐴

𝑖=1

Where,

𝐴 = total number of bottleneck neurons,

𝑡𝑖= output of neuron 𝑖,

𝑠𝑡𝑖
= variance of output neuron 𝑖

On the other hand, SPE-statistics is calculated as the following,

 𝑆𝑃𝐸 = ∑(𝑦𝑗𝑖 − 𝑦𝑗𝑖′)
2

Where,

𝑦𝑗𝑖 = 𝑖th sample to 𝑗th neuron of input layer,

𝑦𝑗𝑖
′ = 𝑖th output of 𝑗th neuron of output layer.

18

CHAPTER 3: METHODOLOGY

3.1 Project Methodology

In the first phase, PCA based techniques that have potential in promptly detect faults

in structural change will be review and compiled. This will be done through reviewing

past research paper works. Then, equations for non-isothermal CSTR system from

Chemical Process Modelling and Computer Simulation by Amiya K. Jana will be used

for the purpose of modelling the system (Amiya, 2008). The same reference also

provides the steady state and operating condition dataset.

 In this project, three datasets obtained from simulated system will be used for

analysis with the PCA, DPCA and NLPCA. The first dataset will be the output dataset

that is simulated with normal operating data. Second dataset will be output of

simulated model under drift of heat transfer coefficient. And the third dataset is the

output of simulated data on drift in catalyst activity (frequency factor). The parameters

of the CSTR considered are shown in Table 1 (Amiya, 2008).

Table 1: Steady-state and operating condition

Notation Parameters used in the simulation Value

𝐴𝑐 Cross-sectional area of the reactor, m2 4.2822

𝐶𝐴 Concentration of reactant A in the exit stream,

kmol/m3

8.56303

𝐶𝐴𝑓 Concentration of A in the feed stream, kmol/m3 10.0

𝑑 Diameter of cylindrical reactor, m 2.335

𝐸 Activation energy, kcal/kmol 11843.0

𝐹𝑖 Volumetric feed flow rate, m3/h 10.0

ℎ Height of the reactor liquid, m 2.335201

(−∆𝐻) Heat of reaction, kcal/kmol 5960.0

𝑅 Universal gas constant, kcal/(kmol)(K) 1.987

𝛼 Frequency factor, h-1 34930800.0

𝜌𝐶𝑝 Multiplication of mixture density and heat

capacity, kcal/(m3)(oC)

500.0

𝑇 Reactor temperature, oC 38.17771

𝑇𝑓 Feed temperature, oC 25.0

𝑇𝑗 Jacket temperature, oC 25.0

𝑈𝑖 Overall heat transfer coefficient, kcal/(m2)(oC)(h) 70.0

19

Modelling of the CSTR system is done be using MATLAB software where the steady

state input of the system was corrupted with the mean centred equal to zero.

T2 and SPE chart will be drawn for the reduced dataset after implementing the

aforementioned data reduction techniques. The performance of the fault detectability

between the techniques will be compared based on the percentage of detectable

number of observation. The details on fault will be put in a fault table where there will

be the percentage of detection performance of the fault detection techniques

demonstrated based on T2 statistic and Q-statistics. The detection will also be based

on specified confidence level. Example of the fault table can be seen in table 2 in (Chen

& Liao, 2001).

The discussed methodology is summarized as in Figure 10.

Figure 10: Project phase/methodology

3.2 Tool

MATLAB Software with:

1. Statistic toolbox

2. Neural network toolbox

Review and compile PCA based techniques that have potential
to promptly detect faults in structural change

Identify equation in nonisothermal CSTR system

Develop CSTR model in MATLAB environment

Simulate structural change fault in the model using the potential
structrual change detection approaches (PCA, DPCA, NLPCA)

Compare the detactability performance between the approaches

20

3.3 Gantt Chart

Table 1 shows the objectives in timelines that should be completed during for FYP II.

The first three weeks is allocated for modelling of CSTR system and simulate for

normal condition and change in heat transfer coefficient and reaction. Following that,

in week 4 the data will be processed and PCA approach will be started and expected

to be done in week 7.

Progress report is scheduled for submission in the beginning of week 8. The

continuation of the work will be done for DPCA for week 8 and 9 while

Autoassociative Neural Network is expected to be started in week 10 and completed

within 3 weeks.

Pre-SEDEX presentation will be in week 11 followed by submission of draft report in

week 12. Dissertation in soft bound and technical paper are required to be submitted

in week 13. Final oral presentation with internal and external examiner was scheduled

by coordinator to be in week 14 and submission of final dissertation (hard bound) in

week 15.

Only after the title is finalized, the literature review will be started which end by week

6. The literature review will be done alongside with the extended proposal where the

objective, problem statement, and methodology would be well identified. The finalized

extended proposal is to be submitted at the beginning of week 7.

3.4 Key Milestone

 In this project, key milestones was identified as the following:

1. Develop CSTR model and simulate for normal condition, change in heat

transfer coefficient and change in reaction kinetic.

