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ABSTRACT 

 

Process monitoring traditionally using univariate process monitoring approach where 

each of individual variables is monitored separately. In this approach process variables 

interaction is difficult to be monitored and therefore multivariable statistical process 

monitoring (MSPM) was introduced to cater the drawback of univariate process 

monitoring. MSPM has a major advantage in detecting change in variables relationship 

or also known as structural changes. Despite of the advantage, most of studies are 

focusing on change in variables rather than the variables interaction. In this study, PCA 

based detection techniques performance including PCA, dynamic PCA and nonlinear 

PCA has been evaluated under change in reaction kinetic and change in heat transfer 

coefficient. Hotelling T2 and SPE chart are employed as the fault detection techniques. 

The project mainly focusing on fault detectability and fault detection time. All the PCA 

based approaches are able to detect the structural changes. Nonlinear PCA shows the 

fastest detectability followed by dynamic PCA and PCA. For highly nonlinear system, 

Nonlinear PCA are able to detects the fault the fast but the nonlinear PCA not 

performing the best when encounter with lesser degree of nonlinear data set.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background Study 

In past decades, chemical industry was focusing only on producing product as much 

as possible. Nowadays, as the competition in industrial market grows fierce, the 

objective of industry was shift to produce higher product yield and quality. At the same 

time, they also are aiming for higher production efficiency, less pollution and waste. 

All these can be satisfied with a better understanding of the process with a better 

process control. This implies to a need of attention to condition monitoring strategies.  

Process monitoring is commonly based on single variable statistics and it is difficult 

and time consuming for everyone to find out the problem and evaluate the performance 

of operation. The existence of multivariable and tremendous amount of data adds up 

the difficulties of the monitoring process and this is more complicated with the highly 

interacted nature of chemical process. Because of that, a range of statistically based 

condition monitoring approach was developed and known as Multivariate Statistical 

Process Monitoring (MSPM) was introduced.  

One of the MSPM objectives is to identify any assignable causes that result in a shift 

in the process mean that cannot be detected by univariate monitoring approach. A 

process is said to be in control only when common causes of variation are present. 

Based on the assumption that data collected are uncorrelated and normally distributed, 

a multivariate control chart can be utilised to detect abnormal changes in the system 

that causing shift in process mean. 

In process monitoring, there are two types of faults which are faults in variable and 

faults in structure (Venkat , Raghunathan , Kewen , & Surya, 2002). Variables fault is 

a change of variable parameter that exceeds the acceptable range of the observed 

variables. The parameters failures arise when there is disturbance enter the process 

from environment through one or more variables. An example for such fault is a 

change in temperature and concentration of reactant from its steady state value in 

reactor feed. The change might due to disturbances that enter the process.  



2 

 

On the other hand, fault in structure is change of process relationship between variables 

in a process that depart from in-control region defined by confidence limits calculated 

from a reference set. Example for structural fault is drift in reaction kinetic which 

might due to catalyst deactivation and change in heat transfer coefficient due to fouling 

in heat exchanger. 

As large quantity of multivariate data required to be analysed, MSPM have to remove 

redundancy in the data by introducing a reduced set of statistically uncorrelated 

variables. Principal component analysis (PCA) is an example of the basic approach 

applied in MSPM. A good MSPM can provide insight about the stability of the process 

in individual variables as well as the relationship between the variables (or known as 

structure).  

The purpose of this paper is to investigate few monitoring methods that applicable to 

promptly detect fault in structural change. The investigation will be using non-

isothermal continuous stirred tank reactor (CSTR) system as the case study. 
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1.2 Problem Statement 

Major advantage of multivariate statistical process monitoring (MSPM) is to detect the 

change in the structure rather than change in process variables. 

Figure 1 shows an example of typical situation where two process variables are both 

inside their control limit in univariate control charts but fails to detect general trend of 

correlation between these two variables is broken (sample in red). 

 

 

Figure 1: Interaction of variables that cannot be detected by traditional univariate statistical 

process control charts 
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However, in past research works most of the case studies concentrate on change in 

process variable. For example: 

i. (Chen & Liao, 2001) For Tennessee Eastman control problem, 12 out of 

the 15 are process variable shift. 

ii. (Xiong, Liang, & Qian , 2007) For Polyethylene process catalyser reactor 

case, only variables change are monitored, 

iii. (Chen, Kruger , Meronk , & Leung, 2004) For debutanizer process case, all 

the focus are on the variables change. 

Despite MSPM are specifically used to detect the structural change, but most 

techniques are tested on variable change. Therefore there is a need to identify the 

potential of these techniques for detection of structural change specifically.  

 

1.3 Significant of the Project 

The benefit that can be obtained from the detecting structural changes is it will allow 

the next level in process monitoring i.e. fault identification and fault diagnosis that will 

lead to identification of the root causes.  

Structural fault monitoring could be expend to the level where it able to 

describe the severity of the fault for example how much catalyst have been deactivated. 

And therefore will help in production or operation planning on deciding when would 

be the most economical to change the catalyst.  

Nevertheless, the big objectives in the structural fault monitoring must be 

started with the fault detection i.e. detecting the changes or fault that occoured. 
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1.4 Objectives 

The objectives of this project to investigate the structural fault detectability using PCA 

based approaches. To achieve the objective, the sub-objectives this project are as the 

following: 

1. To develop structure change fault case study using CSTR in MATLAB 

simulation environment. 

2. To simulate structural change faults in the model using potential structural 

change detection approaches. 

3. To compare fault detectability performance among potential PCA based 

approaches. 

 

1.5 Scope of Study 

The scope of this project is fault detection in kinetic and heat transfer coefficient 

changes in non-isothermal CSTR system. The MSPM techniques that will be evaluated 

on the CSTR system will be using PCA based approaches. Modelling involves in this 

project will be done using MATLAB software. 
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CHAPTER 2: LITERATURE REVIEW 

  

2.1 Multivariable Statistical Process Monitoring (MPSM) 

Process controllers such as PID controller are designed to maintain operation by 

cancelling out effect of disturbance. However, there are changes in the process that the 

controller unable to rectify. These changes are known as faults and it defined as 

unpermitted deviation of at least one characteristic property or variable of the system 

(Isermann & Ball, 1996). 

In ensuring process operation is at performance specification, the faults need to be 

detected, diagnosed and removed and these is associated with process monitoring. This 

process monitoring also called as statistical process control (SPC), but due to 

confusion with standard process control, some reference use statistical process 

monitoring (SPM).  

The objective of SPM is to ensure success of the planned operation by recognizing 

anomalies of the behaviour (Chiang & Russell, 2001). The information from SPM not 

only provides the status of the process but also plant personnel to make appropriate 

corrective action to eliminate the disturbances. A good monitoring system will result 

in minimum downtime, lower production cost and higher reliability in operational and 

safety aspect. 

Modern process control system becoming more complex and the current SPM is not 

adequate to monitor the faults using univariate control chart. Univariate statistical 

charts (Shewhart, CUSUM, and EWMA) ignore the correlation among other variables 

and measurements; they do not able to accurately characterize the behaviour of the 

current industrial process (Chiang & Russell, 2001).  

Because of this reason, Multivariable SPM (MSPM) emerges and gaining acceptance 

in process monitoring as it can provide more accurate information about the process. 

MPSM can provide monitoring charts that can detect fault and gives warning signal 

earlier than the classical univariate chart (Chiang & Russell, 2001). 
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The strongest benefit of MSPM is the ability to exploit relationship between variables 

(Jackson, 1985). Example of this can be seen by comparing results of Figure 2 and 

Figure 3. Figure 2 demonstrates univariate charts showing both variables within 

control limit. Figure 3 using the same data considered jointly to demonstrate that one 

data record is violating the usual relationship.  

 

Figure 2 Individual control charts for Y1 and Y2 (Runger, 1996a) 

 

Figure 3 Joint plot of Y2 vs. Y1 (Runger, 1996a) 
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2.2 Principle Component Analysis (PCA) 

PCA is utilised in MSPM as it can greatly simplify data into lower-dimensional space 

without any loss of variance between variables. It preserves the correlation structure 

between process variables and captures variability of the data. In addition, PCA could 

also eliminate the noise effects. 

Application of PCA in MSPM can be seen as taking the enormous amount of data from 

the process, and transforming it into new set of variables called principle components. 

These principle components are sets of new uncorrelated variables.  

