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ABSTRACT 

 

 

Advanced Oxidation Process (AOP) is commonly known as one of the chemical 

treatment designed specifically to remove unwanted materials or waste, either in the 

form of organic or inorganic materials. This technology is commonly being utilized 

in the waste water treatment industry by performing complex oxidation reactions in 

order to breakdown the biologically toxic materials. Basically, this project will be 

conducted based on a specific method of advanced oxidation process (AOP) namely 

Fenton’s oxidation with the aid of photolysis on one of the rare amine wastes, 

Diisopropanolamine (DIPA) based on different light intensities as the experimental 

parameters.  

The major motivation for the author to perform this study is to find out the effect of 

degradation efficiency of DIPA under different light radiation. The author has 

constructed a simple experiment setup for Photo-Fenton oxidation process with light 

radiation available where the reaction system will be placed directly under the light 

source. Standard solutions for each reagent were also prepared with proper 

procedures by the author. Prior to the experiments, the author has produced a 

calibration curve for concentration estimation of the processed samples. Degradation 

efficiency is mainly determined by Chemical Oxygen Demand (COD) by utilizing 

COD digester and Hach® DR 5000.  

Experimental work started with optimization of hydrogen peroxide (H2O2) under 

both light sources, 1.0 M of hydrogen peroxide gave the highest COD removal in 

percentage instead of 0.01 M and 0.1 M in both cases. Then, optimization of DIPA 

concentration is carried out for both light intensities. 300 ppm of DIPA solution 

became the most optimum concentration for 500 Watt environment; whereas 500 

ppm for 300 Watt light radiation. The most optimum systems were compared for the 

most efficient light intensity for DIPA degradation under Photo-Fenton oxidation. 

300 Watt light source gives the highest COD removal percentage of 60.64% and said 

to be the higher efficiency light condition for such oxidation process. 
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CHAPTER 1.0 

PROJECT BACKGROUND 

 

 

1.1 General Background Study 

Waste products are commonly seen in most of the chemical process industries and 

special treatments are required on these produced wastes before discharging or 

releasing them to the environment or even decomposing them. Performing waste 

treatment is not only being responsible to the respective industries but also as a 

fulfilment of the environmental rules and regulations. For the past few decades, 

conventional methods of waste treatment have been used in order to pre-treat 

unwanted or harmful waste products. For example, electrolysis is used to separate 

different materials using electrical charges. Although these commercial methods are 

widely used in the industries, however most of the treatment processes only managed 

to achieve the basic level or in another words primary or secondary separation of 

unwanted wastes from the primary substance. Studies shown these waste treatment 

methods hardly managed to proceed further into microscopic level in removing 

undesired waste materials. In the year 1987, the technology of Advanced Oxidation 

Process (AOP) has been introduced to the industry by Glaze et al. (2003)
 
which 

utilizes the principle of possible generation of hydroxyl radicals (•OH) in a sufficient 

quantity for better purification
 
(Oppenländer, 2003). The major difference between 

AOP and conventional oxidation process is the generation of active hydroxyl radical  

group (•OH) which will lead to a chain reaction on the oxidation process instead of 

Redox reaction (reduction-oxidation process) which involves losing or gaining of 

valence electrons between two (2) or more elements. Since AOP portrays better 

capability in driving oxidation process than others, it is then being categorized as a 

tertiary treatment in waste product removal process in which most organic and 
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inorganic contaminants can be eliminated successful (Oppenländer, 2003). 

Applications of AOP are mostly presented in Europe and United States (Oppenländer, 

2003) compared to other developing contraries, this might due to the reason of higher 

operating cost which relatively reduces gross revenue. However, there are still some 

developing contraries like China (Oppenländer, 2003) interested in implementing 

AOP technology for enhanced waste treatment. Due to the fact that China is 

developing fast not only in manufacturing industry but energy production 

technologies as well. Along with the rapid development, local legislative authorities 

tend to stringent the rules and regulations especially in waste water discharge 

covered under environmental section. In addition, the increasing interest in reusing 

and recycling water resources also contribute to the development of AOP 

technologies in countries like China. 

  

1.2 Problem Statement 

Since 1980’s, Advanced Oxidation Process (AOP) has been introduced to enhance 

the efficiency of amine waste and wastewater treatment. Even though the technology 

of AOP is available in treating amine waste, however a common problem is noticed 

which is that most of the existing studies are only restricted to basic Fenton’s 

oxidation. Whereas Fenton oxidation process with the assistance of photolysis or 

known as Photo-Fenton process is rarely to be seen. Other than that, advanced 

oxidation treatments were normally covered limited range of amine waste such as 

Monoethanolamine (MEA) and Diethanolamine (DEA). No significant findings or 

researches were done based on the degradation efficiency of another type of 

secondary alkanolamine known as Diisopropanolamine (DIPA) by utilizing Photo-

Fenton reaction. In addition, experimental parameter such as different intensities of 

light irradiation, especially using visible light was not being taken into serious 

considerations. On the opposite, common experimental parameters for example 

initial dosage of Fenton’s reagent, pH condition of the system and temperature were 

conventionally being studied for the efficiency effect of amine degradation. Other 

problems have also surfaced which related to the optimization of experimental 

parameters; such as suitable dosage of hydrogen peroxide as oxidizing agent, initial 

DIPA sample waste concentration to be treated for different light intensities for the 
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process of DIPA degradation using Photo-Fenton oxidation. These relevant problems 

will lead to more concrete research objectives for the project development.  

 

1.3 Objectives of Study 

A few ultimate objectives which have to be achieved at the end of this research study 

are as follow. 

 

I. To optimize the most suitable parameter configurations for each light 

intensity to degrade Diisopropanolamine (DIPA) by utilizing Photo-Fenton 

oxidation process. 

 

II. To evaluate and compare the degradation efficiency of Diisopropanolamine 

(DIPA) under different light intensities in Photo-Fenton oxidation process 

based on the optimized experimental parameter. 

 

1.4 Scope of Project Work 

Under this project study, the scope of work can be summarized as follow in order to 

construct a more concrete research boundary: 

a) Type of amine waste : Secondary amine (Diisopropanolamine, DIPA) 

b) Experiment Temperature range : Ambient temperature ( ≈ 25-27
o
C) 

c) Experiment Pressure : Atmospheric pressure (1 atm) 

d) Initial Fenton’s reagent dosage range : 0.1 Molar 

e) Concentration of oxidizing reagent, H2O2 : 0.01 M, 0.1 M and 1.0 M 

f) Concentration of DIPA model waste : 500ppm, 300ppm and 100ppm 

g) Light irradiation power : 300 and 500 Watts  

h) Solution pH value range : 3 (acidic condition) 

i) Reaction duration : 60 minutes (with 15minutes sample test interval) 
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1.5 Feasibility of Project Study 

This project work will be performed with the usage of Fenton’s reagent as the 

catalyst which known as Iron (II) Sulphate Heptahydrate (FeSO4.7H2O) to carry out 

Fenton’s oxidation process. Besides, the experiment has to be conducted based on 

several constant parameters such as reaction system temperature which is suggested 

to be at ambient temperature, between 25-27
o
C as well as initial concentration of 

Fenton’s reagent in order to amplify the significance of effects from the experimental 

parameters.  

 

1.6 Relevancy of Project 

Advanced Oxidation Process (AOP) is still uncommonly utilized in the industry due 

to high operating cost although the effectiveness is relatively higher than other 

controversial waste treatment methods. This research study can serves as a stepping 

stone for further studies on the parameter properties which will affect the quality of 

photolysis assisted Fenton’s oxidation process. In return, this may help in expanding 

the usage of AOP on waste treatment processes including waste water treatment in 

the future.  
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CHAPTER 2.0 

LITERATURE REVIEW 

 

 

2.1 Advanced Oxidation Process (AOP) 

Advance Oxidation Process (AOP) is another level of oxidation process comparable 

to other commercial oxidation reactions or waste treatment methods. This technology 

is being introduced by Glaze et al. (2003)
 
by suggesting the possibility of producing 

highly reactive hydroxyl radicals (•OH) which will actively react with the 

surrounding substances causing a chain reaction. Propagation of hydroxyl radicals 

will lead to breakdowns of unwanted waste particles in the form of other less harmful 

waste products such as carbon dioxide (CO2), water (H2O) and other mineral salts. 

The process involved can be known as mineralization. Advanced Oxidation Process 

(AOP) is also called as an in-situ generation process, involving the generation of 

hydroxyl radicals (•OH) as mentioned above. This technology manages to accelerate 

and improves the non-selective oxidation which leads to the possibility of destructing 

a wider range of organic as well as inorganic contaminants in the solution
 
(Kim, 

2004). This particular achievement is barely feasible by biological waste treatment. 

Due to its relatively high oxidative capability and efficiency, AOP is then being 

categorized as one of the popular technique used in tertiary waste treatment 

(Oppenländer, 2003) which is another advanced step to remove stubborn or micro-

sized contaminants that cannot be eliminated during the secondary waste treatment 

(Siemens, 2011).  In order to perform advanced oxidation process (AOP), there are 

several chemical principles that need to be taken into consideration. These principles 

can be then segregated into three (3) parts (Oppenländer, 2003): 
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I. Formation of hydroxyl radicals (•OH) – Initiation  

II. (•OH) attacks and break molecules into smaller fragments – Propagation  

III. (•OH) recombine together and form water molecules (H2O) – Termination 

Ability of generating hydroxyl radicals (•OH) brings huge advantage to the 

Advanced Oxidation Process (AOP) due to its high oxidation power. High value of 

oxidation power makes these highly active radicals more powerful as an oxidizing 

reagent as well as non-selective chemical oxidant. A general comparison of the 

oxidation power among several oxidation species is shown on Table 2.1.1 

 

Table 2.1.1 Relative Oxidation Power of Oxidizing Species 

Source: Edward, 1987 

 

 

As shown in the table, relative oxidation power of hydroxyl radical (•OH) is 

considered high in comparison with other common oxidizing species used in AOP 

such as Ozone (O3) and hydrogen peroxide (H2O2). 

