
Simulation of the Inverse Kinematics of a Protein Backbone in Robotics Application

by

NabilaLau

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Information and Communication Technology)

MAY2011

Universiti Tekrwlogi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Simulation of the Inverse Kinematics of a Protein Backbone in Robotics Application

Approved by,

by

NabilaLau

A project dissertation submitted to the

Computer and Information Sciences Department

Universiti Teknologi PETRONAS

in partial fulfillment ofthe requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(Information and Communication Technology)

(PROF. ALAN OXLEY)

MAIN SUPERVISOR

UNIVERSITITEKNOLOGIPETRONAS
TRONOH, PERAK

MAY2011

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

NABILALAU

iii

ACKNOWLEDGMENT

I would like to thank my supervisors, Prof. Dr. Alan Oxley and Dr. Alan Giffin Downe, for their

support in the research such as the valuable time spent for discussions. Aside from that, I would

like to acknowledge the strong support I have from the university regarding my final year project.

Also, thank you to my family for the motivation I received throughout the developmental phase

of the project.

iv

Simulation of tbe Inverse Kinematics of a Protein Backbone in Robotics Application
Nabila Lau
Faculty of Computer and Information Sciences, Universiti Teknologi PETRONAS

Abstract

A lot of research had been conducted regarding the structures of protein, one of the

fundamental macromolecules in the human bod} system. In order to understand how

diverse biological functions work, it is crucial to researchers to study protein structures

and their dynamic behavior. This leads to the several successes in the field of

computational structural biology -through combining both technology and biology fields

together. Moreover. recent studies promote the research on protein backbone and its

possible flexible movements for the purpose of exploring the possibilities of protein

macromolecule have for advancement of the scientific field.

Hence with the inspiration from those studies and through the incorporation of Inverse

Kinematics (IK) algorithm, this work will focus on how protein backbone of minimal 3

joints movements will be modeled in the form of robotic appendages with the respective

dihedral angles similar to that of an ideal protein's using one existing algorithm.

Theoretical movements of the robotic appendages will be simulated as well .

These robotic appendages aim to prove their usefulness in various applications such as in

medical, manufacturing and other related robotic domains. Application of protein

backbone inspired robotic appendages is further accentuated in the form of 3D simulation

m this project.

Keyword'i. Inverse Kinematics, Protein backbone, Biologically-inspired robots

1

TABLE OF CONTENTS

List of Figures•..••.•...•........•.........•.•......•.••.•..•...•.•...........................•......•......•............. 4

List of Tables .. 5

List of Appendices ... 6

Nomenclature ... 7

Chapter 1: lntroduction .. 8

1.1. Project Background .. 8

1.2. Problem Statement. ... 10

1.3. Objective and Scope of Study .. 10

Chapter 2: Literature Review .. 13

2.1. Protein flexibility in backbone design .. 13

2.2. Solutions for IK applicable for protein backbone .. 14

2.3. Protein Backbone as Robotic Appendage .. 18

2.4. Computer Simulation .. 20

Chapter 3: Meth<Kiolog)' ... 22

3.1. Research Design ... 22

3.1.1. Algorithms Proposed ... 24

3.1.1.1. Triangulation .. 24

3.1.1.2. Faster Gradient Following Algorithm .. 26

3.1.1.3. Inverse Jacobian ... 28

3.2. Past Results for research ... 29

3.3. Instrumentation ... 30

3.4. Procedure .. 30

2

3.5. Efficiency Analysis .. 33

3.6. Modeling ... 33

3.7. Software Testing ... 40

Chapter 4: Results and Discussion ... 42

4.1. Prototype ... 42

4.2. Data Gathering and Analysis Method46

4.3. Results and Analysis ... 46

4.3.1. Correctness of the Appendage Movement .. .46

4.3.2. Efficiency of the Robotic Appendage .. .47

4.3.3. Usability Testing: System Usability Scale48

4.4. Discussion ... 50

4.5. Potential Applications in Robotics ... 52

Chapter 5: Delimitations, Recommendations and Conclusion 53

5.1. Delimitations , .. 53

5.2. Recommendations ... , 53

5.3. Conclusion .. 54

References ... 55

Appendices .. 59

3

LIST OF FIGURES

Figure 1: Simple illustration of a robotic appendage modeled similarly to a protein
fragment. 11
Figure 2: CCD solution method for protein loop closure problem (reprinted with
permission from Canutescu & Dunbrack, 2003) 17
Figure 3: Ideal values of protein backbone angles (reprinted from Berkholz et al, 2000
with permission from Elsevier) 22
Figure 4: Law of Cosines 25
Figure 5: Triangulation Method 26
Figure 6: Simple two:iointed appendage with target 27
Figure 7: Gantt chart for FYP 1 and FYP2 31
Figure 8: Spiral Model 32
Figure 9: Simplified Petri Net model for one algorithm 34
Figure 10:Petri Net Mode/for two algorithms 36
Figure 11: State Reachability Graph 38
Figure 12: Rough GUI design 42
Figure 13: GUI using openGL 43
Figure 14: Welcome Screen ____________________ 43

Figure 15: Window for the Biomimetic Robotic Appendage 44
Figure 16: Window for the moving appendage and random target 44
Figure 17: Functions in both windows 45
Figure 18: Rotated views in both windows 45
Figure 19: Correctness of the Appendage 47

4

LIST OF TABLES

Table 1: Key Milestones for FYP2 _________________ 31

Table 2: SUS result 49
Table 3: SUS result in graphical form 49
Table 4: Range of robotic precision 51

5

LIST OF APPENDICES

Appendix 1 (Activity Diagram) .. 59

Appendix 2 (Sequence Diagram) ... 60

Appendix 3 (Class Diagram) ... 61

Appendix 4 (Data Flow Diagram) ... 62

Appendix 5 (Context Diagram) ... 63

Appendix 6 (SUS Questionnaire) ... 64

Appendix 7 (Coding Snippets) ... 65

Appendix 8 (Prototype) .. 74

6

NOMENCLATURE

1. Biology Field

Term Definition

Amino-acids A molecule consisting of the basic amino group (NH2), the acidic carboxylic

group (COOH), a hydrogen atom (-H), and an organic side group (R) attached

to the carbon atom

Antibody Protein used as immune defense against foreign agents (antigens)

Atom The fundamental building block of a chemical element.

Backbone The main structural feature of a polymer (chain-like) molecule from which

many side chains branch off

Bond-length Distance between the nuclei of two atoms which have formed bonds with

each other

Conformation The three-dimensional arrangement of side groups on a molecule which can

freely rotate into different positions without breaking any bonds.

Enzyme A catalyst or a chemical produced by cells to speed up specific chemical

reaction

Sequence library Database that contains the order in which subunits appear in a chain, such as

amino acids in a polypeptide or nucleotide bases in a dNA or rNA molecule

Side-chain Atoms of an alpha-amino acid other than the alpha-carboxyl group, the alpha-

amino group, the alpha-carbon, and the hydrogen attached to the alpha-carbon
..

Note: All defirutwns of terms are taken from htto://www.bwlogy-onhne.org/dictionarv/

2. Kinematics Field

Dihedral angle Figure formed by two intersecting planes

End effector Device at the end of a robotic appendage, designed to interact with the

environment

Note·. All definitions of terms are taken from httll:llwww.websters-online-dictionarv.orWdefinitionsl

7

CHAPTER!

INTRODUCTION

1.1. PROJECT BACKGROUND

A protein (Creighton, 1993) is portrayed as sequence of amino-acids, linked by bonds

of peptides. The backbone is modeled as a serial linkage with protruding side-chains.

Three significant atoms are N, c., and C; contributed by the amino acids with two

dihedral degrees of freedom (DO F) to the backbone. A rising interest in biology is the

study of IK movements with regards to a protein backbone.

Kinematics is a branch of mechanics that portrays motion in abstraction without any

reference to mass and force. The most commonly known solutions for the kinematics of

manipulators will be forward kinematics and IK. Forward kinematics is to find the

position of the end-effector given the links lengths and joint angles. IK, on the contrary,

seeks for the values of joint angles given the position and orientation of the end

effector.

As always, IK is considered a much difficult problem to solve as compared to Forward

Kinematics. This is because in contrast with IK, the angles in Forward Kinematics are

known in advance prior to solving the position of the end effector. Another difficulty

with IK is that there could be several possible solutions (even to an infinite level) and

there lies a possibility where no solutions could be found as well (Kavraki, 2007).

Hence, it is important to choose the right computational algorithm for IK solutions in

order to produce the sought-after results in applications.

8

In animated and robotic motions, IK has been known and used widely. In comparison to

human complex actions, all of us perform IK everyday by reaching out for books on the

table, without even realizing the angles and the position of our limbs with respect to the

simple and impulsive movement. In IK situations, the position of end effector is already

pre-determined, and algorithms via mathematical solutions can be developed to

calculate the arrangements of joints with the possible angles depending on the number

ofDOFs.

Meanwhile, the term 'biologically-inspired' (also known as biomimetic, biomimicry,

and bionics) is the emulation of nature designs into solving human's everyday

problems. In the recent years, biologically-inspired robots are getting popular in

research studies and industry applications.