PCA determines a set of orthogonal vectors called loading vector and it is ordered by 

the amount of variance explained in the loading vector direction. PCA decomposition 

of training X matrix is as follows: 

 

𝑋 = �̂� + 𝐸 = ∑ 𝑡𝑘𝑝𝑘
𝑇

𝐿

𝑘=1

+ 𝐸 

in which, 

�̂� = ∑ 𝑡𝑘𝑝𝑘
𝑇𝐿

𝑘=1
 

Where, 

𝑋 is the matrix that store k number of observations and L number of process variables.  

�̂� is the prediction X on m retained principal components (PCs). 

𝐸 is the residual matrix that represents the PCA model prediction error. 

𝑡 is score matrix that describe significant process variation 

𝑝 is loading matrix that reveal the interrelationship between process variables 

 

Loading matrix, 𝑝 can be easily determined through the eigenvalue decomposition of 

sample covariance matrix. After obtaining the loading matrix, the score matrix can be 

computed as it is given by:  

𝑡𝑘 = X𝑝𝑘
𝑇 
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2.3 Fault Detection Using PCA 

2.3.1 Hotelling’s T2  

Hotelling’s T2 plot can detects small shifts and deviations from normal operation 

defined by the model. This statistic technique includes contribution of all variables 

deviation that becomes significant faster than the deviation of an individual variable. 

This T 2 will measure the variation in each sample within PCA model and only indicate 

deviation that can be explained by model.  

The T2
 statistic can be calculated as the following, 

𝑇𝑗
2 = 𝑡𝑗λ

−1𝑡𝑗
𝑇 

Where, 

tj refers to j-th jow of tk score matrix 

λ-1 is a diagonal matrix of the inverse of the eigenvalue associated with k principal 

component  

 

The threshold of T2 statistic can be computed using the equation below  

𝑇𝛼
2 =

𝑎(𝑛 − 1)(𝑛 + 1)

𝑛(𝑁 − 𝑎)
𝐹𝑎(𝑎, 𝑛 − 𝑎) 

n ≡ number of observation 

a ≡ degree of freedom or the number of sample 

α ≡ level of significant or the confidence limit 
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Figure 4 is the Hotelling T2 for 2PC model. The dotted line indicates the control limit 

and the value of T2 that exceed the line indicate the presence of fault. 

 

Figure 4 Hotelling T2 for 2PC model 

 

 

2.3.2 SPE/Q-Statistic 

The squared prediction error (SPE) is also known as Q-statistic indicates how well 

each sample conforms to PCA model. The SPE chart shows indication of significant 

deviation that cannot be explained by the model. The SPE can be calculated from the 

residual matrix which is the sum of squares for each row of the matrix. 

𝑄 = 𝑒𝑗𝑒𝑗
𝑇 

Where 𝑒𝑗 is components j row of residual matrix. 

After obtaining the SPE, the threshold should be then calculated. 

𝑄𝛼 = 𝜃1 [
ℎ0𝑐𝛼√2𝜃2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 ]

1
ℎ0

⁄

 

Where 𝜃𝑖 = ∑ 𝜎𝑗
2𝑖𝑛

𝑗=𝑎+1  , ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2  , and Cα is the normal deviate corresponding 

to the (1-α). 
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Figure 5 illustrate the Q residual for 2PC model. The residual that exceed the dotted 

horizontal line indicate presence of fault. 

 

Figure 5 Q residual for 2PC model 

 

Since the T2 and SPE statistic along their appropriate thresholds can detect different 

types of faults, thus the advantage of both statistics can be used together. 

Figure 6 shows a graphical illustration for fault detection that utilise T2 and Q statistics. 

The two statistics produce cylindrical in-control region that ‘x’ indicated in-control 

operation data, ‘o’ data indicate violation of T2 statistic, and ‘+’ data show Q statistics 

violation.  

 

Figure 6: Graphical illustration for fault detection using Q and T2 statistics (Chiang & Russell, 

2001) 
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2.4 Dynamic Principle Component Analysis (DPCA) 

 

Monitoring system based on PCA approach assumes observations at one time instant 

statistically independent to observations in the past time. However, in typical industrial 

processes, assumption is only valid for long sampling time i.e. 2 to 12 hours. Therefore 

this suggests that a monitoring method with fast sampling require serial correlation 

data to be considered.(Chiang & Russell, 2001) 

 

Let 𝑋 be a set of data with nt observation of p variables.  

𝑋 = ⌊𝑋1 𝑋2 ⋯ 𝑋𝑝⌋(𝑛𝑡×𝑝) 

Then, to include the serial correlation of data, it is constructed trajectory matrix 

applying lime lag shift of order 𝑤 on each of the columns 𝑝 of the matrix 𝑋. 

 

𝑋𝑡
𝑤 =

[
 
 
 

𝑋𝑖(1) 𝑋𝑖(2) ⋯ 𝑋𝑖(𝑤)

𝑋𝑖(2) 𝑋𝑖(3) ⋯ 𝑋𝑖(𝑤 + 1)
⋮ ⋮ ⋱ ⋮

𝑋𝑖(𝑛𝑡 − 𝑤 + 1) 𝑋𝑖((𝑛𝑡 − 𝑤 + 2)) ⋯ 𝑋𝑖(𝑛𝑡) ]
 
 
 

(𝑛×𝑤)

 

 

𝑋𝑤 = ⌊𝑋1
𝑤 𝑋2

𝑤 ⋯ 𝑋𝑝
𝑤⌋(𝑛×𝑚) 

where = 𝑛𝑡 − 𝑤 + 1 ; 𝑚 = 𝑝𝑤 

 

Value for w is made based on compromise between information content and statistical 

confidence. It is common to select 𝑤 in the same way as is defined the number of lags 

to use when constructing an auto-correlation function, 𝑤 = 𝑛𝑡/4  (J. & C, 2005).  

Applying the PCA to the above 𝑋𝑡
𝑤 matrix is known as dynamic PCA (DPCA). The 

DPCA can be expected to have higher fault detectability compared to PCA for serially 

correlated data.  
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2.5 Nonlinear PCA (Kramer, 1991) 

 

2.5.1 Neural Network 

 

Neural networks are information processing paradigm that is inspired by the way 

biological nervous system process information. Neural network is also known as 

artificial neural network (ANN) attempts to recreate the computational mirror of 

biological neural network. The neural network can be created by modelling a network 

of model neurons using computer. Neural Network have basic building block which is 

artificial neuron is often called as nodes. The nodes are connected to each other and 

their connection is to one another is assigned a value based on their weight: inhibition 

(maximum being -1.0) or excitation (maximum being +1.0). Higher value of the 

weight indicates there is strong connection. Within each node’s design, a transfer 

function is built in. The structure of neural network have input nodes, hidden nodes, 

and output nodes as illustrated in Figure 7 

 

 

Figure 7 Neural Network 

Input nodes take in information in numerical form. The information is presented as 

activation values, where the each of the nodes will be assigned a number, the higher 

the number, the greater the activation. This information is then passed throughout the 
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network. Based on the connection strengths (weights), inhibition or excitation, and 

transfer functions, the activation value is passed from node to node. Each of the nodes 

sums the activation values it receives; it then modifies the value based on its transfer 

function. The activation flows through the network, through hidden layers, until it 

reaches the output nodes. The output nodes then reflect the input in a meaningful way 

to the outside of the neural network model. 

Additional class of weight is known as biases. Biases are values that are added to the 

sums calculated at each node (except input nodes) during the feedforward phase. 

Biases are commonly visualized simply as values associated with each node in the 

intermediate and output layers of a network, but in practice are treated in exactly the 

same manner as other weights. The use of biases in a neural network increases the 

capacity of the network to solve problems by allowing the hyperplanes that separate 

individual classes to be offset for superior positioning. (Leverington, 2009) 

The neurons can be having either linear or non-linear transfer function. For non-linear 

transfer function, the commonly used function is Sigmoid and Log-sigmoid transfer 

function (LOGSIG) (Dorofki, Ahmed H. Elshafie, Othman, & Othman , 2012).  

 

Figure 8: Graph of sigmoid function 

 

To prevent the saturation in output of sigmoid function, the data use in input neuron 

need to be scaled. Un-scaled input data to sigmoid function will result in useless output 

information whenever the corresponding output falls under saturated region in sigmoid 

function. An example of scaling method is to use mean centred at zero with standard 

deviation of one. 
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Before building a model, available data need to be partitioned (Frontline Solvers, 

2013). Data partitioning will yields mutually exclusive data sets: a training dataset, a 

validation dataset and test dataset. Training dataset will be used to obtain the network 

weights. The weight can be determined through linear regression; the training dataset 

is used to fit the linear regression model, i.e. to compute the regression coefficient.  