2. Data processing and PCA approach for fault detection

3. Fault detection using DPCA

4. Fault detection using Autoassociative Neural Network

21

Table 2: Gantt chart

NO DETAIL

WEEK

1 2 3 4 5 6 7

M
id

 S
em

es
te

r
B

re
ak

8 9 10 11 12 13 14 15

1

Develop CSTR model and simulate normal

condition, change in heat transfer coefficient and

drift in reaction kinetics

2

Data processing and using PCA for fault detection

and analysis

 Progress report ●

3 Fault detection using DPCA and analysis

4

Fault detection using Autoasscociative Neural

Network

5 Pre-SEDEX ●

6 Submission of Draft Report ●

7 Submission of Dissertation (soft bound) ●

8 Submission of technical paper ●

9 Oral Presentation ●

10 Submission of Project Dissertation (hard bound) ●

 ● Suggested Milestone

 Process

22

CHAPTER 4: RESULT AND DISCUSSION

4.1 Modeling and Simulation

4.1.1 CSTR Model and Simulation

The CSTR system was modelled using Simulink in Matlab software. Screen shot of the

model is available is the appendix. The input and output of the model listed in Table 3.

Table 3: Input/output variable of the CSTR model

Input Fi Inlet flowrate

CAf Inlet concentration

Tf Feed temperature

Tj Jacket temperature

Output F0 Outlet flowrate

CA Outlet concentration

Tr Reactor temperature

For the input variables, white noise is added by assuming the real process data exhibit

normal distibution. The model is run for time equal to 100. The sampling time for the

sampling is 0.01 to obtained 1000 sample. The model is run for the normal data when

there is no change in heat transfer coefficient and reaction kinetic.

The model is then simulated for change in heat transfer coefficient with 10%

decreament starting time equal to 30 (i.e. at 300th sample). Separately, the model is run

for drift in kinetic whith 5% decreament starting at time equal to 30. From the

simulation, the major responding variable when changing the heat transfer coefficient

and reaction kinetics is on the reactor temperature followed by the outlet concentration.

Data from the simulated system is then export to matrix file (.mat). The data stored in

the matrix file is load in the main window and normalized with the sample mean and

23

standard deviation so that normalize variable will be having zero mean and standard

devation equal to one. For the normal contidition, the data is normalize using the sample

mean and standard devation while for the drift condition, the data is normalize using

the normal condition’s mean and standard deviation.

4.1.2 Fault Detection using PCA

The PCA is done for normalized normal condition data to obtain the loading matrix,

score matrix and latent. PCA for the fault data is then done by using loading matrix of

normal condition data and T2 calculated using latent (which store variance) of the

normal condition data. From the PCA of the normal condition data, the variance

explained by the principle component is as following:

Table 4: Explained Variance of Normal Data

No of PC Explained variance by

each of the PC (%)

Cumulative explained

variance by the PC (%)

1 19.68 19.68

2 15.07 34.75

3 14.90 49.65

4 14.11 63.76

5 13.80 77.56

6 13.29 90.85

7 9.15 100

From the cumulative explained variance, 5 PC was decided to be retained for the T2

and SPE calculation. Methodology for calculating the T2 and SPE is as discussed in

literature review section.

24

4.1.3 Fault Detection using DPCA

For DPCA, the time lag shift is introduced to the input/output variables matrix. The

chosen time lag shift was 2 sample lag. For this part, matrix expansion of the time lag

was done all variables time lag expansion, and only output variables expansion. For the

all variables time lag expansion, additional 2 column matrix was introduces for every

variables, while for output only expansion, only 2 column matrix was introduces for

output variables.

From the expanded variables matrixes, PCA was done and T2 and SPE calculation is

obtained. From the cumulative explained variance in Table 5 and Table 6, 9 PCs

(explained 72.57%) was chosen for all column time lag expansion, and 4 PCs

(explained 72.38%) was chosen for only output variables matrix expansion. Then the

T2 and SPE is calculated from the retained PCs.

Table 5: Explained Variance of Normal Data with Time Lag Shift of All Variables (DPCA)

No of PC Explained variance by

each of the PC (%)

Cumulative explained

variance by the PC (%)

1 19.17 19.17

2 13.26 32.43

3 8.90 41.33

4 5.48 46.81

5 5.41 52.22

6 5.21 57.44

7 5.19 62.63

8 4.99 67.63

9 4.95 72.57

10 4.65 77.22

11 4.52 81.74

12 4.40 86.14

13 4.18 90.32

14 4.12 94.44

15 3.88 98.33

16 0.82 99.15

17 0.35 99.50

18 0.29 99.79

19 0.11 99.90

20 0.08 99.98

21 0.02 100.00

25

Table 6: Explained Variance of Normal Data with Time Lag Shift of Two Output Variables

(DPCA)

No of PC Explained variance by

each of the PC (%)

Cumulative explained

variance by the PC (%)

1 31.42 31.42

2 22.14 53.56

3 9.68 63.24

4 9.14 72.38

5 8.96 81.34

6 8.55 89.88

7 7.67 97.55

8 1.64 99.19

9 0.57 99.76

10 0.18 99.94

11 0.06 100.00

26

4.1.4 Fault Detection using NLPCA

The feedforward neural network was design with input layer, three hidden layer

(including bottleneck) and an output layer. Number of nodes for input and output layer

is equal to number of variables, i.e. 7, while the 10 nodes for first and third hidden layer

and 3 nodes for the bottleneck layer. The network structure can be clearly seen in Figure

11.

Figure 11: Network structure preview generated by MATLAB

Transfer function for the network layers is as the following:

Figure 12: Function used for layers in the network

Layer Function

Input Linear

Hidden layer 1 Logsig

Bottleneck layer Tansig

Hidden layer 2 Logsig

Output Linear

The network was trained using normalized data of normal condition input and output

data of the CSTR system. Then the fault data of kinetic change and heat transfer

coefficient change is run using the trained network, on which the biases and weights

from network trainig is maintained. The output from the bottleneck layer is used to

obtained the T2 statistic and the output from the output layer is utilised to get the SPE

statistics.

