Software Implementation of a PC-Based Home Surveillance System

by

Mumi Binti Masri

Final Report submitted in partial fulfilment of
the requirements for the
Bachelor of Engineering (IHons)
(Electrical & Electronics Engineering)

JUNE 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Software Implementation of a PC-Based Home Surveillance System

by

Murni Binti Masn

A project final report submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2004

i

CERTIFICATION OF ORIGINALITY

This is to certify that T am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

r@ﬂw_

MURNI BINTI MASRI

il

ABSTRACT

This report is written upon the completion of the two semesters of Final Year Project
course in Electrical & Electronic Engineering programme. This project is entitled as
“Software Implementation of a PC-Based Home Surveillance System”. The main
objective of this project is to design and build software system, emphasizing on GUI
for the PC-based home surveillance system. The developed software is called the

“Home Guard System”,

The “Home Guard System” is designed to scan and display a number of input signals
using sensory interface and represents them on the computer interface. The input and
output modules are interfaced with the computer via a serial port. Microcontroller is
also implemented to translate and manipulate the data received from the serial port

into meaningful functions for prototype demonstration.

The scope of study for this report mainly involves the software development process;
the tools, services and packages available in Java that can be used for this project; and
implementation of microcontrollers, specifically the PIC16F84 to be used in the

prototype development and construction.

This project development is divided into three main modules, which are window
module, hardware module and prototype module. In the window module, the GUI of
this application is designed. The hardware module involves the communication
establishment with the computer’s serial port, while the prototype module consists of

a circuit that implement PIC16F84 as its processor.

This project has been successfully completed. Several recommendations are proposed
to improve the current system, and come up with a better presentable, secure and

reliable system with additional functions.

v

ACKNOWLEDGEMENTS

In the development of this 2-semesters Final Year Project, it seems that an infinite
number of people have provided immeasurable amount of guidance, idea and
assistance. While the writer’s gratitude goes out to all those that had assisted her, she

could only mention a few of many benefactors here.

My greatest gratitude, thankfulness and appreciation to my supervisor, Mr Mohd.
Zuki Yusoff for his great support, guidance and concern. Thank you for the
continuous motivation that is given towards the development and completion of this

project.

My deepest thanks to all my colleagues, who have always been there from the
beginning till the end, and through ups and down. Thank you all for your words of
encouragement to keep on going and overcome all the hurdles in making this project

a SUCCess.

Special thanks is also conveyed to Miss Siti Hawa Talib, one of the most cooperative
laboratory technician in UTP. Thank you for your cooperation and assistance in

developing the project prototype.

And last but not least, my heartiest gratitude and appreciation to my family for their
never-ending support and concern. They have given me the warmest helping-hand
and inspired me the will to try my best for this project. My deepest thanks again to
them and ! apologize for all the lost time together.

It would be impossible to complete this project without the help from those
mentioned above and the blessing of Allah SWT. Thank you and may Allah SWT

bless us all.

TABLE OF CONTENTS

CERTIFICATIONOF APPROVAL _............. ...

CERTIFICATION OF ORIGINALITY...oocoiiii i

ACKNOWLEDGEMENTS ...

CHAPTER1: INTRODUCTION.
1;1 Background of Study........ ...
1.2 Problem Statement... ...
1.3 Objectiveof Study...........oooo i
1.4 Scopeof Study...... ..o

CHAPTER 2: LITERATURE REVIEW AND/ORTHEORY
2.1 Programming Fundamentals
2.2 Java Foundation Classes.......................o.o

23 Java Communications APL.

vi

11

111

v

X

Xii

L R

[+ - R B« A v

24 Serial Ports ..ot e B
2.5 ThePIC16F84 Fundamentals.............o.oovvr i 10

CHAPTER 3: METHODOLOGY/PROJECTWORK.......................... 11
3.1 Procedure Identification.......................ooii vl 1
3.1.1 Programming Process...................ocovvvv e ven a1
3.1.2 Project Process Flow......................... .13
3.1.3 Communicating witha Port.............................. 18
3.1.4 The PIC16F84 Implementation.......................... 21
32 ToolsRequired.............oooeviii 22
3.2.1 Java 2 Software Development Kit (J2SDK)........... 22

3.2.2 Java Integrated Development Environments (IDEs)
And Other Softwaresc.ccoo el 24
323 ThePIC16F84 circuitboard25

CHAPTER 4: RESULTS AND DISCUSSION...ccocoovvv i 27
41 GUIDevelopmentcooeviii i e 27
41.1 AccessPadFrameccooe i 27
41.1.1 PasswordField 28

4.1.1.2 Background lmage 28

412 MainFramec.cco oo e e e 30
4.12.1 Tree NavigatorPanel 32

4.1.2.2 Module Display Panel 34

4.2 Serial Port Programmingcooooeeioiievenvnnveeeeeiees 37
4.3 PICI6F84 Programmingcc...ccovrveerinanrceeceaoeees 38
44 Module Integrationcooeeeveveinincerviinnnee oo cnn. 42

CHAPTER 5: CONCLUSION AND RECOMMENDATION...................43

vii

viii

.50

51

52

57

60

.65

LIST OF TABLES

Table A: Font Standard...............c..
Table 2.1: D-Type 9 Pin and D-Type 25 Pin Connectors...............................
Table 3.1; Swing Lightweight Controls v
Table 3.2: Categories, Events and Interfacesco.oo oo 17
Table 3.3: Several Tssues in Establishing Communication with Ports
Table 3.4: Packages of the Java APT i e,
Table 3.5: PIC16F84 Circuit Board Componentscoooooee i iie e vee e,
Table D.1: User Action, Source Object, and Event Type

Table D.2: Events, Event Listeners, and Listener Methods

X

Xil

15

20
23
25
53
55

Figure 2.1:
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 4.1:
Figure 4.2;
Figure 4.3:
Figure 4.4
Figure 4.5:
Figure 4.6:
Figure 4.7.

Figure 4.8: Draft of the main frame design of the application

Figure 4.9:

LIST OF FIGURES

Pinout position of a male DBY connector....................coooiii)
Pin configuration of PIC16F84c..coiiiiiie)
The Iteration cycle programmingooiii il
Project Process Flow.................oo i,
The hierarchy of event objectscooiiiir i cie e
Schematic of prototype Circuitocoeeiiviiii i
Access Pad Frame ...
Invalid password pOP UpP........ooevit et e e,
Valid password POPUP... ... vovivvieres oo e
The original floorplan29
Background image generated... ...
Access pad with truncated password field............... .. 29

Access pad with fully visible password field................................

An initial design of the upperpanel....................oo
.33

Figure 4.10: The tree navigator panel.................

Figure 4.11: The modified tree design.............cocoooi i
Figure 4.12: Initial design of the module viewooi
Figure 4.13: Final design of the module view
Figure 4.14: The main frame designcooov o cii i e
Figure 4.15: A test module for serial port communication programming
Figure 4.16: PIC serial data processingo.cooiini i e e . 40

Figure 5.1: Recommended schematic for prototype module using 2 PICs

Figure 5.2:

Figure D.1: An event is an object of the EventObjectclass
Figure D.2:
Figure E.1: Define a thread class by implementing the Runnable interface
Figure E.2:

Serial data processing using 2 PICscoo oo

Event-handling

Thread states

10

1

14
16
26

.27
28

28

29

30
30
32

34
35
36
36

45
46
53
54

.. 58

ASCIHI
AP
AWT
CD
CTS
DCE
DSR
DTE
DTR
EEPROM
GUI
IDE
JDK
JFC
J28DK
LED
0OS8C
PC
PIC

RTS
SG
D
XT

LIST OF ABBREVIATIONS

American Standard Code for Information Interchange
Application Programmer Interface
Abstract Window Toolkit

Carrier Detect

Clear To Send

Data Communication Equipment
Data Set Ready

Data Terminating Equipment

Data Terminal Ready

Electronically Erasable Programmable Read-Only Memory
Graphical User Interface

Integrated Development Environment
Java Development Kit

Java Foundation Classes

Java 2 Software Development Kit
Light Emitting Diode

Oscillator

Personal Computer

Peripheral Interface Controller
Receive Data

Ring Indicator

Request To Send

Signal Ground

Transmit Data

External

Xi

FONT STANDARD

This report will be using many types of Java programming anatomy, such as packages,

classes, methods and etc. Therefore, to differentiate the types of anatomy represented

by a word, different font standard is utilized to help the reader in understanding the

whole project process flow that is conveyed in this report. Table A below summarized
the font standard for this report.