Validation set on the other hand will be used to find the accuracy of the model after 

the model is built previously using the training data. For this, the model in put should 

be using a dataset that was not used in training process but it is a dataset where you 

know the actual value of target variable. The different between the actual and predicted 

value is the error in prediction.  

Test set is actually just another validation set which often used to fine-tune models. 

For example, you might try out neural network models with various architectures. And 

test accuracy of each on the validation dataset to choose among the competing 

architecture. The accuracy of the model on the test data gives a realistic estimate of the 

performance of the model on completely unseen/random data. 
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2.5.2 Autoasscociative Neural Network 

Nonlinear PCA (NPCA) includes nonlinear mappings between the original and 

reduced dimension spaces which are not accounts by the PCA. If non-linear correlation 

between variables exist, NLPCA are able to explain the data with higher accuracy than 

PCA, provided there is sufficient data to support formulation of more complex 

mapping function (Kramer, 1991). NLPCA able to uncovers both linear and nonlinear 

correlations without restriction on character of the nonlinearities present in the data. 

NLPCA is accomplished by training a feedforward neural network to carry out identity 

mapping on which the network inputs are reproduced at the output layer. There is a 

“bottleneck” layer that contains fewer nodes than input or output layer and it forces 

the network to produce reduced representation of the input data and two additional 

hidden layers (Kramer, 1991). The center of hidden neurons of a bottle-neck neural 

network can be used to perform nonlinear MPSM (Thissen, Melssen, & Buydens, 

2001). The representation of NLPCA can be clearly seen from Figure 9. 

 

Figure 9: combined mapping and demapping in NLPCA 

 

From this auto-associative neural network, the output of the bottle neck layer will be 

monitored using the Hottling T2. The error which is the residual between Y and Y’ 

will be monitored using SPE/Q-statistic chart. The analysis can be performed using 

Matlab software and the neural networks can be implemented easily by using Neural 

Network Toolbox (feedforwardnet). 
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2.5.3 T2 and SPE Chart for Nonlinear PCA 

From the auto-associative neural network, output of bottleneck neurons is monitored 

using T2 chart where the residuals from the estimated and the real process are 

monitored using SPE-chart (Thissen, Melssen, & Buydens, 2001). The charts are 

constructed similar to regular T2 chart and SPE-chart. 

T2 statistic is calculated as the following, 

𝑇2 = ∑
𝑡𝑖
2

𝑠𝑡𝑖
2

𝐴

𝑖=1

 

Where,  

𝐴 = total number of bottleneck neurons, 

𝑡𝑖= output of neuron 𝑖, 

𝑠𝑡𝑖
= variance of output neuron 𝑖 

 

 

On the other hand, SPE-statistics is calculated as the following, 

 𝑆𝑃𝐸 = ∑(𝑦𝑗𝑖 − 𝑦𝑗𝑖′)
2
 

 

Where, 

𝑦𝑗𝑖 = 𝑖th sample to 𝑗th neuron of input layer, 

𝑦𝑗𝑖
′ = 𝑖th output of 𝑗th neuron of output layer. 
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CHAPTER 3: METHODOLOGY 

3.1 Project Methodology  

In the first phase, PCA based techniques that have potential in promptly detect faults 

in structural change will be review and compiled. This will be done through reviewing 

past research paper works. Then, equations for non-isothermal CSTR system from 

Chemical Process Modelling and Computer Simulation by Amiya K. Jana will be used 

for the purpose of modelling the system (Amiya, 2008). The same reference also 

provides the steady state and operating condition dataset. 

 In this project, three datasets obtained from simulated system will be used for 

analysis with the PCA, DPCA and NLPCA. The first dataset will be the output dataset 

that is simulated with normal operating data. Second dataset will be output of 

simulated model under drift of heat transfer coefficient. And the third dataset is the 

output of simulated data on drift in catalyst activity (frequency factor). The parameters 

of the CSTR considered are shown in Table 1 (Amiya, 2008). 

Table 1: Steady-state and operating condition 

Notation Parameters used in the simulation Value 

𝐴𝑐 Cross-sectional area of the reactor, m2 4.2822 

𝐶𝐴 Concentration of reactant A in the exit stream, 

kmol/m3 

8.56303 

𝐶𝐴𝑓 Concentration of A in the feed stream, kmol/m3 10.0 

𝑑 Diameter of cylindrical reactor, m 2.335 

𝐸 Activation energy, kcal/kmol 11843.0 

𝐹𝑖 Volumetric feed flow rate, m3/h 10.0 

ℎ Height of the reactor liquid, m 2.335201 

(−∆𝐻) Heat of reaction, kcal/kmol 5960.0 

𝑅 Universal gas constant, kcal/(kmol)(K) 1.987 

𝛼 Frequency factor, h-1 34930800.0 

𝜌𝐶𝑝 Multiplication of mixture density and heat 

capacity, kcal/(m3)(oC) 

500.0 

𝑇 Reactor temperature, oC 38.17771 

𝑇𝑓 Feed temperature, oC 25.0 

𝑇𝑗 Jacket temperature, oC 25.0 

𝑈𝑖 Overall heat transfer coefficient, kcal/(m2)(oC)(h) 70.0 
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Modelling of the CSTR system is done be using MATLAB software where the steady 

state input of the system was corrupted with the mean centred equal to zero.  

T2 and SPE chart will be drawn for the reduced dataset after implementing the 

aforementioned data reduction techniques. The performance of the fault detectability 

between the techniques will be compared based on the percentage of detectable 

number of observation. The details on fault will be put in a fault table where there will 

be the percentage of detection performance of the fault detection techniques 

demonstrated based on T2 statistic and Q-statistics. The detection will also be based 

on specified confidence level. Example of the fault table can be seen in table 2 in (Chen 

& Liao, 2001). 

 

The discussed methodology is summarized as in Figure 10. 

 

Figure 10: Project phase/methodology 

 

3.2 Tool 

MATLAB Software with: 

1. Statistic toolbox 

2. Neural network toolbox  

Review and compile PCA based techniques that have potential 
to promptly detect faults in structural change

Identify equation in nonisothermal CSTR system

Develop CSTR model in MATLAB environment

Simulate structural change fault in the model using the potential 
structrual change detection approaches (PCA, DPCA, NLPCA)

Compare the detactability performance between the approaches
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3.3 Gantt Chart 

Table 1 shows the objectives in timelines that should be completed during for FYP II. 

The first three weeks is allocated for modelling of CSTR system and simulate for 

normal condition and change in heat transfer coefficient and reaction. Following that, 

in week 4 the data will be processed and PCA approach will be started and expected 

to be done in week 7. 

Progress report is scheduled for submission in the beginning of week 8. The 

continuation of the work will be done for DPCA for week 8 and 9 while 

Autoassociative Neural Network is expected to be started in week 10 and completed 

within 3 weeks. 

Pre-SEDEX presentation will be in week 11 followed by submission of draft report in 

week 12. Dissertation in soft bound and technical paper are required to be submitted 

in week 13. Final oral presentation with internal and external examiner was scheduled 

by coordinator to be in week 14 and submission of final dissertation (hard bound) in 

week 15. 

Only after the title is finalized, the literature review will be started which end by week 

6.  The literature review will be done alongside with the extended proposal where the 

objective, problem statement, and methodology would be well identified. The finalized 

extended proposal is to be submitted at the beginning of week 7. 

 

3.4 Key Milestone 

 In this project, key milestones was identified as the following: 

1. Develop CSTR model and simulate for normal condition, change in heat 

transfer coefficient and change in reaction kinetic. 

2. Data processing and PCA approach for fault detection 

3. Fault detection using DPCA 

4. Fault detection using Autoassociative Neural Network 
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Table 2: Gantt chart 

NO DETAIL 

WEEK  

1 2 3 4 5 6 7 

M
id

 S
em

es
te

r 
B

re
ak

 

8 9 10 11 12 13 14 15 

1 

Develop CSTR model and simulate normal 

condition, change in heat transfer coefficient and 

drift in reaction kinetics                             

 

2 

Data processing and using PCA for fault detection 

and analysis                             

 

 Progress report        ●        

3 Fault detection using DPCA and analysis                             

4 

Fault detection using Autoasscociative Neural 

Network             
 

             

 

5 Pre-SEDEX           ●     

6 Submission of Draft Report            ●    

7 Submission of Dissertation (soft bound)             ●   

8 Submission of technical paper                         ●   

9 Oral Presentation              ●  

10 Submission of Project Dissertation (hard bound)               ● 

      ● Suggested Milestone        

        Process          
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CHAPTER 4: RESULT AND DISCUSSION 

 

4.1 Modeling and Simulation 

4.1.1 CSTR Model and Simulation 

The CSTR system was modelled using Simulink in Matlab software. Screen shot of the 

model is available is the appendix. The input and output of the model listed in Table 3. 