27

4.2 SPE and T2 Statistic for Normal Data

Figure 13: SPE and T2 Chart for Normal Operation Data Using PCA approach

Figure 14: SPE and T2 Chart for Normal Data Using DPCA (all column with time lag shift

expansion)

28

Figure 15: SPE and T2 Chart for Normal Data Using DPCA (two output column with time lag

shift expansion)

Figure 16: SPE and T2 Chart for Normal Data Using NLPCA

29

 From the SPE and T2 charts of normal data for PCA and DPCA, it is

observed that there is points that exceed control limit at which 99.0% of confidence

limit. There are also points that exceed the warning limits that defined at 95.0%

confidence limit. The detection of fault in the normal data might due to variation of

input variable that exceed the predefined control limit of 3 standard deviation of the

sample mean. This is might due to normal distribution of the added noise to the input

variables of the modelled CSTR. Another possible reasoning would be there is multiple

input variables that adding positive noise at the same time and signify the variation for

a given sample time.

 For monitoring the structural changes, the process trending i.e. change in

process mean is more important than points that exceed the control limits. To facilitate

the detection time determination in this paper, detection time is considered whenever

the points exceed the 99.0% confidence limit that preceded with observable change in

mean. This guideline is based on the normal data trending in SPE and T2 charts of PCA,

DPCA and NLPCA where the outliers that exceed 99.0% confidence limit does not

preceded with any observable change in mean that exceed the warning limit.

30

4.3 SPE and T2 Statistic for Structural Fault Data

4.3.1 Change in Reaction Kinetics

Figure 17: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using PCA

Figure 18: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using DPCA (all

column with time lag shift expansion)

31

Figure 19: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using DPCA (two

output column with time lag shift expansion)

Figure 20: SPE and T2 Chart for Fault data due to Change in Reaction Kinetic Using NLPCA

32

4.3.2 Change in Heat Transfer Coefficient

Figure 21: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using PCA

Figure 22: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient Using

DPCA (all column with time lag shift expansion)

33

Figure 23: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient Using

DPCA (two output column with time lag shift expansion)

Figure 24: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient Using

NLPCA

34

4.4 Summary of fault detection time

The summary of the fault detection for all kinetic and heat transfer coefficient using all

the aforementioned techniques are in Table 7.

Table 7: Summary of Fault Detection Time Using T2 and SPE statistic

 Detection Time (Sample No.)

PCA DPCA

(all column)

DPCA

(two column)

NLPCA

Reaction Kinetic

Change

T2 446 444 443 436

SPE 693 430 430 428

Heat Transfer

Coefficient Change

T2 510 535 528 695

SPE 886 499 499 500

The result of DPCA detection time for all variable time lag shift expansion and

only two output variable expansion shows a close fault detection time outcomes

especially in SPE statistics. This is due to the independent of input variables and

therefore expansion of the matrixes for input variables will give insignificant effect to

the fault detection time. On the other hand, the output variables, i.e. temperature and

concentration are dependent variables. They have relationship with the previous

observation and they are interdependent between past temperature and concentration

sample.

For change in reaction kinetics, advanced PCA method using SPE statistics

shows better performance compared to T2 statistics. However, T2 statistics performance

between the approaches is almost similar on which detected first by NLPCA, followed

by DPCA and PCA. In this kinetic change, NLPCA perform best although the result is

comparable to DPCA.

For change in heat transfer coefficient, again the advanced PCA method shows

better performance using SPE statistics. However for T2 statistics shows that PCA

demonstrate best performance compared to T2 of DPCA and NLPCA. In overall, DPCA

demonstrating the best in detecting fault in heat transfer coefficient through SPE

statistics.

35

From the detection time result, we can see that DPCA approach are able to

detect the structural faults almost as the same as the PCA approach when compare using

T2 chart. The less significant differences are due to the assumption that the observation

statistically independent to observation of past time is true and therefore expansion for

time lag shift does not have significant effect on the T2 statistic i.e. monitoring the

variance between data samples. In structural fault monitoring, data observation can be

safely assumed to be independent of past observation since long sampling time internals

are applied.

On the other hands, DPCA through SPE detect faults faster compared to PCA.

This is due to the introduction of time-lag shift to the original data matrix where it will

eventually make the errors between the projected space and original data to be

compounded when calculating the SPE. The residual between the projected and original

data are then signified in the monitoring charts.

 It is also observable that the NLPCA shows superiority in detecting fault due to

reaction kinetic change comparing to PCA and DPCA. It is however less effective when

it comes to detecting fault due to change in heat transfer coefficient. The main reasons

might due to nonlinearity of the data in kinetic change dataset is more prominent, on

which nonlinear PCA work best.

PCA approach through T2 statistics shows better performance compared to

DPCA and NLCPA in detecting change in heat transfer coefficient. This might due to

the nonlinearity of the dataset on which PCA model are able to characterize it better

than DPCA and NLPCA.

From the general overview of the result, it can be observed that NLPCA shows

the best performance in detecting structural fault whenever the dataset contains highly

nonlinearity between the variables. While DPCA have its own strength when encounter

different degree of nonlinearity of dataset. Although DPCA might not perform the best

compared to other approaches, there is an observable consistency of the comparable

result from DPCA (compared to other approaches) when giving different dataset. SPE

statistics also prove in this project to detect faults faster compared to T2 statistics.