In general, different types of Advanced Oxidation Processes (APOs) are used 

for waste treatment (H. Movahedyan & Assadi, 2009) such as follows: 

2.1.1  Ozone (O3) 

Ozone (O3) is applied as an oxidation reagent in the oxidation process for degrading 

the organic compound in alkaline condition (R. Andreozzi, 1999). Ozone (O3) can be 

generated manually using ozone generator by taking air or oxygen (O2) as feed 

component. In this process of AOP, ozone can react with targeted organics either 

directly or indirectly via decomposition and formation of hydroxyl radicals. 
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O3 + H2O + OH
-
  •OH + O2 + HO2•         (2.1) 

2.1.2 Ozone (O3) + Hydrogen Peroxide (H2O2) 

Besides applying ozone alone in the process, it can be combined with other oxidant 

such as hydrogen peroxide (H2O2) in the ozone solution in order to enhance ozone 

decomposition and accelerate the formation of hydroxyl radicals (•OH)
 

(R. 

Andreozzi, 1999). Furthermore, this acceleration process can even be enhanced by 

increasing the pH of the solution by making it more alkaline. In this case, hydroxide 

ion (OH
-
) acting as the initiator: 

OH
-
 + O3  O2 + HO2

-
           (2.2) 

HO2
- 
+ O3  HO2• + •O3

-
           (2.3) 

HO2• ↔ H
+
 + •O2

-
            (2.4) 

•O2
- 
+ O3  O2 + •O3

-
             (2.5) 

•O3
-
  + H

+ 
 HO3•            (2.6) 

HO3•  •OH + O2            (2.7) 

•OH + O3  HO2• + O2            (2.8) 

 2.1.3 Photooxidation (with UV source) 

Photooxidation is known as an oxidation process with the existence of light radiation. 

Due to the fact that conventional ozone or hydrogen peroxide oxidation does not 

completely oxidize the organic compound into carbon dioxide (CO2) and water (H2O) 

(Kim, 2004). Thus, in order to overcome this problem, ultraviolet radiation (UV) is 

being introduced. As the organic compound absorbs energy from the UV source, it 

becomes more reactive (exited state) towards chemical oxidants which in return 

fasten the process of oxidation.  

O3 + H2O + hv  H2O2 + O2           (2.9) 

H2O2 + hv  2•OH          (2.10) 

 2.1.4 Photocatalysis (with TiO2) 

In extension to photooxidation process, it can be further enhanced by applying solid 

metal catalyst. The major function of UV radiation is to excite the metal catalyst in 

order to form electron-hole as well as free electrons on the surface of the catalyst 

(Kim, 2004). An opposite positive-negative charge is created as the electron-hole is 
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formed, this will then promote the process of redox reaction which involves electrons 

transfer. In common, the preferable catalyst will be titanium dioxide (TiO2) due to 

several benefits. Titanium dioxide is firstly economical to obtain, more importantly is 

its high stability below various conditions as well as its high potential in producing 

free radicals that accelerates the oxidation process. An example of photocatalysis is 

shown in the figure below. 

 

Figure 2.1.1 Thin Film Fixed Bed Reactor (TFFBR) for Photocatalysis 

Source: A. Vogelpohl. and S.M. Kim, 2004 

 

2.1.5 Electron Beam Irradiation (E-beam irradiation) 

This technique works based on the principle of releasing high energy and free 

electrons in order to create excited state species and desired free radicals. These free 

radicals function as the same as those mentioned above which is to oxidize the 

organic and inorganic compounds, resulting in formation of by-products such as CO2 

and H2O (C.L. Duarte, 2002). Generally, E-beam irradiation produces aqueous 

electrons (e
-
aq) and hydroxyl radical (•OH) in approximately equal concentration 

respectively. The aqueous electron (e
-
aq) undergoes single electron transfer with 

various organic compounds producing hydroxyl radicals. Moreover, the process can 

be exampled with the reaction as follow (Cooper et al., 1992):  

e
-
aq  +  ROH  R•  +  •OH        (2.11) 
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Figure 2.1.2 E-beam Irradiation Box 

Source: Duarte et al., 2002 

 

2.1.6 Sonolysis 

Sonolysis utilizes ultrasonic irradiation by introducing ultrasonic sound energy with 

the range of frequency from 15kHz to 1MHz (Kim, 2004). By applying ultrasonic 

energy, electrohydraulic cavitation will then be induced for the oxidation process to 

take place. Water molecules will produce desired hydroxyl radicals which needed for 

the oxidation process as well as hydrogen atom by undergoing thermal dissociation  

(Capelo, Lavilla, & Bendicho, 2000). 

H2O  ●OH + H                                             (2.12) 

One of the benefits in introducing sonolysis is that it eliminates the necessity 

of chemical oxidants, high temperature and pressure conditions for degradation of 

organic compounds (J.L. Capelo, 2000). 

 

2.2 Fenton’s Reaction and Photo-Fenton Process 

 2.2.1 Fenton Reaction 

Fenton’s treatment was being founded by M.J.H. Fenton back in the year 1894 when 

this technology is proven where ferrous ion (Fe
2+

) actually promotes oxidation 

process with the presence of hydrogen peroxide (H2O2) (Montserrant Pѐrez, 2002). 

However, Fenton’s reaction operates based on the exact same concept of oxidation 
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which is to generate highly reactive hydroxyl radicals (•OH). The production of 

hydroxyl radicals can be summarized into a chemical equation as shown below. 

Fe
2+

 + H2O2  Fe
3+

 + OH
-
 + •OH        (2.13) 

Hydroxyl radicals are generated once the H2O2 is being added into a ferrous 

salt solution containing Iron (II) ions (Fe
2+

). A common salt solution will be used as 

the reagent namely Ferrous Sulphate (FeSO4) due to its high abundance and it is a 

non-toxic element (Stasinakis, 2008). The production of hydroxyl radicals from 

Fenton reagent is said to be a relatively easier method since no specific reactants and 

special apparatus are needed in order to carry out this process (R. Andreozzi, 1999). 

In addition, hydrogen peroxide (H2O2) is chosen because it is easy to be handled and 

manage to breakdown contaminants into environmentally benign products (Jordi 

Bacardit, 2007). There are several conditions that needed extra attention while 

carrying out the process of Fenton’s reaction in order to increase the effectiveness of 

the overall oxidation process. Studies show that the suitable pH condition for 

Fenton’s reaction is in acidic condition with the range of pH 2-4. Acidic condition 

tends to accelerate the production of hydroxyl radicals (•OH) as well as the 

degradation rate of the organic or inorganic compounds. Apart from that, Fenton’s 

reaction does not require specific environmental condition such as high pressure and 

high temperature (HPHT) for the oxidation process to take place. Thus, ambient 

temperature variance from 25
o
C to 28

o
C and the pressure of 1 atm is sufficient 

enough for Fenton’s reaction to perform which indirectly became one of its 

advantages compared to other Advanced Oxidation Processes (AOPs).  

Fenton’s reagent is being widely used due to its effectiveness on degrading 

wide range of contaminants in waste treatment processes including aromatic 

hydrocarbons, amines, phenol, polycyclic aromatics, alcohol, mineral oils and etc. 

(Lou and Lee, 1995). Its effectiveness can also be proved by the ability to completely 

remove unwanted contaminants in a short period of time, approximately 10minutes. 

Figure below shows the illustration of a Fenton’s process. 
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Figure 2.2.1 Schematic System of Fenton's Reaction 

Source: Komex H2O Science, 1998 

 

 2.2.2 Photo-Fenton Reaction 

Efficiency of Fenton oxidation in terms of COD removal percentage is strongly 

depends on several operating conditions. As the research carried out before, COD 

removal efficiency by oxidation increases when the system is under acidic condition 

with pH value range from 2-4. However, COD removal efficiency tends to decrease 

as the reaction pH increases from 4-7 or in alkaline conditions due to decomposition 

of hydrogen peroxide as the oxidizing agent (Hwang, 2000). In addition, based on 

the study of Fenton oxidation on non-biodegradable landfill leachate, research found 

out that the dosage of Fenton reagent plays an important role as well. COD removal 

efficiency is satisfactory until Fenton dosage exceeded 500 mg/L (Hwang, 2000). 

Besides than operating parameters, the initial condition of the sample waste does 

affect the outcome of the entire Fenton process. A research on Fenton oxidation of 

natural gas plant wastewater shows that pre-treated wastewater gives higher COD 

removal in terms of percentage compared to partially treated and untreated waste 

sample (Abdul Aziz Omar, 2010).  
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Fenton’s process not only can be a stand-alone process, but it can also be 

assisted with other process like photolysis. With the application of UV-Visible light 

irradiation, the process is then known as Photo assisted Fenton process or Photo-

Fenton process. As the availability of UV-VIS irradiation, the rate of degradation for 

organic or inorganic contaminants are strongly accelerated by forming more 

hydroxyl radicals (•OH). In photo Fenton process, Iron (III) complexes (Fe
3+

) can 

also be used other than iron (II) alone. The process steps of photo-Fenton reaction 

can be summarized in Figure 2.2.3. 

 

Figure 2.2.3 Reaction Path of Photo-Fenton Process 

Source: A. Vogelpohl. and S.M. Kim, 2004 

 

Figure 2.2.2 COD removal (%) on different treated samples 

Source: A.A.Omar, R.M.Ramli and Puteri 
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Fe(III) complexes will absorb UV energy from the irradiation of UV-VIS 

light source and go through photolysis by producing Fe(II) ions (Fe
2+

) and hydroxyl 

radical (•OH)  respectively.  

Fe(OH)
2+

  + hv    Fe
2+

  +  •OH        (2.14) 

Photolysis of the Fe(III) complexes will drive to the production or 

regeneration of Fe(II) reagent which used to further produce hydroxyl radicals for 

chain oxidation processes (Kim, 2004).  

Fe
2+

 + H2O2  Fe
3+

 + OH
-
 + •OH        (2.15) 

Since the existence of Fe(III) ions have the tendency to form sludge by precipitation 

if Fe(III) is in excess, one of the solution to this problem is to recycle the Fe(III) due 

to the fact that Fenton reaction is being catalysed by Fe(III) as well in this case.  

 

Figure 2.2.4 Example of Photo Fenton Pilot Plant 

Source: A. Vogelpohl. and S.M. Kim, 2004 

 

Photo-Fenton oxidation is believed as one of the cheaper advanced oxidation 

process to treat wastewater compared to other methods like ozone, ozone/UV and 

UV/H2O2 systems. Research has been carried out to study and compare the 

difference between energy cost in terms of usage and chemical cost for various AOP 

including Photo-Fenton oxidation. Table below shows the distribution of degradation 

time (hours) and costs for each process (Fallmann, 1997). 
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Table 2.2.1 Distribution of degradation time and costing 

Source: Y.W. Kang and K.Y. Hwang 

 

 

By utilizing Photo-Fenton oxidation, the degradation time managed to be cut 

down to 2.5 hours instead of the maximum degradation time which is 6 hours in total. 