The emergence of these robots has already created a spectacular dimension of design

stage involving various mimicries of biological nature. The importance of nature

mimicry in robotic designs is described aptly in this note: "Fundamental understanding

of the morphology and functionality of soft structures in nature, however, increases

insight and can lead to new design concepts in soft robotics. The natural world

demonstrates the potential capabilities of soft robots" (Trivedi, Rahn, Kier, & Walker,

2008).

Hence, the concept of biomimicry can be applied to the movements of the protein

backbone structure in order to show how they (backbone structural conformations) can

be handy in robotic applications.

9

1.2. PROBLEM STATEMENT

However, simply by modeling and assembling the biomimetic robotic applications

based on protein backbone structures from scratch are costly, time-consuming and

difficult. It would be best to simulate the physical properties of the robot properly using

a visualization program to gain richer insight of how far the research could go and

predict the usefulness of the biomimetic protein-based robotic application.

Aside from that, as much as protein backbone has been compared to a robotic

application, biomimetic simulation of the possible movements of the robotic

appendages via IK algorithm is something new and yet to be explored further. Most IK

algorithms only portray a solution at a time and do not show intermediate positions of

the robotic appendage.

Thus, a 3D simulation program will be the best approach for this research. The

visualization program itself will ease the understanding of IK concept. Animated and

graphical representations of the appendages are provided as well by the system.

1.3. OBJECTIVE AND SCOPE OF STUDY

The main idea of this project involves integration of the domains from both robotics (IK

concept) and biology (protein backbone flexibility) fields for the 3D simulation

program. The concept of biologically-inspired robots is therefore applied in this

project. With regards to the significance of biologically-inspired robots in this project,

the protein backbone flexibility is duly captured for the purpose.

10

Hence, one could observe how the protein backbone itself can be modeled into robotic

appendages with similar joints and number and value of DOFs by concentrating a

minimal of 3 joints movements (Figure I).

Figure 1: Simple 2D illustration of a robotic appendage modeled similarly to a
protein fragment.

Thus, a system for the visualization of protein backbone structures in robotic

appendages via IK algorithm is envisioned for this project. On top of that, this project

aims to explain and predict the performance of robotic applications via the visualization

system. The system is could be used to improve the design of protein-based robotic

solutions in the near future. A simulation result will be carried out using openGL

libraries and Microsoft Visual Studio 2010 using primarily the C++ language. The

project will be completed, as expected by the university, by the end of the second

semester of the Final Year.
11

The 3D simulation program will be also useful to those who would like to know more

about IK concepts and its applications in biomimetic robotics. Hopefully, the research

completed by the author would be beneficial as a predictive tool for domestic and non

domestic applications involving the robotic appendages modeled to ideal protein

backbone structure.

To summarize, the main objectives of this research will be as follows:

• To create a visualization system for the biomimetic robotic appendages

• To explain and predict the performance of robotic application via the system

12

CHAPI'ER2

LITERATURE REVIEW

2.1. PROTEIN FLEXIBILITY IN BACKBONE DESIGN

Most early design methods of the protein were through fixed atomic positions on a

backbone template (Mandell, 2009). Simulation from fixed to flexible backbone

structures involved complex calculations and large computational resources which were

limited back then. The ultimate goal for the design of protein was to engage researchers

in searching for sequences of amino acids that will form stable protein structures. Due

to the concepts formulated over the years, the knowledge of protein structures has been

implemented such as in enzyme designs, sequence libraries, and others.

However, protein backbone has to be flexible in nature in order to accommodate the

crucial biological processes, such possible conformational changes to the backbone

during processes in the enzymes and antibodies. Therefore, backbone flexibility has to

be modeled accordingly to understand the protein sequence, functions, and structures as

the sequences of protein will determine the unique 3D structures, which in tum

determine the functions of the protein itself(Wu, 2008). As a result, predictive methods

have been formulated via computational modeling in order to design and construct new

probable functions of protein (Mandell & Kortemme, 2009).

In addition, it is vital to note that the various shapes of a protein structure are due to

torsion angles in the backbone, not really to the bond-length of the protein (Coutsias et

al, 2005). Hence, DOFs of the robotic appendages are important to be modeled

accurately in this project as per abstraction of the shape of idealized protein structure.

13

Representations of protein motion had been accurate when using Monte Carlo and

molecular dynamics simulation techniques (Adcock & McCammon, 2008). Monte

Carlo involves the usage of random steps in generating a series of conformations, which

molecular dynamics involves Newton equations to compute particle motions. Both of

these simulation techniques are computationally intensive, especially for particles with

manyDOFs.

This brings into the picture of how protein motions are important to the protein loop

closure problem. Loop closure problem is the search of the suitable segments in a

molecule of chain that is "geometrically consistent with preceding and following parts

of the chain whose structures are given" (Coutsias, Seok, Jacobson, & Dill, 2003).

Among some of the reasons protein loop closure being actively studied by biologists are

that loops of protein play vital roles with respect to protein binding as well as its active

activity as enzymes.

Recently, the IK concepts, which have been used widely in robotic field, are applied to

protein backbone's flexibility modeling (Canutescu & Dunbrack, 2003). The similarity

between the two fields lies in the notion that both of them needed IK to solve the loop

closure problems in protein, and closure problems in robotic kinematics. DOFs can be

represented as main adjustable parameters in the form of dihedral angles in both of the

problems (Liu, 2006).

2.2. SOLUTIONS FOR IK APPLICABLE FOR PROTEIN BACKBONE

IK itself has been used widely in computer animated and robotic-based motions. One of

the IK-based graphical animation simulation works is Style-Based Inverse Kinematics

14

(Grochow, Martin, Hertzmann, & Popovic, 2004) which uses IK to produce the most

likely human poses while satisfying constraints. The Style-Based IK provides accurate

image outputs of human poses and this program can be used for generation of poses

used in computer animation and vision.

However, one major drawback of the Style-Based IK program will be the inability to

model dynamics and the need for speed, especially for real-time synthesis for

optimization. The paper also lacks the lead to future work involving robotic

mechanisms while capturing IK in real-life applications rather than in just animation

and computer graphics.

Looking into the motivation of such graphical simulation program, on the other hand,

this brings the concern of the existing probable IK algorithms to be used to solve and

generate movements of robots towards target.

As mentioned earlier, IK is used to solve loop closure problem. Several solutions have

been formulated to overcome the loop closure problem in protein structures. Examples

of the IK solvers are the numerical and analytical solvers (Ho, Komura, & Lau, 2005).

Numerical solvers seek to get new 3D coordinates of end effectors close to current

orientation through iteration and approximation whilst the analytical solvers use

calculations by inversion of forward kinematics equations.

When we compare between the two, analytical solvers can provide solutions very

quickly but only applicable for simple structure. An instance of an analytical solver is

the Law of Cosines. Meanwhile, an example of the numerical solver will be the

Jacobian matrices.

15

In 1999, Wedemeyer and Scheraga had solved the problem via polynomial equations

for tripeptides with 6 DOFs. Jacobian matrix of the first derivatives of the distances of

atoms of the loop, DOFs taken into calculation, has been used as an algorithm in

solving loop closure problem. The algorithm itself, referred as 'random tweak', uses the

Lagrange multipliers by minimizing changes in dihedral angles while at same time

satisfYing constraints on the between atom to atom distances (Shenkin et al., 1987).

As of today, IK solution method based on Lagrange multipliers is known as the best

solver (Ho, Komura, & Lau, 2005). However, this method could not handle inequality

constraints and its computational time grows cube proportional to the number of

constraints. The end result will be poorer performance and higher costs when there are

more constraints.

As a result, linear programming has been introduced by Ho et al (2005) via the Linear

Programming based IK solver (LPIK) as its performance is almost at par with the

Lagrange multipliers method and is more suitable for real-time applications, such as 3-

D games and virtual environment, with large DOFs and constraints. Ho et al portrayed

the performance of LPIK is still stable and efficient even with multiple animation

objects simulated (also mean more constraints). However, for the subject of protein

backbone in this project, such solution is not needed as DOFs and constraints are not

large.

Another popular approach of solving IK which is also a practice in the protein backbone

is through the Cyclic Coordinate Descent (CCD). CCD was originally developed to

solve IK in robotics (Wang & Chen, 1991).

16

In CCD algorithm, the end effector of the robotic appendages will move towards the

target object by adjusting one degree of freedom at a time (Canutescu & Dunbrack,

2003). This is an iterative algorithm whereby the joints of the appendages are modified

along the DOFs in order to bring the end effector closer to the target object.

There are some reasons as to the usage of CCD to compute protein backbone

movements and loop closure IK-based solutions (Canutescu & Dunbrack, 2003).

Advantages of CCD are inclusive of that CCD is easy to implement and its algorithm

can be computed quickly as compared to Jacobian and Lagrange. Aside from that, CCD

is also numerically stable.

Nonetheless, the con with this solution method is there will be no guarantee for the

return of all solutions, and even if there is a solution, chances are CCD may miss it. For

the subject of this project, such disadvantage is not considered of much weight as this

project does not focus on providing all solutions. The concern is more on the ability of

the robotic appendages to move in order to achieve the target in a sensitive marmer.

