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ABSTRACT 

High Pressure Turbine (HPT) first stage blade is the most important rotational 

components of aero-engine. It operatesat high temperature and under conditions of 

extreme environmental attack such as oxidation and corrosion, isespecially subjected to 

degradation by oxidation, corrosion and wear. Due to the elevated temperature been 

introduced on the turbine blades, they faced several failure such as thermal stress failure 

and creep. This failure is very common and always occurred on this life limiting 

component of gas turbine. Further study on the microstructure behavior with respect to 

the temperature along the blade is carried out to predict the cycle life of the blade. 

The objective of this project is basically to study on the microstructure of Nickel based 

Superalloy characterization. The study is mainly focusing on the evaluation of the 

morphology changeof the y ' particles, carbide precipitation and characterization of 

particle type and size.Then, a complete procedure and testing related with the study of 

gas turbine blades were performed using relevant equipment and tools. The procedure 

involves preparing metallographic sample, chemical analysis and analyzing the 

microstructure under FESEM and EDS. Though, the main objective of this project is to 

create a complete profile of microstructure along the turbine blade. This profile is 

believed to be very useful in the industry to predict the cycle life of turbine blade. 

Thorough analysis been done,the microstructure undergoes transformations which likely 

degrade the mechanical properties of the alloy, including y' coarsening, increased 

carbide precipitation in grain boundaries, andincreasinggrain size with respect to 

temperature. From the analysis, we can predict the temperature profile alongside the 

blade, which is increase from lower part to upper part. Therefore, the operating 

temperature of gas turbine need to be maintain so that the microstructure of blade is not 

affected and as well reduce the lifespan of turbine blade. 
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1.1 Project Background 

CHAPTER I 

INTRODUCTION 

Gas turbine is a form of heat engine where a hot pressurized gas, produced by 

combustion of fuel and air, spin the turbine. The ignition of fuel and air results in 

rapid expansion of gas which causes high speed rotation as the hot pressurized gases 

flow across aerodynamically shaped turbine blade. A turbine blade is the limiting 

component of gas turbine and responsible for extracting energy from the high 

temperature and high pressure gas produced by the combustor. 

The blade is subjected to forces in the three directions which are the rotor 

driving force along the radial direction, axial forces caused by the gas flow and 

forces acting normal to the turbine shaft due to the centrifugal forces. The blade is 

also faced a differential thermal stresses, erosion-corrosion, high stresses, and a 

potentially high vibration environment that can obstruct its smooth functioning. 

Turbine blades always faced higher entry temperatures to maintain and 

increase the power to weight ratio and as well improve the efficiency of gas turbine 

Thus, the material of turbine blades must withstand the high operating temperature 

been introduced from the combustor section. The turbine blades must also endure the 

varying temperature and should have structural stability when exposed to varying 

temperature. However, the turbine blade which is the life limiting component of gas 

turbine needs to face several failures such as thermal fatigue, oxidation or corrosion 

and creep. 

Many researches had been done to overcome the problem of high temperature 

and one of them is the selection of a new material that capable of operating at high 

temperatures. Generally, turbine blades made from various type of material such as 

steels, titanium alloys and nickel base alloys. To hold up the high temperature of gas 
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turbine, a system called blade cooling has been introduced. This system maintains 

the temperature of blade at a value low enough to preserve the desired material 

properties. Blade cooling may be classified based on cooling site which are external 

cooling and internal cooling. Cooling medi urn can be liquid cooling or air cooling. 

1.2 Problem Statement 

Turbine blades (see Figure 1.1) are exposed to high temperature gas exiting the 

combustion chamber to produce mechanical work. They are also cooled down by the 

compressor air which flows through the blade internal passage forming an air film 

between the blade and the hot gas. Often the turbine blade will suffer from thermal 

stress failure as well as failure due to creep. Thus, it is importance if study of the 

turbine blade microstructure can be conducted to understand its profile with regard to 

the gas turbine operating temperature. 

Figure 1.1: Turbine blade 1'1 stage. 

1.3 Objective and Scope of Study 

1. Study on the microstructure of Nickel based Superalloy characterization 

A complete study on turbine blade profile & microstructure behavior with regard to 

the previous research has been done by reading related journals and books. The study 

is mainly focusing on the evaluation of the morphology change of the ·y ' particles 

and characterization of particle type and size. The microstructure result obtained 

from the turbine blade will be analyzed according to the mechanical damage they 

have been experienced such as creep. 
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2. Analysis the microstructure characteristic of the turbine blade by using appropriate 

procedure and equipments. 

A suitable methodology has been developed to investigate the microstructure of the 

turbine blade for example sample preparation procedure, microstructures analysis 

procedure and also hardness test. To perform the study, appropriate equipments 

were chose. These equipments were chosen based on their function and also their 

availability in UTP. Mostly, Field Emission Scanning Electron Microscope 

(FESEM) will be used to investigate the microstructure of the blade. Hardness 

Testing Machine will also be used to study the hardness of the material with respect 

to the temperature. 

3. Establish profile of microstructure vs. temperature of turbine blades. 

After collecting all the data required, a study on microstructure pattern will be carry 

on. Then, the pattern will be identified according to the specific zones on the blade. 

The result obtain will be compared with the previous result from previous researches. 

ANSYS result will be used to compare the temperature distribution along the blade 

and as well describing the microstructure pattern. 

1.4 Relevancy and Feasibility ofthe Project 

Researches on evaluating the thermomechanical behavior for turbine blade materials 

that are made up of Ni base superalloys have garnered increased interest in recent 

years. Study on the turbine blade microstructure profile with regard to the gas turbine 

operating temperature can help to understand and predict the cycle life of the turbine 

blade. By performing this project, a microstructure catalogue or profile can be 

generated along the turbine blade. The catalogue can be an important references in 

the future for predicting and maintaining the cycle life of the turbine blade been used 

in the industry. This project is feasible to be done for final year project within 2 

semesters since all the equipments and tools needed are provided inside UTP. This 

project also has sufficient references to be referred. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Cr·itical Analysis of Literature 

2.1.1 Tm·bine Blade 

Turbine blades are generally considered to exhibit a high level of reliability, and 

failure rates are considered low. High Pressure Turbine (HPT) first stage blade is the 

most important rotational components of aero-engine [I ].It operates at high 

temperature and under conditions of extreme environmental attack. (Harrison & 

Henderson, 2000) said turbine blade materials need to have a balance of key 

properties to meet the operational parameters [2]. They must have high stiffness and 

tensile strength to ensure accurate blade location and resistance to overspeed burst, 

high fatigue strength and crack propagation resistance, high creep strength to avoid 

distortion and growth and also oxidation and corrosion resistance and resistance to 

fretting damage at mechanical fitting. The most common material is the nickel­

based 'super-alloy' materials that can withstand a very aggressive environment of 

high temperature and high stress within the hot gas path of a turbine engine. 

According to (Carter, 2004) 

Nickel is considered as a most suitable basis for alloying since it exhibits, by 

virtue of its almost-full third electron shell, a high capacity for forming stable 

alloys without phase instability. It also forms, with chromium additions, 

Cr203-rich surface oxide films, which are both stable and protective, 

restricting movement of both metallic elements in the outward direction, and 

aggressive atmospheric elements such as oxygen, nitrogen and sulphur in an 

inward direction. Nickel will also form, with aluminium additions, Al203 

surface layers, which are highly oxidation- resistant at very high 
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temperatures. Nickel-base alloy turbme blade materials are immensely 

complicated in terms of microstructure, with the efforts of alloy developers 

over the years having created a range of fine precipitates which confer high 

levels of resistance to creep.[3] 

Blade failures can be caused by a number of mechanisms under the turbine operating 

conditions of h1gh rotational speed at elevated temperatures. Generally, blade 

failures can be grouped into two categories· (a) fatigue, including both high and low 

cycle fatigue (b) creep rupture [4]. However, under normal conditions, blades 

should never be operated at excessive temperatures for long enough periods to cause 

microstructural damage. Some elevated temperature exposure IS permitted for very 

limited periods, for example during start or for emergency situations. Such exposure 

should be strictly controlled, with inspection for possible damage, including 

metallographic exammation of sample blades, being required. Once the 

microstructure has been degraded by exposure to elevated temperature, it is normally 

assumed that the blades have been damaged and replacement IS mandatory [3]. 

