
Software Implementation of a PC-Based Home Surveillance System

by

Murni Binti Masri

Final Report submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

JUNE2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Software Implementation of a PC-Based Home Surveillance System

Approved by,

by

Murni Binti Masri

A project final report submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2004

11

CERTIFICATION OF ORIGINALITY

This is to certifY that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

~IB~TI1iASR1

Ill

ABSTRACT

This report is written upon the completion of the two semesters of Final Year Project

course in Electrical & Electronic Engineering programme. This project is entitled as

"Software Implementation of a PC-Based Home Surveillance System". The main

objective of this project is to design and build software system, emphasizing on GUI

for the PC-based home surveillance system. The developed software is called the

"Home Guard System".

The "Home Guard System" is designed to scan and display a number of input signals

using sensory interface and represents them on the computer interface. The input and

output modules are interfaced with the computer via a serial port. Microcontroller is

also implemented to translate and manipulate the data received from the serial port

into meaningful functions for prototype demonstration.

The scope of study for this report mainly involves the software development process;

the tools, services and packages available in Java that can be used for this project; and

implementation of microcontrollers, specifically the PIC 16F84 to be used in the

prototype development and construction.

This project development is divided into three main modules, which are window

module, hardware module and prototype module. In the window module, the GUI of

this application is designed. The hardware module involves the communication

establishment with the computer's serial port, while the prototype module consists of

a circuit that implement PIC 16F84 as its processor.

This project has been successfully completed. Several recommendations are proposed

to improve the current system, and come up with a better presentable, secure and

reliable system with additional functions.

IV

ACKNOWLEDGEMENTS

In the development of this 2-semesters Final Year Project, it seems that an infinite

number of people have provided immeasurable amount of guidance, idea and

assistance. While the writer's gratitude goes out to all those that had assisted her, she

could only mention a few of many benefactors here.

My greatest gratitude, thankfulness and appreciation to my supervisor, Mr Mohd.

Zuki Yusoff for his great support, guidance and concern. Thank you for the

continuous motivation that is given towards the development and completion of this

project.

My deepest thanks to all my colleagues, who have always been there from the

beginning till the end, and through ups and down. Thank you all for your words of

encouragement to keep on going and overcome all the hurdles in making this project

a success.

Special thanks is also conveyed to Miss Siti Hawa Talib, one of the most cooperative

laboratory technician in UTP. Thank you for your cooperation and assistance in

developing the project prototype.

And last but not least, my heartiest gratitude and appreciation to my family for their

never-ending support and concern. They have given me the warmest helping-hand

and inspired me the will to try my best for this project. My deepest thanks again to

them and T apologize for all the lost time together.

It would be impossible to complete this project without the help from those

mentioned above and the blessing of Allah SWT. Thank you and may Allah SWT

bless us all.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL--··· ii

CERTIFICATION OF ORIGINALITY .. iii

ABSTRACT .. iv

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ... ix

LIST OF FIGURES .. X

LIST OF ABBREVIATIONS ... xi

FONT STANDARD _ _ ... xii

CHAPTER 1: INTRODUCTION .. 1

1.1 Background of Study .. 1

1.2 Problem Statement... .. 2

1.3 Objective of Study .. 3

1.4 Scope of Study .. 4

CHAPTER 2: LITERATURE REVIEW AND/OR THEORY 6

2.1 Programming Fundamentals 6

2.2 Java Foundation Classes .. 7

2.3 Java Communications API. 8

VI

2. 4 Serial Ports ... 8

2.5 The PTC16F84 Fundamentals 10

CHAPTER 3: METHODOLOGY/PROJECT WORK 11

3.1 Procedure Identification ... 11

3.1.1 Programming Process 11

3.1.2 Project Process Flow 13

3 .1.3 Communicating with a Port 18

3.1.4 The PIC16F84 Implementation 21

3.2 Tools Required .. 22

3.2.1 Java 2 Software Development Kit (J2SDK) 22

3.2.2 Java Integrated Development Environments (IDEs)

And Other Softwares 24

3.2.3 The PIC16F84 circuit board 25

CHAPTER 4: RESULTS AND DISCUSSION 27

4.1 GUT Development ... 27

4.1.1 Access Pad Frame .. 27

4.1.1.1 Password Field 28

4.1.1.2 Background Image 28

4.1.2 Main Frame . 30

4.1.2.1 Tree Navigator Panel . 32

4.1.2.2 Module Display Panel 34

4.2 Serial Port Programming .. 37

4.3 PIC16F84 Programming ... 38

4.4 Module Integration ... 42

CHAPTER 5: CONCLUSION AND RECOMMENDATION 43

REFERENCES ... 47

APPENDIX A49

vii

APPENDIX B ... 50

APPENDIX C. .. 51

APPENDIX. D .. 52

APPENDIX E ... 57

APPENDIX F ... 60

APPENDIX G ... 65

VIII

LIST OF TABLES

Table A: Font Standard .. xii

Table 2.1: D-Type 9 Pin and D-Type 25 Pin Connectors 9

Table 3.1: Swing Lightweight Controls .. 15

Table 3.2: Categories, Events and Interfaces .. 17

Table 3.3: Several Issues in Establishing Communication with Ports 20

Table 3.4: Packages of the Java APT ... 23

Table 3.5: PIC16F84 Circuit Board Components ... 25

Table D.!: User Action, Source Object, and Event Type 53

Table D.2: Events, Event Listeners, and Listener Methods 55

IX

LIST OF FIGURES

Figure 2.1: Pinout position of a male DB9 connector 9

Figure 2.2: Pin configuration ofPIC16F84 _ 10

Figure 3.1: The Iteration cycle programming _ 11

Figure 3.2: Project Process Flow .. 14

Figure 3.3: The hierarchy of event objects .. 16

Fi 3 4· S h . f . . gure . . c ematJ.c o prototype c1rcmt. ... 26

Figure 4.1: Access Pad Frame ... 27

Figure 4.2: Invalid password pop up ... 28

Figure 4.3: Valid password pop up ... 28

Figure 4.4: The original floor plan ... 29

Figure 4.5: Background image generated ... 29

Figure 4.6: Access pad with truncated password field 29

Figure 4.7: Access pad with fully visible password field 30

Figure 4.8: Draft of the main frame design of the application 30

Figure 4.9: An initial design of the upper panel... ... 32

Figure 4.10: The tree navigator panel. .. 33

Figure 4.11: The modified tree design ... 34

Figure 4.12: Initial design of the module view ... 35

Figure 4.13: Final design of the module view ·-· 36

Figure 4.14: The main frame design ... 36

Figure 4.15: A test module for serial port communication programming 38

Figure 4.16: PIC serial data processing .. 40

Figure 5.1: Recommended schematic for prototype module using 2 PICs 45

Figure 5.2: Serial data processing using 2 PICs ... 46

Figure D.l: An event is an object of the EventObject class 53

Figure D.2: Event-handling .. 54

Figure E.1: Define a thread class by implementing the Runnable interface 57

Figure E.2: Thread states .. 58

X

ASCII

API

AWT

CD

CIS

DCE

DSR

DIE

DTR

EEPROM

GUI

IDE

JDK

JFC

J2SDK

LED

osc
PC

PIC

RD

Rl

RTS

so
TD

XT

LIST OF ABBREVIATIONS

American Standard Code for Information Interchange

Application Programmer Interface

Abstract Window Toolkit

Carrier Detect

Clear To Send

Data Communication Equipment

Data Set Ready

Data Terminating Equipment

Data Terminal Ready

Electronically Erasable Programmable Read-Only Memory

Graphical User Interface

Integrated Development Enviromnent

Java Development Kit

Java Foundation Classes

Java 2 Software Development Kit

Light Emitting Diode

Oscillator

Personal Computer

Peripheral Interface Controller

Receive Data

Ring Indicator

Request To Send

Signal Ground

Transmit Data

External

Xl

FONT STANDARD

This report will be using many types of Java programming anatomy, such as packages,

classes, methods and etc. Therefore, to differentiate the types of anatomy represented

by a word, different font standard is utilized to help the reader in understanding the

whole project process flow that is conveyed in this report. Table A below summarized

the font standard for this report.

Table A: Font Standard

\natonn Font Standard r\amples
Methods/ - Times New Roman - openO
Packages - Size 12 - java.util

- Bold
Terms - Times New Roman - callback

- Size 12 - leaf

- Italic

Classes/ - Times New Roman - CommPort
Components/ - Size12 - JComponent
Objects - Bold & Italic - mLivingView

Codes - Courier New try

- Size 8 I

SerialPort modem = (SerialPort) cpi. open {) ;

)

catch (PortinUseException e) {)

xii

CHAPTER!

INTRODUCTION

1.1 Background of Study

Smart House, Smart Home, Intelligent House and Home Automation are all referring to

the same thing. In this particular project, the term chosen is the Home Guard System. Is

this new or "experimental" technology? Certainly not, in fact, the equipment used has

been used in office buildings, shopping malls and luxury homes for over a decade.

According to the general analysis done, the Smart House System is already well known

and implemented in the world especially in the United States of America (USA) and

United Kingdom (UK) with various configurations. However, the level of

implementation in Malaysia is still remaining as a question mark.

This project, entitled as "Software Implementation of a PC-Based Home Surveillance

System", is designated for two semesters of Final Year Project course in Electrical &

Electronic Engineering programme. Since this project emphasize on the Graphical User

Interface (GUT) design, programming skill is essential in deiivering better software for

user. Development and improvement of programming skills are expected throughout the

learning process of this project. The study is concentrated more on developing codes for

GUT and how to handle each component of the GUT to perform security tasks by

monitoring and controlling the inputs and outputs from the home appliances and devices

connected to one of the computer port. The study will be based on Internet resources,

programmer community resources, web-documentation, joumals and books. Consultation

with people who have software development background is also necessary throughout the

project development.

1

This project presents a platform for the students to dive further in the world of

programming and software development, which will be one of an extra requirement as a

Computer System Engineer. The experience during industrial training at Motorola has

given a basic knowledge in establishing communication with the serial port using C++.

The knowledge obtained and experience gained contributes in assisting the development

of this project.

1.2 Problem Statement

Software systems are used and implemented almost anywhere. Most electrical equipment

now includes software as part of their interfaces, controlling or operating system. Better

solutions and software designs are developed to provide better user-friendly application

for users as well as satisfying the market demand.

The "Home Guard System" is designed to scan and display a number of input signals

using sensory interface and represents them on the computer interface. The PC-based

surveillance system consists of a number of sensors designed to monitor physical

parameters and a number of devices controlled by the computer. The input and output

modules are interfaced with the computer via a serial port. Examples of input and output

modules are:

a) Temperature sensor and display.

b) Door/window sensor, which checks for any damages or failure.

c) Smoke seusor.

d) Magnetic card reader, which allows entry of authorized persons only.

e) Fan, which is turned on and off by the computer depending on the temperature.

f) Search light, which is turned on and off by the computer, at a specific time given

by the user

g) Lock, which is opened by the computer, when a valid card is inserted in the

magnetic card reader.

2

A GUI application is needed to constantly monitor the status of all the modules existed in

the systems as well as control the operation on part of these modules.

At the early stage of this project, the student has to come up with a suitable GUI design

concept for the application and construct it using the resources available and methods

discussed in previous semester. The design level of this application depends on the

consideration to the user needs, the programmer's expertise and their experience using

computers.

The basic principles considered in designing the GUI concept are:

a) Friendliness - the GUI should use terms and input techniques that are

b) Consistency

c) Error response

d) User guidance

1.3 Objective of Study

known to the users.

- similar operations should produce similar results. This

helps to minimize memory requirement for the user and

reduces surprises.

- the GUI should be able to recover from user error.

the GUI should provide feedback, meaning that the user

should know that his commands have been accepted. The

GUI visual presentation should be obvious to the user and

instruct the user how to use the program.

The early mam objective of this project is to design and build software system,

emphasizing on GUI for the PC-based home surveillance system only. However, several

extended features are added throughout the development process this project. Ultimately,

the objectives of this project are smurnarized into:

a) To design and build software system for the PC-based surveillance system. Study

on several different approaches involved in each stage of the software

development process, which are from choosing an appropriate programming

language up to releasing the final product of the software system are conducted

and implemented. The study conducted is centred intensely on the services

3

available in Java to assists and support the project design. The Swing components

are the basic components that will be used for the development of this application.

b) Implementing the Java Communications API 2.0. It is a standard extension that is

used to establish communication with ports available on the computer. In this

project, the study is concentrated on establishing communication with a serial port

only.

c) Constructing a prototype, basically built up of a simple circuit board to

demonstrate the workability of the software to communicate with the serial port.

d) Implementing the use of microcontrollers to translates and manipulates the data

received from the serial port into meaninb.ful functions for prototype

demonstration.

1.4 Scope of Study

A computer application can be develop using various range of available prograrruning

language, depending on the needs and complexity of the application, as well as the

preference of the programmer or developer themselves. A research on the programming

language is constructed to have a better view on the advantages of associated

prograrruning languages and the potentially developed skill of the students upon the

completion of this project.

A study on the software development process, the tools involved in the development

process, and other suitable integrated development environments (IDEs) are also

conducted. Further study is carried out regarding the tools, services and packages

available in Java that can be used for this project.

4

This project is scheduled to be completed within 2 semesters. The first semester is used

for research and learning process involved in Java software development and the services

available for the development process such as the Java 2 Documentation of J2SDK SE v

1.3 .1. The second half of the 2-scheduled semesters will involve implementation and

manipulation of the developed skills to design and construct the application GUI, control

assignment to the components of the GUT and the establishment of communication

between the computer, serial port and the microprocessor in order to monitor and control

the home appliances.

The scheduled tasks and milestones for the first semester and second semester of the 2-

scheduled semesters of the final year project are summarized in the Gantt Chart of

Appendix A and Appendix B respectively.

5

CHAPTER2

LITERATURE REVIEW AND/OR THEORY

2.1 Programming Fundamentals

To construct any computer-based system, some processes are needed to translate the idea

for the use of the computer into lines of source code which can be compiled and

executed. This process typically includes the tasks of:

a) requirements gathering- what we would like the system to do;

b) analysis - finding out how the system should behave;

c) design - deciding the structure of the system to be constructed;

d) implementation - writing the source code;

e) testing, verification and validation - making sure the system does what we claim.

The tasks of implementation and testing also include the task of debugging, which

is the finding and removing of errors in the program.

The design of a language like Java is based on principles that are the result of both many

years of research and of the practical use of earlier generations of programming

languages. The research addresses not only the best ways of making the computer behave

as we want it to, but also how best to avoid the errors that human beings, being imperfect,

introduce into the systems they are developing. Thus, the programming language and the

development tools used for constructing programs try to prevent the programmer making

errors in the first place and, if errors are introduced, help finding and eradicating them

quickly and efficiently. The features of Java and the tools for developing Java programs

support these principles. (Russel Winder & Graham Roberts, 1998)

6

2.2 Java Foundation Classes

The Java Foundation Classes (JFC) is a new set of Gill-related classes created to

solve the AWT problem of platform peculiarity. JFC also supports:

a) A pluggable look and feel, meaning that when the program is run, user can

choose whether he want it to look like Windows Gill, a Macintosh Gill, or

some other style.

b) An accessibility API for things like larger text for the visually impaired.

c) The Java 2D drawing an API.

d) A drag-and-drop library and an '\mdo last command" library.

e) The Swing components set.

The Swing components (scrollbar, button, textfield, label, etc.) replace the AWT

versions of these components. The AWT is still used for other areas of Gill

functionality, like layout control and printing. The A WT are simpler than the Swing

components, but more basic and more bug-prone.

Tn A WT, all components are based on peer components. A Java A WT button really is

a Win32 button on Windows. This is termed a heavyweight component. A lightweight

component, like all the Swing JComponents, is one which doesn't use a peer or native

component. Instead, it is drawn by Java code on a piece of the screen that already

belongs to Java. It is drawn onto its container in fact. The most important differences

are:

a) Lightweight components can have transparent areas in them, so they don't

have to look rectangular in shape.

b) Mouse events on the lightweight component are delivered to its container.

c) When they overlap, lightweight components are never drawn on top of

heavyweight components. This is because we can't draw half of a lightweight

component on one component and the other half on another. Lightweights

exist wholly within their parent heavyweight component.

7

Poor behaviour when overlapping is the mam reason JavaSoft gives for

recommending that we should not mix Swing JComponents with AWT components.

2.3 Java Communications API

The Java Communications API 2.0 is a standard extension available in Java 1.1 and

later that allows Java applications (but not applets) to send and receive data to and

from the serial and parallel ports of the host computer. The Java Communications API

operates at a very low level. It only understands how to send and receive bytes by

these ports. It does not understand anything about what these bytes mean. Doing

useful work generally requires not only 1mderstanding the Java Communications API,

but also the protocols spoken by the devices connected to the ports.[?]

Because the Java Communications API is a standard extension, it is not installed by

default with the JDK. It has to be downloaded from

http:i/java.sun.com/products/javacomm/index.html and installed separately.

2.4 Serial Ports

Strictly the RS232 standard specifies the names and functions of signals between Data

Terminating Equipment (DIE) and Data Commtmication Equipment (DCE), and the

gender of the connectors used. It does not specify the connector type or the

communication protocol employed. The interface is now widely used for connecting

instrtunents to computers and "RS232" is used to imply specific connector patterns and

communication protocols.

Serial Ports come in two "sizes", There are the D-Type 25 pin connector and the D-Type

9 pin connector both of which are male on the back of the PC, thus you will require a

female connector on your device. Figure 2.1 is the view looking into a male DB9

connector.

8

I

I <.) .,--'--=lrr

Figure 2.1: Pinout position of a male DB9 connector.

Table 2.1 shows the signal names and their corresponding pins to the maximum of 9

wires used for instrumentation applications. Not all wires are required in all applications.

All signals are named from the viewpoint of the DTE. Thus the TD line is used by the

DIE to trausmit data to the DCE, whilst it uses the RD line to receive data from the DCE.

(Hence the DCE is transmitting on the RD line and receiving on the ID line).

A logic 0 on the ID and RD lines, or a control signal "on" on the RIS, CIS, DSR, DCD

and DIR lines is represented by a voltage in the range +5V to+ 15V at the source end,

and must be> +3Vat the receiving end of the cable. The converse signal must be in the

range -5V to -15V at the source and must be <-3V at the receiving end.

9

2.5 The PIC16F84 Fundamentals

The PIC l6F84 is an 18-pin 14-bit embedded micro featuring electronically erasable

programmable read-only memory (EEPROM), as shown in Figure 2.2. The PIC16F84

features two ports named A and B having five and eight digital lines respectively. Any

line can be configured to be an input or output. The pinout description ofPTC16F8X is

listed in Appendix C. The PIC16F84 has no serial port but with some hardware and

programming, PIC-to-PC serial communication can be established. The PIC can send

or receive 8-bit values at prescribed intervals (baud rate).

RA4lTOCKl ~ 3
m;rn
vss-

RBO/lNT
RB1......... 7
RB2......_.
RB3_....

-RAD

...,._OSC11CLKIN

---+ OSC2fCLKOUT
14 ,.._VDO

-RBT
-RB6

-RB5
-RB4

Figure 2.2: Pin configuration of PIC16F84

P1Cl6F84 perfectly fits many uses, from automotive industries and controlling home

appliances to industrial instruments, remote sensors, electrical door locks and safety

devices. It is also ideal for smart cards as well as for battery supplied devices because

of its low consumption.

In System Progranunability of this chip (along with using only two pins in data

transfer) makes possible the flexibility of a product, after assembling and testing have

been completed. This capability can be used to create assembly-line production, to

store calibration data available only after fmal testing, or it can be used to improve

programs on fmished products.

10

CHAPTER3

METHODOLOGY/PROJECT WORK

3.1 Procedure Identification

3.1.1 Programming Process

A small-scale program is typically under a thousand lines of source code (excluding

comments). We need to distinguish small-scale from large-scale as, although the key

object-oriented ideas remain just as important, large-scale programs are typically

developed by a team of people and require considerably more design effort.

J Analysis I
t

I Design I

I Implement I

I Test I

I Review I J Deliver)

Figure 3.1: The iteration cycle programming

ll

An overall process is needed to order the steps, and determine what to do when. An

iterative approach is normally adopted. This process is often characterized as "Analyze a

little, Design a little, Program a little, Review and Repeat until finished" as illustrated in

Figure 3.1.

Iteration is important as it is very hard to get the design of a program correct first time. In

particular, it is difficult to identify all the key abstractions right at the start. Often they

only become apparent as understanding of the program developed with each stage of

iteration.

There are dangers with iteration in that it can be difficult to control the quality and scope

of the program, and also it can be hard to know when it is finished since there is always a

temptation to add more features to the design. Problems can be avoided by pausing

regularly to review progress, usually after having implemented some new aspect of the

program.

A further consequence of iteration and prototyping is that, although the vanous

development stages are listed separately, they may be merged together or omitted. In

particular, for small programs analysis and design can be treated as essentially the same

thing, with the design itself being developed by actually writing and commenting Java

code.

At the early stage of this project, the student has to come up with a suitable Gill design

concept for the application and construct it using the resources available and methods

discussed in previous semester. The design level of this application depends on the

consideration to the user needs, the programmer's expertise and their experience using

computers.