A

Figure 2: CCD solution method for protein loop closure problem (reprinted with
permission from Canutescu & Dunbrack, 2003)

17

In the paper written by Endou et al (2006), IK had been applied in modeling protein

complex movements in order to study the conformation changes in protein backbone,

where the changes are notable. The research applied motion planning which is widely

used in robot motion and probabilistic road mapping. The study of IK application in the

paper is not comprehensive as the Endou et al emphasized more on the physiology of

the six protein backbone structures and their possible movements used.

Endou et al shows the relationship of protein backbone flexibility modeling and robotic

abstraction although they did not elaborate on the connection of how IK solving method

for protein backbone flexibility can be applied on various robotics applications as well.

This is the gap where the author seeks to identifY in close relation to this project by

using two different IK solver algorithms.

2.3. PROTEIN BACKBONE AS ROBOTIC APPENDAGE

The inspiration for protein backbone to be modeled as robotic appendage could be as

simple as how the similarity between them is very much apparent, both in design and

solution methods used. Biologically-inspired robotics and applications had been

introduced much earlier among humankind throughout the evolution of life. Human

wants and desire always cause human beings to refer to nature for solutions and

inspirations (Cohen & Breazeal, 2003).

Biomimicry, a term which originated from Greek words, is used for this biological

inspired approach as a design principle. The term is straightforward; it simply means

imitation of the natural biological designs in various domains of application.

18

As we can see in the paper produced by Czyzewski and Barron (2007), protein and

peptide structures had been studied for biomimicry purposes. The mimicry was aimed

after scrutinizing the structural designs of protein in order to assist prediction of

function of protein. However, the methodology of mimicry performed was not

elaborated much in the paper even though the authors recognized that this is a new field,

only recently explored into after foreseeing the prospective possibilities of venturing

deeper into the studies of protein structure and its flexibility.

Meanwhile, in the article written by Fay and Snoeyink (2003), techniques from robotic

had been applied to miniscule fragment of protein backbone, which refer to the IK

concepts. However, their concepts were more to reverse engineering; from the

formulation of a robotic appendage's (which has 6 dihedral DOFs) IK solutions and

then, apply those robotic concepts on fragments of protein backbone. The protein

backbone is also designed with 6 dihedral DOFs. In return, the IK solver will return all

real-valued solutions with unchanged chain endpoint and orientations. The more the

degrees of freedom are involved, the more solutions could be found. Nonetheless, the

article also did not elaborate more beyond the conceptual of robotic physics on the

protein backbone structure. Hence, the notion of implementing and realizing robot

mechanism from fragments of protein backbone is understudied in the paper and also

other papers to date (Singh, Latombe, & Brutlag, 1999).

Another inspiration for the biological touch in this project could come from the several

robotic applications these days. One of them is the biomimetic approach to IK of a robot

appendage, which is modeled based on a human arm (Artemiadis, Katsiaris, &

Kyriakopoulos, 2009). The benefit of this paper is that the application of IK is very

apparent with robot appendage's 5 DOFs movements. With observation, the IK

approach in solving closed-loop was used in the robot joint trajectories and new

19

anthropomorphic motions of the robot moving in the complex 3D environment. On a

defmite note, the paper itself serves to illustrate on how the research could inspire the

modeling of this project's robotic appendages to a protein backbone structure and

mimic the possible movements at the DOFs.

2.4. COMPUTER SIMULATION

Last in this section, the usage of computer simulation is highlighted appropriately for

the benefit of the project. Simulation in the form of 3D has been used for various

researches and other fields like tourism, gaming visuals, mechanistic view, proposed

experimental environments, and others. Interactive simulations are said to be able to

stimulate recalls from learner, involving preceding knowledge and its application (Bill,

2003).

Among the ways to support cognitive knowledge is through a computer generated

situation through tools like games, role playing and graphical simulation alone.

For the purpose of better understanding experimental theories or proposition, simulation

program itself is indeed useful. Some of such simulation programs can be seen through

the experiments conducted on possible mechanism of surgical robotics. Such as, in the

journal written by Hayashibe et al on robotic surgery simulation, the motion of a

surgical robot is simulated in advance to be used for the pre-operative planning and

training procedures. The modeling of ZEUS, a robotic appendage used for surgical

operation, is integrated with IK and correspondent DICOM images for the simulation

program. Experienced surgeons who used the system are happy with the realism of the

robot motions and deem the system is useful in pre-surgical settings (Hayashibe et al,

2006).

20

To complete this section, the three main areas of the research, namely the protein

backbone, inverse kinematics, biologically-inspired robots, have been addressed

accordingly to illustrate the relationship of the three with respect to the project. In this

paper, biomimicry using the protein backbone for the visualization of robotic

appendages in a simulation program is hereby proposed.

Unlike previous works which focus more on applying the abstraction of robotic theories

on the fragment of protein structure, this work intends to prove the reverse possible on

realizing robotic applications based on the modeling protein backbone's dihedral angles

and DOFs. 3D simulation program will prove the possibility of mimicking the structure

of protein backbone on robotic appendages which are useful for both domestic and non

domestic applications.

In addition, the IK algorithms are applied to the movement of the robotic appendages in

achieving target.

The rest of the paper continues with the methodology, results and discussion. The paper

then concludes with delimitations, recommendations for future studies and conclusion.

21

CHAPTER3

METHODOLOGY

3.1. RESEARCH DESIGN

The main output of this project is a stand-alone application of simulation-based

modeling and movements of the robotic appendages modeled similarly to a protein

backbone with ideal angles (Figure 3).

199 112
o_l cll3

119.5 116.1 II 118.6 ue.& H 1ze r-.... 111

C 121.1 ,_ rc ~116.2 N

/ -~ ~'i? w. 117-y'+~
Ca-l N,.....-e' In.2 CJ Ca+l

H ut.8 12l 11122
129.8 123.9
129.10122.7

Figure 3: Ideal values of protein backbone angles (reprinted from Berkho/z et al,
2000 with permission from Elsevier)

IK movements were simulated evidently through the robotic appendage as that is purely

envisaged for the program - to show the audience how IK could be used for robotic

appendages applications.

22

It was important to observe and analyze the protein backbone movements before

designing the robot based on the backbone. The number of DOFs were considered and

fixed since the more DOFs, the more solutions (which are infinite) produced. 6 DOFs

should be perfect for this project. The aim of the robotic appendages was to be able to

move towards a randomly moving target in the simulation later. Analysis was

completed regarding the efficiency and precision of the movements.

Given the desired position, the robotic appendage must be able to reach the position

while arrangements of links to the movement and angles of DOFs (with constraints

from protein backbone model of course) programmed. In the beginning, CCD algorithm

was first thought of use for the research purpose but the algorithm was too complex to

be implemented in a short duration of developmental phase. Hence, unlike most 1K

based robotic simulations, CCD is not used in this project.

During the developmental phase of the research, two new algorithms were chosen for

the system, namely the triangulation and faster gradient following algorithms. The

system was first envisaged to portray robotic appendage movements using these two

algorithms. However, due to time constraint, two algorithm implementations were not

feasible for this project. Hence, in this case, only one algorithm will be tested for the

program, chosen from either triangulation, faster gradient following or using numerical

method which guarantees reaching target precisely: inverse Jacobian and Euler

mathematics.

23

3.1.1. ALGORITHMS PROPOSED

3.1.1.1. TRIANGULATION

This algorithm was developed by Mukundan and Muller-Cajar and was tested against

the popular CCD algorithm for its efficiency. The algorithm uses the law of cosines to

determine joint angles quickly when given a target. The similarity of this algorithm with

CCD is that it also iterates through every joints to the end-effector.

foreach Joint i do
Cakulate <\ , c:
if c 2 a + b then

end
dse if c < !a - bj then

7ii=-t;,:
end
else _, ., ,,

e = cos-1 ((1. r)· -· cos- 1(-ib"-a·-c-))·
' · - · 2ac '

if a.;_= -- Cl or a1 = CT then
r- = (o.l.O):

end
else

r' = (« x 7):
end
rotate(a; hyB about r):

end
end
Algorithm 1: The triangulatiou algorithm lor ,\
kinematic chain with no consttaints

Law of Cosines is used in calculating general triangles:

c is the triangle side opposite of angle y as shown in the figure below.

24

y

Figure 4: Law of Cosines

Formula [1] is used to complete a triangle in the three-dimensional space. In this

algorithm, properties of triangles are used to move the robotic appendages towards the

target. We require one iteration only to reach the target, first moving the joint which is

furthest away from the end-effector.

In the ideal case, the angle of 9 can be calculated through the formula as per below:

B = cos-1
(([• c) ~ <>b

[2)

Each of the robotic appendages will be rotated by Each of the robotic appendage will be

rotated by 9 calculated in [2} respective to the axis of rotation vector r:

7 = (a X c)
[3]

Also, the first two appendages will be rotated, leaving the remaining ones straight.

However, it would also consider possibilities of non-ideal cases such as when the target

is too far or too near from the current appendage.