36

CHAPTER 5: CONCLUSION AND RECOMMENDATION

The objective of this work is to investigate structural fault detectability using PCA

based approaches. The significant of the study is to fill the gap of knowledge in fault

detection that is specifically for structural fault. The structural change in CSTR model

was successfully simulated using Simulink in MATLAB and the data obtained was used

as feeding data to PCA based monitoring approaches i.e. PCA, DPCA, and NLPCA.

Based on fault detection, the NLPCA shows the fastest detection time followed

by DPCA and PCA. The NLPCA is demonstrated the most robust structural fault

detection when encounter nonlinear system. On the other hand, PCA is better in

characterizing data that contains lesser degree of nonlinear dataset. For DPCA,

expansion of dependent variable is sufficient in monitoring structural fault. The

differences between results obtained through PCA and DPCA mainly in SPE statistics

where DPCA are able to signify the errors by compounding the errors.

Therefore, it can be concluded that structural fault can be detected using PCA

based techniques and the objectives of the project are successfully achieved.

Nevertheless, the suggested work for future is as below:

1. Integrate CUSUM (cumulative sum) and EWMA (exponentially weighted

moving average) directly to NLPCA to increase the sensitivity and robustness

of process monitoring.

2. The continuation of the structural fault detection using other MPSM techniques

and proceeded with fault identification and fault diagnosis.

37

REFERENCES

Amiya, J. K. (2008). Chemical Process Modelling and Computer Simulation. New

Delhi: Prentice-Hall of India Private Limited.

Chen, J., & Liao, C.-M. (2001). Dynamic process fault monitoring based on neural

network and PCA. ournal of Process Control(12), 277.

Chen, Q., Kruger , U., Meronk , M., & Leung, A. (2004). Synthesis Of T2 and Q

statistics for process monitoring. Control Engineering Practice, 753.

Chiang , L., & Russell, E. (2001). Fault detection and diagnosis in industrial system.

Great Britain: Springer.

D. Dong, & T. J. McAvoy. (1993). Nonliner Principle Component Analysis-Based on

Principal Curve and Neural Networks. Computer Chem Engineering, 65-78.

Dorofki, M., Ahmed H. Elshafie, Othman, J., & Othman , A. K. (2012). Comparison of

Artificial Neural Netwrok Transfer Function Abiliites to Simulate Extreme

Runoff Data. 2012 International Conference on Environmental, Energy and

Biotechnology. Singapore.

Edward C. Malthouse. (1998, January 1). Limitations of Nonlinear PCA as Performed

with Generic Neural Networks. IEEE Transactions on Neural Networks, 9.

Frontline Solvers. (2013). Standard Data Partition. (Frontline Systems, Inc.) Retrieved

April 12, 2013, from http://www.solver.com/xlminer/help/standard-data-

partition

Isermann, R., & Ball, P. (1996). Trends in the appplication of model based fault

detection and diagnosis of technical process. Proc. of the 13th IFAC World

Congress, N, 1-12. Picataway, Newjersey: IEEE Press.

J., M., & C, V. (2005). Faule Detectio Using Dynamic Principal Component Analysis

by Average Estimation. 2nd International Conference on Electirical and

38

Electronics Engineering (ICEEE) and XI Conference on Electrical Engineering

(CIE 2005) . Mexico City, Mexico.

Jackson, J. E. (1985). Multivariate Quality Control.

Kramer, M. A. (1991). Nonlinear Principal Component Analysis Using Autoassociative

Neural Networks. AIChe Journal, 37(2), 233-242.

Leverington, D. (2009). A Basic Introduction to Feedforward Backpropagation Neural

Networks. (Texas Tech Univeristy) Retrieved April 2013

Mostafa Noruzi Nashalji, Mahdi Aliyari Shoorehdeli, & Mohammad Teshnehlab.

(n.d.). Fault Detection of the Tennessee Eastman Process Using Improved PCA

and Neural Classifier. International Journal of Electrical & Computer Science,

9(9), 481-486.

Qingchao Jiang, & Xuefeng Yan. (2012). Chemical process monitoring based on

weighted principal component analysis and its application. Chemometrics and

Intelligent Laboratory Systems, 119, 11-20.

Thissen, U., Melssen, M. J., & Buydens, L. M. (2001). Nonlinear process monitoring

using bottle-neck neural networks. Analytica Chimica Acta (466), 371-383.

Venkat , V., Raghunathan , R., Kewen , Y., & Surya, K. N. (2002). A review of process

fault detection and diagnosis. Computer and Chemical Engineering, 293-311.

Xiong, L., Liang, J., & Qian , J. (2007). Multivariate Statistical Process Monitoring of

an Industrial Polypropylene Catalyzer Reactor with Component Analysis and

Kernel Density Estimation. Chinese Journal of Chemical Engineering, 527.

Yunpeng, H., Huanxin , C., Xionshuang, Y., Cheng, Z., & Junlong, X. (2012). Chiller

sensor fault detection using a self-adaptive principal component analysis

method. Energy and Building, 54, 252-258.