12

The basic principles considered in designing the GUI concept are:

a) Friendliness

b) Consistency

c) Error response

d) User guidance

- the GUI shonld use terms and input techniques that are

known to the users.

- similar operations shonld produce similar resnlts. This

helps to minimize memory requirement for the user and

reduces surprises.

- the GUI shonld be able to recover from user error.

the GUl shonld provide feedback, meaning that the user

shonld know that his commands have been accepted. The

GUI visual presentation should be obvious to the user and

instroct the user how to use the program.

3.1.2 Project Process Flow

This project development is divided into three main modules, which are window module,

hardware modnle and prototype modnle. These modules are divided into different

timeframes of the overall time allocated for this project. However, the development

process might overlap with each other due to time constraint and design problems. The

main project process flow is summarized in Figure 3.2.

13

' ' '

• • •
'

'

-

r------•••••••••••-• -'

Window Module

1
Design & Construct

Window

J
Assign controls/actions

to GUI components

I
Integrate individual

actions

' I Module Test I
... ________ __________ ,..

'

Litera1ure Review
and Research Srudy

' .,--------- --------- .. -~-----------------'
. ' ' ' -

' ' ' ' '
' Hardware Module • ' Prototype •
' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' . • • • • ' . Design, Construct & ' Design & Construct
' ' ' Establish Communication ' Prototype ' •

' • ' ' ' ' ' ' • ' • ' • ' ' ' ' ' ' ' ' I Module Test I ' Module Test ' ' • • ' ' ' ' ' ' ' ' • ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' • • ' ' • - ' ' ' ' -.. ______ ________
' ' ' • ' ' ' ' ' ' ' ' ' ' ' ' '
' • ' • .
' ' '
' ----------- ----------. ' ' ' ' ' '

Integrate the Windows &
Hardware modules

l
I System Test ~

Integrate the Windows &
Hardware modules

• Full Test I

I Project Completion I
Figure 3.2: Project Process Flow

14

The window module will be constructed first, followed by the hardware module and

prototype module. ln the window module, the GUl of this application shall be design,

constructed and integrated. This module will be built up using Swing components. Swing

components are no longer peer-based, but are written in Java and are thus consistent on

all platforms. The main Swing lightweight controls that can be implemented in the design

are as listed in Table 3.1. The behaviour and appearance of each specific control is one

level down in the subclasses of !Component. These classes are the controls or building

blocks from which GUis are created. To use these components, the steps taken are:

a) Add them to the content pane of a container.

b) Register an event-handler using the addSomeListener() method of the control.

Table 3.1: Swing Lightweight Controls

(,{It .llC'!l_On (01111 ol ~" mQ. (Ll"" '\ <lllll'

Basic Controls Button JButton, JCheckBox, JRadioBulton
Combo box JComboBox
List JList
Menu JMenu, JMenuBar, JMenultem
Slider JSiider
Toolbar JToolbar
Text field JTextField, JPas . .wordFeild, .lTextArea

Uneditable Label JLabel
Displays Tooltip JTooltip

ProQress bar JPro2ressBar
Editable Table .TTahle
Displays Text JTextPane, JTextArea, JEditorPane

Tree .TTree
Color chooser JColorchooser
File chooser JFikchooser

Space-Saving Scroll pane JScroUPane, JScrollBar
Containers Split pane JSplitPane

Tabbed oane JTabbet!Pane
Top-Level Frame JFrame
Containers Applet JApplet

Dialou JDialog, JOotionPane
Other Panel JPanel
Containers Tntemal fuune Jlnterna/Frame

Layered pane JLayeredPane
Root pane JRootPane

The window concept is design by drawing the basic features used for the main page.

This draft shall be used as guideline in developing the window using Swing

components.

15

Then, each component in the constructed window shall be assign to appropriate controls

or actions. In event-driven programming, the logic of the codes is inverted. Instead of one

flow of control from beginning to end, the runtime system sits in a "window main loop"

simply waiting for user input. When the user clicks the mouse, the operation system

passes it to the window manager, which turns it into an event and passes it on to a handler

supplied earlier. This is known as a callback. Our handler is the callback routine, because

the window system calls back to it when the event happens. Our event handler will deal

with the graphics event and any work that is associated with it.

java.util.EventObject

java.awt.AWTEvent

java. awt. event. ComponentEvent

java.awt.event.FocusEvent

java.awt.event.KeyEvent

java.awt.event.MouseEvent

java.awt.event.AdjustmentEvent

java.awt.event.WindowEvent

java.awt.event.ActionEvent

java.awt.event.ItemEvent

java.awt.event.TextEvent

contains a "source" field

}
contains infonnation about
how it is consumed, whether
it is sent to the peer

Events for individual controls.
Each contains event-specific
infonnation such as the exact
key pressed, where the mouse
click occurred, or the value of a
scroll bar.

Figure 3.3: The hierarchy of event objects.

An event object has several data fields holding certain information. There is a general

java.utii.EventObject type, and all A WT events are children of that as shown in Figure

3.3 above.

16

Table 3.2 summariZes the relations between existing event, their interfaces and the

methods that Listener interfaces use. A more detail description about event-driven

programming is discussed in Appendix D.

Table 3.2: Categories, Events and Interfaces.

lnlt'J LH'l' IlLli I he I\ t•nt-
(,('IH't'.\1 (,)j('f!.OI \ I '('Ill' I h,11 It (.tn(·t ,l(('r.; ll.mdkt lmpll'nwnts

Mouse Dragging, moving mouse causes a MouseMotionListener
MouseEvent
Clicking, selecting, releasing causes MouseListener
aMouseEvent.

Keyboard Key press or release causes a KeyListener
KeyRvent.

Selecting (an item When item is selected causes an ItemLislener
from a list, checkbox, ltemEvent.
etc.)
Text Input Controls When newline is centered causes a Textl.istener

TextEvent.
Scrolling Controls When a scrollbar slider is moved AtijusnnentListener

causes an AdjusnnentEvent.
Other Controls When pressed causes an ActionEvent. ActionListener
(button, menu, etc.)
Window Changes Open, close, iconify, etc., causes a WindowListenet·

WindowEvent.
Keyboard Focus Tabbing to next field or requesting FocusListener
Changes focus causes a FomsEvent. A

component must have the focus to
generate key events.

Component Change Resizing, hiding, revealing, or Componentl.istener
moving a component causes a
Co11!P!!_11entHvent.

Component Change Adding or removing a component to ContainerListener
a container causes a ContainerEvent.

The hardware module involves serial communication establishment via a serial port on

the computer. Tn addition, microprocessor will also be added as part of the hardware

module. The microprocessor will be utilized to interact with the software constructed

through serial port on the computer. PIC16F84 perfectly fits the usage for serial

communication and controlling home appliances and safety devices.

17

3.1.3 Communicating with a Port

The main thing to do before programming any Java files for port communication is to

download the extension and install it on the computer. The steps taken to install the Java

Communications API are:

a) Unzip the file javacomm20-win32.zip file. This will produce a hierarchy with a

top level directory commapi folder.

b) Copy win32com.dll file to <JDK>\bin directory.

c) Copy comm.jar file to <JDK>\lib directory.

d) Copy javax.comm.properties file to <JDK>\lib directory.

e) The javax.comm.properties file must be installed. If it is not, no ports will be

found by the system.

t) Add comm.jar file to classpath.

The javax.comm.SerialPort class is an abstract subclass of CommPort that provides

various methods and constants useful for working with RS232 serial ports and devices.

The main purposes of the class are to allow the programmer to inspect, adjust, and

monitor changes in the settings of the serial port. Simple input and output is

accomplished with the methods of the super class, CommPort. SerialPort has a public

constructor, but shouldn't be used by applications. Instead, one should call the open()

method of a CommPortldentifrer that maps to the port he wants to communicate with,

then cast the result to Seria/Port.

For example:
commPortidentifier cpi = commPortidentifier. getPortidentifier ("COM1");

if (cpi.getType() ~= Coromportidentifier.PORT_SER1AL} {

try [

Seria!Port modem: {SerialPort) cpi.open();

catch (PortinUseException e) {}

18

javax.comm is divided into high-level and low-level classes. High-level classes are

responsible for controlling access to and ownership of the communication ports and

performing basic I/0. The CommPortldentifrer class lets us find and open the ports

available on the system. The CommPort class provides input and output streams

connected to the ports. Low-level classes, javax.comm.SerialPort and

javax.commParallelPort for example, manage interaction with particular kinds of ports

and help us read and write the control wires on the ports. They also provide event-based

notification of changes to the state of the port.

There are several issues in establishing communication with ports using the javax.comm

package. Main concern involve in establishing a communication with a port are

identifying ports, finding the ports, getting information about a port, opening ports,

waiting for a port with a port ownership events, and registering ports. Table 3.3

summarizes these issues with brief description and also listed the packages, classes or

methods that can be used to perform those jobs.

There are five basic steps to communicating with a port:

a) Open the port using open() method of CommPortldentifrer. Tf the port is

available, this returns a CommPort object. Otherwise, a PortlnUseException is

thrown.

b) Get the port's output stream using the getOutputStream() method of

CommPort.

c) Get the port's input stream using the getlntputStream() method of CommPort.

d) Read and write data onto those streams as desired.

e) Close the port using the close() method of CommPort.

19

Table 3.3: Several Issues in Establishing Communication with Ports

Identifying Ports
- lists the available ports, figure out which

program owns them, take control of a port, and
open a port so that I/0 can he perform with it.

Finding Ports
- find and create the right port using a port

identifier.

Getting !'!formation About a Port
- once a particular port is identified by

CommPot1ldenti/ier, the information about the
port can be obtained by calling several accessor
methods.

Opening Ports
- a port has to he open before it can be read from

or written to.
-opening a port gives application exclusive access

to the port, until the port is given up or the
program ends.

Waiting for a Port with Port Ownership Events
- two methods used to receive notification of

changes in ownership of the port.
-port ownership events are fired to signal that :

• a port has been opened.
• a port bas been closed.
• another application wants to take control of

the port.
- listener must he registered to listen for ownership

changes on a particular port.

Registering Ports
- register a particular name, type, and driver with

the Comm API so that it can be retomed by
CommPortldentifier .getPortldentifiersO

-javax.comm. ConunPot1ldentifler
-javax.comm. CommPort

-javax.comm. CommPortldentijier
• public static Enumeration

getPort!dentifiers()

• public static CommPortidentifier

getPortidentifier (String portName}

throW3 NoSuchPortException

• public static commPortidentifier

getPortidentifier(CommPort port)

throws NoSuchPortException

- CommPortldentijier
• public String getName ()

• public int getPortType()

• public String getcurrentOWner()

• public boolean iscurrentlyowned{)

- CommPot1ldentijier
• public synchronized CommPort

open(String name, int timeout) throws

PortinUseException

- CommPot1ldentijier
-javax.comm. ConunPortOwnershipListener
• public void addPortOwnershipListener

(CommPortOWnershipListener listener)

• public void

removePortOWnershipListener

(CommPortOwnershipListener listener)

• public abstract void

ownershipChange(int type)

- CommPortldentijier

20

• public static void addPortName(String

portName, int portType, CommDriver

driver)

3.1.4 The PIC16F84 Implementation

A website that provides tutorial on PIC16F84 fundamentals;

http://www.boondog.com//tutorials/picl6F84/picl6f84.html was studied. Learning a

microprocessor's capabilities often demands such a setup where light emitting diodes

(LEDs) tum on/off, blink at desired rates and respond to switches. This tutorial is very

focused because its purpose is to rapidly acquaint us with the fundamentals needed to

develop PIC 16F84-based applications. This is achieved with focused hands-on

exercises exploring:

a) PIC input/output (I/O) ports: LEDs are turned on and off and switches are read

b) PIC timer: An LED is blinked at a desired rate

c) PTC serial communication: ASCTT characters are sent between a PC and PTC

The PIC16f84 is an 18-pin 14-bit embedded micro featuring electronically erasable

programmable read-only memory (EEPROM). The essential steps in the development

cycle of this microchip are:

a) On a PC, type the program, successfully compile it and then generate the .HEX

file.

b) Using a PTC16F84 device programmer, upload the .HEX file into the

PIC16F84. This step is often called burning.

c) Insert your PIC 16F84 into your circuit, power up and verify the program

works as expected. This step is often called dropping the chip. If it isn't, you

must go to Step 1 and debug your program and repeat burning and dropping.

The PIC C Compiler program kit installed in the laboratory computer is used to burn the

chips. The steps to burn a chip are:

a) Open a file written in C language.

b) Compile the file.

c) Select Program Chip, and check the XT radio button under OSC Options field,

indicating an external oscillator is used.

d) Erase the chip placed on the burning board.

21

e) Then, execute this process in sequence: READ, BLANK, VERIFY.

f) Load the compiled * .c file.

g) Execute PROGRAM.

3.2 Tools Required

3.2.1 Java 2 Software Development Kit (J2SDK)

To develop software, computer serves as an essential tool for this project. In order to use

Java and get some programming done, developments tools are need. Java is distributed as

the Java Development Kit (JDK). The basic JDK from SunSoft provides the tools as

command line versions, meaning that they are generally used by typing in commands to a

command interpreter (in MSDOS window if using Windows, an xterm if using UNIX, or

something equivalent).

The following are some of the tools in the JDK:

i) javac is the Java compiler. It is run to create the bytecode for applications and

applets.

ii) java is the Java interpreter. To run an application, the name of a class that contains

the entry point of the application is supplied.

iii) jre is also a Java interpreter, but is packaged separately from the JDK. It provides a

run-time enviromnent so that developers can include it with their application code

without requiring users to install the complete JDK.

Java contains many predefmed classes that are grouped into categories of related classes,

called packages. These packages are referred as Java applications programming interface

(Java API), or the Java class library. import statements is used to specify the class

required to compile a Java program. For example, a program uses the statement

import javax.swing.JApplet;

22

to tell the compiler to load the JApplet class from the javax.swing package. One of the

great strengths of Java is the large number of classes in the packages of the Java API that

can be reused rather than reinventing the codes structure. Table 3.4 lists a subset of the

many packages in the Java API and provides a brief description of each package.

The set of packages available in the Java 2 Software Development Kit (J2SDK) is quite

large. In addition to the packages summarized in Table 3.4, the J2SDK includes packages

for complex graphics, advanced graphical user interfaces, printing, advanced networking,

security, database processing, multimedia, accessibility (for people with disabilities) and

many other functions. Packages that are related for the development process of this

project shall be studied more thoroughly and will be implemented in the project design.

Table 3.4: Packages of the Java API

Park:Ji!l' Dt•,cri pt inn
java.appJet The Java Applet Package

Contains the Applet class and several interfaces that enable the
creation of applets, interaction of applets with the browser and
playing audio clips. In Java 2, class javax.swing.JApplet is
used to define an applet that uses the SwinJ! GUI components.

java.awt The Java Abstract Windowing Toolkit Package
Contains the classes and interfuces required to create and
manipulate graphical user interfaces in Java 1.0 and 1.1. In Java
2, these classes can still be used, but the Swing GUI
components of the javax.swing packages are often used
instead.

java.awt.event The Java Abstract Windowing Toolkit Event Package
Contains classes and interfaces that enable event handling for
GUT components in both the java.awt and javax.swing
packages.

java.io The Java Input/Output Package
Contains classes that enable programs to input and output data.

java.lang The Java Language Package
Contains classes and interfaces required by many Java
programs and is automatically imported by the compiler into all

I PTOl(TamS
java.net The Java Networking Package

Contains classes that enable programs to connnunicate via
networks.

23

Park,H!;l' Jle,\ lljllion

java. text The Java Text Package
Contains classes and interfaces that enable a Java program to
manipulate numbers, dates, characters and strings. It provides
many of Java's internationalizing capabilities I.e., features that
enable a program to be customized to a specific locale.

java.util The Java Utilities Package
Contains utility classes and interfaces, such as: date and time
manipulations, random-number processing capabilities, storing
and processing large amounts of data, breaking strings into
smaller pieces called tokens and other capabilities.

· java.swing The Java Swing GUT Components Package
Contains classes and interfaces for Java's Swing GUI
components that provide support for portable GUis.

java.swing.event The Java Swing Event Package
Contains classes and interfaces that enable event handling for
GUI components in the .iavaLswine packa!e.

3.2.2 Java Integrated Development Environments (IDEs) and Other

Softwares

Many other vendors are now supplying Java integrated development environments

(IDEs), usually with tools integrated in sophisticated graphical environments. A number

of Java IDE products are available from IBM, Sun, Symantec, Borland, Microsoft, and

other companies. These products will ease the programming and debugging process,

especially programming related to GUI. ffiuilder6 from Borland is used in this project.

JBuilder 6 is used as part of the tools in this project. JBuilder is released by Borland. It is

Windows-based application software. It increases productivity and provides output to the

user. A ffiuilder project organizes the files used and maintains the properties set. ffiuilder

stores projects with a .jpx or .jpr extension.

Apart from ffiuilder, JCreator is also used m the software development process.

JCreator TM is a trademark of Xinox Software. JCreator LE is a simple Java IDE for

Windows. This freeware versiOn of JCreator can downloaded from

http://www.jcreator.com/. JCreator runs on Windows machines and requires Sun's Java

SDK installed. The system requirements for running JCreator 2.x are Microsoft Windows

24

95, 98, ME, XP, NT, or 2000, and a 133-MHz CPU with 32MB of RAM. JCreator is

written entirely in C++, which makes it fast and efficient compared to the Java based

IDEs.

Ulead Photo Express 2.0 SE and Microsoft Paint are used for developing images and

logos. Photo Express helps us to create projects quickly with an easy-to-understand visual

interface. Additionally, there are numerous edges, frames, textures and backgrounds,

making it more inspired and easy to create a wide variety of image projects.

3.2.3 The PIC16F84 circuit board

The PIC16F84 features two ports named A and B having five and eight digital lines

respectively. Any line can be configured to be an input or output. The parts list used to

build the prototype circuit board in order to demonstrate the workability of the

designed software is given in Table 3.5.

Table 3.5: PIC16F84 Circuit Board Components

P:ll (l)('S(J ljli!Oil ()u,mtit'
'PiC' = :Miil I
~U1TON SWHCH 5

, CK (:SfAl rt flrK m:rn I .A'l'fiR I
OTU:fCAP 1
0.1 INCHHI'ADERS I
LED 5
IOOOHM~<n,~lVK I
10KILOOHM VK 1
2200HM UK 5

6JN('H UT t'PING I
DB9 KlUMl nJr 'P m:;u AT -lVK 1
~lOvlA· ,CABLE ~AAT IAT ll~ -~

MA !DRTV IER 1

The schematic of the circuit built is as shown in Figure 3.4. The circuit is built on a

breadboard first before transferring it to a prototyping circuit board.

25

RESET~

1
vvv l

: >
' 220 ·" : ? '
' ' ' < '
'

'
' -.h- '

Repeat resistor .UD circl.il fur
RA2, RAJ, RB1, RB2,RB3.

+5V
4MHzOSC

- NC vee

_r ... GND __ o_ur_,-

Repeal PlJ!h bl.d:ton circuit
fur RB4, RBS, Re6, RB7.

0.1Uf i

Figure 3.4: Schematic of prototype circuit.

26

4.1 GUI Development

CHAPTER4

RESULTS AND DISCUSSION

The Gill for this project is developed in several stages. The results and discussion are

break down into several sections, in accordance with the design flow of the GUT. Mainly,

it is categorized into Access Pad Frame and Main Frame.

4.1.1 Access Pad Frame

Tn order to access the program, the user must enter a password for security purposes.

Hence, an access pad as shown in Figure 4.1, is created to obtain the right password from

the user, before permitting any access to the program.

MyAccessPad is an extends of a !Frame. Its design mainly consists of 2 components:

a) a password field

b) a background image.

Figure 4.1: Access Pad Frame.

27

4.1.1.1 Password Field

Swing's password field conceals its text by displaying an'*' for every character entered

in the field. The asterisk is referred to as an echo character and can be set after a

password field is constructed. JPassword provides the same set of constructors as its

superclass, JTextField. The JPasswordField constructors invoke the superclass

constructors and set the echo character to the ' *'.

The getPassword() method is used to obtain the password instead of the getText()

methods inherited from JTextField, which are deprecated in JPasswordField to provide

a compile-time warning.

If the password is incorrect, a message dialog box displays "Your password is not valid.

Please try again." as shown in Figure 4.2. The user will be prompt back to the access

pad, until the right password is gained. If the password is correct, the message dialog box

displays "Welcome to Home Guard system." as shown in Figure 4.3. The access pad will

be hidden, and the user will then have access to the program through the main frame

visible.

Figure 4.2: Invalid password popup. Figure 4.3: Valid password popup.

4.1.1.2 Background Image

A floor plan image obtained from the internet is used to design a background image for

the access pad. The image in Figure 4.5 is generated from the floor plan image shown in

Figure 4.4, using Ulead Photo Express 2.0 SE. The rest of the images used in the

28

development of this application are mainly designed using mead Photo Express 2.0 SE

and Microsoft Paint.

Figure 4.4: The original floor plan. Figure 4.5: Background image generated.

At first, the image and the password field are added to the access pad using the add()

method. The result is not as expected, wherein the password field is truncated when the

access pad is initialized, as shown in Figure 4.6. The problem was then overcome by

using the paintComponent() method.

