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ABSTRACT 

 

There are various methods that can be implemented to produce biofuel specifically 

bioethanol. The bioethanol can be produced from cellulose and hemicelluloses that may 

be originate from various sources of biomass such as Empty Fruit Bunches (EFB), 

mesocarp fiber, shell and palm kernel cakes. The studies and research works were 

focused on the production of bioethanol from oil palm waste, EFB using bacteria, 

Saccharomyces Cerevisiae ATCC 96581 as fermentation aid to expand the usage of oil 

palm waste and to enhance the production of bioethanol. The purposes of this study are 

to investigate the effect of FPU loading, pH value and temperatures by using celluloses. 

Besides, this study also aimed to produce bioethanol from EFB by using Simultaneous 

Saccharification and Fermentation (SSF) method. Prior fermentation process, enzymatic 

saccharifications of EFB need to be done to investigate the highest amount of 

monomeric sugars; glucose and fructose produced from EFB aided by enzyme, 

Trichoderma Reesei. Three sets of experiment were performed; in first set, the sample 

was hydrolyzed with pretreatment with sodium hydroxide solution then being subjected 

to sulfuric acid solution. Pretreatment process is necessary to remove lignin from the 

EFB that could hinder the saccharification of EFB to produce sugars and bioethanol. At 

the second set of the experiment, the fermentation process which is SSF method was 

performed aided with Saccharomyces Cerevisiae under anaerobic conditions. The result 

has shown that bioethanol has been produced from the process and the highest amount 

of bioethanol produced was 0.42 mg/ml at 58 hours. Final sets of experiment were 

performing to examine the effect of mass loading, pH value and also FPU loading of the 

celluloses in producing bioethanol. From optimization works of these various 

fermentation parameters it was found that the highest ethanol production from cellulose 

(Avicel Ph 101) which ranges from 3.1 mg/mL to 4.6 mg/mL can be achieved at pH 4, 

217 FPU, 5.0g of cellulose loading with an agitation rate of 100 rpm for 60 hours 

incubation. 
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CHAPTER 1: PROJECT BACKGROUND 

 

1.1 Background of Study 

Since the 20
th
 century, fossil fuels such as oil, coal and natural gas supply a major 

energy demand to the world. Fossil fuels originate from deceased organisms that lived 

several million years ago and by time there was shortage and depletion of fossil fuels. 

Incineration of this fossil remains results in a net increase of today’s carbon dioxide 

level to the atmosphere. Environmental issues such as the increase in temperature caused 

by the greenhouse effect and the fact that fossil fuels are nonrenewable resources, has 

increased the interest in producing fuels such as bioethanol from renewable resources 

such as biomass. 

Ethanol or ethyl alcohol is a volatile, flammable, colorless liquid with a boiling point of 

78.37
o
C. Its low melting point of -114

o
C made it useful as the fluid in thermometers for 

temperature below -40
 o

C, the freezing point of mercury, and for other low temperature 

purposes, such as antifreeze in automobile radiators.  The existence of its hydroxyl 

group and the shortness of its carbon chain make it capable to participate in hydrogen 

bonding, rendering it more viscous and less volatile
1
. It is biodegradable, low in toxicity 

and causes little environmental pollution if spill. Figure 1 shows the structural formula 

of ethanol where ethanol is the second member of the aliphatic alcohol series. 

 

 

 

 

                                                             
1
Lide, D. R., ed. (2000). CRC Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0-8493-

0481-4. 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-8493-0481-4
http://en.wikipedia.org/wiki/Special:BookSources/0-8493-0481-4
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Figure 1: Structural formula of Ethanol 

 

Bioethanol is one form of renewable energy source that is fast gaining position as 

potential fuel to power automotive engine. Unlike gasoline which is refined through 

distilling crude oil, ethanol can be synthesized from a wide variety of biological 

materials such as wheat, corn, barley, wood and sugar cane. In fermentation process, 

baker’s yeast is used to breakdown starch (carbohydrate) into bioethanol and carbon 

dioxide as a by-product.  Fuel ethanol contains 10% of ethanol mixed with 90% gasoline 

which is commonly known as E10 in United States of America. Because the ethanol is a 

high-octane fuel with high oxygen content (35% oxygen by weight), it allows the engine 

to complete the combustion of fuel, resulting in fewer emissions and has replaced lead 

as an octane enhancer in petrol
2
.  

Bioethanol is an ethanol synthesized from biomass and it is renewable. Therefore 

bioethanol has some advantages over petrol as a fuel such as it can help to reduce the 

amount of carbon monoxide produced by the vehicle thus improving air quality and 

reduce the emission of greenhouse gases to the atmosphere. Other than that, it gives 

benefits to Malaysian agriculture such as increase the plantation of the crops such as 

palm oil, sugar cane and also provides job vacancies to the farmers. These benefits, in 

turn, could serve to stabilize and improve financial stability for farmers, which would 

increase the economic well-being of rural and other agriculture-dependent sectors of 

Malaysia. In addition, it also can give job opportunities whether directly or indirectly in 

all aspects of ethanol production; from farming to transportation and manufacturing. 

                                                             
2Mohammad J. Taherzadeh., Ethanol from Lignocellulose: Physical Effect of Inhibitors. Chalmers 
University of Technology; 1999.  
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Bioethanol can be produced from the fermentation process of biomass aided by bacteria 

to decompose the biomass. There are two key parameters take place on how biomass is 

transformed to bioethanol: 

1. Enzymatic hydrolysis is a chemical process in which acid is used to convert 

starch (complex sugars) into monomeric sugars such as glucose and fructose. 

The feedstock must first be hydrolyzed into glucose before proceed with the 

fermentation process for bioethanol production
3
. In the biomass-to-bioethanol 

process, acids and enzymes are used to catalyze this reaction. 

2. Fermentation is a biological process in which sugars such as glucose, fructose 

and sucrose are converted into cellular energy and thereby produce ethanol and 

carbon dioxide as waste products. Fermentation reaction occurs in the presence 

of yeast or bacteria, which feed on sugars as nutrient. Ethanol and carbon dioxide 

are being produced as the sugar is consumed. The simplified fermentation 

reaction of 6-carbon sugar is: 

 

 C6H12O6             bacteria 2CH3CH2OH + 2CO2   

  Eq. (1) 

(Glucose)                                  (Ethanol)         (Carbon dioxide)      

The sugar formed in the enzymatic hydrolysis reaction is fermented into bioethanol. The 

common microorganisms use in the fermentation process is Saccharomyces cerevisiae, 

which is known as ordinary baking yeast. It is the critical element in the fermentation 

process that converts sugar into alcohol
4
. Beside glucose, it also has the ability to 

ferment mannose as well since soft wood also contains substantial amounts of mannose. 

In this study, empty fruit bunches (EFB) of oil palm has been chosen to be the substrate 

for the fermentation process due to its abundance and low cost of processing. Besides, it 

also cleans, non-toxic and renewable. EFB is one of the lignocellulosic materials 

                                                             
3 Kamaruddin,H., H.Mohamad, D.Ariffin and S.Johari. An estimated availability of oil palm biomass in 
Malaysia. PORIM Occ. Paper Palm Oil Res. Inst. Malaysia 37:1997 
4 Laundry, C.R.,Townsend, J.P., Hartl, D.L. and Cavalieri, D. Ecological and evolutionary genomics of 
Saccharomyces cerevisiae. Molecular Ecology. 2006. Volume 15.p.575-591. 
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consists primary of cellulose and hemicellulose component. It was obtained from Sze 

Tech Engineering Sdn Bhd located in Padang Jawa, Selangor with fiber length of 0.5-

1.0 inch. 

 

1.2 Problem Statement 

Carbon dioxide is one of the major atmospheric contributors to the greenhouse effect. 

Greenhouse effect refers to the Earth’s trapping of the sun’s incoming solar radiation, 

causing warming of the Earth’s atmosphere. Current analysis suggests that the 

combustion of fossil fuels is a major contributor to the increase in the carbon dioxide 

concentration, such contributions being 2 to 5 times the effect of deforestation 

(Kraushaar & Ristinen). Carbon dioxide and other so-called greenhouse gases allow 

solar energy to enter the earth’s atmosphere, but reduce the amount of energy that can 

radiate back into space, trapping energy and heat causing to global warming
5
. Figure 2 

shows the concentration of greenhouse gases emitted such as carbon dioxide, methane 

and chlorofluorocarbons. It shows that carbon dioxide has the largest concentration 

followed by methane gas and chlorofluorocarbons. Hence, the opportunity to reduce 

dependence on fossil fuels, while reducing carbon dioxide is of strategic important 

today. 

 

 

 

 

 

 

 

                                                             
5 Kraushaar & Ristinen, Energy and problems of a technical society, 2nd ed (1993)  
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Figure 2:  Analysis data for concentration of greenhouse gases emitted to 

atmosphere (Valentas et al., 2009) 

 

One of the environmental benefits of replacing fossil fuels with biomass-based fuels is 

that the energy obtained from biomass does not contribute to global warming. All 

combustion process would produce carbon dioxide as a byproduct, including fuels 

produced by biomass. Nonetheless, as because plants use carbon dioxide from the 

atmosphere to grow; for photosynthesis process, carbon dioxide released during 

combustion is balanced by that absorbed during the annual growth of the plants. 

Increase the usage of renewable fuels like ethanol will help to counter the pollution and 

global warming effects of burning gasoline. Use of 10% ethanol-blended fuels results in 

a 6-10% carbon dioxide reduction and higher level of ethanol can further reduce the net 

quantity of carbon dioxide emitted into the atmosphere. Ethanol reduces greenhouse 

gases emissions relative to gasoline by between 40% to 62% depending on agricultural 

practices and production technologies.
6
  Thus, more carbon dioxide will be absorbed by 

crop growth. 

Gasoline and diesel is a liquid mixture distilled from crude oil. They consist of blends of 

different hydrocarbon chains. During the process of refining, groups of hydrocarbon 

                                                             
6 Coad.L., Bristow,M.,(2011).Ethanol’s Potential Contribution to Canada’s Transportation Sector. The 
conference board of Canada.pp: 68 
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chains with similar molecular size are separated based on the difference in their boiling 

points. Many of these are toxic and volatile compounds such as benzene, toluene, and 

xylenes which are responsible for the health hazards and pollution associated with 

combustion of petroleum – based fuels. The largest single contributor to the rise of man-

made greenhouse gases is, of course, the burning of oil and gas to power vehicles, 

machinery, and produce energy and warmth. Carbon monoxide, nitrogen oxides, sulfur 

oxides and particulates are the main concerns nowadays. A key environmental benefit of 

using biofuels as an additive to petroleum-based transportation fuels can give a 

reduction in these harmful emissions. 

Bioethanol is used as fuel oxygenates to improve combustion characteristic. Ethanol 

reduces pollution through the volumetric displacement of gasoline and by adding 

oxygen to the combustion process which reduces exhaust emissions to the atmosphere. 

Hence, the production of bioethanol from empty fruit bunches can spur economic 

growth because it expands the usage of oil palm and also can reduce the cost in 

producing fossil fuels. 

 

1.3 Objective of Study 

As bioethanol has a huge potential as a substituting agent to gasoline in car fuel and give 

further advantages to the environment, this research is carried out in order to produce 

bioethanol from empty fruit bunches (EFB) of oil palm. 