I

APPENDIX I: CSTR MODEL IN SIMULINK

II

Input Block Diagram For The CSTR Model

III

APPENDIX II: MATLAB SOURCE CODE

PCA for Normal Data

clear all; clc;

load('cstr_data.mat')

cstr=cstr';

cstr=cstr(1:1000,2:8);

mn=mean(cstr); %mean

sd=std(cstr); %standard deviation

save('cstr_data_HE.mat','mn','sd','-append');

save('cstr_data_CAT.mat','mn','sd','-append');

[cstr_row, cstr_column]=size(cstr); %state column size for normalization

loop

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn(i))./sd(i);

 cstr_norm(:,i)=norm_column;

end

i=0;

figure(1)

for i=1:7,

 subplot (8,1,i);

 plot(cstr_norm(:,i))

 line('xData', [0 1000], 'yData', [3 3], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','b');

 line('xData', [0 1000], 'yData', [-3 -3], 'LineStyle', '--', 'LineWidth', 2,

'Color','b');

end

i=0;

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component

analysis

save('cstr_data_HE.mat','coeff','latent','-append');

save('cstr_data_CAT.mat','coeff','latent','-append');

[coeff_row,coeff_column]=size(coeff);

for i=1:7, %convert latent to square matrix

 latent_mat(i,i)=latent(i,1);

end

i=0;

mn_score=mean(score); %mean of score matrix

sd_score=std(score); %standard deviation of score

matrix

save('cstr_data_HE.mat','mn_score','sd_score','-append');

save('cstr_data_CAT.mat','mn_score','sd_score','-append');

[score_row, score_column]=size(score); %state column size for

normalization loop

for i=1:score_column, %normalization loop

 nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

 score_norm(:,i)=nSCORE_column;

end

IV

i=0;

no_princomp=5; %no of retained component. no_princomp=5, explained 77.5619%

score=score(:,1:no_princomp);

score_square=(score_norm.^2);

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:1000,

 column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

 tsquare(i,1)=sum(column_t(i,:));

end

i=0;

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

%[r_row, r_column]=size(r);

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):cstr_column,1));

theta2=sum(latent((no_princomp+1):cstr_column,1).^2);

theta3=sum(latent((no_princomp+1):cstr_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

%SPE_threshold99=g*chisquare_99 %SPE limit alternative 2

%SPE_threshold95=g*chisquare_95

%SPE_threshold99=g*h*((1-(2/(9*h))+(z_99*((2/(9*h))^0.5)))^3) %SPE limit alternative

3

%SPE_threshold95=g*h*((1-(2/(9*h))+(z_95*((2/(9*h))^0.5)))^3)

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

V

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no

of sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no

of sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

'--------------------end of program----------------------'

VI

PCA for Kinetic Change

clear all; clc;

load('cstr_data_CAT.mat')

cstr=cstr';

cstr=cstr(1:1000,2:8);

[cstr_row, cstr_column]=size(cstr); %state column size for normalization

loop

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn(i))./sd(i);

 cstr_norm(:,i)=norm_column;

end

i=0;

figure(1)

for i=1:7,

 subplot (8,1,i);

 plot(cstr_norm(:,i))

 line('xData', [0 1000], 'yData', [3 3], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','b');

 line('xData', [0 1000], 'yData', [-3 -3], 'LineStyle', '--', 'LineWidth', 2,

'Color','b');

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff)

for i=1:7, %convert latent to square matrix

 latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for

normalization loop

for i=1:score_column, %normalization loop

 nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

 score_norm(:,i)=nSCORE_column;

end

i=0

no_princomp=5; %no of retained component

score_square=(score_norm.^2)

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:1000, %T-square

loop

 column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

 tsquare(i,1)=sum(column_t(i,:));

end

i=0

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

VII

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):7,1));

theta2=sum(latent((no_princomp+1):7,1).^2);

theta3=sum(latent((no_princomp+1):7,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no

of sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no

of sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

'--------------------end of program----------------------'

VIII

PCA for Heat Transfer Coefficient Change

clear all; clc;

load('cstr_data_HE.mat')

cstr=cstr';

cstr=cstr(1:1000,2:8);

[cstr_row, cstr_column]=size(cstr); %state column size for normalization

loop

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn(i))./sd(i);

 cstr_norm(:,i)=norm_column;

end

i=0;

figure(1)

for i=1:7,

 subplot (8,1,i);

 plot(cstr_norm(:,i))

 line('xData', [0 1000], 'yData', [3 3], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','b');

 line('xData', [0 1000], 'yData', [-3 -3], 'LineStyle', '--', 'LineWidth', 2,

'Color','b');

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff)

for i=1:7, %convert latent to square matrix

 latent_mat(i,i)=latent(i,1);

end

i=0;

[score_row, score_column]=size(score); %state column size for

normalization loop

for i=1:score_column, %normalization loop

 nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

 score_norm(:,i)=nSCORE_column;

end

i=0

no_princomp=5; %no of retained component

score=score(:,1:no_princomp);

score_square=(score_norm.^2)

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:1000,

 column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

 tsquare(i,1)=sum(column_t(i,:));

end

i=0;

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

IX

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):7,1));

theta2=sum(latent((no_princomp+1):7,1).^2);

theta3=sum(latent((no_princomp+1):7,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no

of sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no

of sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

'--------------------end of program----------------------'

X

DPCA (ALL Column) for Normal Data

clear all; clc;

load('cstr_data.mat')

cstr=cstr';

cstr=cstr(1:1000,2:8);

[cstr_row, cstr_column]=size(cstr);

%cstr_tlshift=cstr(3:cstr_row,cstr_column);

no_lag=2;

for i=1:cstr_column,

 if i==1;

 cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i);

 for n=1:no_lag,

 cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i);

 end

 n=0;

 else

 cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i);

 for n=1:no_lag,

 cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i);

 end

 end

 n=0;

end

save('dpca_all_column.mat','cstr_tlshift');