Table 3: Input/output variable of the CSTR model 

Input Fi Inlet flowrate 

CAf Inlet concentration 

Tf Feed temperature 

Tj Jacket temperature 

Output F0 Outlet flowrate 

CA Outlet concentration 

Tr Reactor temperature 

 

For the input variables, white noise is added by assuming the real process data exhibit 

normal distibution. The model is run for time equal to 100. The sampling time for the 

sampling is 0.01 to obtained 1000 sample. The model is run for the normal data when 

there is no change in heat transfer coefficient and reaction kinetic.  

The model is then simulated for change in heat transfer coefficient with 10% 

decreament starting time equal to 30 (i.e. at 300th sample). Separately, the model is run 

for drift in kinetic whith 5% decreament starting at time equal to 30. From the 

simulation, the major responding variable when changing the heat transfer coefficient 

and reaction kinetics is on the reactor temperature followed by the outlet concentration. 

Data from the simulated system is then export to matrix file (.mat). The data stored in 

the matrix file is load in the main window and normalized with the sample mean and 
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standard deviation so that normalize variable will be having zero mean and standard 

devation equal to one. For the normal contidition, the data is normalize using the sample 

mean and standard devation while for the drift condition, the data is normalize using 

the normal condition’s mean and standard deviation. 

 

4.1.2 Fault Detection using PCA 

The PCA is done for normalized normal condition data to obtain the loading matrix, 

score matrix and latent. PCA for the fault data is then done by using loading matrix of 

normal condition data and T2 calculated using latent (which store variance) of the 

normal condition data. From the PCA of the normal condition data, the variance 

explained by the principle component is as following: 

Table 4:  Explained Variance of Normal Data 

No of PC Explained variance by 

each of the PC (%) 

Cumulative explained 

variance by the PC (%) 

1 19.68 19.68 

2 15.07 34.75 

3 14.90 49.65 

4 14.11 63.76 

5 13.80 77.56 

6 13.29 90.85 

7 9.15 100 

 

From the cumulative explained variance, 5 PC was decided to be retained for the T2 

and SPE calculation. Methodology for calculating the T2 and SPE is as discussed in 

literature review section. 
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4.1.3 Fault Detection using DPCA 

For DPCA, the time lag shift is introduced to the input/output variables matrix. The 

chosen time lag shift was 2 sample lag. For this part, matrix expansion of the time lag 

was done all variables time lag expansion, and only output variables expansion. For the 

all variables time lag expansion, additional 2 column matrix was introduces for every 

variables, while for output only expansion, only 2 column matrix was introduces for 

output variables. 

From the expanded variables matrixes, PCA was done and T2 and SPE calculation is 

obtained. From the cumulative explained variance in Table 5 and Table 6, 9 PCs 

(explained 72.57%) was chosen for all column time lag expansion, and 4 PCs 

(explained 72.38%) was chosen for only output variables matrix expansion. Then the 

T2 and SPE is calculated from the retained PCs. 

Table 5: Explained Variance of Normal Data with Time Lag Shift of All Variables (DPCA) 

No of PC Explained variance by 

each of the PC (%) 

Cumulative explained 

variance by the PC (%) 

1 19.17 19.17 

2 13.26 32.43 

3 8.90 41.33 

4 5.48 46.81 

5 5.41 52.22 

6 5.21 57.44 

7 5.19 62.63 

8 4.99 67.63 

9 4.95 72.57 

10 4.65 77.22 

11 4.52 81.74 

12 4.40 86.14 

13 4.18 90.32 

14 4.12 94.44 

15 3.88 98.33 

16 0.82 99.15 

17 0.35 99.50 

18 0.29 99.79 

19 0.11 99.90 

20 0.08 99.98 

21 0.02 100.00 
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Table 6: Explained Variance of Normal Data with Time Lag Shift of Two Output Variables 

(DPCA) 

No of PC Explained variance by 

each of the PC (%) 

Cumulative explained 

variance by the PC (%) 

1 31.42 31.42 

2 22.14 53.56 

3 9.68 63.24 

4 9.14 72.38 

5 8.96 81.34 

6 8.55 89.88 

7 7.67 97.55 

8 1.64 99.19 

9 0.57 99.76 

10 0.18 99.94 

11 0.06 100.00 
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4.1.4 Fault Detection using NLPCA 

The feedforward neural network was design with input layer, three hidden layer 

(including bottleneck) and an output layer. Number of nodes for input and output layer 

is equal to number of variables, i.e. 7, while the 10 nodes for first and third hidden layer 

and 3 nodes for the bottleneck layer. The network structure can be clearly seen in Figure 

11. 

 

Figure 11: Network structure preview generated by MATLAB 

 

Transfer function for the network layers is as the following: 

Figure 12: Function used for layers in the network 

Layer Function 

Input Linear 

Hidden layer 1 Logsig 

Bottleneck layer Tansig 

Hidden layer 2 Logsig 

Output Linear  

 

The network was trained using normalized data of normal condition input and output 

data of the CSTR system. Then the fault data of kinetic change and heat transfer 

coefficient change is run using the trained network, on which the biases and weights 

from network trainig is maintained. The output from the bottleneck layer is used to 

obtained the T2  statistic and the output from the output layer is utilised to get the SPE 

statistics. 
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4.2 SPE and T2 Statistic for Normal Data 

 

Figure 13: SPE and T2 Chart for Normal Operation Data Using PCA approach 

 

 

Figure 14: SPE and T2 Chart for Normal Data Using DPCA (all column with time lag shift 

expansion) 
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Figure 15: SPE and T2 Chart for Normal Data Using DPCA (two output column with time lag 

shift expansion) 

 

 

Figure 16: SPE and T2 Chart for Normal Data Using NLPCA 
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  From the SPE and T2 charts of normal data for PCA and DPCA, it is 

observed that there is points that exceed control limit at which 99.0% of confidence 

limit. There are also points that exceed the warning limits that defined at 95.0% 

confidence limit. The detection of fault in the normal data might due to variation of 

input variable that exceed the predefined control limit of 3 standard deviation of the 

sample mean. This is might due to normal distribution of the added noise to the input 

variables of the modelled CSTR. Another possible reasoning would be there is multiple 

input variables that adding positive noise at the same time and signify the variation for 

a given sample time.  

 For monitoring the structural changes, the process trending i.e. change in 

process mean is more important than points that exceed the control limits. To facilitate 

the detection time determination in this paper, detection time is considered whenever 

the points exceed the 99.0% confidence limit that preceded with observable change in 

mean. This guideline is based on the normal data trending in SPE and T2 charts of PCA, 

DPCA and NLPCA where the outliers that exceed 99.0% confidence limit does not 

preceded with any observable change in mean that exceed the warning limit. 
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4.3 SPE and T2 Statistic for Structural Fault Data 

4.3.1 Change in Reaction Kinetics 

 

Figure 17: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using PCA 

 

Figure 18: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using DPCA (all 

column with time lag shift expansion) 
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Figure 19: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using DPCA (two 

output column with time lag shift expansion) 

 

 

Figure 20: SPE and T2 Chart for Fault data due to Change in Reaction Kinetic Using NLPCA 
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4.3.2 Change in Heat Transfer Coefficient 

 

Figure 21: SPE and T2 Chart for Fault Data due to Change in Reaction Kinetic Using PCA 

 

Figure 22: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient Using 

DPCA (all column with time lag shift expansion) 
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Figure 23: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient Using 

DPCA (two output column with time lag shift expansion) 

 

Figure 24: SPE and T2 Chart for Fault Data due to Change in Heat Transfer Coefficient Using 

NLPCA 
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4.4 Summary of fault detection time  

The summary of the fault detection for all kinetic and heat transfer coefficient using all 

the aforementioned techniques are in Table 7. 

Table 7: Summary of Fault Detection Time Using T2 and SPE statistic 

 Detection Time (Sample No.) 

