Semi-Auto Jig For LCD Testing

By

Norhafiza Binti Rahim

FINAL PROJECT REPORT

Submitted to
Electrical & Electronics Engineering Department
In partial fulfillment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

DECEMBER 2004

Umniversiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

©Copyright 2004
By

Norhafiza Binti Rahim

CERTIFICATION OF APPROVAL

[SEMI-AUTO JIG FOR LCD TESTING]

by

[Norhafiza Binti Rahim |

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved: _

'

[Abu Bakar Sayuti Hj Mohd Saman]
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

December 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

I

Ll B4

e .
[Norhafiza Binti Rahim]

it

ABSTRACT

LCD is normally used in laptop computers, digital clocks and watches, microwave
ovens, CD players and many other electronic devices and they offer some real
advantages over display technologies. In a radio application, the LCD is used to
display the function of the radio as possible as the menus to run the radio functions.
Normally, manufacturer plugs in the LCD panel on the radio to display the required
segment by using the LCD driver. The segment displays can be viewed as they press
the radio button or keypads. Repeating job like plug in the LCD onto- the radio
panel brings lots of problems. This testing method is not productive because of the
time taken to plug in the LCD and take it out from the 1E-adio panel is too long. There
will be side damage as we will re-assemble the radio panel after testing the LCD
panel. The purpose to build the jig is to check the segfnent display on the specified
LCD. The testing procedure should be handled in easier way in order to test the
segment displays. The literature review consists of the fundamental theory of each
related topic involved in this project. The topics involved are related to LCD
applications, PIC programming, Visual Basic Programming and also circuit
simulation using tools available. Serial communication between the serial port and
user interface allow user to send the signal to each of the LCD pitch. Software In
implementing this project, there are several main processes taken. The project is
divided intro three parts which is hardware part or LCD tester jig, user interfacing
and serial communication. The circuit is designed to send out the signal to turn on
the LCD segment display controlling. In the “Testing History” the result test is
recorded according to number of testing done, date, time, total LCD passed, total
LCD rejected and also total LCD tested. The jig is able to check the segment display
as required. User can assemble the LCD on the jig without continuous side damage.
The testing window can help user to implement the LCD checking with a smooth

testing flow. It also reduces the time taken to implement this LCD checking.

iii

ACKNOWLEDGEMENTS

Alhamdulillah, with the greatest gratitude to the Almighty Allah for his gracious
blessings throughout the whole period this project was undertaken. My deepest
gratitude to my parents, who have provided me with their love and undivided
attention through the sweet and sour moments. To my supervisor, Mr Abu Bakar
Sayuti Hj Mohd Saman, thank you so much for your guidance and support
throughout this project. His words of wisdom have encouraged me to rise again

during the times I fall.

The compliment should also go to all Electrical and Electronics Engineering
Laboratory technicians for bundles of information and assistance in completing this

project especially to Ms. Siti Hawa and En. Isnani

1 would like to take this opportunity to thank all my friends who has contributed to
this project. Your assistance is duly acknowledged and noted.

v

TABLE OF CONTENTS

CERTIFICATION

ABSTRACT .

ACKNOWLEDGEMENT . . .

CHAPTER 1: INTRODUCTION
1.1 Background of Study . . .
1.2 Problem Statement
1.3 Objectives and Scope of Study

CHAPTER 2: LITERATURE REVIEW AND THEORY.

21 Liquid Crystal Display (LCD).

2.2 Peripheral Interface Controller (PIC)

2.3 Serial communication.

2.4 Visual Basic Programming

CHAPTER 3: METHODOLOGY OR PROJECT WORK

3.1 Procedure Identification.

3.2 Tool required.

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Circuit design .
42 Testing Sequences
4.3 Visual Basic Programming.

ii

iv

o

| N

11

14

17

17
19

22

22
24
28

CHAPYER 5:

REFERENCES

APPENDICES

CONCLUSION AND RECOMMENDATION

5.1
5.2

Conclusion

Recommendations

32

32

33

34

35

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

LCD layers

LCD used in this project
Pin Diagram of PIC16F877
Pin Diagram of PIC16F84A
Male serial connector

Female serial connector and cable

Serial unit used to send data, but only by three lines

Flow chart for user interface using Visual Basic Programming.

System Breakdown of the Project
Flastomer.

LCD reflector

A copper conductor for tester header
Expected Output Display of Test 1
Expected Output Display of Test 2
Expected Output Display of Test 3
Testing Flow Chart

Testing window

Main testing window — The Test 2 is clicked.
LCD Jig Tester

LIST OF TABLES

Table 2.1 The character in each LCD pitch

Table 2.2 RS232 pin number and description
Table 4.1 Control bit assigned for each test number
Table 4.2 The LCD pitch need to be activated

LIST OF APPENDICES

Appendix A - Coding for PIC16F84A (main controller for PIC16F877)
Appendix B - Coding for PIC16F877 (output for first 28 LCD pitches)
Appendix C - Coding for PIC16F877 (output for last 28 LCD pitches)
Appendix D - Coding for testing window in Visual Basic Programming 6.0
Appendix E - LCD Datasheet

Appendix F - Main circuit

Appendix G - Gantt chart for the 2 Semesters Final Year Project

Appendix H - PIC16F84A Datasheet

Appendix I - PIC16F877 Datasheet

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Liquid crystal display (LCD) is a display having conductive segments or dots
deposited on the inside surfaces of two transparent glass plates separated by a crystal
in liquid form. When energized with AC voltage in the presence of light, the
selected segments will provide black-tone or gray readout. We use LCD in laptop
computers, digital clocks and watches, microwave ovens, CD players and many
other electronic devices. LCDs are common because they offer some real advantages
over other display technologies. They are thinner and lighter and draw much less
power than cathode ray tubes (CRTs). For example, in Radio application, the LCD is
used to display the function of the radio as possible as the menus to run the radio
functions. Normally, manufacturer plugs in the LCD panel on the radio to display
the required segment by using the LCD driver. The segment displays can be viewed
as they press the radio button or keypads.

1.2 Problem Statement

1.2.1 Problem Identification

Repeating job like plug in the LCD onto- the radio panel brings lots of problems.
This testing method is not productive because of the time taken to plug in the LCD
and take it out from the radio panel is too long. There will be side damage as we will
re-assemble the radio panel after testing the LCD panel. The slotted pin for voltage
supply of the radio is also can effected. Furthermore, the problem identification each
electronic component on the radio panel is more complicated as the LCD is tested
using the driver which link with other IC and microcontrollers. The requirements of
this project are to design a jig to test the LCD and find the best way for user to

interface the testing methods.

1.2.2 Significant of the Project

The purpose to build the jig is to check the segment display on the specified LCD.
The findings of this project would help the user to identify the display problem on
the specified LCD. The testing procedure should be handled in easier way in order to
test the segment displays. This project is designed to come out with a new testing
method and a testing jig so that the test procedures become smoother and efficient.
The primary function of the jig is only to test the segment display of the LCD in all
ON condition. The design of the jig can reduce time taken to implement the LCD
testing. The jig is able to detect the current level which flow at each pitch of LCD.
The buzzer will sound as the current flow at each of LCD pitch is out of range. This
buzzer will alert user if there is a segment display problem on the LCD. If this
happen, the L.CD panel is considered as having missing segment or functional

defect.

1.3 Objective and Scope of Study

1.3.1 The Relevancy of the Project

This project is relevant to give exposure to the students regarding the self studying,
knowledge findings, software usability and hands-on tasks on order to complete the
whole project. For the first semester, the target is to complete the literature study of
the theory and engineering principles, system simulations and analysis. For the
second semester, this project will focus on circuit simulation and troubleshooting.

Then, it should end with the jig prototype.