Inconel 718 as shown in Figure 2.1 is a high-temperature alloy with about 53% 

mckel , is the most common nickel-based material is use. More than half of the hot 

end of a jet engine is made from this material (5]. The specimen is a non-rotating 

grade with a fine grain size and considerable delta phase and large MC-type. The 

microstructure of Inconel 718 is shown as below [ 6]: 

Figure 2. Ja Figure 2 Jb Figure 2. l c 

Figure 2.1: Microslmcture o.f Alloy 718 (nonrotating grade) with a fine grain size. 

considerable delta and large primary MC carbides rel'ealed using a) glyceregia, 

b) the "15-10-10 " etch and c) the Lucas reagent. 
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2.1.2 Expe•;mental Procedure 

To perform the expenment as according to (Vardar & Ekenm, 2006), examination of 

the blade material was made for two different zones of the blade: near the cracked 

bladettp and close to the blade platfom1 [7]. Later, a standard metallurgical 

procedure was done by preparing the samples, pohshed by standard techniques and 

etched with solution of 20 ml HN03 and 60 ml HCI The investigatiOn then 

followed by experimental tests, including optical microscopy, SEM, EDS, (XRD) 

and X-Ray fluorescence (XRF). Similar methodology was involved in the analysis of 

superalloy turbine blade after 600 h service [8] Two blades have been used. Blade A 

remamed intact for investigation of top tip surface and Blade B was sectioned for 

mvestigation; section contains all visible cracks on the pressure s1de was taken 

longitudinally from blade B using EDM cutting. The section then was polished and 

microstructure was revealed with an electrochemical etching method in an etching 

agent of 10% oxalic acid under 6 V DC for 20-30 s. 

From these researches, an improved procedure or methodology can be perform in the 

study of microstructure of turbme blade. First, the blade will be sectioning to several 

samples The author had received specimens from PETRONAS Carigali Sdn Bhd 

which carne from different stages ofturbine engine. Examination of the blade will be 

made at different zones of blade: near the cracked bladetlp and close to the blade 

platform [7]. To Improve the methodology, additional zones; middle blade will be 

examined to get a complete profile of microstructure along blade With respect to 

temperature. The microstructure profile will be compare with the existing fluid flow 

temperature distribution as shown is Figure 2.2 [4] 

~ ... - .!...,'11 .... 

Figure 2.2: Fluid.flow temperature distribution around the first stage blades 
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From the analysis been done, several result were found indicated the existence of 

failure to the blade especially due to creep and thermal stress failure. On one study of 

failure analysis (Kubiak , et al ., 2009), two cracks were Identified in this blade as 

shown in Figure 2.3; one from the securing pin hole up to the blade base and the 

second one in the leading edge of the blade body, exactly at 1.5 ern from the blade 

base [ix]. This microstructure is hard and brittle, and leads to failures. A micro 

hardness profile along the blade also indicates that in the fractured zone, martensite 

was observed and increase of hardness was present. Carbides were also distributed in 

discrete form and gamma prime phase appears in the form of circle/cubic with a size 

between 0.5 and I lrn, whereas the carbides, along the grain boundaries, were l 0 lm 

long and the grains are nearly 1OOm in length. 

Figure 2.3: The micrograph that shou·s the location where the crack started. 

Meanwhile in one report of failure analysis (Mazur, Luna-Rarnirez, Juarez-Islas, & 

Campos-Amezcua, 2004), the microstructure evaluation of different zones of the 

blade shown m was carried out. The microstructure of the blade hot section (airfoil) 

was compared to the cold reference zone (blade root) to evaluate the degree of alloy 

deterioration. Based on Figure 2.5 and Figure 2.5, the comparative evaluation 

includes the morphology change of the y ' particles, carbide precipitation and 

characterization of grain type and size [x]. 
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Figure 2.-1: Continuous band of grain 
boundary carbides and )'' m01phology m 
the hotte \'I zone. 

Figure 2.5 Gamma pnme r' 
morphology m the tmddle zone 

From the result achieved by the previous researches, the author can perform the 

analysis of the Ni based Superalloy mtcrostructure. After preparing the 

metallographic spectmens and view under optical microscope and scanning electron 

microscope (SEM), the microstructure viewed can be analyze by comparing the 

result with the previous result found tn the relevant journal. The result will be 

mterpreted accordmg to morphology change of the y' parttcles and 

characterizatiOn of particle type and size And then, a complete profile of 

microstructure wtth respect to blade profile will be generated. The blade provided is 

divided into 3 zones (upper, middle and lower). 
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2.2 List of References 

No Title Objective Methodology Result 

l. Failure Evaluate the l. Using ANSYS Workbench 11.0 1. Micro-cavities were found on fracture 
Analysis of Gas creep-fatigue software (advanced CFD section) to form surfaces 
Turbine Blades: properties of the a steady state gas flow 2. Carbides precipitation in grain boundaries 
Mehdi Tofighi first and second 2. The metallurgical investigation used (formation of continuous films and dispersed 
Naeem, Seyed stage blades visual examination, photographic particles of carbides) 
Ali J azayeri, under cycling documentation, NDT, optical microscopy, 3. Degradation of the alloy y phase 
Nesa duty by SEMandEDS (irregular growing of y 1 particles). 
Rezamahdi performing a 3. Prepared several longitudinal and 

4. Many aunealing twins were observed at 
(2008) complete transverse sections from the blades. These 

different regions. 
metallurgical specimens were polished by standard 

5. Mechanical analysis: temperature and 
investigation and techniques and were etched by solution of 

pressure contours and the magnitude and 
mechanical Sml.CuSO, SOmJH,Q, and 50ml HCI. 

direction of flow velocity showed consistency 
analysis. 

with real conditions. 

2. Analysis of Investigate the l. The evaluation was carried out after 600 1. Blade tip top surface examination 
superalloy blades with h service. - many gray-white strips on the top surface of 
turbine blade tip premature tip 2.2 blades been used: Blade A remained squealer tip indicated that turbine blades were 
cracking during cracks and intact for investigation of top tip surface exposed to corrosive conditions 
sefV!ce: improve the and Blade B was sectioned for 2. Blade tip with crack section analysis 
Yu-j iang Xie, safety of the investigation; section contains all visible - all cracks look like lines axially, indicating 
Mao-cai Wang aircraft and the cracks on the pressure side was taken that cracks grow transgranularly. Corrosion 
Ge Zhang, Min overhaul and longitudinally from blade B using EDM products can be seen in the crack in form of 
Chang refurbishment cutting. grains and flakes 
(2005) practice. 3. The section was polished and -EDS analysis results show that the corrosion 

microstructure was revealed with an products are mainly oxide and carbide; pieces 
electrochemical etchinwmethod in an of Al203 are identified in the crack. 
etching agent of 10% oxalic acid under 6 -many corrosion pits can be found on the 
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V DC for 20-30 s. blade tip region top surface 
4. MEF-4 A Optical Microscope and 
Philips XL400-FEG SEM equipped with 
EDS were used to observe the 
microstructure and analyze the chemical 
composition of local regions. 