Truncated password field

Figure 4.6: Access pad with truncated password field.

Swing programs should override paintComponent() instead of overriding paint().

Although the API allows it, there is generally no reason to override paintBorder() or

paintComponents(). This factoring makes it easier for programs to override only the

portion of the painting which they need to extend. For example, this solves the AWT

29

problem mentioned previously where a failure to invoke super.paint() prevented any

lightweight children from appearing. The solution result is shown is Figure 4. 7.

Figure 4.7: Access pad with fully visible password field.

4.1.2 Main Frame

The design concept for this application is to enable users to easily monitor the

modules or devices involved in the security system of the house. The draft of the main

frame design for the application is displayed in Figure 4.8. The main frame consists

of two panels, which are the upper panel and the main panel. The upper panel will be

consists of logo, icons, buttons, and date and time display. The main panel will be

consists of two main panels, which are the tree navigator and the module display.

Main panel
1

}
Upper
panel

Figure 4.8: Draft of the main frame design of the application.

30

For the date and time display, SimpleDateFormat class is used. SimpleDateFormat is a

concrete class for formatting and parsing dates in a locale-sensitive marmer. It allows for

formatting (date to text), parsing (text to date), and normalization.

SimpleDateFormat(String pattern, Locale locale) creates a date formatter using the

specified pattern, with the default DateFormatSymbols for the given locale. It allows us

to start by choosing any user-defined patterns for date-time formatting. Each of these

class methods can return a date/time formatter initialized with a default format pattern.

The format pattern was then modified using the applyPattern() methods as desired.

After the format pattern of the date/time is modified, the date/time must be displayed to

the user. The displayed date/time must be updated from time to time so that the user is

kept informed of the current time. To update the displayed time, threading is used. The

class created for this function is TimerThread. It is an extension of a Thread class that

implements Rrmnable interface. Thread and Runnable are defined in the java.Iang

package. The TimerThread prompt the thread to halt for 1000 milliseconds, before

updating the cun·ent time displayed. In other words, the current time displayed is updated

every l second. For a more detail description about threads, you can refer Appendix E.

The TimerThread codes are listed below.

class TimerThread extends Thread implements Runnable

UpperPanel myclock;

public TimerThread(UpperPanel myclock)

this.myclock ~ myclock;

public void run{)

while (true)

try

this.sleep(lOOO);

catch(InterruptedException e){}

myclock.setTime();

31

The date and time was displayed as text in a JTextField object. However, flickering

occurs when the program is running. The problem was overcome when the text field is

replaced by JLabel instead. Figure 4.9 shows an initial design of the upper panel with

only a sample icon and the date and time display. The design was then improved before

combining it with the main panel design.

Figure 4.9: An initial design of the upper panel.

The main panel mainly consists of two separate panels:

a) tree navigator panel,

b) module display panel.

4.1.2.1 Tree Navigator Panel

Swing trees display hierarchical data by using a well-known paradigm of folders and leaf

items. The most widely used tree is indeed Windows Explorer, which contains a tree

component for navigating directories. The tree component is represented by the JTree

class, which resides in the swing package.

Trees are composed of nodes, which can he either folders or leaves. Folders can have

child nodes, and all nodes but a tree's root node has a single parent node. Empty folders

can be differentiated from leaves by whether they allow children. Folders and leaves are

represented by different icons tlmt look-and-feel dependent. Folders can be expanded and

collapsed, either by double-clicking on the folder or by clicking on the folder's handle.

The visibility of the root node's handle can be set.

32

In addition to parent and child nodes, tree nodes also have a user object. User objects are

of type Object and therefore provide a way to associate any object with a node. Trees

have a simple model, and each JTree instance maintains references to a renderer and an

editor that are used for all nodes in the tree.

The JTree class also provides constructors for creating trees with Object arrays, hash

tables, and vectors. Since the order in which objects are added to a hash table has no

correlation to the manner in which the objects are stored, trees created with hash tables

exhibit an unpredictable node order.

The tree navigator design consists of 5 nodes representing the rooms to be monitored in

the house, which are Bedrooms, Kitchen, Living Room, Dining Room, and General.

Since the design assumed to have 3 bedrooms, these bedrooms are created as child nodes

under Bedrooms node. The leaves under each node represent devices to be monitored in

related rooms. The tree navigator constructed is shown in Figure 4.10.

~"~::~~:''"'"'GJ~
;I ;;;:. --_j Bodrooms
1 i lei -~ Dellroom 3

·1 · ;---• Door
: • lMtitl\lW
'-·-• U;hl

.. r:'~l'!

. ; ~- · ·• Atl'•C.OnddlllflEII
: : --- · • 5molro Daledor
: W -CJ 8ed;IIOIY! 2
: IJJ-::::JB~(lroomt

;)-:· <.:jKltctlen
· -~- • B~ckDoor

: -· Vll!n(JOI,IJ
c ... • Li{lhl
. • FM
-• Sln!).kaOirt&t.t!lr

('t-'..:J U'ri!lG" Room
':f"" ·:...J Dltllng Riltlm
~-~..:_.!General

Figure 4.10: The tree navigator panel.

Tree nodes are often quantified by tree paths. When a tree node is selected, the selection

is identified by an instance of TreePath. The TreePath class identified a set of nodes that

form a path from one node to another. This class is a simple extension of Object that

maintains an array of objects representing a path.

33

The tree navigator is equipped with a selection listener that identifies the path of the

recently selected node in order to link it to the status of the devices, according to the right

rooms. The selection listener obtains a reference to the path associated with the selection

by invocation of TreeSelectionEvent.getNewLeadSelectionPatb().

The swing.tree package provides a default renderer in the form of the

DejaultTreeCellRenderer class. This class maintains three Icon references for leas nodes

and open/closed folder nodes. Colours for text, background, and the renderer's border are

also maintained. DejaultTreeCellRenderer can also be used to customize the colours,

icons, and font associated with tree nodes. An instance of this class is used to modify

leaf, open and closed icons, and font of the tree navigator panel. The modified tree is

shown in Figure 4.11.

'if'''"' •c;•f';'···•i''•··•g(§:lij
r • · • ··1,
I E: 0 Bedraonas jl
1 : ,~f 0 &lfdroom 3 'i
' : : ·ODOGT !!
I c • .ctwlmlow II
I ' 'tLI'lkt I

: ·ORHJ i
··0 Alr·C-IM'IdttfOMr i

:_ -0 Smoke Oehr-ttor !
-:>1 0 B!Mitmom 2 i
Xi • BedntOm 1 I

;;.; -0 KittheB I
' - 08ot:ll.D•IO" 1

.. e wh•di.Wl 1
OLight ,

- 0 Smoke Detector
(f:·O lhl'log Room
f!; 0 Dhd~ Raorrt
:!~ 0Gea..-.o1

Figure 4.11: The modified tree design.

4.1.2.2 Module Display Panel

Tabbed panes are a common user interface component that provides convenient access to

more than one panel. Swing's tabbed pane is implemented by JTabbedPane. The tabs

contained in an instance of JTabbedPane have a single component associated with them

that is displayed below the tab. Tabs can display botl1 icon and text and can have their

background colour set. It allows its tabs to be placed along the right, left, bottom, and top

34

of the tabbed pane. Tab placement can be specified when instances of JTabbedPane are

constructed or after construction with the JTabbedPane.setTabPlacementO method.

The module display panel is design to support two choices of view, which are module

view and list view. The module view will display control panel of individual devices

which are grouped according to the rooms.

Each module generally contains 4 fields, which are status, action, timer and log. The

status field consists of an image that change according to the status of the devices, and a

label that states out the device status. The action field is made up of 2 choices of radio

buttons. The two radio buttons are mutually exclusive, that is when one of the radio

buttons is selected, the other will be deselected. The timer field and log field are

additional features to set the time when a device can be switch on or off, and to log any

activities took place by the device as a report. The initial design of the module view is as

shown in Figure 4.12.

(a) Horizontal arrangement of the fields. (b) Vertical arrangement of the fields.

Figure 4.12: Initial design ofthe module view.

To simplify the module view, the timer field and log field are hidden by replacing them

with a single button, "Option". The images designed are also enhanced and the vertical

arrangement is chosen for the final module view design, as shown in Figure 4.13.

35

Figure 4.13: Final design of the module view.

The results of individual design panels are merged and shown in Figure 4.14. More

features should be revised, either added or removed from the design, depending on the

necessity, time constraint and hardware constraint. Some of the components only existed

on the base only without any control functions, and some of the controls are still not

functioning as required.

-Q Door
G Window
O·Lil,;lht
0 Fan
Q Air-conrlitionl!r
~Smoke Oeteltor

::;: C 13edruom 1
: 0-Door ')

.--g:~~w J,

; O"Fan
; O.Air-conditicner J

G Smoke Detector ·]
E ~ Kitdlen --

9Wim!ow
9' l.ight:
QFan
0 smoke Detector

~· e) UviflQ Rnom
ewindow

Figure 4.14: The main frame design.

36

4.2 Serial Port Programming

After downloading and installing the Java Connnunication API inC: partition, a basic

sample program codes, NamedPortLister, is compiled and run to test for the

functionality of the installed extension package. This program basically looks for

serial and parallel ports and lists them down. It is successfully compiled and run, but

the program did not fmd any port on the designated computer. Troubleshooting is

carried out, by altering a few lines of coding. At last, it is detected that the compiled

was saved in a different partition, which is in D: partition. When this program is

compiled in the same partition as the installed Java Connnunication API and JDK, the

program is successfully run and lists down several serial and parallel ports in that

computer. Therefore, it is concluded that all programs which applied the Java

Connnunication API must be saved, compiled, and run inC: partition onwards. Mter

that, more basic sample programs are compiled and run to test the methods available

in the extension package.

A sample program from Java Connnunication API, SerialDemo, was compiled, run,

and studied. This program basically provides functions to set parameters of an

available serial port on the computer, and open the port with the selected parameters

value. The classes involved in this program was studied, changed, and adapted in

order to gain understanding on how to construct coding that is necessary to establish

serial connntmication. Classes that are essential for setting and opening the serial port

are SerialParamateres and Seria/Connection.

MySeriall was constructed with a few functions available in the sample program, with

several additional functions such as registering listeners to notify events such as

setRTS() and isCTS(). Figure 4.15 shows "My Serial!" application. This program is

tested by connecting TD pin to RD pin, and RTS pin to CTS pin, of COM!. Hence,

data that are transmitted will be received back by the same program, and whenever the

value of RTS is checked or unchecked, the program will state it by displaying a line of

messages such as, "RTS is checked" or "RTS is Unchecked". When RTS is set to

37

high, the CIS pin will detect it and state it by displaying a line of messages such as,

"CIS is cut OFF" or "CIS is received" inside the received data text field. These

functions basically constructed to test the codes manipulation on the six pins of DTR,

RTS, CIS, DSR, Rl, and CD.

~ng lhs ~>lltlill port

Figure 4.15: A test module for serial port communication programming.

4.3 PIC16F84 Programming

The prototype circuit discussed in previous chapter was built and tested. When the circuit

is tested and proven to be working perfectly, the next step is to program the PIC. Several

examples available on the internet were studied to have a better understanding on how to

program the PIC16F84, using suitable function for the demonstration. Some of the

examples do not work when it is compiled and bum, while the other working examples

are designated to different types of PTC. Hence, adjustment and manipulation of these

examples is Jiged to come up with a program that can be used on PIC16F84, and can

establish serial communication with the computer's serial port.

38

The PIC must be set to the required speed of the processor. The speed used must be the

same with the external crystal clock oscillator's frequency, which in this case is 4MHz.

The command to invoke this function is:

#use delay(clock=4000000) //4MHz osc

It tells the compiler the speed of the processor and enables the use of the built-in

functions: delay_ms() and delay_us().

The PIC must also be set to use the RS232 built-in function. The command to invoke this

function is:

#use rs232(baud=9600, xmit=PIN_Al, rcv=PIN_AO)

This directive tells the compiler the baud rate and pins used for serial T/0. This

directive takes effect until another RS232 directive is encountered. The #use delay

directive must appear before this directive can be used. This directive enables use of

built-in functions such as getc(), putc(), and printf(). The baud rate set must be the same

with the received data baud rate, in this case is the computer's serial port baud rate. If not,

there will be error in the received data

To transmit serial data from the PTC, the built-in function ofprintf() can be used directly,

in example:

printf ("FO"):

But to handle received serial data from the computer, a more complex fimction must be

used, especially when the received serial data is in terms of a stream. This is because

getc() can only read one character per time. It waits for a character to come in over the

RS232 RCV pin and returns the character.

Since we do not want to hang forever waiting for an incoming character, kbhit() is used

to test for a character available. If the RS232 is under software control, this function

returns "true" if the start bit of a character is being sent on the RS232 RCV pin. If the

RS232 is hardware, this function returns "true" is a character has been received and is

39

waiting in the hardware buffer for getc() to read. This function may be used to poll for

data without stopping and waiting for the data to appear.

An example of codes to handle this problem was foUJ.ld, named as mikeslib.c, and is used

for handling the received serial data. It monitors the RS232 RCV pin for any incoming

data, and then catches this data byte-by-byte and stores it temporarily in a buffer. If the

first data is not handled immediately, the data will be lost and the buffer will be replaced

by the second received byte, and the same goes with each incoming data.

Therefore, another function is created to handle streams of received data. Looping is used

to read streams of received data, so that the data is not lost. The streams is read byte-by

byte and stored in a buffer. After that, the stored data is then called and interpreted to

trigger designated pins. In example, if the received data buffer is "Ll ", pin A2 is set to

high, and if it is "10", pin A2 is set to low. In this case, the computer can send streams of

meaningful data to the PIC, and the PIC will process the data to trigger any designated

pins that represents the home appliances. The process flow for serial data processing on

the PIC is summarized in Figure 4.16.

Store 2 bytes in buffer

Byte 1

Determine which
pin to trigger

Lights
(Eg: Pin RA2)

' ' ~,.. ____ , etc_

' ______ .7., _____ _

' ' ' '
' ' 1 .. --- ... -- ---- ... - ~

0

Byte2

Figure 4.16: PIC serial data processing.

40

However, the program still cannot detect any other input besides the serial data from the

computer. ln real situation, manual switch is also used to turn the appliances on and off.

Therefore, the program should be able detect switches or button press. Interrupts is used

to handle this situation.

Built-in function to perform this task is enable_interrupts(). It enables the interrupt at a

given level. An interrupt procedure should be defined for the indicated interrupt. The

GLOBAL level will not enable any of the specific intem1pts but will allow any of the

specific interrupts previously enabled to become active. To detect a button press, RB

interrupt is applied. The RB interrupt will happen when there is any change (input or

output) on pins B4-B7. There is only one interrupt and the PTC does not tell which pin

changed. Which pin changes must be determined based on the previously known value of

the port. Furthermore, a single button press may cause several interrupts due to bounce

in the switch. A debounce algorithm is needed to be used. A simplest way is to set a

delay after the first interrupt, to eliminate possible debounce, before executing any

function and waiting for the second interrupt. Example of interrupt usage is, when a

button press triggers pin B4, it will toggles pin A2, and transmit streams to inform the

changes to the computer. Tf pin A2 is high, it will be set to low, and vice versa. In this

case, the user can control home appliances using manual switches in parallel with the

software, and the software is aware of the changes.

After further alteration and eullancement, the program should be able to perform these

tasks:

a) Triggers designated pins using the serial received data.

b) Triggers designated pins using button press.

c) Inform the computer software about the changes made using button press.

The codes involves in the PIC programming are listed in Appendix F.

41

4.4 Module Integration

Individual working modules are integrated to come up with a single working system. The

window module, hardware module and prototype module is integrated to come up with

the Home Guard System, with a prototype for demonstration. A lot of problems are

encountered when integrating these modules, since changes must be made to enable the

modules to work with each other.

Most problems arise when integrating window module with the hardware module. The

GUI developed was not working properly with the serial communication classes

constructed. To overcome this problem, some of the serial communication classes

constructed are combined with the GUI classes. This will eliminate problems arises from

multi-level properties modifications, and accessor methods. The problems are

successfully overcome and the integration results in a single working software system.

All the classes involve in this integrated module are listed under Appendix G.

42

CHAPTERS

CONCLUSION AND RECOMMENDATION

A software system for the PC-based surveillance system is successfully designed and

built. The Swing components are used as the basic components for the development of

this application. However, more features needed to be revised, and some of them are

either added or removed from the design due to the necessity, time constraint and

hardware constraint.

The Java Communications API 2.0 is successfully implemented. The software can

successfully communicate with the serial port on the computer. The software can then

sends and receives serial data through the serial port. These serial data is processed to

enable the monitoring and controlling of home appliances.

A prototype, basically built up of a simple circuit board is successfully built. It

demonstrates the workability of the software to communicate with the serial port. A

microcontroller, specifically PIC16F84 is successfully used to translate and mauipulate

the data received from the serial port into meaningful functions for prototype

demonstration.

Apart from the successfully working program, this project is still weak in terms of

producing a complete and safe surveillance system. It emphasises more on enhancing the

GUI design and looks. It can only mouitor and control pins available on the PIC16F84.

Further enhancement on this project can be made to improve the system, and come up

with a better presentable, secure and reliable system with additional functions.

Improvement on the Home Guard System can be recommended in these two modules, the

window module and prototype module.

43

The window module basically consists of the GUI development and the management of

the control functions. The GUl can be improved by designjng better images, create better

arrangement of components and using more sophisticated Java Look-And-Feel utilities.

Apart from viewing the home appliances in the available module display, list or table

display can be added. This display can list down all the appliances' states and control

components in one table to make it easy for the user to monitor and control all the

appliances only in one frame. Multimedia utilities can also be added to the system, such

as video monitoring and audio assigmnent in case of emergency. A more user friendly

software can also be created by adding a wizard that helps user on how to use and

configure this software.

As for the management of the control functions, themes can be used to set several

appliances to behave in certain ways. Besides monitoring and controlling the home

appliances individually, a theme can be design to set desired behaviour of desired

appliances at a desired time, and these properties can be saved and uploaded when need

by the user. The software system can also be extended to function over the internet

services, since Java programming language already provides an easy path to program a

server/client application. A distance home surveillance monitoring and controlling is

possible via the internet network. The user can then install the software at the office, and

still can monitor his home via the internet network.

For the prototype module, several enhancements can be carried out. Besides triggering

LEDs, the PIC pins can be connected to trigger real home appliances. In this case, power

relays is needed to be considered and applied. The PIC can also be used to trigger

external alarm system.

Since the PIC pins are limited, the appliances to be monitored and controlled are also

limited. Therefore, the number of inputs and outputs to be monitored and controlled can

be increased by increasing the amonnt of PICs used. An example design circuit for using

2 PICs are shown in Figure 5.1. This will enables the system to control more home

appliances.

44

4MHz OSC

'"

0.1<A""l=

' -·--"'..! lu lcrRB4;ReS:~;Ret. t

. : +5V

' ~-~.tfl)~_tor
)\A2-, RA3iRS1 ;_!l£12; RB3. f ;,;:.~~~

Figure 5.1: Recommended schematic for prototype module using 2 PICs.

An extended protocol on the serial data can also be developed to enables the usage of

more than one PTC. For example, instead of storing 2 bytes of data to be processed, the

buffer can be set to store 3 bytes of received serial data. The first byte will determine

whether the command is intended for the first PIC or the second PIC. The following 2

bytes will functions the same as discussed in the previous chapter, which is to determine

which pin to trigger and how to trigger it. An extended protocol for the recommended

schematic in Figure 5.1 can be summarized as shown in Figure 5.2.

45

A

PIC 1 process
data received

Byte2

Determine which
pin to trigger

' ' ... ____ , etc.
'

Store 3 bytes in buffer

Byte 1

,------ .t_--- ---
Lights

(Eg: Pin RA2) ' ' ' ' I .. - • ---------- ~

B

PIC 1 passes the data
received to PIC 2

PIC 2 process
data received

Byte 3

Figure 5.2: Serial data processing for 2 PICs.

46

REFERENCES

1. H. M. Deitel and P. J. Deitel; Java: How To Program; Prentice Hall; 4111 Edition;

USA;2002.

2. Russel Winder and Graham Roberts; Developing Java Software; John Wiley &

Sons; 151 Edition; UK; 1998.

3. Ian Sommerville; Software Engineering; Addison-Wesley; 61
h Edition; USA;

2001.

4. Joe Wigglesworth and Paula Lumby; Java Programming: Making the Move from

C++; Course Technology; 1st Edition; USA; 1999.

5. Peter VanDer Linden; Just Java2; Sun Microsystems; 4th Edition; USA; 1999.

6. David M. Geary; Graphic Java 2: Mastering the JFC, Volume II: Swing; Sun

Microsystems; 3rd Edition; USA; 1999.

7. Elliotte Rusty Harold; Java I/0; O'Reilly; 1st Edition; Beijing; 1999.

8. Y. Daniel Liang; Introduction to Java Programming with JBuilder 4/5/6; Prentice

Hall; 2th Edition; USA; 2002.