Anatomy

Table A: Font Standard

Font Standard

xamples

Methods/ Times New Roman | - open()
Packages Size 12 - java.util
Bold
Terms Times New Roman | - callback
Size 12 - leaf
Ttalic
Classes/ Times New Roman | - CommPort
Components/ Size 12 - JComponent
Objects Bold & Halic - mLivingView
Codes Courier New - try
Size 8 t
SerialPort modem = {SerialPort) cpi.open(};
]
catch (PortInUseBxception e) [}

Xii

CHAPTER 1
INTRODUCTION

1.1 Background of Study

Smart House, Smart Home, Intelligent House and Home Automation are all referring to
the same thing. In this particular project, the term chosen is the Home Guard System. Is
this new or "experimental" technology? Certainly nof, in fact, the equipment used has
been used in office buildings, shopping malls and luxury homes for over a decade.
According to the general analysis done, the Smart House System is already well known
and implemented in the world especially in the United States of America (USA) and
United Kingdom (UK) with various configurations. However, the level of

implementation in Malaysia is still remaining as a question mark.

This project, entitled as “Software Implementation of a PC-Based Home Surveillance
System”, is designated for two semesters of Final Year Project course in Electrical &
Electronic Engineering programme. Since this project emphasize on the Graphical User
Interface (GUI) design, programming skill is essential in delivering better sofitware for
user. Development and improvement of programming skills are expected throughout the
learning process of this project. The study is concentrated more on developing codes for
GUI and how to handle each component of the GUI to perform security tasks by
monitoring and controlling the inputs and outputs from the home appliances and devices
connected to one of the computer port. The study will be based on Internet resources,
programmer community resources, web-documentation, journals and books. Consultation
with people who have software development background is also necessary throughout the

project development.

This project presents a platform for the students to dive further in the world of
programming and software development, which will be one of an extra requirement as a
Computer System Engineer. The experience during industrial training at Motorola has
given a basic knowledge in establishing communication with the serial port using C++.
The knowledge obtained and experience gained contributes in assisting the development

of this project.

1.2 Problem Statement

Software systems are used and implemented almost anywhere. Most electrical equipment
now includes software as part of their interfaces, controlling or operating system. Better
solutions and software designs are developed to provide better user-friendly application

for users as well as satisfying the market demand.

The “Home Guard System” is designed to scan and display a number of input signals
using sensory interface and represents them on the computer interface. The PC-based
surveillance system consists of a number of sensors designed to monitor physical
parameters and a number of devices controiled by the computer. The input and output
modules are interfaced with the computer via a serial port. Examples of input and output
modules are:

a) Temperature sensor and display.

b) Door/window sensor, which checks for any damages or failure.

¢) Smoke sensor.

d) Magnetic card reader, which allows entry of authorized persons only.

¢) Fan, which is turned on and off by the computer depending on the temperature.

f) Search light, which is turned on and off by the computer, at a specific time given

by the user
g) Lock, which is opened by the computer, when a valid card is inserted in the

magnetic card reader.

A GUI application is needed to constantly monitor the status of all the modules existed in

the systems as well as control the operation on part of these modules.

At the early stage of this project, the student has to come up with a suitable GUI design
concept for the application and consiruct it using the resources available and methods
discussed in previous semester. The design level of this application depends on the
consideration to the user needs, the programmer’s expertise and their experience using
computers.

The basic principles considered in designing the GUI concept are:

a) Friendliness the GUI should use terms and input techniques that are

known to the users.

b) Consistency similar operations should produce similar results. This

helps to minimize memory requirement for the user and
reduces surprises.

¢) Error response the GUI should be able to recover from user error.

d) User guidance - the GUI should provide feedback, meaning that the user
should know that his commands have been accepted. The
GUT visual presentation should be obvious to the user and

instruct the user how to use the program,

1.3 Objective of Study

The early main objective of this project is to design and build software system,
emphasizing on GUI for the PC-based home surveillance system only. However, several
extended features are added throughout the development process this project. Ultimately,
the objectives of this project are summarized into:

a) To design and build software system for the PC-based surveillance system. Study
on several different approaches involved in each stage of the software
development process, which are from choosing an appropriate programming
language up to releasing the final product of the software system are conducted

and implemented. The study conducted is centred intensely on the services

available in Java to assists and support the project design. The Swing components

are the basic components that will be used for the development of this application.

b) Implementing the Java Communications API 2.0, It is a standard extension that is
used to establish communication with ports available on the computer. In this
project, the study is concentrated on establishing communication with a serial port

only.

¢) Constructing a prototype, basically built up of a simple circuit board to

demonstrate the workability of the software to communicate with the serial port.

d) Implementing the use of microcontrollers to translates and manipulates the data
received from the serial port into meapingful functions for prototype

demonstration.

1.4 Scope of Study

A computer application can be develop using various range of available programming
language, depending on the needs and complexity of the application, as well as the
preference of the programmer or developer themselves. A research on the programming
language is constructed to have a better view om the advantages of associated
programming languages and the potentially developed skill of the students upon the

completion of this project.

A study on the software development process, the tools involved in the development
process, and other suitable integrated development environments (TDEs) are also
conducted. Further study is carried out regarding the tools, services and packages

available in Java that can be used for this project.

This project is scheduled to be completed within 2 semesters. The first semester is used
for research and learning process involved in Java software development and the services
available for the development process such as the Java 2 Documentation of J2SDK SE v
1.3.1. The second hailf of the 2-scheduled semesters will involve implementation and
manipulation of the developed skills to design and construct the application GUI, conirol
assignment to the components of the GUI and the establishment of communication
between the computer, serial port and the microprocessor in order to monitor and control

the home appliances.

The scheduled tasks and milestones for the first semester and second semester of the 2-
scheduled semesters of the final year project are summarized in the Gantt Chart of

Appendix A and Appendix B respectively.

CHAPTER 2
LITERATURE REVIEW AND/OR THEQRY

2.1 Programming Fundamentals

To construct any computer-based system, some processes are needed to translate the idea
for the use of the computer into lines of source code which can be compiled and

executed. This process typically includes the tasks of:
a) requircments gathering - what we would like the system to do;
b) analysis - finding out how the system should behave;
¢) design ~ deciding the structure of the system to be constructed;
d) implementation - writing the source code;

e) testing, verification and validation - making sure the system does what we claim.
The tasks of implementation and testing also include the task of debugging, which

is the finding and removing of errors in the program.

The design of a language like Java is based on principles that are the result of both many
years of research and of the practical use of earlier generations of programming
languages. The research addresses not onty the best ways of making the computer behave
as we want it to, but also how best to avoid the errors that human beings, being imperfect,
introduce into the systems they are developing. Thus, the programming language and the
development tools used for constructing programs iry to prevent the programmer making
errors in the first place and, if errors are introduced, help finding and eradicating them
quickly and efficiently. The features of Java and the tools for developing Java programs
support these principles. (Russel Winder & Graham Roberts, 1998)

2.2 Java Foundation Classes

The Java Foundation Classes (JFC) is a new set of GUlI-related classes created to
solve the AWT problem of platform peculiarity. JFC also supports:

a) A pluggable look and feel, meaning that when the propram is run, user can
choose whether he want it to look like Windows GUI, a Macintosh GUI, or
some other style.

b) An accessibility API for things like larger text for the visually impaired.

¢) The Java 2D drawing an APL

d) A drag-and-drop library and an “undo last command” library.

e} The Swing components set.

The Swing components (scrollbar, button, textfield, label, etc.) replace the AWT
versions of these components. The AWT is still used for other areas of GUI
functionality, like layout control and printing. The AWT are simpler than the Swing

components, but more basic and more bug-prone.

In AWT, all components are based on peer components. A Java AWT button really 1s
a Win32 button on Windows. This is termed a heavyweight component. A lightweight
component, like all the Swing JComponents, is one which doesn’t use a peer or native
component. Instead, it is drawn by Java code on a piece of the screen that already
belongs to Java. It is drawn onto its container in fact. The most important differences
are:
a) Lightweight components can have transparent areas in them, so they don’t
have to look rectangular in shape.
b) Mouse events on the lightweight component are delivered to its container.
c) When they overlap, lightweight components are never drawn om top of
heavyweight components. This is because we can’t draw half of a lightweight
component on one component and the other half on another. Lightweights

exist wholly within their parent heavyweight component.

Poor behavior when overlapping is the main reason JavaSoft gives for

recommending that we should not mix Swing JComponents with AWT components.

2.3 Java Communications API

The Java Communications API 2.0 is a standard extension available i Java 1.1 and
later that allows Java applications {(but not applets) to send and receive data to and
from the serial and parallel ports of the host computer. The Java Communications API
operates at a very low level. It only understands how to send and receive bytes by
these ports. It does not understand anything about what these bytes mean. Doing
useful work generaily requires not only understanding the Java Communications API,

but also the protocols spoken by the devices connected to the ports.[7]

Because the Java Communications API is a standard extension, it is not installed by
default with the JDK. It has to be downloaded from
hittp://java.sun.com/products/javacomm/index htinl and installed separately.

2.4 Serial Ports

Strictly the RS232 standard specifies the names and functions of signals between Data

Terminating Equipment (DTE) and Data Communication Equipment (DCE), and the

gender of the connectors used. Tt does not specify the connector type or the

communication protoco! employed. The interface is now widely used for connecting

mstruments fo computers and "RS8232" is used to imply specific connector patterns and

communication protocols.