1.4 Scope of Study  

To achieve the objective, there are three scopes that have been identified: 

 

i. To find the Filter Paper Unit (FPU) value of cellulase derived from Trichoderma 

reesei  

ii. To investigate the effect on the production of bioethanol at different 

temperatures, pH value and FPU loading by using cellulose. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

Worldwide, biomass is the fourth largest energy resource after coal, petroleum and 

natural gas. Biomass is biological material from living organism, most often referring to 

plants or plant-derived materials. Plants use light energy from the sun to convert carbon 

dioxide and water to sugars through a photosynthesis process. It remains the largest 

biomass energy source today for example dead trees, branches, tree stumps, wood chips 

and even municipal solid waste.
7
 

 

Another type of plant matter, called cellulosic biomass, is made up of very complex 

sugar, and it is not generally used for food. Cellulosic biomass consists of three main 

components which are lignin, hemicellulose and cellulose. Among these components, 

the largest portion is cellulose which covers from 38% to 50% followed by 

hemicellulose (23%-32%) and lignin (15%-25%).
8
 

 

Biomass energy currently contributes 9-13% of the global energy supply accounting for 

45±10 EJ per year (Thomas, 2000). Biomass energy includes both traditional uses such 

as a ring for cooking and heating and modern uses such as producing electricity and 

steam, and liquid bio-fuels. Use of biomass energy in modern ways is estimated at 7 EJ 

(exajoule) a year, while the remainder is in traditional uses. Biomass energy is derived 

from renewable resources. Ethanol derived from biomass, one of the modern forms of 

biomass energy, has the potential to be a sustainable transportation fuel, as well as a fuel 

oxygenate that can replace gasoline (Wang, 2000). Shapouri et al. (1995, 2002) reported 

that the energy content of ethanol was higher than the energy required producing 

ethanol. Kim and Dale (2002) also estimated the total energy requirement for producing 

ethanol from corn grain at 560 kJ MJ−1 of ethanol, indicating that ethanol used as a 

                                                             
7Biomass Energy Centre. http://www.biomassenergycentre.org.uk. Retrieved on December 6, 2012 
8 Valentas.K.,(2009). Biofuel from Cellulosic Biomass: An Overview of Current Technologies & Economic 
Feasibility. Biotechnology Institute,University of Minnesota.pp 1-5.  

http://www.biomassenergycentre.org.uk/
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liquid transportation fuel could reduce domestic consumption of fossil fuels, particularly 

petroleum. The world ethanol production in 2001 was 31 giga litres (GL) (Berg, 2001). 

The major producers of ethanol are Brazil and the United States, which account for 

about 62% of world production.   

 

As a renewable energy source, biomass can either be used directly or indirectly to 

convert into another type of energy product such as biofuel. The estimated biomass 

production in the world is 146 billion tons a year.
9
 Furthermore, Malaysia is one of the 

largest producers of palm oil in the region and among the biggest income earners to the 

country for many years. With the rapid growth of palm oil production in Malaysia, the 

amount of biomass residues generated also has shown a corresponding increase. 

 

In 2010, the oil palm planted area in the country is 4.8 million hectares. In 2011, 

Malaysian oil palm accounted for just 1.97% which is about five million hectares of the 

total 253.9 million hectares. It makes up to71% of agriculture land or 14.3% of total 

land area.
10

  The overall average of 18.03 tones Fresh Fruit Bunches (FFB) per hectare 

of palm oil plantation has been produced from the oil palm industry (Choo, 2011). 

Based on this figure, palm oil plantation areas has produced more than 66.63 million 

tonnes of biomass residues such as Empty Fruit Bunches (EFB), mesocarp fiber, shell, 

palm kernel cakes, trunks and Palm Oil Mill Effluent (POME) in 2010 (Goh et al., 

2009). The EFB represent about 9% of this total. They are the residue left after the fruit 

bunches has been processed to extract oil at oil mills.  

 

In a country that has significant amount of agricultural activities, biomass can be a very 

promising alternative source of renewable energy. With increased awareness on 

reducing greenhouse gas emissions, conversion of biomass residues into renewable such 

as ethanol, biogas, syngas and bio hydrogen has attracted global responsiveness. The 

conversion of biomass to this functional compound involve two reaction processes 

                                                             
9 Schenk,Justin;et al.(2012).Wood Fired Plants Generate Violations. Wall Street Journal. Retrieved on 
December 6,2012.  
10 Palm Oil Facts and Figures 2011. http://www.simedarbyplantation.com/Palm-Oil.pdf 
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which are biochemical which involve chemicals or enzymes and fermentation and also 

thermochemical processes; gasification to syngas and pyrolysis. 

 

2.2 Bioethanol as a Fuel 

Bioethanol is one form of renewable energy source that is fast gaining foothold as 

potential fuel to power automotive engine. In comparing to gasoline which is refined 

through distilling crude fossil fuel, bioethanol can be synthesized from the starchy parts 

of natural plants. Nowadays, ethanol is one of the most widely used biofuel today.  Fuel 

ethanol has been called ‘gasohol’; the most common blends contain 10% ethanol mixed 

with 90% gasoline. It also can be used in a mixture with gasoline (3-22% ethanol) with 

no modification of the engine (Taherzadeh, 1999). Because the ethanol is a high-octane 

fuel with high oxygen content (35% oxygen by weight), it allows the engine to combust 

the fuel completely, resulting in fewer emissions. Since ethanol is produced from plants 

that harness the energy from the sun, ethanol is also considered as a renewable fuel. 

Therefore, ethanol has many advantages as an automotive fuel.
11

 

 

Although ethanol production from corn and sugar bagasse can still expand greatly, its 

primary used mainly for animal feed, food domestics and beverage industries. Besides, 

the feedstock may not always be in surplus. Making ethanol from cellulose and 

hemicellulose dramatically expands different types and amount of available feedstock. 

This includes many materials now regarded as wastes requiring disposing, as well as 

corn stalks and wood chips. 

 

Brazil is the world frontrunner in the use of ethanol as an automobile fuel. More than 11 

billion litres of ethanol for fuel are produced from sugar cane bagasse each year. About 

15% of the vehicles with spark ignition engines (the type normally fueled by gasoline) 

run on ethanol and the rest use a blend of 20% ethanol in gasoline. Ethanol was 

introduced to reduce Brazil’s dependence on expensive foreign oil, and provides an 

                                                             
11http://www.comalc.com/fuel_ethanol.htm 
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additional market for domestic sugar producers. Beneficial effects on air quality have 

been an added bonus to the country. 

 

The Clean Air Act Amendments of 1990 authorized the sale of oxygenated fuels in areas 

of the country with unhealthy levels of carbon monoxide. Since that time, there has been 

strong demand for ethanol as an oxygenate that blended with gasoline. In United States, 

ethanol blends make up about 12% of the total gasoline market. In some parts of 

America, there are projects handled to test the viability of replacing diesel fuel with 

ethanol. Support for fuel ethanol is a key factor in the current U.S. because of its 

beneficial effect on air quality. Oxygenated fuel such as ethanol blends, mandated in 

certain regions to reduce carbon monoxide emissions or ozone.
12

 Today, there are more 

than 55 domestic fuel ethanol production facilities located in 22 states across the country 

with annual capacity of approximately 1.8 billion gallons. 

 

Ethanol has an octane number of 113 compared with 107 for methanol and 86 to 94 for 

gasoline, allowing a higher compression ratio in the gasoline engine. Furthermore, it 

also can be used in reformulated gasoline
13

. The blending octane value of ethanol can 

actually be much higher than that neat of ethanol, and the blending octane value 

increases with lower octane-base gasoline. Therefore, ethanol is an excellent additive to 

prevent engine knock and improve the performance of the engine. 

 

Although bioethanol fuel gives many advantages, but there are also disadvantages 

contribute from it. One of the most evident disadvantages of ethanol is that the majority 

of cars in Malaysia are designed to run on petrol. Petrol consists of over one thousand 

chemical compounds which are mostly petroleum based. Petrol fuels require an 

extensive range of operating conditions. This includes climate, altitude and driving 

patterns. This means that the properties of petrol must be balanced to give a satisfactory 

performance over a range of different driving conditions. This is detrimental in 

                                                             
12 http://www.comalc.com/fuel_ethanol.htm 
 
13 Eva-Lena Jakobsson (2002). Optimization of the pretreatment of wheat straw for production of 
bioethanol.Ph.D. Thesis. Department of Chemical, Lund University. 
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ascertaining the right amount of ethanol that goes in to petrol as it can adversely affect 

the balance and performance of a vehicle.  

 

Besides, ethanol has lower energy content and suitable for cleansing usage. It cannot be 

used in two strokes engines as it will clean up the lubricating oil off the cylinder walls 

and this may leads to overheating. Recent study in United States from Cornell 

University has shown that 71% more energy is required to produce a litre of ethanol than 

the energy contained in a litre of ethanol. 

 

2.3 Ethanol Production 

2.3.1 Empty fruit bunch (EFB) 

Empty Fruit Bunch is composed of 45-50% cellulose and about equal amounts (25-35%) 

of hemicellulose and lignin (Deraman, 1993). Due to oil palm empty fruit bunch is 

available in large quantities and contain high amount of cellulose, so empty fruit bunch 

fiber is appears to be a potential substrate for enzyme and other chemical production 

(Deraman, 1993). Table 1 below shows the composition of EFB under dry matter basis 

and fresh matter basis. 
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Table 1 Composition of EFB under dry matter basis and fresh matter basis 

Parameter Dry matter basis 

(mean) 

Fresh wt. basis (mean) 

Ash (%) 6.30 2.52 

Oil (%) 8.90 3.56 

Carbon (%) 42.80 17.12 

Nitrogen (%) 0.80 0.32 

Diphosphorous pentoxide (%) 0.22 0.09 

Potassium oxide (%) 2.90 1.16 

Magnesium oxide (%) 0.30 0.12 

Calcium oxide (%) 0.25 0.10 

Boron (mg/L) 10 4 

Copper (mg/L) 23 9 

Zinc (mg/L) 51 20 

Ferum (mg/L) 473 189 

Manganese (mg/L) 48 19 

C/N ratio 54 54 

Source: Cheng et al.  (2007 
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Figure 3: An empty fruit bunch (top) and its fibrous form (bottom) 

 

In order to obtain the best advantages from the application of EFB in the field, inorganic 

supplements are also required. They are given for immature and mature plants (Gurmit 

et al. 1999).From the analysis done before, it is stated that one tonne of EFB (fresh 

weight) would have a fertilizer content equivalent of 3.8 kg urea, 3.9 kg rock phosphate, 

18 kg muriate of potash and 9.2 kg kieserite. At current fertilizer prices, this would have 

a monetary value of RM12.00
14

 

 

2.3.2 Chemical treatment 

In order to produce sugars from the biomass, the biomass needs to be pre-treated with 

acids or enzymes to open up the plant structure and reduce the size of the feedstock. 

Pretreatment (steam, alkali or acid treatment) may reduce the indigenous microflora 

particularly required in simultaneous saccharification and fermentation (SSF), where 

key enzymes must be pre-induced for a quick start of lignocellulose breakdown and 

fungal growth (Tangerdy and Szakacs, 2003). Rita Rani et al. (2006) mentioned that 

pretreatment of substrate increased the cellulase yields by 33%. The one of the most 

                                                             
14 Chan, K.W., Chow,M.C., MA,A.N., and Yusof Basiron (2002). The global challenge of GHG emission on 
carbon reduction:palm oil industry.Paper presented at the 2002 National Seminar on Palm Oil Milling, 
Refining Technology, Quality & Environment. 19-20 August 2002.12 pp,. 
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common chemical treatment is by adding sulfuric acid. There are lignin-hemicellulose 

networks in cellulose fibers. This network interrupts the enzymatic biodegradation of 

cellulose and hinders the saccharification of EFB to monomeric sugars. To accomplish 

more effective enzymatic hydrolysis, this network should be removed. In this case, 

sulfuric acid can resolve hemicelluloses and activate the enzymatic activity to cellulose 

(Esteghlalian et al, 1996). 

 

Alkali is also being used to treat lignocellulosic biomass. To overcome the lignin barrier, 

lignocelluloses are initially pretreated with alkali to dissolve the lignin caused by the 

breakdown of ether linkage (Lee 1997). In the case of pretreatment of corn stover by 

aqueous ammonia, 70 -85% lignin was removed, and 40-60% hemicelluloses were 

solubilized (Kim et al., 2003). Efficient delignifying agent should remove a maximum 

amount of lignin and minimum of sugars (not more than 5%) (Taherzadeh and Karimi, 

2007). Chemical alkali pretreatment at ambient temperatures is simple and time-saving 

and seems to have strong commercial possibilities (Kim and Holtzapple, 2005). 