PCA DPCA  

(all column) 

DPCA  

(two column) 

NLPCA 

Reaction Kinetic 

Change 

T2 446 444 443   436 

SPE 693 430 430 428 

Heat Transfer 

Coefficient Change 

T2 510 535 528 695 

SPE 886 499 499 500 

 

The result of DPCA detection time for all variable time lag shift expansion and 

only two output variable expansion shows a close fault detection time outcomes 

especially in SPE statistics. This is due to the independent of input variables and 

therefore expansion of the matrixes for input variables will give insignificant effect to 

the fault detection time. On the other hand, the output variables, i.e. temperature and 

concentration are dependent variables. They have relationship with the previous 

observation and they are interdependent between past temperature and concentration 

sample. 

For change in reaction kinetics, advanced PCA method using SPE statistics 

shows better performance compared to T2 statistics. However, T2 statistics performance 

between the approaches is almost similar on which detected first by NLPCA, followed 

by DPCA and PCA. In this kinetic change, NLPCA perform best although the result is 

comparable to DPCA.  

For change in heat transfer coefficient, again the advanced PCA method shows 

better performance using SPE statistics. However for T2 statistics shows that PCA 

demonstrate best performance compared to T2 of DPCA and NLPCA. In overall, DPCA 

demonstrating the best in detecting fault in heat transfer coefficient through SPE 

statistics. 
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From the detection time result, we can see that DPCA approach are able to 

detect the structural faults almost as the same as the PCA approach when compare using 

T2 chart. The less significant differences are due to the assumption that the observation 

statistically independent to observation of past time is true and therefore expansion for 

time lag shift does not have significant effect on the T2 statistic i.e. monitoring the 

variance between data samples. In structural fault monitoring, data observation can be 

safely assumed to be independent of past observation since long sampling time internals 

are applied.  

On the other hands, DPCA through SPE detect faults faster compared to PCA. 

This is due to the introduction of time-lag shift to the original data matrix where it will 

eventually make the errors between the projected space and original data to be 

compounded when calculating the SPE. The residual between the projected and original 

data are then signified in the monitoring charts. 

  It is also observable that the NLPCA shows superiority in detecting fault due to 

reaction kinetic change comparing to PCA and DPCA. It is however less effective when 

it comes to detecting fault due to change in heat transfer coefficient. The main reasons 

might due to nonlinearity of the data in kinetic change dataset is more prominent, on 

which nonlinear PCA work best. 

PCA approach through T2 statistics shows better performance compared to 

DPCA and NLCPA in detecting change in heat transfer coefficient. This might due to 

the nonlinearity of the dataset on which PCA model are able to characterize it better 

than DPCA and NLPCA. 

From the general overview of the result, it can be observed that NLPCA shows 

the best performance in detecting structural fault whenever the dataset contains highly 

nonlinearity between the variables. While DPCA have its own strength when encounter 

different degree of nonlinearity of dataset. Although DPCA might not perform the best 

compared to other approaches, there is an observable consistency of the comparable 

result from DPCA (compared to other approaches) when giving different dataset. SPE 

statistics also prove in this project to detect faults faster compared to T2 statistics. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

 

The objective of this work is to investigate structural fault detectability using PCA 

based approaches. The significant of the study is to fill the gap of knowledge in fault 

detection that is specifically for structural fault. The structural change in CSTR model 

was successfully simulated using Simulink in MATLAB and the data obtained was used 

as feeding data to PCA based monitoring approaches i.e. PCA, DPCA, and NLPCA.  

Based on fault detection, the NLPCA shows the fastest detection time followed 

by DPCA and PCA. The NLPCA is demonstrated the most robust structural fault 

detection when encounter nonlinear system. On the other hand, PCA is better in 

characterizing data that contains lesser degree of nonlinear dataset. For DPCA, 

expansion of dependent variable is sufficient in monitoring structural fault. The 

differences between results obtained through PCA and DPCA mainly in SPE statistics 

where DPCA are able to signify the errors by compounding the errors.  

Therefore, it can be concluded that structural fault can be detected using PCA 

based techniques and the objectives of the project are successfully achieved. 

 

Nevertheless, the suggested work for future is as below: 

1. Integrate CUSUM (cumulative sum) and EWMA (exponentially weighted 

moving average) directly to NLPCA to increase the sensitivity and robustness 

of process monitoring. 

2. The continuation of the structural fault detection using other MPSM techniques 

and proceeded with fault identification and fault diagnosis. 
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APPENDIX I: CSTR MODEL IN SIMULINK 

 



II 

 

Input Block Diagram For The CSTR Model 
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APPENDIX II: MATLAB SOURCE CODE 

PCA for Normal Data 

clear all; clc; 

  

  

load('cstr_data.mat') 

cstr=cstr'; 

cstr=cstr(1:1000,2:8); 

mn=mean(cstr);                                  %mean  

sd=std(cstr);                                   %standard deviation 

  

save('cstr_data_HE.mat','mn','sd','-append'); 

save('cstr_data_CAT.mat','mn','sd','-append'); 

  

[cstr_row, cstr_column]=size(cstr);             %state column size for normalization 

loop 

  

   

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn(i))./sd(i); 

    cstr_norm(:,i)=norm_column; 

end 

i=0; 

  

  

figure(1) 

for i=1:7, 

    subplot (8,1,i); 

    plot(cstr_norm(:,i)) 

    line('xData', [0 1000], 'yData', [3 3], 'LineStyle', '--', ... 

    'LineWidth', 2, 'Color','b'); 

    line('xData', [0 1000], 'yData', [-3 -3], 'LineStyle', '--', 'LineWidth', 2, 

'Color','b'); 

end 

i=0; 

  

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component 

analysis 

  

save('cstr_data_HE.mat','coeff','latent','-append'); 

save('cstr_data_CAT.mat','coeff','latent','-append'); 

  

[coeff_row,coeff_column]=size(coeff); 

  

  

for i=1:7, %convert latent to square matrix 

    latent_mat(i,i)=latent(i,1); 

end 

i=0; 

  

  

mn_score=mean(score);                                  %mean of score matrix  

sd_score=std(score);                                   %standard deviation of score 

matrix 

save('cstr_data_HE.mat','mn_score','sd_score','-append'); 

save('cstr_data_CAT.mat','mn_score','sd_score','-append'); 

  

[score_row, score_column]=size(score);             %state column size for 

normalization loop 

for i=1:score_column,                            %normalization loop 

    nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

    score_norm(:,i)=nSCORE_column; 

end 
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i=0; 

  

no_princomp=5;           %no of retained component. no_princomp=5, explained 77.5619% 

  

score=score(:,1:no_princomp); 

   

score_square=(score_norm.^2); 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

for i=1:1000,   

   column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

   tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

  

  

%r=pcares(cstr_norm,no_princomp);   %pcares return residual from PCA 

%q=r.*r; 

  

%[r_row, r_column]=size(r);   

  

backprojection=score_norm*(coeff)'; 

  

  

r=cstr_norm-backprojection; 

  

q=r.*r; 

  

[r_row, r_column]=size(r);   

  

SPE=sum(q'); 

  

figure(2) 

  

subplot (2,1,1);  

plot (SPE)            %SPE Chart 

  

  

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

  

theta1=sum(latent((no_princomp+1):cstr_column,1)); 

theta2=sum(latent((no_princomp+1):cstr_column,1).^2); 

theta3=sum(latent((no_princomp+1):cstr_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

  

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

  

%SPE_threshold99=g*chisquare_99     %SPE limit alternative 2 

%SPE_threshold95=g*chisquare_95 

  

%SPE_threshold99=g*h*((1-(2/(9*h))+(z_99*((2/(9*h))^0.5)))^3)  %SPE limit alternative 

3 

%SPE_threshold95=g*h*((1-(2/(9*h))+(z_95*((2/(9*h))^0.5)))^3) 

  

  

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 
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  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 

  

  

  

finv_99=finv(0.99,no_princomp,(score_row-no_princomp));     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

finv_95=finv(0.95,no_princomp,(score_row-no_princomp));     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

 

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

  

subplot (2,1,2); 

  

plot(tsquare)    %T2 chart 

  

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 

  

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

  

'--------------------end of program----------------------' 

  

 

  

  

 



VI 

 

PCA for Kinetic Change 

clear all; clc; 

  

  

load('cstr_data_CAT.mat') 

cstr=cstr'; 

cstr=cstr(1:1000,2:8); 

  

[cstr_row, cstr_column]=size(cstr);             %state column size for normalization 

loop 

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn(i))./sd(i); 

    cstr_norm(:,i)=norm_column; 

end 

i=0; 

  

figure(1) 

  

for i=1:7, 

    subplot (8,1,i); 

    plot(cstr_norm(:,i)) 

    line('xData', [0 1000], 'yData', [3 3], 'LineStyle', '--', ... 