Serial Ports coine in two "sizes”, There are the D-Type 25 pin connector and the D-Type
9 pin connector both of which are male on the back of the PC, thus you will require a
female connector on your device. Figure 2.1 is the view looking into a male DB9

connector.

Figure 2.1: Pinout position of a male DBY connector.

Table 2.1 shows the signal names and their corresponding pins to the maxiroum of 9
wires used for instrumentation applications. Not al! wires are required in all applications.
All signals are named from the viewpoint of the DTE. Thus the TD line is used by the
DTE to transmit data to the DCE, whilst it uses the RD line to receive data from the DCE.
(Hence the DCE is transmitting on the RD line and receiving on the TD line).

Table 2.1: D-Type 9 Pin and D-Type 25 Pin Connectors

D-"Type-25 Pin N, D-Type-9 Pin No, Abbreviation Full Name

Pin 2 Pin 3 ™ Transmit Data
Pm 3 Pin 2 RD Receive Data
Pin 4 Pin 7 RTS Request To Send
Pin 5 Pin 8 CTS . Clear To Send
Pin6 Pin 6 DSR Data Set Ready
Pin7 Pins SG Signal Ground
Pin 8 Pin 1 CD Carrier Detect
Pin 20 Pin4 DTR Data Terminal Ready
Pin 22 Pin9 RI Ring Indicator

A logic 0 on the TD and RD lines, or a control signal "on" on the RTS, CTS, DSR, DCD
and DTR lines is represented by a voltage in the range +5V to +15V at the source end,
and must be > +3V at the receiving end of the cable. The converse signal must be in the

range -3V to -15V at the source and must be <-3V at the receiving end,

2.5 The PIC16F84 Fundamentals

The PIC16F84 is an 18-pin 14-bit embedded micro featuring electronically erasable
programmable read-only memory (EEPROM), as shown in Figure 2.2. The PIC16F84
features two ports named A and B having five and eight digital lines respectively. Any
ling can be configured to be an input or output. The pinout description of PIC16F8X is
listed in Appendix C. The PIC16¥84 has no serial port but with some hardware and
programming, PIC-t0-PC serial communication can be established. The PIC can send

or receive 8-bit values at prescribed intervals (baud rate).

A2 a—me[e1 -— RAY
RA] w—e[] 2 bt FLAD
RAATOCK w3 g i8] OBCHOLKIN
MCR—=[a 7 1500— OosCcacLKouT
vss—=[ls T 14[Qe—vop
reoiNT w—e-[}6 M 130} RE7
RB1 w—a-[]7 g 12[}-=~» RBG
RB2 w—a[8 11 e R8BS
RB3 ww[] 0 o[Jw—= RB4

Figure 2.2: Pin configuration of PIC16F84

PIC16F84 perfectly fits many uses, from automotive industries and controlling home
appliances to industrial instruments, remote sensors, electrical door locks and safety
devices. 1t is also ideal for smart cards as well as for battery supplied devices because

of its low consumption.

In System Programmability of this chip (along with using only two pins in data
transfer) makes possible the flexibility of a product, after assembling and testing have
been completed. This capability can be used to create assembly-line production, to
store calibration data available only after final testing, or it can be used to improve

programs on finished products.

10

CHAPTER 3
METHODOLOGY/PROJECT WORK

3.1 Procedure Identification
3.1.1 Programming Process

A small-scale program is typically under a thousand lines of source code {excluding
comments). We need to distinguish small-scale from large-scale as, aithough the key
object-oriented ideas remain just as important, large-scale programs are typically

developed by a team of people and require considerably more design effort.

Analysis

Design

¥

Implement

‘Test

Review . __.[Deliver }

Figure 3.1: The iteration cycle programming

i1

An overall process is needed to order the steps, and determine what to do when. An
iterative approach is normally adopted. This process is ofien characterized as “Analyze a
little, Design a little, Program a little, Review and Repeat until finished” as illustrated in
Figure 3.1.

Iteration is important as it is very hard to get the design of a program correct first time. In
particular, it is difficult to identify all the key abstractions right at the start. Often they
only become apparent as understanding of the program developed with each stage of
iteration,

There are dangers with iteration in that it can be difficult to control the quality and scope
of the program, and also it can be hard to know when it is finished since there is always a
temptation to add more features to the design. Problems can be avoided by pausing
regularly to review progress, usually after having implemented some new aspect of the

program.

A further consequence of iteration and prototyping is that, although the various
development stages are listed separately, they may be merged together or omitted. In
particular, for small programs analysis and design can be treated as essentially the same
thing, with the design itself being developed by actually writing and commenting Java

code.

At the early stage of this project, the student has to come up with a suitable GUI design
concept for the application and construct it using the resources available and methods
discussed in previous semester. The design level of this application depends on the
consideration to the user needs, the programmer’s expertise and their experience using

computers.

12

The basic principles considered in designing the GUI concept are:

a) Friendliness

the GUI should use terms and input techniques that are

known to the users.

b) Consistency similar operations should produce similar results. This
helps to minimize memory requirement for the user and

reduces surprises.

¢) Error response the GUI should be able to recover from user error,

d) User guidance

the GUI should provide feedback, meaning that the user
should know that his commands have been accepted. The
GUT visual presentation should be obvious to the user and

mnstruct the user how to use the program.

3.1.2 Project Process Flow

This project development is divided into three main modules, which are window module,
hardware module and prototype module. These modules are divided mto different
timeframes of the overall time allocated for this project. However, the development
process might overiap with each other due to time constraint and design problems. The

main project process flow is summarized in Figure 3.2

13

Literature Review

and Research Study
Window Moduie ° / Hardware] Module Prototype
{
Design & Construct Design, Construct & Design & Construct
Window Establish Communication Prototype

Assign controls/actions
to GUI components

Integrate mdividual
actions

- - -'

Module Test

L g g U L L LR L L L | e

...................

Integrate the Windows &
Hardware modules

System Test §

Integrate the Windows &
Hardware modules

Full Test

Project Completion

Figure 3.2: Project Process Flow

14

The window module will be constructed first, followed by the hardware module and
prototype module. In the window module, the GUI of this application shall be design,
constructed and integrated. This module will be built up using Swing components. Swing
components are no longer peer-based, but are written in Java and are thus consistent on
all platforms. The main Swing lightweight controls that can be implemented in the design
are as listed in Table 3.1. The behaviour and appearance of each specific control is one
level down in the subclasses of JComponent. These classes are the controls or building

blocks from which GUIs are created. To use these components, the steps taken are:

a) Add them to the confent pane of a container.

b) Register an event-handler using the addSomeListener() method of the control.

Table 3.1: Swing Lightweight Controls

GUT Cateory Conirol

Swine Class Nae

Basic Controls Button JButton, JCheckBox, JRadioBution
Combo box JComboBox
List JList
Menu JMenu, IMenuBar, JMenultem
Slider JSlider
Toolhar JToolbar
Text field JTextField, JPasswordFeild, JTextArea
Uneditable Labet JLabel
Displays Tooltip JTooltip
Progress bar JProgressBar
Editable Table JTable
Displays Text JTextPane, JTextAren, JEditorPane
Tree JTree
Color chooser JColorchooser
File chooser JFilechooser
Space-Saving Scroll pane JScrollPane, JScrollBar
Containers Split pane JSplitPane
Tabbed pane JTabbedPane
Top-Level frame JFrame
Containers Applet JApplet
Dialog JDialog, JOptionPane
Other Panel! JPanel
Containers Internal frame JnternalFrame
Layered pane JLayeredPane
Root pane JRootPane

The window concept is design by drawing the basic features used for the main page.

This draft shall be used as guideline in developing the window using Swing

components.

i35

Then, each component in the constructed window shall be assign to appropriate controls
or actions. In event-driven programming, the logic of the codes is inverted. Instead of one
flow of control from beginning to end, the runtime system sits in a “window main loop”
simply waiting for user input. When the user clicks the mouse, the operation system
passes it to the window manager, which turns it into an event and passes it on to a handler
supplied earlier. This is known as a calfback. Our handler is the callback routine, because
the window system calls back to it when the event happens. Our event handler will deal

with the graphics event and any work that is associated with it.

java.util,BventChject contains a "source” field

java.awt.AWTEvent

contains information about
how it is consumed, whether
it is sent to the peer

java.awt.event.ComponentEvent E \

java.awt.event.FocusEvent

MouseBEvent

Events for individual controls.
Each contains event-specific
information such as the exact
key pressed, where the mouse
¢click occurred, or the value of a
scroll bar.

AdjustmentBvent

S e e S A e

.ActionEvent

oy T2, £ e 2 TG

. ItenBEvent

D e s A et

Figure 3.3: The hierarchy of event objects.

An event object has several data fields holding certain information. There is a general
javautil, EventObject type, and all AWT events are children of that as shown in Figure
3.3 above.