9. www.sun.com

10. www.softwaredev.earthweb.com

11. www.developer.java.sun.com

12. www.javaworld.com/index.html

13. www.Jguru.com

47

15. www.smarthome.com

16. j:lttp:!liava.sun.com/getjava/help.html

17. http://java.sml.com/j2se/1.3/docs/apilindex.html

18. http://www.arcelect.com/rs232.htm

19. http://www.boondog.com//tutorials/pic16F84/pic16f84.html

20. http://www.mikroelektronika.co.vulenglish/productlbooks/picbasicbook/06.htm

21. http://www.picant.com/c2c/examples.html

48

~

NAME
IDNUMBER

Mumi Binti Masri
616

1.0 Selection of Proiact Topic
- FYP Briefing, approval on Project Title and Synopsis
- Selection and Prioritisatlon of Proiect Titles
- Allocation of Approved Project Titles

2.0 Preliminary Research work
- Introduction
-Obiective
- List of References I Literature
- Proiect Plannino
...

3.0 Submission of Preliminary Report

4.0 Proiect Work
- Reference I Literature
- Research I Programming

5.0 Submission of Progress Report

6.0 Proiect Work Continue
- Research I Programming

7.0 Submission of Interim report Final Draft

8.0 Oral Presentation

9.0 Submission of Interim Report

NOTE: 0 Milestone

------- --------

I I

0

0

- Process

APPENDIX A: GANTI CHART FOR THE FIRST SEMESTER OF 2 SEMESTER OF FINAL YEAR PROJECT

--- .- -------

.

~
;;:;!
>

0

0

0

v.
0

NAME
IDNUMBER

: Murni Binti Masri
:616
Software Implementation

1.0 Research
- Revision on last semester's material
- Find more examoles for aoolicallon desian
- Study the examples

2.0 Window desian
- Desian the main window
- Construct the main window

3.0 Submission of Progress Repott 1

4.0 Action/Control DesiQn
- Assian actions for the components
- lntearetethe actions

5.0 Hardware communication
- Establish communication with hardware
- Integrate communication functions with windows

6.0 Submission of Progress Reporl2

7.0 Prototype Design
- Design prototype for demonstration
- Construct the prototype
- lntearete the prototype wHh the aolltication

8.0 Final Reporl Completion

9.0 Submission of Final Report/Disserlation

10.0 Preparation fOr Oral Presentation

11.0 Oral Presentation

12.0 !Submission of Extended Abstract

NOTE: 0 Milestone

m1rr~

0

0

- Process

APPENDIX B : GANTT CHART FOR THE SECOND SEMESTER OF 2 SEMESTER FINAL YEAR PROJECT

-- - ----"-

~
S<
=

0

0

0

APPENDIXC

PlnN..,.. DIP $01C IIOIP IMler
O.ooriptlon No. No. lyjM -ryp.

OSC1/CLKIN 16 1e I STICMOSI'I Ostllla!OI cty.;tal ~nai ~oek liOUrCIIlnPUI.

OSC21CLKOUT 15 15 0 - Os~ etyS!II ~- Conneel$ to cryslal or r<1$00111Dr ;n cryst8l
ll$oill8101 mOde. lfl RC ll'H)(I&, OSC2 pin 001PU1S CLKOUT whldl has
114 1M frequency of OSCI, end <!<~notes flltl instructiOn cycle"'"'·

wmt 4 4 liP ST Mootor c~ (..m) inPUVProgra..,;ng 1101tage input ihi$ pin 1$ an
~""'tow M$$110 lhe ~ ...

PORI'A Is$ bi--onall/0 pori.

RAO 17 17 uo TTL

RAI II! 18 uo TTL

RA2 1 I 110 TTL

RAJ 2 2 110 TTL

RA4/TOCKl J 3 110 ST Can alsO lle $19cle!l to lle lha ClOCk Input to the TMRO Umaff
cOu""''· OullM Is..,.,... d<llin IYl'f>.

PORTB I$ a I>Miil'lltll<moliiO pott PORT£!...,.,.. §Oitwoto fJit>
gn>mmod IQr lnlt!m!llwaok jl<Jil.up on all input$.

RBOIINT 6 6 110 nusrl'l RBOIINT can alsolle ~ed $0 on OX!emalin!O<fl.JI)I pin.

RBI 7 7 110 TTL
RB2 8 8 110 TTL

RB3 9 9 110 TTL

RB4 10 10 uo TTL tnterrt.l)t nn change pin.

RB5 11 11 uo TTL lnlerrOJPt nn <hango pin.

RB& 12 12 uo nusrC>i lnrerrwt on mange pin. Serial pr~-.

RB7 13 13 110 nusrl>i lnlerrlflt on <hango pin. SoriBI progt~••nmlng -

Vss 5 5 p - GtoUI>d ,..,.,..,. IQr logic end 110 pin$.

VDD 14 14 p - Pooitive $Ullllly lor logiC ..., 110 pin$.

- - - -L"Jll!nd. I- input 0 -~ 110 - lnpU1/Qulpul P- flQWOf

- = NOI used TTL = TTL inpul ST = Schmitt Trigj)cr inpul
Note 1: Tllisl>!iller is a Scl1ml1l Trigger input wlleo oonf!Qured (l'l flltl-mol inler"'l'l·

2: Tllis buller 1$ a SchmiU Triggar inpU1wlleo used in serl>li programming mOde.
3: Thisl>!iller Is a Schmln Triggor inpulwhOA oonfigured m RC oo-mode and a CMOS inpllt othorwiso.

Appendix C: PlC16F8X Pinout Description.

51

APPENDIXD

EVENT-DRIVEN PROGRAMMINGl8J

a) Event and Event Source

When Java graphics programs are run, the program interacts with the nser and the events

drive its execution. An event can be defined as a signal to the program that something has

happened. The event is generated either by external user actions, such as mouse

movements, mouse button clicks, and keystrokes, or by the operating system, such as a

timer. The program can choose to respond to or ignore the event.

The GUI component on which an event is generated is called the source object. For

example, a button is the source object for a clicking-button action event. An event is an

instance of an event class. The root class of the event classes is java.utiLEventObject.

The hierarchical relationship of the event classes are shown in Figure D.l.

An event object contains whatever properties are pertinent to the event. The source object

of the event can be identified by using the getSource() instance method in the

EventObject class. The subclasses of EventObject deal with special types of events, such

as button actions, window events, component events, mouse movements, and keystrokes.

Table D.llists external user actions, source objects, and event types generated.

52

ActionEvent ContainerEvent

AdjustmentEvent FocusEvent

ComponentEvent lnpu!Event

ltemEvent PaintEvent

TextEvent WindowEvent

List8electionEvent

Figure D.l: An event is an object of the EventObject class.

Table D.t: User Action, Source Object, and Event Type

l "t'l \(11011 Sout <~· OhJlCl I 'c·nt I' Jll' t.rn('t ,llcd

Click a button JButton ActionEvent

Change te><t JTe><tCompouent Te><tEvent

Press return on a te><t field JTe><tField ActionEvent

Select a new item JComboBox JtemEvent, ActionEvent

Select item(s) JList ListSelectionEvent

Click a check box JCheckBox ItemEvent, ActionEvent

Click a radio button JRadioButton ItemEvent, ActionEvent

Select a menu item JMenuitem ActionEvent

Move the scroll bar JScroi!Bar AdjustmentEvent

Window opened, closed, Window WindowEvent

iconified, deiconified, or closing

Component added or removed Container ContainerEvent

from the container

Component moved, resized, Component ComponentEvent

hidden, or shown

Component gained or lost focus Component ComponentEvent

Key released or pressed Component KeyEvent

Mouse pressed, released, clicked, Component MouseEvent

entered, or exited

Mouse moved or dragged Component MouseEvent

53

b) Event Registration, Listening, and Handling

Java uses a delegation-based model for event handling. An external user action on a

source object triggers an event. An object interested in the event receives the event. Such

an object is called a listener. Not all objects can receive events. To become a listener, an

object must be registered as a listener by the source object. The source object maintains a

list of listeners and notifies all the registered listeners by invoking the event-handling

method, known as the handler, on the listeners object to respond to the event, as shown in

FigureD.2.

Trigger an event

Generate
an event Notify listener

Figure D.2: Event-handling.

For example, if a JFrame object is interested in the external events on a JButton source

object, it must register with the JButton object. The registration is done by invoking a

method from the JButton object to declare that the JFrame object is a listener for the

JButton object. When the button is clicked, the JButton object generates an ActionEvent

and notifies the listener by invoking a method defined in the listener to handle the event.

Registration methods are dependent on event type. For ActionEvent, the method is

addActionListener. In general, the method is named addXListener for XEvent.

To become a listener, the listener must implement the standard handler. The handler is

defmed in the corresponding event-listener interface. Java provides a listener interface for

every type of graphics event. For example, the corresponding listener interface for

54

ActionEvent is ActionListener, each listener for ActionEvent should implement the

ActionListener interface.

Table D.2 lists event types, the corresponding listener interfaces, and the methods

defmed in the listener interfaces.

Table D.2: Events, Event Listeners, and Listener Methods
I \('Ill (LJS<o; ll'\1('11('1 lnterLH(' 11-.ltiH'! \J(lhods(ll.lnd!rJs)

ActionEvent ActionListener actionPerfunned (ActionEvent e)

IternEvent ItemListener itemStateChanged (IternEvent e)

WindowEvent WindowListener windowC!osing (WindowEvent e)

windowOpened (WindowEvent e)

windowlconified (WindowEvent e)

windowDeiconified (WindowEvent e)

windowClosed (WindowEvent e)

window Activated (WindowEvent e)

windowDeactivated (WindowEvent e)

ContainerEvent ContainerListener componentAdded (ContainerEvent e)

componentRemoved (ContainerEvent e)

ComponentEvent ComponentListener componentMoved (ComponentEvent e)

componentHidden (ComponentEvent e)

componentResized (ComponentEvent e)

componentShown (ComponentEvent e)

FocusEvent FocusListener focus Gained (F ocusEvent e)

focusLost (FocusEvent e)

TextEvent TextListener textValueChanged (TextEvent e)

KeyEvent Key Listener keyPressed (KeyEvent e)

keyReleased (KeyEvent e)

keyTyped (KeyEvent e)

Mouse Event MouseListener mouse Pressed (MouseEvent e)

mouseReleased (MouseR vente)

mouseEntered (MouseEvent e)

mouseExited (MouseR vent e)

mouseClicked (MouseEvent e)

55

MouseMotionListener mouseDragged (MouseEvent e)

mouseMoved (MouseEvent e)

AdjustmentEvent AdjustmentListener adjustmentValueChanged (AdjustmentEvent e)

c) Handling Events

A listener object must implement the corresponding listener interface. For example, a

listener for a JButton source object must implement the ActionListener interface. The

ActionListener interface contains the actionPerformed(ActionEvent e) method. This

method must be implemented in the listener class. Upon receiving notification, it is

executed to handle the event.

An event is passed to the handling method. The event object contains information

pertinent to the event type. Useful data values can be obtain from the event object for

processing the event. For example, e.getSourceO can be used to obtain the source object

in order to determine whether it is a button, a check box, a radio button, or a menu item.

56

APPENDIXE

THREAos!81

A thread is a flow of execution, with a beginning and an end, of a task in a program.

When program executes as an application, the Java interpreter starts a thread for the

main() method. Additional threads can be created to run concurrent tasks in the program.

Each new thread is an object of a class that implements the Runnable interface or

extends a class that implements the Runnable interface. This new object is referred to as

a runnable object. Threads can be created either by extending the Thread class or

implementing the Runnable interface. Both Thread and Runnable are defined in the

java.lang package. Thread actually implements Runnable.

The Runnable interface is rather simple. It contains just the run() method. However, this

approach works well if the user thread class inherits only from the Thread class, but not

if it inherits multiple classes, as in the case of an applet. We need to implement this

method to tell the system how our thread is going to nm. Figure E.l illustrates the key

elements of a thread class that implements the Runnable interface, and how to use it to

create a thread in a class.

//Custom lhread class
public class Custom Thread
implements Runnable

{ ...
puhlk CustomThrf".ad(, ..)
{ .

l
f jfmp1Emtenl.s lhe mn method in Runnable
publit: void runO
{
f /Tell the ~ystcm how to run custom thrt':<ld

//Client class
public class Client
{ ...
public someMethodO
I ..
f/Ct?.alean inslan(:e of CuslomThread
CustomThw.ad l'.uslomThrE>.ad

~------·-- ·-· . ._, ""'new CustomThread(...);

(jCw~te a thrP.ad
Thread thread= new Thrcad(custom1hrcad)i

//Siarla thread
lhmad.slarl();

LL------------.! L ------------1 .. ,
Figure E.l: Define a thread class by implementing the Runnable interface.

57

Threads can be in one of five states: new, ready, running, blocked, or finished, as

described in Figure E.2. When a thread is newly created, it enters the new state. After a

thread is started by calling its start() method, it enters the ready state. A ready thread is

runnable but may not be running yet. The operating system has to allocate CPU time to it.

Thread created

run yield, or time
expired

stop

suspend,
sleep. or

wait

stop or
complete

Figure E.2: Thread states.

stop

resume,
notify or
notify All

When a ready thread begins executing, it enters the running state. A running thread may

enter the ready state if its given CPU time expires or its yield() method is called. A thread

may enter the blocked state (i.e., become inactive) for several reasons. lt may have

invoked the sleep(), wait(), or suspend() method, or some other thread may have invoked

its sleep() or suspend() method. It may be waiting for an I/0 operation to finish. A

blocked thread may be reactivated when the action inactivating it is reversed. For

example, if a thread has been put to sleep and the sleep time has expired, the thread is

reactivated enters the ready state. Finally, a thread is fmished if it completes the

execution of its run() method or if its stop() is invoked.

The isAliveO method is used to find out the state of a thread. It returns true if a thread is

in the ready, inactive, or running state; it returns false if a thread is new and has not

started or if it is finished.

58

Java assigns every thread a priority. By default, a thread inherits the priority of the thread

that spawned it. You can increase or decrease the priority of any thread by using the

setPriority method, and you can get the thread's priority by using the getPriority

method. Priorities are numbers ranging from 1 to 10. The Thread class has int constants

MIN_PRIORITY, NORM_ PRIORITY, and MAX_ PRIORITY, representing 1,5, and

10, respectively. The priority of the main thread is Thread.NORM _PRIORITY.

The Java runtime system always picks the currently mnnable with the highest priority. If

several runnable threads have equally high priorities, the CPU is allocated to all of them

in round-robin fashion. A lower-priority thread runs only when no higher-priority threads

aremnning.

59

APPENDIXF

C MAIN PROGRAM CODE FOR PIC16F84

!!~~~·~~~~~~·~~~~~~·~~~~~~~==~~~~=~~~·····

//Author Murni Masri
//File Name pushbuttonl.c
//Description This program uses PIC16F84 to handle serial data input. The data is
II translated and used to trigger designated pins. It monitors changes on
II pins to trigger other designated pins, and transmit serial data.
!!~~~~~~~~~~~~·=·~·~·~~~~~~~·~~~~~~~~~~·~~~~~·~~~~·~~~~~~~·~~~~~~··~~~~~~~·~~~·~·~~~·~···

// mikeslib.c

#ifndef MikesLibrary
#define MikesLibrary

II Following is the software Driven serail driver written by HI-TECH

#ifdef SERIALSOFTWARE
#ifndef TxPort

#define TxTris TRISA
#define TxPort PORTA
#define TxBit 1

#endif

#ifndef Rx.Port
#define RxTris TRISA
#define RxPort PORTA
idefine RxBit 0

#endif

#ifndef XTAI,
#define XTAL 4000000

#endif

#ifndef BRATE
#define BRATE 9600

#endif

#define DLY 3
#define TX OHEAD 13
#define RX OHEAD 12
#define RSDELAY(ohead) (((XTAL/4/BRATE} - (ahead}} /DLY)

II Serail Initialisation Routine

static bit TxData
static bit RxData
static bankl bit TxTRIS
static bankl bit RxTRIS
bit TxRxini t ~ 0.

void InitSerial (void)
{

@ PORTBIT(TxPort,
@ PORTBIT (RxPort,
@ PORTBIT (TXTris,
@ PORTBIT(RxTris,

TxBit);
RxBit};
TXBit);
RxBit);

TxData 1;)) set pin high to start with

TxTRIS 0;
RxTRIS 1;

TxRxlnit ~ 1;

void putch (char c)
{

unsigned char dly, bitno;

60

//TXD
//PXD

Pin
Pin

CLRWDT (} i

bitno = 11;

if {TXRxinit == 0)
{

InitSerial ();

TxData "' 0;
bitno = 12;
do
{

I I start bit

dly = RSDELAY{TX OHEAD); II wait one time
do -

{ //nix
}while(--dly);
if(c & 1) TxData = 1;
if(! (c & 1)) TxData; 0;
c = (c >> 1) I Ox80;

while (--bitno);

II Software Getch Routine

char getch(void)
{

unsigned char c, bitno, dly;
if {TxRxinit == 0)
{

InitSerial ();

for(;;)
{

while(RxData) { CLRWDT(); continue; } II wait for start bit
dly: RSDELAY(3) / 2;
do ; /*nix* I
while { --dly};
if (RxData) continue; I I was just noise
bitno = 8;
c = 0;
do
{

dly = RSDELAY{RX OHEAD);
do ; //nix -
while {--dly);
c = (c >> 1) ! (RxData << 7);

while (--bitno);
return c;

#endif
#endif

II End of Serial Software routines

II main.c --------~--

#include <16F84.H>
#define RS2 32 XMIT PIN Al
#define RS232-RCV PIN Ao
#u.se delay(cl0ck=4000000) /14MHz OSC
#use rs232{baud=9600, xmit~PIN_Al, rcv=PIN_AO)

#include <ctype.h>

II Serail Port Settings -must be before MikesLib
#define SERIALSOFTWARE
#define TxPort PORTA
#define RxPort PORT
#define TxBit
#define RxBit 1
#define TxTris TRISA

61

#define RxTris TRISA

#define BUFFER SIZE 32
byte buffer[BUFFER SIZE);
byte next_in c O; -
byte next out = 0;

#int ext
void-serial_isr()

#int rb
void checkrb (}
{

if(INPUT(PIN B4})
{ -

if(INPUT(PIN_A2})
{

OUTPUT LOW(PIN A2) i
printf("LO") ,· -

else if{!INPUT(PIN A2))
{ -

OUTPUT HIGH(PIN A2);
printf("Ll"); -

else
break;

else if(INPUT(PIN_B5))
{

if (INPUT (PIN A3})
{ -

OUTPUT LOW(PIN A3);
printf("FO''); -

else if(!INPUT(PIN_A3))
[

OUTPUT_HIGH(PIN_A3);
printf("Fl");

else
break;

else if(INPUT(PIN_B6))

if(INPUT(PIN_Bl))
{

OUTPUT LOW{PIN_Bl);
printf("RO");

else if(!INPUT(PIN_Bl))
{

OUTPUT HIGH(PIN Bl);
printf("Rl"); -

else
break;

else if(INPUT(PIN_B7))
[

if{INPUT(PIN_B2)}
{

OUTPUT LOW(PIN_B2);
printf("SO");

else if(!INPUT(PIN_B2))

62

OUTPUT HIGH (PIN B2) ;
printf("Sl"); -

else
break;

else
break;

delay_ms (200);

#define bkbhit (next_in!=next_out)

byte bgetc {)
byte c;

while (!bkbhit)
c=buffer[next out];
next_out~(next_out+l) % BUFFER_SIZE;
return(c);

void cut (byte long_array[ZJ)
I

int e;
byte part[2];

for(e=O; e<2; e++)
{

memcpy(&part[e], &long_array[e],l);

if(pa.rt[O] 'L')
I

if(part[l) == '1')
OUTPUT HIGH{PIN A2);

else if{pdrt[l] ==-'0')
OUTPUT_LOW(PIN_A2);

else if(part[O] == 'F')
{

if(part[l] == '1')
OUTPUT HIGH (PIN A3};

else if(part[ll ==-'0')
OUTFUT_LOW(PIN_A3);

else if(part[OJ ==" 'R')

if{part[l] == '1')
OUTPUT HIGH{PIN Bl);

else if(p~rt[l] ==-'0')
OUTPUT_LOW(PIN_Bl};

else if{part[O] == 'S')
{

if(part[l) == '1')
OUTPUT HIGH(PIN B2);

else if(part[l] ==-'0')
OUTPUT_LOW(PIN_B2);

else if{part[O] == 'D')

if(part[l] == '1' J
OUTPUT HIGH(PIN 83};

else if(p~rt[l] ==-'0')
OUTPUT_LOW(PIN_B3);

else if(part[O] == 'W')
I

63

if(part[11 == '1')
OUTPUT HIGH (PIN BO) ;

else if(p;rt[l] ==-'0'}
OUTPUT_LOW(PIN_BO);

main()
(

else
break;

int a, b;
char c;

byte read[2];

II 0 ~outputs ; 1
set_tris_a{OxOO);
set_tris_b(OxFO);

OUTPUT LOW{PIN A2);
OUTPUT-LOW(PIN-A3);
//OUTPUT_LOWIP!N_A4J;
OUTPUT _LOW {PIN_ Bl) ;
OUTPUT_LOW(PIN_B2);
OUTPUT LOW(PIN B3);
OUTPUT-LOW(PIN -B4);

OUTPUT=LOW(PIN=BS);
OUTPUT_LOW(PIN_B6/;
OUTPUT_LOW(PIN_B7);