    'LineWidth', 2, 'Color','b'); 

    line('xData', [0 1000], 'yData', [-3 -3], 'LineStyle', '--', 'LineWidth', 2, 

'Color','b'); 

end 

i=0; 

  

  

score=cstr_norm*coeff; 

[coeff_row,coeff_column]=size(coeff) 

  

for i=1:7, %convert latent to square matrix 

    latent_mat(i,i)=latent(i,1); 

end 

i=0;  

  

[score_row, score_column]=size(score);             %state column size for 

normalization loop 

for i=1:score_column,                            %normalization loop 

    nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

    score_norm(:,i)=nSCORE_column; 

end 

i=0 

  

no_princomp=5;           %no of retained component  

score_square=(score_norm.^2) 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

for i=1:1000,                                                               %T-square 

loop 

   column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

   tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0 

  

%r=pcares(cstr_norm,no_princomp);   %pcares return residual from PCA 

%q=r.*r; 

  

backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

[r_row, r_column]=size(r);   

SPE=sum(q'); 
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figure(2) 

subplot (2,1,1);  

plot (SPE)            %SPE Chart 

  

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

  

theta1=sum(latent((no_princomp+1):7,1)); 

theta2=sum(latent((no_princomp+1):7,1).^2); 

theta3=sum(latent((no_princomp+1):7,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

  

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

 

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 

finv_99=finv(0.99,no_princomp,(score_row-no_princomp))     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

finv_95=finv(0.95,no_princomp,(score_row-no_princomp))     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

  

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

  

subplot (2,1,2); 

plot(tsquare)    %T2 chart 

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 

  

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside')  

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

  

'--------------------end of program----------------------' 
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PCA for Heat Transfer Coefficient Change 

clear all; clc; 

load('cstr_data_HE.mat') 

cstr=cstr'; 

cstr=cstr(1:1000,2:8); 

  

[cstr_row, cstr_column]=size(cstr);             %state column size for normalization 

loop 

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn(i))./sd(i); 

    cstr_norm(:,i)=norm_column; 

end 

i=0; 

  

figure(1) 

  

for i=1:7, 

    subplot (8,1,i); 

    plot(cstr_norm(:,i)) 

    line('xData', [0 1000], 'yData', [3 3], 'LineStyle', '--', ... 

    'LineWidth', 2, 'Color','b'); 

    line('xData', [0 1000], 'yData', [-3 -3], 'LineStyle', '--', 'LineWidth', 2, 

'Color','b'); 

end 

i=0; 

  

score=cstr_norm*coeff; 

[coeff_row,coeff_column]=size(coeff) 

  

for i=1:7, %convert latent to square matrix 

    latent_mat(i,i)=latent(i,1); 

end 

i=0; 

 

[score_row, score_column]=size(score);             %state column size for 

normalization loop 

for i=1:score_column,                            %normalization loop 

    nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

    score_norm(:,i)=nSCORE_column; 

end 

i=0 

  

no_princomp=5;           %no of retained component 

  

score=score(:,1:no_princomp); 

  

score_square=(score_norm.^2) 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

for i=1:1000,   

   column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

   tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

  

backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

[r_row, r_column]=size(r);   

  

SPE=sum(q'); 

 

figure(2) 

subplot (2,1,1);  

plot (SPE)            %SPE Chart 
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chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

  

theta1=sum(latent((no_princomp+1):7,1)); 

theta2=sum(latent((no_princomp+1):7,1).^2); 

theta3=sum(latent((no_princomp+1):7,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

  

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

 

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 

  

finv_99=finv(0.99,no_princomp,(score_row-no_princomp))     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

finv_95=finv(0.95,no_princomp,(score_row-no_princomp))     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

  

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

  

subplot (2,1,2); 

plot(tsquare)    %T2 chart 

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 

  

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

  

  

'--------------------end of program----------------------' 
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DPCA (ALL Column) for Normal Data  

clear all; clc;  

load('cstr_data.mat') 

cstr=cstr'; 

cstr=cstr(1:1000,2:8); 

  

[cstr_row, cstr_column]=size(cstr);   

%cstr_tlshift=cstr(3:cstr_row,cstr_column); 

  

no_lag=2; 

  

for i=1:cstr_column, 

     

    if i==1; 

       cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i); 

          

        for n=1:no_lag, 

          cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i); 

        end 

        n=0; 

         

    else 

        cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i); 

         

        for n=1:no_lag, 

          cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i); 

        end      

    end 

   n=0;   

end 

    

     

save('dpca_all_column.mat','cstr_tlshift'); 

  

%---------------------------DPCA----------------------------------% 

  

clear all; clc; 

load('dpca_all_column.mat') 

  

cstr=cstr_tlshift; 

  

mn=mean(cstr);                                  %mean  

sd=std(cstr);                                   %standard deviation 

  

save('dpca_all_column_CAT.mat','mn','sd','-append'); 

save('dpca_all_column_HE.mat','mn','sd','-append'); 

  

  

[cstr_row, cstr_column]=size(cstr);             %state column size for normalization 

loop 

  

  

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn(i))./sd(i); 

    cstr_norm(:,i)=norm_column; 

end 

i=0; 

  

[coeff,score,latent,tsquare,explained,mu] = princomp(cstr_norm); %principal component 

analysis 

  

save('dpca_all_column_CAT.mat','coeff','latent','-append'); 

save('dpca_all_column_HE.mat','coeff','latent','-append'); 
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[coeff_row,coeff_column]=size(coeff); 

  

for i=1:cstr_column, %convert latent to square matrix 

    latent_mat(i,i)=latent(i,1); 

end 

i=0; 

  

mn_score=mean(score);                                  %mean of score matrix  

sd_score=std(score);                                   %standard deviation of score 

matrix 

save('dpca_all_column_CAT.mat','mn_score','sd_score','-append'); 

save('dpca_all_column_HE.mat','mn_score','sd_score','-append'); 

  

[score_row, score_column]=size(score);             %state column size for 

normalization loop 

  

for i=1:score_column,                            %normalization loop 

    nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

    score_norm(:,i)=nSCORE_column; 

end 

i=0; 

  

no_princomp=9;           %no of retained component. 9 no princomp explained 72.5726% 

save('dpca_all_column_CAT.mat','no_princomp','-append'); 

save('dpca_all_column_HE.mat','no_princomp','-append'); 

  

score=score(:,1:no_princomp); 

  

  

score_square=(score_norm.^2); 

%[coeff,score,latent,tsquare] = princomp(score_norm); 

for i=1:score_row,   

   column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

   tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

  

 

backprojection=score_norm*(coeff)'; 

r=cstr_norm-backprojection; 

q=r.*r; 

  

[r_row, r_column]=size(r);   

SPE=sum(q'); 

  

figure(2) 

subplot (2,1,1);  

plot (SPE)            %SPE Chart 

  

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

  

theta1=sum(latent((no_princomp+1):cstr_column,1)); 

theta2=sum(latent((no_princomp+1):cstr_column,1).^2); 

theta3=sum(latent((no_princomp+1):cstr_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

  

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 
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line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 

  

finv_99=finv(0.99,no_princomp,(score_row-no_princomp));     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

finv_95=finv(0.95,no_princomp,(score_row-no_princomp));     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

  

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

  

subplot (2,1,2); 

plot(tsquare)    %T2 chart 

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 

  

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

   

'--------------------end of program----------------------' 
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DPCA(ALL Column) for Change In Kinetic 

clear all; clc;  

load('cstr_data_CAT.mat') 

cstr=cstr'; 

cstr=cstr(1:1000,2:8); 

  

[cstr_row, cstr_column]=size(cstr);  

%cstr_tlshift=cstr(3:cstr_row,cstr_column); 

no_lag=2; 

  

for i=1:cstr_column, 

    if i==1; 

       cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i); 

         

        for n=1:no_lag, 

          cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i); 

        end 

        n=0; 

         

    else 

        cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i); 

         

        for n=1:no_lag, 

          cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i); 

        end 

        

    end 

   n=0; 

     

end 

   

save('dpca_all_column_CAT.mat','cstr_tlshift','-append'); 

%-------------------------------------DPCA--------------------------% 

clear all; clc; 

 

load('dpca_all_column_CAT.mat') 

cstr=cstr_tlshift; 

  