In addition, the degradation efficiency is sufficiently high with approximately 60% in 

TOC removal in such short period of degradation time. Furthermore, the total costing 

which consists of chemical cost and energy cost for Photo-Fenton oxidation is 

lowered by few folds in comparison with other systems.  

 

2.3 Amine Waste and Diisopropanolamine (DIPA) 

In general, amine is known as a group of basic organic components derived from 

ammonia (NH3). However, amine can be classified into different categories such as 

primary amine which one (1) of the hydrogen atoms is replaced by alkyl group (-R) 

or free radicals, secondary amine is where two (2) hydrogen atoms are replaced and 

tertiary amine is where all three (3) hydrogen atoms are substituted 

("Diisopropanolamine," 2013). One of the common functions of amine is to act as 

reducing agent which can be easily oxidized by other oxidizing agent. It is also being 

widely used in the organic synthesis of polymerization catalyst 

("Diisopropanolamine," 2013). Diisopropanolamine (DIPA) is known as one of the 

secondary alkanolamines available in the industry. Two (2) hydrogen atoms of the 

ammonia (NH3) compound are replaced with [(CH3)2CH] groups. Thus, DIPA 

portrays with a chemical formula of [(CH3)2CH]2NH as shown in the figure below. 
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Figure 2.3.1 Chemical Formula of DIPA 

Source: Guidechem, 1993 

 

Physical and chemical properties of DIPA such as physical states as well as 

boiling, melting points are available in most of the technical data sheets. DIPA exists 

in the form of liquid state in ambient condition with a melting point of -61
o
C and 

boiling point of 84
o
C. In short, temperature condition should be maintained below its 

boiling point while performing any kind of experiment involving DIPA to avoid 

changes in its properties. Diisoproponalamine is a colourless solution which identical 

to normal drinking water, however it has an amine-like odour which makes the 

differentiation more obvious. DIPA functions similarly as commercial amine 

products which serve as a catalyst for polymerization process. Sometimes, DIPA is 

considered as undesired product due to its tendency of polymerizing other substances, 

especially monomers such as styrene. Health, Safety and Environment issues are 

important when dealing with DIPA. Although there is no significant effect of DIPA 

on humans’ health in terms of toxicity and exposure, however DIPA is relatively 

hazardous to the aquatic life. Thus, DIPA is not being disposed to the environment; 

instead it is normally being recycled whenever possible due to its non-

biodegradability property. In addition, another method of dealing with DIPA disposal 

can be done by dissolving it in combustible solvents and burn in an enclosed furnace. 

("Diisopropanolamine," 2013) 

 

2.4 Oxygen Demand Testing 

Conventionally, there are many methods in determining the efficiency of waste 

treatment or the level of pollution for the subjected waste product. One of the most 

important parameter in determining pollution amount is via oxygen demand.  

Various measurements can be carried out in order to identify the level of 
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contamination. For example, Chemical Oxygen Demand (COD), Biochemical 

Oxygen Demand (BOD) and Total Organic Carbon (TOC) measurements are 

commonly used especially in waste treatment industries in order to determine the 

degradation efficiency of the waste elements. In definition, Chemical Oxygen 

Demand (COD) is the total amount of oxygen (O2) is being consumed when the 

substances are being oxidized by an oxidizing agent, (Laws, 2000) . In order to carry 

out COD test, a strong chemical oxidant is being used in an acidic condition and heat 

is eventually applied for duration of 120 minutes by using a COD digester. This 

process will then promote oxidation reaction from happening to the organic carbon 

available in the pollutants and converting them into other waste products such as 

carbon dioxide (CO2) and water (H2O). The result of COD measurement can be 

obtained by titration process with a titrating reagent known as Ferrous Ammonium 

Sulphate (FAS) after the effluent mixture is brought back to room temperature. End 

point of the titration process is recorded for COD value calculation. COD value can 

be calculated by using the following formula:  

COD value = 
(   )       

                
                                  (2.16) 

where  A – exact volume of FAS reagent used for blank sample (mL) 

B – exact volume of FAS reagent used for subject sample (mL) 

N – Normality of FAS reagent 

8000 – miliequivalent weight of oxygen (O2) in unit of mL/L 

and the formula used to calculate normality (N) of FAS reagent is : 

N = 
                         

                  
         (2.17) 

On the other hand, Biochemical Oxygen Demand (BOD) is defined as the 

rate of oxygen (O2) consumed by the microorganisms in the polluted waste or the 

measure of oxygen amount required by aerobic bacteria in order to stabilize 

decomposable organic materials, (P. Aarne Vesilind, 2010). A standard BOD test is 

normally being carried out for duration of five (5) days under a condition without 

light radiation; it is also being defined as five-day BOD (BOD5). Light radiation is 

avoided due to the reason of existing microorganisms available may produce extra 

amount of oxygen to the system when being exposed to light source which will 

literally affect the end result of the test. Usually, BOD test is being carried with the 
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standard container which is the BOD bottle with a standard capacity of 300 mL.This 

kind of BOD bottle is also being widely utilized by Hach
®

 Company for their 

invention of BODTrak™ for BOD measurements. (Company, 1998) 

 However, Total Organic Carbon (TOC) is another alternative for oxygen 

demand measurement which utilizes heat, ultra-violet light and a strong chemical 

oxidant in order to oxidize organic pollutants into by-products. (Boyles, 1997) This 

method of oxygen demand test is not as popular as the other two (2) methods 

mentioned above. This is due to the reason where TOC test does not differentiate 

between compounds having the same number of carbon atoms which will then lead 

to a different result. Since BOD and COD tests are measuring the amount of oxygen 

(O2) required in a direct manner compared to TOC method. Besides, COD is said to 

be more sensitive towards processing oxidation capacity and represents the total 

parameters of all organic compounds that are readily oxidized. (Jordi Bacardit, 2007) 

Thus, this research project will be carried out mainly based on the measured values 

of BOD and COD in order to identify the degradation efficiency of amine waste. 

 

2.5 Light intensity 

By nature, light travels in every direction from the radiation source at a speed of 3.0 

x 10
8
 m/s. Thus, is can be assumed that light radiation is travelling across a surface 

of sphere with increasing radius as the light waves propagate. With is property, 

measurement of light intensity is said to be obeying the inverse square law of light. 

Light intensity is in a relation with the power (P) of light source as well as the 

distance travelled by the light which indicated by the radius (r) of the sphere. In 

general, light intensity can be expressed by the ratio between the power of light and 

the surface area of sphere with the formula of : 

     Surface area of sphere, S = 4πr
2
       (2.18) 

 In summary, the light intensity calculation can be done by applying the formula 

below: 

      I = 
 

    
              (2.19) 
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where  I – light intensity  [Watt/m
2
] 

  P – Power of light  [Watt] 

  r – distance of light travelled  [m
2
] 

 

Thus, the light intensity is expressed by the inverse proportionality of squared 

distance travelled by the light source. Propagation of light source based on the 

inverse-square law can be illustrated on Figure 2.5.1 

 

Figure 2.5.1 Inverse-square law light radiation 

Source: Borb, 2009 

 

Light intensity can be easily controlled using alternating either the power of 

the light source in Watts or changing the distance of light source from the reaction 

system in Photo-Fenton oxidation process. However, more advanced procedures can 

also be taken place in order to efficiently control the light intensity by embedding a 

photolysis system onto the Fenton process. 
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CHAPTER 3.0 

METHODOLOGY 

 

 

3.1 Research Methodology and Procedures 

In order to successfully conduct this research, the methodologies which will be 

utilized throughout this project are exploration and discovery. Hence, several 

experimental tests need to be carried out in order to identify the outcome which suits 

the research objectives. Experimental results gathered at the laboratory work can be 

then compared with the outcomes from other similar researches. Besides, the 

experiment results can also be used for further investigation or studies on the relevant 

topics related to Advanced Oxidation Processes (AOPs) such as Photo-Fenton 

oxidation. The major experiment that will be performed is the Photo-Fenton 

oxidation of the model waste of Diisopropanolamine (DIPA) with the existence of 

light radiation at a control temperature condition. A specific experimental parameter 

is being taken into consideration which is light intensity. In the experimental work, 

light intensity will be adjusted by altering the light bulb with different output power 

namely 300 Watt and 500 Watt. Fixed period of time will be allocated for each test in 

order to identify the rate of degradation accurately. Apart from that, analysis 

procedures also play an important role in this research work. In order for the author 

to identify the degradation effect, determination of oxygen demand should be carried 

out. Chemical Oxygen Demand (COD) can be determined by using DR 5000 from 

Hach
®

 Company by mixing the sample with COD reagent in COD TNTplus
TM 

vials. 

Thus, the degradation rate is to be identified based on the difference in value for 

initial COD contents with those after oxidation process as well as the percentage of 

COD removal respectively. Lastly, all the end results will be recorded for further 

analysis as well as comparison with other research outcomes. Suitable interpretation 
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will also be constructed based on the outcomes gained from the experimental work 

and finally be able to draw towards a conclusive statement for this research project. 

 

3.2 Experimental Approaches 

Basically, this research project involves four (4) general approaches starting from 

preparation of Diisopropanolamine (DIPA) model waste solution and other reagents 

including Fenton reagent (FeSO4.7H2O), hydrogen peroxide, sodium hydroxide and 

sulphuric acid solution. One of the reasons that hydrogen peroxide is chosen is due to 

its ability to generate hydroxyl radicals and it is more economical compared to other 

reagents. Then, it is followed by the Photo-Fenton’s oxidation process in acidic 

environment to decompose the organic compound into other products such as carbon 

dioxide and water. For every 15 minutes of reaction interval, a sample will be 

collected from the reaction system for degradation test based on COD value. The 

collected sample is required to be titrated with sodium hydroxide (NaOH) in order to 

remove unwanted Ferrous ions (Fe
2+

). Precipitated sample is then boiled for few 

minutes until no bubble is observed in order to remove excess oxygen content which 

may literally affect the COD reading. Lastly, the sample is filtrated before 

proceeding with COD digestion and measurement using Hach
®

 DR 5000. In 

continuation, the experimental parameter will be altered for photo-Fenton reactions 

by substituting the oxidizing reagent’s concentration and DIPA model waste 

concentration respectively to obtain an optimum reaction system. Following is to 

alter the light intensity by substituting the light bulb of the light source for 

comparison of degradation efficiency under different light intensities. Last but not 

least, the result data is then being analysed and made comparisons. A schematic flow 

of procedures can be summarized as show Figure 3.2.1 

 

Figure 3.2.1 Schematic Flow Diagram of Experiment Procedures 
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3.2.1 Preparation of amine solution 

For this research experiment, several concentrations of DIPA solution are required 

for calibration purposes as well as to identify the optimum DIPA concentration for 

better degradation rate. Thus, 1000 ppm is firstly prepared in general and then being 

diluted according to the respective desired concentrations.  