OUTPUT HIGH(PIN BO);
delay li\s(lOOO);-

inputs
I 10000 0100
I 11111 oooo

printf("PIC connected. \r\n");
OUTPUT LOW(PIN BO);
delay_ffis(1000l7

enable_interrupts(global);
enable_interrupts(RB_CHANGE);

while(c ~ getch{))
(

while (c != ',.., J
(

for(a=O; a < 2; a++)
(

read[a] = c;
II cannot have any other command to avoid delay in receiving next character
c = getchO;
if (c ="" •,...• l
break;

c = 1
"'

1 i

putc(read[O]);
putc(read[l]);

cut (read);
c = 'e';

printf("\n"J;

64

APPENDIXG

JAVA CLASSES PROGRAM CODE

lloooooooo~~,~~~~~oo~~~~o~ooo~o~~oooo~~ooo~ooooooooooooooooooooooo~~oooo~oo~oooooo~ooooo~

I /Author
//File Name
//Description
II

Murni Masri
MainFrame. java
This program is an application with advance GUI.
It can communicate with a serial port and handle

II available on the serial port.
signals and data

lloooooooooooooooooo~~oooooo~~oooooo=======oo=oo===oo======o=ooo=o==oo==oo=ooooo==="""===

import java.awt.*;
import java.awt.event.*;
import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.GridLayout;

import java.io.*;
import java.io.File;
import java.io.FileinputStream;
import java.io.Fileoutputstream;
import java.io.IOException;
import java.io.FileNotFoundException;

import javax.swing.*;
import javax.swing.border.*;
import javax. s\'dng. Image Icon;
import javax.swing.event.*;
import javax.swing.border.*;
import javax.swing.tree.*;
import javax.swing.tree.TreePath;

import java.util.*;
import java.util.TooManyListenersException;
import java.util.StringTokenizer;
import java.util.Properties;
import java.util.Enumeration;
import javax.comm.*;

public class MainFrame extends JF~ame implements ActionListener
{

final int HEIGHT ~ 550;
final int WIDTH ~ 410;
private container container;

private JButton jbOpen;
private JButton jbClose;
private JPanel jpButton;
private JMenuBar menubar;
private JMenu connectionMenu;
private JMenuitem jmiOpenPort, jmiClosePort;

private SerialParameters parameters;
private SerialConnection connection;
private JPanel jpMessage;
private JTextAiea messageAreaQut;
private JTextArea messageAxeain;

private NyButton myButton;
private Status status;

pLivate JPanel jpcenter;
private JPanel jpTab;
private JPanel jpTree;
private JTabbedPane jtpTabPane;
private JPanel jpModule;

65

private JPanel jpList;
private JTree jtTree;

private IntroView introview;
private Genera!View mGeneralView;
private KitchenView mKitchenView;
private LivingView roLivingView;
private DiningView mDiningView;
private BedroomViewl mBedroomViewl;
private BedroomView2 mBedroomView2;
private BedroomView3 mBedroomView3;

private JScrollPane jspSend;
private JScrollPane jspReceive;
private TreePanel tree;
private UpperPanel clock;
private TimerThread timerthread;
private JPanel jpNo.rth;
private JLabel jlLogo;

String general = "[root, General]";
String living= "[root, Living Room)";
String dining = "[root, Dining Room]";
String kitchen= "[root, Kitchen)";
String bedrooml "[root, Bedroom 1] ";
String bedroom2 "[root, Bedroom 2] ";
String bedroom3 "[root, Bedroom 3]";

cardLayout cardlayout;
MyAccessPad access;

Dimension tabsize =new Dimension(600,700};
Dimension messagesize =new Dimension(150,250);
Color lightgray ~new Color{225,225,225);
Color selected~ new Color(130,130,253);
Color lightgreen ~new Color(0,255 1 64};

public MainFrame()
[

setTitle(11 Home Guard System");
container= getContentPane();

menubar "" new JMenuBar {) ;
connectionMenu"" new JMenu{"Connection 11

};

jmiOpenPort""' new JMenuitem("Open Serial Port");
jmiClosePort "" new JMenuitem{"Close Serial Port");
jmiClosePort.setEnabled(false};
connectionMenu.add(jmiOpenPort);
connectionMenu.add(jmiClosePort);
menubar.add(connectionMenu);
setJMenuBar{menubar};

jmiOpenPo.t:t.add.ActionListener (this);

jmiClosePort.addActionListener(this};

messageAreaout ~new JTextArea();
messageAieaOut.setBackground(selected};
messageAreaout.setForeground(color.white);
messageAreaOut.add(new JScrollPane{}};

messageAreain = new JTextArea (} ;
messageAreain.setBackground(Color.black);
rnes5ageAreain.setForeground(lightgreen);

messageAreain.setEditable(false};

jspSend "" new JScrollPane (messageAreaOut);
jspsend. setBorder (new TitledBorder ("Send Message")};

jspReceive =new JScrollPane(messageAreain);
jspReceive. setBorder (new TitledBorder ("Received Message")) ;

66

jpMessage = new JPan.el {};
jpMessage.setLayout(new GridLayout(2,1,20,20)};
jpMessage.setPreferredSize(messagesize);
jpMessage.add(jspSend);
jpMessage.add(jspReceive);

new SerialParameters(); parameters
connection new Serialconnection(this, parameters, messageAXeaOut, messageArearn);

status= new Status();
introview = new IntroView{);
mGeneralView =new GeneralView(this, connection, status);
mGeneralView.setDoubleBuffered(true);
mKitchenView =new KitchenView(this, connection, status);
mKitchenView.setDoubleBuffered(true);
mLivingView = new LivingView (this, connection, status);
mLivingView.setDoubleBuffered(true);
mDiningView = new Diningview(this, connection, status);
mDiningView.setDoubleBuffered(true);
mBedroomViewl =new BedroomViewl(this, connection, status);
mBedroomViewl.setDoubleBuffered{true);
mBedroomView2 =new BedroomView2(this, connection, status);
mBedroomView2.setDoubleBuffered(true};
mBedroomView3 =new BedroomView3(this, connection, status);
mBedroomView3.setDoubleBuffered{true);

jpModule =new JPanel{};
jpModule.5etMaximumsize(tabsize);
cardlayout =new CardLayout{);
jpModule.setLayout{cardlayout);
jpModule.setBorder(new BevelBorder(BevelBorder.LOWERED));

jpModule. add (mKi tchenView, "Ki tchen11) ;

jpModule. add (mGeneralView, "General") ;
jpModule.add(rnLivingView, "Living Room'');
jpModule.add(mDiningView, "Dining Room");
jpModule.add(mBedroomViewl, "Bedroom 1");
jpModu.le.add(mBedroomview2, "Bedroom 2");
jpModule.add(mBedroomView3, "Bedroom 3");
jpModule.add(introview, "Welcome to Home Guard system");

introview.setVisible(true);
mKitchenView.setVisible(false);
mGeneralView.setVisible(false);
mLivingView.setVisible(false);
mDiningView.setVisible{false);
mBedroomViewl.setVisible(false);
mBedroomView2.setVisible{false);
mBedroomView3.setVisible(false);

jp~enter =new JPanel(};
jpCenter. setLayout (new BorderLayout (5 1 5));

jpcenter.setBorder(new EmptyBorder(5,5,5,5)};
jpCenter.setBackground(new Color{180,180,194));

tree= new TreePanel(this);
jpTree ~new JPanel();
jpTree.setLayout(new BorderLayout(S,S));
jpTree.setBackground(Color.white);
jpTree.setBorder{new LineBorder(Color.gray, 2));

jpTree. add (tree, BorderLayou·t.NORTH);
jpTree.add(jpMessage, BorderLayout.SOUTH);

clock= new UpperPanel();
j !Logo "" new Jtabel t);
jlLogo. seticon(new Imagercon ("image/logo_ company. jpg")) ;
jlLogo.setVerticalAlignment(SwingConstrults.TOP};
jlLogo.setverticalTextPosition(swingconstants.BOTTOM);
jpNorth =new JPanel();

67

jpNorth.setLayout(new BorderLayout\10,10)};
jpNorth.setBackground(new Color(l80,180,194));
jpNorth.add{jlLogo, BorderLayout.WEST);
jpNorth.add(clock, BorderLayout.CENTER);

jpCenter.add(jpNorth, BorderLayout.NORTH};
jpCenter.add(jpModule, BorderLayout.CENTER);
jpCenter.add(jpTree, BorderLayout.WEST);
container.setLayout(new BorderLayout());
container.add(jpCenter, BorderLayout.CENTER};

Dimension screenSize"" Toolkit.getDefaultToolkit().getScreenSize();
int WIDTH = screenSize.width;
int HEIGHT ~ screenSize.height - 30;
setLocation(O,O);
setSize(WlDTH, HEIGHT);

timerthread =new TimerThread(clock);
timerthread.start();

access= new MyAccessPad(this);
access.setDefaultCloseOperation{JFrame.EXIT ON CLOSE);
this.setVisible(false); -
access.setVisible{true);

public static void main(String args[})
{

try
{

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

catch(Exception e)
{

e.printstackTrace();

MainFrame frame= new MainFrame();
frame.setDefaultCloseoperation{JFrame.EXIT~ON_CLOSE);

frame.setVisible(false);

11----------------------------------- Action Performed---------------------------

public void actionPerformed(ActionEvent e)
{

String cmd = e.getActioncornmand();

if (cmd.equals("Open Serial Port"))
{

portopened () ;

if (cmd.equals("Close Serial Port")}
{

portClosed () ;

//------------------------------Methods--

public void portOpened()
{

jmiOpenPort.setEnabled(false);
try [

connection.openConnection();

catch (SerialconnectionException e2) {

68

JOptionPane.showMessageDialog (this,

jmiOpenPort.setEnabled(true);

jmiClosePort.setEnabled(true);

public void portClosed()
{

connection.closeConnection(};
jmiopenPort.setEnabled(true);
jmiClosePort.setEnabled(false};

"Error opening port,"+
e2.getMessage() + 11

•
11 +

"Select new settings, try again.",
"Port Error",
JOptionPane.ERROR_MESSAGE);

class CloseHandler extends WindowAdapter
{

MainFrame sd;

public CloseHandler (MainFrame sd)
{

this. sd "" sd;

public void windoWClosing (WindowEvent e)
{

sd. shutdown {) ;

private void shutdown ()
{

connection.closeConnection();
system. exit{!);

public void setLivingView()
{

this.cardlayout.show(jpModule, "Living Room");

public void setDiningView()
{

this. cardlayout. shm·1 (jpModule 1 "Dining Room") ;

public void setKitchenView{)
{

this. cardlayout. show (jpModule, "Kitchen");

public void setGeneralView()
{

this. cardlayout. show {jpNodule, "General");

public void setBedroomviewl ()
{

this. cardlayout. show (jpModule, "Bedroom 1");

public void setBedroomView2{)
{

this. cardlayout. show {jpModule, "Bedroom 2") ;

69

public void setBedroomView3()
{

this.cardlayout.show(jpModule, "Bedroom 3"};

II ==========,===== End of methods involved directly with MainFrame ="""'""'===============

11----------------------- MyButton ---

class MyButton extends JPanel implements ActionListener
{

private MainFrame parent;
private SerialConnection connection;
private JRadioButton buttonon;
private JRadioButton buttonOff;
private Icon icon;
final int HEIGHT = 100;
final int WIDTH = 230;

public MyButton(MainFrame parent, Seria!Connection connection)
{

this.parent = parent;
this.connection = connection;

buttonOn =new JRadioButton{"ON");
buttonon. seticon {new Image Icon(" image/none. jpg"));
buttonOn. setRollovericon (new Image Icon {"image/blurmetal green. jpg"));
buttonOn.setSelectedicon(new Imageicon("iroagelalien_green.jpg"));

buttonOff = new JRadioButton ("OFF");
buttonOff. seticon (new Imageicon {"image/none. jpg"));
buttonOff. setRollovericon (new Image Icon ("imagelblurmetal red. jpg") } ;
buttonOff. setSelectedicon (new Image Icon ("image/alien_red-:-jpg"));

ButtonGroup btg =new ButtonGroup();
btg.add(buttonOn);
btg.add(buttonOff);

buttonOn.addAction1istener(this);
buttonOff.addActionListener(this);

setLayout(new FlowLayout(FlowLayout.CENTER,10,10));
add (but tenon};
add (buttonOff};

public void actionPerformed(ActionEvent e)
{

String cmd = e.getActionCommand();

if {connection.isOpen(})
{

if (cmd.equals("ON"}) //either one can
//if (e.getSource() == buttonOn}
{

connection.settingRTS(true);

if (crod.equals (11 0FF"})
//if (e.getsource() == buttonOffl
{

connection.settingRTS(false);

70

} //end of MyButton ---~-~~---------------------------------~--------------------

11----------------------- SerialConnection -~---

class SerialConnection implements SerialPortEventListener,Co:rmnPortOwnersh.ipListener
I

private MainFrrume parent;
private JTextArea messageAreaOut;
private JTextArea messageAreain;
private SerialParameters parameters;
private Outputstream os;
private InputStream is;
private KeyHandler keyHandler;
private ComrnPortidentifier portid;
private SerialPort sPort;
private boolean open;
private MyButton myButton;

public SerialConnection(MainFrame parent, SerialParameters parameters,
JTextArea messageAreaOut,JTextArea messageAreain)

this.parent = parent;
this.parameters = parameters;
this.messageAreaout = messageAreaout;
this.messageArearn = messageAreain;
open "" false;
myButton = new MyButton{parent, this);

public void openconnection () throws SerialConnectionException
I

try [
portid = coromPortidentifier. getPortidentifier {parameters. getPortName ()) ,•
} catch (NoSuchPortException e) {
throw new serialConnectionException(e.getMessage());
J

try
sPort = {Serial Port) port! d. open("MainFrame", 5000);
} catch (PortinUseException e) {
throw new SerialConnectionException {e. getMessage ());

try
3etConnectionParameters{);
} catch (SerialConnectionException e) (
sPort. close ();
throw e;

J

try
os = sPort.getOUtputStream();
is= sPort.getinputStream();
} catch (IOException e) (
sPort. close{) ;
throw new serialConnectionException("Error opening i/o streams");
J

keyHandler = new KeyHandler (os};
messageAreaOut.addKeyListener(keyHandler);

try {
ePort.addEventListener(this);

71

} catch (TooManyListenersException e) {
sPort. close();
throw new SerialConnectionException("too many listeners added");
)

sPort.notifyOnDataAvailable(true);
sPort.notifyOnCTS(true);
sPort.notifyOnDSR(true);
sPort.notifyOnRingindicator{true);
sPort.notifyOnCarrierDetect{true);
sPort.notifyOnBreakinterrupt(true);

try {
sPort.enableReceiveTimeout(30);
} catch (UnsupportedCornrnOperationException e) {
)

portid.addPortOWnershipListener(this};

sPort.setRTS(false);
sPort.setDTR(true);

open = true;

public void .setConnectionParameters () throws serialConnectionException
{

int oldBaudRate sPort.getBaudRate();
int oldDatabits sPort.getDataBits();
int oldStopbits sPort.getstopBits (};
int oldParity sPort.getParity();
int oldFlowcontrol = sPort.getFlowcontrolMode();

try
sPort.setSerialPortParams{parameters.getBaudRate{),

parameters.getDatabits(),
parameters.getStopbits{},
parameters.getParity());

l catch (UnsupportedCommOperationException e) [
parameters.setBaudRate(oldBaudRate);
parameters.setDatabits(oldDatabits);
parameters.setStopbits(oldStopbits);
parameters.setParity(oldParity);
·throw new SerialConnectionException {"Unsupported parameter") ;

try
sPort.setFlowControlMode(parameters.getFlowControlin()

parameters.getFlowControlOut());
} catch (UnsupportedCommOperationException e) {
throw new SerialConnectionException("Unsupported flow control");
)

public void closeConnection()
{

if (!open) { return;

messageAreaout.removeKeyListener(keyHandler);

if (sPort != null)
{

try {
os. close();
i:s. close() ;
J catch {IOExceptian e)
system.err.println(e);
)

sPort.close ();

72

portid.removePortOWnershipListener(this};

open false;

public void sendBreak()
{

sPort.sendBreak(lOOO);

public boolean isOpen(}
{

return open;

/1-----------------------Setting the RTS,D'XR and serial data to transmit--

public void settingRTS(boolean rts)
I

sPort.setRTS(rts);

public void settingDTR(boolean dtr}
I

sPort.setDTR(dtr);

public void setLight(boolean light)
{

byte(] on= {'L','l','l'};
byte[] Off= { '1' 1 '0' 1 '0 1) i

try
{

if (light}
I

else
{

os.write(on,0,3);

os.write(off,0,3);

}catch (IOException ex)
{

System.err.println(ex);
return;

public void setDoor(boolean door)

I
byte [J on "" { 'D', '1' , '1 '};
byte [1 off "" { 1 D' , '0' , • 0' } ;

try
I

if (door)
I

os.write(on,0,3);

else
I

os.write(off,0,3);

}catch (IOException ex)
I

system.err.println(ex);
return;

73

public void setWindow{boolean window)
(

byte [1 on = { 'R' , '1' , '1' } ;
byte [1 off "" { 'R' , '0' , ' 0' } ;

try
(

if (window)
I

else
(

os.write(on,0,3};

os.write(of£,0,3);

}catch (IOException ex)
{

System.err.println(ex);
return;

public void setAircond(boolean aircond)
{

byte [1 on = { 'R' , '1' , '1' } ;
byte [] off = { 'R' , '0' , ' 0' } ;

try
I

if(aircond)
I

else
(

os.write(on,0,3};

os.write(off,0,3);

}catch (IOException ex)
(

System.err.println(ex);
return;

public void setFan(boolean fan)
{

byte[) on "" 1 'F' 1 '1' 1 '1'};
byte[J off= {'F','0','0'};

try
(

if(fan)

I

else

os.write{on,0,3);

os.write(of£,0,3);

}catch (IOException ex)
I

System. err. println (ex);
return;

public void setsmoke(boolean smoke)
I

74

byte [) on = { 'D' , '1' , '1' } :
byte[] off= {'D' ,'0','0'};

try
{

if (smoke)
{

os.write(on,0,3);

else

os.write(of£,0,3);

}catch (IOException ex)
{

System.err.println(ex);
return;

//------End of setting the RTS,DTR and serial data to transmit----------

//---------Serial port Event handling-----------------------------------

public void serialEvent(SerialPortEvent e)
{

StringBuffer inputBuffer =new StringBuffer{);
int newnata "" 0;

switch (e.getEventType{)}
{

case seriali?ortE:vent.DATA AVAILABLE:
while (newnata != -=-1)
{

try [
newData ""' is.read{);
if (newnata == -1) {
break;
J
if ('\r' == (char)newna·ta)
inputBuffer.append('\n');
} else {
inputBuffer.append((char)newData);
I

catch (IOException ex) {
system.err.println(ex);
return;

messageAreain.append(new String(inputBuffer});
break;

case serialPortEvent.BI:
messageAreain.append("\n--- BREAK RECEIVED ---\n");
break;

case serialPortEvent.CTS:
if (sPort.isCTS{) == false)

messageAreain.append{"\n--- CTS
if (sPort.isCTS() == true)

messageAreain. append("\n--- CTS
break;

case serialPortEvent.DSR:
if (sPort.isDSR() == false)
{

messageAreain.append{"\n--- DSR

if (sPort.isDSR() == true)

75

OFF ---");

ON---"),·

OFF---");

messageAreain.append{"\n--- DSR

break;

case SerialPortEvent.RI:
if (sPort.isCTS() ~=false)

messageAreain.append("\n--- RI
if {sPort.isCTS(} ==true)

message.Arearn. append ("\n--- RI
break;

case SerialPortEvent.CD:
if (sPort.isCTS() ==false)
{

messageAreain. append (" \n--- CD

if (sPort.isCTS() ==true}
{

ON---");

OFF---");

ON ---");

OFF ---");

messageAreain.append("\n--- CD= ON---");
parent.setGeneralView();
parent.mGeneralView.roLivingsmoke.setAlarm();

break;

1/-----------end of serial port Event handling------------------------

public void ownershipChange(int type)
I

if (type == CommPortOWnershipListener. PORT_OWNERSHIP REQUESTED)
{

PortRequestedDialog prd =new PortRequestedDialog(parent);

class KeyHandler extends KeyAdapter

OutputStream as;

public KeyHandler(Outputstream os)
{

super();
this.os = os;

public void keyTyped{KeyEvent evt)
{

char newCha.racter = evt. getKeyCha.r \);
try {

os.w.rite ((int)nevJCha.racter);
catch (IOException e) {

System.err.println("Outputstream write error: " + e};

II end of serialconnection ---

11----------------------------- Status --

class Status
{

MainFrame parent;