 

2.3.3 Cellulose, hemicellulose and lignin 

Biomass wastes contain a complex mixture of carbohydrate polymers from the plant cell 

walls known as cellulose, hemi cellulose and lignin. Typically, this contains 30-50% 

cellulose, 15-35% hemicellulose and 10-30% of lignin (Lynd et al., 2002). Cellulose, 

C6H10O5 is the structural component of the primary cell wall that organized into long, 

unbranched microfibrils that give support to the cell wall
15

.Cellulose from wood pulp 

has typical chain lengths between 300 and 1700 units; cotton and other plant fibres have 

chain lengths ranging from 800 to 10,000 units (Klemm et al. 2005 and Bailey et al., 

1986).  

 

 

 

 

                                                             
15 Crawford, R.L. (1981). Lignin Biodegradation and Transformation.New York.,John Wiley and Sons. 
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Figure 4: Arrangement of fibrils, microfibrils and cellulose in plant cell walls 

Source: (Klemm et al. 2005 and Bailey et al., 1986) 

 

Figure 4 shows the arrangement of fibrils, microfibrils and cellulose in plant cell walls. 

In micro fibrils, the multiple hydroxide groups bonded with each other, holding the 

chains firmly together and contributing to their high tensile strength. In cell walls, this 

strength is important as they are meshed into a carbohydrate matrix that helps in keeping 

the plants rigid and tough.  

A hemicellulose is any of several heteropolymers (matrix polysaccharides) such as 

arabinoxylans that present in almost all plant cell walls. While cellulose is in a form of 

crystalline, strong and resistant to hydrolysis, hemicellulose has a random, amorphous 

structure with little strength. Hemicellulose has a molecular weight that is lower than 

that of cellulose and they have a weak undifferentiated structure compared to crystalline 

cellulose
16

. It is primarily composed of the 5-carbon sugars and xylose.  

 

 

 

 

 

 

                                                             
16 Scurlock., Jonathan.,(2004). Bioenergy Feedstock Characteristics, Oak Ridge National Laboratory. 
Retrieved from http://bioenergy.ornl.gov/papers/misc/biochar_factsheet.html 
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Figure 5: Structure of hemicellulose 

Source: (Huber et al., 2006) 

Lignin as an irregular polymer forms a network in which cellulose and hemicellulose 

fibre are embedded and also provides structural integrity in plants (Huber et al., 2006). 

Due to complex structure of lignocellulose, it is resistant to most chemicals and 

hydrolysis, which definitely form a barrier for its utilization (Lynd et al., 2002; Zhu et 

al., 2006). It remains as residual compound after the sugars in the biomass have been 

converted to ethanol. Figure 6 shows the arrangement of cellulose, lignin and 

hemicellulose in a plant cell wall that involve in ethanol synthesize. 

 

 

 

 

 

 

 

 

 

Figure 6: Typical plant cell wall arrangement 

Source: (Huber et al., 2006) 
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2.3.4 Enzymatic hydrolysis 

Enzymes are more efficient agents of hydrolysis than are acids (Elwyn et al., 1955). 

Cellulase enzyme is used to break up cellulose into glucose or other aligosaccharide 

compounds (Acharya et al. 2008). The cellulase system in fungi comprises of three 

hydrolytic enzymes acting synergistically, endo-1,4-β-D-glucanase (carboxymethyl 

cellulase), which cleaves β-linkage randomly in the amorphous parts of cellulose; exo-

1,4- β-D-glucanase (cellobiohydrolase), which hydrolyzes cellobiose from either non-

reducing or reducing end, generally from the crystalline part of cellulose; β-glucosidase 

(cellobiase), releases glucose from cellobiose and short chain cellooligosaccharides 

(Wilson et al., 2009). Enzyme complexes for the degradation of lignocelluloses have 

been produced by solid state fermentation (SSF) on various agricultural residues such as 

rice straw, wheat bran, corn stover, sugarcane bagasse and pomace (Soccol et al., 2003), 

using host-specific fungi such as Saccharomyces cerevisiae for best results (Nigam and 

Singh, 1996). 

The most essential factor for increasing the rate of hydrolysis is making cellulose 

accessible to the enzymes. Therefore, chemical pretreatment usually alkaline and acid 

pretreatment is necessary before enzymatic hydrolysis. Chemical pretreatment not only 

removes lignin only, but acts as a swelling agent, which will enhances the surface area 

of the substrate to make it accessible for enzymatic action (Kim et al., 2008). 

Usually, enzymatic hydrolysis is conducted at mild conditions; at pH 4.8 with 

temperature 45-50
o
C and does not have a corrosion problem (Duff and Murray, 1996). It 

is possible to obtain hydrolysis of 100% by enzymatic hydrolysis. Nevertheless, there is 

certain factor that might interfere or inhibit the enzymatic process. Several inhibitory 

compounds are formed during acid hydrolysis and this problem is not so severe for 

enzymatic hydrolysis (Lee et al., 1999). The factors that affect the enzymatic hydrolysis 

of cellulose include substrates, cellulase activity and reaction conditions (temperature, 

pH, etc.). To improve the yield and rate of enzymatic hydrolysis, optimizing the 

hydrolysis process and enhancing cellulase activity need to be focused (Cantwell et al., 

1988).  
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During the enzymatic hydrolysis, cellulose is depolymerized by the cellulases to 

monomeric sugars such as hexoses sugars that can be fermented by yeast or bacteria for 

the production of bioethanol. Figure 7 below is the reaction mechanism for the 

enzymatic hydrolysis process. 

 

  

Cellulose                    Monomeric sugar      

Figure 7: Reaction mechanism for the enzymatic hydrolysis process 

 

2.3.5 Fermentation 

 

Fermentation is a process of converting sugars into alcohols and carbon dioxide. The 

sugar formed from the enzymatic hydrolysis process will be used by the bacteria or 

baker’s yeast as a nutrient to ferment them to bioethanol. The chemical reaction is 

shown below in Figure 8: 

 

 

 

  

Cellulose                                        Monomeric sugars                                  Bioethanol + 

Carbon dioxide         

 

Figure 8: Reaction mechanism for Simultaneous Saccharification and 

Fermentation (SSF) method 

 

When cellulose is being used as a raw material, the cellulase responsible for enzymatic 

hydrolysis of pretreated cellulosic biomass strongly inhibited by hydrolysis products: 

glucose and short cellulose chain. One of the techniques to overcome inhibition of 

Cellulase 

Cellulase Bacteria 
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cellulase is to ferment the glucose to ethanol as soon as it appears in the reaction.  

Simultaneous saccharification and fermentation (SSF) combines enzymatic hydrolysis 

with ethanol fermentation to keep the concentration of glucose low. The accumulation of 

ethanol in the fermenter does not inhibit cellulase as it can remain high concentrations of 

glucose, so SSF is a good strategy for increasing the overall rate of cellulose to ethanol 

conversion.In comparison to the process where these two stages are sequential, means 

that separate saccharification and fermentation, the SSF method enables attainment of 

higher (up to 40%) yields of ethanol by removing end product inhibition, as well as by 

eliminating the need for separate reactors for saccharification and fermentation 

(Stenberg and Bollock et al. 2000). Moreover, this approach make a fermentation time 

shorter and reduced a risk of contamination with external microflora, due to high 

temperature of the process, the presence of ethanol in the reaction medium, and the 

anaerobic conditions (Wyman et al. 1994).  

 

Ethanol production via fermentation is a complex biochemical process with yeast or 

bacteria utilizing fermentable sugars as substrate for their growth and converting them to 

ethanol, carbon dioxide and other metabolic end product. Several factors such as pH 

condition, temperature and amount of glucose that can affect ethanol fermentation 

should be considered. During ethanol fermentation, most of the yeast cells used suffers 

from various stresses, including environmental conditions such as glucose concentration, 

nutrient deficiency, temperature, rate of agitation and pH value (Graves et al., 2006; 

Arisra et al., 2008; Yah et al., 2010). 

 

The highest ethanol concentration was 10.29 gL
-1

 obtained when EFB hydrolysate was 

incubated at 30
o
C, followed by 9.86 gL

-1 
at 35

o
C which corresponded to an ethanol yield 

of 0.51 and 0.54 g ethanol/g glucose, respectively. Kheang reported that the highest 

ethanol yield was obtained at pH 4 with a maximum ethanol concentration of 10.29 gL
-1 

followed by 8.2 gL
-1

 ethanol at pH 6 at 72 hours of incubation. The highest ethanol 

fermentation efficiency was obtained at pH 4 with 119% (Kheang and Asyraf et al., 

2011).  
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The focus of this study is to produce bioethanol using empty fruit bunch as raw material. 

The focus of the study is to determine the effect of the temperature, pH value and the 

FPU loading of the cellulose to the production of bioethanol. In this study, pure 

cellulose was used to study the effect of these different parameters to the amount of 

bioethanol produced. For simultaneous saccharification and fermentation, The EFB must 

be hydrolyzed first before fermentation process and the best pretreated substrates that 

can produce high amount of reducing sugars with higher percentage of saccharification 

will be used as a substrate for the fermentation process. Previous study indicates that 

simultaneous saccharification and fermentation (SSF) is better than separate 

saccharification and fermentation. Therefore, the experiment in this research is carried 

out using SSF method under anaerobic condition. 
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CHAPTER 3: METHODOLOGY 

3.1 Measurement of Cellulase Activity 

 

For this experiment, the method of Union of Pure and Applied Chemistry (IUPAC) 

guidelines is used
1718

. The procedure has been designed to measure cellulase activity in 

terms of “filter paper units” (FPU) per milliliter of original (undiluted enzyme solution).  

Filter Paper Unit (FPU) it a unit to measure the activity of a particular enzyme. One 

international Filter Paper Unit (FPU) was defined as the amount of enzyme that releases 

1 μmol glucose per minute during hydrolysis reaction. Activities were reported as 

FPU/mL. Glucose equivalents (reducing sugars) generated during the assay were 

estimated by using the 3,5 dinitrosalicylic acid (DNS) method, with glucose as standard. 

3.1.1 Preparation of D(+)glucose standard solution 

 

The materials and apparatus used to prepare the standard solution are as followed: 

3.1.1.1 Materials and Apparatus 

1. D(+)glucose solution 

2. Citrate buffer, pH 4.8 

3. Filter paper strip Whatman No.1, 1.0 x 6.0 cm (≈50 mg) 

4. 2 % DNS reagent 

5. Test tubes 

6. Hot plate 

7. 1000 µL pipette 

8. Ice water bath (0
o
C- 2

o
C) 

                                                             
17 T.K. Ghose,. 1987.Measurement of Cellulase Activities. Pure & Applied Chemistry,  59 (2): 257-268. 
18 B.Adney., J.Baker.,1996. Measurement of Cellulase Activities, Laboratory Analytical Procedure (LAP). 
National Renewable Energy Laboratory (NREL), pp 1-8 
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3.1.1.2 Procedure  

The procedures for preparing the standard are as followed: 

1. Prepare stock solution of 10 mg/mL anhydrous D(+)glucose. Dilute 1.0 g of 

D(+)glucose in 100 mL of DI water. 

2. For dilutions: 

i. 1 ml + 0.5 ml buffer = 1:1.5 = 6.7 mg ml
-1 

(3.35 mg/0.5 ml) 

ii. 1 ml + 1.0 ml buffer = 1:2 = 5.0 mg ml
-1 

(2.5 mg/0.5 ml) 

iii. 1 ml + 2.0 ml buffer = 1:3 = 3.3 mg ml
-1 

(1.65 mg/0.5 ml) 

iv. 1 ml + 4.0 ml buffer = 1:5 = 2.0 mg ml
-1 

(1.0 mg/0.5 ml) 

 

3. Take 0.5 mL of each standard and add 1.0 mL of citrate buffer. 

4. Add 3.0 mL of DNS reagent to each tube. 

5. Boil the samples at 100
o
C for 5 minutes. 

6. Quench the samples in ice water bath and add 2 mL of DI water into the each test 

tube. 

7. Measure the absorbance of the samples by using UV-vis spectrophotometer at 

wavelength 540 nm and 575 nm. 