16

Table 3.2 sununarizes the relations between existing event, their interfaces and the
methods that Listener interfaces use. A more detail description about event-driven

programming is discussed in Appendix D.

Table 3.2: Categories, Events and Interfaces.

interface That The FEvent-

General Catecory Faents Phao de Generates Handler limplements

Dragging, moving mouse causes a MouseMotionListener
MouseEvent
Clicking, selecting, releasing causes MouseListener
a MouseEvent,

Kevboard Key press or release causes a Keylistener
Keylivent,

Selecting (an item ‘When item is selected causes an liemListener

from a list, checkbox, ItemEvent.

etc.)

Text Input Controls When newlme is centered causes a Textlistener
TextEvent.

Scrolling Controls When a scroilbar slider is moved AdjustmentListener
causes an Adjustmenilovent.

Other Controls When pressed causes an ActionEvent. ActionListener

(button, menu, etc.)

Window Changes QOpen, close, iconify, elc., causes a WindowListener
WindowEvent.

Keyboard Focus Tabbing to next field or requesting FocusListener

Changes focus causes a FocusEvent, A
component must have the focus to
generate key events,

‘Component Change Resizing, hiding, revealing, or Componenilistener
MOoVing & COMponant causes a
Componentlivent,

Component Change Adding or removing a component o ConjainerListener
a container causes a ContainerEvent.

The hardware module involves serial communication establishment via a serial port on
the computer. In addition, microprocessor will also be added as part of the hardware
module. The microprocessor will be utilized to interact with the software constructed
through serial port on the computer. PIC16F84 perfectly fits the usage for serial

communication and controlling home appliances and safety devices.

17

3.1.3 Communicating with a Port

The main thing to do before programming any Java files for port communication is to
download the extension and install it on the computer. The steps taken to install the Java

Communications API are:

a) Unzip the file javacomm?20-win32.zip file. This will produce a hierarchy with a
top level directory commapi folder.

b) Copy win32com.dll file to <IDK>\bin directory.

¢) Copy comm jar file to <JDK>-\lib directory.

d) Copy javax.comm.properties file to <JDK>\lib directory.

e) The javax.comm.properties file must be installed. If it is not, no ports will be
found by the system.

f) Add comm. jar file to classpath.

The javax.comm.SerialPort class is an abstract subclass of CommPort that provides
 various methods and constants useful for working with RS232 serial ports and devices.
The mamn purposes of the class are to allow the programmer to inspect, adjust, and
monitor changes in the settings of the serial port. Simple input and output is
accomplished with the methods of the super class, CommPort. SerialPort has a public
constructor, but shouldn’t be used by applications. Instead, one should call the open()
method of a CommPertldentifier that maps to the port he wants to communicaie with,
then cast the result to SerialPort.

For example:
CommPortIdentifier cpi = CommPortIdentifier.getkortlidentifier (“COML");
if (epi.getType() == CommportIdentifier.PORT SERIAL} {
try |
SerialPort modem = {SerialPort) opi.open();

}
catch (PortInUseBxception e) [}

3

18

javax.comm is divided into high-level and low-level classes. High-level classes are
responsible for controlling access to and ownership of the communication ports and
performing basic I/O. The CommPortldentifier class lets us find and open the ports
available on the system. The CommPort class provides input and output streams
connected to the ports. Low-level classes, javax.comm.SerialPort and
Javax.commParallelPort for example, manage interaction with particular kinds of ports
and help us read and write the control wires on the ports. They also provide event-based

notification of changes to the state of the port.

There are several issues in establishing communication with ports using the javax.comm
package. Main concern involve in establishing a communication with a port are
identifying ports, finding the ports, getting information about a port, opening ports,
waiting for a port with a port ownership events, and registering ports. Table 3.3
summarizes these issues with brief description and also listed the packages, classes or

methods that can be used to perform those jobs.

There are five basic steps to communicating with a port:

a) Open the port using open{) method of CommPortldentifier. 1f the port is
available, this returns a CommPort object. Otherwise, a PortInUseException is
thrown.

b) Get the port’s output stream using the getOutputStream() method of
CommPort.

¢) Get the port’s input stream using the getIntputStream() method of CommPort.

d) Read and write data onto those streams as desired.

¢) Close the port using the close() method of CommPort.

19

Table 3.3: Several Issues in Establishing Communication with Ports

Fvent ssue

Identifying Ports

- lists the available ports, figure out which
program owns them, take control of a port, and
open a port 5o that /0 can be perform with it.

Pachaees/Classes/Methods
- javax.comm. CommPortldentifier
- javax.comm. CommPort

Finding Ports
- find and create the right port using a port
identifier.

-javax.comm. CommPortldentifier

* public static Enumeration
getPortldentifiers()

s public static CommPortIdentifier
getPortIdentifier{String portiame)
throws NoSuchPortException

e public 3tatic CommPortIdentifier
getPortldentifier (CommPort port)

throws NoSuchPortException

Getting Information Aboui a Port

- once a particular port is identified by
CommPortldentifier, the information about the
port can be obtained by calling several accessor
methods.

- CommPortldentifier
e public String getName ()

e public int getPortType ()
public String getCurrentOwner{)

¢ public boolean isCurrentlyOwned{)

Opening Ports

- a port has to be open before it can be read from
or written to,

- opening a port gives application exclusive access

~ CommPortldentifier

» pubklic synchronized CommPort

open{String name, int timeout) throws

- two methods used to receive notification of
changes in ownership of the port.

- port ownership events are fired to signal that :
¢ a port has been opened.
* a port has been closed.
» another application wants to take control of

the port.

- listener must be registered to listen for ownership

changes on a particular port.

> e PortInUseException
to the port, until the port is given up or the
program ends,

Waiting for a Port with Port Ownership Events - CommPortldentifier

- javax.comm. CommPortOwnershipListener
e puplic void addPortOwnershiplistener

{CommPortOwnershipListener listener)
s public void

removePortOwnershiplistener

(CommPortOwnershipListener listener)
¢ public abstract void

ownershipChange (int type)

Registering Ports

- register & particular name, type, and driver with
the Comm API so that it can be retumed by
CommPortldentifier.getPortldentifiers()

~ CommPortldentifier

s public static void addPortName (String
portName, int portType, CopmDriver

driver)

20

3.1.4 The PIC16F84 Implementation

A website that provides tutorial on PIC16F84 fundamentals;
hitp://www.boondog.com/tutorials/pic L0F84/pic16£84 html was studied. Learning a

microprocessor's capabilities often demands such a setup where light emitting diodes
(L.LEDs) turn on/off, blink at desired rates and respond to switches. This tutorial is very
focused because its purpose is to rapidly acquaint us with the fundamentals needed to
develop PIC16F84-based applications. This is achieved with focused hands-on

exercises exploring;

a) PIC input/output (I/O) ports: LEDs are turned on and off and switches are read
b) PIC timer: An LED is blinked at a desired rate

¢) PIC serial communication: ASCIT characters are sent between a PC and PIC

The PIC16f84 is an 18-pin 14-bit embedded micro featuring electronically erasable
programmable read-only memory (EEPROM). The essential steps i the development
cycle of this microchip are:
a) Ona PC, type the program, successfully compile it and then generate the HEX
file.
b) Using a PIC16F84 device programmer, upload the HEX file into the
PIC16F84, This step is often called burning.
¢} Insert your PIC16F84 into your circuit, power up and verify the program
works as expected. This step 1s often called dropping the chip. If it 1sn't, you
must go to Step 1 and debug your program and repeat burning and dropping.

The PIC C Compiler program kit installed in the laboratory computer is used to burn the
chips. The steps to burn a chip are:
a) Open a file written in C langunage.
b) Compile the file.
¢) Select Program Chip, and check the X7 radio button under OSC Options field,
indicating an external oscillator is used.

d) Erase the chip placed ou the burning board.

21

e) Then, execute this process in sequence; READ, BLANK, VERIFY.
f) Load the compiled *.c file.
g) Execute PROGRAM.

3.2 Tools Required

3.2.1 Java 2 Seftware Development Kit (J2SDK)

To develop software, computer serves as an essential tool for this project. In order to use
Java and get some programming done, developments tools are need. Java is distributed as
the Java Development Kit (JDK). The basic JDK from SunSoft provides the tools as
command line versions, meaning that they are generally used by typing in commands to a
command interpreter (in MSDOS window if using Windows, an xterm if using UNIX, or

something equivalent).
The following are some of the tools in the JDK:

1} javac is the Java compiler. It is run to create the bytecode for applications and
applets.

i) java is the Java interpreter. To run an application, the name of a class that contains
the entry point of the application is supplied.

iii) jre is also a Java interpreter, but is packaged separately from the JDK. It provides a
run-time environment so that developers can include it with their application code

without requiring users to install the complete JDK.