1.3.2 Feasibility of the Project within the Scope and Time frame

The scope of the project can be divided into 2 parts of these two semesters. For the
first semester, literature reviews regarding L.CD applications, the serial port, PIC
Programming and user interfacing should be gained and understand the concept. In
the second semester involves the circuit simulations and analysis of the output by
using the software and starts to prepare for the hardware. This project can be

completed within the time frame given.

The literature review or theory related to this project is explained in Chapter 2. The
topics related involved the understanding about the LCD used in this project, the
visual Basic Programming, introduction to the serial communication and also the

peripheral interface programming.

The methodology to achieve the objectives of this project is described in Chapter 3
of this report. The focus of this chapter is to explain the procedures taken to
implement this project. The finding on this project is discussed in Chapter 4. the

conclusion and recommendation is stated in Chapter 5.

CHAPTER 2

LITERATURE REVIEW AND THEORY

The literature review consists of the fundamental theory of each related topic
involved in this project. The topics involved are related to LCD applications, PIC
programming, Visual Basic Programming and also circuit simulation using tools

available.

2.1 Liquid Crystal Display (LCD)

Liquid crystal display (LCD) displays utilize two sheets of polarizing material with a
liquid crystal solution between them. An electric current passed through the liquid
causes the crystals to align so that light cannot pass through them. Each crystal,
therefore, is like a shutter, either allowing light to pass through or blocking the light.
LCD can be light on with 5 V ac voltages [1].

Some research on how the LCD works have been done. There is far more to building
an LCD than simply creating a sheet of liquid crystals. The combination of four facts
makes LCD possible:

e Light can be polarized.

e Liquid crystals can transmit and change polarized light.

¢ The structure of liquid crystals can be changed by electric current.
o There are transparent substances that can conduct electricity.

An LCD is a device that uses these four facts in a surprising way. LCD is made from
take two pieces of polarized glass. A special polymer that creates microscopic
grooves in the surface is rubbed on the side of the glass that does not have the
polarizing film on it. The grooves must be in the same direction as the polarizing
film and added with a coating of nematic liquid crystals to one of the filters. The
grooves will cause the first layer of molecules to align with the filter's orientation.
Then add the second piece of glass with the polarizing film at a right angle to the

first piece. Each successive layer of TN molecules will gradually twist until the

uppermost layer is at a 90-degree angle to the bottom, matching the polarized glass

filters.

As light strikes the first filter, it is polarized. The molecules in each layer then guide
the light they receive to the next layer. As the light passes through the liquid crystal
layers, the molecules also change the light's plane of vibration to match their own
angle. When the light reaches the far side of the liquid crystal substance, it vibrates
at the same angle as the final layer of molecules. If the final layer is matched up with
the second polarized glass filter, then the light will pass through.

When we apply an electric charge to liquid crystal molecules, they untwist. When
they straighten out, they change the angle of the light passing through them so that it
no longer matches the angle of the top polarizing filter. Consequently, no light can
pass through that area of the LCD, which makes that area darker than the

surrounding areas.

The layers would look like this:

Spacer Beads &
Liquid Crystals

e I Alignment

Laver

— Electrode

s s {elans
Polarizer
Figure 2.1: LCD layers

The electrode is hooked up to a power source like a battery. When there is no
current, light entering through the front of the LCD will simply hit the mirror and
bounce right back out. But when the battery supplies current to the electrodes, the
liquid crystals between the common-plane electrode and the electrode shaped like a
rectangle untwist and block the light in that region from passing through. That
makes the LCD show the rectangle as a black area.

There are two main types of LCDs used in computers, passive matrix and active

matrix. Passive-matrix LCDs use a simple grid to supply the charge to a particular

pixel on the display. Creating the grid is quite a process. It starts with two glass
layers called substrates. One substrate is given columns and the other is given rows
made from a transparent conductive material. This is usually indium-tin oxide. The
rows or columns are connected to integrated circuits that control when a charge is
sent down a particular column or row. The liquid crystal material is sandwiched
between the two glass substrates, and a polarizing film is added to the outer side of
each substrate. To turn on a pixel, the integrated circuit sends a charge down the
correct column of one substrate and a ground activated on the correct row of the
other. The row and column intersect at the designated pixel, and that delivers the

voltage to untwist the liquid crystals at that pixel.

LCD required an external light source. Liquid crystal materials emit no light of their
own. Small and inexpensive LCDs are often reflective, which means to display
anything they must reflect light from external light sources. Look at an LCD watch:
The numbers appear where small electrodes charge the liquid crystals and make the
layers untwist so that light is not transmitting through the polarized film.

In general terms, in order to protect the liquid crystal material from deteriorating,
cells are addressed by alternating current (AC), not direct current (DC). LCDs
require very little power to operate, typically less than SmA. For this LCD the it is
operate in up to 1.2 mA.

Figure 2.2: LCD used in this project

The LCD used in this project is a passive matrix LCD produced by Varitronix (M)
Sdn Bhd [3]. This LCD has 56 pitches which mean that each pitch has its on
character.

The character of each pitch of this LCD is listed in table below:

Pin No. 28| P1 7E 7F 7G
56 (6) I [H]G 27 7D ™ N TA
55] DE]F 26| — 7L 7H 71
54 @ — | =& 5| — 7C 7K 7B
53 L c|B]aA 241 P2 8E 8F 8G
52 D IE [IF [1G 23| 8D 8M Y 3A
51 FM | IM|IN|!A 22 | TRACK | 8L 8H 8)
50 1 iL []| 1 21 — 8C 8K 3B
49 2 ic k] B 0] — 1TF 11E 11N
48 AM | 2E | 2F | 2G 19| 1A 11H 11G 11D
47 20 | 2M | 2N | 2A 18| — 1 1IM | 1L
46 ASM | 2L |20 | 2 171 p3 11B 11K 11C
45 (3) 2C | 2K | 2B 6| — 12F 12E 12N
44 M 3t | 3F | 3G 15 12A 1ZH 12G 12b
43 D M | an | 34 14 - 12) 2M 12L
42 2) B ETRET 13 | LOCAL 128 12K 12C€
41 STEREO | 3¢ 1 3k | 3B 12 P4 10B 10K 10C
40 N AE | 4F | 4G 11 - 16F 10M 10L
P o T T v Tan 10| 10A 10H 10G 10D
3 D T TE T g - 10F 10E 10N
37 | psC | 4C |4k | 4B § | VOCAL | 9B N I
T = =151 7 [CLasL | 9 oM oL
33 SO | 5M | 5N | 54 61 %A oH 8G oD
3 | CDIN | SL | sH | 5 3| Az ¥ E | N

4 - am -
33 EQ-ON | 5C { sk | 5B coM4
3 — — | CcOM3 [—
32 ROCK | 6E | 6F | 6G
' 2 — com2 | — .
31 6D [6M | 6N | 6A
1| comM1 | —
30 POP | 6L |61 [6
o5 = T T8 Table 2.1: The character in each LCD

pitch

2.2 Peripheral Interface Controller (PIC)

Peripheral Interface Controller (PIC) is the IC which was developed to control
peripheral devices, alleviating the load from the main CPU {2]. Compared to a
human being, the brain is the main CPU and the PIC is equivalent to the autonomic
nervous system. PIC is a type of microcontrollers which are essentially 8 bit
microprocessors with small RAM, ROM and simple peripherals packaged on a
single chip. The PIC, like the CPU, has calculation functions and memory, and is
controlled by the software. However, the throughput and the memory capacity are
low. Depending on the kind of PIC, the maximum clock operating frequency is
about 20 MHz and the memory capacity (to write the program) is about 1K to 4K
words. The clock frequency determines the speed at which a program is read and an
instraction is executed. The throughput cannot be judged with the clock frequency
alone. It changes with the processor architecture. However within the same
architecture, the one with the highest clock frequency has the highest throughput.
The PIC is convenient for making calculations. The memory, the input/output ports
and so on are incorporated into the IC. The efficiency and the functions are limited,
but the PIC can do the job of many IC's with software. So, the circuit can be

compact.