 

3.1.2 FPU value for T. reesei  

 

Enzyme was used for the FPU value experiments which are derived cellulase 

Trichoderma reesei. T. reesei is a mesophilic and filamentous fungus and capable to 

secrete large amounts of cellulolytic enzymes (cellulases and hemicellulases)
19

.  

3.1.2.1 Materials and Apparatus 

The materials and apparatus used to prepare the standard solution are as followed: 

1. Enzymes; T. reesei cellulase (Celluclast 1.5, Novozymes A/S Bagsvaerd, 

Denmark) 

2.  Filter paper strips, Whatman No.1 (1.0 cm x 6.0 cm) 

                                                             
19

Kumar R, Singh S, Singh OV (May 2008). Bioconversion of lignocellulosic biomass: biochemical and 

molecular perspectives. J. Ind. Microbiol. Biotechnol.35 (5): 377–91 
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3. Citrate buffer, pH 4.8 

4. DNS reagent 

5. Ice water bath 

6. Test tubes 

7. Hot plate with stirrer 

8. UV-visible spectrophotometer (Model: UV-1601PC; Shimadzu) 

 

3.1.2.2 Procedures 

1. Prepare blank, control and stock solutions at different concentrations. 

2. Blank = 1.5 mL citrate buffer 

3. Control = 0.5 mL of enzyme solution with 1.0 mL of citrate buffer 

4. Preparation of stock solutions at different concentrations (citrate buffer:stock 

solution).  

i) 5 mL : 5 mL  =  0.0025 mg/0.5mL 

ii) 3 mL : 7 mL  =  0.0035 mg/0.5mL 

iii) 2 mL : 8 mL = 0.004 mg/0.5mL 

iv) 7 mL : 3 mL = 0.0015 mg/0.5mL 

v) 8 mL : 2 mL = 0.001 mg/0.5mL 

5. Add 0.5 mL of stock solutions with different concentrations into the test tubes 

containing the filter paper strips 

6. Incubate all samples at 50
o
C for one hour 

7. Boil the samples for 5 minutes and quench them into the ice water bath  

8. Add 2 mL of DI water into the samples  

9. Analyze the samples with UV-visible spectrophotometer 

10. Prepare the FPU loading for T. reesei cellulase at 1.0 mg/ml, 2.5 mg/mL, 5.0 

mg/mL, 10 mg/mL and 20 mg/mL. Repeat the same procedures for A. niger 

cellulase. 
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3.2 High Performance Liquid Chromatography (HPLC) 

 

Determination of oligosaccharides and mono saccharides coming from either acid 

hydrolysis or enzymatic hydrolysis of cellulose derived from varied means of chemical 

treatment can be determined using High Performance Liquid Chromatography (HPLC) 

with refractive index detector (RID). The choice of column for separation of these oligo 

– and mono – saccharides is of equal importance as retention time, resolution quality 

and limit of quantification will be highly dependent on it. For the both tasks i.e. 

enzymatic hydrolysis and separate saccharafication and fermentation (SSF) for ethanol 

production, several analytes has been identified. Table 2 below listed down all the 

possible analytes. One or more columns can be used to do such analysis. 

Table 2: List of Potential Analytes 

Task Compounds 

Enzymatic Hydrolysis Glucose, fructose, mannose and xylose 

Separate Saccharification and 

Fermentation 

Ethanol, glucose, fructose, cellobiose, 

galactose, mannose, xylose, galactose and 

arabinose 

 

Selection of column will be evaluated by several criteria: resolution (Rs), separation 

efficiency (actual vs. theoretical) (N), retention factor (k) and selectivity or separation 

factor (). Separation efficiency (N) is the most common method of comparing different 

column with similar polymeric background (and counter cation). This is best expressed 

as theoretical plate number. The formula of how to calculate all these parameters are as 

follows: 
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       Eq. (2) 

   

 

       Eq. (3) 

 

With tr is the retention time at peak, wtis the peak width at base and w1/2 is the width 

base at half height. The larger the value of N, the better is the separation efficiency. 

Equation (3) is better if the baseline is noisy, as this can eliminate the influence of noise. 

 

 

Figure 9: Representation of various processing parameters from an example 

chromatogram 
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Retention factor or k is for measuring the residence time for an analyte to reside in the 

stationary phase relative to its time in the mobile phase. 

 

       Eq. (4) 

        

Where t0 is the retention time of unretained peak.f 

Separation factor or , is a measure of the time between two maxima of two different 

peaks. If  = 1, the compounds have the same time and will co – elute which in this case 

is highly undesirable. 

 

       Eq. (5) 

        

Where k2 is the retention factor of the second peak and k1 is the retention factor of the 

first peak. 

Resolution (Rs) describes the ability of the column in question to elute compounds of 

interest with respect to baseline. Resolution will take account of all the parameters 

above as shown in Equation (6). 

 

       Eq. (6) 

       

 

 

3.2.1 Materials and Method 

All experiments for calibration curves development are done with Agilent High 

Performance Liquid Chromatography (HPLC) 1260 series equipped with Refractive 
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Index (RI) detector. All mobile phase solvent i.e. acetonitrile and deionized water will 

be filtered with glass fibre 0.2 µm filter and degassed for minimum of 20 minutes and of 

HPLC grade whenever possible. All external standards i.e. sugars (D – glucose, D – 

mannose, D – Galactose, D – cellobiose, Sucrose and D – xylose), sugar alcohols 

(Sorbitol, meso – erythritol, mannitol, and xylitol) and polyalcohol (glycerol, ethanol 

and 1,2 – propanediol)were obtained from Sigma Aldrich. D – arabinose and D – 

fructose were obtained from Bio Basic Canada Inc. Optical purity of the sugars are of D 

– variants unless stated otherwise. 

Hi – Plex Ca and Hi – Plex Pb column (300 mm x 4.6 mm) were purchased from 

Agilent Technologies. Shodex Asahipak NH2P – 50 4E were purchased from Showa 

Denko Inc. Japan. 

 

3.3 Enzymatic Hydrolysis 

3.3.1 Substrates 

 

Empty fruit bunches (EFB) of oil palm was used as raw material in this experiment. 

Processed milled palm oil empty fruit branches (EFB) fibres were obtained from Sze 

Tech Engineering Sdn Bhd located in Padang Jawa Selangor. The EFB fibres were 

grounded using grinding equipment in Tenaga Nasional Berhad (TNB) Research Bangi, 

with fibre length of 0.04 inch. 

3.3.2 Delignification 

 

Delignification is a process to remove lignin in the fibre. The presence of the lignin in 

cellulose substrates hinders the saccharification of them into monomeric sugars. To 

overcome the lignin barrier, lignocelluloses are usually pretreated initially with alkali to 

dissolve the lignin caused by the breakdown of ether linkage.  
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3.3.2.1 Materials and Apparatus 

The following are the materials and apparatus used which are: 

1. 0.2 M sodium hydroxide solution, NaOH 

2. 10 g of EFB fibres 

3. Deionized (DI) water  

4. 250 mL conical flask  

5. pH meter 

6. Drying oven (with temperature control and display of 50±2°C) 

3.3.2.2 Procedures 

These are the procedures for delignification method 

1. Soak 10 g of EFB fibres (substrate) into the 0.2 M NaOH solution in the ratio of 

1:10. 

2. Incubate the substrate at room temperature for 18 hours. 

3. Filter the contents and wash the residue repeatedly with DI water until the pH of 

the residue become neutral (pH 7). 

4. Dry the residue at 50
o
C until the residue is completely dried. 

5. Take half of dried alkali treated substrate to subsequently use for acid/enzyme 

hydrolysis experiments. 

 

3.3.3 Acid Hydrolysis 

 

Acid hydrolysis is a chemical process in which acid is used to convert cellulose or starch 

to the sugar. 3% of sulfuric acid was used in acid hydrolysis. 

3.3.3.1 Materials and Apparatus 

1. 3 % sulfuric acid, H2SO4 

2. 5 g of alkali pretreated sample 

3. Deionized (DI) water  

4. 250 mL conical flask 

5. Drying oven (with temperature control and display of 50±2°C) 
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3.3.3.2 Procedures 

1. Suspend alkali pretreated sample into 3% of H2SO4 at temperature 130
o
C for 30 

minutes. 

2. Filter the contents and wash the residue repeatedly with DI water until the pH of 

the residue become neutral. 

3. Dry the residue at 50
o
C 

4.  until the residue is completely dried. 

 

3.3.4  Enzymatic Hydrolysis of Chemical Treated Empty Fruit Bunches (EFB) 

 

Enzymatic hydrolysis is carried out by using cellulase from Trichoderma reesei. Alkali 

treated, acid hydrolysis and untreated were used as substrates for this experiment. 

3.3.4.1 Materials and Apparatus 

The following are the materials and apparatus used: 

1. Pretreated substrates; alkali treated and acid hydrolysis  

2. 0.05 M citrate buffer (pH 4.8) 

3. 0.5 g of Trichoderma reesei cellulose 

4. 0.005 g sodium azide 

5. 250 mL conical flask 

6. Electronic mass balance 

7. Orbital shaker with incubator 

8. Centrifuge 

9. Test tubes 
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3.3.4.2 Procedures 

1. Soak 1.0 g of each sample substrate with 100 mL of citrate buffer for two hours. 

2. Hydrolyze the sample with 5 mg/mL of T. reesei with FPU loading at 128 

FPU/g. 

3. Add 0.005 g of sodium azide into the flask to prevent microbial or fungal 

contamination. 

4. Incubate the sample at 50
o
C on an orbital shaker at 150 rpm for 84 hours. 

5. Take the sample aliquots of 3 mL every 12 hours. 

6. Centrifuge the sample aliquots for 20 minutes at 1000 rpm.  

7. Take 3 mL supernatant of the sample and run for analysis. 

8. Analyze the supernatant by using 3,5- Dinitrosalicylic acid (DNS) method and 

High Performance Liquid Chromatography (HPLC) to get the amount of 

reducing sugars in acid hydrolyzate. 

 

3.3 Fermentation Process 

 

The fermentation process has been done using SSF method which is the combination of 

enzymatic hydrolysis with the fermentation process to produce bioethanol. 

3.4.1 Growth media for the microorganism 

 

Culture medium or growth medium is a liquid or gel aimed to support the growth of 

microorganisms or cells. Media act as a nutrient provider for the cells. There are 

different types of media for growing different types of cells. In this fermentation 

process, Saccharomyces cerevisiae ATCC 96581 was used as a microorganism to 

ferment glucose into bioethanol. 
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3.4.1.1 Broth Yeast extract-peptone-dextrose growth medium (YEPD medium) 

The materials and apparatus used for preparing the growth media are: 

3.4.1.1.1 Materials and Apparatus:  

1. 10 g of Bacto™ Peptone 

2. 5 g of yeast extract 

3. 10 g of dextrose 

4. 500 mL distilled water 

5. Analytical balance  

6. Autoclave 

7. 1 L Schott bottle  

3.4.1.1.2 Procedures: 

1. Prepare the medium. 

2. Dissolve them in 500 mL of distilled water. 

3. Retain the medium in Schott bottle 

4. Autoclave at 121
o
C for 15 minutes. 

3.4.1.2 Solid agar Yeast extract-peptone-dextrose growth medium (YEPD medium) 

3.4.1.2.1 Materials and Apparatus:  

1. 10 g of Bacto™ Peptone 

2. 5 g of yeast extract 

3. 10 g of dextrose 

4. 10 g agar 

5. 500 mL distilled water 

6. Analytical balance  

7. Autoclave 

8. 1 L Schott bottle  
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3.4.1.2.2 Procedures: 

1. Prepare the medium. 

2. Dissolve them in 500 mL of distilled water. 

3. Retain the medium in Schott bottle 

4. Autoclave at 121
o
C for 15 minutes. 

3.4.2 Bacteria Culturing 

 

Culturing is a method to grow bacteria on media containing nutrients. Bacteria can be 

grown either in broth (liquid) media or agar (solid) media. Visible colonies will be 

formed on the agar medium and turbidity of the broth medium can be clearly seen that 

indicates the growth of the bacteria. 