3. Creep-fatigue Components of 1. Samples were cut from different Fractured Blades 
failure of an the turbine region locations and prepared for optical and 1. Visual examination: two clear regions-a 
aero engme (turbine blades of scanning electron microscopy. shiny region, 50% of the total fracture area 
turbine blades: the 1st and 2. Etching was performed in gleceragia and a dark black area covering the other 50% 
I. Salam, A. 2nd stages) were and then in 2% H2S04 in water of the fractured surface. 
Tauqir, A.Q. examined 3. The fracture surfaces were examined 2. Microstructure: EDS analysis shows high 
Khan subjected to with a scanning electron microscope concentration of Ti and Mo in these particles. 
(2001) metal! urgi cal (SEM). Twinning is also clear in some of the grains 

investigation to 4. Chemical composition was determined and fine carbides are also present along the 
delineate the with the help of energy dispersive grain boundaries. 
cause offailure. spectrometry (EDS) and C/S analyzer. 3. Fractography: fatigue crack start from 

i 

5. Grain size was measured using an surface cracks while multiple origins are 
image analyzer attached with the optical present. Intergranular fracture is clear at the 
miCroscope. ongms. 
6. Hardness was measured by using 4. Result from hardness test, grain size and 
Vicker's hardness testing machine. chemical composition are also presented in 

the report. 
• 

6. Failure analysis Find out the main 1. Metallurgical examination to establish I. Two cracks were identified in this blade; I 

of the 150MW cause of the the metallurgical mode offailure one from the securing pin hole up to 
gas turbine blades failure. _Take several specimens to examine a the blade base and the second one in the 
blades microstructure in three different parts of leading edge of the blade body, exactly at 1. 5 
J. Kubiak, G. the blades. em from the blade base 

-----
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Urquiza, J.A. 1. Expose the cracks to the fractography of 2. This microstructure is hard and brittle, and 

Rodriguez, G. the cracked blades and detennine the leads to failures. A micro hardness profile 

Gonzalez, metallurgical mode of the failure. along the blade, indicates that, in the fractured 

I. Rosales, G. 2. Micrography and fractography of the zone, where this martensite was observed an 

Castillo, J. blade a set of micrographs obtained increase in the hardness was present 

Nebradt (2008) through scanning electronic microscopy 3. Carbides were distributed in discrete form 
(SEM) and gamma prime phase appears in the form 
3. Microstructure examination of the blade of circle/cubic with a size between 0.5 and l 

material. The microstructure of the blade lm, whereas the carbides, along the grain 
metal was examined in four zones: at the boundaries, were l 0 lm long and the grains 

root of the blade, the hub, in the mid span are nearly l 00 lm in length. 

and in the tip of the blade. 

7. Metallo graphic Presents the use Mounting: Compression-mounting Cast Alloy: Metallographers are often 

Techniques For of new thermosetting epoxy resins, such as requested to reveal the dendritic structure of 

Superalloys metallographic Epomet thermosetting resin, provide the cast specimens and perform measurements of 

George F. materials to best edge retention. the secondary dendrite arm spacing. 

VanderVoort, prepare these Grinding: used 180- or 240-grit SiC paper Wrought alloys: evaluated for grain size and 

ElenaP. alloys with or rigid grinding disk (RGD) and a coarse the presence of second-phase precipitates. 

Manilova, emphasis on size diamond abrasive. 
Gabriel M. modem, four- and Polishing: acidic alumina slurries and 

Lucas five-step basic colloidal silica slurries have been 
practices. employed for final polishing of 

superalloys. 
Ethching: Numerous etchants are used to 
reveal the structure of superalloys. 

---
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CHAPTER3 

METHODOLOGY 

3.1 Research Methodology 

Figure 3 .I below describes the method of conducting the project. 

Task 

I Backgrotmd Study, literature 
. Re,'iew & Complete Methodology ' .. 

c Chemical Analysis ) 

I :\ficro Hardness Test ) 

[ Discussion & Conclusion 
--------~ 

Description 

• Study on turbine blade profile & 
microstructure beb.a,'ior. 

~Prepare completeprocedme and 

standards required. 
• Prepare the specimen; turbine 
blade by sectioning, motmting, 
grinding, polishing, and etching. 

• \ 'isua1 examination and 
photographic docmnentation., 
Optical !\ficroscope, FESBl 

*Done on the bulk ofthenuterial 
to confirm the material 
composition 
• e.g.: Enugy dispei'Sive 
spectroscopy x-ray (EDS) 

• The smaller the indentation, the 
harder the material 
• e.g.: ~licroHardness Testing 
Machine 

• Study on microstructure panem 
& characterization 
• \"etify result with pre,'iousresult 
• Establish pattern of 
microstructure vs. tenmerature 

Figure 3.1: The flowchart of the project methodology and its description. 
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3.2 Project Activities 

3.2.J Sample Preparation: Sectioning 

The first step in prepanng a specimen for metallographic or microstructural analysis is 

to locate the area of interest. Sectioning or cutting is the most common techn1que for 

reYealmg the area of mterest. Proper sectioning will produced flat and cut close to the 

area of mterest and minimal microstructural damage. 

In this experiment EDM (Figure 3 2) was used to section the turbine blade mto small 

specimens. Electric discharge machining (EDM) is a manufacturing process whereby a 

desired shape IS obtained using electncal discharges (sparks). Material IS remo\ ed from 

the workpiece by a series of rapicll) recurring current discharges between 

two electrodes, separated by a dielectnc liqwd and subject to an electnc voltage. 

Figure 3. 2. Electnca/ Dtscharge Machmmg (EDM). 

The turbme blades were sectioned to 3 parts (I em x 1 em) for each blade. The samples 

were cut at lov.er part (D), middle (M) and upper part (U). First stage blade was exposed 

to higher temperature exposure from the hot gas than second and third blade. 
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3.2.2 Sample Preparation: Mounting 

The specimen must be mounted and prepared for examination with a metallurgical 

microscope. Before mounting, all oil and grease should be removed from the sample 

by washing it in acetone or ethanol, then drymg it. Using the equtpment shown in 

Figure 3.3 hot mountmg was performed with cylindrical shape (diameter: 30mm) 

mould. 

Procedure for Hot Mounting 

The purpose of mounting is to get the flat surface of sample so that it would be easier 

for grinding process to take place 

Figure 3 3: Equipment used for hoi mouming 

The procedure for mounting is shown in the Figure 3.4 below: 

Figure 3 . .Ja: The mounting is cleaned using 

release agent. 

Figure 3 -lb: 1he sample was put on the top of the 

mounting 
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Figure 3.-ic· Phenolic powder wasfilled inside 

the mounting together w11h the sample. 

Figure 3.-id Once the setup has.fimshed. it took 

aboutJOminutesfor heating and cooling 

process 

Figure 3. 4e: The mounted sample. 

3.2.3 Sample Pt·epat·ation: Grinding 

Once the sample has been mounted, the resm block must be ground flat. Grinding 

process was performed by using Grinder and Polisher machme model Metaserv 

2000. The samples were ground with SiC paper and running water and rotated the 

sample through 90°. The SiC paper (see Ftgure 3.5) used ragmg from the coarsest 

grit paper, 60 grits to 1200 grits to eliminate the scratches from the previous grinding 

stage otherwtse they will not be removed in polishing. 

Figure 3.5: Silicon grid paper 120 grit (left) and 1200 grit (right). 
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The procedure for gnndmg is shown as below 

(I) Open water line located behind grinder 

(2) Starting on the 60 grit size, place prepared specimen, or metal face 

down of abrasive surface, and being sliding specimen against abrasive 

in a forward and backward motion. 

(3) Next, tum specimen 90 degrees and repeat above procedure on the 

L 20 Grit surface. 

F'igure 3. 6: Grind the specimen at 90 degrees. 

(4) Finally, turning specimen 90 degrees (Figure 3.6) and repeat 

procedure (3) now on the 320,400,600 and 1200 Grit surface. 

(5) Close water line. 

3.2.4 Sample Pt·eparation: Polishing 

Polishing IS used to create a flat, defect-free surface for exammation of a 

metal's microstructure under a microscope. Grinder and Polisher machine model 

Metaserv 2000 was consist of rotating discs covered with soft cloth impregnated 

with diamond particles ( l micron size) and an oily lubricant. 

The procedure of polishing is shown as below~ 

(1) Providing a polishing pad having at least one circular groove wherein the 

circular groove encircles an axis of rotation of the polishing pad. 

(2) Apply metaDi fluid (Figure 3. 7) on the polishing pad: 

(3) Apply diamond paste on the polishing pad and specimens 
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Figure 3. 7 metaDi Flwd (Left) and Diamond Paste (Right). 

{4) Rotating the polishmg pad; and 

(5) Place a specimen on the polishing pad and polish spectmen until we 

obtruned mirror 1mage. 

Table 3.1 below show the standard load, speed and time for polishing and grinding 

procedure. In thts expenment, trident cloth was used with 1-mtcron dtamond paste 

[6]. 

Table 3./: Contempormy Procedure for N1-Based Superalloy. 