%---------------------------DPCA----------------------------------%

clear all; clc;

load('dpca_all_column.mat')

cstr=cstr_tlshift;

mn=mean(cstr); %mean

sd=std(cstr); %standard deviation

save('dpca_all_column_CAT.mat','mn','sd','-append');

save('dpca_all_column_HE.mat','mn','sd','-append');

[cstr_row, cstr_column]=size(cstr); %state column size for normalization

loop

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn(i))./sd(i);

 cstr_norm(:,i)=norm_column;

end

i=0;

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component

analysis

save('dpca_all_column_CAT.mat','coeff','latent','-append');

save('dpca_all_column_HE.mat','coeff','latent','-append');

XI

[coeff_row,coeff_column]=size(coeff);

for i=1:cstr_column, %convert latent to square matrix

 latent_mat(i,i)=latent(i,1);

end

i=0;

mn_score=mean(score); %mean of score matrix

sd_score=std(score); %standard deviation of score

matrix

save('dpca_all_column_CAT.mat','mn_score','sd_score','-append');

save('dpca_all_column_HE.mat','mn_score','sd_score','-append');

[score_row, score_column]=size(score); %state column size for

normalization loop

for i=1:score_column, %normalization loop

 nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

 score_norm(:,i)=nSCORE_column;

end

i=0;

no_princomp=9; %no of retained component. 9 no princomp explained 72.5726%

save('dpca_all_column_CAT.mat','no_princomp','-append');

save('dpca_all_column_HE.mat','no_princomp','-append');

score=score(:,1:no_princomp);

score_square=(score_norm.^2);

%[coeff,score,latent,tsquare] = princomp(score_norm);

for i=1:score_row,

 column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

 tsquare(i,1)=sum(column_t(i,:));

end

i=0;

backprojection=score_norm*(coeff)';

r=cstr_norm-backprojection;

q=r.*r;

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):cstr_column,1));

theta2=sum(latent((no_princomp+1):cstr_column,1).^2);

theta3=sum(latent((no_princomp+1):cstr_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

XII

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no

of sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no

of sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

'--------------------end of program----------------------'

XIII

DPCA(ALL Column) for Change In Kinetic

clear all; clc;

load('cstr_data_CAT.mat')

cstr=cstr';

cstr=cstr(1:1000,2:8);

[cstr_row, cstr_column]=size(cstr);

%cstr_tlshift=cstr(3:cstr_row,cstr_column);

no_lag=2;

for i=1:cstr_column,

 if i==1;

 cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i);

 for n=1:no_lag,

 cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i);

 end

 n=0;

 else

 cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i);

 for n=1:no_lag,

 cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i);

 end

 end

 n=0;

end

save('dpca_all_column_CAT.mat','cstr_tlshift','-append');

%-------------------------------------DPCA--------------------------%

clear all; clc;

load('dpca_all_column_CAT.mat')

cstr=cstr_tlshift;

[cstr_row, cstr_column]=size(cstr); %state column size for normalization

loop

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn(i))./sd(i);

 cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff

[coeff_row,coeff_column]=size(coeff)

for i=1:cstr_column, %convert latent to square matrix

 latent_mat(i,i)=latent(i,1);

end

i=0;

 [score_row, score_column]=size(score); %state column size for

normalization loop

for i=1:score_column, %normalization loop

 nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

 score_norm(:,i)=nSCORE_column;

end

i=0

XIV

score_square=(score_norm.^2)

for i=1:score_row, %T-

square loop

 column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

 tsquare(i,1)=sum(column_t(i,:));

end

i=0

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

backprojection=score_norm*(coeff)'; %back projection from the score matrix

r=cstr_norm-backprojection; %residual

q=r.*r; %the Q/SPE statistics

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):score_column,1));

theta2=sum(latent((no_princomp+1):score_column,1).^2);

theta3=sum(latent((no_princomp+1):score_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0))

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no

of sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)) %F alpha (no_princomp, (no

of sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

XV

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

datestr(clock,0)

'--------------------end of program----------------------'

XVI

DPCA(ALL Column) for Change In Heat Transfer Coefficient

clear all; clc;

load('cstr_data_HE.mat')

cstr=cstr';

cstr=cstr(1:1000,2:8);

[cstr_row, cstr_column]=size(cstr);

%cstr_tlshift=cstr(3:cstr_row,cstr_column);

no_lag=2;

for i=1:cstr_column,

 if i==1;

 cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i);

 for n=1:no_lag,

 cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i);

 end

 n=0;

 else

 cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i);

 for n=1:no_lag,

 cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i);

 end

 end

 n=0;

end

save('dpca_all_column_HE.mat','cstr_tlshift','-append');

%-------------------------------------DPCA------------------------%

clear all; clc;

load('dpca_all_column_HE.mat')

cstr=cstr_tlshift;

[cstr_row, cstr_column]=size(cstr); %state column size for normalization

loop

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn(i))./sd(i);

 cstr_norm(:,i)=norm_column;

end

i=0;

score=cstr_norm*coeff;

[coeff_row,coeff_column]=size(coeff);

for i=1:cstr_column, %convert latent to square matrix

 latent_mat(i,i)=latent(i,1);

end

i=0;

XVII

[score_row, score_column]=size(score); %state column size for

normalization loop

for i=1:score_column, %normalization loop

 nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i);

 score_norm(:,i)=nSCORE_column;

end

i=0;

score_square=(score_norm.^2);

for i=1:score_row, %T-

square loop

 column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))';

 tsquare(i,1)=sum(column_t(i,:));

end

i=0;