Java contains many predefined classes that are grouped into categories of related classes,
called packages. These packages are referred as Java applications programming interface
(Java APY), or the Java class library. import statements is used to specify the class

required to compile a Java program. For example, a program uses the statement

import javax.swing.JApplety

22

to tell the compiler to load the JApplet class from the javax.swing package. One of the

great strengths of Java is the large number of classes in the packages of the Java API that

can be reused rather than reinventing the codes structure. Table 3.4 lists a subset of the

many packages in the Java API and provides a brief description of each package.

The set of packages available in the Java 2 Software Development Kit (J2SDK) is quite

large. In addition to the packages summarized in Table 3.4, the J2SDX includes packages

for complex graphics, advanced graphical user interfaces, printing, advanced networking,

security, database processing, multimedia, accessibility (for people with disabilities) and

many other functions. Packages that are related for the development process of this

project shall be studied more thoroughly and will be impiemented in the project design.

| java.applet

Table 3.4: Packages of the Java AP1

Description

The Java Applet Package
Contains the Applet class and several interfaces that enable the
creation of applets, interaction of applets with the browser and
playing audio clips. In Java 2, class javax.swing.JApplet is
used to define an applet that uses the Swing GUI componens.

java.awt

The Java Abstract Windowing Toolkit Package

Contains the classes and imterfaces required to create and
manipulate graphical user interfaces in Java 1.0 and 1.1. In Java
2, these classes can still be used, but the Swing GUI
components of the javax.swing packages are often used
instead.

java.awt.event

The Java Abstract Windowing Toolkit Event Package
Contains classes and interfaces that enable event handling for
GUT components in both the java.awt and javax.swing
packages.

java.ie

The Java Input/Output Package
Contains classes that enable programs to input and output data.

java.lang

The Java Language Package

Contains classes and interfaces required by many Java
programs and is automatically imported by the compiler into all
programs

java.net

The Java Networking Package
Contains classes that enable programs to communicate via
networks.

23

Package Deseription

java.text The Java Text Package
Contains classes and interfaces that enable a Java program to
manipulate numbers, dates, characters and strings. It provides
many of Java’s internationalizing capabilities I.e., features that
enable a program to be customized to a specific locale,
java.util The Java Utilities Package

Contains utility classes and interfaces, such as: date and time
manipulations, random-number processing capabilities, storing
and processing large amounts of data, breaking strings into
smaller pieces called tokens and other capabilities.

java.swing The Java Swing GUI Components Package

Contains classes and interfaces for Java’s Swing GUI
components that provide support for portable GUIs,
java.swing.event The Java Swing Event Package

Contains classes and interfaces that enable event handling for
(GUI components in the javax.swing package.

3.2.2 Java Integrated Development Environments (IDEs) and Other
Softwares

Many other vendors are now supplying Java integrated development environments
(IDEs), usually with tools integrated in sophisticated graphical environments. A number
of Java IDE products are available from TBM, Sun, Symantec, Borland, Microsoft, and
other companies. These products will ease the programming and debugging process,
especially programming related to GUIL JBuilder6 from Borland is used in this project.
JBuilder 6 is used as part of the tools in this project. JBuilder is released by Borland. It is
Windows-based application software. It increases productivity and provides output to the
user. A JBuilder project organizes the files used and maintains the properties set. JBuilder

stores projects with a .jpx or .jpr extension.

Apart from JBuilder, JCreator is also used in the software development process.
ICreator ™ is a trademark of Xinox Software. JCreator LE is a simple Java IDE for
Windows. This freeware version of JCreator can downloaded from

hitp://www.jcreator.com/. JCreator runs on Windows machines and requires Sun's Java

SDK installed. The system requirements for running JCreator 2.x are Microsoft Windows

24

95, 98, ME, XP, NT, or 2000, and a 133-MHz CPU with 32 MB of RAM. ICreator is
written entirely in C++, which makes it fast and efficient compared to the Java based
IDEs.

Ulead Photo Express 2.0 SE and Microsoft Paint are used for developing images and
logos. Photo Express helps us to create projects quickly with an easy-to-understand visual
mnterface. Additionally, there are numerous edges, frames, textures and backgrounds,

making it more inspired and easy to create a wide variety of image projects.

3.2.3 The PIC16F84 circuit board

The PIC16F84 features two ports named A and B having five and eight digital lines
respectively. Any line can be configured to be an input or output. The parts list used to
build the prototype circuit board in order to demonstrate the workability of the
designed software is given in Table 3.5.

Table 3.5: PIC16F84 Circuit Board Components

Part Description Quantity

PIC16F84-04/P

ok

PUSHBUTTON SWITCH

4 MHZ CRYSTAL CLOCK OSCILLATOR
0.1 UF CAP

0.1 INCH HEADERS

LED

100 OHM RESISTOR

10 KILO OHM RESISTOR

220 OHM RESISTOR

6 INCH PROTOTYPING CIRCUIT BOARD
DB9 RIGHT ANGLE FEMALE CONNECTOR
SERIAL CABLE MALE/FEMALE DB9
MAX233CPP RS-232 DRIVER/RECEIVER

The schematic of the circuit built is as shown in Figure 3.4. The circuit is built on a

breadboard first before transferring it to a prototyping circwt board.

25

+5V
L rzour i AMHz 0SC A
THN RZM
L2 qout taout B8 NG WeC
4 jmw v. 1L
18
2 mou 2. 4=
5 lonn 2 ‘: D OUT [
7 14
st Tiee MAX233 e
Tlero v, 12 =
[".9|cz- 2+ (1
5] zb
1Y) 1
Lo+ BN] -
+E
1ipaz RA1 -115
10k 2ipa3 Raofil
100 Siraamocial OSCICLK B
dlucr OSCICLK OUT .:f_
g VSS vopl
~RBOINT g - e L
RESET 5B PICIGFa4 s N v
= o 5 by o ! =
RES) (RN S— -
R it R A5V
- 220 1 Repeat push button cirevlt
1 Repest resistor-LED circut for for REM, RDS, RE6, RPT,

RA2 RAJ, RBY, RB2, RB3.

Figure 3.4: Schematic of prototype circuit.

26

CHAPTER 4
RESULTS AND DISCUSSION

4.1 GUI Development

The GUI for this project 1s developed in several stages. The results and discussion are
break down into several sections, in accordance with the design flow of the GUI. Mainly,

it is categorized into Access Pad Frame and Main Frame.

4,1.1 Access Pad Frame

In order to access the program, the user must enter a password for security purposes.
Hence, an access pad as shown in Figure 4.1, is created to obtain the right password from
the user, before permitting any access to the program.,
MpyAccessPad is an extends of a JFrame. Its design maimly consists of 2 components:

a) a password field

b) abackground image.

Figure 4.1: Access Pad Frame.

27

4.1.1.1 Password Field

Swing’s password field conceals its text by displaying an’*’ for every character entered
in the field. The asterisk is referred to as an echo character and can be set after a
password field 1s constructed. JPassword provides the same set of constructors as its
superclass, JTextField The JPasswordField constructors invoke the superclass
constructors and set the echo character to the “*’.

The getPassword() method is used to obtain the password instead of the getText()
methods inherited from JTextField, which are deprecated in JPasswordField to provide

a compile-time warning.

If the password 1s mcorrect, a message dialog box displays “Your password is not valid.
Please try again.” as shown in Figure 4.2. The user will be prompt back to the access
pad, untii the right password is gained. If the password is correct, the message dialog box
displays “Welcome to Home Guard system.” as shown in Figure 4.3. The access pad will
be hidden, and the user will then have access to the program through the main frame

visible.

Figure 4.2: Invalid passweord popup. Figure 4.3: Valid password popup.

4.1.1.2 Background Image
A floor plan image obtained from the internet is used to design a background image for

the access pad. The image in Figure 4.5 is generated from the floor plan image shown in

Figure 4.4, using Ulead Photo Express 2.0 SE. The rest of the images used in the

28

development of this application are mainly designed using Ulead Photo Express 2.0 SE
and Microsoft Paint.

Figure 4.4: The original floor plan. Figure 4.5: Background image generated,

At first, the image and the password field are added to the access pad using the add()
method. The result is not as expected, wherein the password field is truncated when the
access pad is itialized, as shown in Figure 4.6. The problem was then overcome by

using the paintComponent() method.

Truncated password fiek

Figure 4.6: Access pad with truncated password field.

Swing programs should override paintComponent() instead of overriding paini().
Although the API allows it, there 1s generally no reason to override paintBorder() or
paintComponents(). This factoring makes it easier for programs to override only the

portion of the painting which they need to extend. For example, this solves the AWT

29

problem mentioned previously where a failure to invoke super.paint() prevented any

lightweight children from appearing. The sotution result is shown is Figure 4.7.

Figure 4.7: Access pad with fully visible password field.

4,1.2 Main Frame

The design concept for this application is to enable users to easily monitor the
modules or devices involved in the security system of the house. The draft of the main
frame design for the application is displayed in Figure 4.8. The main frame consists
of two panels, which are the upper panel and the main panel. The upper panel will be
consists of logo, icons, buttons, and date and time display. The main panel will be

consists of two main panels, which are the tree navigator and the module display.