Table I Cooterupcrarv Procedure for Nr·Ba~ Supe:rallovs 
c;\1JU(e AbraSl>e Sue t lood lb t1-o)/ PLlte.o Speed IT' 

--- S}!"~'llll<ll (rpw}Dtr«iJon tn':rte<:>l 
Carhunetf. 1111t~roof ~~Q-~-10 (P~-tG-P.:!SO) grit SiC 

~ 

drsc;, (psa) wat~<:ooled 6 :!-ICI-3•)0 CntliPianc 
I <.::-> Comp. 

Ultra· Pol Sill; C Jotll 9-Jnn.Meradit Supreme I>iamood 
16 IP>aJ <;rupmsion l()CJ-150 5 

(..: -) Comp. 
3·fnn ~fetadit Supreme Draruoud 

Tndent clotll w-al Su'}lemioo 6 100-150 4 
<.n ~~ 

I ·fllll Metadi~ 'Sllpreme Diamond 
'I rid~Jt doth (p~M Sn~pem.10n 6 JU()-150 3 

~~-) <.~ 
;\hcrodolh Jl.l•i (]>'.a) O.O"·JDII .\(~,I~I'J'le'Jlnl ahnnina sltrny 

6 so-t <o ~ 
• (2;) Contra 

3.2.5 Sample Preparation: Etching 

Metallographic etching is a techmque used to highlight features of metals at 

microscopiC levels such as grrun boundanes. phase rufferences and inclusions To 

analyze planar features such as gram boundar1es, a metallic sample must be polished 

to a very fine mirror-like finish. Under a m1croscope, such a finely polished surface 

JUSt looks hke a plain wh1te field therefore to create contrast between the elements of 
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the metal's microstructure, chemical solutions known as etchants are used to 

selectively corrode some of those elements, which show up as darker regions. 

Marble reagent (see Table 3.2) was used to reveals the grain structure of superalloy 

This reagent was swab on the sample for 30 seconds and then washed by water and 

methanol to avoid over etching 

411. Sg Feel, 
2ml.HCI 
99 ml ethanol 

49. 40-80 ml.l!lhanol 
40mlHCI 
2gCuCJ, 

so. 50mlWMer 
SOmlHCI 
10 CuSO, 

51. 15mlHCI 
10 mL g¥:erol 
SmlHNO 

S2 60 ml glycerol 
50ml.HCI 
10111l.HNO, 

Table 3.2.· Basic etchantsfor Ni and Alloy. 

c....-.'s etdl for Ni and Ni-C.u (Monel)~ ll5e byimmenion 
or SWibbing. 

Kalliilg's no.2 etdl ("waterless" Wing's) for Ni-Cu allays and superalloys. 
lmmene or swab specimen up to• f!w mlnures. 

MMt*'s rngent for Pi. NI-Cu, ll1d Ni-fe .!lays ll1d supeqlloys.lmmme 
or swab SMnple 5-60 seconds. AeVNis pn 5CI'Uctlft of superalloys. 

~:for~ ll1d Ni-Cr l!lla,s. Swab specinwl for 5-CiO 
S«XXIIds.. Mill ftsh. Do not store.ll5e under a hood. 

Modified <ilyclftgia for sup«~~lloys. Reveals precipitates.ll5e under hood; 
do not store. Add fK), last.Disord when daft yelow.lmmerse or swab 
specimen 1().60 sec:ondl. 

3.2.6 Microstmctur·e Examination 

• Optical M1croscope 

The opt1cal microscope (Figure 3.8) uses visible light and a system of lenses to 

magnify 1mages of small samples. The actual power or magnification of a compound 

optical microscope is the product of the powers of the ocular (eyepiece) and the 

objective lens. The magnification employed during the experiment were SOx and 

!OOx. 

Figure 3.8: Optical Microscope. 
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One big advantage of light microscopes is the ability to observe living cells It 1s 

possible to observe a Wide range of biological act1v1ty, such as the uptake of food, 

cell division and movement. 

• Field Emission Scanning Electron Microscope (FESEM) 

Figure 3. 9. JtliSJ:M 

FESEM (Figure 3. 9) with ultra high resolution imaging is used to analyze up to nano 

scale surface structure and morphology of solids. EDS is embedded in this 

equipment to identify the different elements present in the specimen. Functions of 

FESEM are to analyze surface morphology and topography, pomt to point elemental 

analysis, line scan analysis and x-ray mapping. The microstructure analysis was 

conducted using Carl Ze1ss AG With magnification up to 1 OK X, 5K X and I K X 

with a working distance 8 Omm. 

3.2. 7 Chemical Analysis - EDS 

Energy-dispers1ve X-ray spectroscopy (EDS) is a chemical microanalysis techmque 

used in conjunction With scannmg electron microscopy (FESEM). The EDS 

technique detects x-rays emitted from the sample during bombardment by 

an electron beam to characterize the elemental composition of the analyzed volume. 

Features or phases as small as l 11m or less can be analyzed. EDS result can be 

analyzed quantitatively and qualitatively. 
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3.2.8 Hardness Test 

Then hardness of the sample was measured by conducted Micro hardness testing 

usmg Leco LM 24 7 AT, microhardness machine (see Figure 3. J 0). The unit of 

hardness used was Vickers Pyramid Number. The load used was 1 OOOgf With the 

magmficat10n of SOX. 

The hardness reading for each sample was taken at three different locations of the 

sample's surface to get the accurate average hardness of the sample. These hardness 

values provided the data to estimate the yield strength properties of the Nickel based 

superalloy. 

Figure 3.10: Microhardness Testing Machine usedfor indention test. 
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CHAPTER4 

RESULT AND DISCUSSION 

4.1 Background Information 

Gas turbines are extensively used for power generation and for the propulsion of 

aircraft and vessels. Rolls-Royce Allison 501-KB7 turbine unit (refer Figure 4.1) 

consist of four-stage rotor and vane assembly (stages 1, 2, 3, and 4). The 1st stage 

blades and vanes are air cooled. The rotor assembly absorbs the necessary energy 

from the expanding gases to drive the compressor rotor, the engine driven 

accessories, and the driven equipment through the PTO assembly. [11] 

fi!DM 
CGI~fRE5Slm 

N,u->1.:0il'f 
Dt~.•o,;1rm 

501-K87 INDIJSTRIAL GAS TURBINE ENGINE 

Figure 4.1: Rolls-Royce Allison 501-KB7 Gas Generator. 

The hot gas temperature from combustor to first stage vane (control temp) is around 

950- 1057 oc depending at engine speed 14200 - 14600 rpm. The temperature is 

gradually dropped from I'' stage turbine to the 4th stage until exhaust. Warning 

temperature will be schedule if the control temperature reach 1 093°C at 15400rpm 

and above. The turbine will tripped if the control temperature exceeds 1104 °C and 
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Figure .J. 3a. li~rbme Blade 1'1 Stage 

~ 
65mm j 

Figure -1.3b: Turbine Blade 211
d Stage Figure -1.3c: Turbine Blade f d Stage 

Figure -1. 3· Sections for each stage o.f Ill rhine blade. 
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4.3 Chemical Analysis 

All spectmens were analyzed for chemical analysis (see Table 4. 1) to see the 

variation of element present on each stage. The closest standard material found in the 

literatures used for companson. From the analysis, the turbine rotor blades are 

manufactured from single crystal nickel-base super alloys, SRR99 were developed 

by Rolls Royce consists of Aluminum, T1tamum, Chromium, Cobalt, Nickel and 

Tungsten [ 14]. Smgle crystal turbine blades have the mechanical advantage of being 

able to operate at a much htgher temperature than crystalline turbine blades. This 

will help to mcrease turbine efficiency with the ability to withstand higher 

temperatures due to the single crystal structure and the composition of the nickel 

based super alloy 1tself 

The single crystal structure has the ab1lity to withstand creep at higher temperatures 

than crystalline turbine blades due to the lack of gram boundanes present. The lack 

of these gram boundaries inhibits creep from occurring, though creep will still occur 

in single crystal turbme blades but due to different mechanisms at higher 

temperatures. The single crystal turbine blade does not have grain boundaries along 

di rect1ons of a.x1al stress wh1ch crystalltne turbine blades do [IS]. Th1s also works to 

mcreases the creep strength. 

Table .J.J.Material composition for each sample. 