Term "port” refers to a group of pins on a microcontroller which can be accessed
simultaneously, or on which we can set the desired combination of zeros and ones,
or read from them an existing status. Physically, port is a register inside a
microcontroller which is connected by wires to the pins of a microcontroller. Ports
represent physical connection of Central Processing Unit with an outside world.
Microcontroller uses them in order to monitor or control other components or

devices. The figure 2.3 and 2.4 show the pin diagram of the PIC used in this project.

Pin Diagram

PDIP
MCLRMrp — [1 ./ (] w— RET/PGD
RADIAND e [2 35 [] «—» RB&PGC
RAYANT [3 38 [] -+—= RBS
RAZIANZIVREF- w— [| 4 37 [- RB4
RAJANZVREF+ a—a [5 3¢ [] «—= RBPGM
RALTOCK! w—=[] B 35 [] w—a RB2
RASIANAISS -—[17 - ¥] +—= RB1
REQ/RDIANG w—s [8 P~ 33 w—e RBOINT
RE1ANRIANG <— [0 R pfJe—ve
RECSIANT ~— [10 N A e s
Voo —w [11 @ 3¢ [T =—= RDVPSP7
Ve —w 112 @ 28 []-=—» RODGIFSFS
OSCUCLKIN — [] 12 8 28 [] =—= RD&PSF5
OSCUCLKOUT w—[7] 14 o] =—s RD4PSP4
RCOTIOSOTICK! a—se [15, 28 [] =—a RCTRXOT
RCUTIOSICCP2 w—w] 12 25 [] w— RCBTXCK
RCHCCP! we—w [] 17 24 [] =«— RCBISDO
RCUSCKISOL »— [18 23 [T =—» RC4SDOKSDA
ROWVPSPD [15 22 [] e—= RDIPSF3
RD1/PSPT -— [20 21 [=— RD2/PSF2

Figure 2.3: Pin Diagram of PIC16F877

The program memory contains 1K words, which translates to 1024 instructions,
since each 14-bit program memory word is the same width as each device

instruction. The data memory (RAM) contains 68 bytes. Data EEPROM is 64 bytes.
The PIC16F84A features:

* 13 1/O pins with individual direction control

» High current sink/source for direct LED drive

- 25 mA sink max. per pin

- 25 mA source max. per pin

* TMRO: 8-bit timer/counter with 8-bit programmable prescaler.

Pin Diagrams
PDIP, SOIC
W ae el i2[Jae R
RA3 -] 2 27[]=— RAD
REATIOH -—=[}2 g B[] DECTILKM
ME—=O¢ 9 [05C2CLKOUT
e [15 @ w[]e—vm
REQINT =18 @ ra[]e—RE7
Apt -7 P 12{]=—RoE
Rpz -—[]2 4[]+ RBE
SR [} 1¢[]+—= RBe

Figare 2.4: Pin Diagram of PIC16F84A

10

2.3 Serial communication

The serial port is an /O (Input/Output) device. An /O device is just a way to get
data into and out of a computer [4]. There are many types of O devices such as
serial ports, parallel ports, disk drive controllers, ethernet boards, universal serial
buses, etc. Most PC's have one or two serial ports. Each has a 9-pin connector

(sometimes 25-pin} on the back of the computer.

Figure 2.5: Male serial connector.

Computer programs can send data (bytes) to the transmit pin (output) and receive
bytes from the receive pin (input). The other pins are for control purposes and
ground. The serial port is much more than just a connector. It converts the data from
parallel to serial and changes the electrical representation of the data. Inside the
computer, data bits flow in parallel (using many wires at the same time). Serial path
is a stream of bits on a single wire on the transmit or receive pin of the serial
connector. For the serial port to create such a flow, it must convert data from parallel

(inside the computer) to serial on the transmit pin (and conversely).

Figure 2.6: Female serial connector and cable

11

RS232 is a voltage loop interface for two-way (full-duplex) communication
represented by voltage levels with respect to system ground (common). A common
ground between the PC and the associated device is necessary. Maximum serial
cable length is defined: 75 feet at 9,600 bps, but today cables up to 1,000 feet are

used successfully.

RS 232 serial port (9-pin) DTE-device (PC) male
connector, female cable connector
PIN| DESCRIPTION
1| DataCamier Dotecl
= e "Réceivéd Data _
3| Transmitted Data
4| DIE (Data Terminal) Ready
5T SignalGround
61 DCE (DataSef) Ready
7 [" RequesttoSend
51 " Clearto Send
9| " RingIndicator

Table 2”.2:7Ré23.2 pin n.u.mbel-; and descrlptlon
The serial port on the PC is a full-duplex device meaning that it can send and receive
data at the same time. In order to be able to do this, it uses separate lines for
transmitting and receiving data. Suppose we are working with three lines only, and
that one line is used for sending data, other for receiving, and the third one is uséd as
a reference line for both the input and the output side. In order for this to work, we
need to set the rules of exchange of data. These rules are called protocol. Protocol is
therefore defined in advance so there would not be any misunderstanding between

the sides that are communicating with each other.

The logical unit "1" is set up on the transmitting line until transfer begins. Once the
transfer starts, we lower the transmission line to logical "0" for a period of time
(which we will designate as T), so the receiving side will know that it is receiving
data, and so it will activate its mechanism for reception. Go back to the transmission

side and start putting logic zeros and ones onto the iransmitter line in the order from

12

a bit of the lowest value to a bit of the highest value. Let each bit stay on line for a
time period which is equal to T, and in the end, or after the 8th bit, let us bring the
logical unit "1" back on the line which will mark the end of the transmission of one
data, The protocol we've just described is called in professional literature NRZ
(Non-Return to Zero).

i Receiver = . Receiving line
| transmilter | __L___g. Transmitting line
register ﬁ
—1—— Reference line

Serial unit used to send

//I—-J ~ data, but only by three
\I?_afﬁ J Serial lines
unit

Figure 2.7: Serial unit used to send data, but only by three lines

There are two basic types of serial communications, synchronous and asynchronous.
With synchronous communications, the two devices initially synchronize themselves
to each other, and then continually send characters to stay in sync. Even when data is
not really being sent, a constant flow of bits allows each device to know where the
other is at any given time. That is, each character that is sent is either actual data or
an idle character. Synchronous communications allows faster data transfer rates than
asynchronous methods, because additional bits to mark the beginning and end of
each data byte are not required. The serial ports on IBM-style PCs are asynchronous

devices and therefore only support asynchronous serial communications.

Asynchronous means "no synchronization", and thus does not require sending and
receiving idle characters. However, the beginning and end of each byte of data must
be identified by start and stop bits. The start bit indicates when the data byte is about
to begin and the stop bit signals when it ends. The requirement to send these
additional two bits causes asynchronous communication to be slightly slower than
synchronous however it has the advantage that the processor does not have to deal

with the additional idle characters.

13

An asynchronous line that is idle is identified with a value of 1 (also called a mark
state). By using this value to indicate that no data is currently being sent, the devices
are able to distinguish between an idle state and a disconnected line. When a
character is about to be transmitted, a start bit is sent. A start bit has a value of 0
(also called a space state). Thus, when the line switches from a value of 1 to a value

of 0, the receiver is alerted that a data character is about to be sent.

2.4 Visual Basic Programming

Visual Basic is a computer programming language [S]. A programming language
uses words with a specific meaning, connected together in a specific order, to form a
statement. A program is created when several statements are assemble together to
accomplish a specific task. A program is a set of statements written in a computer
language in order to accomplish a specific task. In this project, Visual Basic is used

to create a program that will display different graphical images on the screen.

The user interface defines what a user of the program sees on the screen and how the
user interacts with the program. In writing a computer program in Visual Basic,
various tools to design the end-user interface, for the program that was created.
Visual Basic is an event-driven programming language which means that different
windows on the screen can respond to events. An event is an action that occurs as a

result of some user activity.