%r=pcares(cstr_norm,no_princomp); %pcares return residual from PCA

%q=r.*r;

backprojection=score_norm*(coeff)'; %back projection from the score matrix

r=cstr_norm-backprojection; %residual

q=r.*r; %the Q/SPE statistics

[r_row, r_column]=size(r);

SPE=sum(q');

figure(2)

subplot (2,1,1);

plot (SPE) %SPE Chart

chisquare_99=chi2inv(0.99,cstr_column-1);

chisquare_95=chi2inv(0.95,cstr_column-1);

theta1=sum(latent((no_princomp+1):score_column,1));

theta2=sum(latent((no_princomp+1):score_column,1).^2);

theta3=sum(latent((no_princomp+1):score_column,1).^3);

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); %SPE limit alternative 1

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) +

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0));

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

XVIII

finv_99=finv(0.99,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no

of sample - no_princomp))

finv_95=finv(0.95,no_princomp,(score_row-no_princomp)); %F alpha (no_princomp, (no

of sample - no_princomp))

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99;

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95;

subplot (2,1,2);

plot(tsquare) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

datestr(clock,0)

'--------------------end of program----------------------'

XIX

Neural Network Training and Simulation for Kinetic and Heat Transfer

Coefficient Change

clear all; clc;

load('cstr_data.mat');

cstr=cstr(2:8,1:1000)';

mn_normal=mean(cstr); %mean

sd_normal=std(cstr); %standard deviation

[cstr_row, cstr_column]=size(cstr); %state column size for normalization

loop

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn_normal(i))./sd_normal(i);

 cstr(:,i)=norm_column;

end

i=0;

cstr=cstr';

ncstr_normal_input=cstr;

save('ann_data.mat','ncstr_normal_input','-append');

net1=feedforwardnet;

net1.numLayers=5;

net1.numinputs=1;

%net1.inputconnect(1,1:7)=1

net1.layers{1}.name='linearize input';

net1.layers{2}.name='hidden 1';

net1.layers{3}.name='bottleneck';

net1.layers{4}.name='hidden 2';

net1.layers{5}.name='linearize output';

net1.outputConnect=[0 0 0 0 1];

net1.layerconnect(2,1)=1;

net1.layerconnect(3,2)=1;

net1.layerconnect(4,3)=1;

net1.layerconnect(5,4)=1;

net1.biasconnect=[1;1;1;1;1];

net1.layers{1}.dimensions=7;

net1.layers{2}.dimensions=10;

net1.layers{3}.dimensions=3;

net1.layers{4}.dimensions=10;

net1.layers{5}.dimensions=7;

net1.layers{1}.transferFcn='purelin';

net1.layers{2}.transferFcn='logsig';

net1.layers{3}.transferFcn='tansig';

net1.layers{4}.transferFcn='logsig';

net1.layers{5}.transferFcn='purelin';

net1.layers{3}.initFcn='initnw';

net1.layers{4}.initFcn='initnw';

net1.layers{5}.initFcn='initnw';

%view(net1)

rng(580301); %random seed applied

net2=trainlm(net1,cstr,cstr);

%y=net2(xxxx); %xxxx is the new input and y is output%

%view(net2)

net2.outputConnect(1,3)=1; %output of bottleneck layer, appear in top 3

row in output matrix

XX

cstr_normal_output=net2(cstr);

%---------------------RUN FOR KINETIC CHANGE----------------------%

clear norm_column; clear cstr;

load('cstr_data_CAT.mat');

cstr=cstr(2:8,1:1000)';

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn_normal(i))./sd_normal(i);

 cstr(:,i)=norm_column;

end

i=0;

cstr=cstr';

ncstr_CAT_input=cstr;

save('ann_data.mat','ncstr_CAT_input','-append');

cstr_cat_output=net2(ncstr_CAT_input); %network output, 3 row from

top is the bottleneck output

save('ann_data.mat','cstr_normal_output','cstr_cat_output','-append');

%------------------RUN FOR HE COEFFICIENT CHANGE--------------------%

clear norm_column; clear cstr;

load('cstr_data_HE.mat');

cstr=cstr(2:8,1:1000)';

for i=1:cstr_column, %normalization loop

 norm_column=(cstr(:,i)-mn_normal(i))./sd_normal(i);

 cstr(:,i)=norm_column;

end

i=0;

cstr=cstr';

ncstr_HE_input=cstr;

save('ann_data.mat','ncstr_HE_input','-append');

%net2.outputConnect(1,3)=1;

cstr_HE_output=net2(cstr); %network output, 3 row from top is the

bottleneck output

save('ann_data.mat','cstr_normal_output','cstr_cat_output','cstr_HE_output','-

append');

%fyp2_ann_pca

XXI

T2 and SPE for Data From the Neural Network

load('ann_data_final.mat');

cstr_normal_output=cstr_normal_output';

mn_bottle=mean(cstr_normal_output);

sd_bottle=std(cstr_normal_output);

var_bottle=var(cstr_normal_output);

for i=1:10, %normalization loop %bottleneck only first 3 column

 ncstr_normal_output_column=(cstr_normal_output(:,i)-mn_bottle(i))./sd_bottle(i);

 ncstr_normal_output(:,i)=ncstr_normal_output_column;

end

i=0;

ncstr_normal_square=(ncstr_normal_output(:,1:3).^2); %ncstr_normal_square for T2 calc.