Sample Journal UJ Dt U2 M2 D2 U3 M3 D3 

(Wt%) (Wt%) 

0 - 3.81 3.26 1.42 1.36 789 11.0 8.13 

AI S.S 6.29 10 l 6.91 4.41 669 5.82 5.61 s 57 

s - 0 58 0 69 0.48 

Cl - 0.71 1.07 167 0.82 

Ti 2.2 0.84 0.9 0.56 0.93 0.68 108 0.96 0.82 

Cr 8 3.97 2.52 5.3 8.03 5.62 6.96 7.47 6.11 

Co 5 6.61 5.10 6.82 8.78 7.86 8.69 8.52 6.92 

Ni - 64.4 65.32 63.6 52.86 62.23 57.61 55.65 56.70 

Ta 3 2.81 7.35 3.63 

w 10 10.4 10.9 9.62 10.2 9.37 11.7 10.9 10.8 

Si - 1.84 -1.3 0.99 

c - 7.15 7.34 5.21 -1.42 -2.57 
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The superior high temperature behavior of these materials IS attributed to the two­

phase composite microstructure cons1stmg of a y-matrix (Ni) containing a large 

volume fraction of y'- parncles (Ni3Al) They'- particles phase needs to be greater 

than 50°'o volume fraction m the super alloy to provide the mcrease in creep 

resistance. The presence of the gamma prime phase increases the mechanical 

strength of the turbine blade by prevennng dislocation motion. The gamma prime 

phase has the lUlusual property of mcreasmg strength as temperature mcreases. This 

is true up to 973°C. 

Cr and Co partition preferentially to the austenitic face centred cubic nickel-based 

matrix where they act mainly as solid solunon strengthening elements. Cr plays an 

essential role m the hot corrosiOn res1stance smce it promotes the formation of a 

protective Cr203 oxide scale. From the table, Cr and Co composition were low for 

turbine blade stage 1 compared to the1r composition amount in blade at stage 2 and 

3. These alloys contain a high volume fraction of strengthening ordered Ni3AI-based 

y' phase particles homogeneously distributed m the y matrix as near cubical 

precipitates [16]. 

Based on Figure 4.4, Ti amolUlt is in the range between 0.8 to 1.0 wt% and Ta has 

the highest amolllt, 7.35wt%. The element Ti and Ta strengthens they ' precipitates 

by substituting to AI in Ni3AI. AI also plays a fundamental role in promoting the 

format1on of a stable Al203 alumma surface scale which protects the alloy against 

further oxidatiOn. Several elements are added m small quantities for control of grain 

structure and mechanical properties that are strongly influenced by grain boundaries. 

Mmor additions of C tend to result in the forman on of carbides, often located at the 

gram boundanes. 

Co 

w 
AI 

Si 

Nt 

w 
Co 

w w 
Te Ta 

10 

Spectrum 1 

1 2 1 

keV 

Figure -I.-I. Chemical composition for sample M2. 
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4.4 Microstructure Analysis 

4.4.1 Particle Size Measurement 

The analysis will be focusmg on the evaluation of the morphology change of the y' 

particles stze and shape and carbtde prectpttation for detecting material degradation 

due to servtce at high temperature. In general, the y' precipitates can change in 

morphology, shape and size during apphcations resulting m deterioration in htgh 

temperature mechanical properties. These microstructural changes often lead to 

premature failure m gas turbine engmes 

The grain stze has a signtficant effect on the material properties, particularly the 

material strength. Linear Intercept Method and manual calculation was used to 

calculate the particle diameter of each sample. EquatiOn below was used to calculate 

the average size of particle. 

c 
d =---

1/L X I/I 

Table -1.2: Arerage particle diamcterfor each sample. 

Sample Ul 01 U2 M2 02 U3 
Grain Diameter 

(~m) 1053 0882 0.789 0.619 0.690 1.017 

(l) 

M3 03 

0.625 0.480 

From Table 4.2, first stage blade, the parttcle size of sample in first stage blade 

mcrease with increase of temperature and proved the temperature distnbution 111 

Figure 4.2. First stage blade had been mtroduced to highest temperature from 

combustor line in range of 950°C -I 05 ~C ln second stage blade, the grain size 

increase with increase of temperature, however, the particle size of m1ddle part (M2) 

slightly smaller than D2 For third stage turbine blade, the particle size mcreased 

when the temperature at lower part of turbine blade. The correlation of particle size 

and temperature will be discussed on the next section. 
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4.4.2 Cor·relation of Particle Size and Temperature 

By finding the partlcle SIZe of each sample, a correlation between the effect of 

temperature on the mtcrostructure of y' phase has been determined. During 

prolonged exposure to service temperatures, the shape, stze and morphology of the 

precipitates continuously change. The turbine blade lives are generally dictated by 

these changes. Increase m temperature and stress accelerates these undesirable 

changes and thereby, brings down the blade lives significantly If the temperature 

exceeds beyond a limit, the ·y'-precipitates may completely dissolve leading to 

sudden deterioration of the high temperature mechanical properties [ 12]. 

A relationship between the parttcle size and temperature of turbine blade SRR99 was 

constructed refernng to the studies been done before. Figure 4.5 show the 

relationship between agmg temperature and gamma prime particle size on the 

wrought mckel based superalloy [17] and Figure 4.6 shows the relationship between 

grain Size and temperature when strain rate is 0.01 s·', holding time is 30 minutes. 

Both graphs show that when temperature increases, the particle size will be increased 

exponentially. 
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Figure -1.5 · The relationship between mechanical properties and gamma prime 

particle stze. 

Figure 4.5 also shows that when temperature increased, hardness, yteld strength and 

ultimate tensile strength (UTS) behaviors have the same trend which initially 

increase with the particle size and then contmuously decreased With temperature. It 

could be noted that all mechanical properties are obviously related to the size of 

precipitate y' particles in matrix. 
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The relatJOnshJp between particle size and temperature can also be predicted on the 

prev10us work [ 18] as shown in Figure 4.6. From this work, the final grain size of 

IN7l8 is related to the holding and deformation temperature and also strain and 

strain rate prior to the holdmg period. The h1gher Is the temperature, the larger IS the 

final grain size. At a higher temperature, a dynamically recrystallized grain grows 

more eas1ly than that at a lower temperature dunng a hot deformation process 

because atoms diffuse and move more easily. 

•so 
400 

I3SO - S.,..ln.0.1 
--- Shin=0-4 

J: · ••·· ·Sinllns07 

!: 
%100 
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800 040 91!10 1020 1000 1100 

~I HoiOt1Q Tern~ll.ft rc) 

Figure -1.6: The relationship between grain size and temperature when strain rate is 
0.01 .\·1• holding time is 30 min. 

Both graphs show that the particle size exponentially mcreased with temperature. 

Therefore, the particle size of each sample of blade was plotted on the graph 

exponentially with respect to the graph found m the literature. A comparison of grain 

size and temperature were performed to see the relatiOnship between them 

Results were tabulated in Table 4.3. In this table, the temperatures of each blade 

were estimated first according to the initial value of temperature come from 

combustor part which is 950 - 1057 °C Graph in Figure 4. 7 were extrapolated 

exponentially until the maximum temperature and maximum grain s1ze. The 

maximum of gram s1ze were estimated from previous work [19), the microstructure 

periodicity also depends strongly on the temperature, showing values from 750- 1450 

nm. The grain size calculated before (refer Table 4.2) were plotted on the trend line 

to obtain the temperature value. 
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Figure ../. 7: Relationship o.f particle size of gas turbine blade and temperature. 

From these graph and table, the temperature faced by the turbine blade at each 

sample can be estimated. 

Table ../.3: Temperature estimationfrom pamc/e size of gas turbine blade. 

Graph Trend 
line 

Ul 

1000 

Dl U2 

975 958 

M2 D2 UJ MJ 

928 942 994 930 

In first stage blade, the temperature increase with increase of grain size. The 

temperature in U I is higher than temperature in D 1. In U l , the material was exposed 

to temperature of 1 000°C, almost the same with the highest operating temperature 

introduced to the blade from combustor chamber. The temperature drops by 25°C 

from higher part to lower part of blade. 

29 

DJ 

902 



The graph shows that for second stage blade, temperature also drops from h1gher part 

to lower part. However, the temperature in the m1ddle section smaller than in the 

lower sectton. The temperature of second stage blade was in the range between 

920°C to 960°C. 