Since the concentration of 1000 ppm is equivalent to 1000 mg/L, in order to 

prepare 1 litre of standard DIPA solution; 1000mg in mass of DIPA is required. In 

another words, 1.0 g of Diisopropanolamine is weighed using an electronic weighing 

machine and then dissolved in a beaker with distilled water. After all DIPA particles 

are completely dissolved, the solution is then being transferred into a 1.0 L capacity 

of volumetric flask for further diluted in order to achieve the desired concentration 

which is 1000 ppm. Lastly, the standard solution is then shaken well for uniform 

distribution in the flask. Moving on, the standard solution is being diluted further 

according to the calculated volume for different DIPA concentration. Table below 

illustrates the required amount of 1000 ppm DIPA solution in volume which needed 

to be diluted to the respective concentrations.  

 

Table 3.2.1.1 Distribution of desired concentration with respective volume 

Desired concentration, M2 
(ppm) 

Desired volume, V2 
(mL) 

Required vol. V1 
(mL) 

Dilution 
factor 

1000 500 500 1.00 

700 500 350 1.43 

500 500 250 2.00 

300 500 150 3.33 

200 500 100 5.00 

100 500 50 10.00 

50 500 25 20.00 

30 500 15 33.33 

10 500 5 100.00 
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Calculation for the required volume of 1000ppm standard DIPA solution, V1 

is based on the formula below:  

                       (3.1) 

 Where  M1 = molarity of amine before dilution 

   M2 = molarity of amine standard solution after dilution 

   V1 = volume of amine solution required for dilution 

   V2 = final vol. of amine standard solution at desired  

                                    concentration 

3.2.2 Preparation of Fenton reagent solution (FeSO4.7H2O) 

Iron (II) sulphate heptahydrate (FeSO4.7H2O) serves as the Fenton catalyst in this 

Photo-Fenton oxidation process which is responsible in creating hydroxyl radicals 

from the oxidizing agent, hydrogen peroxide in order to degrade the DIPA model 

waste with the assistance of light radiation. For all the reaction system, the 

concentration of Fenton reagent is selected at 0.1 Molar. 

With the desired concentration, we are able to calculate the mass of 

FeSO4.7H2O required for the preparation of Fenton reagent standard solution by 

utilizing its molecular weight. According to ChemSpider.com, the molecular weight 

of Iron (II) sulphate heptahydrate is 278.015 g/mol (ChemSpider, 2012). By having 

the idea of final volume of standard solution and the desired molarity, the number of 

moles of Fenton reagent can be calculated based on the formula below : 

        Number of moles = concentration (Mx) x volume (Vx)        (3.2) 

              = MxVx  

Final volume of standard solution   = 1 litre 

Desired concentration of standard solution  = 0.1 Molar or  mole/L 

        No. of moles (mol) = 
       

   
                   

Moving on, the amount of FeSO4.7H2O solid particles which needed to be 

dissolved can be then calculated with the following formula : 

          Mass of FeSO4.7H2O (g) = number of moles (mol) x molecular weight (g/mol)    (3.3) 

M1V1 = M2V2 
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 Mass of FeSO4.7H2O (g) = 0.1 mol  x  278.015 g/mol 

          = 27.8015 g 

Thus, a total of 27.8015 g of FeSO4.7H2O is weighed using electronic weighing 

machine and dissolved with distilled water in a 500 mL beaker before transferring 

into a 1 litre volumetric flask.  

 Besides, 1 litre standard solution of 0.5 Molar of sodium hydroxide (NaOH) 

can also be prepared according to the steps above. However, the amount of NaOH 

particles is calculated as 19.999 g with its molecular weight of 39.997 g/mol. 

3.2.3 Preparation of H2O2 and H2SO4 

Standard solution of H2O2 and H2SO4 can be prepared from their highly concentrated 

solution respectively by utilizing Equation 3.1 above. However, the initial 

concentration of the concentrated solution before dilution can be calculated based on 

their concentration percentage. The calculations of the amount of concentrated 

solution can be summarized in the following table: 

 

Table 3.2.3.1 Information of standard solution for sulphuric acid and hydrogen 

peroxide 

Component 
Density 

(g/L) 

Molecular 
weight, 

MW 

Total conc. 
at 100% 

Concentrated 
Percentage 

(%) 

Actual 
concentration, 

M1 

Required 
vol. V1 (mL) 

Desired 
concentration, 

M2 

Final vol. 
V2 (mL) 

Sulphuric 
acid 

1840 98.079 18.760 97 18.198 54.95 1.00 1000.00 

Hydrogen 
peroxide 

1450 34.01 42.635 30 12.790 78.18 1.00 1000.00 

  

 Total concentration at 100% = 
        (   )

   (     )
                          (3.4) 

       Actual concentration, M1 = Total concentration (100%) x Concentrated %   (3.5) 

     V1 =  
    

  
            (3.6) 
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Procedures of preparing standard solution can be summarized in Figure 3.2.1.1 

 

Figure 3.2.1.1 Preparation of standard solutions 

 

The final standard solution of FeSO4.7H2O, DIPA, H2O2, NaOH and H2SO4 reagents 

are shown in Figure 3.2.1.2  

 

 

3.2.4 Apparatus Setup for Photo-Fenton process 

 

In general Photo-Fenton oxidation can be carried under the common setup as shown 

in the following schematic diagram. 

 

Figure 3.2.4.1 Schematic diagram of Photo-Fenton oxidation.  

Source: H. Zhang et al., 2005 

Figure 3.2.1.2 Prepared standard solutions 
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However, Photo-Fenton process can be carried out under experimental scale with a 

simple configuration as illustrated below. 

 

 

Figure 3.2.4.2  Experimental setup for Photo-Fenton process 

 

 Focus shifts onto the reaction system which is placed inside one of the water 

bath with cold circulating water in order to efficiently maintain the temperature of 

the reaction at certain level. Due to the limitation of space, a thermometer is 

restricted to be placed in the reaction system itself. Thus, an alternative is taken 

which is to place the thermometer in the water bath to monitor the water bath 

temperature in correlation with the reaction system temperature.  

 

Light source 

Reaction 

system 

Water bath 

Hotplate 

stirrer 

Thermometer 

Opaque 

Arcylic sheet 
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Figure 3.2.4.3 Reaction system in circulating water bath 

 

Prior to the actual experiment, a series of temperature monitoring has been 

done to find out the temperature difference between the water bath and the reaction 

system. The difference varies between 7-9 
o
C and thus the water bath temperature 

should be maintained within 16-18 
o
C in order to ensure the reaction system 

temperature is controlled under ambient condition. Apart from the reaction system, 

there are also some other setups to enhance the overall experiment. For example, 

table fan as shown in the figure below is placed behind the reaction setup to improve 

air cooling effect due to the extreme amount of heat generated by the light source. 

Besides, there is another water bath equipped with water pump as shown below 

which used to recycle the cooling water from the major water bath. 

 

 

 

 

Circulating 

water inlet 

Water pump 

Thermometer 

Reaction 

system 

Figure 3.2.4.4 Table fan and minor water bath 
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Table 3.2.4.1 summarizes the major equipment which will be used in the 

experimental work together with their respective functions. 

 

Table 3.2.4.1 Table of equipment with its respective function 

Equipment Function 

Table fan To cool down the air around light source 

Stirrer system (Magnetic and hot 

plate stirrer) 

To ensure uniform mixing of sample solution 

Water bath To maintain constant system temperature 

Thermometers To monitor the temperature of the system 

Water pump To circulate water as coolant to-and-from water 

bath 

Opaque Arcylic sheet To isolate ambient light radiation 

Light source To provide light radiation for Photo-Fenton 

process 

 

Experimental Procedures 

 

At the very beginning of the experiment, apparatus setup was prepared earlier and 

the circulation pump/water pump and table fan are activated to control the 

temperature of the water bath. Meanwhile, the temperature is to be observed for 

several minutes to ensure constant temperature condition of the system. Once 

temperature is stabilized, the amine solution is transferred into a beaker acting as the 

reactor. Few drops of 1 M H2SO4 is added into the amine solution until pH = 3.00. It 

is then followed by addition of 0.1M FeSO4.7H2O reagent together with oxidizing 

agent (Hydrogen peroxide) into the reaction system and a magnetic stirrer is placed 

into the beaker as well. Moving forwards, the beaker is then placed in the water bath 

with the magnetic stirrer ON for uniform mixing of the solution. At the same time, 

light source is turned ON for the Photo-Fenton reaction to take place and the timer is 

also started for 15 minutes at the same time. Proceeding with the sample collection 

stage, one sample is retrieved at each 15 minutes interval from 60 minutes of overall 

reaction time for chemical oxygen demand tests. At the end of the experiment run, 

there will be a total of four samples being collected for Chemical Oxygen Demand 

(COD) testing. 
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Overall Process Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Preparation of standard solutions: 
I. DIPA solution (1000ppm, 500ppm, 300ppm & 100ppm) 

II. Fenton reagent – FeSO4.7H2O (0.1Molar) 
III. Hydrogen peroxide, H2O2 (1M, 0.1M & 0.01M) 
IV. Sulpuric acid, H2SO4 (1Molar) 
V. Sodium Hydroxide, NaOH (0.5Molar) 

100mL of DIPA waste sample is 
placed in a beaker. 

pH value is measured using pH 
meter. 

1M of H2SO4 is added drop by 
drop until pH=3 

10mL of H2O2 and 5mL of FeSO4.7H2O is measured 
and transferred into the reactor system. 

The reactor is then placed under the radiation light inside a 
water circulating bath. A table fan is also used for air circulation. 
Magnetic stirrer is placed in the reactor for well mixing. 

Water bath temperature is monitored 
all the time. (Between 16-18

o
C) 

Temp maintained? 