Program Tite

Upper
panei

Main panel t

Figure 4.8: Draft of the main frame design of the application.

30

For the date and time display, SimpleDateFormat class is used. SimpleDateFormat is a
concrete class for formatting and parsing dates in a locale-sensitive manner. It allows for
formatting (date to text), parsing (text to date), and mnormalization.
SimpleDateFormat(String pattern, Locale locale) creates a date formatter using the
specified pattern, with the default DateFormatSymbols for the given locale. It allows us
to start by choosing any user-defined patterns for date-time formaiting. Each of these
class methods can return a date/time formatter initialized with a default format pattern.
The format pattern was then modified using the applyPattern() methods as desired.

After the format pattern of the date/time is modified, the date/time must be displayed to
the user. The displayed date/time must be updated from time fo time so that the user is
kept informed of the current time. To update the displayed time, threading is used. The
class created for this function is TimerThread. 1t is an extension of a Thread class that
implements Runnable interface. Thread and Runnable are defined in the java.lang
package. The TimerThread prompt the thread to halt for 1000 milliseconds, before
updating the current time displayed. In other words, the current time displayed is updated
every 1 second. For a more detail description about threads, you can refer Appendix E.

The Timer Thread codes are listed below.

class TimerThread extends Thread implements Runnable

{
UpperPanel myclock;

public TimerThread!UpperPanel myclock)
{

this.myclock = myclock;

}

public volid run()
{
while{true)
{
try
{
this.sleep{l000);
}
catch(InterruptedException e} {}

myclock.setTime () ;

31

The date and time was displayed as text in a JZextField object. However, flickering
occurs when the program is running. The problem was overcome when the text field is
replaced by JLabel instead. Figure 4.9 shows an initial design of the upper panel with
only a sample icon and the date and time display. The design was then improved before
combining it with the main panel design.

i |
4.9: An initial design of the upper panel.

Figure
The main panel mainly consists of two separate panels:
a) tree navigator panel,
b) module display panel.

4.1.2.1 Tree Navigator Panel

Swing trees display hierarchical data by using a well-known paradigm of folders and leaf
items. The most widely used tree is indeed Windows Explorer, which contains a tree
component for navigating directories. The tree component is represented by the JTree

class, which resides in the swing package.

Trees are composed of nodes, which can be either folders or leaves. Folders can have
child nodes, and all nodes but a tree’s root node has a single parent node. Empty folders
can be differentiated from leaves by whether they allow children. Folders and leaves are
represented by different icons that look-and-feel dependent. Folders can be expanded and
collapsed, either by double-clicking on the folder or by clicking on the folder’s handle.
The visibility of the root node’s handle can be set.

32

In addition to parent and child nodes, tree nodes also have a user object. User objects are
of type Object and therefore provide a way to associate any object with a node. Trees
have a simple model, and each JTree instance maintains references to a renderer and an

editor that are used for all nodes in the tree.

The JTree class also provides constructors for creating trees with Object arrays, hash
tables, and vectors. Since the order in which objects are added to a hash table has no
correlation to the manner in which the objects are stored, trees created with hash tables

exhibit an unpredictabie node order.

The tree navigator design consists of 5 nodes representing the rooms to be monifored in
the house, which are Bedrooms, Kitchen, Living Room, Dining Room, and General.
Since the design assumed to have 3 bedrooms, these bedrooms are created as child nodes
under Bedrooms node. The leaves under each node represent devices to be monitored in

related rooms. The tree navigator constructed is shown in Figure 4.10.

4 Bedroom 3

- & Door

oo Angow

-# Liget

iow Fan

-l W Condirerer

41" Eredsoom 2
-2 | Blispom ¥
Kitchen

Buck Door

Figure 4.10: The tree navigator panel.

Tree nodes are often quantified by tree paths. When a tree node is selected, the selection
is identified by an instance of TreePath. The TreePath class identified a set of nodes that
form a path from one node to another, This class ts a simple extension of Object that

maintains an array of objects representing a path.

33

The tree navigator is equipped with a selection listener that identifies the path of the
recently selected node in order to fink it to the status of the devices, according to the right
rooms. The selection listener obtains a reference to the path associated with the selection
by invocation of TreeSelectionEvent.getNewLeadSelectionPath().

The swing.tree package provides a default renderer in the form of the
DefauliTreeCellRenderer class. This class maintains three Icon references for leas nodes
and open/closed folder nodes. Colours for text, background, and the renderer’s border are
also maintained. DefaunltTreeCellRenderer can also be used to customize the colours,
icons, and font associated with tree nodes. An instance of this class is used to modify
leaf, open and closed icons, and font of the tree navigator panel. The modified tree is

shown in Figure 4.11.

i & Bedvaoms
=y - andmnm 3

P R Rir-Conditivner
T -G Smioke Detector
D g Badronm 2
1 G Bedroom
r - & Xitchen
Y- @ Both Door
D i e
¢ G Light
Lo G Fam
P4 Smoke Detector
- @) Living Room
I 7 g8 Dindrg Raom
i 1. € Genarsl

Figure 4.11: The modified tree design.

4.1.2.2 Module Display Panel

Tabbed panes are a common user interface component that provides convenient access to
more than one panel. Swing’s tabbed pane is implemented by JTabbedPane. The tabs
contained in an instance of JTabbedPane have a single component associated with them
that is displayed below the tab. Tabs can display both icon and text and can have their
background colour set. It allows its tabs to be placed along the right, left, bottom, and top

34

of the tabbed pane. Tab placement can be specified when instances of JTabbedPane are
constructed or after construction with the JTabbedPane.setTabPlacement() method.

The module display panel is design to support two choices of view, which are module
view and list view. The module view will display control panel of individual devices

which are grouped according to the rooms.

Each module generally contains 4 fields, which are status, action, timer and log. The
status field consists of an image that change according to the status of the devices, and a
label that states out the device status. The action field is made up of 2 choices of radio
buttons. The two radio buttons ar¢ mutually exclusive, that is when one of the radio
buitons is selected, the other will be deselected. The timer field and log field are
additional features to set the time when a device can be switch on or off, and to log any
activities took place by the device as a report. The initial design of the module view is as
shown in Figare 4.12.

(a) Horizontal arrangement of the fields, (b) Vertical arrangement of the fields.
Figure 4.12: Initial design of the module view.

To simplify the module view, the timer field and log field are hidden by replacing them

with a single button, “Option”. The images designed are also enhanced and the vertical

arrangement is chosen for the final module view design, as shown in Figure 4.13.

35

Figure 4.13: Final design of the modale view.

The results of individual design panels are merged and shown in Figure 4.14. More
features should be revised, either added or removed from the design, depending on the
necessity, time constraint and hardware constraint. Some of the components only existed
on the base only without any control functions, and some of the controls are still not

functioning as required.

-4k Air-Conditionar
* 4% Smake Detector
-{8 Kitchen
& Window
2 Light

& Fan
*- 4% SMaoke Datetenr
£5 tiving Room
- Window

Figure 4.14: The main frame design.

36

4,2 Serial Port Programming

After downloading and installing the Java Commmication API in C: partition, a basic
sample program codes, NamedPortlLister, is compiled and run to test for the
functionality of the installed extension package. This program basically looks for
serial and parallel ports and lists them down. Tt is successfully compiled and run, but
the program did not find any port on the designated computer. Troubleshooting is
carried out, by altering a few lines of coding. At last, it is detected that the compiled
was saved in a different partition, which is in D: partition. When this program is
compiled in the same partition as the installed Java Communication API and JDK, the
program is successfully run and lists down several serial and parallel ports in that
computer. Therefore, it is concluded that all programs which applied the Java
Communication API must be saved, compiled, and run in C: partition onwards. After
that, more basic sample programs are compiled and run to test the methods available

m the extension package.

A sample program from Java Communication API, SerialDemo, was compiled, run,
and studied. This program basically provides functions to set parameters of an
available serial port on the computer, and open the port with the selected parameters
value. The classes involved in this program was studied, changed, and adapted in
order to gain understanding on how to construct coding that is necessary to establish
serial communication. Classes that are essential for sefting and opening the serial port

are SerialParamateres and SerialConnection.

MySeriall was constructed with a few functions available in the sample program, with
several additional functions such as registering listeners to notify events such as
setRTS() and isCTS(). Figure 4.15 shows “My Serial 1™ application. This program is
tested by connecting TD pin to RD pin, and RTS pin to CTS pin, of COMI1. Hence,
data that are transmitted will be received back by the same program, and whenever the
value of RTS is checked or unchecked, the program will state it by displaying a line of
messages such as, “RTS is checked” or “RTS is Unchecked”. When RTS is set to

37

high, the CTS pin will detect it and state it by displaying a line of messages such as,
“CTS is cut OFF” or “CTS is received” inside the received data text field. These

functions basically constructed to test the codes manipulation on the six pins of DTR,
RTS, CTS,DSR, RI, and CD.