Visual Basic is also an object-oriented programming language. Object-oriented
means that the programmer creates objects that end-user will use to perform task. An
object can be a button that the user clicks or a box that will contain text. In Visual
Basic, tools to create objects are called controls. Each type of control has different
characteristics (properties), responds to events that are discrete for each type of

control, and perform a unique set of actions (methods).

In Visual Basic, a control is considered a class. A class is a template for an object,
defining the object’s supported properties, methods and events. In other words, a
class defines what an object does and how it behaves. When creating a control

instance on a form, thus create an instance of a class.

14

Object-oriented design describes a solution to a problem in terms of active data
elements called objects. Objects are a composition of data and actions. The data
represents the state of the object. The actions use the objects themselves as the basis

for describing how the solution will work.
There are three basic stages in creating a program;

e Designing the user interface that the end-user will see, this involves placing

controls onto the form and modifying their properties.
» Writing statements to perform each task required by the program.

e Looping in which the programmer test the program, corrects any errors, then

test the program again.

The Project menu enables to add forms or modules to the project and to alter the
project properties. The format menu enables to size and align the controls on the
form to make its appearance more uniform and tidy. The Option menu item in the
Tools menu allows changing various options that suits. The properties window
displays the properties for the selected item or control, enabling to change it for the

best operation.

In order to create the Visual Basic code that will display a graphical image and its
corresponding file name, the actions taken when an event occurs must be defined.
An event procedure is a set of Visual Basic statement that execute when a user

performs an action on an object, such as clicking a command button.

There are some components in Visual Basic Programming required to perform a
serial communication between Visual Basic programming and serial port which is
call MScomm. This component can allow a communication between serial port and
the Visual Basic Programming. The component that allows user to create a database

is known as Data component.

15

The figure below shows the flow chart on how user can build a user interfacing

using Visual Basic.

Create the user interface by drawing
controls on the form

h 4

Write Visual Basic code to
perform actions when a user
interacts with the form

h

Run the program Debug errors
and test for errors

Errors Yes

A 4

User interface

Figure 2.8: Flow chart for user interface using Visual Basic Programming.

16

CHAPTER 3

METHODOLOGY OR PROJECT WORK

3.1 Procedure Identification

In implementing this project, there are several main processes taken. The Gantt chart
for this project is as appendix X. The procedures in designing out the jig are as

follows:

3.1.1 Identify the system breakdewn of this project

The project is divided intro three parts:
o Hardware part or LCD tester jig
e Testing window or User interfacing
¢ Serial communication

The system breakdown is shown in Figure 3.1.

ALL SEGMENT ON

- 1 XxXXxX

SERIAL _1
PORT
LCD i Monitor
TESTER (qu = = 4 (User interface)
JIG
Hardware

Figure 3.1: System Breakdown of the Project

17

3.1.2 Understand the needs of each part of system from this system
breakdown.

Hardware part or LCD tester jig

¢ The tester should able to test the segment display on the LCD
Testing window or user interfacing

e User can send test sequences or test number in the testing window.

o User can view the specified segment displays on the LCD as same as on the

testing window.
¢ The testing result is stored as database.
o This user interfacing must be user friendly system.
Serial communication

e Serial port is used to communicate data from the computer to the tester and

vise versa,

3.1.3 Specify the test sequences of a specified segments display

The test sequence or number of testing to be performed in this system is important to
be identified. This is because the sequence of testing is related to the test result that

will be stored in the database.

3.1.4 Identify the number of output or pitches on the specified LCD and
segments characters.

The segment will be on directly by supplying 5V to the L.CD pitches. Each pitch has

their on segment characters.

3.1.5 Design the circuit to send out the signal to the serial port and
simulate them using Multisim 6.

The circuit is divided into two parts. The main circuit is simulated to send out the
signal to each of the LCD pitch.

18

3.1.6 Write the coding for the PICs used to send out the signal to the serial
port with C programming and burn it to the PICs

3.1.7 Build up the testing window for user interface using Visual Basic
Programming 6.0.

3.1.8 Communicate the hardware with the user interface and perform
troubleshooting.

3.2 Tools required

3.2.1 Hardware
3.2.1.1 Header for LCD Tester Jig

The tools required for the tester header are as follows:

e LCD (specified/customized) produced by Varitronix (M) Sdn Bhd. Refer to
Figure 2.2

¢ Copper conductor

e Zebra connector or known as elastomer.

Figure 3.2: Elastomer.

19

e LCD reflector

Figure 3.3: LCD reflector

3.2.1.2 Circuit for LCD Tester Jig

The electronic components required for the tester circuit are as follows:
o PICI6F877 2 pcs
e PICI6F84A 1pc
e RS232
¢ Serial Female connector
¢ Serial Male connector
s Serial cable
e Capacitors
e Resistor
e Voltage regulator
e LEDs

¢ Push button

20

3.2.2 Software

The software required to implement this project involved:
¢ Visual Basic 6.0 Programming to build the user interface coding.
e C programming for PIC and serial communication.

o PIC C compiler

¢ PIC burner
s WARP13
e Multisim

21

CHAPTER 4

RESULT AND DISCUSSION

The literature review helps to go further on data analysis and project

implementations.

4.1 Circuit design

This project consists of two circuit part. The first circuit is designed to send out the
signal to turn on the LCD segment controlling. The second circuit is designed for the
tester jig header.

Circuit design for segment activation and controlling is shown in Appendix F. From
the circuit, two PICs are used to activate the LCD segments. Each of PIC16F877,
only 28 output pin are used assigned to the first of 28 L.CD pitch and other 28 is
assigned to second PIC16F877. The PIC16F84A is used as a main controller to
control the 56 output pin of the two PIC16f877. The bit assigned is as in table

below.

Control bits | Test assigned

00 Test 1
01 Test 2
10 Test 3

Table 4.1: Control bit assigned for each test number

The second circuit design consist only copper line functions as a conductor for the
tester header, This circuit board is attached with the LCD reflector. The power is
supplied to the LCD pitch through the zebra connector.

22

The PCB layout of the copper conductor as in figure below has been done.

Figure 4.1: A copper conductor for tester header

The coding for these three PICs in C programming language is shown in Appendix
A,Band C.

23

4.2 Testing Sequences

The number of LCD pitch to activate is identified before we identify the testing
sequences. The table below show the LCD pitch need to be activated.

Test]1 Test2 Test2 Test2 Test2 | Test3
Pin 1 2 3 4 5 6
56 1 1 i i 1 0
55 1 1 i 1 1 0
54 1 1 1 1 1 0
53 1 1 1 1 1 0
52 1 0 0 0 0 0
51 1 I 0 0 0 0
50 1 1 0 0 0 0
49 1 1 0 0 0 0
48 1 1]] 0 0
47 1 0 0 0 0 0
46 1 1 0 Y 0 0
45 1 1 4] 0] 0
44 1 1 o 0 0 1]
43 i 0 0 ¢ 0 0
42 1 i 0 0 0)
41 1 1 0 0] 0
40 1 1 0 0 0]
39 1 0 0 0 0 0
38 1 1 0 0 0 0
37 1 1 0 0 0 0
36 1 1 0 0 0 0
35 i 0 0 0 0 0
34 1 1 0 0 0 0
33 i | 0 0 0 0
32 1 1] 0 0]
31 1 0 0 0 0 0
30 1 1 4] 0 0 0

24

29 1 i 0 0 0 0
28 1 1 0 0 0 0
27 i 0 0 0 0 ¢
26 i 0 0 0 0 0
25 1 0 0 0 0 0
24 1 1 0 0 0 0
23 1 0 0 0 0]
22 1 1 0 0 0 0
21 1 o 0 0 0 0
20 1 0 0 ¢ 0 0
19 i 0 0 0 0 0
18 1 0 0 0 0 0
17 1 1 0 0 0 0
16 1 0 0 0] 0
15 I 0 0 0 0 0
14 1 0 0 0 0 0
13 1 1 0 0 0 0
12 1 I 0 0 0 0
11 1 0 0 0 0 0
10 1 0] 0 0 0
9 1 0 0 0 0 0
8 1 1 0 0 0 0
7 1 1] 0 0 0
6 1 0 0 0 0]
5 1 1 0 0 0 0
4 | COM4 1 1 1 COM 4 | COM4
3 | COM3 1 1 COM3 1 COM3
2 | COM2 1 COM2 1 1 COM2
1 | COM1 COMIL 1 1 1 COM1

Table 4.2: The LCD pitch need to be activated

25

The expected display for the three tests:

Test 1: to on all segments on the LCD

Figure 4.2: Expected Output Display of Test 1

Test 2: to on the fixed segments

Figure 4.3: Expected Qutput Display of Test 2

26

Test 3: to off all segments.