3.4.2.1 YEPD broth medium 

3.4.2.1.1 Materials and Apparatus 

1. Saccharomyces cerevisiae ATCC 96581 ampoules 

2. 10 mL YEPD medium 

3. 70% ethanol solution 

4. Micropipette 

5. 250 mL conical flask 

6. Bunsen burner 

7. Incubator orbital shaker 

3.4.2.1.2 Procedures 

1. Immediately after thawing frozen ampoules, wipe down ampoule with 70% 

ethanol. This procedure need to be handled under laminar flow hood to prevent 

contamination. 

2. Transfer 2 mL (or any amount desired) of the strain onto YEPD broth medium. 

3. Incubate the strain at 30
o
C with agitation speed of 190 rpm. 

4. Prepare multiple amounts of flasks for culturing the strain. 
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3.4.2.2 YEPD solid agar medium 

3.4.2.2.1 Materials and Apparatus: 

1. Saccharomyces cerevisiae ATCC 96581 ampoules 

2. YEPD agar medium 

3. 70% ethanol solution 

4. Micropipette 

5. Hockey stick 

6. Streak stick 

7. 250 mL conical flask 

8. Bunsen burner 

9. Incubator orbital shaker 

3.4.2.2.2 Procedures: 

1. Pour 10 mL of YEPD agar medium into the petri plates. This procedure need to 

be handled under laminar flow hood to prevent contamination. 

2. Apply ultraviolet rays onto the petri plates for 10 minutes. 

3. Transfer 10 µL (or any amount desired) of the strain onto petri plates containing 

YEPD gar medium. 

4. Spread the strains by using hockey stick or streak onto agar. 

5. Incubate the strain at 30
o
C with agitation speed of 190 rpm. 

3.4.3 Growth profile of Saccharomyces Cerevisiae ATCC 96581 

 

Bacterial growth is the division of one bacterium into two daughter cells in a process 

called binary fission. Bacterial growth over time can be graphed as cell number versus 

time. This is called a growth profile. 

3.4.3.1 Materials and Apparatus: 

1. 5 mL Saccharomyces cerevisiae ATCC 96581  

2. 100 mL YEPD broth medium 

3. 70% ethanol solution 

4. 1 mL pipette 
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5. Bunsen burner 

6. 250 mL conical flask 

7. UV-Visible Spectrophotometer (Model: UV-1601PC; Shimadzu) 

3.4.3.2 Procedures: 

1. Pour 5 mL of inoculum strains into 100 mL of YEPD broth medium. 

2. Incubate the strain at 30
o
C with agitation speed of 190 rpm. 

3. After 24 hours, take 1 mL of the sample for every two hours retention times. 

4. Analyze the sample with UV-visible spectrophotometer to get the optical density 

or cell concentration of saccharomyces at wavelength 600 nm and 620 nm. 

3.4.4 Inoculum Preparation for Fermentation 

3.4.4.1 Materials and Apparatus: 

1. Saccharomyces cerevisiae ATCC 96581 

2. YEPD broth medium 

3. 8.5 g/L saline solution 

4. 1 mL pipette 

5. Incubator orbital shaker 

6. Centrifuge 

3.4.4.2 Procedures: 

1. Grow Saccharomyces cerevisiae ATCC 96581 on YEPD broth medium. 

2. Incubate the inoculum at 30
o
C with agitation speed of 190 rpm for 24 hours. 

3. Centrifuge the inoculum at 3000 rpm for 15 minutes. 

4. Rinse the pellet twice with sterilized saline solution before being re-suspended in 

sterilized saline solution to yield desired Optical Density (OD) value. 

5. Take 1 mL of dilute inoculum and analyze using UV-visible spectrophotometer 

at wavelength 600 nm or 620 nm. 

6. Use standardized S.cerevisiae for fermentation process. 
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3.4.4 Shaker Flask Preparation 

 

The following are the steps and procedure for preparing shaker flask for fermentation. 

1. Make cotton- gauze plugs to fit the mouth of 250 mL shaker flasks. 

2. Plug the flask and cover the plug with a piece of aluminum foil before 

autoclaving. The aluminum foil will prevent dust from directly settling on the 

cotton plug while standing on the shelf waiting to be used. This is generally the 

case where many flasks are simultaneously autoclaved for later use. 

3. After autoclaving the flasks, cool them to room temperature. 

 

3.4.6 Separate Saccharification and Fermentation 

3.4.6.1 Materials and Apparatus: 

1. Avicel PH-101 

2. Deionized water 

3. Trichoderma reeseicellulose 

4. Saccharomyces Cerevisiae ATCC 96581 

5. Sodium hydroxide(NaOH) solution 

6. 250 mL heavy-wall filtering flask 

7. Gas-washing bottle, fritted cylinder 

8. Retort stand with clamp 

9. Orbital shaker 

10. Thermometer 

11. Electronic mass balance 

3.4.6.1.1 Testing On Mass Loading of Cellulose to the Production of 

Bioethanol 

3.4.6.1.1.1 Procedures: 

1. Pour 100 mL of deionized water (pH 4) into the flask containing 1.0 g of acid 

hydrolyzate pretreated substrates. 

2. Autoclave the samples at 121
o
C for 15 minutes. 
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3. Cool down the flasks at room temperature. 

4. Add 0.5 g of T.reesei cellulase with 128 FPU/mL. 

5. Incubate the samples at 30
o
C with rate of agitation of 100 rpm for 60 hours. 

6. Add 3 mL of S. cerevisiae with OD 0.5. 

7. Take the sample aliquots for every 12 hours retention times. 

8. Centrifuge the sample aliquots at 3000 rpm for 15 minutes. 

9. Take 1 mL of supernatant and analyze using High Performance Liquid 

Chromatography (HPLC) 

10. Record the area of the compounds exist and calculate the amount of ethanol and 

reducing sugars produced. 

11. Repeat step 1 to 10 by varying the mass loading of cellulose which are 0.5g, 

1.0g, 2.0g and 5.0g. 

 

3.4.6.1.2 Testing on pH Value to The Production of Bioethanol 

3.4.6.1.2.1 Procedures: 

1. Pour 100 mL of deionized water (pH 4) into the flask containing 1.0 g of acid 

hydrolyzate pretreated substrates. 

2. Autoclave the samples at 121
o
C for 15 minutes. 

3. Cool down the flasks at room temperature. 

4. Add 0.5 g of T.reesei cellulase with 128 FPU/mL.  

5. Incubate the samples at 30
o
C with rate of agitation of 100 rpm for 72 hours. 

6. Add 3 mL of S. cerevisiae with OD 0.5. 

7. Take the sample aliquots for every six hours retention times. 

8. Centrifuge the sample aliquots at 3000 rpm for 15 minutes. 

9. Take 1 mL of supernatant and analyze using High Performance Liquid 

Chromatography (HPLC) 

10. Record the area of the compounds exist and calculate the amount of ethanol and 

reducing sugars produced. 

11. Repeat step 1 to 10 by varying the pH value of the medium, 6, 7 and 8 
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3.4.6.1.3 Effect of FPU Value to the Production of Bioethanol 

3.4.6.1.3.1 Procedures 

1. Pour 100 mL of deionized water (pH 4) into the flask containing 1.0 g of acid 

hydrolyzate pretreated substrates. 

2. Autoclave the samples at 121
o
C for 15 minutes. 

3. Cool down the flasks at room temperature. 

4. Add 0.5 g of T.reesei cellulase with 128 FPU/mL.  

5. Incubate the samples at 30
o
C with rate of agitation of 100 rpm for 60 hours. 

6. Add 3 mL of S. cerevisiae with OD 1.0 

7. Take the sample aliquots for every twelve hours retention times. 

8. Centrifuge the sample aliquots at 3000 rpm for 15 minutes. 

9. Take 1 mL of supernatant and analyze using High Performance Liquid 

Chromatography (HPLC) 

10. Record the area of the compounds exist and calculate the amount of ethanol and 

reducing sugars produced. 

11. Repeat step 1 to 10 by varying the FPU value, 77 FPU/ml, 154 FPU/ml, 218 

FPU/ml. 

 

3.4.7 Simultaneous Saccharification and Fermentation 

3.4.7.1 Materials and Apparatus 

1. Acid hydrolyzate pretreated EFB 

2. Deionized water (pH 3.5) 

3. 0.5 g Trichoderma reeseicellulose 

4. Saccharomyces Cerevisiae ATCC 96581 

5. Sodium hydroxide, NaOH 

6. 250 mL heavy-wall filtering flask 

7. Gas-washing bottle, fritted cylinder 

8. Retort stand with clamp 

9. Orbital shaker 

10. Thermometer 
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3.4.7.2 Procedures 

12. Pour 100 mL of deionized water (pH 3.5) into the flask containing 1.0 g of acid 

hydrolyzate pretreated substrates. 

13. Autoclave the samples at 121
o
C for 15 minutes. 

14. Cool down the flasks at room temperature. 

15. Add 0.5 g of T.reesei cellulase with 128 FPU/mL and 3 mL of S. cerevisiae with 

OD 0.5. 

16. Incubate the samples at 30
o
C with rate of agitation of 100 rpm for 72 hours. 

17. Take the sample aliquots for every six hours retention times. 

18. Centrifuge the sample aliquots at 3000 rpm for 15 minutes. 

19. Take 1 mL of supernatant and analyze using High Performance Liquid 

Chromatography (HPLC) 

20. Record the area of the compounds exist and calculate the amount of ethanol and 

reducing sugars produced. 

 

3.4.8 Analysis Method 

 

There are two methods used in this experiment to qualify and quantify the amount of 

reducing sugars produced for enzymatic hydrolysis process. The analysis method used 

are by using High Performance Liquid Chromatography (HPLC) and 3, 5 

Dinitrosalicyclic acid (DNS) method. 

3.4.8.1 Calibration curves of Total Reducing Sugars using HPLC Method 

All experiments for calibration curves development are done with Agilent High 

Performance Liquid Chromatography (HPLC) 1260 series equipped with Refractive 

Index (RI) detector. All mobile phase solvent i.e. acetonitrile and deionized water will 

be filtered with glass fibre 0.2 µm filter and degassed for minimum of 20 minutes and of 

HPLC grade whenever possible.  
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3.4.8.1.1  Materials and apparatus: 

1. D(+) glucose and D(+) fructose 

2. Analytical balance 

3. Test tubes 

4. Micropipette – 100-1000µL 

3.4.8.1.2 Procedures: 

1. Prepare D(+) glucose solution with concentration of 0.02 wt% up to 5.0 wt%. 

Prepare double standard solution for each concentration. 

2. For each concentration, take 1.0mL of glucose solution and put into sample 

bottle. 

3. Run the sample with HPLC method under LC conditions (refer table 2) 

4. Record the area of the sample at various concentrations and draw calibration 

curve. 

5. Repeat step 1 to 4 using D(+) fructose. 

6.  

3.4.8.2 Analysis of Enzymatic Hydrolysis using HPLC Method 

The supernatant of the samples; alkali treated, untreated and acid hydrolysis were 

analyzed by using HPLC method to determine the amount of reducing sugars formed. 

Table 3 shows the liquid conditions for HPLC 

Table 3: Liquid Chromatography (LC) conditions of HPLC 

Parameter Value 

Instrument  High performance liquid chromatography, 

HPLC 

Mobile phase  75% acetonitrile and 25% water 

Column Shodex Asahipack, NP2-50 

Column temperature 50
o
C 

Flow rate  1.0 mL/min 
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Detectors  Refractive index at 30
o
C 

Injection volume 6.0 µL 

System pressure 65 bars (maximum: 100 bar) 

    

  

3.4.8.3  Analysis of Enzymatic Hydrolysis Using 3, 5 - Dinitrosalycylic acid 

(DNS) Method 

3.4.8.3.1 Preparation of 2% DNS Reagent 

3.4.8.3.1.1 Materials and Apparatus: 

1. 3, 5 - Dinitrosalicyclic acid powder (CAS No. 609-99-4) 

2. Deionized (DI) water 

3. Sodium hydroxide (NaOH) pellets 

4.  Potassium sodium tartarate (Rochelle salt) (Na-K tartrate) 

5. Analytical balance 

6. Volumetric flask, 1000mL 

7. Aluminum foil 

8. Hot plate with stirrer 

9. 1 L Schott bottle 

3.4.8.3.1.2 Procedures: 

1. Prepare 10.67 w/v % sodium hydroxide solutions. Weigh 16 g of NaOH pellets 

to 150 mL of deionized water. 