for i=1:1000,

 column_normal_t(i,:)=ncstr_normal_square(i,:)./(var_bottle(1:3));

 tsquare_normal(i,1)=sum(column_normal_t(i,:));

end

i=0;

finv_99=finv(0.99,3,(1000-3)) %F alpha (no_princomp, (no of sample - no_princomp))

finv_95=finv(0.95,3,(1000-3)) %F alpha (no_princomp, (no of sample - no_princomp))

thold_99=(((3)*(1000-1)*(1000+1))/(1000*(1000-3)))*finv_99;

thold_95=(((3)*(1000-1)*(1000+1)/(1000*(1000-3))))*finv_95;

figure(1)

subplot (2,1,2);

plot(tsquare_normal) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

r=ncstr_normal_input'-cstr_normal_output(:,4:10);

q=r.*r;

SPE=sum(q');

figure(1)

subplot (2,1,1);

plot (SPE) %SPE Chart

v=var(SPE);

m=mean(SPE);

H=(2*(m^2))/v;

chisquare99=chi2inv(0.99,H);

chisquare95=chi2inv(0.95,H);

XXII

sigma99=(v/(2*m))*(chisquare99)*((2*(m^2))/v);

sigma95=(v/(2*m))*(chisquare95)*((2*(m^2))/v);

SPE_threshold99=sigma99;

SPE_threshold95=sigma95;

theta1=sum(var_bottle(1,(3+3+1):10)); %3+3+1 (var bottle layer + var

princomp + 1)

theta2=sum(var_bottle(1,(3+3+1):10).^2);

theta3=sum(var_bottle(1,(3+3+1):10));

g=theta2/theta1;

h=(theta1^2)/theta2;

h0=1-((2*theta1*theta3)/(3*(theta2^2)));

z_99=norminv(1-0.01);

z_95=norminv(1-0.05);

chisquare_99=chi2inv(0.99,7-1);

chisquare_95=chi2inv(0.95,7-1);

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

%-----------------------PCA ANN KINETIC CHANGES---------------------%

cstr_cat_output=cstr_cat_output';

for i=1:10, %normalization loop %bottleneck only first 3 column

 ncstr_cat_output_column=(cstr_cat_output(:,i)-mn_bottle(i))./sd_bottle(i);

 ncstr_cat_output(:,i)=ncstr_cat_output_column;

end

i=0;

ncstr_cat_square=(ncstr_cat_output(:,1:3).^2);

for i=1:1000,

 column_cat_t(i,:)=ncstr_cat_square(i,:)./(var_bottle(1:3));

 tsquare_cat(i,1)=sum(column_cat_t(i,:));

end

i=0;

finv_99=finv(0.99,3,(1000-3)) %F alpha (no_princomp, (no of sample - no_princomp))

finv_95=finv(0.95,3,(1000-3)) %F alpha (no_princomp, (no of sample - no_princomp))

thold_99=(((3)*(1000-1)*(1000+1))/(1000*(1000-3)))*finv_99;

thold_95=(((3)*(1000-1)*(1000+1)/(1000*(1000-3))))*finv_95;

figure(2)

subplot (2,1,2);

plot(tsquare_cat) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

XXIII

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

r_cat=ncstr_CAT_input'-cstr_cat_output(:,4:10);

q_cat=r_cat.*r_cat;

SPE_cat=sum(q_cat');

figure(2)

subplot (2,1,1);

plot (SPE_cat) %SPE Chart

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

%-----------PCA ANN HEAT TRANSFER COEFFICIENT CHANGE----------------%

cstr_HE_output=cstr_HE_output';

for i=1:10, %normalization loop %bottleneck only first 3 column

 ncstr_HE_output_column=(cstr_HE_output(:,i)-mn_bottle(i))./sd_bottle(i);

 ncstr_HE_output(:,i)=ncstr_HE_output_column;

end

i=0;

ncstr_HE_square=(ncstr_HE_output(:,1:3).^2);

for i=1:1000,

 column_HE_t(i,:)=ncstr_HE_square(i,:)./(var_bottle(1:3));

 tsquare_HE(i,1)=sum(column_HE_t(i,:));

end

i=0;

finv_99=finv(0.99,3,(1000-3)) %F alpha (no_princomp, (no of sample - no_princomp))

finv_95=finv(0.95,3,(1000-3)) %F alpha (no_princomp, (no of sample - no_princomp))

thold_99=(((3)*(1000-1)*(1000+1))/(1000*(1000-3)))*finv_99;

thold_95=(((3)*(1000-1)*(1000+1)/(1000*(1000-3))))*finv_95;

figure(3)

subplot (2,1,2);

plot(tsquare_HE) %T2 chart

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ...

 'LineWidth', 2, 'Color','y');

XXIV

legend('T-square','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('T-square Chart','FontWeight','bold')

xlabel('sample number')

ylabel('T2')

r_HE=ncstr_HE_input'-cstr_HE_output(:,4:10);

q_HE=r_HE.*r_HE;

SPE_HE=sum(q_HE');

figure(3)

subplot (2,1,1);

plot (SPE_HE) %SPE Chart

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-',

...

 'LineWidth', 2, 'Color','r');

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--',

...

 'LineWidth', 2, 'Color','y');

legend('residual','99.0% confidence limit','95.0% confidence limit',...

 'Location','NorthEastOutside')

title('SPE-Chart','FontWeight','bold')

xlabel('sample number')

ylabel('residual')