Figure 4.4: Expected Output Display of Test 3

27

4.3 Visual Basic Pregramming

The testing window for this project is created using visual Basing Programming 6.0.

The testing window only has one main window. The testing flow of this system is

shown in the chart below:

Open testing Window

“L.CD Tester V1.00”

h

, Connect the jig to the
serial port

Is serial 3 Attach the LCD to
COI]DCCtiOIl €s > the j] g
confirmed?

Choose Test #
No
Click “Passed” Analyze the Click “Rejected”
button segment button
display

Click “Reset”
button

» Next LCD >

'V

Record in “Testing <

History™

Figure 4.5: Testing Flow Chart
28

Each specified segment display will appear as an acknowledgement to the test
number when the command button is clicked. Once the “Passed” or “Rejected”
button is entered, the test result for that test number will be recorded. If the user not

satisfied with the test, “Reset” button can clear the test number and perform that test

again.

lestmg. Hlt.‘to

Figure 4.6: Testing window

In the “Testing History” the result test is recorded according to number of testing
done, date, time, total LCD passed, total LCD rejected and also total LCD tested.
The latest result will be updated in the testing history database. The result is

confirmed after the “next’ button is clicked.

29

The specified segment display is viewed as an acknowledgment to the signal send
from the user interfacing window or the testing window to the tester. For example, if
the user click the ‘Test 2° button, control bit 01 will be sent to serial port, as

acknowledgement, the display in Figure 4.11 will appear.

Disconnect

Figure 4.7: Main testing window — The Test 2 is clicked.

Coding for testing window is shown in Appendix D.

30

The jig is look like the figure below.

pin 56

copper

sebra conductor

connector
LED for on

switch

main circuit

LED for each test
LCd reflector

serial male
connector

Figure 4.8: LCD Jig Tester

31

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusions

The jig is able to check the segment display as required. User can assemble the LCD
on the jig without continuous side damage. The testing is only done to two sample of
LCD. The testing window can help user to implement the test with a smooth testing
flow. Besides, the testing flow with this jig can reduce time taken to implement LCD
checking. Using PIC can reduce the usage of ICs in the circuit. The user interface
also consist of database that can record the test results according to the date, time ,
total number of LCD passed, total number of LCD rejected and also total number of
LCD checked. This database is important to for user to follow up the performance of
LCD quality.

32

3.2 Recommendations

The sample of LCD used in this project is limited due to cost of the LCD. It is better
if more samples can be used to perform the LCD checking.

However, I would like to recommend with some extended objectives on this project,

so that the next student will take opportunity to achieve the objectives below:

o This project can be applied to another LCD with variety number of LCD
pitch.

e The current flow on each LCD pitch can be sense and monitored in testing

window.

33

REFERENCES

{1] http://howstuffworks.com
[2] http://www.elekironika.co.ywmicropic.htm

[3] LCD Datasheet, Varitronix {M) Sdn. Bhd.

[5] Programming with Visual Basic 6.0, Diane Zak, pgl6- 209, Course.

34

APPENDICES

35

Appendix A - Coding for PIC16F84A (main controller for PIC16F877)

#include <16F84A.h>

#fuses HS,NOPROTECT,NOWDT

#use delay(clock=10000000)

#use 1s232(baud=9600,xmit=PTN_A0,rcv=PIN_A1)

void main()
{
int rev_data;
output_bit(PIN_A3,1);
output_bit(PIN_A2,0);

output_bit(PIN_B0,1);
output_bit{PIN_B1,1};
output_bit{PIN_B2.1};

while(true)

rcv_data=getch(),
if (rev_data==0x41)
{
/fcontrol bits
output bit(PIN_A3,0);
output_bit(PIN_A2,0);
//LED
output_bit(PIN B0,0);
output_bit(PIN_B1.1);
ouiput bit(PIN_B2,1);
printf{("Testl. ");
}
else
if (rev_data==0x42)
{
/fcontrol bits
output_bit(PIN_A3,0);
output_bit(PIN_A2,1);
/ILED
output_bit(PIN_B0,1);
output_bit(PIN_B1,0);
output_bit(PIN_B2.1);
printf{"Test2. ");
¥

36

else
if (rev_data=—=(x43)
{
/fcontrot bits

/LED

printf("Test3. ");
}

output_bit(PIN_A3,1%
output_bit(PIN_A2,0);

output_bi(PIN_B0,1);
output_bit(PIN_B1,1);
output_bit(PIN_B2,0);

37

Appendix B - Coding for PIC16F877 (output for first 28 LCD pitches)

#include <16F877.h>

#use delay(clock=10000600)

#fuses HS,;NOPROTECTNOWDTNOLVP

byte const test_output[6][28F={
{0,1,1,1,1,0,1,1,0,0,0,1,1,0,0.0,1,0,0,0.0,1,0,1,0,0,0,1},
{1,0,1,1,0,0,0,0,0,0.0,0,0,0,0.0,0,0,0,0,0,0,0,0,0,0,0,0},
£1,1,0,1,0.0},
{1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0.0,0,0,0,0.0},
£0,0,0,0,1,1,1,1,1,1.1,1,1,1,1.1,1,1,1,1,1,1,1,1,1,1,1,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0.0,0,0,0,0,0,0,0,0}

}
void main{)
{
while(true)
{
HTest 1
if (input(PIN_A1y—=0 && input(PIN_A0}=0)
{
test_function(4);
}
else
/{Test 2 (need to refresh 4 cycles)
if (input(PIN_A1)=—0 && input(PIN_AG)=1)
{
test_function(0);
test_function(1);
test_function(2};
iest_function(3});
}
else
/Test 3
if (inpui(PIN_A1)=1 && input(PIN_AG)=0)
{
test function(5);
}
}
}
void test_function(int base_test)
¢

output_bit(PIN_B0,test_output[base_test][0]);
output_bit(PIN_B1, test_output[base_test}[1]);

38

output_bit(PIN_B2.test_outputbase_test][2]):
output_bit(PEN_B3,test_output{base_test]{3]);
output_bit(PIN_B4,test output[base_test][4]);
output_bit(PIN_BS5.test_output{base_test][5]);
output_bit(PIN_B6,test_output{base _test][6]);
output_bit(PIN B7.test_output[base_test][7]);
output_bit{PIN_C0.test_output[base_test]{8]);
output_bit{PIN_C1,test_output[base_test][9]);
output_bit{PIN C2,test_output[base test][10]);
output_bit(PIN_C3,test_output[base_test][H1]);
output_bit{PTN_C4,test_output[base_test][12]);
output_bit{PIN_C5 test outputfbase test][13]);
output_bit(PIN_Cé.test_output[base_test][14]);
output_bit(PIN_C7.test_outputfbase test][15]);
output_bit(PIN_D0,test_output{base testi[16]);
output_bit(PIN_D1 test output[base test]{17]);
output_bit(PTN_D2.test_outiput[base_test][18]);
output_bit(PIN_D3.test_output[base_test][19]);
output_bit(PIN_D4.test_output[base_test]{20]);
output_bit(PIN_D35,test_output{base_test]{21]);
output_bit(PIN_Dé6.test_output[base test][22]);
oulput_bit(PIN_D7,test_output[base_test][23]);
output_bit(PIN_E0,test output[base test}[24]);
output_bit(PIN_E1 test output[base test][25]);
output_bit(PTN_AZ2,test outpui[base_test][26]);
output_bit(PIN_A3,test output[base_test][27]);