76

boolean frontdoor "" true,
backdoor = false;
boolean dininglight = false,

diningfan = false,
diningsmoke = false;

boolean livingwindow = false,
livinglight = true,
livingfan = true ,
livingaircond = true,
livingsmoke = false;

boolean kitchenwindow = false,
kitchenlight = false,
kitchenfan = false,
kitchensmoke = false;

boolean bedroomdoorl = true,
bedroomwindowl = true,
bedroomlightl = true,
bedroomfanl = true,
bedroomaircondl = true,
bedroomsmokel = true;

boolean bedroomdoor2 = true,
bedroomwindow2 = true,
bedroomlight2 = true,
bedroomfan2 = true,
bedroomaircond2 = true,
bedroomsmoke2 = true;

boolean bedroomdoor3 = false,
bedroomwindow3 = false,
bedroomlight3 = false,
bedroomfan3 = false,
bedroomaircond3 = false,
bedroomsmoke3 = false;

int temperature = 25;

public Status ()
I
)

public boolean getstatus(String name)
I

if (name == "frontdool.'")
return this.frontdoor;

else if (name == "backdoor")
return backdoor;

else if (name == "dininglight")
return this.dininglight;

else if (name == "diningfan")
return this. diningfan;

else if (name == "diningsmoke")
return this.diningsmoke;

else if (name == "livingwindow"}
return this.livingwindow;

else if (name == "livinglight")
return this.livinglight;

else if (name ~~ "living fan" I
return this.livingfan;

else if (name ~~ "livingaircond")
return this.livingaircond;

else if (name ~~ "livingsmoke")
return this.livingsmoke;

else if {name === "kitchenwindow")
return this.kitchenwindow;

else if (name ""= "kitchenlight")
return this.kitchenlight;

else if (name ="" "kitchenfan")
return this. kitchenfan;

else if (name == "ki tchensmoke")
return this.kitchensmoke;

else if (nanle "'== "bedroomdoorl")

77

return this.bedroomdoorl;
else if (name == nbedroomwindowl")

return this.bedroomwindowl;
else if (name == "bedroomlightl")

return this. bedroomlightl;
else if (name ~~ "bedroomfanl")

return this.bedroomfanl;
else if (name ="" "bedroomaircondl")

return this.bedroomaircondl;
else if {name == "bedroomsmokel")

return this.bedroomsmokel;
else if (name == "bedroomdoor2")

return this.bedroomdoor2;
else if {name == 11bedroomwindow2")

return this.bedroomwindow2;
else if {name ~- ''bedroomlight2")

return this.bedroomlight2;
else if {name == "bedroomfan2"}

return this.bedroomfan2;
else if (name == "bedroornaircond2")

return this.bedroomaircond2;
else if (name """" ''bedroomsmoke2")

return this.bedroomsmoke2;
else if {name == "bedroomdoor3"}

return this.bedroomdoor3;
else if {name -- "bedroomwindow3")

return this.bedroomwindow3;
else if (name ="" "bedroomlight3")

return this.bedroomlight3;
else if {name == "bedroomfan3")

return this.bedroomfan3;
else if (name """" "bedroomaircond3"}

return this.bedroomaircond3;
else if {name =""' "bedroomsmoke3")

return this.bedroomsmoke3;

else
return false;

public void setStatus(String name, boolean state)
{

if {name ""= "frontdoor")
this.frontdoor = state;

else if {name ""'= "backdoor")

JOptionPane optionPane = new JOptionPane ("Back door changes state.",
JOptionPane.ERROR MESSAGE);

JDialog dialog = optionPane.createDialog(parent--; "Port Error");
dialog. show ();
this.backdoor = state;

else if (name == "dininglight'1)

this.dininglight =state;
else if (name == "diningfan")

this.diningfan = state;
else if (name == "diningsmoke")

this.diningsmoke = state;
else if (name == "livingwindow"}

this.livingwindow = state;
else if (name == "livinglight")

this.livinglight = state;
else if (name == "livingfan")

this.livingfan = state;
else if (name ="" "livingaircond")

this.livingaircond = state;
else if (name =""" "livingsmoke")

this.livingsmoke = state;
else if (name == "kitchenwindow"}

this.kitchenwindow = state;
else if {name ""'= "kitchenlight")

78

}

this.kitchenlight = state;
else if (name =:e"" "kitchenfan"J

this.kitchenfan = state;
else if (name o=:= "kitchensmoke")

this.kitchensmoke = state;
else if (name == "bedroomdoorl ")

this.bedroomdoorl ; state;
else if (name =:= "bedroomwindowl")

this.bedroomwindowl = state;
else if (name == 11 bedroornlightl")

this.bedroomlightl = state;
else if (name == "bedroomfanl")

this.bedroomfanl = state;
else if (name ="' 1'bedroomaircondl")

this.bedroomaircondl = state;
else if {name == "bedroomsmokel")

this.bedroomsmokel =state;
else if (name == "bedroomdoor2")

this.bedroomdoor2 = state;
else if (name == "bedroomwindow2")

this.bedroomwindow2 = state;
else if (name """" "bedroomlight2'1)

this.bedroorolight2 = state;
else if (name == "bedroomfan2")

this.bedroomfan2 = state;
else if (name == "bedroomaircond2")

this .bedroomaircond2 = state;
else if (name ="' "bedroomsmoke2")

this.bedroomsmoke2 = state;
else if (name == 1'bedroomdoor3'1)

this.bedroomdoor3 = state;
else if (name == 1'bedroomwindow31')

this.bedroomwindow3 ~state;
else if (name == "bedroomlight3")

this.bedroomlight3 = state;
else if (name == "bedroornfan3")

this.bedroomfan3 = state;
else if (name == "bedroomaircond3 11

)

this.bedroomaircond3 = state;
else if (name """" "bedroomsmoke3 11

)

this.bedroomsmoke3 = state;

else
I

JOptionPane optionPane = new JOptionPane ("No Valid Status Assigned",
JOptionPane.ERROR MESSAGE);

JDialog dialog = optionPane.createDialog('Parent, "Port Error"};
dialog. show () ;

// end of Status class--

II-------------------------------- Module ---

clasS Module extends JPanel implements ActionListener
I

private MainFrame parent;
private SerialConnection connection;

private Status status;
private String title;
private String iconName;
private String on = "ON";
private String off = "OFF";
private string open= "OPEN 11 i
private String close = "CLOSE";
private String lock = "LOCK11

;

private string unlock = "UNLOCK";
private String disable = "DISABLE";
private String enable = "ENABLE";

79

private String alert "ALERT";
private String name;
boolean state;
boolean locked;
boolean detector;

private JLabel jlimage;
private Imageicon iconOn;
private Imageicon iconoff;
private Imageicon iconOther;
private Imageicon doorlock "" new Imageicon("image/door lock.jpg");
private Imageicon windowlock = new rmageicon("image/willdow_lock.jpg");

private JLabel jlStatus;
private JLabel jlcurrentStatus;

private JPanel jpStatus;
private JPanel jpAction;
private JRadioButton jrbon;
private JRadioButton jrbOff;
private JButton jbOption;

private JPanel jpsouth;
private JPanel jpNorth;
private JPanel jpBase;

public Module(SerialConnection connection, Status status, String title,
String iconName, String name)

this.connection ~connection;
this.status ~ status;
this.name =name;

this.state = status.getStatus(name);
this.iconName ~ iconName;
String siconOn = "image/" + iconName + " onl.jpg";
String siconOff"" "image/" + iconName + -;;_offl.jpg";
this.iconOn =new Imageicon{siconOn);
this.iconOff ~new Imageicon(siconOff);

jpBase = new JPanel {) ;
jpBase.setLayout(new BorderLayout(lO,lO));
jpBase.setBorder{new TitledBorder(title));

jllmage =new JLabel();
jlStatus =new JLabel("Status :");
jlCurrentstatus =new JLabel();

jrbOn =new JRadioButton()i
jrbOn. seticon (new Imageicon(" image/none!. jpg"));
jrbOn.setRollovericon(new Imageicon("image/blu:r:metal greenl.jpg"));
j rbOn. setselectedicon {new Irnagercon ("image/ alien _green!. jpg")) ;
this. setj rbOn () ;
jrbon.addActionListener(this);
jrbOff =new JRadioButton();
jrbOff.seticon(new Imageicon("image/nonel.jpg"));
jrbOff.setRollovericon(new Imagelcon("image/blurmetal~redl.jpg"));
jrboff.setSelectedrcon(new Imageicon("image/alien_redl.jpg"));
this.setjrbOff();
jrbOff.addActionListener(this);
jpAction =new JPanel();
jpAction. setBorder (new TitledBorder ("Actionn));
jpAction.setLayout{new FlowLayout{FlowLayout.LEFT,10,5));
jpAction.add(jrbon);
jpAction.add{jrbOff);
ButtonGroup btgAction new ButtonGroup();
btgAction. add {jrbOn};
btgAction.add(jrbOff);

if (state)
I

80

jlimage.set!con(iconOn);
if (iconName == ndoor" 1 I iconName "window")
{

jlCurrentStatus.setText{open);
this.disableAction();

else if (iconName == "fan" II iconName
{

jlCurrentStatus.setText(on);
jrbOn.setSelected(true);

else if (iconName == ".smoke")
{

jlCurrentStatus.setText{enable);
jrbOn.setSelected(true);

else
jlCurrentStatus.setText(on};

else

jlimage.seticon(iconOff);

"aircond" I I iconName

if (iconName ==- "door" I I iconName "window 11
)

{

jlCurrentstatus.setText(close);
this.enableAction();
jrbOff.setSelected{true);

else if {iconName == "fan" II iconName
I

)

jlCurrentstatus. setText (off),·
jrbOff.setSelected(true);

else if (iconName == "smoke")
{

jlCurrentStatus.setText{disable);
jrbOff.setSelected(true);

else
jlcurrentStatus.setText(off);

"aircond" I 1 iconName

jlirnage.setBorder{new BevelBorder(BevelBorder.LOWERED)};
Dimension dimage =new Dimension{iconon.geticonWidth(},

iconon.geticonHeight ());
jlimage.setsize(dimage);

jlCurrentStatus. setBorde.:r:: (netv- BevelBorder (BevelBorder .LOWERED});

jpStatus ~new JPanel(};
jpStatus.setLayout(new GridLayout(2,1,5,5));
jpStatus.add(jlStatus);
jpStatus.add(jlcurrentstatus);

jpNorth = new J·Panel ();
jpNorth.setLayout(new BorderLayout(20,10));
jpNorth.setBorder{new EmptyBorder(10,10,10,10));
jpNorth.add{jlimage, BorderLayout.WEST);
jpNorth.add(jpStatus, BorderLayout.CENTER);

jbOption = new JButton("Option");
jbOption.addActionListener{this);

jpsouth =new JPanel();
jpSouth.setLayout(new BorderLayout{lO,lO));
jpSouth.setBorder{new EroptyBorder(lO,lO,lO,lO));
jpSouth.add(jpAction, BorderLayout.CENTER);
jpSouth.add(jbOption, BorderLayout.SOUTH);

jpBase.add(jpNorth, BorderLayout.NORTH);

81

"light")

"light")

jpBase.add(jpsouth, BorderLayout.SOUTH)i

setLayout(new BorderLayout{lO,lO));
setBorder(new LineBorder(lightgray, 3));
add(jpBase);

public void actionPerformed(ActionEvent e)
I

if (!connection.isOpen())
I

J'OptionPane. shot.JMessageDialog (this,
"The serial port is not opened. 11

,

"Port Error",
JOptionPane.ERROR_MESSAGE);

else
I

if (jrbOn.isSelected(})
I

jlimage.seticon{iconOn);

if (iconName """" "door")
I

jlCurrentStatus.setText(lock);
jlrmage.setrcon{doorlock);

if (name == "backdoor")
I

connection.settingRTS(true};
connection.setDoor{true);

else if (iconNaroe === "window")
I

j lcurrentStatus. s:etText (lock};
jlimage.seticon{windowlock);

if {name == "kitchenwindow")
{

connection.setWindow(true);

else if {iconName
iconName

"fan" I I iconName
"light")

jlCurrentStatus.setText(on);

if {name === "kitchenfan")
I

connection.setFan{true);

if {name == "kitchenlight")
I

connection.setLight(true)i

else if {iconName == "smoke")
I

jlCurrentStatus.setText(enable);

if {name == "livingsmoke")
{

//connection.settingDTR(true);

82

"aircond" II

if {name =:== "kitchensmoke"}
\

connection.setSrnoke{true);

else
jlCurrentStatus. setText (e-n);

else if (jrbOff.isSelected{))
\

jlDmage.seticon(iconOff);

if (iconName """" "door" ! ! iconName ="" "window"}
{

jlCurrentStatus.setText(close);

if (name """"' "backdoor")
\

connection.settingRTS(false);
connection.setDoor(false);

if {name ""= "kitchenwindow")
I

connection.setWindow(false);

else if (iconName
iconName

"fan" II iconName
11 light")

jlCurrentstatus.setText(off);

if (name == '1kitchenfan 11
)

\
connection.setFan(false);

if (name == "kitchenlight")
{

connection.setLight(false);

else if {iconName ""= ''smoke 11
)

I
jlCurrentStatus.setText(disable);

if (name ="" 11 livingsmoke")
\

//connection.settingDTR(false};

if (name == nkitchensmoke")

connection.setSmoke(false);

else
jlCurrentStatus.setText(off};

public void setjlimageOther{)
{

this. jlimage. seticon {iconOther);

83

"aircond" ! 1

public void seticonOther(String icon)
I

this.iconOther =new Imageicon(icon);

public boolean getState()
{

return this.state;

public void setjlCSAlert()
I

this.jlCurrent3tatus.setText(alert);

public void setjlCSDisable()
{

this.jlCurrentStatus.setText(disable);

public void setjlCSEnable()
I

this.jlcurrentstatus.setText(enable);

public void disableAction()
{

this.jrbOn.setEnabled{false);
this.jrbOff.setEnabled{false);

public void enableAction()
{

this.jrbOn.setEnabled(true);
this .jrboff. setEnabled (true) ;

public void setjrbOnLock ()
{

this.jrbOn.setText(lock);

public void setjrbOffUnlock{)
I

this.jrbOn.setText(unlock);

public void setjrbOnEnable()
{

this.jrbon.setText{enable);

public void setjrbOffDisable{)
{

this.jrbOn.setText(disable);

public void setjrbOn()
{

if (iconName === "door" II iconName
I

jrbon.setText(lock);

else if (iconName == "fan" II iconName

jrbOn.setText(on);

else if (iconName == "smoke")
I

jrbOn.setText(enable);

84

"window")

"aircond" I I iconName "light")

else
jrbOn.setText(on);

public void setjrbOff{)
{

if (iconName == "door" J) iconName
{

jrbOff.setText(unlock);

else if (iconName == "fan" J J iconName

jrbOff.setText{off);

else if (iconName '''""' ":smoke"}
{

jrbOff.:setText(disable);

else
jrbOff.setText{off);

"window")

"aircond" 1 J iconName

public void setserialConnection(SerialConnection connection)
{

this.connection = connection;

public void setAlarm()
{

setDoubleBuffered{true);

for (int a=O; a<6; a++)
{

setBorder(new LineBorder(Color.red, 3));
for {int j=O; j<SOOOOOOO; j++) {}
setBorder(new LineBorder(lightgray, 3}};
for {int j=O; j<SOOOOOOO; j++) {}
setBorder(new LineBorder(Color.red, 3});
for (int j'*'O; j<SOOOOOOO; j++) {}
setBorder(new LineBorder(lightgray, 3});
for (int]""0; j<SOOOOOOO; j++) {}
setBorder(new LineBorder{Color.red, 3));
for {int]"'0; j<50000000; j++) {)
setBorder(new LineBorder{lightgray, 3));
for (int j=O; j<SOOOOOOO; j++) {}

"light")

} // end of Module class --

11------------------------------- IntoView ---

class Introview extends JPanel
{

final int WIDTH = 549;
final int HF.IGHT = 485;
Image image= new Imageicon("image/intropane.jpg") .getlmage();
JPanel jpRoorn;
JLabel jlRoom;

p1.1.blic IntroView {)
{

jpRoom =new JPanel();
jpRoom. setLayout (new FlowLayout (FlowLayout. CENTER, 5, 5) } ;
jpRoom.setBackground(new Color(200,200,210));
jpRoom.setBorder(new BevelBorder(BevelBorder.RAISED));

85

jlRoom == new JLabel ("Welcome to Home Guard system");
jlRoom.setFont {new Font {"BankGothic Lt BT", Font.1?LAIN, 15));
jpRoom.add(jlRoom};
this.add{jpRoom);

setBackground{Color.black};
setSize(WIDTH, HEIGHT);

this. validate{};

public void pa.intComponent(Graphics g)
{

super.paintComponent{g};

g.drawimage(image 1 150, 100, this);
revalidate();

//end of IntroView --

/1-------------------------------
class Generalview extends JPanel
{

private MainFrame parent;

General View

private SerialConnection connection;
private Status status;

private Module mFrontdoor;
private Module mBackdoor;
private Module mLivingsmoke;

private String[] sfd
private String[] sbd
private String[] sls

{"Front Door","door","frontdoor"};
["Back Door", "door11

,
11backdoor"} ;

{"Smoke Detector", "smoke", "livingsmoke"};

private Dimension maxsize "" new Dimen.sion(250,250);
final int HEIGHT = 700;
final int WIDTH = 550;

private JPanel jpRoom;
private JPanel jpinnerModule;
private JLabel jlRoom;
private String room""" "General";

public GeneralView(MainFrame parent, serialConnection connection, Status status)
{

this.parent ==parent;
this.connection =connection;
this.status = status;

enableEvents(AWTEvent.WINDOW_EVENT MASK);

mFrontdoor =new Module (connection, status 1 this.getTitle(sfd),
this.geticonName(sfd), this.getName(sfd));

mBackdoor =new Module (connection, status, this.getTitle(sbd},
this.geticonName(sbd),this.getName{sbd));

mLivingsmoke =new Module (connection, status, this.getTitle(sls),
this.geticonName(sls),this.getName(sls));

mFrontdoor.setPreferredSize(maxsize);
mBackdoor.setPreferredSize(maxSize);
mLivingsmoke.setPreferredSize(maxSize);

jpRoom =new JPanel();
jpRoom.setLayout(new FlowLayout(FlowLayout.CENTER, 5,5));
jpRoom. setBackground (new Color (200, 200, 210)};
jpRoom.setBorder{new BevelBorder(BevelBorder.RAISED));
jlRoom ~new JLabel(room);
jlRoom.setFont(new Font("BankGothic Lt BT", E'ont.PLAIN, 15});
jpRoom.add{jlRoom);

86

jpinnerModule = new JPanel():
jpinnerModule. setLayout {new FlowLayout (FlowLayout.LEFT, 5, 5)) ;
jpinnerModule.setBackground{new Color(200,200,210));
jpinnerModule.add{mFrontdoor};
jpinnerModule.add{mBackdoor);
jpinnerModule.add(mLivingsmoke);

setLayout{new BorderLayout(lO,lO));
add(jpRoom, Bordertayout.NORTH);
add{jpinnerModule, BorderLayout.CENTER};

setBackground(new Color{200,200,210));

public String getTitle{String[J module)
{

return module[O];

public string geticonName(String[) module)
I

return module[!];

public String getName(String[] module)
I

return module[21;

public void setModuleClear()
I

mFrontdoor.setBorder(new LineBorder{lightgray, 3));
mBackdoor.setBorder(new LineBorder(lightgray, 3));
mLivingsmoke.setBorder(new LineBorder(lightgray, 3});

} // end of GeneralView class --

11------------------------------- KitchenView --------------------------------

class Ki tchenView extends JPanel
I

private MainFrame parent;
private serialconnection connection;
private Status status;

private Module mKitchem'lindow;
private Module mKitchensmoke;
private Module mKitchenfan;
private Module mKitchenlight;
private String [1 sbd {"Back Door", "door", "backdoor"};
private String [1 skw {"Window", "window", "kitchenwindow" l;
private String[} skf {"Fan", "fan", "kitchenfan"};
private String(} sks {"Smoke Detector"," smoke", "kitchensmoke"};
private String[] skl {"Light", "light" 1 "kitchenlight"};

private Dimension maxSize = netrJ Dimension(250,250);
final int HEIGHT = 700;
final int WIDTH= 550;

private JPanel jpRoom;
private JPanel jpinnerModule;
private JLabel jlRoom;
private String room= "Kitchen";

public KitchenView(MainFrame parent, SerialConnection connection, Status status)
I

this.parent =parent;
this. connection = connection;

87

this.status = status;

enableEvents{AWTEvent.WINDOW_EVENT MASK);

mKitchenwindow =new Module (connection, status, this.getTitle(skw),
thia. geticonName (skw), this. getName (sht});

mKitchensmoke =new Module (connection, status, this.getTitle{sks),
this.geticonName(sks),this.getName{sks));

roKitchenfan = new Module (connection, status, this.getTitle(skf),
this.geticonName(skf),this.getName{skf));

mKitchenlight =new Module (connection, status, this.getTitle(skl),
this.geticonName(skl), this.getName(skl));

mKitchenwindow.setPreferredSize(maxSize);
mKitchensmoke.setPreferredSize(maxSize);
mKitchenfan.setPreferredSize(maxSize);
mKitchenlight.setPreferredSize(maxSize);

jpRoom =new JPanel{);
jpRoom.setLayout{new FlowLayout(FlowLayout.CENTER, 5,5));
jpRoom.setBackgxound(new Color{200,200,210));
jpRoom.setBorder(new BevelBorder{BevelBorder.RAISED));
jlRoom = new JLabel{room);
j lRoom. setFont (new Font ("BankGothic Lt BT", Font. PLAIN, 15)};
jpRoom. add (jlRoom);
jpinnerModule ~new JPanel();
jpinnerModule.setLayout(new FlowLayout(FlowLayout.LEFT, 5 1 5));
jpinnerModule.setBackground{new Color(200,200,210}};

jpinnerModule.add{mKitchenlight);
jpinnerModule. add {mKi tchenwindow) ;
jpinnerModule.add(mKitchenfan);
jpinnerModule.add(mKitchensmoke);

setLayout(new BorderLayout(lO,lO));
add(jpRoom, BorderLayout.NORTH);
add{jpinnerModule, BorderLayout.CENTER);

setBackground(new color{200,200,210)l;

public string getTitle {string[] module)
[

return module[O];

public String geticonName(String[} module)
{

return module[!};

public String getName (String [J module)
[

return module{2J;

public void setModuleClear{)
[

mKitchenwindow.setBorder{new LineBorder{lightgray, 3});
mKitchensmoke.setBorder(new LineBorder(lightgray, 3)) ,
roKitchenfan.setBorder(new LineBorder(lightgray, 3));
mKitchenlight.setBorder{new LineBorder(lightgray, 3));