2. Add 10.0 g of DNS acid powder into the 500 mL of DI water in the volumetric 

flask. 

3. Mix the solution with 100 mL of 10.67 w/v% sodium hydroxide solution. 

4. Place the solution into the 45
o
C water bath until the contents are fully dissolved. 

5. Add 300 g of potassium sodium tartarate with continuous mixing. 
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6. Add DI water to bring the total volume of reagent up to 1.0 L 

7. Transfer the reagent to the Schott bottle and wrap the Schott bottle with 

aluminum foil as DNS reagent is very sensitive to light. 

 

3.4.8.3.2 Calibration curves of Total Reducing Sugars by using DNS method 

UV- Visible spectrophotometer was used to determine the calibration curves of total 

reducing sugars using D(+)glucose as model compound by using DNS method.  

3.4.8.3.2.1  Materials and Apparatus: 

1. D(+)glucose 

2. Deionized (DI) water 

3. DNS reagent 

4. Oil bath 

5. UV-Visible Spectrophotometer (Model: UV-1601PC; Shimadzu) 

6. Analytical balance 

7. Test tubes 

8. Micropipette  (100-1000 µL) 

9. Hot plate with stirrer 

3.4.8.3.2.2  Procedures: 

1. Prepare D(+) glucose with different concentration ranging from 0.1 mg/ml to 1.5 

mg/ml ( a minimum of 5 concentrations) 

2. Prepare duplicate solution for each concentration. 

3. For each concentration, take 1.0 mL of D(+) glucose solution and add with 

3.0mL of DNS reagent. 

4. Boil for 5 minutes in the oil bath at 100
o
C. 

5. Quench the samples in ice water bath and add 2 mL of DI water. 

6. Measure the absorbance for each concentration using UV-visible 

spectrophotometer at the wavelength 540 nm and 575 nm. 
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3.4.8.3.4 Analysis of Enzymatic Hydrolysis using DNS method 

The supernatant from each enzymatic hydrolysis sample will be analyzed using the DNS 

method.   

3.4.8.3.4.1 Procedures 

1. Take 1 mL of supernatant from the four samples which are untreated, alkali 

treated, acid hydrolysis and ionic liquid treated (washed and unwashed) 

2. Add 3 mL of DNS reagent into the each test tube. 

3. Boil the samples for 5 minutes at 100
o
C. 

4. Quench the samples in the ice water bath and add 2 mL of DI water. 

5. Measure the absorbance of the samples by using UV-vis spectrophotometer at 

wavelength 540 nm and 575 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

CHAPTER 4: RESULT AND DISCUSSION 

4.1 Enzymatic Hydrolysis Using Different Pretreated Samples 

 

For enzymatic hydrolysis, derived Trichoderma reesei cellulase was used throughout the 

process.  

4.1.1 Calibration Curves of Total Reducing Sugars using DNS Method 

 

3,5-dinitrosalicyclic acid (DNS) method test the presence of free carbonyl group (C =O), 

so called reducing sugars such as glucose and fructose. This involves the oxidation of 

aldehyde functional group present in ketone. Simultaneously, DNS is reduced to 3-

amino, 5-nitrosalicyclic acid under alkaline condition since pH value of DNS reagent is 

13.2. 

 

                   Aldehyde group                                Carboxyl group 

Figure 10:  Oxidation reaction of aldehyde group to form carboxyl group 

 

 

         3,5-dinitrosalicyclic acid                                       3-amino, 5-nitrosalicyclic acid 

Figure 11: Reduction of 3,5-dinitrosalicyclic acid to form 3-amino,5-

nitrosalicyclic acid 

 

Monosaccharide group converts the oxidized form of DNS to reduced form which 

absorbs at 540 nm and 575 nm. The color conversion reaction is changed from yellow to 

red brown. UV-visible spectrophotometer will detect the chromophore of 3-amino, 5-

nitrosalicyclic acid. The absorbance value determined from the spectrophotometer 

Oxidation 

Reduction 
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shows the amount of reduced DNS which directly related to the amount of reducing 

sugars.  

Figure 11 shows the reduction of glucose (sugars) by DNS to yield 3-amino-5-

nitrosalicyclic acid which is in red-brown colored. Aromatic amino acid has a strong 

absorbance of light at wavelength 540 nm and 575 nm.  

 

 

 

 

 

 

Figure 12: Reaction mechanism for reducing sugars 

 

Figure 13 shows the calibration curves of D(+)glucose at two different wavelengths. The 

calibration curve will be used to determine the concentration of reducing sugars from the 

unknown sample by extrapolating the absorbance of the unknown sample with the 

calibration curve. Based on the graph, both wavelengths at 540 nm and 575 nm can be 

used with good confidence; RSD < 0.01.  
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Figure 13: Calibration curves for total reducing sugars using glucose as model 

compound at 575 nm using UV-Vis Spectrophotometer 

 

Figure 14: Calibration curves for total reducing sugars using glucose as model 

compound at 540 nm using UV-Vis Spectrophotometer 
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4.1.2 Enzymatic Hydrolysis using DNS Method 

 

Figure 15 shows the color of each pretreated samples before reaction while figure 16 

shows the color of the pretreated samples after the reaction. There are color changes 

after the reaction for acid hydrolysis, alkali treated and untreated pretreatment samples. 

The color intensity would depend on the amount of reducing sugars produced. Acid 

hydrolysis and alkali pretreated samples show high intensity of red brown color 

compared to untreated sample. 

The following graph (Figure 17) shows the results of reducing sugars in acid 

hydrolyzate by using DNS method from enzymatic hydrolysis of untreated, alkali 

treated and acid hydrolysis. Based on the graph, the maximum sugar yield per substrate 

for each pretreatment sample were acid hydrolysis with 5.26 mmol/mL, alkali treated 

with 4.35 mmol/mL and finally the untreated substrate with 1.73 mmol/mL. Acid 

hydrolysis pretreatment with 3% of sulfuric acid shows the good trend and had increased 

the total reducing sugar in acid hydrolyzate by time followed by alkali treated.  

Effective delignifying agent should remove a maximum of lignin and minimum of 

sugars
20

.However, for ionic liquid treated; washed samples gave the lower value of 

reducing sugar compared to the unwashed samples. Furthermore, washed sample also 

gave lower value compared to untreated samples. It shows that THPC was may not 

suitable chemical for delignification of EFB. For unwashed sample, the higher value 

obtained might be instigated by the interaction of DNS reagent with the cation in THPC. 

In addition, there would be presence of inhibitors in the reaction that consequently slow 

down or stop the analysis. Hence, further analysis to investigate the inhibitors will be 

conducted to identify the exact inhibitor. 

The percentage of saccharification or percentage of hydrolysis can be calculated by 

dividing the reducing sugars in acid hydrolyzate with total holocellulose in pretreated 

                                                             
20 Taherzadeh MJ, Karimi K (2007) Acid based hydrolysis process for bioethanol production from 

lignocellulosic material: a review. Bioresources 2: 472-499. 
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samples. Different pretreated sample will have different holocellulose contents including 

the cellulose, hemicellulose, lignin and ash. Therefore, total holocellulose for each 

pretreatment samples need to be determined before the percentage of saccharification 

can be obtained. In the other way, the percentage of saccharification (percentage of 

hydrolysis) can also be calculated by using equation provided (Ghose, 1987).  

 

Based on Figure 18, the highest percentage of saccharification for each pretreatment 

sample were obtained from acid hydrolysis with 47.37% followed by alkali treated with 

39.11% and finally untreated substrates with 15.59%. 

Kinetic rate of reaction of enzyme in acid hydrolysis is higher compared to other 

substrates. The amount of reducing sugars produced for acid hydrolysis increases with 

time. At 72 hours to 84 hours, there was only small increment for every substrate as time 

proceeds. It shows that there was a limitation of substrates for the reaction to proceed. 

For the improvement of enzymatic hydrolysis, it is necessary to optimize the critical 

process parameters such as optimum cellulase loading, temperature, saccharification 

time and substrate to liquid ratio. 

Making cellulose accessible to the enzymes is an important factor to increase the rate of 

hydrolysis
21

. Therefore, chemical pretreatment, usually alkaline and acid hydrolysis 

pretreatment are necessary before enzymatic hydrolysis. Chemical pretreatment not only 

removes lignin but also acts as a swelling agent, which will enhance surface area of the 

substrate accessible for enzymatic action
22

. 

 

                                                             
21 Phillippids, G. P. and Smith, T. K. (1995) Limiting factors in the simultaneous saccharification and 

fermentation  process for conversion of cellulosic biomass to fuel ethanol. Applied Biochemistry 

Biotechnology. 51(52):117-124. 

2222 Kim, H. T., Kim, J. S., Sunwoo C. and Lee, Y. Y. (2008) Pre-treatment of corn stover by aqueous 

ammonia. Bioresource Technology. 90:39-47. 
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Figure 15: Pretreated samples before reaction 

 

 

 

 

 

 

 

 

 

Figure 16: Pretreated samples after reaction 
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Figure 17: Total amount of reducing sugars in acid hydrolyzate using DNS 

method for every treatment from 12 hours to 84 hours 

 

 

Figure 18: Percentage of saccharification in acid hydrolyzate using DNS method 

for every treatment from 12 hours to 84 hours 
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4.1.3 High Performance Liquid Chromatography (HPLC) Method 

 

Determination of oligosaccharides and mono saccharides coming from either acid 

hydrolysis or enzymatic hydrolysis of cellulose derived from different types of chemical 

treatment can be determined using High Performance Liquid Chromatography (HPLC) 

with refractive index detector (RID). The choice of column for separation of these oligo 

– and mono – saccharides is of equal significance as retention time, resolution quality 

and limit of quantification will be highly dependent on it.  

 

4.1.3.1 Calibration Curves of Total Reducing Sugars Using HPLC Method 

Calibration curve is the general method for determining the concentration of a substance 

in an unknown sample by comparing the unknown to a set of standard samples of a 

known concentration. Figure 19 and figure 20 shows the calibration curve of D(+) 

glucose and D(+) fructose. Highest regression analyses (R
2
) were found for both 

calibration curves. Therefore, the calculation for the total amount of reducing sugars for 

HPLC method is based on the specified calibration curve.  

 

 

 

 

 

 

 

 

 

Figure 19: Calibration curve of D(+)glucose using HPLC 
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Figure 20: Calibration curve of D(+)fructose using HPLC 

 

4.1.3.2 Analysis of Enzymatic Hydrolysis using HPLC Method 

The graph (Figure 21) show the results of total reducing sugars in acid hydrolyzate by 

using HPLC method from enzymatic hydrolysis of untreated, alkali treated and acid 

hydrolysis. Based on this method, the results for all pretreated samples were not 

correlated with the results from DNS method. This is due to the improper keeping of the 

samples for analysis. Hence, the experiments need to be repeated to find the accurate 

results.  

The common sugars obtained from HPLC quantification were glucose and fructose. 

These two compounds were detected at different retention time, the time it takes for that 

specific compound to elute from the column after injection. Glucose was detected at 7.4 

minutes while fructose was detected at 5.8 minutes. Monomeric sugars are quantified by 

HPLC with refractive index detection. Enzymatic hydrolysis will produce reducing 

sugars which is hexoses sugars; glucose and fructose. Therefore, by using the standard 

calibration curve of glucose and fructose in HPLC, determination of reducing sugars 
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concentration from unknown samples can be obtained. In this method the area of the 

unknown sample will be extrapolated from the calibration curve.  