The relationship between parttcle size of microstructure and temperature can also be 

seen m third stage turbme blade. With the mcrement of particle size, the temperature 

also increased. UJ show that at particle size I 016 95nm, the temperature was the 

htghest at 994°C. Meanwhile at 03, the lowest section, the particle size was 480nm 

at temperature of 902°C. Therefore, we can that the temperature increased from 

lower section to middle section and then to upper section. 

The correlation between temperature and microstructure on every stage of turbine 

blade can also be performed. From Figure 4 8, an increment on parttcle size can be 

seen when the temperature are h1gher at upper part (U I, U2 and UJ) of turbine blade. 

The part1cle size was smaller when the temperature drops from I '1 stage blade to 3rd 

stage blade. This relationship also 1s applied on the middle and lower section on the 

blade. At lower section (Dl, D2 and 03, the temperature drop from 975°C to 902°C. 

At D I, the microstructures were fully rafted With angular shape while the 

microstructures in 03 were very fine and in cub01dal y' shape. The evolution of 

particle size and shape can be concluded due to h1gh temperature and stress applied 

from turbine. 

• T 994°C 
T: 958'T Stzc 1016 • Sue. 789nm 

• T l000°C 
Size: 1 052nm T 930°C 

T: 928°C • Sue 625nm • SiLe: 618nm 

nm 

T: 975°C T. 902°C 

• Size: 882nm 
T· 942°C • S1ze: 480nm • SiLc: 689nm 

l I 

I '1 Stage 2"d Stage 3rd Stage 

Figure -1 8: Temperature and particle size relationship on the blade arrangement. 
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4.4.3 Microstructure Degradation 

During high temperature loading, the regular microstructure of nickel-base 

superalloys consisting of a y-matrix (Ni) containing a large volume fraction of y'­

particles (Ni3Al) degrades The strengthening effect of the y'-precipitates depends 

largely on their stze and morphology. The cubic precipitates coarsen and elongate in 

a direction normal to the applied stress in a process called rafting. It is very 

important to study on the effect of rafting to the sample of gas turbine internal blade. 

According to (Tinga, 2009), the whole range of revealed ffilcrostructures can be 

sorted into four classes which depend on the particle size and temperature been 

exposed. This category will be explained according to the blade section on every 

stage. 

• First Stage Blade 

Significant changes occurred in the microstructure of the base alloy of first stage 

blade during service agmg 24000 hrs at the highest operating temperature, 950 °C -

1050 oc hot gas coming from combustor part. The blade was subjected to hot gas 

temperature from combustor to first stage vane. Figure 4 9a show a rafted y' 

resulting from exposure to stress at high temperature. 

(a) (b) 

Figure .J. 9· y' morphology (a) rafted particle size 1.053pmfor sample U 1 and (b) 

with parllcle size 0.882pm.for sample Dl. 

The grain size of sample Ul increase due to the high temperature compared to 

sample D 1. The mitial y'-cuboidal particles shape transform into plates shape when 

temperature mcreased. Here, it IS prove that alongside the blade, the temperature Will 
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be increase from lower part to upper part and the increment is around 1 000°C -

II 00°C (refer Table 4 3 ). The blade is also subjected to constant load of gas turbine. 

During high temperature service (T > 925 °C), the microstructure gradually degrades 

by a coarsenmg process. In the presence of stress, caused by the centrifugal load m a 

gas turbine blade, a severe directional coarsening, so-called rafting, of the imtially 

cuboidal y'-particles into a plate-like structure occurs as shown in Figure 4.9a. 

Spontaneous rafting is observed experimentally at high temperatures and 1s attributed 

to internal stresses (e.g. misfit stress, dislocation induced back stress or dendritic 

stress) that act as a driving force for rafting. The precipitate volume fractiOn remruns 

more or less constant dunng rafting at temperatures below 980 oc. 

From numerous experimental and theoretical investigations, the driving force for 

rafting IS the combination of the external and misfit stress into a hydrostatic stress 

that affects the chemical potential of the atoms resuJting in diffusion (20] Further, 

plastic deformation causes a loss of coherency and reduction of the misfit, which 

enables rafting. Comprehensive review on rafting by Nabarro and Sujata, Madan, 

Raghavendra, Yenkataswamy & Bhaumik summarize that preferential coarsening of 

cuboidal y'-precip1tates occurs perpendicular to the applied stress under tension, 

while they tend to grow parallel to the applied stress under compressive loadmg. 

Creep damage to superalloy blades is unavoidable However, again, one of the 

critena for assignmg the blade lives is based on the extent of creep damage that is 

expected for given engine operational conditions, I.e. , temperatures and stresses. 

Both microstructure on Sample Ul and Dl (shown in Figure 4.9a and 4.9b) been 

introduced to temperature above 925°C. The matenals show a much faster 

degradation. As a result, the microstructure is fully rafted and considerably 

coarsened. Microstructure ofUl have been exposed to higher temperature, therefore, 

the y ' phase is more rafted compared to D I under 24 000 operating hours. 

Microstructure m D l is still in angular shape though the rafting already mitiated by 

the high temperature (975°C) and high stress. 

Dunng serv1ce, the single crystal mckel based superalloy components also subjected 

to biaxial state of stress in some regions. These stresses are generated due to (i) the 
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thermal gradients in cooled regions, (ii) bencling stresses exerted by the floWing gas 

on the blade and (ni) local stress concentrations. In these circumstances, rafting in 

real components occurs under a multiaxial state of stress and creep test can be 

performed to study the influence of this stress on y ' rafting. [10] 

• Second Stage Blade 

The degree of degradation, as evaluated by the gamma pnme particle size, increases 

with exposed time and service temperature. The primary gamma pnme particle size 

varied from 0.789 J..lm, 0.619 J..lm to 0.69 J..lm, as shown in Figure 4.10. The 

microstructure shows significant degradation in service. The primary gamma prime 

particles have been spheroidized and secondary gamma prime coarsened in the 

sample [21] . From the reducing "( volume fraction and increasing size of particle 

size, It can be concluded the temperature increased alongstde the blade from lower 

part to upper part. 

(a) (b) 

(c) 

Figure -1.10: y' morpholo,f!J' (a) of particle stze 0. 789 pmfor sample lf2 and {b) of 

particle s1ze 0.619 pmfor sample M2 and (c) ofparticle size 0.69 pmfor sample D2. 
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The blade was subJected to hot gas temperature from first stage blade at around 940 -

960 oc. Initially, both y and y' phases are cubic, with their cube axes parallel, 

structure extremely fine in scale (y' cuboids <0.5!-lm). It can be seen that an 

undamaged structure of y' quasi cuboids has grown into a little rafted y' (angular 

shape) resulting from exposure to stress at high temperature on sample U2 (refer 

Figure 4.1 Oa) The y • microstructure shape of san1ple 02 also changes, partially 

rafted and have rounded shape wtth particle size 0 69 Jlm. Dependmg on the particle 

size and shape of the sample, sample U2 been operated at consider high temperatures 

(T - 958°C) and gradually decrease along the turbine blade (T - 942 °C) . The 

degradation process is rather slow, resulting in partly rafted microstructures after 

24000 hours. This means that none of the matrix channels has disappeared 

completely. 

However, at middle section (M2), the particle Size and temperature is not 

corresponding nicely according to the result in first stage blade. The middle section 

has lower temperature and smaller particle size compared to y' phase in 02 (refer 

Figure 4.8). According to (Tinga, 2009), the fully rafted microstructure at the blade 

centre was not observed m the simulation for two reasons the operating hours is 

much shorter than the 24000 hours and the mtemal blade cooling yields much lower 

temperatures in the centre regiOn of the blade, which reduces the degradation rate 

there. The result also prove by (Sujata, Madan, Raghavendra, Venkataswamy, & 

Bhaumik, 2008) said that the microstructure near the blade root (02) shows 

extensive raftmg which is not expected in the cold zone of the blade under the 

recommended engine operation conditions during the entire technical life. This might 

due to the engine was over-sped for a significant time. 
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• Third Stage Blade 

As shown m Figure 4.11. the precipitates y' morphology which were 0.48 J.lm in size 

(D3) m the form of circle/cubic at third stage blade have coarsened during service 

agmg to 0.625 J.lm (M3) and l 0 16 J.lm (D3) [22]. The blade was subjected to hot gas 

temperature from second stage blade at around 900 -I 000 °C. 