YES 

Record system and water bath 
temperature after 15mins. 

NO 

Add ice 

cubes 

10mL of sample is taken from 
the reaction system. 

Sample is titrated with 0.5M 
NaOH to form Iron precipitates 

START 
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Sample is boiled to remove 
excess oxygen content. 

Boiled sample is left to cool 
down to room temperature 

Sample is then filtrated to 
remove precipitated residues 

2mL of filtrated sample is then transferred 
into COD reagent vial and shaken well. 

Sample is then heated in a COD 
disgester at 150

o
C for 2 hours 

Digested sample is let to cool 
down to room temperature. 

COD value is measured for the 
degraded waste sample. 

Complete test? 

YES 

NO 

END 
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3.2.5 Chemical Oxygen Demand (COD) measurements 

In order to obtain accurate COD value for DIPA degradation process, several 

important steps should not be neglected. These crucial procedures can be 

summarized as the followings after the sample is retrieved from the reaction system. 

Once the sample is obtained, it is being titrated against 0.5M of NaOH for the 

precipitation of unwanted Iron (II) ions (Fe
2+

) as shown in Figure 3.2.5.1 

 

 

 

 After the titration process, the samples are being transferred into separate 

containers and left for precipitation until all the residues settle down at the bottom of 

the container as shown in Figure 3.2.5.2. 

 

Figure 3.2.5.2 Precipitation of residues 

 

Figure 3.2.5.1 Titration of sample against NaOH 

solution 
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 Next, the samples are boiled using hot plate until no air bubble is observed. 

The purpose of this action is to remove the excess amount of oxygen. 

 

Figure 3.2.5.3 Heating process of the samples 

 

 Moving on next, the samples are left to cool down to room temperature and 

proceed with filtration to separate the precipitates from clear sample solutions. 

 

Figure 3.2.5.4 Filtration of samples 

 

Marching towards the COD analysis, 2mL of each clear sample is firstly 

obtained and transferred into a COD TNTplus
TM

 vial containing COD reagent (HR) 

and shaken gently.  

Figure 3.2.5.5 Transfer of sample solution into COD vials 
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 Samples are meant to be digested before the measurement of COD value. 

Thus, COD digester DRB 200 is preheated to 150
o
C and the vials are placed in the 

digester for COD digestion process under duration of 120 minutes.  

 

Figure 3.2.5.6 Digestion of COD samples in HACH DRB 200 digester 

 

 Lastly, COD samples are let to cool down to room temperature after digestion. 

Lastly, the COD value is measured by Hach® DR 5000 spectrophotometer.  

 

 

 

  

Figure 3.2.5.7 COD value measurement 
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CHAPTER 4.0 

RESULTS AND DISCUSSION 

 

 

4.1 DIPA sample calibration curve 

Prior to all the experimental work, the original 1000ppm of Diisopropanolamine 

(DIPA) is being diluted into various concentrations and these sample solutions are 

taken for Chemical Oxygen Demand (COD) testing using Hach® DR 5000 available 

in the laboratory. The purpose of performing this action at the beginning is to obtain 

a calibration plot based on different DIPA concentration with its respective COD 

value (mg/L). Later in the result analysis process, this calibration curve will be then 

used to calculate the actual concentration of the sample after Photo-Fenton treatment 

based on its absorbance (Abs). With the availability of calculated concentration, the 

reaction kinetics can then be studied in order to figure out the type of reaction system. 

Each COD value with respect to their diluted concentration is being summarized in 

Table 4.1.1 below. 
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Table 4.1.1 Distribution of DIPA concentration and its COD measurements 

DIPA 
Concentration 

(ppm) 
COD 

(mg/L) 
Absorbance 

(Abs) 
Transmittance 

(%) 
Dilution 
factor 

1000 2054 0.905 12.4 0.00 

700 1614 0.711 19.4 1.43 

500 1118 0.493 32.2 2.00 

400 956 0.421 37.9 2.50 

300 728 0.321 47.7 3.33 

200 578 0.255 55.6 5.00 

150 463 0.204 62.5 6.67 

100 384 0.169 67.7 10.00 

60 286 0.126 74.8 16.67 

50 288 0.127 74.7 20.00 

30 251 0.11 77.5 33.33 

10 208 0.092 80.9 100.00 

 

 Initial DIPA concentration which is 1000 ppm prepared earlier is diluted into 

different concentrations ranging from 700-10 ppm. Each blank sample is digested 

together with COD reagent for COD, absorbance and transmittance measurements. 

Besides, the dilution factor is also calculated based on the diluted concentration and 

the initial DIPA concentration, 1000 ppm. After measuring all the respective COD 

values, a graph of COD value (mg/L) versus blank DIPA concentration (ppm) is 

plotted as shown below which is used to study the trend and effect of DIPA 

concentration on its COD value. Note that there are two points highlighted in red 

with DIPA concentration of 1000 ppm and 700 ppm respectively are not included in 

any graph plotting since the COD measurement went out of range. It is not suitable 

to be considered in the calibration plot because it may literally affect the outcomes. 
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Figure 4.1.1 Calibration plot of COD measurement (mg/L) vs. DIPA concentration 

(ppm) 

 

By utilizing this plot, COD value on a specific concentration of DIPA sample 

solution can be estimated using the linear equation provided: 

                 (4.1) 

where ‘y’ indicates the COD measurement value (mg/L) and ‘x’ as DIPA 

concentration in ppm.  

 From the plot above, we can clearly see the trend of variation in COD 

measurement values based on different level of DIPA concentration. As the 

concentration increases, the COD measurement gets increased in a linear pattern as 

well. This can be explained by the amount of organic pollutants available in the 

model waste are more when the concentration is high and more oxygen in mass is 

being consumed which indicated by the COD value. In another words, the greater the 

value of COD measurement, we can clarify the wastewater is more polluted. 

 In addition, a calibration curve is plotted based on the DIPA concentration 

and its absorbance which measured by Hach
® 

DR 5000 as well. The absorbance 

value can be defined as the fraction of light source in Hach
®

 DR 5000 being 

absorbed by the sample solution for COD measurement.  
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Figure 4.1.2 Calibration plot between concentration and absorbance 

 

With the availability of linear expression, the actual concentration of DIPA 

sample can be calculated once the absorbance is obtained from the test after applying 

Photo-Fenton oxidation or degradation process. 

                 (4.2) 

where ‘y’ represents the concentration of DIPA sample, whereas ‘x’ is the value of 

absorbance measured.  

 Due to the fact that concentration of DIPA sample after Photo-Fenton 

treatment is unknown and it cannot be measured directly, thus utilizing this 

calibration curve may assist in determining the approximate concentration of DIPA 

after degradation process. Since concentration is one of the most important data for 

reaction kinetic studies, so calibration plot is necessary before performing the 

experiments.  

 

4.2 Optimizing H2O2 concentration (500 Watt Light) 

For the entire research experiment, concentration hydrogen peroxide (H2O2) plays 

one of the major roles and contributes greatly to the final outcome since it’s the 

oxidizing agent that provide hydroxyl radicals during the advanced oxidation process. 
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As a kick start for the experiment configuration, three (3) different concentrations of 

H2O2 namely 0.01 M, 0.1 M and 1.0 M were put into tests by maintaining other 

parameters constant as discussed in the scope of study.  

 4.2.1 0.01 M of Hydrogen Peroxide (H2O2) 

With all the other parameters kept constant, the experiment started with the first 

concentration of H2O2 which is 0.01 M. During the total duration of 60 minutes for 

the experiment, one sample is collected at every 15 minutes interval and undergone 

necessary procedures for COD measurement. Table below manage to summarize the 

findings for the system consisting 0.01 M H2O2 as the oxidizing agent. 

 

Table 4.2.1.1 Data distribution for 0.01 M of Hydrogen Peroxide 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 18.0 17.0 17.0 16.0 17.5 

System temp [C] 25.0 26.5 27.0 26.0 27.0 

COD (mg/L) 1118 1024 1000 808 760 

COD removal (%) - 8.41 10.55 27.73 32.02 

Absorbance (abs) 0.493 0.451 0.441 0.356 0.335 

Transmittance (%) 32.2 35.4 36.2 44.0 46.2 

Degradation rate (ppm/min) - 6.27 3.93 6.89 5.97 

 

 

Figure 4.2.1.1 Plot of COD versus Time based on 0.01 M H2O2 (500 Watt) 
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of sample is 1118mg/L and it managed to be degraded up to 760 mg/L at the end of 

60 minutes. Furthermore, the percentage of COD removal is also calculated for each 

sample collected. However, the overall COD removal managed to achieve up till 

32.02 % in total. Due to the fact that 0.01 M of H2O2 is the lowest concentration 

among all and it only able to produce limited amount of •OH in order to degrade 

DIPA. Thus, the overall COD removal percentage is considered quite low. 

 4.2.2 0.1 M of Hydrogen Peroxide (H2O2) 

For this set of experiment, all the constant parameters were remaining unchanged. 

The only different is the concentration of hydrogen peroxide used is 0.1 M instead of 

the previous system with 0.01 M. In another words, the concentration of oxidizing 

agent has been increased by multiplication of 10 in order to observe the significant 

difference between their outcomes.  

 

Table 4.2.2.1 Data distribution for 0.1 M of Hydrogen Peroxide 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 18.0 20.0 20.0 18.0 17.0 

System temp [C] 25.0 27.5 28.0 27.5 26.0 

COD (mg/L) 1118 954 845 781 755 

COD removal (%) - 14.67 24.42 30.14 32.47 

Absorbance (abs) 0.493 0.421 0.373 0.344 0.333 

Transmittance (%) 32.2 38.0 42.4 45.2 46.5 

Degradation rate (ppm/min) - 10.93 9.10 7.49 6.05 

 

 

Figure 4.2.2.1 Plot of COD versus Time based on 0.1 M H2O2 (500 Watt) 
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 Similarly, the initial COD concentration of DIPA model waste is 1118 mg/L 

and it is being degraded until 755 mg/L after 60 minutes duration. From the COD 

removal point of view, the overall degradation under the same experiment condition 

as above give a slightly higher percentage of COD removal (32.47 %) due to the 

usage of higher H2O2 concentration. This can be explained by more amount of 

hydroxyl radicals are being generated compared to the previous case since the 

concentration of H2O2 has increased from 0.01 M to 0.1 M. However, it is not 

considered as a significant increase in COD removal efficiency since both giving 

similar results although using different concentration of oxidizing agent. This might 

implies both 0.01 M and 0.1 M of hydrogen peroxide are not the most optimum 

parameter condition. 