Hllasling the sertal port

Figure 4.15: A test module for serial port communication programming.

43 PIC16F84 Programming

The prototype circuit discussed in previous chapter was built and tested. When the circuit
is tested and proven to be working perfectly, the next step is to program the PIC. Several
examples available on the internet were studied to have a better understanding on how to
program the PIC16F84, using suitable function for the demonstration. Some of the
examples do not work when it is compiled and burn, while the other working examples
are designated to different types of PIC. Hence, adjustment and manipulation of these
examples 1s used to come up with a program that can be used on PIC16F84, and can

establish serial communication with the computer’s serial port.

38

The PIC must be set to the required speed of the processor. The speed used must be the
same with the external crystal clock oscillator’s frequency, which in this case is 4MHz.

The command to invoke this function is:

#use delay(clock=4000000) //4MHz 03C

It tells the compiler the speed of the processor and enables the use of the built-in

functions: delay_ms(} and delay_us().

The PIC must also be set to use the RS232 built-in function. The command to invoke this
function is:

#use rs232(pbaud=8600, xmit=pPIN Al, rcv=PIN AO)

This directive tells the compiler the baud rate and pins used for serial /O. This
directive takes effect until another RS232 directive is encountered. The #use delay
directive must appear before this directive can be used. This directive enables use of
built-in functions such as gete(), pute(), and printf(). The baud rate set must be the same
with the received data baud rate, in this case is the computer’s serial port baud rate. If not,

there will be error in the received data

To transmit serial data from the PIC, the built-in function of printf() can be used directly,

m example:

printf ("FO7);

But to handle received serial data from the computer, a more complex function must be
used, especially when the received serial data is in terms of a stream. This is because
gete() can only read one character per time. It waits for a character to come in over the
RS232 RCV pin and returns the character.

Since we do not want to hang forever waiting for an incoming character, kbhit() is used
to test for a character available. If the RS232 is under software control, this function
returns “true” if the start bit of a character is being sent on the RS232 RCV pin. If the
RS232 is hardware, this function returns “true” is a character has been received and is

39

waiting in the hardware buffer for gete() to read. This function may be used to poll for
data without stopping and waiting for the data to appear.

An example of codes to handle this problem was found, named as mikeslib.c, and is used
for handling the received serial data. It monitors the RS$232 RCV pin for any incoming
data, and then catches this data byte-by-byte and stores it temporarily in a buffer. If the
first data is not handled immediately, the data will be lost and the buffer will be replaced

by the second received byte, and the same goes with each mcoming data.

Therefore, another function is created to handle streams of received data. Looping is used
to read streams of received data, so that the data is not lost. The streams is read byte-by-
byte and stored in a buffer. After that, the stored data is then called and interpreted to
trigger designated pins. In example, if the received data buffer is “L1”, pin A2 is set to
high, and if it 1s “L0”, pin A2 is set to low. In this case, the computer can send streams of
meaningful data to the PIC, and the PIC will process the data fo trigger any designated
pins that represents the home appliances. The process flow for serial data processing on

the PIC is summarized in Figure 4.16.

Data received

Store 2 bytes in buffer

Byte 1 /\ Byte 2
@

data

A

Determine which Tr_igger
pin to trigger designated
pin
L "
L----vefc i

i e Foes LOW HIGH
Lights ! !
(Eg: Pin RA2) E !
fommmm e e e d

Figure 4.16: PIC serial data processing.

40

However, the program still cannot detect any other imput besides the serial data from the
computer. In real situation, manual switch is also used to turn the appliances on and off.
Therefore, the program shouid be able detect switches or button press. Interrupts is used
to handle this situation.

Built-in function to perform this task is enable_interrupts(). 1t enables the interrupt at a
given level. An interrupt procedure should be defined for the indicated interrupt. The
GLOBAL level will not enable any of the specific interrupts but will allow any of the
specific interrupts previously enabled to become active. To detect a button press, RB
interrupt is applied. The RB interrupt will happen when there is any change (input or
output) on pins B4-B7. There is only one mnterrupt and the PIC does not tell which pin
changed. Which pin changes must be determined based on the previously known value of
the port. Furthermore, a single button press may cause several interrupts due to bounce
in the switch, A debounce algorithm is needed to be used. A simplest way 1s to set a
delay after the first interrupt, to eliminate possible debounce, before executing any
function and waiting for the second interrupt. Example of interrupt usage is, when a
button press triggers pin B4, it will toggles pin A2, and transmit streams to inform the
changes to the computer. If pin A2 is high, it will be set to low, and vice versa. In this
case, the user can control home appliances using manual switches in parallel with the

software, and the software is aware of the changes.

After further alteration and enhancement, the program should be able to perform these
tasks:

a) Triggers designated pins using the serial received data.

b) Triggers designated pins using button press.

¢} Inform the computer software about the changes made using button press.

The codes involves in the PIC programming are listed in Appendix F.

41

4.4 Module Integration

Individual working modules are integrated to come up with a single working system. The
window module, hardware module and prototype module is integrated to come up with
the Home Guard System, with a prototype for demonstration. A lot of problems are
encountered when integrating these modules, since changes must be made to enable the

modules to work with each other.

Most problems arise when integrating window module with the hardware module. The
GUI developed was not working properly with the serial communication classes
constructed, To overcome this problem, some of the serial communication classes
constructed are combined with the GUI classes. This will eliminate problems anses from
multi-level properties modifications, and accessor methods. The problems are
successfully overcome and the integration results in a single working software system.

All the classes mvolve mn this integrated module are listed under Appendix G.

42

CHAPTER 5
CONCLUSION AND RECOMMENDATION

A software system for the PC-based surveillance system is successfully designed and
built. The Swing components are used as the basic components for the development of
this application. However, more features needed to be revised, and some of them are
either added or removed from the design due to the necessity, time constraint and

hardware constraint.

The Java Communications APl 2.0 is successfully implemented. The software can
successfully communicate with the serial port on the computer. The sofiware can then
sends and receives serial data through the serial port. These serial data is processed to

enable the momitoring and controlling of home appliances.

A prototype, basically built up of a simple circuit board is successfully built. it
demonstrates the workability of the software to communicate with the serial port. A
microcontroller, specifically PIC16F84 is successfully used to translate and manipulate
the data received from the semal port into meaningful functions for prototype

demonstration.

Apart from the successfully working program, this project is stifl weak in terms of
producing a complete and safe surveillance system. It emphasises more on enhancing the
GUI design and looks. It can only monitor and conirol pins available on the PIC16F84.
Further enhancement on this project can be made to improve the system, and come up
with a better presentable, secure and reliable system with additional functions.
Improvement on the Home Guard System can be recommended in these two modules, the

window module and prototype module,

43

The window module basically consists of the GUI development and the management of
- the control functions. The GUI can be improved by designing better images, create better
arrangement of components and using more sophisticated Java Look-And-Feel utilities.
Apart from viewing the home appliances in the available module display, list or table
display can be added. This display can list down all the appliances’ states and control
components in one table to make it easy for the user to monitor and control all the
appliances only in one frame. Multimedia utilities can also be added to the system, such
as video monitoring and audio assignment in case of emergency. A more user friendly
software can also be created by adding a wizard that helps user on how to use and

configure this software.

As for the management of the control functions, themes can be used to set several
appliances to behave in certain ways. Besides monitoring and controlling the home
appliances mdividually, a theme can be design to set desired behaviour of desired
appliances at a desired time, and these properties can be saved and uploaded when need
by the user. The software system can also be extended to function over the internet
services, since Java programming language already provides an easy path to program a
server/client application. A distance home surveillance monitoring and controlling is
possible via the mternet network. The user can then install the software at the office, and

still can monitor his home via the internet network.

For the prototype module, several enhancements can be carried out. Besides triggering
LEDs, the PIC pins can be connected to trigger real home appliances. In this case, power
relays is needed to be considered and applied. The PIC can also be used to tngger

external alarm system.

Since the PIC pins are limited, the appliances to be monitored and controlled are also
limited. Therefore, the number of inputs and outputs to be monitored and controlled can
be increased by increasing the amount of PICs used. An example design circuit for using
2 PICs are shown in Figure 5.1. This will enables the system to control more home

appliances.

44

*5v
4MHz 0SC iy
—nc vee

[t

104 =

] '
TN FaouT JR%:
Zm Fee A,
Trtee jrasa
TIS0T 2 i
] cwts
e g Ve
v T waos U [%
1'3"5 a\": T
& .32,
ieokdo] L
WO OO / ha

Figure 5.1: Recommended schematic for prototype module using 2 PICs.

An extended protocol on the serial data can also be developed to enables the usage of
more than one PIC. For example, insicad of storing 2 bytes of data to be processed, the
buffer can be set to store 3 bytes of received serial data. The first byte will determine
whether the command is intended for the first PIC or the second PIC. The following 2
bytes will functions the same as discussed in the previous chapter, which is to determine
which pin to trigger and how to trigger it. An extended protocol for the recommended

schematic in Figure 5.1 can be summarized as shown in Figure 5.2.