25

b '
Figure 5: Triangulation Method

When the target is too far from appendage, c > a+b whereby the solution to this is by

rotating the appendage until the vector a is equal to target vector c.

[4]

On the other hand, when target is too close, c< Ja-b/ hence rotate the current appendage

so that vector a is equal to negative of vector c.

a:= -c [5]

The algorithm was not implemented in any graphics application yet. Probably it was

still under experimentation that it was not efficient enough to be used in graphics

involving 3D animation.

3.1.1.2. FASTER GRADIENT FOLLOWING ALGORITHM

This algorithm is a variant from the Simple Gradient Following to solve the problem of

taking a long time for the tip ofthe joints to reach the target. With this algorithm, the tip

or end-effector could move quickly to the target as calculation reaches nearer to a

minimum value. Below is the algorithm:

26

o.ld gradient a,-= -o
o.l~qradient:b = 0

while (dis-t' > 0 .-1)
(

qradient~a =:_:calc_DiS:_tance(a+l; __ bJ -Calc Dist'ance:(a-1, b)
qradien.t_b ."', _Ca.J,-e_Di~ta:oQe-_(a., b-+1:} 7 Ca.lc:Di:$-t_anoa (a, b-i)

have 've _gone, -Past it?

if Siqn{old.:._gradient~~) !'"' 's;i~rn:(gTa(liept_a) -then
a -'-"' speeda " old -gradiEtn.t a_ / (gradient_a-o.ld_gradhtnt..:_a}
speeda --,"" 0 - -'

else
speeda -'+*' _-qa

i.f s:ion(ol.d ~i:uu_ent b) ~= .si.gn(gradient b) then
b -=- s_~eda -•- -oJ:d gradietJ,t 'b 1 (gradient_b-o.l-ct_gr-idient_b)
speedb =- ;O - -

mo·ve
a -":' Spee(:l_a
b -= speed_.b

d.ist =-Calc.:_~i-&t~_ce_c·a, b,)

The algorithm will always calculate the gradient and rotating the appendages until the

tip gets close enough to the target. However, the tip would not reach the target precisely

and would always take a longer time to calculate the positions due to its iterative

behavior.

b

·>· ' '; error

. . . . ta,get

Iii
Figure 6: Simple two-jointed appendage with target

27

3.1.1.3. INVERSE JACOBIAN

This approach leans heavily with the concept of vector calculus. The Jacobian matrix is

the matrix of first-order partial derivatives with reference to other vectors. Formula 6

shows the Jacobian matrix of partial derivatives to relate a change in any component of

x to a change in any component of f. Jacobian matrix J(f,x) shows how each component

off varies with respect to each joint angle x.

w; aJ;
ax, ax,

df aJ, aj,
J(f,x)=-= ax, ax, dx

atM
ax,

The amount of incremental change on each iteration is defined by the relationship

between the partial derivatives of the joint angles, 9, (represented with x) and the

difference between the current location of the end effector, Y, and the desired position

to reach target, Yd.

Below is the sample coding used for the system in order to inverse the Jacobian matrix:

MatrixXf linkedStructure::pseudoinverse()
{

//Computing pseudoinverse
MatrixXf j = jacobian();
MatrixXf jjtinv = (j * j.transpose());
jjtrnv = jjtinv. inverse();

return (j.transpose() • jjtinv);

28

The algorithm of inverse Jacobian:

• Compute the instantaneous effect of each joint

• Uses linear approximation for the motion

• Finds and compute the linear combination to bring end effector to goal position

• Once a step is taken, solution needs to be recomputed

The effect of using this algorithm is that the movement will be in curved lines/paths, not

straight. This avoids jaggy form of movement and it looks smooth on the screen.

When using Inverse Jacobian, the end effector would be really sensitive to the target

position and hence allowed the appendage to move accordingly to reach target. The

algorithm was chosen and IK was programmed into the appendage appendage based on

the tutorial by Alexandros Dermenakis in his website

(http:/ /alexandrosdermenakis.com/tutorials).

3.2. PAST RESULTS FOR RESEARCH

Even though most of the animation involving 3D was developed using CCD, it was not

considered for this research. The reason was its complexity as an IK solver

implementation. Hence, it would not be feasible to incorporate the whole algorithm in

such short developmental time given by the university.

The triangulation algorithm has been applied a simple OpenGL application in C++ to

gauge its performance against CCD algorithm. Mukundan and Muller-Cajar (2007)

found that by moving target to 1000 new positions, CCD reached the targets by 92.97%

with a mean of 8. 727 iterations. On the other hand, triangulation reached each target on

the first iteration as hypothesized.

29

On the other hand, the faster gradient following algorithm has not used in research since

it was developed by Elias (2004) to introduce novices to IK animation algorithm. This

research aims to portray the reliability of this algorithm in terms of judging how close

(calculated in units) the end effector could move to the target.

Both of the algorithms were not efficient enough to show the movement of random

target being reached by the end effector of the robotic appendage. Hence, the inverse

Jacobian was used to develop this program since it was more efficient- and it is able to

reach target at almost all of the time.

3.3. INSTRUMENTATION

For the purpose of this research, openGL libraries were used for the graphical and GUI

development. For GUI, GLUI library was fundamental in creating the functions such as

buttons, spinner buttons, and rotating ball for viewing purposes. The output would be a

Win32 console program which was written with C++ language. C++ was chosen as it is

a language that is suitable for system programming.

3.4. PROCEDURE

To ensure timeliness in completing the project, Gantt chart was used to track the

progress of the research study and implementation.

30

Figure 7: Gantt chart for FYPJ and FYP2

The key milestones that the author needs to achieve this semester will be as per below,

the ones highlighted in yellow were already met:

Week 7 (July, 2011) Submission of Progress Report to

supervisor

Week 11 (August, 2011) Pre-SEDEX

Week 12 (August, 201 1) Submission of Dissertation for external

examiner

Week 13 (August, 20 II) Dissertation Submission and Viva

presentation

Week 14 (August, 201 I) Technical Report Submission

Table 1: Key Milestones for FYP2

31

In the initial stage of the project development, the prototype for the simulation program

was communicated to supervising lecturers for further review. As such, communication

strategy was practiced. Crucial steps were first to outline the objectives for the

communication strategy (Argenti, 2008). The objectives must portray the vision of this

project clearly. Clear objectives would ensure the scope of the project would not go off

the track. As the research progressed, it became important to communicate this project

accordingly to the lecturers through the project presentation, interim, dissertation and

technical reports. Feedback received throughout the development of this project was

accounted for as serious contemplation for future improvements. Among the feedback

received were regarding the functions available through the project itself as well as the

research methodology.

The research was conducted using the spiral development whereby the prototype was

developed in an iterative manner with incremental changes around each spiral

(Planning, Development, Analysis and Evaluation). System was developed gradually,

while going through all phases, until it reached the requirements. In this research, it has

3 spirals of developmental phases to reach the first working prototype.

Analysis Evaluation

Planning Development

Figure 8: Spiral Model

32

Prior to developing the project, the Activity, Sequence, Class, Data Flow and Context

diagrams were constructed for graphical representation of the system [Appendix 1-5]

3.5. EFFICIENCY ANALYSIS

The 3D program application was designed to measure the ability of the robotic

appendages to reach certain target on the simulation environment while user

manipulated the angles, for purpose of experimental results- similar to that of a protein

backbone's ideal values of dihedral angles. The performance of the system would be

measured based on the successful attempts by the robotic appendages to reach and grab

each of the targets shown. The higher the ratio of success, the system would be deemed

as efficient enough.

Assume a, the ratio = Number of times robot reach target

Number of times target is shown on screen per period of time, t

3.6. MODELING

For this work, the system was modeled with boundaries in the experimental frame. In

the initial plan of the research, two algorithms would be implemented by the system

whereby user is able to select either algorithm to simulate the robotic appendage.

Modeling was first designed with Petri Net models involving the two algorithms,

namely Triangulation and Faster Gradient Following as this was in the initial plan of

33

developmental phase. Later on, only one algorithm (inverse Jacobian) was chosen for

the implementation due to time constraint.

Below are the inputs, outputs and constraints involved in the Petri Net models:

• Inputs: Target position, type of algorithm (either Triangulation or Faster Gradient

Following)

• Outputs: Movement of the robotic appendages, iteration value, distance target

from end effector, joint angles

• Constraints: Rotation respective to joint angles, appendage lengths, /!Xed robotic

base, space, and scale

• TargetPointO Animate arm

Target on view space

ScafeArmQ AnimateArmO

Scale arm

ArmViewO

VIew the arm Calculate Angles

CalculateAngleO

calculate Di'stance

Figure 9: Simplified Petri Net model for one algorithm

Since this project involves a visualization system to portray how the robotic

appendage moves according to the Inverse Kinematics Algorithm, hence it will

require the interaction from user.

34

User will first click on type of algorithm (either Triangulation or Faster Gradient

Following) before proceeding to determine where tbe target should be on tbe

workspace/viewport. The constraint is only one algorithm to be chosen at one time

via the checkbox button. Once target spot is clicked by tbe user, user needs to click

on tbe Animate button. The robotic appendage will move accordingly via the chosen

Inverse Kinematics algorithm towards tbe specified target on tbe viewport.