  4.2.3 1.0 M of Hydrogen Peroxide (H2O2) 

Last set of the experiment was carried out based on the highest concentration of 

H2O2 among all which is 1.0 M for degradation of DIPA under Photo-Fenton 

oxidation. With such concentrated oxidizing agent, it is believed that it can further 

degrade DIPA components in the sample compared to the previous concentrations. 

The following table summarizes the outcome of Photo-Fenton oxidation with 1.0 M 

of hydrogen peroxide in the system. 

 

Table 4.2.3.1 Data distribution for 1.0 M of Hydrogen Peroxide 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 18.0 18.0 19.0 17.5 17.5 

System temp [C] 25.0 27.0 28.0 27.0 26.5 

COD (mg/L) 1118 840 741 627 565 

COD removal (%) - 24.87 33.72 43.92 49.46 

Absorbance (abs) 0.493 0.370 0.327 0.276 0.249 

Transmittance (%) 32.2 42.6 47.1 52.9 56.3 

Degradation rate (ppm/min) - 18.53 12.57 10.91 9.22 
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Figure 4.2.3.1 Plot of COD versus Time based on 1.0 M H2O2 (500 Watt) 

 

 By utilizing concentration hydrogen peroxide as oxidizing agent, the 

degradation process manage to be further enhanced where the COD concentration 

was reduced to almost half of its initial value which is from 1118mg/L to 565 mg/L. 

On top of that, the overall COD removal percentage achieved a new level of 49.46 % 

which is relatively high compared to the first two experimental conditions. Thus, a 

simple conclusion can be drawn where the high concentration of H2O2 is more 

suitable for degradation of DIPA samples because more free radicals are generated in 

order to degrade DIPA compounds. Since 1.0 M H2O2 is the highest concentration 

available, it is justified that it provides the greatest COD removal based on the 

radicals generated from this concentration in comparison with other two. Besides, 

this parameter condition will be carried forward for the optimization of DIPA 

concentrations for better findings. In another words, 1.0 M of hydrogen peroxide will 

be kept constant as one of the parameters for optimizing DIPA concentration in the 

following experiments. Lastly, all the data above are plotted in the graphs below for 

easy comparisons. 
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Figure 4.2.1 Degradation efficiency in terms of COD value (mg/L) by different 

concentrations of H2O2 

 

 

Figure 4.2.2 Degradation efficiency in terms of COD removal (%) by different 

concentrations of H2O2 
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pattern and there is not much difference between their final COD value after 

degradation. On the opposite, 1.0 M H2O2 which produces most hydroxyl radicals 

and as a result, gave the highest percentage of COD removal which is close to 50 % 

whereas 0.01 M and 0.1 M H2O2 only managed to reduce slightly above 30 % of 

total COD content. Thus, in this case 1.0 M of hydrogen peroxide is said to be the 

most optimum condition for this particular parameter. 

 

4.3 Optimizing DIPA concentration (500 Watt Light) 

After the optimization of hydrogen peroxide concentration, next the optimization for 

initial DIPA concentration ranging from 100 ppm, 300 ppm and 500 ppm was also 

carried out based on the optimum hydrogen peroxide concentration which is 1.0 M, 

whereas other parameters were kept constant as usual.  

 4.3.1 100 ppm of Diisopropanolamine (DIPA) solution 

Under this section of experiment, optimization of DIPA concentration is relative to 

the optimized concentration of hydrogen peroxide. Thus, it will further enhance the 

reliability of the outcome for this optimization process. The experiment was 

conducted with the similar procedures carried out before and a series of data was 

obtained for 100 ppm DIPA system. 

 

Table 4.3.1.1 Data distribution for 100 ppm of DIPA solution 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 17.5 17.5 17.0 17.5 17.0 

System temp [C] 26.5 26.5 26.0 26.5 26.0 

COD (mg/L) 384 274 234 208 225 

COD removal (%) - 28.65 39.06 45.83 41.41 

Absorbance (abs) 0.169 0.121 0.103 0.092 0.099 

Transmittance (%) 67.7 75.8 78.9 81.0 79.6 

Degradation rate (ppm/min) - 7.33 5.00 3.91 2.65 
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Figure 4.3.1.1 Plot of COD versus Time based on 100 ppm DIPA (500 Watt) 

 

 From the data obtained from COD analysis, the maximum percentage of 

COD removal is observed at 45 minutes of the reaction with total of 45.83 %. The 

degradation process managed to reduce the initial COD content from 384mg/L to the 

minimum level of 208 mg/L. However, a sudden increase in COD content at the end 

of the experiment is undesirable and opposes the normal trend of COD values in a 

degradation process. This phenomenon might be due to the incomplete boiling of 

sample solution after precipitation. There are still small amount of oxygen presents in 

the sample which then affected the final COD reading.  

 4.3.2 300ppm of Diisopropanolamine (DIPA) solution 

In order to achieve the object of optimization, the experiment is continued by 
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Table 4.3.2.1 Data distribution for 300ppm of DIPA solution 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 17.0 17.0 17.5 17.5 17.0 

System temp [C] 26.5 26.5 27.0 27.0 26.5 

COD (mg/L) 718 448 401 336 327 

COD removal (%) - 37.60 44.15 53.20 54.46 

Absorbance (abs) 0.317 0.197 0.177 0.148 0.144 

Transmittance (%) 48.2 63.5 66.6 71.1 71.8 

Degradation rate (ppm/min) - 18.00 10.57 8.49 6.52 

 

 

Figure 4.3.2.1 Plot of COD versus Time based on 300 ppm DIPA (500 Watt) 

 

 By utilizing DIPA concentration of 300ppm, the degradation process was 

further improved compared to the lower concentration system. With 300ppm of 

DIPA solution, the initial COD reading has been decreased from 718 mg/L to 327 

mg/L together with the overall COD removal of 54.46 % which is so far the highest 

achievement among all experiment runs. More than half of the initial DIPA was 

managed to be degraded in this system. Based on the research done by R. Mahirah 

(2010), the effect of DIPA initial concentration on DIPA degradation is linear as in 

the increase in its concentration will lead to an increase in COD removal in terms of 

degradation. This may be due to the higher amount of DIPA compounds are being 

reacted with hydroxyl radicals and degraded.  
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 4.3.3 500ppm of Diisopropanolamine (DIPA) solution 

System with 500 ppm of initial DIPA concentration and 1.0 M of hydrogen peroxide 

at 500 Watt of light radiation has been carried out previously during the optimization 

of hydrogen peroxide. So the result outcome will be the same as the system 

explained above. COD value was lowered from 1118 mg/L to 565 mg/L with an 

overall COD removal of 49.46 %. 

 Two plots below (Figure 4.3.1 and 4.3.2) show the overall trend of COD 

measurement values based on separate initial DIPA sample solutions for 500 ppm, 

300 ppm and 100 ppm respectively.  

 

Figure 4.3.1  Degradation efficiency on different DIPA concentrations (500 Watt) 

 

 The first graph illustrates the decreasing of COD values with respect to time 
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Figure 4.3.2 COD removal percentage on different DIPA concentrations (500 Watt) 

 

 With the availability of the second plot in terms of COD removal percentage, 

we are able to determine the most efficient degradation is based on 300 ppm since it 
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15 minutes till the total reaction duration of 1 hour. The temperature was tired to be 

maintained within the range of ± 0.5 
o
C at each interval in order to reduce the effect 

of temperature on the reaction system. Temperature was maintained between 24.5-

25.5 
o
C by circulating ice water in the water bath.  

 

Table 4.4.1.1 Data distribution for 0.01 M of H2O2 system 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 20.0 20.0 19.5 20.0 20.5 

System temp [C] 25.0 25.0 24.5 25.0 25.5 

COD (mg/L) 1125 1020 927 838 753 

COD removal (%) - 9.33 17.60 25.51 33.07 

Absorbance (abs) 0.496 0.45 0.418 0.37 0.332 

Transmittance (%) 31.9 35.5 40.6 42.7 46.6 

Degradation rate (ppm/min) - 7.00 6.60 6.38 6.20 

 

 

Figure 4.4.1.1 Plot of COD versus Time based on 0.01 M H2O2 (300 Watt) 
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4.4.2 0.1 M of Hydrogen Peroxide (H2O2) 

Moving on with the optimization process of oxidizing agent, the concentration of 

hydrogen peroxide is then being increased to 0.1 M instead to find out the percentage 

of COD removal on DIPA waste sample under a 300 Watt of visible light source. By 

remaining all other parameters constant, the result of DIPA degradation in terms of 

its COD removal can be summarized in the table below.  

 

Table 4.4.2.1  Data distribution for 0.1M of H2O2 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 20.0 20.0 19.5 20.0 20.0 

System temp [C] 25.0 25.0 24.5 25.0 25.5 

COD (mg/L) 1125 681 653 646 597 

COD removal (%) - 39.47 41.96 42.58 46.93 

Absorbance (abs) 0.496 0.300 0.288 0.285 0.263 

Transmittance (%) 31.9 50.1 51.6 51.9 54.6 

Degradation rate (ppm/min) - 29.60 15.73 10.64 8.80 

 

 

Figure 4.4.2.1 Plot of COD versus Time based on 0.1 M H2O2 (300 Watt) 
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concentration of hydrogen peroxide which produces more hydroxyl radicals under 

Photo-Fenton catalytic process. With more hydroxyl radicals available, the 

degradation of DIPA can thus be further enhanced.  

 4.4.3 1.0 M of Hydrogen Peroxide (H2O2) 

Optimization process for hydrogen peroxide concentration under 300 Watt of visible 

light is ended with 1.0 M of H2O2 which was expected to provide the highest DIPA 

degradation among all due to its highest concentration compared to the previous two 

systems. Table below summarizes the outcome of using 1.0 M of hydrogen peroxide 

as the oxidizing agent.  