 

 

Figure 21: Total amount of reducing sugars in acid hydrolyzate using HPLC 

method for every treatment from 12 hours to 84 hours 

 

Figure 22 shows the percentage of saccharification for each pretreated samples by using 

HPLC method. Based on inaccurate results obtained from total reducing sugar, the 

percentage of saccharification will be also affected. In conjunction, to obtain the 

percentage of saccharification, the experimentation for enzymatic hydrolysis using 

HPLC method need to be repeated. 
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Figure 22: Percentage of saccharification in acid hydrolyzate using HPLC 

method for every treatment from 12 hours to 84 hours 

 

The results for enzymatic hydrolysis were different  by using DNS method 

and HPLC method. DNS method could measure any reducing compounds 

based on its react ion mechanism and widely used with its simplicity and 

inexpensive reagents. Based on the both graphs, DNS method shows the good trend of 

results with most of the pretreatment samples gave the increasing total reducing sugars 

by time. For HPLC method, the results were not accurate because of the unsuitable 

condition for samples storage before analysis. The sample aliquots need to be analyzed 

immediately or else the aliquots need to be frozen to retard the enzymatic reaction. 

Frozen supernatants need to be thawed and vortex before the HPLC analysis.  

Theoretically, HPLC allows analysis to be done in a shorter time and achieves a 

higher degree of resolution, that is, the separation of constituents is more complete and 

the results of analysis are more highly reproducible. For DNS method, it is plagued by 

long assay times, exacting dilutions and many manual manipulations such as different 

mass of filter paper strips. It is valid only at low levels of hydrolysis and generally 
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requires several iterations to ensure the valid activities measurement. Furthermore, for 

DNS method, at lower concentration of reducing sugars, it could be limit of 

quantification (LOQ) in which the analyte cannot only reliably detected but at which 

some predefined areas for bias and imprecision are met. 

 

4.2 Measurement of Cellulase Activity by using UV-Visible 

Spectrophotometer 

4.2.1 Calibration Data 

 

Figure 23 and figure 24 show the FPU assay value for glucose at different 

concentrations. The regression analysis (R
2
) in the graph gave the good confidence and 

calibration.  If the value of R
2
 is closer to 1, the variables in this study can be deduced to 

be strongly correlated. The calibration curve of FPU assay at wavelength 575 nm show 

high confidence value compared to wavelength 540 nm. Therefore,the calculation for 

the FPU value of T. reesei cellulase and A. niger cellulase were based on the wavelength 

at 575 nm 

 

 

 

 

 

 

 

 

Figure 23: Filter paper assay for saccharifying cellulose at 575 nm 
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Figure 24: Filter paper assay for saccharifying cellulose at 540 nm 

 

4.2.2 FPU Value of derived Trichoderma reesei celullase loading 

 

For FPU value of T. reesei, various concentrations of enzyme loading has been 

completed which were at 1.0 mg/mL to 20 mg/mL. Based on Figure 25, the highest FPU 

value of the cellulose was at concentrations of cellulase loading at 20 mg/mL. High 

concentration of cellulase loading should be continued to obtain the optimum loading 

(highest FPU value). It is necessary to optimize the process parameter such as optimum 

cellulase loading for the improvement of enzymatic hydrolysis. An optimum enzyme 

concentration is required to hydrolyze the cellulose into glucose and the sugar yield 

would be increased. Therefore, the effect of enzyme loading on the enzymatic 

hydrolysis of pretreated samples must be studied. However, FPU value is not a linear 

function of the quantity of enzyme loading in the assay mixture; twice the amount of 

enzyme loading would not be expected to yield twice the FPU value.   
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Figure 25: FPU value (FPU/mL) for each concentration of T.reesei cellulase 

loading 

 

 

4.2.3 Growth Profile of Saccharomyces Cerevisiae ATCC 96581 

Prior to fermentation process of cellulose using Saccharomyces cerevisiae, it is 

important to determine the population growth dynamics of bacterial culture by drawing 

the growth profile/ curve of the bacteria. The bacterial growth curve shows the rate of 

reproducibility and a lifespan of bacteria in a certain amount of media. A bacterium 

undergoes division by simple binary fission. This means that one cell grows to about 

double its original size and then splits into two genetically identical cells. Since DNA 

replication occurs before division of the cells, each new cell, called a daughter cell gets a 

complete genome (full sets of genes). Figure 26 clearly shows the mitosis process of 

Saccharomyces cerevisiae ATCC 96581 under electron microscope, OLYMPUS BH2. 

The size of the whole cell is 6µ with 6 scale division. 
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Figure 26: Mitosis of Saccharomyces Cerevisiae ATCC 96581 

 

Figure 27 shows the growth profile of Saccharomyces cerevisiae ATCC 96581. The 

optical density of the strain was analyzed using UV-visible spectrophotometer at 

wavelength 600 nm. Bacterial growth in batch culture can be modeled with four 

different phases; lag phase (A), exponential phase (B), stationary phase (C) and death 

phase (D).  

At 0 hours to 2 hours, S.cerevisiae undergoes lag phase. During lag phase, the bacteria 

adapt themselves to growth condition. It is the period where the individual bacteria are 

maturing and not yet prepared to divide. Besides, during lag phase of the bacterial 

growth cycle, synthesis of ribonucleic acid (RNA), enzymes and other molecules occur.  

Exponential phase is a period where the bacteria grow rapidly and mitosis process 

occurred. Based on the graph obtained, from 3 hours to 8 hours, it can be categorized 

under exponential or logarithmic phase. The number of new bacteria formed per unit 

time is proportional to the present population. However, exponential growth cannot 

continue indefinitely since the nutrients slowly depleted and enriched with wastes. At 10 

hours to 30 hours, due to growth-limiting factor, cell viability of S. cerevisiae begins to 

decline. There are no cell growths during that stationary phase. After 32 hours, 

S.cerevisiae run out of nutrients and died. 
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Figure 27 Growth profile of Saccharomyces Cerevisiae ATCC 96581 at 

wavelength 600 nm 

 

4.3 Spectroscopic Elemental Analysis 

4.3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 

 

The FTIR analysis for cellulose samples including reference sample of Avicel PH101, 

Alkali Lignin and microcrystalline Cellulose were done using Perkin Elmer Spectrum 

100 with Horizontal Attenuated Total Reflectance (HATR) in UTP. IR spectra (4000 

cm
-1

 – 650 cm
-1

) were recorded with a resolution of 4cm
-1

 and 16 scans per sample. The 

samples are needed to be grinded before the analysis.  

The crystallinity index (CI) of the sample was measured by two methods: 

1. The absorbance ratio from 1385 cm
-1

 (A≈1385) and 2900 cm
-1

 (A≈2900) bands 

as shown in Equation 7. 

B 

C 

D 



59 
 

   Eq. (7) 

    

 

2. The absorbance ratio from 1430 cm
-1

 (A≈1430) and 890 cm
-1

 (A≈890) bands as 

shown in Equation 8. 

 

    Eq. (8) 

 

Absorbance (quantity of light that a sample neither transmits nor reflects) can be 

determined using the following formula equation: 

    Eq. (9) 

Determination of CI using FT-IR is the simplest method but it can only give relative 

values, as the spectrum always contains contribution from both crystalline and 

amorphous regions23. 

 

4.3.2 Solid State 
13

C Nuclear Magnetic Resonance (NMR) 

 

Solid-state 
13

C NMR spectra were collected at 4.7 T with cross-polarization and magic 

angle spinning (MAS) using 200MHz Bruker ASX200. Variable amplitude cross-

polarization was used to minimize intensity variations of the non-protonated aromatic 

carbons that are sensitive to Hartmann-Hahn mismatch between protons and dilute spins 

that can cause intermolecular magnetization transfer between the low-gamma nuclei 

                                                             
23Sunkyu Park, J. O. (2010). Cellulose Crystallinity Index : Measurement Techniques and Their Impact 

on Interpreting Cellulase Performance. Biotechnology for Biofuels. 
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over long distances at higher MAS rotation rates. The 
1
H and 

13
C fields were matched at 

125.7 kHz. MAS were performed at 8000 Hz. The number of scans was 1000 with a 

relaxation delay of 5 seconds.  

 

 

Figure 28:  Solid State 
13

CNMR spectrum of Avicel PH-101. (Spectrum showing 

peaks assignment to the carbons in cellulose) 

 

The CI of the sample was determined by separating C4 region of the spectrum into 

crystalline and amorphous peaks, and calculated by dividing the area of crystalline peak 

(87 to 90 ppm) by the total of C4 peak area (78 to 90 ppm). 
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Figure 29: Sub- spectrum of C-4 peaks in cellulose. (X represents crystalline 

peaks and represents amorphous peaks) 

 

The calculation for the CI is: 

   

           Eq. (10) 

The CI of cellulose is crucial in interpreting changes in the cellulose structure after 

physicochemical and biological treatments24. 

                                                             
24Sunkyu Park, J. O. (2010). Cellulose Crystallinity Index : Measurement Techniques and Their Impact 

on Interpreting Cellulase Performance. Biotechnology for Biofuels. 
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4.4 Effect of FPU Value to the Production of Bioethanol 

 

The experiment is carried out with different Filter Paper Unit (FPU) value of derived 

cellulase, Trichoderma reesei as stated in the experiment before. The FPU value used in 

the experiment was FPU 77, FPU 128, FPU 154 and FPU 217.This experiment aimed to 

study the effect of FPU value to the production of ethanol. The sample analytes were 

analyzed by using High Performance Liquid Chromatography (HPLC) with the 

following LC conditions. 

Table 3: LC conditions for HPLC 

Column Hi- Plex Ca 

Mobile phase DI – water 

Flowrate (ml/min) 0.6 

Injection (µl) 20 

Column temperature (C) 80 

RID temperature 35 

Column Pressure (bar) 35.5 

Analysis time (mins) 45 

Separation, N 26361 

 

The common sugars obtained from HPLC quantification were glucose and fructose. 

Glucose was detected at 14.32 minutes while fructose was detected at 20.51 minutes. 

Monomeric sugars are quantified by HPLC with refractive index detection. However, 

ethanol eluent compound was detected at 23.59 minutes. SSF will produce reducing 

sugars which is hexoses sugars; glucose and fructose and ethanol itself. Therefore, by 

using the standard calibration curve of glucose, fructose and ethanol in HPLC, 

determination of reducing sugars and ethanol concentration from unknown samples can 

be obtained. In this method the area of the unknown sample will be determined from the 

calibration curve with good regression (R
2
) andconfidence; RSD < 0.01. Figure 17 to 

figure 19 show the calibration curve for glucose, fructose and ethanol. 
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Figure 30: Calibration curve of D(+) glucose 

 

 

Figure 31: Calibration curve of D(+) fructose 
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Figure 32: Calibration curve of ethanol 

 

Table 4: Effect of different FPU values on ethanol production from cellulose 

hydrolysate at optimum condition 

FPU Glucose 

consumption 

(mg/hr) 

Ethanol 

formation 

(mg/hr) 

Glucose 

concentration 

(mg/mL) 

Ethanol 

concentration 

(mg/mL) 

Fermentation 

efficiency 

(%) 

77 0.08 0.01 4.73 0.52 25.94 

128 0.08 0.02 4.61 1.14 58.66 

154 0.05 0.04 3.25 2.36 192.28 

217 0.03 0.05 1.52 3.10 947.12 
 

Figure 33 shows the graph of total glucose produced from the separate saccharification 

and fermentation (SSF) process from 24 hours to 60 hours. Generally, as the FPU value 

increased, the amount of glucose was reduced as the times were increasing. The highest 

FPU value gives the highest reduction of glucose from time to time compared to the 

sample with the lowest FPU value. For example, at 217 FPU value, the lowest amount 

of glucose is at 60 hours with 1.52 mg/mL followed by 2.80 mg/mL at 48 hours, 3.95 
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mg/mL at 36 hours and 5.64 mg/mL at 24 hours. Higher FPU value gives the higher 

amount of derived cellulase, trichoderma reesei and thus it will produce large amount 

glucose since the cellulose is changed into glucose with the help of cellulase. 