39

Appendix C - Coding for PIC16F877 (output for last 28 LCD pitches)

#include <16¥877.h>
#use delay(clock=1000G000)
#uses HS,NOPROTECT,NOWDT,NOLVP

void test_function(int base_test);

byte const test output]6][28]={

£1,1,0,1,1,1,6,1,1,1,0,1,1,£,0,1,1,1.0,1,1,1,1,0,1,1,1,1},

{0,1,1,1,1},

£0,0.0,0,1,1,1,1},
£0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0,0,0,0,0,0,1,1,1,1},
{1,1.1,1.1,1.1,1,1},
£0,0,0,0,0,0,0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

}
void main()
{
while{true)
{
/Test |
if (input(PIN_A1y==0 && input{PIN_A{)==0)
{
test_function(4);
}
else
/Test 2 (need to refresh 4 cycles)
if (input(PIN_A1y=0 && input{PIN_A0)=1)
{
test_function(0);
test function(1);
test_function(2);
test_function(3);
}
else
/Test 3
if (input(PIN_Al1)—1 && input{PIN_A0)==0)
{
test_function(5);
}
}
}

40

void

test_function(int base_test)

output_bit(PIN_B{,test_output[base_test][0]);
ouiput_bit(PIN B1 test_output[base_test]{1]);
output bit(PIN_B2,test_ouiput|base_test]{2]);
output_bit{PTN_B3,test_output[base_test][3]);
output bit(PIN_B4,test_output[base test][4]):
output_bit(PIN_BS test output[base_test][5]%
output_bit(PIN_B6.test_output[base_test][6]);
output bit(PIN_B7 test output[base_test][7]);
output_bit(PIN_CO0,test_outputfbase testj[8]);
outpui_bit(PIN_C1,test_outputfbase test][9]);
output_bit(PIN_C2.test_output{base test]{10]);
outpui_bit(PIN_C3 test output[base test][1!]);
output_bit(PIN_C4,test output{base testi[121);
output_bit(PIN_C5 test_output[base_test]{13]);
output bit{PIN_C6,test_ouiput[base_test]{i4]);
output bittPIN_C7,test_output[base_test][15]);
output_bit(PIN_D0,test_output[base test}[16]);
output bit(PIN_D1,test_output[base_test][17]);
output_bit(PIN_D2,test output{base_test][18]);
output_bit{PIN_D3,test outputibase_test][19]),
output bit(PIN D4, tesi_output[base test]f20]);
output_bit(PIN_DS5 test_output{base test][21]);
output_bit(PIN_D6,test output{base_test][221);
output_bit(PIN_D7.tesi_output[base_test]{23]);
output_bit(PIN_ED,test_output[base_test][24]);
output_bit(PIN_E1,test_outpui[base_test}[23]);
output bit(PIN_A2.test_output[base_test][26]);
output_bit(PIN_A3 test_output[base_test][27]);

41

Appendix D - Coding for testing window in Visual Basic Programming 6.0

'For connection
Public currentport
Public currentbaudrate

Public is_connected

'For tester

Public state_fest

Private Sub cmdnext_Click(}
Call WRITE_DB
Call READ DB

textdisplay. Visible = True
display(0).Visible = False
display(1).Visible = False
display(2).Visible = False

resulttest(0). Text = "Not yet"
resulitest(1). Text = "Not yet"
resulitest(2). Text = "Not yet"
resulttest(0).BackColor = &HCOFFCO
resulttest(1).BackColor = &HCOFFCO
resulitest(2).BackColor = &ZHCOFFCO

cmdnext.Enabled = False
cmdpass.Enabled = False
cmdfail. Enabled = False

cmdreset. Enabled = False

testnumber. Text = "History saved and LCD Tester Jig has been reset"
End Sub
Private Sub Form_Load(}

'Title initialization

Me.Caption = App.Title & " v" & App.Major & "." & App.Minor & App.Revision

‘autopath
Datal. DatabaseName = App.Path & "\Database\testing_history.mdb"

'Read from database

Call READ_DB

42

'‘Object initialization

Call BUTTON_ENABLE(False)

'Grid initialization

flex_history.ColWidth(0) = 1000
flex_history.ColWidth(1) = 1600
flex_history, ColWidth(2) = 1600
flex_history.ColWidth(3) = 2400
flex_history. ColWidth(4) = 2500
flex_history.ColWidth(5) = 2400

flex_history. TextMatrix(0, () = "No"

flex_history. TextMatrix(0, 1) = "Date"

fiex_history. TextMatrix(0, 2) = "Time"

flex history. TextMatrix(0, 3) = "Total LCD Passed”

flex_history.TextMatrix(0, 4) = "Total LCD Rejected”

flex_history. TextMatrix(0, 5) = "Total LCD Tested"

flex_history.ColAlignmentFixed(0) = 4
flex_history.ColAlignmentFixed(1) = 4
flex_history.ColAlignmentFixed(2) = 4
flex_history.ColAlignmentFixed(3} = 4
flex_history.ColAlignmentFixed{4) = 4
flex_history.ColAlignmentFixed(5) = 4

flex_history.ColAlignment(0) = 4
flex_history.ColAlignment(1) = 4
flex_history.ColAlignment(2) = 4
flex_history.ColAlignment(3) = 4
flex_history.ColAlignment{4) = 4
flex_history.ColAlignment(5) = 4

‘Connection
currentport = 1
currentbaudrate = 9600

is_connected = False

End Sub

43

Private Sub cmdconnect_Click()
Call SERIAL_CONNECT

'If successful

If is_connected = True Then

'Enable buttons
Call BUTTON_ENABLE(True)

End If
End Sub

Private Sub cmddisconnect_Click()
Call SERIAL_DISCONNECT
Call BUTTON_ENABLE(False)
End Sub

Private Sub SERIAL. CONNECT(}
'set the active serial port

MSComm1.CommPort = currentport

'set the baudrate, parity,databits,stopbits for the connection
MSComm]1,Settings = currentbaudrate & ",N.8,1"

‘enable the oncomm event for every received character
‘RThreshold=1,comEvReccive=enabled
'‘RThreshold=0,comEvReceive=disabled

MSComm .RThreshold = 1

'disable the oncomm event for send characters
‘SThreshold=1,comEvSend=enabled
'SThreshold=0,comEvSend=disabled
MSComm1.SThreshold = ¢

On Error GoTo errorhandler
‘open the serial port
MSComm]1.PortOpen = True

is_connected = True

"This exit sub is to prevent the normal flow (without error) goes into error handler

Exit Sub

errorhandler:

44

al = MsgBox(Err.Description & vbCrLf & "[Error no. = " & Err.Number & "]", vbExclamation, "Error")

is_connected = False

End Sub

Private Sub SERIAL_DISCONNECTY()

"Close port if and only if it is currently connected

Ifis_connected = True Then

MSComml.PoriOpen = False
is_conmected = False
End It
End Sub

Private Sub BUTTON_ENABLE(state)