 

Table 4.4.3.1  Data distribution for 1.0 M of H2O2 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 18.0 19.0 19.0 18.5 19.0 

System temp [C] 25.0 25.0 25.0 25.0 25.0 

COD (mg/L) 1118 678 545 456 440 

COD removal (%) - 39.36 51.25 59.21 60.64 

Absorbance (abs) 0.493 0.299 0.24 0.201 0.194 

Transmittance (%) 32.2 50.3 57.5 62.9 63.9 

Degradation rate (ppm/min) - 29.33 19.10 14.71 11.30 

 

 

Figure 4.4.3.1 Plot of COD versus Time based on 1.0 M H2O2 (300 Wat) 
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As excepted, this system gives the best performance in degrading DIPA 

waste sample with H2O2 concentration of 1.0 M. By using 1.0 M of oxidizing agent, 

more oxidizing radicals managed to be generated and thus causing the initial value of 

COD managed to be reduced from 1118 mg/L down to 440 mg/L  with the highest 

percentage of 60.64 % in COD removal. However, the general plot of COD removal 

can be observed from the figures below (Figure 4.4.1 and 4.4.2) in order to carry out 

comparisons between different hydrogen peroxide concentrations easily.  

 

Figure 4.4.1 Overall plot of COD value vs. different H2O2 concentrations under 300 

Watt visible light 

 

From the plot above, the DIPA degradation trend can be clearly identified 

where 0.01 M of hydrogen peroxide removed least amount of COD value; whereas 

1.0M of hydrogen peroxide removed most of the COD value from the initial DIPA 

waste sample due to the reason as discussed above. Nevertheless, the overall trend 

will be more significant by representing in terms of COD removal percentage (%). 
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Figure 4.4.2 Overall plot of COD removal (%) vs. different H2O2 concentrations under 

300 Watt visible light 

 

As mentioned, 1.0 M of hydrogen peroxide gives the highest percentage of 

COD removal with 60.64 % in total; whereas 0.1 M and 0.01 M of hydrogen 

peroxide give a lower COD removal in terms of percentage namely 46.93 % and 

33.07 % respectively. Even without reporting the actual percentage, it is clearly 

shown that the highest concentration of hydrogen peroxide (1.0 M) gives the highest 

trend line in degrading DIPA waste sample followed by 0.1 M and 0.01 M of H2O2 

concentrations. In short, 1.0 M hydrogen peroxide will be again treated as the basis 

for optimization of DIPA concentration under 300 Watt visible light environments. 

Moving forward, the best system of DIPA degradation under 300 Watt of visible 

light will be identified via optimization of DIPA concentrations between 100 ppm, 

300 ppm and 500 ppm respectively. The best system under this light radiation based 

on the optimized H2O2 concentration will be then compared with the best system 

obtained under 500 Watt visible light condition to find out which light intensity gives 

the most efficient DIPA degradation in terms of its COD removal percentage.  

 

 

 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

C
O

D
 r

e
m

o
va

l (
%

) 

Time (mins) 

1.0M

0.1M

0.01M



 

- 52 - 
 

4.5 Optimization of DIPA Concentrations (300 Watt Light) 

With the optimized hydrogen peroxide concentration, it is possible to determine the 

most optimum DIPA concentration under 300 Watt light source in a more precise 

manner. Without exception, the optimization process would be carried out with a set 

of constant parameters which is similar to the previous experiments.  

4.5.1 100ppm Diisopropanolmaine (DIPA) Solution 

The optimization process is again started with the lowest concentration of DIPA 

solution which is 100ppm but the visible light intensity has lowered to 300 Watt 

instead of 500 Watt. Different light intensities will definitely affect the outcome of 

DIPA degradation. Table below shows the result of degradation of 100ppm DIPA 

solution. 

 

Table 4.5.1.1  Data distribution for 100ppm DIPA concentration under 300 Watt light 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 20.5 20.5 20.0 20.5 20.0 

System temp [C] 25.5 25.5 25.0 25.5 25.0 

COD (mg/L) 314 238 232 217 196 

COD removal (%) - 24.20 26.11 30.89 37.58 

Absorbance (abs) 0.138 0.105 0.102 0.096 0.086 

Transmittance (%) 72.7 78.5 79.1 80.2 81.9 

Degradation rate (ppm/min) - 5.07 2.73 2.16 1.97 

 

 

Figure 4.5.1.1 Plot of COD versus Time based on 100 ppm DIPA (300 Watt) 
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The initial COD value for 100 ppm DIPA solution was 314 mg/L which able 

to be degraded to 196 mg/L with an overall COD removal percentage of 37.58 %. 

However, the percentage seems to be lower compared to the same concentration of 

DIPA being treated under the 500 Watt visible light source. This might due to the 

incomplete degradation of 100 ppm DIPA under 300 Watt light radiation within 60 

minutes of reaction time. This can be further explained with the plot below with the 

constant increment of COD removal percentage trend line even time exceeds 60 

minutes. It is believed that the degradation process of DIPA is yet to be completed in 

this case and thus 37.58 % of COD removal at 60 minutes cannot be considered as 

the final outcome for this process. Thus, enhancement can be done for this system by 

increasing the reaction time in order to obtain more precise result.  

 

Figure 4.5.1.2 COD removal percentage against time for 100 ppm DIPA  

(300 Watt) 
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Based on the previous study under 500 Watt visible light source, by increasing the 
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degradation in terms of COD removal. By carrying out DIPA degradation with 
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Table 4.5.2.1 Data distribution for 300ppm DIPA solution under  

300 Watt light 

Time (mins) 0 15 30 45 60 

Water bath temp [C] 20.5 21.0 20.5 20.0 20.5 

System temp [C] 25.5 26.5 26.0 24.5 25.0 

COD (mg/L) 718 364 335 317 313 

COD removal (%) - 49.30 53.34 55.85 56.41 

Absorbance (abs) 0.317 0.16 0.148 0.14 0.138 

Transmittance (%) 48.2 69.1 71.2 72.5 72.8 

Degradation rate (ppm/min) - 23.60 12.77 8.91 6.75 

 

 

Figure 4.5.2.1 Plot of COD versus Time based on 300 ppm DIPA (300 Watt) 

 

Indeed, the COD removal on a higher DIPA concentration is elevated and the 

initial COD value of 300 ppm DIPA managed to be reduced from 718 mg/L to 313 

mg/L with an overall COD removal percentage of 56.41 %. This again proves that 

more DIPA compounds have been degraded as the initial concentration increases. It 

is found out to be higher compared to the same system conducted under 500 Watt 

light source which has the percentage of 54.46 % in terms of COD removal. The 

reason behind might be due to the tremendous intensity supplied by 500 Watt light 

source causing the evaporation rate of DIPA solution to be higher and lead to a 

higher concentration at the end of the degradation process. Higher final concentration 

of treated DIPA solution will tend to provide a higher value of COD measurement; in 

turn giving a lower percentage of COD removal.  
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 4.5.3 500ppm Diisopropanolamine (DIPA) Solution 

For the case of 500 ppm DIPA degradation using the optimized 1.0 M of hydrogen 

peroxide under 300 Watt of light radiation, the outcome will be the same as obtained 

in section 4.4.3 where the initial COD value is reduced from 1118 mg/L to 440 mg/L 

with the overall COD removal percentage of 60.64 % which is also the highest COD 

removal among all reaction systems. In addition, this system of course gives a higher 

removal in COD value compared to the same reaction system conduction under 500 

Watt light source. However, the most optimum concentration of DIPA solution for 

its degradation with Photo-Fenton oxidation under 300 Watt light source is 500 ppm 

instead of 300 ppm obtained from 500 Watt visible light. Although the optimum 

DIPA concentrations for each light environment are different, but the comparison 

between DIPA degradation efficiency will be carried out between the most optimum 

conditions from two separate light sources. The overall plots of COD removal are 

shown in Figure 4.5.1 and 4.5.2.   

 

Figure 4.5.1  Overall plot of COD value vs. Time for all DIPA concentrations under 300 

Watt light 
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Figure 4.5.2  Overall plot of COD removal (%) vs. Time for all DIPA concentrations 

under 300 Watt light 

 

In general, the increase in DIPA initial concentration will relatively lead to a 

higher degradation since more subject components undergone oxidation process. 

However, in the case of 500 Watt visible light, 500 ppm of initial DIPA 

concentration preformed lower than other two concentrations which is reversible to 

the norm. The low performance of the degradation might be caused by evaporation 

of reaction solution as 500 Watt of visible exposing high amount of heat energy to 

the system. In addition, the light source is placed directly above the reaction system 

in a near distance which will enhance the effect of evaporation even more. 

Nevertheless, normalization of the reaction system by adding distilled water after 

each sample is collected will tend to reduce the side effect of evaporation which 

causes the concentration of reaction system to increase tremendously. Furthermore, it 

is noticed that the reaction rates for the degradation of 300 ppm DIPA before 30 

minutes time interval were higher compared to the ones with 500 ppm of DIPA. This 

can be seen from Figure 4.5.2 which COD removal percentage for 300 ppm reaches 

its maximum level at time 15 and 30 minutes before those under 500 ppm 

concentration. This might because of the variance in temperatures which leads to a 

higher rate of reaction. However, such hypothesis can only be verified when the 

research is further extended into the study of reaction kinetics and determining the 

activation energy for better justification of degradation efficiency. 
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4.6 Comparison between 300 Watt and 500 Watt Visible Light Sources 

In order to clearly differentiate the efficiencies of DIPA degradation with Photo-

Fenton oxidation under different light intensities, a comparison should be made 

between their COD removal percentage according to their respective DIPA 

concentration. Since the optimization of hydrogen peroxide concentration under both 

light radiation environment gives the same result, thus the comparison is made 

between different DIPA concentrations upon this basis. Table 4.6.1 summarizes the 

outcomes obtained from each optimization of DIPA concentration under different 

visible light intensities.  

 

Table 4.6.1 Comparison of COD removal (%) based on different DIPA concentrations 

and light intensities 

  COD Removal (%) 

DIPA Concentration 300 Watt 500 Watt 

100 ppm 37.58 41.41 

300 ppm 56.41 54.46 

500 ppm 60.64 49.46 

 

According to the results obtained, the COD removal percentage for each 

DIPA concentration under 300 Watt of visible light seems to be greater than those 

under 500 Watt light in general. However, there is an exception for 100 ppm of 

DIPA where the COD removal percentage obtained from 500 Watt light environment 

gives higher percentage which might due to the incompletion of degradation process 

for 300 Watt environment as explained before. In this case, we can conclude that a 

300 Watt of light intensity is more effective in assisting DIPA degradation process 

with Photo-Fenton oxidation under visible light condition. Despite the general trend 

of COD removal percentage between different concentrations of DIPA solution, the 

statement above can be supported by the comparison of COD removal percentage 

between the two most optimum reaction systems under each light intensity. The most 

optimum system is defined by the highest percentage of COD removal for each light 

intensity regardless of the concentration of DIPA solution. In short, the most 

optimum reaction system for 300 Watt light intensity is 500 ppm of DIPA 
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concentration with the COD removal percentage of 60.64 %; whereas the most 

optimum system under 500 Watt light is 300ppm DIPA concentration with COD 

removal percentage of only 54.46 %. This again shows the efficiency in degrading 

DIPA waste sample is more significant and promising by using a 300 Watt of visible 

light source. Since a 300 Watt is a better choice for Photo-Fenton oxidation of 

Diisopropanolamine waste, it will be highly recommended to utilize a lower power 

of light source such as 300 Watt compared to 500 Watt for similar process in order to 

reduce the consumption of energy; in another word reducing the cost of utility.  