At this point, the user can actually scale tbe appendage tbrough the spinner button

on the graphical user interface.

User can also rotate the appendage in tbe X, Y and Z perspective. This can be done

by drag and rotate button on the graphical user interface as well.

In tbe system itself, the distance of the tip of tbe appendage to the target will be

calculated prior to reaching the target. Aside from that, angles of the tbree limbs

would also be taken into calculation in order to show Inverse Kinematics movement

of the robotic appendage on the screen.

After tbis process, tbe loop can be repeated for user to choose a new target point on

the viewport once more with or witbout changing tbe type of algorithm.

35

P2

T1

Pl

Figure 10: Petri Net mode/for two algorithms

Places:

PI: Program is ready, robotic appendage in the display mode on the viewport

36

P2: Triangulation algorithm is executed

P3: Faster gradient following algorithm is executed

P4: Target spot is shown the viewport

P5: Robotic appendage moves according to the chosen algorithm

P6: Robotic appendage grows or shrinks according to selected scale by user

P7: Robotic appendage is rotated in X, Y or Z perspective

P8: Distance from tip of appendage to the target is calculated

P9: Angles of the three limbs are calculated via the algorithm in order to reach target

Transitions:

Tl: Select algorithm

T2: Select target spot on the viewport

T3: Animate button

T4: Scale appendage

T5: Rotate appendage via View button

T6: Robotic appendage on the viewport, operation modules on standby

T7: Distance from tip to target is used for the calculation in the algorithm

T8: Angles are calculated in order to rotate appendage towards the target. Robot

appendage moves to target

The initial Petri Net model for two algorithms was then analyzed with state reachability

and its boundedness, safeness, and liveness

37

• State Reachibility (with Reachability tree)

010000000 001000000

·····~

,,."''''" •''' -~---·-·· .,, '"
000000100

. ····· ..

000000001
TB

Figure 11: State Reachability Graph

The reachability graph shows that the Petri Net is reachable from its initial marking

point, PI to the last transition in the process, calculated angles shown on the graphical

user interface.

There is a sequence of firings from PI to T7, whereby the process can be repeated again

through T8 to the initial marking, Pl.

• Boundedness, Safeness, and Liveness

The Petri Net is bounded since the number of tokens of each place does not exceed a

finite number, i.e. only one token per each place at a time.

38

The Petri Net is also safe as it is !-bounded where every marking has only one token at

a time. When the net itself is bounded, it is guaranteed that there will be no overflows in

the buffers, no matter how the firing sequence may be.

The Petri Net is also live in the sense it has the complete absence of deadlock situations.

In this Petri-Net each transitions:

T1: L-1live,fire at least once in the firing sequence

T2: L-1 live, fire at least once in the firing sequence

T3: L-1 live, fire at least once in the firing sequence

T 4: L-1 live, fire at least once in the firing sequence

T5: L-1live,fire at least once in the firing sequence

T6: L-1 live, fire at least once in the firing sequence

T7: L-1 live, fire at least once in the firing sequence

T8: L-1 live, fire at least once in the firing sequence

Hence, in overall for the Petri-Net, it is considered to be live or L-4 live since it is Ll

live for every marking in the transitions from initial marking. A live Petri-Net ascertains

that there will be no deadlocks regardless of the firing sequence.

The revised Petri-Net was measured also with the inverse Jacobian algorithm (the only

algorithm used for the system development) and the result was similar: it is bounded,

safe, and live or L-4 live.

39

3.7. SOFTWARE TESTING

Apart from efficiency analysis, the application program would be tested under

controlled conditions to ensure it performs as expected. The testing would also help to

validate the correctness of the program and specifY errors if they exist (such as software

bugs).

The aim of software testing was not only to look for the errors but also to gauge the

potential or hidden problems in order to minimize the risk of system failure.

The reliability of the software would be tested based on how many times the system

crashed or froze while the user was using the system for a controlled period oftime.

Aside from that, it would be useful to test the errors of the system in which the robotic

appendages did not reach the target (the tip was not at all near to the target point). This

was because that even sometimes the algorithm implementation did not cause the

appendage to reach the target point. The system's implementation of the algorithm

could be flawed as well, leading to erroneous results. From the samples tested over a

period of time, the accuracy of the system can be determined as well.

Next, the usability testing test would be performed on the system as well. The following

questions were first drafted for the group of testers:

1) How much time taken by the tester to understand and use the system?

2) How many mistakes tester make while using the system? Wrong buttons clicked and

ex cetera?

3) How quick the tester becomes familiar with the system?

40

4) How fast user recalls system's functions and buttons the next time the tester uses the

system?

5) How does the tester feel when he/she is using the system?

In order to generate precise data sampling, a System Usability Scale (SUS) was used to

identifY the usability performance of the system.

41

CHAPTER4

RESULTS AND DISCUSSION

The visualization system implemented one extstmg algorithm, using the inverse

Jacobian and Euler mathematics. Usage of the algorithm will enable user to visualize

the movement of the appendage with respect to the target itself.

4.1. PROTOTYPE

Below is the first suggested graphical user interface prototype design for the

visualization system.

2 Ammate

lllearm

3 01splat
I dlstancelrom

end efledorto
the target

4 DISplay the

I angles or eacll
llmbaflerthe
ann movement

1 Seled algonlt1m

5 01splay -
number of
1teranons to
reacll target

Figure 12: Rough GUJ design

42

6 M1n1m1=e
reslore down
and dose
buttons

7 Targetwtucll
1s spea!ted by
the user by
dld<mg
aoywllere 1n the
~1ewport

As per initial plan, below image is the GUI for the system with two algorithms

implemented. _,_
r--r, ,........,

-~
~

,-n<w

r--

-

Figure 13: GU/ using openGL

The finalized GUI and system of the biomimetic inverse kinematics robotic appendage

are as shown below (Welcome Screen with instructions).

Figure 14: Welcome Screen

43

When the user presses the Enter keyboard button, two windows will appear on the

screen [see Appendix 8 for more examples].

, __
--~ ... too.~

- , ., ,
%*'1!Y n.IZ

Figure 15: Window for the Biomimetic Robotic Appendage

~-b~~-~ .. --......... ,_ ______ ~
p_ ...

c ... ~

-~ ...
·r.:--11
·~;

·~· -
' I ' ' "J .. .;-
r-n t~-z

a:a.•ac•

g -... r;o-;;
-~·,..,._..!

Figure 16: Window for moving appendage and random target
44

Manual Robot Arm Jacobian Inverse Algorithm
P' Show AxiS P" Show Axis

Ground Plane Color I White
Canvas Color! White ..:J

Arm Color! Dark Grey 03
Goal.

Goal
X j3 0 lJ X 11 0

vloo vie o .%)

zl -3 o zle o ;J

Transformauon
Transformation

.- 'r)
~s

Trans XV Trans Z

Rotate and Scale

~
Rotalron

Rotation
Scale I 1 o .iJ Scale 11 o ,;j

Animate Robot I Animate Arm In KeyFrame I

Figure 17: Functions in both windows

•
Figure 18: Rotated views in both windows

45

4.2. DATA GATHERING AND ANALYSIS METHOD

Data gathering was mainly conducted via observation of the robotic appendages

performance via the visualization system. Results were then recorded accordingly prior

to interpreting the results and drawing appropriate conclusions.

Analysis was based on the following attributes:

1. Correctness of the appendage: Identicy the ideal path of the appendage

movement and measure the deviations, if any. Did it move to the target?

2. Do user usability testing based on the graphical user interface as well as the

functions on the screen. Are the user satisfied with the interface and the system

in overall from human computer interaction perspective?

4.3. RESULTS AND ANALYSIS

4.3.1. CORRECTNESS OF THE APPENDAGE MOVEMENT

The appendage was simulated for 100 times where position of the random target will be

different for each time. The end effector was observed with respect to the random target

positioning. The result was the end effector was very sensitive to the random target

movements- it will always follow the target's movements.

For only 5 times whereby the robotic appendage stopped moving (due to system's bugs)

in the period of testing the end effector did not reach the random target. Due to this the

system is debugged and the tests were conducted for 2 more sets of I 00 times.

Results were with 98 times and with 99 times of reaching target.

46

100 .£:=:--"'-:
90
80
70
60
50
40
30
20
10
D

13 Reach Tarpt

•Did not Reach Target

1st Set 2nd Set 3rd Set

Figure 19: Correctness of the Appendage

4.3.2. EFFICIENCY OF THE ROBOTIC APPENDAGE

Assume a, the ratio = Number of times robot reach target

Number of times target is shown on screen per period of time, t

The biomimetic robotic appendage was simulated for I 00 times in which the target was

moving randomly for I 00 times as well. Period of time was 5 minutes (5x 60= 300

seconds).

Based on the simulation tests, the robotic appendage was able to reach 80 times out of

100 times (the remaining 20 times was not counted as the robotic limbs were colliding

with each other even though the end effector touched the target. Robotic appendage was

not moving normally).