H siate = True Then

textdisplay.Visible = True
testnurnber. Text = "LCD Tester Jig is already connected”
cmdtest(0).Enabled = True
cmdtest(1).Enabled = True
cmdtesi(2).Enabled = True

resulitest{0). Text = "Not yet"
resuittest(1).Text = "Not yet"
resulttest(2). Text = "Not yet"
resulitest(().BackColor = &ZHCOFFCO
resultest(1).BackColor = &HCOFFC0
resulttest(2).BackColor = &HCOFFCO

cmdpass.Enabled = False
cmdfail.Enabled = False
cmdreset.Enabled = False

cmdnext. Enabled = False

cmddisconnect. Enabled = True

cmdconnect. Enabled = False

45

state test=0

Elself state = False Then

textdisplay. Visible = True
display(0). Visible = False
display(1).Visible = False
display(2).Visible = False

testnumber. Text = "LCD Tester Jig is not connected yet"
cmdtest(0).Enabled = False
cmdtest(1}.Enabled = False
cmdtest(2).Enabled = False

resultiest(0). Text = "Not yet"
resulttest(1). Text = "Not yet"
resulttest(2). Text = "Not yet"
resulttest(0).BackColor = &HCOFFCO
resulttest(1).BackColor = SHCOFFCO
resulttest(2).BackColor = &HCOFFCO

cmdpass.Enabled = False
cmdfail Enabled = False

cmdreset. Enabled = False
cmdnext.Enabled = False

cmddisconnect. Enabled = False

cmdconnect.Enabled = True

state test=10
End If
End Sub

Private Sub cmdtest_Click{Index As Integer)

If Index = 0 Then
textdisplay. Visibie = False
display(0).Visible = True
display(1).Visible = False
display(2}.Visible = False

cmdpass.Enabled = True
cmdfail. Enabled = True
cmdreset. Enabled = True

46

testnumber. Text = "Test 1

state test =1

Elself Index =1 Then
textdisplay. Visible = False
display(0).Visible = False
display(1).Visible = True
display(2).Visible = False

cmdpass.Enabled = True
cmdfail. Enabled == True
cmdreset. Enabled = True

testnumber, Text = "Test 2"
state_test =2

Elself Index = 2 Then
textdisplay.Visible = False
display(0).Visible = False
display(1}.Visible = False
display(2).Visible = True

cmdpass.Enabled = True
cmdfail Enabled = True

cmdreset.Enabled = True
testnumber, Text = "Test 3"

state_test =3
End If

End Sub

Private Sub cmdreset_Click()
tcxtdisplay.Viéible =True
display(0).Visible = False
display(1).Visible = False
display(2).Visible = False

resulttest(0). Text = "Not yet"
resulttest(1). Text = "Not yet"

47

resulttest{2). Text = "Not yet"

resultiest(().BackColor = &HCOFFCO
resulttest(1). BackColor = &HCOFFCO
resulttesi(2).BackColor = &HCOFFCO

c¢mdnext. Enabled = False

cmdpass.Enabled = False

cmdfail Enabled = False

crdreset.Enabled = False

testnumber. Text = "LCD Tester Jig has been reset”
End Sub

Private Sub cmdpass_Click()

If state_test = I Then
resulttest(0). Text = "Passed"
resulttest(0). BackColor = &HC000&

Elself state _test = 2 Then
resulttest(1).Text = "Passed”
resulttest(1).BackColor = &HC000&

Elself state_test =3 Then
resulttest(2). Text = "Passed”
resulttest(2). BackColor = &HC000&

End If

cmdnext, Enabled = True

End Sub

Private Sub cmdfail_Click()

If state test= 1 Then
resulttest(0). Text = "Rejected”
resulttest(0).BackColor = & HFF&

Elself state_test =2 Then
resulttest(1). Text = "Rejected”
resulttest(1).BackColor = &HFF&

Elself state_test =3 Then
resulttest(2). Text = "Rejected”

48

resulitest(2). BackColor = SHFF&

End If

cmdnext. Enabled = True
End Sub

Private Sub READ DB()

'‘Count no of data

db_counter =0

Datal Refresh

Datal Recordset. MoveFirst

Do While Not Datal.Recordset. EOF

db_counter = db_counter + 1

Datal Recordset. MoveNext

Loop

total db =db_counter
flex_history.Rows = total_db + 1

'Read data

db_counter =0

Datal .Refresh

Datal.Recordset. MoveFirst

Do While Not Datat Recordset EOF

db_counter = db_counter + 1

flex_history. TextMatrix(db_counter, 0) = Datal.Recordset. Fields(0)
flex_history. TextMatrix{db_counter, 1} = Datal Recordset.Fields(1)
flex_history. TextMatrix(db_counter, 2} = Datal Recordset. Fields(2)
flex_history. TextMatrix(db_counter, 3) = Datal.Recordset.Fields(3)
flex_history. TextMatrix(db_counter, 4) = Datal Recordset.Fields(4)
flex_history, TextMatrix(db_counter, 5) = Datal.Recordset.Fields(5)

Datal.Recordset. MoveNext

Loop
End Sub

49

Private Sub WRITE_DB()
"Write to database
Datal Recordset. AddNew
Datal.Recordset.Fields(0) = "test”
Datal Recordset.Fields(!) = "test"
Datal .Recordset.Fields(2) = "test"
Datal.Recordset.Fields(3) = "test”
Datal.Recordset Fields(4) = "test"
Datal Recordset. Fields(3) = "test”
Datal Recordset. Update

End Sub

50

Appendix E- LCD Datasheet

zaguisamienl’

nperatiTe F

Amst.cond;.

(2eclocl)

~20C

hoetn BPVSAL
Aec. e BPYIAESD

dRrgmingian perreie
e it
9

e e o B e B

Sseemanio

31

Appendix F- Main circuit

52

L

awgwy Uz Ay panoiamy

YOOT "0k aur_ misg

witeey Leljy Agpajoeun

HOGD N jusnoeg

wrjwpoy Aq peutiseg

a4 xipueddy

AN WO e

LINSWID IDVIUIALNE TVINIS

igioeuuan japeg |
Weansa

1BHBAMIGY [EHRS
T ZEZXTW

ank
L)

8 i

33 3E35R3

g

g

LILTITT un] ﬂ

B8

§

ERgaReE

CITITIYT]

B8

8

Srusidd Ok

| o R I'_IT.

BKBGELLS boooubEn O

[R | 2 amjuan oa T
OW_”_V \h oz _._“%.__.W — Ligdoid
23
o =R] e Pt
" VORI ORISR
+1a M QORI oo [———
[*}e] HOELBOY TAOONE0 b LIHOE o
np AN BESS LAOROLLGIN —
2y an A, eidtvil B |
il iy NarenorD, =3
\ﬁ LSO LG0T
E gietecieEy [—
e P
e o —uwﬂ% et
zau NoaLYYe —
Foarny ARy
v SupHVR Y
oy WnYe
ot “arion
on
Isjanucs vy { :
wriagtold 0 3y i :
o ;
o -} L el a T
— E oy }
-1 ﬁ AMVDEY
— ionKesro E.Gu.a%
| ——— RETNLIS0 HIXOLPYE
o v
v oY
2 e R o
LAVAR AFAN i T
" ey zivoL L :
zaa a3 o
m THWE-TYLY
HOLYIIan 1831 |
i3 mL |
i =
_.Enﬁ Eﬁn%m i T Zaonues 04
32012 _ 108491304
i | e] !
EdFaray
YIORTY TEANKIE
casuod DTN
RO TSOTRGELIDW
LN MO B LPOROLLTIM
Ttdil IONIRN0 _
FdPERqH NPXGRG
:Eﬂ r.n-vu>> =t
+ Tora Frb i -
T LINOHID AddNE BIMOD o Ty —
o IHOCLAYE
e s
wiyongs ‘m‘Ex L]
e Aiddng sewog ~—— Qoaim
LI TR dnaal = s n
52 e |t [A
® 2f)
Yy
a3t A A |
¢ ino N]
* e v
ﬁ Jaysnbay
: 15508240

BEBBIEES

OrrrLLn

Appendix G - Gantt chart for the 2 Semesters Final Year Project

54

1S9

JI)SINAS PUOIIS 3Y) FOJ U] WL, J3)SIWAS JSATJ Y} L0J dUT] UM J,

§8230.14 I

Furysmuy pue Funooyss[qnoil,

~

{ mdino) £ 18491014 10} Surpod-
(Z3[jo1u00 UIB) Y18,1911d 103 Furpoo-
SUIORLIONI 3IRMIJOS pue aIeMpIEH |9