(a) (b) 

(c) 

Figure .J. 11: )'1 morphology (a) o_(particle size 1.016 pmfor sample U3 and (h) o.f 

particle size 0.625 prnfor sample M3 and (l-~ o.fparticle size O . .J8 pmfor sample D3 

Single crystal nickel based superalloy in U3 had been exposed to htghest temperature 

on the third stage before been removed from turbine package. The parttcle size and 

temperature of third stage blade were corresponding to the theory, the higher the 

temperature, the larger the size of particle. FESEM result of D3 shows that the 

material were in good conditiOn though been exposed to high temperature (902°C). 

They' still in cuboidal shape with s1ze < 0.5J.lm. 

Matenal m U3 was subjected to high temperature and high stress. Therefore, the 

material starts rafted. The microstructure of single crystal superalloys consists of two 

phases, the ordered intermetall1c y' prectpitates coherently embedded in the 

disordered y matrix. Under high influence of stress and temperatures 925°C, the 
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initially cuboidal y' precipitates coarsening into extended rafts. The evolution of the 

microstructure of the single crystal superalloys leads finally to an effect called 

topological inversion: the y' phase surrounds the y phase and becomes topologically 

the matrix. It has been also shown in several reports that rafting will effect 

mechanical properties of material such as tensile and creep properties. 

Figure 4.llc shows that y' phase in M3 is isotropically coarsened. According to 

(Tinga, 2009), the material points experiencing high temperatures, but low stresses 

and therfore show a more or less isotropic coarsening pattern. This means that the 

three matrix channels have similar widths, but the microstructure periodicity has 

increased to values up to 625 nm. This phenomenon is also applied on M2 since the 

particle size is in between 610 - 660nm. Due to the fact that the present blade is 

internally cooled, it was subjected to thermal stresses that cause the stress state to be 

multiaxial. 

The degree of service degradation, as measured by the gamma prime particle size, 

increases with exposed time and service temperature. The coarse gamma prime 

particle size was approximately 1.052 ~' while the finest gamma prime particle size 

was 0.48~m. The relationship between microstructure and exposed temperature of 

blade can be due to multiaxial degradation which able to correctly simulate the 

changes in size and shape of the precipitates in the blade. Secondly, the mechanical 

response of the degraded blade depends on the microstructure morphology in each 

individual material point. Subsequently, the operating condition of gas turbine also 

influenced the particle size of the blade. For example, sample D3 were found rafted 

from this turbine package and the temperature analyzed is very high. At third stage 

blade, the temperature should be lower than first stage blade. This might due to 

failure in internal cooling or oversped during operation. 

36 



4.5 Hardness Testing 

Table 4. 4: Hardness value for each sample. 

Sample HV HRC 
HV Oy 
(MPa) 

UI 465.4 46.5 4564 1141 

Dl 405.7 41.3 3979 994.75 

U2 418.6 42.6 4105 1026.25 

M2 417.8 42.5 4097 1024.25 

D2 427.8 43.4 4195 1048.75 

U3 465.6 46.5 4566 1141.5 

M3 598.1 55.1 5866 1466.5 

DJ 582.5 54.3 5713 1428.25 

IfHV is expressed in SI units the Yield Stress of the material can be approximated as 

Hv H·v (2) 
ay .-....J ,....., 

c 3 

From the hardness value (see Table 4.4), we can see that the constant load and high 

temperature for 24000h service hours has changed the mechanical properties of the 

blade. The original yield strength= 1021 MPa. The difference between strength of 

every sample with the original one is due to change of y precipitation and also 

carbide precipitation at grain boundaries. The yield strength increases with 

increasing temperature from 0 to 850 °C, while it decreases evidently with increasing 

temperature from 850 to 1050 °C [23]. However, the yield strength of each sample 

almost does not vary below the peak temperature, 1 050°C. 

The y' phase shows an unusual property in that it tends to increase in strength with 

increasing temperature, at least at lower temperatures below about 800°C. This is 

significant when the second phase is in excess of 50%, as is often the case with high 

temperature nickel alloys. 
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The mechanical behavior of superalloy is closely related to single phase ( it should 

be noted that considerable differences are introduced into mechanical properties of 

superalloy owing to its two-phase microstructure compared with single phase y'. For 

example, single crystal superalloy exhibits highly complex yield behavior. Most 

single crystal superalloys display a similar peak temperature at which the yield 

strength achieves a maximum. Above the peak temperature, the yield strength drops 

rapidly with the increase of temperature. On the contrary, the relationship between 

yield strength and temperature varies significantly for different alloy below peak 

temperature [23]. 
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CHAPTERS 

CONCLUSION & RECOMMENDATION 

The turbine blades operate at elevated temperatures at the very edge of metallurgical 

alloy development. Three probable damage mechanisms affect turbine blades, these 

being mechanical damage through either creep or fatigue and high temperature 

corrosion. Thorough analysis, the microstructure went transformations which likely 

degrade the mechanical properties of the alloy by y' coarsening, rafting phenomenon, 

grain size increment with respect to temperature. 

The regular microstructure of nickel-base superalloys consisting of a y -matrix (Ni) 

containing a large volume fraction of y'-particles (Ni3Al) degrades during high 

temperature and high stress. The cubic precipitates coarsen and elongate in a 

direction normal to the applied stress in a process called rafting. Due to the 

transformation of particle size, it is concluded that the temperature blade was 

increased from lower zone to upper zone. The study also show that the particle size 

increase from third stage blade to first stage blade. Therefore, the operating 

temperature of gas turbine in the industry need to be maintain so that the 

microstructure of blade is not affected and as well reduce the lifespan of turbine 

blade. 

A complete profile or pattern of temperature and particle size was completed. The 

objectives of this project were successfully achieved. Thus, to improve the study in 

the future work, unused sample of Nickel based Superalloy can be analyze to 

compare with the damaged blades. The microstructure of this virgin sample can be 

used as reference when comparing the particle size and shape. Creep test analysis 

can also be performed to monitor the mechanical properties of blades with respect to 

temperature. Heat treatment might also be performed to get better distinction of 

microstructure transformation of every sample alongside the turbine blade. 
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Gantt chart 

No Project Activities FYPl I FYPII 
I 2 3 4 5 6 7 8 9 10 11 12 13 14 I 2 3 4 5 6 7 8 9 lO I I 12 13 14 15 

1 Selecbon of Project Topic rc CJ 
2 Topic Introduction \vith SV I 

3 Research on Relevant References - - ! I " -1 
4 Preparation on Work Schedule 

.... 
'· 

5 Studv on Turbine Blade Prolile & Microstructure t 
,_ - ....--. 

~.....__;;; 

7 Confinnation ofEqUII>_ment & Material at Lab ::1 
8 Preparing Complete Methodology & Lit. Revic\\ "' ... 
lO Proposal Preparation l"--' I 
11 Submission of Extended Proposal Defense te 
12 Proposal l)etense ~ (] 
13 Preparing Standards & Procedure ~ 
15 Preparing Metallographic Specimens 1. ~ 

';"'=i I; 'll 
14 Visual Examination 1. ~ 
16 Microscopic Investigation --· ~ -
17 Chemical Analysis _I 

18 Preparation on Interim Report -.-[11 -

-
19 Submission oflnterim Draft Report • 
20 Submission oflnterim Report • 21 Image Recording r-"1 
22 Bardness Test I, " 

23 Data Collection 
..-= ] 

24 Study on Microstructure Pattern l 
.I 

25 Verify Result with PreYious Result I """' 
26 Establish Pattern of Microstructure vs Temp. c t..._ Ill ~·· 

1 -
27 Preparation on Progress Report • L _j ~ 

28 Submission of Progress Report • 29 Pre-EDX • 
30 Preparation on Final ReQ<>rl & Techrucal Paper :e ~ ·Lj 0 
32 Submission of Draft Report le 
33 Submission of Soft Bound & Technical Paper te 
35 Preparation on Oral Presentation a ~ 
36 Oral Presentation • 37 Submission of Hard Bound • -- - -- - ·-e Key Milestone 
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Tool or Equipment Required 

No. Tool I Equipment Description Availability 

1. Gas turbine blades Set of rotors from different Provided by PETRONAS 
stages Carigali Sdn Bhd 

2. EDM To perform the sectioning Material Lab Building 16 

2. Grinding machine Refine the surface of turbine Material Lab Building 17 

blades 

3. Optical microscopy Observe the microstructure in Material Lab Building 17 

the unetched condition first to 

obtain meauingful images 

before etching the sample. 