Hence the ratio, a: 80 I (100) = 0.80, which indicates the robotic appendage can be

considered as near to highly efficient (a=!).

47

4.3.3. USABILITY TESTING: SYSTEM USABILITY SCALE

System Usability Scale (SUS) is a simple ten question scale system used to portray

global view of the usability of a particular system. The feature of this scale system is

almost similar to a Likert scale where respondent will indicate degree of agreement or

disagreement. SUS was used as part of the usability testing program at Digital

Equipment Co. Ltd., United Kingdom (Brooke, 1996).

10 respondents were chosen randomly to use the system prototype without much

briefing or discussion taken place. After using the system for 5-10 minutes, respondents

were asked to record their immediate response to each question on the SUS form

[Appendix 6]. Respondents were asked to mark each question and if they could not

answer any of the questions, they were informed to mark the centre point of the scale.

The SUS results will yield the overall usability of the biomimetic system. All questions

are crucial to determine the usability rating of the system; none can be meaningful on its

own. SUS score system is calculated by summing the score contributions of all

questions:

0. Score contribution ranges from 0 to 4.

1. Questions 1, 3, 5, 7, and 9: Score contributions are calculated by the scale position

(from Strongly Disagree, I to Strongly Agree 5) minus I.

2. Questions 2, 4, 6, 8, and 10: Score contributions are calculated by 5 minus the scale

position.

The sum is then multiplied with 2.5 for the overall usability value.

48

f)ysttm Ua~bility Suit

~tioo/R~t l 2 3 4 5 6 1 8 9 10 SUS ScOI't

1 s 1 5 5 3 3 3 1 3 1 10

2 3 2 s 4 s 2 4 2 4 4 67.5

3 3 3 3 4 3 3 4 3 4 3 52.5
4 5 3 3 5 5 5 5 5 3 3 so
5 4 3 4 4 3 3 2 2 3 3 52.5

6 s 5 4 5 5 5 4 5 4 5 42.5

7 3 4 3 2 3 I 3 1 4 4 60

8 3 3 3 3 3 3 3 3 3 3 so
q 4 2 4 4 4 2 4 I s 3 725
10 4 2 2 3 s I 3 1 4 2 60

Aver~tt 57.75

Table 2: SUS result

80
1

10
1

60
cu -I

3 ... '>0 0
v

"1
Ill 40

1/)
5

;::) 30
1/)

- b

10 • 1
' '.":;·-~

10 •8

() •9

Qut>st 1011/ Rl'Sponc1ent
• 10

Table 3: SUS result in graphical form

Questions I, 3, 5, 7, and 9 indicate whether the system is positively usable from the

respondent' s perspective. Questions 2, 4, 6 and 8 indicate the negative feeling of the

respondent after using the system.

Result of the SUS rating is 57.75/100.00. Most ofthe users found the system is usable

in general but they would like the graphical user interface to be improvised.

49

4.4. DISCUSSION

The objectives of this research are to:

• To create a visualization system for the biomimetic robotic appendages

• To explain and predict the performance of robotic application via the system

Based on the results received from the testing conducted on the system, both of the

objectives are achieved successfully. A visualization system comprising of two

windows has been designed and implemented with the inverse Jacobian algorithm. The

system is able to visualize and simulate the movement of a robotic appendage rotating

on a spherical joint towards random target on the screen.

Aside from that, the performance of the system is considered good in terms of able to

perform the following functions:

• Rotating both of the appendages in both windows

• Spinner buttons to move the target in X, Y, Z directions

• Moving the appendage towards the target in inverse kinematics

• Appendage is modeled according to a protein backbone

• User can change the colors of the biomimetic robotic appendage, ground floor and

background

Only the precision of the robotic appendage has not been tested in this system.

• How close the end effector to the target? Assume 0.5 units as the maximum radius

value to the target. Once end effector reaches < 0.5 units from target, it is considered

target is successfully reached.

50

Involve test tries with 100 different positions of the target, and measure in statistical

sampling mod, mean and median values. Develop range for precision:

0.09 - 0.5 units Quite precise

2.01- 0.08 units Very precise

Table 4: Range of robotic precision

Precision ofthe appendage can be tested in tbe future studies of tbe project.

51

4.5. POTENTIAL APPLICATIONS IN ROBOTICS

A. Medical field especially in surgical operating room - used alongside Da Vincci and

ZEUS robotic appendages. It is especially appropriate for miniscule incision such as

keyhole surgery. Also this application can be used in nanorobotics involving surgery.

B. Manufacturing to substitute human capabilities in repetitive motions such as

welding, pick and place products on conveyor belt, and ex cetera.

C. Space Research to inspect hard-to-reach areas in the outer space equipped with

camera and for the safety of the astronauts. Current appendage used is Canadarm.

D. Provides dexterity in movements in harsh environments such as repairing drilling

pipes underground the sea, cleaning hazardous and radioactive wastes and ex cetera.

E. Education to better understand the protein loop closure problem solved with IK.

F. Implantation of robotic appendage for limbless or crippled persons.

G. Circuital and Electronics where circuits can be connected without human

intervention via the biomimetic protein nanorobotics.

H. Biotechnology research and implementation whereby nanorobotics used for

monitoring and detection of miniscule results involving living microorganisms or as

sensors

I. Mathematical model or computational model inspired by the protein movement in

network system (mobile technology, internet, and ex cetera) to process information.

52

CHAPTERS

DELIMITATIONS, RECOMMENDATIONS AND CONCLUSION

5.1. DELIMITATIONS

There are several delimitations worth noting about this research. The research will not

focus on improvising any specific applications of the robotic appendage, either in the

non-domestic or domestic environments. However, the research does envisage the usage

of the robotic appendages for current robotic applications existing in the industry as

long as the physical structure and its movements are suitable for the relative

environment. The next delimitation is the scope of the research does not include any

specific protein dihedral angles used as the manipulating variables for the robotic

appendages modeling.

5.2. RECOMMENDATIONS

With this, the research could be further enhanced in the future to include it in specific

environment and measure its effectiveness (movements and dynamism) as compared to

existing robotics design. Aside from that, the system can be implemented as a

comparison of two algorithms to evaluate the efficiency and effectiveness of both in

simulating the appendage.

Additionally, it would be an improvement to this research if better IK algorithm could

be used to employ optimization of performance with regards of the robotic appendages

movements and specific flexibility based on different protein backbone structure

modeling

53

REFERENCES

Adcock, S.A. & McCammon, J.A. (2008). Molecular dynamics: Survey of methods for

simulating the activity of proteins. Howard Hughes Medical Institute. Chern

Rev.106 (5), 1589-1615.

Argenti, P.A. (2008). Corporate Communication. Fifth edition. Boston: McGraw-Hill.

Artemiadis, P.K., Katsiaris, P.T., Kyriakopoulos, K.J. (201 0). A biomimetic approach to

inverse kinematics for a redundant robot appendage. Springer Science+ Business

Media, LLC.

Berkholz, D.S., Shapovalov, M.V., Dunbrack, R.L., & Karplus, P.A. (2000).

Conformation dependence of backbone geometry in proteins. Cell Press

:Structure 17, 1316-1325.

Bill, D.T. (2003). Simulation for experiental learning. Retrieved from

www.liquid.group.com at 2011, February 10.

Brooke, J. (1996). "SUS: a "quick and dirty" usability scale".

Canutescu, A.A., & Dunbrack, R.L. (2003). Cyclic coordinate descent: a robotics

algorithm for protein loop closure. Protein Science, Vol. 12, 963-972.

Cohen, Y.B., & Breazeal, C. (2003, March). Biologically inspired intelligent robotics.

Proceedings of the SPIE Smart Structures Conforence San Diego, CA, 5051-02.

55

Coutsias, E.A., Seok, C., Jacobson, M.P., & Dill, K.A. (2004) . A Kinematic View of

Loop Closure. Wiley Periodicals J Comput Chem: Vol. 25, 510-528.

Coutsias, E.A., Seok, C., Wester, M.J., & Dill, K.A. (2006). Resultants and Loop

Closure. International Journal of Quantum Chemistry, Vol. 106, 176-189.

Creighton, T.E. (1993). Proteins: Structures and molecular properties. W. H. Freeman

and Company, New York, 2nd edition.

Czyzewski, A.M., & Barron, A.E. (2007, November). Protein and peptide biomimicry:

Gold-mining inspiration from nature's ingenuity. AIChE Journal 2008, Vol. 54,

1-7.

Endou, A., Carpio, C.A.D., Qiang, P., Ichiishi, E., Tsuboi, H., Koyama, M.,

Hatakeyama, N., Takaba, H., Kubo, M. (2006). Robotic path planning and

protein complex modeling considering low frequency intra-molecular loop and

domain motions. Genome Iriformatics. Vol. 17, No.2 , 270-278.

Elias, H. (2004). Inverse Kinematics - Improved Methods. Retrieved from

http://freespace.virgin.net/hugo.elias/models/m ik2.htm

Fay, A.L. & Snoeyink, J. (2003). Backbone motion by inverse kinematics for protein

design. Biogeometry News. Retrieved from

http://biogeometry.duke.edu/newsletter/issues/ at 2011, February 10.

Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.(2004). Style-based inverse

kinematics. ACM Trans. Graph., Vol. 23, No. 3., 522-531.

56

Guanfeng, L., Milgram, R.J., Dhanik, A., & Latombe, J.C. (2006). On the inverse

kinematics of a fragment of protein backbone. 1Oth Symposium on advances in

robot kinematics, 201-208.

Hayashibe, M., Suzuki, N., Hashizume, M., Konishi, K., Hattori, A. (2006, July).

Robotic surgery setup simulation with the integration of inverse-kinematics

computation and medical imaging. Computer Methods and Programs in

Biomedicine Vol. 83, No. I, 63-72.

Ho, E.S.L., Komura, T., & Lau, R.W.H. (2005). Computing inverse kinematics with

linear programming. VRST '05: Proceedings of the ACM Symposium on Virtual

Reality Software and Technology, Monterey, USA, 163-166.

Kavraki, L. (2007). Protein inverse kinematics and loop closure problem. The

Connexions Project, module m11613.

Lapreste, J.T., Jurie, F., Dhome, M., Chaumette, F. (2004). An Efficient Method to

Compute the Inverse Jacobian Matrix in Visual Servoing.

Mandell, D.J. (2009, August). Backbone flexibility in computational protein design.

Current Opinion in Biotechnology Vol. 5, No.4, 420-428.

Mandell, D.J. & Kortemme, T. (2009, November). Computer-aided design of functional

protein interactions. Nature Chemical Biology. Vol. 5, No. 11, 797-807.

57

Mukundan, R. & Muller-Cajar, R. (2007, December). Triangulation: a new algorithm

for inverse kinematics. Proceedings of Image and Vision Computing New

Zealand, 181-186.

Shenkin, P.S., Yappendageush, D.L., Fine, R.M., Wang, H.J., & Levinthal, C. (1987).

Predicting antibody hypervariable loop conformation. I. Ensembles of random

conformations for ringlike structures. Biopo/ymers Vol. 26, 2053-2085.

Singh, A.P., Latombe, J.C., & Brutlag, D.L. (1999). A Motion Planning Approach to

Flexible Ligand Binding. Proc. 7th ISMB, 252-261.

Trivedi, D., Rahn, C.D., Kier, W.M., & Walker, I.D. (2008, September). Soft robotics:

biological inspiration, state of the art, and future research. Applied Bionics and

Biomechanics Vol. 5, No.3, 99-117.

Wang, L.T. and Chen, C.C. (1991). A combined optimization method for solving the

inverse kinematics problem of mechanical manipulators. IEEE Trans. Robotics

Automation Vol 7, 489-499.

Wu, Y.C., Shehu, A., & Kavraki, L.E. (2005). Modeling Protein Flexibility With

Spatial And Energetic Constraints. Rice University, Houston, TX.

Wu, Z. (2008). Lecture Notes On Computational Structural Biology. World Scientific

Publishing Co. Pte. Ltd., Singapore.

58

APPENDICES

APPENDIX I

Activity Diagram

Open application

PointTarget()

AnimateArm()

No

No

• Close application

59

APPENDIX2

Sequ~nce Diagram

I
.-' Ta,rge1?oir:-t(:- I I

An-ima1:eAnn [i I

Arm Sea~}

I
I
I

.4.rm..,(~l)

-~ CalcutaleAr~,!tn 1

T
i

I T T Ca1cula1o!'Point:Q J

I j

I I l
I

i I ' '

60

APPENDIX3

Class Diagram

Target Point

• target

)> pointTarget()
)> change Target()

!
View Arm

• limb1

• limb2

• limb3

• wrist

• arm_end

• joint1

• joint2

• joint3

• base

)> arm View()
)> rotateArm()

!
Calculate

• point_ distance

• angle1

• angle2
• angle3

)> calculatePoint()
)> calculateAngle()

Animate Arm

• limb1

• limb2

• limb3

• wrist

• arm_end

• joint1

• joint2

• joint3

• base

)> animateArm()

+
Scale Arm

• limb1

• limb2

• limb3

• wrist

• arm_end

• join\1

• joint2

• joint3

• base

)> scaleArm()

61

APPENDIX4

Data Flow Diagram

User

Click target point
9f! the workspace

Target point

user click on viewport to· animate

Robotic·appendages shown on the system

View.space

.. ~lAAn;;i;;m;;a;;;te~a;;;r:;;m;-~---,'::_,i,.

arm, zoom in or zoom

r ~L __ R_e_s_Qe-arrn-~
User can view the arm from different
angles in 3-D dimension ,----,.,-------,.

r ''.,,_~ -.. ,,:jL __ v_'"'_'_•_rrn __ __j

The distance· ofthe tip of the
arm to the target will be
calculated and the angles- of
each.limb will' be used to
calculate the arm's posttion .to
reach target

Calculate point
and angle

62

·I SQesca~

i

·I View button

Display screen

APPENDIXS

Context Diagram

Target moves
randomly

Target Point

CalculatePoint Target

The distance of the tip of
arm to. the Target Point is
calculated by the system

View Arm

User can view the arm fra·m
different angles in 3-D

RobotiC Arm Inverse Kinematics
Application

Animate Arm

User can animate the
arm by clicking the
viewport and the arm
will move based on
Target Point

Calculate Angle

Angle of all three limbs will
be calculated by the
system

Scale Arm

User can scale the arm- to zoom in
or zoom out-

63

APPENDIX6

SUS Questionnaire

l . I think that _I woul<llit:.~ to
usE this system frequently

2. I found tne system unnecessarily
complex

3. t thought the system was easy
to u·se

4. I think that I would need the
support of a iechl'lical person to
be a!)ie to use this system

5. I found the various functions in
this system were well.integrated

6. I thought there was too much
ineon.Sistency i!l tt"!ls S)IStQin

7. I would imagine that most people
would leam to use this syst&m
Vefl/ quickly

8. I found the system very
cumbersome to use

9. I felt very confident u·sif19 lhe
system

10. I n-eeded to team a lot_of
things· before-, could get going
with this system

Strongly
disagrM

64

'

'

'

•

•

'

'

Strongly

'9""'

APPENDIX7

Coding Snippets

A. Main function:

int main (int argc, char **argv)
{

II GLUT initialization.
glutlnit(&argc, argv);
glutlnitDisplayMode(GLUT _ DOUBLEIGLUT _ RGB);
glutlnitWindowSize(width, height);
glutlnitWindowPosition (window_x, window_y);
//create first window
win!= glutCreateWindow (window_title);
inverse();
I I Register call backs.
glutDisplayFunc(display_ win!);
if (full_screen)

glutFuliScreen ();
init();
setupGLUl ();
glutReshapeFunc(reshapeMain Window);
glutKeyboardFunc(graphicKeys);

glutMotionFunc(mouseMovement);
glutldleFunc(idle);
glutTimerFunc(60, timer, 0);

giEnable(GL_COLOR_MATERIAL);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL _DEPTH_ TEST);
glEnable(GL _NORMALIZE);
glEnable(GL_CULL_FACE);
GLfloat global_ambient[] = { l.Of, l.Of, l.Of, l.Of};

glLightModelfv(GL _AMBIENT_ AND_ DIFFUSE, global_ ambient);

II Enter GLUT loop.
info Message();

65

HelpMessage();
fjlrintf(stderr, "Press Enter to continue ... ");
fgetc(stdin);
win2= glutCreate Window(window_ title);
g!Enable(GL_COLOR_MATERIAL);
g!Enable(GL _LIGHTING);
glEnable(GL _ LIGHTO);
g!Enable(GL _DEPTH_ TEST);
g!Enable(GL _NORMALIZE);
glEnable(GL_ CULL_FACE);

II View in full screen if the full_screen flag is on
if (full_screen)

glutFul!Screen ();
init();
setupGLUI2 ();
glutDisplayFunc (display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(MouseFunc);
glutMotionFunc(MotionFunc);

glutMainLoop();

return 0;
}

B. Function calling the link structure of the moving appendage

void inverse (void){

srand (time(NULL));

I I Constructing the linked structure by
//adding links
//for (inti= I; i <= 4; i++)
//{
Color c = {!.Of, !.Of, !.Of, l.Of};
Link *I= new Link(c);

66

!->mAngle = 0;
1->mLength = 8;
::l.addLink(l);

II}
Link •s =new Link(c);

s->mAngle = -50;
s->mLength = 15;
::l.addLink(s);

Link *t =new Link(c);
t->mAngle = -60;
t->mLength = 15;
::l.addLink(t);

Link *v = new Link(c);
v->mAngle = 45;
v->mLength = 8;
::l.addLink(v);

}

C. Function for GLUI

void setupGLUI2(){

GLUI_ Translation *trans;

II Create GLU! horizontal subwindow (placed on bottom)
llglui_ h _subwindow = GLUI_ Master.create _glui_subwindow (main_ window,
GLUI_ SUBWINDOW _BOTTOM);

II Create GLUJ vertical subwindow (placed on left)
glui_ v _subwindow = GLUI_Master.create _glui_subwindow (win2,
GLUI_SUBWINDOW _LEFT);