Funooysajqnos; pue uFrsep AN -
Jlom Arojeloqe]/qeonoeidls

Surgfngep pue Sumpoo mopurm Fuqse)-
oIseq [ensiA uo Apms Jjos -
{gA) Surpoo pue mopurm 3ursel o) uBisacq|p

ynsaz
pajoadxa put seousnbas Junses oty puelsIdPUN-

UMOpYBaI] WISISAS puBIsiopun-
AINIRINT/A0URIIY-
yom 1oslorgle

Suruuerd oalo1g-

MBI /SA0UAIS]AL JO 1STF-
aAn23(q0-

UOBONPONUE-

N0 [OTeasoy ATeurmiaI gl

ordo] ssodoig-
ardo], 102l0id JO UOHIR[RS]

Y30 /IERQ| "ON

133foag Iud { [vUL] S19)SITHAS 7 A1) I0] JIRYD yyuer) -r) xipuaddy

Appendix H - PIC16F84A Datasheet

56

MICROCHIP

PIC16F84A

18-pin Enhanced FLLASH/EEPROM 8-Bit Microcontroller

High Performance RiSC CPU Features:

+ Only 35 single word instructions to learn

« All instructions single-cycie except for program
branches which are two-cycle

+ QOperating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

+ 1024 words of program memory
+ 68 bytes of Data RAM
= 64 byles of Data EEPROM
« 14-bit wide instruction words
« 8-bit wide data bytes
« 15 Special Function Hardware registers
= Eight-level deep hardware stack
« Direct, indirect and relative addressing modes
« Four interrupt sources:
- External RBO/INT pin
- TMRO timer overflow
- PORTB<7:4> interrupt-on-change
- Data EEPROM write complete

Peripheral Features:

« 13 /O pins with individual direction control

« High current sink/source for direct LED drive
- 25 mA sink max. per pin
- 25 mA source max. per pin

» TMRO: 8-bit timer/counter with 8-bit
programmable prescaler

Special Microcontroller Features:

* 10,000 erase/write cycles Enhanced FLASH

Program memory typical

10,000,000 typical erase/write cycles EEPROM

Data memory typical

+ EEPRCOM Data Retention > 40 yearts

* In-Circuit Serial Programming™ (ICSP™) - via
two pins

» Power-on Reset {POR), Power-up Timer (PWRT)},

Oscillator Start-up Timer (OST)

= Watchdog Timer (WDT) with its own On-Chip RC

Oscillator for reliable operation
+ Code protection
» Power saving SLEEP mode
« Selectable oscillator options

Pin Diagrams

PDIP, SOIC

RA2 w—=[]=§ ~ 18{1 = RA1

RA3 -—[]2 17 [0 =—= RAD
RA4/TOCKI =—=[] 3 T 160~—OSCHCLKIN

MCLIR—=[]4 O 15[]— OSC2CLKOUT
ves—[15 =] 1413 =— VoD
RBOANT =—=[6 2@ 13[Je—Rre7

RB1 -—=[7 P> 12[]-—=RB6

RB2 =—-[]8 11 [=—=RB5

RB3 -—=[]9 10 +—= RB4
SSOP

RAZ =—= et J 20(] =—= RA1

RA3 =—»[] 2 191 - RAQ
RAM/TOCK] -—=[] 3 T 18[}=— OSCIICLKIN

MCR ~-=[]4 O 17[1—-» OSCACLKOUT
Vss —=[15 I [1-~— Voo
Vss~—[16 2 15 []1-— VDD
RBO/NT -——[]7 » 14[]=—RB7

RB1 =—=[18 13[] -~ RB&

RB2 =—[19 12[] === RB5

RB3 == [110 11] = RB4

CMOS Enhanced FLASH/EEPROM
Technology:

» Low power, high speed technology
+ Fully static design
+ Wide operating voltage range:
- Commercial: 2.0V to 5.5V
- Industriak 2.0V to 5.5V
« Low power consumption:
- <2 mA typical @ 5V, 4 MHz
- 15 pA typical @ 2V, 32 kHz
- < 0.5 pA typical standby current @ 2V

® 2001 Microchip Technology Inc.

DS35007B-page 1

Appendix I - PIC16F877 Datasheet

58

MicrOCHIP

PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

» PIC16F873 + PIC16F876
* PIC16F874 » PIC16F877

Microcontroller Core Features:

°

High performance RISC CPU
Only 35 single word instructions to learn

All single cycle instructions except for program
branches which are two cycle

Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

Up to 8K x 14 words of FLASH Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEFPROM Data Memory

Pinout compatible to the PIC16C73B/74B/76/77
Interrupt capability (up to 14 sources)

Eight {evel deep hardware stack

Direct, indirect and relative addressing modes
Power-on Reset (POR)

Power-up Timer (PWRT) and
Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation

Programmable code protection
Power saving SLEEP mode
Selectable oscillator options

Low power, high speed CMOS FLASH/EEPROM
technology

Fully static design

In-Circuit Serial Programming™ {ICSP) via two
pins

Single 5V in-Circuit Serial Programming capability
In-Circuit Debugging via two pins

Processor readfwrite access to program memory
Wide operating voltage range: 2.0V to 5.5V

High Sink/Source Current: 25 mA

Commercial, Industrial and Extended temperature
ranges

Low-power consumption:

- < 0.6 mA typical @ 3V, 4 MHz
- 20 pA typical @ 3V, 32 kHz

- <1 pA typical standby current

Pin Diagram

PDIP
MCLRver —= [1 / 40 [J =—»= RB7/PGD
RADANO w—w[] 2 39 [] «—= RBG/PGC
RA1/AN] e []3 38 [] =—= RBS
RA2IAN2IVREF- w—[] 4 37 [] =—» RB4
RAYANIVREF+ wt-—t[] & 36 [] —= RBIPGM
RAAITOCK) w—=[] 6 35 [] -+-—= RB2
RAGANY/SS +—[] 7 o« 34 []+—= RB1
REO/RDIANS =[] 8 I~ 33 []-—= RBOINT
RE1/AWRIANE +—[] g L p[le— v
REZCEANT =—= 10 b0 310 vss
Voo — [11 ¥ 30— ROTPSP?
Vss — [12 @ 29[]-+— RDG/IPSPE
OSC1/CLKIN —[] 13 6 2@ [] ~—= RDSIPSP5
OSCACLKOUT a—F] 14 & 27[]e—= ROUPSP4
RCOT10SOMICK! a—w[] 15 26 [] =—w RCTRX/DT
RCHT10SICCP2 w—e-[] 16 25 [] i RCETHCK
RC2CCPT 4w [] 17 24 [] «—» RCS/SDO
RCYSCK/SCL -—[1 18 23 [w—» RCHSDISDA
RDD/PSPO w—a[] 19 22 [] tsm RDIPSP3
RD1/PSP1 «—[] 20 21 [] -+—= RD2/PSP2

Peripheral Features:

 TimerQ: 8-bit timer/counter with 8-bit prescaler

« Timer1: 16-bit timer/counter with prescaler,
can be incremented during SLEEP via external
crystaifclock

+ Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and posiscaler

« Two Capture, Compare, PWM modules
- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resofution is 200 ns
- PWM max. resclution is 10-bit

= 10-bit muiti-channel Analog-to-Digital converter

- Synchronous Serial Port (SSP) with SPI™ (Master
mode) and 1°C™ (Master/Slave)

+ Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI) with 8-bit address
detection

+ Paraliel Slave Port (PSP) 8-bits wide, with
external RD, WR and CS controls (40/44-pin only)

« Brown-out detection circuitry for
Brown-out Reset (BOR)

@ 2001 Microchip Technology Inc.

DS30292C-page 1