 

Figure 33: Glucose consumption by S. cerevisiae at different FPU values 

incubated at pH 4 and rate of agitation 100 rpm 

Figure 34 shows the amount of ethanol production from the fermentation process. From 

the graph, it is clearly shown that high FPU value gives massive amount of ethanol 

production compared to lower FPU value. The highest amount of ethanol produce is 

3.10 mg/mL which is at 217 FPU value followed by 2.41 mg/mL at 154 FPU value and 

2.36 mg/mL at 217 FPU value. Furthermore, figure 22 shows the graph of ethanol yield 

against time. The ethanol yield was increased as the FPU value increased with time. The 

highest amount of ethanol yield was at 217 FPU (60 hours) with 947.12 followed with 

242.91 at 217 FPU (48 hours) and 192.28 at 154 FPU (60 hours).  

From these two graphs, it has been investigated that the amount of FPU value would 

affect the production of ethanol. High FPU value will give high amount of glucose 

produced as the glucose will be used by bacteria, Saccharomyces cerevisiaeas nutrients 

for fermentation process to produce ethanol. Initially, the optical density used for each 

sample is 1.0 and the value was increased to 1.72 (24 hours), 2.04 (36 hours), 2.47 (48 
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hours) and 2.89 (60 hours).  Hence, as time increases, the amount of glucose produced 

decreased by time to time as glucose will be used up by the bacteria to produce ethanol 

and give high amount of ethanol from time to time. In a nutshell, it has been proved that 

the FPU value will affect the amount of ethanol produced as the highest FPU value gives 

the highest amount of ethanol yield. 

 

Figure 34: Ethanol production from cellulose hydrolysate at different FPU 

values incubated at pH 4 and rate of agitation 100 rpm 

 

4.5.1 Effect of pH Value to the Production of Bioethanol 

 

The effect of different initial pH on glucose consumption by S. cerevisiae ATCC 96581 

and ethanol yield using Avicel pH -101 are shown in Figure 23 and 24. From the graph, 

the highest ethanol yield was obtained at pH 4 with maximum ethanol concentration of 

3.76 mg/mL followed by 3.17 mg/mL at pH 6 at 60 hours incubation. The respective 

ethanol formation for both these pH were 0.06 (pH 4) and 0.05 (pH 6) as showed in 

figure 24. Fermentation of cellulose hydrolysate at initial pH 7 and pH 8 showed the 

lower ethanol concentration corresponding to ethanol formation of 0.04 mg/hr for both 

pH respectively. It was happen because the bacteria became inactive or less active as the 

alkilinity of the medium is high.  
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Table 5: Effect of different pH values on ethanol production from cellulose 

hydrolysate at optimim condition 

 

Figure 35 also showed that glucose consumption rate was the highest at initial pH 4 in 

which it showed highest glucose utilization over 60 hours of incubation. Besides, Figure 

36 has showed that at initial pH 4, the ethanol concentration was the highest which is 

3.76 mg/mL followed with pH 6 and 7 which were 3.17 mg/mL and 3.11 mg/mL 

respectively. The fermentation efficiency was calculated based on the ratio of ethanol 

yield obtained against theoretical maximum ethanol yield. The highest ethanol 

fermentation efficiency was obtained at pH 4 with 599%.  The high fermentation 

efficiency value may be due to the presence of other simple sugars such as mannose and 

arabinose in the hydrolysate, thus contribute to higher concentration of ethanol obtained 

in the process. As fermentation of cellulose hydrolysate at pH 4 showed the highest 

ethanol production, hence, this pH value was used in all the following experiments. 

pH Glucose 

consumption 

(mg/hr) 

Ethanol 

formation 

(mg/hr) 

Glucose 

concentration 

(mg/mL) 

Ethanol 

concentration 

(mg/mL) 

Fermentation 

efficiency 

(%) 

4 0.07 0.06 1.23 3.76 599.32 

6 0.06 0.05 0.55 3.17 439.59 

7 0.11 0.04 0.56 3.11 406.66 

8 0.11 0.04 0.55 3.08 341.48 
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Figure 35: Glucose consumption by S.cerevisiae at different initial pH incubated 

at 30
o
C and agitated at 100 rpm 

 

Figure 36: Ethanol production from cellulose hydrolysate at different initial pH 

incubated at 30
o
C and agitated at 100 rpm 
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The effect of initial pH has been reported to show a significant influence on 

fermentation, mainly on yeast growth, fermentation rate and by-product formation 

(Chaudary and Qazi, 2006; Sheela et al., 2008; Manikandan et al., 2008). The results 

obtained from this study shows that the most suitable initial pH value for ethanol 

production from cellulose was pH 4. It was found that increment of pH value was able to 

reduce ethanol production rate and glucose consumtion rate. This current study is in 

agreement with other studies reported that the growth of yeast and fermentation process 

performs best in natural or slightly acidic environment (Noor et al., 2005; Manikandan 

et al., 2008). 

This study indicates that ethanol production at higher pH value was lower. The lower 

ethanol productivity may be due to lower metabolic rate of yeast cell used (Mariam et 

al., 2009). Increment of pH value will increase the permeability of the cell membrane 

resulted reduction of the rate of sugar fermented enzyme production. The lower ethanol 

yield and sugar conversion obtained at higher pH value were also probably due to the 

formation of undesired product suchas glycerol and organic acid during the fermentation 

process. 

4.6 Effect of Mass of Substrate to the Production of Bioethanol 

 

The effect of different mass loading of cellulose on glucose consumption by S. 

cerevisiae and ethanol production from cellulose hydrolysate is shown in Figure 37 and 

Figure 38. As referred to Figure 38, the highest ethanol concentration was 4.63 mg/mL 

obtained when the mass loading of cellulose is 5.0 g followed by 3.76 mg/mL at mass 

loading of 2.0 g which corresponded to an ethanol formation of 0.07 mg/hr and 0.06 

mg/hr respectively. Ethanol production is lower at lower mass loading of cellulose. 

Figure 37 shows the amount of glucose consumed by the bacteria in producing ethanol. 

From the graph, it was clearly shown that at higher loading of cellulose, more glucose 

has been consumed compared to lower loading of cellulose. The decrement for amount 

of glucose also higher at higher mass loading of cellulose from time to time which is 

from 14.86 mg/mL (24 hours) to 11.21 mg/mL (60 hours). 
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Table 6: Effect of different mass loading of cellulose on ethanol production 

from cellulose hydrolysate at optimum condition 

Mass 

loading of 

cellulose 

(g) 

Glucose 

consumption 

(mg/hr) 

Ethanol 

formation 

(mg/hr) 

Glucose 

concentration 

(mg/mL) 

Ethanol 

concentration 

(mg/mL) 

Fermentation 

efficiency 

(%) 

0.5 0.11 0.02 1.14 1.33 148.53 

1.0 0.14 0.05 1.73 2.89 182.89 

2.0 0.41 0.06 4.95 3.76 228.13 

5.0 0.53 0.07 11.21 4.63 326.65 

 

Based on the calculation, the fermentation efficiency is higher at 5.0 g of cellulose 

loading followed by 2.0 g of cellulose loading with 326% and 228% respectively. 

Lowest cellulose loading (o.5g) gave the lowest fermentation efficiency which was 

148.53%. 

During hydrolysis, the released sugars inhibit the cellulase activity which needs 

cellulose loading to ensure the higher production of ethanol. The higher the cellulose 

loading, the higher ethanol production as high amount of cellulose can be converted to 

sugars and directly fermented by bacteria to produce ethanol. 
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Figure 37: Glucose consumption by S. cerevisiae at different mass loading of 

cellulose incubated at pH 4 and rate agitation 100 rpm 

 

 

Figure 38: Ethanol production from cellulose hydrolysate at different mass 

loading of cellulose incubated at pH 4 and rate of agitation 100 rpm 
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4.7 Calculation for Ethanol Production 

 

Example of ethanol production of 217 FPU value at 24 hours 

Step 1 

Determine glucose concentration: 

Area of glucose (flask 1) = 1598230 

Area of glucose (flask 2) = 1536329.6 

From calibration curve of glucose; 

Y = 3622122.2118 X -188302.7885 

Average concentration, X = 4.85 mg/mL 

Step 2 

Determine ethanol concentration: 

Area of ethanol (flask 1) = 121414.3 

Area of ethanol (flask 2) = 148162.9 

From calibration curve of ethanol; 

Y = 1345854.3268 X – 34604.3252 

Average concentration, X = 0.74 mg/Ml 

Step 3 

Assume 100% of ethanol conversion: 

Molecular weight of glucose:180.16 g/mol 

 

2 (0.00269 mol/L) = 0.005384 mol/L 

Step 4 

Find amount of ethanol produced: 

Molecular weight of ethanol: 46.06844 g/mol 
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Step 5 

Ethanol production rate: 

                                                                                                       

Eq. (11) 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

 

Extensive research during the past decade has shown that simultaneous Saccharification 

and fermentation (SSF) is a promising way to biochemically convert cellulose to 

ethanol. The process combines cellulose hydrolysis and fermentation in one step. 

Because glucose consumed by the hydrolysis process is immediately consumed by the 

ethanologenic microorganism, only very low levels of fructose and glucose are observed 

in the system. This reduces cellulase inhibition, which in turn increases sugar production 

rates, concentrations, and yields, and decreases enzyme loading requirements. The 

number of vessels required for SSF is reduced compared to separate hydrolysis and 

fermentation (SHF), because hydrolysis and fermentation and are performed in the same 

bioreactor, resulting in capital cost savings. Furthermore, the presence of ethanol during 

SSF reduces the likelihood of contamination, especially in continuous operations of 

commercial interest. The delignified EFB fibres after acid hydrolysis has the highest 

reducing sugar in acid hydrolyzate compared to the others pretreated samples by using 

DNS method. The results for enzymatic hydrolysis using HPLC method were inaccurate 

because of unsuitable storage condition. Trichoderma Reesei cellulase gave highest FPU 

value for highest concentrations of cellulase loading. Suitable fermentation conditions 

are crucial in producing optimum ethanol yield from cellulose hydrolyzate. In this study, 

the optimum ethanol yield from cellulose (Avicel Ph 101) which ranges from 3.1 

mg/mL to 4.6 mg/mL can be achieved at pH 4, 217 FPU, 5.0g of cellulose loading with 

an agitation rate of 100 rpm for 60 hours incubation. Further study on other parameters 

such as different temperatures, agitation rate and types of feedstock in Simultaneous 

Scarification and Fermentation (SSF) will be carried out to make ethanol production 

from palm oil biomass is produce in economical viable and in sustainable way. 
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APPENDICES 

 

Enzymatic Saccharification Process 

 

 

 

 

  

 

 

Figure 39: Preparation of DI water at pH 4.0 

 

 

 

 

 

 

 

 

Figure 40: Pour DI water into the flasks 

 

 

 

 

 

 

Figure 41: Autoclave the samples 



77 
 

 

 

 

 

 

 

 

 

 

 

Figure 42: Add Trichoderma reesei into the flask 

 

 

 

 

 

 

 

 

  

 

Figure 43: Incubate and shake the flasks 
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Figure 44: Take out the sample and centrifuge 

 

 

 

 

 

 

 

 

 

 

    Figure 45: Analyze the sample with HPLC 
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Fermentation Process 

 

 

 

 

 

 

 

 

 

 

Figure 46: Preparation of Inoculum (fresh culture) 

 

 

 

 

 

 

 

 

 

 

Figure 47: Incubate and shake the culture for 24 hours 
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Figure 48: Add Avicel pH-105 into the flask contains autoclaved DI water 

 

 

 

 

 

 

 

 

 

 

Figure 49: Close the flask tightly with cotton wool and aluminum foil 
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    Figure 50: Autoclave the samples 

 

 

 

 

 

 

 

 

 

 

   Figure 51: Add Saccharomyces cerevisiae into the flasks 
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Figure 52: Incubate and shake the samples for 72 hours 

 

 

 

 

 

 

 

 

 

Figure 53: Put the samples into the vials and analyses using HPLC 
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