11---
l I 'Object Properties' Panel

11---

II Add the 'Object Properties' Panel to the GLUI vertical subwindow
GLUI_Panel *op__panel = glui_v_subwindow->add__panel ("Manual Robot
Appendage");

II Add the Faster Gradient Following Check box to the 'Object Properties' Panel

67

glui_v_subwindow->add_checkbox_to_panel (op_panel, "Show Axis", &axis);
II Add a separator
glui_ v _subwindow->add _separator_ to _panel (op _panel);

II Add the Color listbox to the 'Object Properties' Panel
GLUI_ Listbox *plane_listbox = glui_ v _subwindow->add_listbox _to _panel
(op_panel,

Color",
"Ground Plane

&listbox _item _id, PLANE_ COLOR_ LISTBOX, glui _ callback2);

II Add the items to the listbox
plane_listbox->add_item (1, "Black");
plane_listbox->add_item (2, "Blue");
plane_listbox->add_item (3, "Cyan");
plane_listbox->add_item (4, "Dark Grey");
plane_listbox->add_item (5, "Grey");
plane_listbox->add_item (6, "Green");
plane_listbox->add_item (7, "Light Grey");
plane_listbox->add_item (8, "Magenta");
plane_listbox->add_item (9, "Orange");
plane_listbox->add_item (10, "Pink");
plane_listbox->add_item (11, "Red");
plane_listbox->add_item (12, "White");
plane_listbox->add_item (13, "Yellow");

II Select the White Color by default
plane _listbox->set_int_ val (12);

II Add the Color listbox to the 'Object Properties' Panel
GLUI_ Listbox *appendage _color _listbox = glui_ v _subwindow-
>add_listbox_to_panel (op_panel, "Appendage Color",
&listbox_item_id, APPENDAGE_COLOR_LISTBOX,
glui_callback2);

II Add the items to the listbox
appendage_color_listbox->add_item (1, "Blue");
appendage_color_listbox->add_item (2, "Dark Grey");
appendage_color_listbox->add_item (3, "Green");
appendage_ color _listbox->add _item (4, "Magenta");

68

appendage_color _listbox->add_item (5, "Orange");
appendage_ color _listbox->add _item (6, "Pink");
appendage_ color _listbox ->add _item (7, "Red");
appendage_color_listbox->add_item (8, "Yellow");
II Select the White Color by default
appendage_ color _listbox->set_int_ val (2);

ll---
11 'Object Type' Panel
11---
GLUI_Panel *panel =glui_ v _ subwindow->add__panel("Goal:");
II Add the scale spinner
GLUI _Spinner *goalx = glui _ v _ subwindow->add _spinner_to __panel (panel,
"X", GLUI_SPINNER_FLOAT, &spherePos[O], GOALX_SPINNER,
glui _ callback2);
GLUI _Spinner *goaly = glui_ v _ subwindow->add _spinner _to __panel (panel,
"Y", GLUI_SPINNER_FLOAT, &spherePos[l], GOALY_SPINNER,
glui_callback2);
GLUI_Spinner *goalz = glui_v_subwindow->add_spinner_to__panel (panel, "Z",
GLUI_SPINNER_FLOAT, &spherePos[2], GOALZ_SPINNER,
glui_callback2);

II Add separator
glui _ v _subwindow->add _separator _to __panel (panel);

ll---
11 'Transformation' Panel
//---

II Create transformation panel I that will contain the Translation controls
GLUI_Panel *transformation __panel= glui_ v _subwindow->add __panel
("Transformation");

II Create transformation panel 1 that will contain the Translation controls
GLUI_Panel *transformation__panell = glui_v_subwindow-
>add __panel_to __panel (transformation __panel, "");

69

II Add the Animate Button
glui_v_subwindow->add_button ("Animate Robot", ANIMATE_BUITON,
glui_ callback2);
II Let the GLUI vertical subwindow know where its main graphics window is

II Add the xy translation control
glui_ v _subwindow->add _column_ to _panel (transformation _panell, FALSE);
trans=glui _ v _ subwindow -> add_ translation_ to _panel(transformation _panel!,
"Trans XY", GLUI_TRANSLATION_XY, &TransXYZ[O]);
II Set the translation speed
trans->set_speed(0.05f);
II Add column, but don't draw it
glui_ v _ subwindow->add _column _to _panel (transformation _pane II, false);

I I Add the z translation control
glui_ v _subwindow->add _column _to _panel (transformation_panell, FALSE);
trans=glui _ v _ subwindow-> add_ translation_ to _panel(transformation _pan ell,
"Trans Z", GLUI_TRANSLATION_XY, &TransXYZ[2]);

II Set the translation speed
trans->set_ speed(0.05f);
II Add column, but don't draw it
glui_ v _subwindow->add _column (false);

II Create transformation panel2 that will contain the rotation and spinner
controls
GLUI_Panel *transformation_panel2 = glui_v_subwindow
>add _panel_to_panel (transformation _panel, "");

II Add the rotation control
glui _ v _ subwindow->add _rotation_ to _panel (transformation _panel2, "Rotation",
rotation_matrix, ROTATION, glui_callback2);

II Add separator
glui_ v _ subwindow->add _separator _to _panel (transformation _pane12);

II Add the scale spinner
GLUI_ Spinner *spinner= glui_ v _subwindow->add _spinner _to _panel
(transformation_panel2, "Scale", GLUI_SPINNER_FLOAT, &scale,
SCALE_SPINNER, glui_callback2);

70

II Set the limits for the spinner
spinner->set_ float_limits (-4.0, 4.0);

glui_ v _subwindow->set_main _gfX _window(win2);
}

D. Function for Display

II This function is called to display the scene.
void display ()
{
glClear(GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL _MODEL VIEW);
glLoadldentity();

if(glutGetWindow() =win I) {
g1Translatef(3.0f, O.Of, -140.0f);

glTranslatef((GLfloat)TransXYZ[O], (GLfloat)TransXYZ[l], -
(GLfloat)TransXYZ[2]);
I I Rotation using X mouse.

beta= 180.0 * xMouse;
g!Rotatef(beta, 0, 1, 0);
alpha = 180.0 * yMouse;
g!Rotatef(beta, I, 0, 0);
II Apply the scaling

glScalef(scale, scale, scale);

I I Apply the rotation matrix
glMultMatrixf (rotation_ matrix);

!.draw();

glPushMatrix();

if(axisl)
II Draw a red x-axis, a green y-axis. and a blue z-axis. Each of the

71

II axes are ten units long.
g!Begin(GL _LINES);

g1Color3f(l, 0, 0); g1Vertex3ft-20, 0, 0); g1Vertex3ft20, 0, 0);
g1Color3ft0, I, 0); g1Vertex3ft0, -20, 0); g1Vertex3ft0, 20, 0);
g1Color3ft0, 0, I); g1Vertex3f(O, 0, -20); g1Vertex3ft0, 0, 20);

giEnd();

g!Fiush();
g1Color3f(O.Of, O.Of, !.Of);
glTranslatef(O, -targetPoint(l), targetPoint(O));
glutSolidSphere(Target[O], Target[I], Target[2]);
giPopMatrix();
glFlush();}

else
{II Displaying Window 2

gluLookAt(0,2,4, 0,0.5[,0, 0,1,0);
II Apply the rotation matrix
glMultMatrixf (rotation_ matrix);
II Apply the sealing
glScalef(scale, scale, scale);
glTranslatef((GLfloat)TransXYZ[O], (GLfloat)TransXYZ[I],

(GLfloat)TransXYZ[2]);

DrawGroundPlane(16);
DrawRobotAppendage(l6);

DrawTarget();
Sleep(S);

}
glutSwapBuffers();
}

E. Moving the target using keyboard

void keyboard (unsigned char Key, int x, int y)
{

72

if (Key>=' I' && Key<='5') RobotControl=Key-' 1 ';
if (Key==' ') change();
if(Key==27) exit(O); II ESC

switch(Key) {

case 'a' : spherePos[O) -= 0.05f;
break;

case 'd' : spherePos[O] += 0.05f;
break;
case 'w' : spherePos[l] += 0.05f;
break;
case 's' : spherePos[l] -= 0.05f;
break;

case 'r' : spherePos[2] += 0.05f;
break;

case 'f' : spherePos[2] -= 0.05f;
break;}

}

73

--

APPENDIX8

Prototype ___
, __

...

Scaled to 1.1995 of its original size and ground plane color to green ___ , __
--~ ("~

Moving target with keyboard to the appendage

74

JII:Gtqan_,..,..~'llll

p~~"""

CWIYMCIIOt~
T C.OtetjOM~3 ...

·~.il
•!Oo-;;J
Z!Oo-.iJ -, .. r ,·r-
~r ~,.,

/ /
r,..xv ,,..z

.._ .. Sc.

9
:11-

..... p.-il
.-.. ... I!VIt ... ll\.lyFf .. ,

Background color changed to black, appendage moving towards target

-
~ ~> ~ ~~ v v

Tf1M'IN TI'WIIZ

- ... Snit

G --pnll1 ilj _ ... _..,._,

Appendage scaled to 1.59, rotated with mouse

75