 

4.7 Fenton Oxidation Process WITHOUT Light Source 

In order to further signify the effect on applying light radiation in Photo-Fenton 

process from ordinary Fenton process, this research study have also covered Fenton 

oxidation for DIPA degradation without the availability of light source for the two 

best reaction system with 300 ppm and 500 ppm of DIPA concentrations. However, 

the other parameter such as initial Fenton reagent concentration, pH value and 

concentration of hydrogen peroxide are kept constant as shown below. For the 

system of 300 ppm DIPA concentration, the DIPA waste sample was being degraded 

from the initial COD value of 718 mg/L to 528 mg/L with the percentage of 26.46 % 

only. In comparison with the same reaction system under light radiation, it is much 

lower. Thus, it proves that Photo-Fenton oxidation with the availability of light is 

more effective in degrading DIPA waste sample. Move over, the reaction system 

using 500 ppm of DIPA solution decreases the initial COD value from 1125 mg/L to 

817 mg/L with an overall COD removal percentage of 27.38 % . Even the 

degradation rate is better for 500 ppm of initial DIPA concentration compared to 300 

ppm, but it is still considered inefficient when in comparison with the existence of 

light radiations. Figure 4.7.1 shows a better comparison between COD removal with 

and without light under Fenton-oxidation processes.  
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Figure 4.7.1 Comparison plot for systems with and without light 

 

From Figure 4.7.1 above, it is clearly shown that the difference in trend line 

between the reaction systems with as well as without light radiation in terms of COD 

removal percentage for DIPA degradation under Photo-Fenton and Fenton oxidation 

respectively. It shows a significant difference between COD removal in terms of 

percentage for the both 300 ppm and 500 ppm initial concentration under Fenton 

reaction with and without the existence of light source. An average of 30 % 

difference between the COD removal for both initial DIPA concentrations under the 

reaction with and without visible respectively. Thus, we can ensure that Photon-

Fenton oxidation is more effective compared to ordinary Fenton reaction without any 

assistance of light radiation.  
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4.8 Error and Recommendation 

Errors 

I. Diisopropanoamine (DIPA) tends to absorb water vapour from the air in the 

atmosphere. Weight of DIPA solid material will be affected by the absorbed 

water content during preparation of its standard solution and ultimately the 

concentration will be inaccurate.  

 

II. Due to the continuous radiation of light from the light source, temperatures of 

reaction system and water bath will fluctuates. Precise temperature control is 

not efficient enough by only monitoring the temperature of the water bath. 

 

III. Near distance between the light source and the reaction system causes reaction 

solution to vaporize and lead to increase in overall concentration as visible 

light exerting heat. 

 

IV. 60 minutes of reaction time is still considered insufficient as some oxidation 

process is yet to reach its maximum level, especially the reaction system with 

lower DIPA concentration. 

 

V. COD measurement becomes inaccurate due to the sample in COD vials are not 

being let to cool down to room temperature completely. Measurement easily 

went out of range during COD analysis. 

 

Recommendations 

 

I. In order to measure the accurate weight of DIPA solids, the weighing process 

should be carried out in a fume hood with proper air ventilation to prevent the 

absorption of water vapour by DIPA solids. 

 

II. A better temperature monitoring can be achieved by placing one more 

thermometer into the reaction system directly in order to monitor and control 

the system temperature more effectively 
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III. Visible light source should be relocated and kept at certain distance away from 

the reaction system in order to avoid evaporation from occurring. 

 

IV. Each experiment run should be given more time by extending the duration 

from 60 minutes to 90 minutes for the completion of degradation process. 

 

V. All samples are recommended to be left overnight in order to completely cool 

down to room temperature after mixing with COD reagent and digestion 

process before proceeding into COD measurement using Hach® DR 5000. 
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4 .9 Gantt Chart 

No. Description Week 

1 

Week 

2 

Week 

3 

Week 

4 

Week 

5 

Week 

6 

Week 

7 

Week 

8 

Week 

9 

Week 

10 

Week 

11 

Week 

12 

Week 

13 

Week 

14 

1 Preparation of standard solutions               

2 Experiment setup run test               

3 Preparation of calibration curve               

4 Conduct H2O2 concentration 

optimization (500 Watt system) 
              

5 Conduct DIPA concentration 

optimization (500 Watt system) 
              

6 Preparation on Progress Report               

7 Conduct Photo-Fenton process with 

300 Watt light source 
              

8 Conduct reaction kinetic studies with 

results obtained 
              

9 Preparation for Pre-SEDEX               

10 Preparation for final report and 

technical paper 

              

11 Submission of final report and technical 

paper 
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CHAPTER 5.0 

CONCLUSION AND RECOMMENDATION 

 

 

Photo-Fenton oxidation utilizes light source to literally speed up the generation of 

hydroxyl radicals for oxidation as well as to improve the overall oxidation efficiency. 

By conducting this research project, the ultimate aim is to evaluate and compare the 

degradation efficiency of Diisopropanolamine (DIPA) under different light 

intensities in Photo-Fenton oxidation process. In order to achieve the objective above, 

optimization of the most suitable parameter configurations of Diisopropanolamine 

(DIPA) degradation is important for more accurate outcomes. Parameters taken into 

consideration for optimization were the concentration of hydrogen peroxide and 

initial concentration of DIPA samples. Then, degradation of DIPA model waste was 

then conduction via Photo-Fenton oxidation with two different powers of light 

irradiations based on the optimized parameters.  

At the beginning of the research work, calibration curve related to COD value 

(mg/L) against different DIPA concentrations was created. A linear relation was 

obtained between the concentration ranging from 10ppm to 500ppm and the 

measured COD values. The relation shows that as the concentration of DIPA 

increases, the COD measurement will increase as well.  

Besides, optimization was carried out for different hydrogen peroxide (H2O2) 

concentration using 500 Watt of light source while maintaining other parameters 

constant. The result obtained shows the most effective concentration for DIPA 

degradation is 1.0M of H2O2 as the oxidizing agent. Moving forward, optimization of 

initial DIPA concentration (100ppm, 300ppm and 500 ppm) was carried out based on 

the optimum concentration of H2O2 under the same light source. As a result, 300ppm 

of DIPA turned out to be the most optimum concentration which gives the highest 
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degradation with a COD removal percentage of 54.46% among all. In another words, 

reaction system with 1.0M of hydrogen peroxide and 300ppm DIPA solution under 

500 Watt visible light source is said to be the optimum system which is used for the 

comparison between different light intensities. Moving forward, the same 

optimization process was also carried for hydrogen peroxide concentration then the 

DIPA concentration, but under the exposure of different light intensities namely 300 

Watt. For the optimization of hydrogen peroxide concentration, the same outcome 

was obtained which 1.0M H2O2 is the optimum concentration for the oxidizing agent. 

However, optimization of DIPA concentration under 300 Watt visible light radiation 

turns out to be 500ppm instead of 300ppm which gives an overall COD removal of 

60.64%. Thus, the optimum system under this light intensity is 1.0M of hydrogen 

peroxide with 500ppm of DIPA solution. By comparing both of the most optimum 

reaction systems under different light sources, 300 Watt of visible light tends to give 

better result on DIPA degradation under Photo-Fenton oxidation. Apart from that, the 

comparison between Photo-Fenton (with light) and Fenton (without light) oxidations 

was also carried out to prove the higher efficiency in degrading DIPA waste sample 

when light radiation is available. Lastly, we are able to draw to a conclusion that 

Photo-Fenton oxidation is more effective comparable to normal Fenton oxidation 

process. In addition, 300 Watt of light source is sufficient to provide efficient 

degradation of DIPA waste sample compared to a higher power light source which 

will eventually consume more energy. By utilizing 300 Watt light source is believed 

to be able to reduce unnecessary usage of energy.   
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5.1 Relevancy to objective 

Based on the experimental layout, it is believed that the efficiency of DIPA can be 

effectively determined based on the COD measurements obtained over time by 

plotting the measurement values against time intervals of oxygen demand tests. Each 

set of data is being organized according to the respective light intensity under studied 

based on different power of light source. Towards the end of the analysis, all results 

gathered from different light intensities will be plotted together against time and the 

most optimum light intensity is then being suggested based on the efficiency of 

DIPA degradation while other parameters were kept constant throughout the entire 

project experiment. The suggested optimum light intensity can be utilized in the 

future in order to enhance Photo-Fenton oxidation process as well as to avoid 

wastage of power on the light source which is unnecessary. 

 

5.2 Recommendation For Future Work 

This particular project study can eventually be extended for further optimization of 

other experimental parameters based on the suggested optimum light intensity for a 

Photo-Fenton process on degradation of Diisopropanolamine (DIPA). Optimization 

is tedious if all the parameters are variable and reliability of such optimization 

process will be questionable as well. Thus, by applying the optimum possible light 

intensity, one of the major experimental parameters is taken care and accuracy of 

optimization will also be relatively higher. Apart from that, this project can also acts 

as a baseline for Photo-Fenton processes whereby future studies on Photo-Fenton 

related research using different type of light source or amine type can utilizes the 

findings obtained from this study as a reference or guideline. Despite the 

optimization of experimental parameters, the research on evaluating DIPA 

degradation efficiency can be further enhanced by extending the scope of study into 

reaction kinetics where activation energy (EA) of each reaction system can be 

identified. Comparison of activation energy can help in determining the efficiency in 

a more precise and convincing manner. Thus, this project work is believed to be a 

good starting point for wider explorations on Photo-Fenton process if the findings 

obtained later are practical. 
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APPENDICES 

 

Appendix A: User Manual of HACH
®
 DR5000 Spectrophotometer 
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