J // end of KitchenView class ---

11------------------------------- LivingView ----------------------------------

class LivingView extends JPanel

88

private MainFrame parent;
private SerialConnection connection;
private Status status;

private Module mLivinglight;
private Module mLivingwindow;
private Module mLivingsmoke;
private Module mLivingfan;
private Module mLivingaircond;
private String[] sll {"Light", 11 light","livinglight"};
private String[] slw ["Window", 1'window","livingwindow"};
private String[] slf {"Fan", "fan", "livingfan"};
private String[] sla {"Air-Conditioner", "aircond", "livingaircond"};
private String[] sls {"Smoke Detector", "smoke", "livingsmoke"};

private Dimension maxSize ~new Dimension{250,250);
final int HEIGHT ~ 700;
final int WIDTH = 550;

private JPanel jpRoom;
private JPanel jpinnerModule;
private JLabel jlRoom;
private String room = "Living Room";

public LivingView(MainFrame parent, serialConnection connection, Status status)
(

this.parent = parent;
this.connection = connection;
this.status = status;

enableEvents{AWTEvent.WINDOW_EVENT_MASK);

mLivinglight =new Module (connection, status, this.getTitle(sll},
this.geticonName(sll),this.getName(sll));

mLivingwindow =new Module (connection, status, this.getTitle(slw},
this.geticonName(slw),this.getName(slw));

mLivingsmoke =new Module (connection, status, this.getTitle(sls),
this.geticonName(sls),this.getName(sls));

mLivingfan =new Module (connection, status, this.getTitle{slf),
this.geticonName(slf),this.getName(slf));

mLivingaircond =new Module (connection, status, this.getTitle(sla),
this.geticonName(sla),this.getName(sla));

mLivinglight.setPreferredSize(maxSize);
mLivingwindow.setPreferredSize(maxsize);
mLivingsmoke.setPreferredSize(maxSize};
mLivingfan.setPreferredSize(maxSize};
mLivingaircond.setPreferredSize{maxSize};

jpRoorn ~new JPanel();
jpRoom.setLayout{new FlowLayout{FlowLayout.CENTER, 5,5));
jpRoom.setBackground(new Color{200 1 200 1 210));
jpRoom.setBorder(new BevelBorder(BevelBorder.RAISED));
jlRoom =new JLabel{room);
jlRoom. setFont (new Font (11 BankGothic Lt BT", Font. PLAIN, 15));
jpRoom. add (jlRoom);
jpinnerModule =new JPanel();
jpinnerModule.setLayout(new FlowLayout(FlowLayout.LEFT, 5 1 5)};
jpinnerModule.setBackground(new Color(200,200,210));

jpinnerModule.add(mLivinglight);
jpinnerModule.add(mLivingwindow};
jpinnerModule.add(mLivingfan};
jptnnerModule.add{mLivingaircond);
jpinnerModule.add(mLivingsmoke);

setLayout(new BorderLayout(lO,lO));
add(jpRoom, BorderLayout.NORTH};
add(jpinnerModule, BcrderLayout.CENTER};

89

setBackground(new color(Z00 1 200 1 210));

public String getTitle(String[] module)
{

return module[O);

public String geticonName(String[] module)
{

return module [1];

public String getName{String[] module}
{

return module[2];

public void setModuleClear()
{

mLivinglight.setBorder(new LineBorder{lightgray, 3));
mLivingwindow.setBorder{new LineBorder(lightgray, 3));
mLivingsmoke.setBorder(new LineBorder(lightgray, 3));
mLivingfan.setBorder(new LineBorder(lightgray, 3));
roLivingaircond.setBorder(new LineBorder{lightgray, 3)};

II end of LivingView class --

11------------------------------- DiningView --
class Diningview extends JPanel
{

private MainFrame parent;
private SerialConnection connection;
private Status status;

private Module mDininglight;
private Module roDiningfan;
private Module mDiningsmoke;
private String [] sdl {"Light", "light", "dininglight"};
private String(] sdf {"Fan", "fan", "diningfan"};
private String [1 sds {"Smoke Detector"," smoke", "diningsmoke");

private Dimension maxsize =new Dimension(250,250};
final int HEIGHT = 700;
final int WIDTH = 550;

private JPanel jpRoom;
private JPanel jpinnerModule;
private JLabel jlRoom;
private String room = "Dining Room";

public DiningView(MainFrame parent, SerialConnection connection, status status)
{

this.parent = parent;
this.connection =connection;
·this. status = status;

enableEvents {AWTEvent. WINDOW_ EVENT MASK) ;

mDininglight = nev1 Module (connection, status, this. getTitle {sdl) 1
this.geticonName{sdl), this.getName(sdl));

mDiningfan =new Module (connection, status, this.getTitle(sdf),
this.geticonName(sdf},this.getName(sdf)};

mDiningsmoke = new Module {connection, status, this. getTitle {sds},
this.geticonName(sds),this.getName(sds));

mDininglight.setPreferredsize(maxsize);
mDiningfan.setPreferredSize{maxSize);

90

mDiningsmoke.setPreferredSize(maxsize);

jpRoom =new JPanel{);
jpRoom.setLayout{new FlowLayout{FlowLayout.CENTER, 5,5));
jpRoom. setBackgrotmd{new color (200, 200,210)};
jpRoom.setBorder(new BevelBorder(BevelBorder.RAISED));
jlRoom =new JLabel{room);
j lRoom. setFont (new Font ("BankGothic Lt BT", Font. PLAIN, 15));
jpRoom.add(jlRoom);
jpinnerMOdule =new JPanel();
jpinnerModule. setLayout (new FlowLayout (FlowLayout .LEFT, 5, 5)) ;
jpinnerModule.setBackg.round{new Color{200,20D,210));

jpinnerMOdule.add{mDininglight};
jpinnerModule.add(mDiningfan);
jpinnerModule.add{mDiningsmoke);

setLayout{new BorderLayout{lO,lO});
add(jpRoom, BorderLayout.NORTH);
add(jpinnerModule, BorderLayout.CENTER);

setBackground(new Color(200,200,210));

public String getTitle(String[} module)
{

return module[O);

public String geticonName (String [] module)
I

return module [l];

public String getName (String[] module)
{

return module[2];

public String getRoom ()
{

return this.room;

public void setModuleclear()
{

mDininglight.setBorder(new LineBorder{lightgray, 3));
mDiningfan.setBorder{new LineBorder(lightgray, 3));
mDiningsmoke.setBorder{new LineBorder(lightgray, 3));

II end of DiningView class --

/1------------------------------- BedroomViewl ---------------------------------
class BedroomViewl extends JPanel

private MainFrame parent;
private SerialConnection connection;
private Status status;

private Module mBedroomdoor;
private Module mBedroomlight;
private Module mBedroomwindow;
private Module mBedroomsmoke;
private Module roBedroomfan;
private Module mBedroomaircond;
private String [1 sbd ["Door'', "door" 1 "bedroomdoorl" J;
private String [] sbl {"Light"," light", "bedroomlightl"} ,·
private String [1 sbw {"Window", "window", "bedroomwindowl"};

91

status)

private String[] sbf
private String[] sba
private String[] sbs

{"Fan","fan","bedroomfanl"};
["Air-Conditioner","aircond","bedroomaircondl"J;
{"Smoke Detector 11

, "smoke", "bedroomsmokel n};

private Dimension maxsize =new Dimen3ion(250,250);
final int HEIGHT = 700;
final int WIDTH ; 550;

private JPanel jpRoom;
private JPanel jpinnerModule;
private JLabel jlRoom;
private String room = "Bedroom 1";

public BedroomViewl(MainFrame parent, SerialConnection connection, Status

this.parent =parent;
this.connection = connection;
this.status = status;

enableEvents(AWTEvent.WINDOW_EVENT MASK);

mBedroomdoor =new Module {connection, status, this.getTitle(sbd},
this.geticonName[sbd},this.getName{sbd)};

mBedroomlight =new Module (connection, status, this.getTitle(sbl),
this.geticonName{sbl},this.getName(sbl));

mBedroomwindow = new Module (connection, status, this.getTitle (sbw),
this.geticonName{sbw},this.getName(sbw)};

mBedroomsmoke; new Module (connection, status, this.getTitle(sbs},
this.geticonName{sbs),this.getName(sbs));

mBedroomfan =new Module (connection, status, this.getTitle(sbf),
this.geticonName(sbf),this.getName(sbf));

mBedroomaircond =new Module (connection, status, this.getTitle(sba),
this.geticonName{sba),this.getName(sba});

mBedroomdoor.setPreferredSize(maxSize};
mBedroomlight.setPreferredsize(maxsize);
mBedroomwindow.setPreferredSize(maxsize);
rnBedroomsmoke.setPreferredsize(maxSize);
mBedroomfan.setPreferredSize(maxSize};
mBedroomaircond.setPreferredsize(maxsize);

jpRoom = new JPanel (};
jpRoom.setLayout(new FlowLayout(FlowLayout.CENTER, 5,5));
jpRoom.setBackground(new Color(200,200,210));
jpRoom.setBorder(new BevelBorder(BevelBorder.RAISED));
jlRoom =new JLabel(room);
j lRoom. setFont (new Font (11 BankGothic Lt BT", Font. PLAIN, 15));
jpRoom.add(jlRoom);
jpinnerModule: new JPanel{);
jpinnerModule. setLayout {net-J Flot-JLayout (FlowLayout.LEFT, 5, 5}) ;
jp!nnerModule.setBackground{new Color(200,200,210)};

jpinnerModule.add(mBedroomdoor);
jpinnerModule. add (mBedroomlight} ;
jpinnerModule.add(mBedroomwindow);
jpinnerModule.add{mBedroomfan);
jpinnerModule.add{mBedroomaircond);
jpinnerModule.add(mBedroomsmoke);

setLayout(new BorderLayout(lO,lO});
add(jpRoom, BorderLayout.NORTH);
add(jpinnerModule 1 BorderLayout.CENTER);

setBackground(new Color(200,200,210));

public string getTitle(String[) module)
{

92

status)

return module[O];

public String geticonName(String[] module)
{

return module[l);

public String getName{String[] module)
{

return module[2];

public void setModuleClear{)
{

rnBedroomdoor.setBorder(new LineBorder{!ightgray, 3));
mBedroomlight.setBorder(new LineBorder(lightgray, 3));
mBedroomwindow. setBorder (new LineBorder (lightgray, 3));
mBedroorosmoke.setBorder(new LineBorder{lightgray, 3));
mBedroomfan.setBorder(new LineBorder(lightgray, 3)};
mBedroomaircond.setBorder(new LineBorder(lightgray, 3));

}

J II end of BedroomViewl class --

I I------------------------------- BedroomView2 -----------------------------------
class BedroomView2 extends JPanel

private MainFrame parent;
private SerialConnection connection;
private Status status;

private Module mBedroomdoor;
private Module mBedroomlight;
private Module mBedroomwindow;
private Module mBedroomsmoke;
private Module mBedroomfan;
private Module mBedroomaircond;
private String [] sbd {"Door", "door", "bedroomdoor2"};
private String[] sbl {"Light","light","bedroomlight2"};
private String(] sbw {"Window", "window", "bed.roomwindow2"};
private String [] sbf {"Fan", "fan", "bed.roomfan2 11 };

private String[] sba {"Air-Conditioner", "aircond", "bedroomaircond2"};
private String[] sbs {"Smoke Detector", 11 Smoke", "bedroomsmoke2"};

private Dimension maxsize =new Dimension(250,250);
final int HEIGHT = 700;
final int WIDTH = 550;

private JPanel jpRoom;
private JPanel jpinnerModule;
private JLabel jlRoom;
private String room "" "Bedroom 2";

public BedroomView2(MainFrame parent, SerialConnection connection, Status

this.parent =parent;
this.connection =connection;
this.status = status;

enableEvents(AWTEvent.W!NDOW_EVENT MASK);

mBedroomdoor =new Module (connection, status, this.getTitle(sbd),
this. qeticonName (sbd}, this. getName (sbd));

mBedroomlight =new Module (connection, status 1 this.getTitle(sbl),
this.geticonName(sbl},this.getName(sbl));

mBedroomwindow =new Module (connection, status, this.getTitle(sbw),
this.geticonName(sbw),this.getName(sbw));

93

mBedroomsmoke =new Module (connection, status, this.getTitle(sbs),
this.geticonName{sbs),this.getName{sbs));

mBedroomfan ~new Module {connection, status, this.getTitle(sbf),
this.geticonName{sbf),this.getName{sbf));

mBedroomaircond =new Module {connection, status, this.getTitle(sba),
this.geticonName(sba),this.getName(sba});

mBedroomdoor.setPreferredSize{maxSize);
mBedroomlight.setPreferredSize(maxsize);
mBedroomwindow.setPreferredSize{maxSize);
mBedroomsmoke.setPreferredSize{maxSize);
mBedroomfan.setPreferredSize(maxSize);
mBedroomaircond.setPreferredSize(maxSize);

jpRoom "' new JPanel (};
jpRoom.setLayout(new FlowLayout(FlowLayout.CENTER, 5,5));
jpRoom.setBackground(new Color(200,200,210));
jpRoom.setBorder(new BevelBorder(BevelBorder.RAISED}};
jlRoom =new JLabel(room);
jlRomn. setFont{new Font ("BankGothic Lt BT" 1 Font. PLAIN, 15)};
jpRoom.add(jlRoom);
jpinnerModule ~new JPanel{);
jpinnerModule.setLayout(new FlowLayout(FlowLayout.LEFT, 5,5/);
jpinnerModule.setBackground(new Color(200,200,210));

jpinnerNodule. add{roBedroomdoor) ,•
jpinnerModule.actd(mBedroomlight);
jpinnerModule.add(mBedroomwindow);
jpinnerModule. add (mBedroomfan} ;
jpinnerModule.add{mBedroomaircond);
j pinnerModule. add (mBedroomsmoke) ;

setLayout {new BorderLayout (10,10));
add(jpRoom, BorderLayout.NORTH);
add(jpinnerModule, BorderLayout.CENTER);

setBackground (new Color (200,200, 210));

public String getTitle(String[] module)
{

return module[O];

public String geticonName(String[] module)
{

return module[l];

public String getName(String[) module)
{

return module[2];

public void setModuleclear()
{

mBedroomdoor.setBorder(new LineBorder(lightgray, 3));
mBedroomlight.setBorder(new LineBorder(lightgray, 3));
mBedroomwindow.setBorder(new LineBorder{lightgray, 3))i
mBedroomsmoke.setBorder(new LineBorder(lightgray, 3));
mBedroomfan.setBorder(new LineBorder(lightgray, 3});
roBedroomaircond.setBorder(new LineBorder(lightgray, 3));

)

1 // end of BedroomView2 class---

11------------------------------- BedroomView3 ---------------------------------

94

status)

class BedroomView3 extends JPanel
I

private MainF~ame parent;
private SerialConnection connection;
private Status status;

private Module mBedroomdoor;
private Module mBedroomlight;
private Module mBedroomwindow:
private Module mBedroornsmoke;
private Module mBedroomfan;
private Module mBedroomaircond;
private String [] sbd {"Door", "door 11

, "bedroomdoor3");
private String[l sbl = {"Light", "light", "bedroomlight3"};
private String[] sbw {"Window", 11window", "bedroomwindow3"};
private String[] sbf {"Fan", "fan", "bedroomfan3"};
private String[] sba {"Air-Conditioner", "aircond", "bedroomaircond3"};
private String[} sbs"' {"Smoke Detector","smoke","bedroomsmoke3"};

private Dimension maxSize =new Dimension(250,250);
final int HEIGHT = 700;
final int WIDTH ~ 550;

private JPanel jpRoom;
p:rivate JPanel jpinnerModule;
private JLabel jlRoom;
private String room = "Bedroom 3";

public Eedroomview3 (MainF:rame parent, SerialConnection connection, Status

this.parent ~ parent;
this.connection = connection;
this.status ~ status;

enableEvents{AWTEvent.WINDOW_EVENT MASK);

roBedroomdoor =new Module {connection, status, this.getTitle{sbd),
this.geticonName{sbd},this.getName{sbd));

mBedroomlight ~new Module (connection, status, this.getTitle(sbll,
this. geticonName {sbl), this. getName {sbl));

mBedroomwindow =new Module (connection, status, this.getTitle(sbw),
this.geticonName{sbw),this.getName{sbw));

mBedroomsmoke =new Module (connection, status, this.getTitle(sbs),
this.geticonName(sbs),this.getName(sbs));

mBedroomfan =new Module (connection, status, this.getTitle(sbf),
this.geticonName(sbf),this.getName(sbf));

mBedroomaircond =new Module (connection, status, this.getTitle(sba),
this.geticonName(sba),this.getName(sba));

mBedroomdoor.setPreferredSize(maxSize);
mBedroomlight.setPreferredSize{maxSize);
mBedroomwindow.setPreferredSize(maxSize};
mBedroom~moke.setFreferredSize(maxSize};

mBedroomfan.setPreferredSize(maxSize};
mBedroomaircond.setPreferredSize(maxSize);

jpRoom =new JPanel();
jpRoom. setLayout (new Flov1Layout {FlowLayout. CENTER, 5, 5)};
jpRoom.setBackground{new Color(200,200,210});
jpRoom.setBorder{new BevelBorder(BevelBorder.RAISED));
j!Room =new JLabel(room);
j lRoom. set Font (new Font {"BankGothic Lt BT" 1 Font. PLAIN, 15));
jpRoom. add (jlRoom};
jpinnerModule = new JPanel 1) ;
jplnnerModule.setLayout(new FlowLayout(FlowLayout.LEFT, 5,5)};
jpinnerModule.setBackground(new Color(200,200,210));

jpinnerModule .add (mBedroomdoor) ;
jpinnerModule.add(mBedroomlight);
jpinnerModule. add (mBedroomwindow):

95

jprnnerModule.add(mBedroomfan);
jpinnerModule.add(mBedroomaircond);
j pinnerModule. add {mBedx:oomsmoke) ;

setLayout(new BorderLayout(10,10));
add(jpRoom, BorderLayout.NORTH};
add(jplnnerModule, BorderLayout.CENTER);

setBackground(new Color{200,200,210));

public String getTitle(String[} module)
{

return module[O};

public String geticonName(String[] module)
{

return module[l};

public St.ring getName (String [] module)
{

return module[2);

public void setModuleClear(}
{

mBedroomdoor.setBorder(new LineBorder{lightgray, 3)};
mBedroomlight. setBorder (new LineBorder { lightgray, 3)) ;
mBedroomwindow.setBorder{new LineBorder{lightgray, 3});
mBedroomsmoke.setBorder{new LineBorder{lightgray, 3));
mBedroomfan.setBorder(new LineBorder(lightgray, 3));
mBedroomaircond. setBorder {new LineBorder {lightgray, 3)) ;

)

} // end of Bedroomview3 class --

11------------------------------- TreePanel -------------------------------------
class TreePanel extends JPanel
{

private JScrollPane jspTree;
public JTree jtTree;
final int WIDTH = 500;
final int HEIGHT = 500;

Hashtable htMain;
Hashtable htBedrooms;
ObjEct[} objGeneral, objLivingr objDining, objKitchen, objBathroom,

objBedrooml, objBedrooro2, objBedroom3;

Icon open = new Imageicon{"image/right.jpg");
Icon close = new Imageicon("image/down.Jpg");
Icon leaf = new Imagercon("image/leaf.jpg"):

MainFrame mainframe;
String general ' "{.t:oot, Gene.t:al] ";

String living = "[root, Living Room]";
String dining = "[root, Dining Room]";
String kitchen = "[root, Kitchen]";
String bedrooms "[root, Bedrooms}";
string bedroom! "[root, Bedrooms, Bedroom 1]";
String bedroom2 "[root, Bedrooms, Bedroom 2]";
String bedroom3 "[root, Bedrooms, Bedroom 3] ";

96

GeneralView mGeneralView;
KitchenView mKitchenView;
LivingView mLivingView;
DiningView mDiningView;
BedroomViewl mBedroomviewl;
BedroornView2 mBedroomView2;
BedroomView3 mBedroomView3;

public TreePanel(MainFrame mainframe)
{

this.mainframe ~ mainframe;

htMain =new Hashtable();
htBedrooms =new Hashtable();
objGeneral =new Object[] {"Front Door", "Back Door", "Smoke Detector");
objLiving =new Object[] {''Window", "Light", "Fan", "Air-conditioner",