4. Field Emission Scanning sample with a high- Centralized Analytical 

Scanning electron energy beam of electrons in a Lab, Block P 
microscope (FESEM) raster scan pattern. 

5 Energy dispersive Used in conjunction with Centralized Analytical 

spectroscopy x-ray the Field Emission Scanning Lab, Block P 
(EDS) Electron Microscope 

(FESEM) providing chemical 

analysis in areas as small as 1 

~m in diameter. 

7. Micro Hardness Test Determine the hardness value of Material Lab Building 17 

Machine various materials including 
metals, alloys and etc. 

Method: Vickers hardness test 
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Operating P ararneters 

Table 2-1 
Operating Parameters 

•control Limit Setting 
Parameter (Contlnuous Operation) Warning Setting ~shutdown Setting 

Engine Speed (N'I) 14,200 to 14,600 rpm At15,400rpmand above 15,600 rpm 

Control Temperature (CT) 1935'F (1057'C) 2000'F (1093T) 2020'F (1104'C) for 10 
sec or2070"F (1132''C) 
for 100 milliseconds""~-

F ue llklw (Wt) Fuel valve mistrack more 
than 0.5 v for 1.0 sec 

~These are maximum settings established by Rolls-Royce Corporation. The OEM may have estab-
lished lower settings, but cannot exceed the Rolls-Royce Corporation maximum settings for particular 
units.. 
uMaximum time period is 10 seconds (Ref_1able 2-2) 

Con'll'ol 
Ternpet".ature 

'F("C) 

Starting- <1570 (854) 
NomJal 

Starting- ,.1570 (854) 
Warning 

:.-1800 {871} 
<600(316) 

within 3 set and 
Starting- N1 ::-7200 rpm. 
Shu:l:dmvn 

See Note 1. 

Operating- <:1935 (1057} 
Nom1al 

Opem1:ing- _o.2000 (1093} 
W-smflg 

>2020 (1104) 
ror 1[} sec 

Operating- or 
Shutd011m -~2070{11321 

for 100 ms.e<~ 

See Note- 2 

N.otes: 

Operating Limits 

Table 2-2 
Opera1ing UmiW 

N1 
Ertgine· Speed 0~ Ptell'!!UH~ 

{'I'm) ~ig (kP.ag) 

.-:7200 within 30 
sec. 

N1 dcesnot 
accelerate 

·~40 rpm/sec for 
3 sec when CT 
->BOO (316) and 

N1 <13,000. 

14,200-14,600 50-60 
i:MS-414). 

:~15.4-00 .,..4[1 {276) 

>15,BOO ... ;20 (13.8) 
or 

<'13,-DOO affer 
speed t~ been 
:~13,000 for3 

sec_ 

· ... 

Oil \fibration 
Tempemfure m.Jsec 

FCCI (mmf$eC} 

-40to 160 
(--40 to 71) 

<HiO (71) 

>180 (82) >3 mils {0.07) 
for 3 sec_ 

1. Turbineouttettamperature-{TOT)mrer--temperatU!e bac,k.upm '>i4tlD'"F (760'"C)and N1 is <13,0GD!11ffi. 
2_ TOT run-over temperature backup when N1 is >13,000 rpm. 
3. The symbol :.. means more than and the symbol ~ means less than. 
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Image of Microstructure after Etching under Optical Mtcroscope 

2 

3 
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Descn lion 

Sample : U3 

Microstructure of SRR99 with a 

fine gram stze. considerable delta 

and large pnmary MC carbides 

re\ ealed using glyceregia. 

Sample . Ul 

Sample were etched usmg 50 ml 

HCl and I - 2 ml H202 (30%) to 

attack y· in Nt-base alloys. The 

sample was immersed for 10 - 15 

seconds. No clear image captured 

due to improper etching. 

Sample: U3 

Microscope image of nickel 

superalloy with smaller gram 

boundaries by usmg Marble 

Reagent. This regiOn was exposed 

to high temperature of hot gas. 
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Sample : M3 

Microscope 1mage of nickel 

superaJioy with bigger gram 

boundaries than Sample-U3 by 

using Marble Reagent. This region 

was exposed to high temperature of 

hot gas but was cooled down from 

cooling air. 

Sample : 03 

Microscope 1mage of nickel 

superalloy with bigger gram 

boundaries than Sample-U3 and 

Sample-M3 by usmg Marble 

Reagent. This region which is lhe 

trailing edge \vas exposed to high 

temperature of hot gas but was 

cooled do\\TI from cooling air. 



Chemical Composition ofNi based Superalloy 

Table-~~ fhemical cvmpo!iitions (wt_ %) oftifil- gen.eratioa Ni-ba~ed snperalloy;; far ~e ccy~td blades_ 

Alloy c, Co .., w A1 Ti T• Nh v Hf Density (gnu 3) Country Ref 

Na,.,ir 100 9 10_5 5_75 L2 3.3 8.54 USA [37} 

CMSX-_:1 8 'l.6 0.6 8 5.6 6 8.60 USA [21] 

CMSX-3 • 4.6 0.6 8 5.6 6 0 t 8.&1 lL~A l]J.J 

CMSX--6 9.8 5 3 4.8 n 2 0.1 7.98 USA [-111 

PWA1480 to 5 4 5 L:'i 12 8.70 USA [20] 

SRR99 ' 5 lO 5.5 1.2 3 8.56 GB [IS] 

RR2000 10 15 5_5 4 7.87 GB [lS] 

Re!JeN4 9 • 1 6 3.7 -1.2 4 0.5 !!.56 USA l33A2l 
AMI 7.8 6.5 2 5.7 5.2 L1 7.9 8.60 F [I:!] 

AM3 8 5.5 2.25 5 6 2 3.5 8.25 F [24] 
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Spectrum processing ~ 

No peaks omitted 

Processing option : All elements analyzed (Normalised) 

Number of iterattons = 3 

Standard : 

C CaC03 1-Jun-1999 12:00 AM 

AI Al203 1-Jun-1999 12:00 AM 

Ti Ti 1-Jun-1999 12:00 AM 

Cr Cr 1-Jun-199912:00 AM 

Co Co 1-Jun-1999 12:00 AM 

Ni Ni 1-Jun-1999 12:00 AM 

w W 1-Jun-199912:00AM 

Element Weight% Atomic% 

C K 7.15 26.85 
AIK 6.91 11 56 
Ti K 0.56 0.53 

CrK 5.30 4.60 

Co K 6.82 5.22 

NiK 63.63 48.88 

WM I 9.62 2.36 

Totals 100.00 
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APPENDIXV 
Sample Calculation for Detennining Size 
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Linear Intercept Method 

Sample Ul Dl U2 M2 D2 U3 M3 D3 

Line 

I 6 7 8 10 7 5 12 13 

2 5 6 8 II 10 6 9 14 

3 6 6 7 12 8 6 10 13 

4 6 7 7 10 9 5 9 11 

5 6 7 8 8 8 5 10 13 

6 7 7 6 9 10 7 10 12 

7 5 8 8 10 10 7 8 12 

8 5 6 8 10 9 6 9 12 

9 5 5 8 9 8 6 10 13 

10 6 9 8 8 8 6 9 12 

Average 5.7 6.8 7.6 9.7 8.7 5.9 9.6 12.5 

Line length (mm) 50 50 50 50 50 50 50 50 

Grains/em, nL 0.114 0.136 0.152 0.194 0.174 0.118 0.192 0.25 

Magnification. m 12500 12500 12500 12500 12500 12500 12500 12500 

Constant. C 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
Grain Diameter (mm) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 

Grain Diameter (J,tm) 1.053 0.882 0.789 0.619 0.690 1.017 0.625 0.480 
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APPENDIX VI 
Microstructure Image at 1000 X Magnification 
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First Stage Blade 

Second Stage Blade 
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Third Stage Blade 
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