[cstr_row, cstr_column]=size(cstr);             %state column size for normalization 

loop 

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn(i))./sd(i); 

    cstr_norm(:,i)=norm_column; 

end 

i=0; 

  

score=cstr_norm*coeff 

[coeff_row,coeff_column]=size(coeff) 

  

  

 

for i=1:cstr_column, %convert latent to square matrix 

    latent_mat(i,i)=latent(i,1); 

end 

i=0; 

  

 [score_row, score_column]=size(score);             %state column size for 

normalization loop 

for i=1:score_column,                            %normalization loop 

    nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

    score_norm(:,i)=nSCORE_column; 

end 

i=0 
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score_square=(score_norm.^2) 

 

for i=1:score_row,                                                               %T-

square loop 

   column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

   tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0 

  

%r=pcares(cstr_norm,no_princomp);   %pcares return residual from PCA 

%q=r.*r; 

  

backprojection=score_norm*(coeff)';     %back projection from the score matrix 

  

r=cstr_norm-backprojection;             %residual 

q=r.*r;                                 %the Q/SPE statistics 

  

[r_row, r_column]=size(r);   

  

SPE=sum(q'); 

figure(2) 

subplot (2,1,1);  

plot (SPE)            %SPE Chart 

  

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

  

theta1=sum(latent((no_princomp+1):score_column,1)); 

theta2=sum(latent((no_princomp+1):score_column,1).^2); 

theta3=sum(latent((no_princomp+1):score_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

  

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)) 

  

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 

  

finv_99=finv(0.99,no_princomp,(score_row-no_princomp))     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

finv_95=finv(0.95,no_princomp,(score_row-no_princomp))     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

  

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 
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subplot (2,1,2); 

  

plot(tsquare)    %T2 chart 

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 

  

  

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

datestr(clock,0) 

'--------------------end of program----------------------' 
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DPCA(ALL Column) for Change In Heat Transfer Coefficient 

clear all; clc;  

load('cstr_data_HE.mat') 

cstr=cstr'; 

cstr=cstr(1:1000,2:8); 

  

[cstr_row, cstr_column]=size(cstr);  

  

%cstr_tlshift=cstr(3:cstr_row,cstr_column); 

  

no_lag=2; 

  

for i=1:cstr_column, 

     

    if i==1; 

       cstr_tlshift(:,i)= cstr(((no_lag+1):cstr_row),i); 

   

         

        for n=1:no_lag, 

          cstr_tlshift(:,i+n)=cstr((no_lag+1-n):(cstr_row-n),i); 

        end 

        n=0; 

         

    else 

        cstr_tlshift(:,(i*(no_lag+1)-no_lag))= cstr(((no_lag+1):cstr_row),i); 

         

        for n=1:no_lag, 

          cstr_tlshift(:,(i*(no_lag+1)-no_lag+n))=cstr((no_lag+1-n):(cstr_row-n),i); 

        end 

        

    end 

   n=0; 

     

end 

     

save('dpca_all_column_HE.mat','cstr_tlshift','-append'); 

  

  

%-------------------------------------DPCA------------------------% 

  

  

clear all; clc; 

load('dpca_all_column_HE.mat') 

cstr=cstr_tlshift; 

  

[cstr_row, cstr_column]=size(cstr);             %state column size for normalization 

loop 

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn(i))./sd(i); 

    cstr_norm(:,i)=norm_column; 

end 

i=0; 

  

  

score=cstr_norm*coeff; 

  

[coeff_row,coeff_column]=size(coeff); 

  

  

for i=1:cstr_column, %convert latent to square matrix 

    latent_mat(i,i)=latent(i,1); 

end 

i=0; 
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[score_row, score_column]=size(score);             %state column size for 

normalization loop 

for i=1:score_column,                            %normalization loop 

    nSCORE_column=(score(:,i)-mn_score(i))./sd_score(i); 

    score_norm(:,i)=nSCORE_column; 

end 

i=0; 

  

score_square=(score_norm.^2); 

  

for i=1:score_row,                                                               %T-

square loop 

   column_t(i,:)=score_square(i,1:no_princomp)./(latent(1:no_princomp,1))'; 

   tsquare(i,1)=sum(column_t(i,:)); 

end 

i=0; 

  

%r=pcares(cstr_norm,no_princomp);   %pcares return residual from PCA 

%q=r.*r; 

  

backprojection=score_norm*(coeff)';     %back projection from the score matrix 

  

  

r=cstr_norm-backprojection;             %residual 

q=r.*r;                                 %the Q/SPE statistics 

  

[r_row, r_column]=size(r);   

  

SPE=sum(q'); 

  

figure(2) 

  

subplot (2,1,1);  

plot (SPE)            %SPE Chart 

  

chisquare_99=chi2inv(0.99,cstr_column-1); 

chisquare_95=chi2inv(0.95,cstr_column-1); 

  

theta1=sum(latent((no_princomp+1):score_column,1)); 

theta2=sum(latent((no_princomp+1):score_column,1).^2); 

theta3=sum(latent((no_princomp+1):score_column,1).^3); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

  

SPE_threshold99=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_99*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); %SPE limit alternative 1 

SPE_threshold95=theta1*((1-(theta2*h0*(1-h0)/(theta1^2)) + 

((z_95*((2*theta2*(h0^2))^0.5))/(theta1)))^(1/h0)); 

  

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 
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finv_99=finv(0.99,no_princomp,(score_row-no_princomp));    %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

finv_95=finv(0.95,no_princomp,(score_row-no_princomp));     %F alpha (no_princomp, (no 

of sample - no_princomp)) 

  

thold_99=(((no_princomp)*(score_row-1)*(score_row+1))/(score_row*(score_row-

no_princomp)))*finv_99; 

  

thold_95=(no_princomp)*(score_row-1)*(score_row+1)/(score_row*(score_row-

no_princomp))*finv_95; 

  

subplot (2,1,2); 

plot(tsquare)    %T2 chart 

  

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 

  

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

  

datestr(clock,0) 

'--------------------end of program----------------------' 
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Neural Network Training and Simulation for Kinetic and Heat Transfer 

Coefficient Change 

clear all; clc; 

load('cstr_data.mat'); 

cstr=cstr(2:8,1:1000)'; 

 

mn_normal=mean(cstr);                                  %mean  

sd_normal=std(cstr);                                   %standard deviation 

  

[cstr_row, cstr_column]=size(cstr);             %state column size for normalization 

loop 

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn_normal(i))./sd_normal(i); 

    cstr(:,i)=norm_column; 

end 

i=0; 

cstr=cstr'; 

ncstr_normal_input=cstr; 

save('ann_data.mat','ncstr_normal_input','-append'); 

  

net1=feedforwardnet; 

net1.numLayers=5; 

net1.numinputs=1; 

%net1.inputconnect(1,1:7)=1 

  

net1.layers{1}.name='linearize input'; 

net1.layers{2}.name='hidden 1'; 

net1.layers{3}.name='bottleneck'; 

net1.layers{4}.name='hidden 2'; 

net1.layers{5}.name='linearize output'; 

  

net1.outputConnect=[0 0 0 0 1]; 

net1.layerconnect(2,1)=1; 

net1.layerconnect(3,2)=1; 

net1.layerconnect(4,3)=1; 

net1.layerconnect(5,4)=1; 

  

net1.biasconnect=[1;1;1;1;1]; 

  

net1.layers{1}.dimensions=7; 

net1.layers{2}.dimensions=10; 

net1.layers{3}.dimensions=3; 

net1.layers{4}.dimensions=10; 

net1.layers{5}.dimensions=7; 

  

net1.layers{1}.transferFcn='purelin'; 

net1.layers{2}.transferFcn='logsig'; 

net1.layers{3}.transferFcn='tansig'; 

net1.layers{4}.transferFcn='logsig'; 

net1.layers{5}.transferFcn='purelin'; 

  

net1.layers{3}.initFcn='initnw'; 

net1.layers{4}.initFcn='initnw'; 

net1.layers{5}.initFcn='initnw'; 

%view(net1) 

  

rng(580301); %random seed applied 

net2=trainlm(net1,cstr,cstr); 

%y=net2(xxxx); %xxxx is the new input and y is output% 

%view(net2) 

  

  

net2.outputConnect(1,3)=1;              %output of bottleneck layer, appear in top 3 

row in output matrix 
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cstr_normal_output=net2(cstr); 

  

%---------------------RUN FOR KINETIC CHANGE----------------------% 

clear norm_column; clear cstr; 

load('cstr_data_CAT.mat'); 

cstr=cstr(2:8,1:1000)'; 