11 Smoke Detector"};
objDining = new Object(} {"Light", "Fan", "Smoke Detector"};
objKitchen "" new Object[] {"Window" 1 "Light", "Fan", "Smoke Detector"};
objBathroorn new Object[] {"Light", "Smoke Detector"};
objBedrooml new Object [1 {"Door", "Window", "Light", "Fan",

objBed.room2

objBedroom3

"Air-Conditioner11
, "Smoke Detector"};

new object [] ("Door", "window" 1 "Light" 1 "Fan'' 1

"Air-Conditioner11
, "Smoke Detector"};

new Object [] { "Door 11
, "Window 11

,
11 Light", "Fan11

,

11Air-Conditioner 11
,

11 Smoke Detector"};

htBedrooms .put ("Bedroom 1", objBedrooml};
htBedrooms. put {"Bedroom 2", obj Bedroom2) ;
htBedrooms. put {"Bedroom 3", objBedroom2) ;

htMain.put{"Kitchen",objKitchen);
htMain.put ("Dining Room", objDining);
htMain.put("Living Room", objLiving);
htMain.put {"General", objGeneral);
htMain. put {"Bedrooms" 1 htBedrooms) ;

DefaultTreecellRenderer renderer
renderer.setClosedicon(close);
renderer.setOpenicon(open);
renderer.setLeaficon(leaf);

jtTree "' new JTree (htMain);

new DefaultTreeCellRenderer(};

jtTree. setFont (new Font ("Verdana", Font. PLAIN, 12));
jtTree.setCellRenderer(renderer);
jtTree.setEditable(true};
jtTree.setBackground{Color.white);

jspTree =new JScrollPane(jtTree);
jspTree.setBackground{Color.white);
jspTree.setBorder(new EmptyBorder(l0,10,10,10));
setLayout(new BorderLayout(10,10));
add(jspTree, BorderLayout.CENTER);

Dimension screenSize = Toolkit.getDefaultToolkit() .getScreenSize();

jtTree. addTreeSelectionListener (
new TreeselectionListener{){

public void valueChanged(TreeSelectionEvent e){
TreePath path= e.getNewLeadSelectionPath();

mGeneralview = getGeneralView();
mGeneralView.setModuleClear();
mKitchenView = getKitchenview{);
mKitchenView.setModuleClear();
mLivingView = getLivingView();
roLivingView.setModuleClear{};
mniningView = getDiningView{);
rn.DiningView. setModuleClear () i
rnBedroomViewl = getBedroomviewl () ;
mBedroomViewl.setModuleClear();

97

mBedroomView2 = getBedroomview2();
mBedroomView2.setModuleClear{);
mBedroomView3 ~ getBedroomView3();
mBedroomView3.setModuleClear();

if(path==null) {}
else [

TreePath parentPath = patb.getParentPath{);

String parent= parentPath.toString();
String child "" path. toString ();
TreeNode treenode =

(TreeNode)path.getLastPathComponent();

child.equals(general})

LineBorder(selected, 3}};

LineBorder(selected, 3)};

String node= treenode.toString{);

if {parent. equals (general) 11

.setGeneralView ();

if (node. equals ("Back Door"})
{

mGeneralView.mBackdoor.setBorder{new

if {node.equals{"Front Door"))

I
roGeneralview.mFrontdoor.setBorder(new

if (node.equals ("Smoke Detector"))
I

mGeneralView.mLivingsmoke.setBorder(new LineBorder(selected, 3});
}

else if (parent. equals (living) I 1
child.equals(living))

setLivingView ();

if {node.equals{"Window"))

mLivingView.mLivingwindow. setBorder (new LineBorder (selected, 3));
}

if (node. equals ("Smoke Detector"))
{

mLivingView.mLivingsmoke.setBorder(new LineBorder(selected, 3]);
}

if (node.equals("Light"))
{

mLivingView.mLivinglight.setBorder(new LineBorder{selected, 3));
}

LineBorder(selected, 3));

if (node .equals {"Fan"))
I

mLivingView.mLivingfan.setBorder{new

if {node.equals("Air-conditioner"))
I

98

mLivingView .mLivingaircond. setBorder (new LineBorder (selected, 3) J;
I

child.equals(dining}}
else if (parent. equals (dining) ! I

setDiningView {) ;

if (node.equals{"Smoke Detector"))
I

mDiningView.mDiningsmoke.setBorder(new LineBorder(selected, 3));
I

if (node .equals ("Light"))
{

mDiningView.mDininglight.setBorder(new LineBorder(selected, 3});
I

LineBorder(selected, 3}};

child.equals{kitchen))

if (node.equals{"Fan"))
{

mDiningView.mDiningfan.setBorder(new

else if (parent. equals (kitchen) i I

setKitchenview();

if {node. equals ("Window"))
{

rnKitchenView.mKitchenwindow.setBorder(new LineBorder(selected, 3));
I

if (node.equals ("Smoke Detector"))
{

mKitchenView.mKitchensmoke.setBorder(new LineBorder(selected, 3));
I

if {node. equals ("Light"})
{

mKitchenView.mKitchenlight.setBorder(new LineBorder(selected, 3));
I

if (node.equals("Fan"))
{

mKitchenView.mKitchenfan.setBorder(new LineBorder(selected, 3)};
I

child.equals(bedrooml))

else if(child.equals(bedrooms))

setBedroomViewl();

~lse if(parent.equals(bedrooml) II

setBedroomViewl();

if {node.equals ("Window''))
I

99

mBedroomViewl.mBedroomwindow.setBorder(new LineBorder(selected, 3));
)

if (node.equals("Smoke Detector")}
{

mBedroomViewl. mBedroomsmoke. setBorder (new LineBorder (selected, 3)) ;
)

if (node.equals("Light"))
I

mBedroomViewl.mBedroomlight.setBorder(new LineBorder(selected, 3});
)

if (node.equals("Fan"))
{

mBedroomViewl.mBedroomfan.setBorder(new LineBorder(selected, 3));
)

if {node.equals ("Air-Conditioner"))
{

mBedroomViewl.mBedroomaircond.setBorder(new LineBorder(selected, 3});
)

child.equals(bedroom2))
else if {parent. equals (bedroom2) ! 1

setBedroomView2{);

if {node. equals ("Window"))
{

mBedroomView2.mBedroomwindow.setBorder(new LineBorder(selected, 3));
)

if (node.equals("Smoke Detector")}
{

mBedroomView2.mBedroomsmoke.setBorder{new LineBorder(selected, 3));
)

if (node.equals ("Light")}
{

mBedroomView2.mBedraomlight.setBoider(new LineBorder(selected, 3));
)

if (node.equals("Fan"))
{

mBedroomView2.mBedroomfan.setBorder(new LineBorder(selected 1 3));
)

if (node .equals ("Air-conditioner"))
{

mBedroomView2 .mBedroomaircond.setBorder (new LineBorder (selected, 3));
)

child. equals (bedroom3))
else if(parent.equals(bedroom3) 1!

setBedroomView3();

if (node. equals {"'Window"))
{

100

mBedroomView3. mBedroomwindow. setBorder {new Line Border {selected, 3)) ;
)

if (node.equals("Smoke Detector"})
{

mBedroomView3. mBedroomsmoke. setBorder (new LineBorder {selected, 3)) ;
)

if (node.equals("Light~'))

I

mBedroomView3.rnBedroomlight.setBorder(new LineBorder{selected, 3));
)

if (node.equals ("Fan"))
{

rnBedroomView3.mBedroomfan.setBorder{new LineBorder(selected, 3}};
)

if {node.equals ("Air-conditioner"))
{

mBedroomView3.mBedroomaircond.setBorder(new LineBorder(selected, 3});
}

});

public JTree getTree()
{

return this.jtTree;

public void setLivingview()
{

else
I

setGeneralview{);

this.mainframe.setLivingView();

public void setDiningView ()
{

this.mainframe.setDiningView{);

public void setKitchenView{}
{

this.mainframe.setKitchenView{);

public void setGeneralView()
{

this.mainframe.setGeneralView();

public void setBedroomViewl()
{

this.mainframe.setBedroamView1();

101

public void setBedroomView2()
I

this.mainframe.setBedroomView2{);

public void setBedroomView3{)
{

this. mainframe. ,setBedroomView3 () ;

public GeneralView getGeneralView{)
I

return this.mainframe.mGeneralView;

public KitchenView getKitchenView()
{

return this.mainframe.mKitchenView;

public LivingView getLivingView{)
I

return this. mainframe .roLi vingView;

public DiningView getDiningView()
{

return this.mainframe.mDiningView;

public Bedroomviewl getBedroomViewl()
{

return this .mainframe.mBedroomViet>!l;

public BedroomView2 getBedroomView2{)
{

return this.mainframe.mBedroomView2;

public BedroomView3 getBedroomview3{)
{

return this.mainframe.mBedroomview3;

l // end of TreePanel class --

//======================End of Child classes in MainFrame=========================

} II end of MainFrame class---

//=============o================""=""=End of MainFrame=====================================

II Another claas to handle thread

class TimerThread extends Thread implements Runnable
{

UpperPanel myclock;

public TimerThread {UpperPanel myclock)
{

this.myclock = myclock;

public void run ()

102

while(true}
I

try
{

this.sleep(lOOO};

catch(InterruptedException e){}
myclock.setTime();

103

!/===
I /Author : Murni Masri
//File Name : MyAccessPad.java
//===

import java. awt .. *;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.Image;

class MyAccessPad extends JDialog
(

final int WiDTH = 549;
final int HEIGHT = 485;
MainFrame parent;
private String pass= "murni";

public MyAccessPad(MainFrame parent}
(

this.parent =parent;
setTitle {"Horne Guard System - Access Password");

Container container = getContentPane () ;
container.setLayout{new GridLayout());
container.add(new ImagePanel(parent, this));

Dimension screenSize = Toolkit.getDefaultToolkit{) .getScreenSize{);
setLocation{screenSize.width/2 - WIDTH/2, screenSize.height/2 - HEIGHT/2};
s~tSize(WIDTH, HEIGHT);

this.validate();

class ImagePanel extends JPanel implements ActionListener
(

private JPasswordField jpfPassword;
Image image = new Imageicon("imagelintro.jpg") .getimage();
private String pass= "murni";
Icon icon = new Image Icon(" image/logo kecikl. jpg");
MainFrame parent; -
MyAccessPad frame;

public ImagePanel{MainFrame parent, MyAccessPad frame)
(

this.parent = parent;
this.frame = frame;
setLayout(new FlowLayout(FlowLayout.LEFT,200,2B5));
jpfPassword =new JPasswordField(20};
jpfPassword.addActionListener(this);

add (jpfPassword) ;
setopaque(true);

public void paintComponent(Graphics g)
(

super.paintcomponent(g);
g.drawimage{image, 0, 0, this);
revalidate();

public void actionPerformed {ActionEvent e)
(

String enter = new String (jpfPassword. getPas.sword ());

if{enter.equals{pass)}

104

JOptionPane.showMessageDialog {this,
"Welcome to Home Guard system." 1

"Information",
JOptionPane.INFORMATION_MESSAGE,
icon);

this.frame.setDefaultCloseOperation{WindowConstants.HIDE ON CLOSE);
parent.setvisible(true); -

else
{

JOptionPane.showMessageDialog (this,
"Your password is not valid. Please try again.",
"Information" 1

JOptionPane.ERROR_MESSAGE);

this.frame.setDefaultCloseOperation(Windowconstants.DISPOSE ON CLOSE);
this.frame.addWindowListener(new WindowAdapter{) { - -

public void windowClosed(WindowEvent e) {
System. exit (0);
}

}) ;

105

!!================~==

//Author ! Murni Masri
I /File Name : UpperPanel.java
//===

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.border.*;
import java.text.*i
import java.util.*;

public class UpperPanel extends JPanel
{

SimpleDateFormat formatter;
Date currentTime;
public String datestring;
JLabel jlClock, jlLogo;
JButton jbicon, jbicon2;

JPanel inner, jpClock, jpicon, jpLogo;

public UpperPanel()
{

String time= getcurrentTime();
j !Clock = new JLabel () ;
jlClock.setText(time);
jlClock.setDoubleBuffered(true};
jlClock.setFont(new Font("Verdana", Font.BOLD, 15));
jlClock.setBorder(new BevelBorder(BevelBorder.LOWERED));

jpClock =new JPanel();
jpClock.setLayout{new FlowLayout(FlowLayout.CENTER, 5,5));
jpClock.add{jlClock);
jpicon ~new JPanel();
jpicon.setLayout{new FlowLayout(FlowLayout.LEFT, 5,5));

jpLogo =new JPanel();
]!Logo= new JLabel();
jlLogo. set Icon (new Imageicon (11 image/logo_bulat k~;-c:tkS. Jpg"));

inner= new JPanel();
inner.setLayout(new BorderLayout());
inner.setBorder(new EmptyBorder(5,5,5,5));
inner.add{jpClock, BorderLayout.EAST);
inner.add(jpicon, BorderLayout.CENTER);

this.setLayout{new BorderLayout(lO,lO));
this.setBorder(new BevelBorder(BevelBorder.LOWERED));
this.add(jpLogo, BorderLayout.WEST);
this.add{inner 1 BorderLayout.CENTER);

public void setTime ()
{

String time= getCurrentTime();
jlClock.setText(time);

public string getCurrentTime()
{

int s = 0, m = 10, h = 10;
Date currentTime =new Date();
sirnpleDateFormat formatter = new SimpleDateFormat {11 s", Locale. getDefault ());

try
I

s = Integer.parseint(formatter.for;mat(currentTime));

catch (NumberFormatException n)
{

106

s = 0;

formatter. applyPattern {"m"};
try
{

m Integer.parseint(formatter.format(currentTime}};

catch (NumberFormatException n)
{

m"" 10;

formatter. applyPattern ("h"};
try
{

h Integer.parseint(formatter.format(currentTime));

catch {NumberFormatException n)
{

h = 10;

formatter.applyPattern(" dd/HM/yyyy HH:mm ");
String dateString = formatter.format(currentTimel;
return dateString;

107

!!===
//Author : Murni Masri
I /File Name : SerialParameteLs.java

11··--------------------------------~---
import javax.comm.*;

public class serialParameters
{

private String portName;
private int baudRate;
private int flowcontrol!n;
private int flowcontro!Out;
private int databits;
private int stopbits;
private int parity;

public SerialParameters ()
{

this ("COMl",
9600,
SerialPort.FLOWCONTROL NONE,
SerialPort.FLOWCONTROL-NONE,
SerialPort.DATABITS 8,
SerialPort.STOPBITS=l,
SerialPort.PARITY_NONE);

public serialParameters (String portName, int baudRate, int flowcontrolin,
int flowControlOut,int databits,int stopbits, int parity)

this.portName = portName;
this.baudRate = baudRate;
this.flowControlin ~ flowcontrolin;
this.flowcontrolOut = flowcontrolout;
this.databits = databits;
this.stopbits = stopbits;
this.parity =parity;

public void setPortName(String portName)
{

this.portName = portName;

public String getPortName(}
{

return portName;

public void setBaudRate(int baudRate)
{

this.baudRate = baudRate;

public void setBaudRate(String baudRate)
{

this.baudRate = Integer.parseint{baudRate);

public int getBaudRate{}
{

return baudRate;

public string getBaudRateString()
{

return Integer.tostring(baudRate);

public void setFlowControlin{int flowControlin)

108

this.flowControlin flowControlin;

public void setFlowcontrolin(String flowcontrolin)
{

this.flowControlin ~ stringToFlow(flowControlin};

public int getFlowControlin{)
{

return flowcontrol!n;

public String getFlowControlinString()
{

return flowToString(flowControlin};

public void setFlowControlOut{int flowControlOut)
{

this.flowControlOut ~ flowcontrolOut;

public void setFlowcontrolOut(String flowControlOut)
{

this.flowcontrolout = stringToFlow(flowcontrolOut);

public int getFlowcontrolout()
{

return flowcontrolOut;

public string getFlowcontroloutstring()
{

return flowToString(flowcontrolOut);

public void setDatabits(int databits)
{

this.databits = databits;

public void setDatabits(String databits)
{

if {databits.equals{"5"})
{

this.databits = SerialPort.DATABITS_5;

if (databits.equals("6"))
{

this.databits = SerialPort.DATABITS 6;

if (databits.equals("7"))

this.databits = Seria1Port.DATABITS_1;

if (databi-ts.equals ("8"))
{

this.databits = SerialPort.DATABITS_8;

public int getDatabits{)
{

return databits;

public String getDatabitsString{)
{

109

switch(databits)
I

case SerialPort.DATABITS 5:
return "5";
case serialPort.DATABITS 6:
return "6";
case SerialPort.DATABITS 7:
return ''7";
case serialPort.DATABITS 8:
return "8";
default:
return "8";

public void setStopbits(int stopbits)
I

this.stopbits = stopbits;

public void setStopbits(String stopbits)
I

if (stopbits.equals{"l")}
{

this.stopbits ~ SerialPort.STOPBITS_l;

if (stopbits .equals ("1. 5"))
{

this.stopbits ~ SerialPort.STOPBITS_l_S;

if (stopbits.equals ("2"))
{

this.stopbits = Serid1Port.STOPBITS_2;

public int getstopbits()
{

return stopbits;

public String getStopbitsString{)
I

switch{stopbitsl
{

case SerialPort.STOPBITS_l:
return ''1";
case Seria1Port.STOPBITS_l_5:
return "1.5";
case seria1Port.STOPBITS_2:
return "2";
default:
return "1";

public void setParity(int parity)
{

thi5.parity ~ parity;

public void setParity{String parity)
{

if (parity. equals ("None"))
I

this.parity = SerialPort.PARITY_NONE;
I
if (parity. equals ("Even"))
I

this.parity = SerialPort.PARITY_EVEN;

110

if (parity.equals ("Odd"))
I

this.parity ~ Seria!Po.rt.PARITY_ODD;

public int getParity()
I

return parity;

public String getParityString{)
{

switch (parity)
{

case SerialPort.PARITY NONE:
return "None";
case SerialPort.PARITY EVEN:
return "Even";
case SerialPort.PARITY ODD:
return "Odd";
default:
return "None";

private int stringToFlow{string flowcontrol)
{

if (flowcontrol.equals ("None"))
I

return SerialPort.FLOWCONTROL_NONE;

if {flowControl.equals("Xon/Xoff out"))
I

return SerialPort.FLOWCONTROL~XONXOFF_OUT;

if {flowcontrol.equals ("Xon/Xoff In"))
{

return SerialPort.FLOWCONTROL XONXOFF_IN;

if {flowcontrol.equals ("RTS/CTS In"))
I

return SerialPort.FLOWCONTROL_RTSCTS IN;

if (flowControl.equals ("RTS/CTS Out"})
I

return SerialPort.FLOWCONTROL RTSCTS_OUT;

return SerialPort.FLOWCONTROL_NONE;

String flowToString(int flowControl)
{

switch (flowcontrol)
{

case SerialPort.FLOWCONTROL_NONE:
return "None";
case SerialPort.FLOWCONTROL_XONXOFF~OUT:
return "Xon/Xoff out";
case SerialPort.FLOWCONTROL XONXOFF IN:
return "Xon/Xoff In"; - -
case SerialPort.FLOWCONTROL_RTSCTS_IN:
return "RTS/CTS In" i
case SerialPort.FLOWCONTROL RTSCTS OUT:
return "RTS/CTS Out"; ~ -
default:
return "None";

111

!!===
//Author : Murni Masri
//File Name : PortRequestedDialog.java
!!===

import java.awt.*;
impoxt java.awt.event.*;
import javax.swing.*;

public class PortRequestedDialog extends JDialog implements ActionListener
{

private MainFrame parent;
Contain~r container;
private ~Panel jplnfo, jpButton;
private JButton yesButton, noButton;
private String info = "Your port has been requested by another application. "
private String ask= "Do you want to give up your port?";

public PortRequestedDialog(MainFrame parent)
{

super{parent,
this.parent

"Port Requested!",
parent;

true);

container= getContentPane{);

jpinfo =new ~Panel();
jpinfo.add(new JLabel{info, JLabel.CENTER));
jpinfo.add(new JLabel(ask, JLabel.CENTER}};

yesButton = new JButton{"Yes"};
noButton = new JButton("No");
jpButton ~new JPanel(};
jpButton.add{yesButton);
jpButton.add(noButton);

yesButton.addActionListener(this);
noButton.addActionListener{this);

container.add(jpinfo, BorderLayout.CENTER);
container.add(jpButton, BorderLayout.SOUTH};

int width = 200;
setsize(400, 150);
setLocation(parent.getLocationOnScreen{) .x + 30,
parent.getLocationOnScreen().y + 30);
setVisible(true);

this.pack(};

public void actionPerformed(ActionEvent e)
{

String cmd = e.getActionCoromand();

if (cmd.equals("Yes"))
{

parent.portClosed();

setVisible(false);
dispose();

112

//==-======================
//Author : Murni Masri
//File Name : SerialConnectionException.java
//===

public class SerialConnectionException extends Exception
{

public SerialConnectionException (String str)
super (str);

public serialConnectionException()
supe.r();

113