  

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn_normal(i))./sd_normal(i); 

    cstr(:,i)=norm_column; 

end 

i=0; 

cstr=cstr'; 

ncstr_CAT_input=cstr; 

save('ann_data.mat','ncstr_CAT_input','-append'); 

  

cstr_cat_output=net2(ncstr_CAT_input);                     %network output, 3 row from 

top is the bottleneck output 

save('ann_data.mat','cstr_normal_output','cstr_cat_output','-append'); 

  

  

%------------------RUN FOR HE COEFFICIENT CHANGE--------------------% 

clear norm_column; clear cstr; 

load('cstr_data_HE.mat'); 

cstr=cstr(2:8,1:1000)'; 

  

  

for i=1:cstr_column,                            %normalization loop 

    norm_column=(cstr(:,i)-mn_normal(i))./sd_normal(i); 

    cstr(:,i)=norm_column; 

end 

i=0; 

cstr=cstr'; 

ncstr_HE_input=cstr; 

save('ann_data.mat','ncstr_HE_input','-append'); 

  

%net2.outputConnect(1,3)=1; 

  

cstr_HE_output=net2(cstr);                      %network output, 3 row from top is the 

bottleneck output 

  

save('ann_data.mat','cstr_normal_output','cstr_cat_output','cstr_HE_output','-

append'); 

%fyp2_ann_pca 
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T2 and SPE for Data From the Neural Network 

load('ann_data_final.mat'); 

  

cstr_normal_output=cstr_normal_output';  

mn_bottle=mean(cstr_normal_output); 

sd_bottle=std(cstr_normal_output); 

var_bottle=var(cstr_normal_output); 

  

for i=1:10,    %normalization loop %bottleneck only first 3 column 

    ncstr_normal_output_column=(cstr_normal_output(:,i)-mn_bottle(i))./sd_bottle(i); 

    ncstr_normal_output(:,i)=ncstr_normal_output_column; 

end 

i=0; 

  

ncstr_normal_square=(ncstr_normal_output(:,1:3).^2); %ncstr_normal_square for T2 calc. 

  

  

for i=1:1000,   

   column_normal_t(i,:)=ncstr_normal_square(i,:)./(var_bottle(1:3)); 

   tsquare_normal(i,1)=sum(column_normal_t(i,:)); 

end 

i=0; 

  

finv_99=finv(0.99,3,(1000-3))     %F alpha (no_princomp, (no of sample - no_princomp)) 

  

finv_95=finv(0.95,3,(1000-3))     %F alpha (no_princomp, (no of sample - no_princomp)) 

  

thold_99=(((3)*(1000-1)*(1000+1))/(1000*(1000-3)))*finv_99; 

  

thold_95=(((3)*(1000-1)*(1000+1)/(1000*(1000-3))))*finv_95; 

 

figure(1) 

subplot (2,1,2); 

  

plot(tsquare_normal)    %T2 chart 

  

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 

  

legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

  

r=ncstr_normal_input'-cstr_normal_output(:,4:10); 

q=r.*r; 

SPE=sum(q'); 

  

  

figure(1) 

subplot (2,1,1);  

plot (SPE)            %SPE Chart 

  

v=var(SPE); 

m=mean(SPE); 

H=(2*(m^2))/v; 

chisquare99=chi2inv(0.99,H); 

chisquare95=chi2inv(0.95,H); 
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sigma99=(v/(2*m))*(chisquare99)*((2*(m^2))/v); 

sigma95=(v/(2*m))*(chisquare95)*((2*(m^2))/v); 

  

SPE_threshold99=sigma99; 

SPE_threshold95=sigma95; 

  

theta1=sum(var_bottle(1,(3+3+1):10));           %3+3+1   (var bottle layer + var 

princomp + 1) 

theta2=sum(var_bottle(1,(3+3+1):10).^2); 

theta3=sum(var_bottle(1,(3+3+1):10)); 

g=theta2/theta1; 

h=(theta1^2)/theta2; 

h0=1-((2*theta1*theta3)/(3*(theta2^2))); 

z_99=norminv(1-0.01); 

z_95=norminv(1-0.05); 

  

chisquare_99=chi2inv(0.99,7-1); 

chisquare_95=chi2inv(0.95,7-1); 

  

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 

  

%-----------------------PCA ANN KINETIC CHANGES---------------------% 

  

cstr_cat_output=cstr_cat_output'; 

for i=1:10,    %normalization loop %bottleneck only first 3 column 

    ncstr_cat_output_column=(cstr_cat_output(:,i)-mn_bottle(i))./sd_bottle(i); 

    ncstr_cat_output(:,i)=ncstr_cat_output_column; 

end 

i=0; 

 

ncstr_cat_square=(ncstr_cat_output(:,1:3).^2); 

  

for i=1:1000,   

   column_cat_t(i,:)=ncstr_cat_square(i,:)./(var_bottle(1:3)); 

   tsquare_cat(i,1)=sum(column_cat_t(i,:)); 

end 

i=0; 

  

finv_99=finv(0.99,3,(1000-3))     %F alpha (no_princomp, (no of sample - no_princomp)) 

finv_95=finv(0.95,3,(1000-3))     %F alpha (no_princomp, (no of sample - no_princomp)) 

thold_99=(((3)*(1000-1)*(1000+1))/(1000*(1000-3)))*finv_99; 

thold_95=(((3)*(1000-1)*(1000+1)/(1000*(1000-3))))*finv_95; 

  

figure(2) 

subplot (2,1,2); 

  

plot(tsquare_cat)    %T2 chart 

  

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 
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legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

  

r_cat=ncstr_CAT_input'-cstr_cat_output(:,4:10); 

q_cat=r_cat.*r_cat; 

SPE_cat=sum(q_cat'); 

  

figure(2) 

subplot (2,1,1);  

plot (SPE_cat)            %SPE Chart 

  

  

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 

  

%-----------PCA ANN HEAT TRANSFER COEFFICIENT CHANGE----------------% 

cstr_HE_output=cstr_HE_output'; 

for i=1:10,    %normalization loop %bottleneck only first 3 column 

    ncstr_HE_output_column=(cstr_HE_output(:,i)-mn_bottle(i))./sd_bottle(i); 

    ncstr_HE_output(:,i)=ncstr_HE_output_column; 

end 

i=0; 

  

ncstr_HE_square=(ncstr_HE_output(:,1:3).^2); 

  

  

for i=1:1000,   

   column_HE_t(i,:)=ncstr_HE_square(i,:)./(var_bottle(1:3)); 

   tsquare_HE(i,1)=sum(column_HE_t(i,:)); 

end 

i=0; 

  

finv_99=finv(0.99,3,(1000-3))     %F alpha (no_princomp, (no of sample - no_princomp)) 

  

finv_95=finv(0.95,3,(1000-3))     %F alpha (no_princomp, (no of sample - no_princomp)) 

  

thold_99=(((3)*(1000-1)*(1000+1))/(1000*(1000-3)))*finv_99; 

  

thold_95=(((3)*(1000-1)*(1000+1)/(1000*(1000-3))))*finv_95; 

  

figure(3) 

subplot (2,1,2); 

  

plot(tsquare_HE)    %T2 chart 

  

line('XData', [0 1000], 'YData', [thold_99 thold_99], 'LineStyle', '-', ... 

  'LineWidth', 2, 'Color','r'); 

  

  

line('xData', [0 1000], 'yData', [thold_95 thold_95], 'LineStyle', '--', ... 

  'LineWidth', 2, 'Color','y'); 
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legend('T-square','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('T-square Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('T2') 

  

r_HE=ncstr_HE_input'-cstr_HE_output(:,4:10); 

q_HE=r_HE.*r_HE; 

SPE_HE=sum(q_HE'); 

 

figure(3) 

subplot (2,1,1);  

plot (SPE_HE)            %SPE Chart 

line('XData', [0 1000], 'YData', [SPE_threshold99 SPE_threshold99], 'LineStyle', '-', 

... 

  'LineWidth', 2, 'Color','r'); 

line('xData', [0 1000], 'yData', [SPE_threshold95 SPE_threshold95], 'LineStyle', '--', 

... 

  'LineWidth', 2, 'Color','y'); 

  

legend('residual','99.0% confidence limit','95.0% confidence limit',... 

    'Location','NorthEastOutside') 

  

title('SPE-Chart','FontWeight','bold') 

xlabel('sample number') 

ylabel('residual') 