45

Data received

4

Store 3 bytes in buffer

PIC 1 process
data received

i

Process data

Process
data

PIC 1 passes the data
received to PIC 2

PIC 2 process
data received
Byte 2 Byte 3
Process
l data
Determine which Trigger
pin to trigger designated
: pin
L i
L----1ete
: r-"--’"----: LOW
Lights : !
{Eg: Pin RA2) E :
Tt cmmmmm s

HIGH

Figure 5.2: Serial data processing for 2 PI1Cs.

46

10.
11.
12.
13.

14,

REFERENCES

H. M. Deitel and P. J. Deitel; Java: How To Program; Prentice Hall; 4® Edition;
USA; 2002.

Russel Winder and Graham Roberts, Developing Java Sofiware; John Wiley &
Sons; 1* Edition; UK; 1998.

Tan Sommerville; Software Ingineering, Addison-Wesley; 6™ Edition; USA;
2001.

Joe Wigglesworth and Paula Lumby; Java Programming: Making the Move from
C++; Course Technology; 1% Edition; USA; 1999,

Peter Van Der Linden; Just Java2, Sun Microsystems; 4™ Edition; USA; 1999.

David M. Geary, Graphic Java 2: Mastering the JFC, Volume II: Swing; Sun
Microsystems; 3™ Edition; USA; 1999.

Elliotte Rusty Harold; Java 1O, O’Reilly; 1* Edition; Beijing; 1999.

Y. Daniel Liang; Introduction to Java Programming with JBuilder 4/5/6; Prentice
Hall; 2™ Edition; USA: 2002.

WWW,SUun.Coll

www.softwaredev earthweb.com

www.developer.java.sun.com

www.javaworld.com/index himl

WWW. LSO

www . bakson.com

47

15.

16.

17.

18.

19.

20.

21.

www.smarthome.com

hitp://iava.sun.com/getjavahelp htmi

http://java sun.com/j2se/1.3/docs/api/index.html

htto://'www.arcelect com/rs232 htm

hitp://www.boondog. com//tutorials/pic 1 6F84/pic16£84 html

hitp//'www mikroelekironika.co, vivenglish/product/books/picbasicbook/06 htm

http://www.picant com/c2¢/examples . html

48

4

NAME

Maumi Binti Masri

I NUMBER ! 616
FYP TITLE

Software Implementation of a PC-Based Home Surveillance

10

Selection of Project Topic

- EYP Briefing, approval on Project Title and Synopsis

- Selection and Prioritisation of Project Titles

- Aflocation of Approved Project Titles

Preiiminary Research work

2.0

- introduction

- Objectiva 3
- List of References / Literature

- Project Planning

3.0

Submission of Preliminary Report

4.0

Project Work

- Refersnce / Literature

- Research / Programming

5.0

Submission of Progress Repoit

6.0

Project Work Confinue

1~ Research / ng;amming

7.0

Submission of interim report Final Draft

8.0

QOral Prasentation

90

Submission of Inferim Report

NOTE : 0 Milestone

APPENDIX A : GANTT CHART FOR THE FIRST SEMESTER OF 2 SEMESTER OF FINAL YEAR PROJECT

Process

V XTANAddY

0s

NAME

1D NUMBER 1816

: Murni Binti Masri

- Revision on tést semester's material

- Find more examples for application design

- Study the exanmlas

20

Window design

- Design the main window

- Construct the main window

3.0

Submissfon of Progress Report 1

4.0

Action/Control Design

- Assign actions for the components

- Intagrate the actions

50

Hardware communication

- Establish communication with hardwaré

- Integrate communication funclions with windows

6.0

Submission of Progress Report 2

7.0

Profotype Design

- Design prototype for demonstration

- Construct the profotype

- Integrate the prototype with the application

8.0

Final Report Completion

8.0

Submission of Final Reportiissertation

-10.0 .

Preparalion for Oral Presenitation

11.0

Oral Presentation

12.0 |Submission of Extondod Abstract

NOTE: (] Milestone

APPENDIX B : GANTT CHART FOR THE SECOND SEMESTER OF 2 SEMESTER FINAL YEAR PROJECT

Process

4 XIANH4AdY

APPENDIX C

Pin Name z: sb?;c .':g:: m’ Description

QSCULLKIN 16 16 1 1STeMOS M Oscillaior erystal inputiexternal leck source inpul,

OSCACLKQUY 18 15 O o Oselliator crystal eitpd. Connatts o eryslal of resonator i nrystal
osciiator mode. In RC mode, 0SC2 pin oulpuls CLKOUT which has
144 the fragueney of OSC1, and denotes the mnstruction Sy rale.

RICTR 4 4 P g1 Masler char (reset) inputfprograsreing voltage input. This pin is an
selive fow reset 10 the device.
PORTA iy a bi-directionat #0 port.

RAD i7 17 73] L

AA1 ® 18 o T

RAZ 1 H 1] T

a3 P v T

RA4TOCKE i) 87 Can also be setacied to be the clock input 10 the TMRE tmer

coutder. Ouipud &S apen degin ype.

FORTE s & bi-direttional VO poet. FORTE can be stfiwara svo-
gramimed for inernat weak pulb-up on al inputs.

ROMNT é & o | TTHST REONT can siso ba Selecied 2% an extemal interrugt pin.

RBA 7 7 #0 TTL

Ri2 8 & s} T

RB3 g g9 [7a] TIL

RBA 10 10 0 TIL Interngd on change pin.

RBA # 1t 118} 7L Intarrupt an changa pin,

REG 12 12 Ko | TTLsT® Inferapd on change pin. Seral prograstening clock,

RE7 13 13 o] TTose @ Interrupt on change pin. Serist programming data.

Vs 8 5 p o Greund refarence for logie and VO pins.

VoD 14 14 p — Positive supply for Ingic and 10 ping.

Legend: l=impd 0= oulpu 40 = inpodiQuipul P = pewar

== = Not gsigd TTL = TH. inpudt 8T = Schenilf Trigger ingul

Nole 1 This bulfer is 8 Schmit Trigger ingut when configured 85 e oxtermal infeirnt.
2; This buffer is g Schvitt Trigger input when used in gerisl programming mode.
3. This buffer Is a Schmitt Tigger inpul whan configured in RG oscillator mode and a CMOS input otherwise.

Appendix C:; PIC16F8X Pinout Description.

51

APPENDIX D

EVENT-DRIVEN PROGRAMMING™

a)} Event and Event Source

When Java graphics programs are run, the program interacts with the user and the events
drive its execution. An event can be defined as a signal to the program that something has
happened. The event is generated either by external user actions, such as mouse
movements, mouse button clicks, and keystrokes, or by the operating system, such as a

timer. The program can choose to respond to or ignore the event.

The GUI component on which an event is generated is called the source object. For
example, a button is the source object for a clicking-button action event. An event is an
mstance of an event class. The root class of the event classes is java.util. EventObject.

The hierarchical relationship of the event classes are shown in Figure D.1.

An event object contains whatever properties are pertinent to the event. The source object
of the event can be identified by using the getSource{) instance method in the
EventObject class. The subclasses of EventObject deal with special types of events, such
as bufton actions, window events, component events, mouse movements, and keystrokes.

Table D.1 lists external user actions, source objects, and event types generated.

52

r—1 ActionEvent - ContainerEvent
— AdjustmentEvent — FocusEvent MouseEvent
EventObject |« AWTEvent 1« ComponentEvent InputEvent
— emEvent —{ PaintEvent KeyEvent
- TextEvent 1 WindowEvent
—q ListSelectionEvent

Figure D.1: An event is an object of the EventObject class.

Table D.1: User Action, Source Object, and Event Type

User Action Source Ohj (-t Fvent Type Gencrated
Click a button JBuiton ActionEvent

Change text JTextComponent TextEvent

Press return on a text field JTextField ActionEvent

Select a new item JComhboBox TtemEvent, ActionEvent
Select itemn(s) H.ist ListSelectionEvent
Click a check box JCheckBox ItemEvent, ActionEvent
Click a radio button JRadioButton ItemEvent, ActionEvent
Select a menu item TMenultem ActionEvent

Move the scroli bar JScrollBar AdjustmentEvent
Window opened, closed, | Window WindowEvent
conified, deiconified, or closing

Component added or removed | Container ContainerEveni

from the container |

Component moved, resized, | Component ComponentEvent
hidden, or shown

Component gained or lost focus Component ComponentEvent

Key released or pressed Component KeyEvent

Mouse pressed, released, clicked, | Component MouseEvent

entered, or exited

Mouse moved or dragged Component MouseEvent

53

b) Event Registration, Listening, and Handling

Java uses a delegation-based model for event handling. An external user action on a
source object triggers an event. An object interested in the event receives the event. Such
an object is called a listener. Not all objects can receive events. To become a listener, an
object must be registered as a listener by the source object. The source object maintains a
list of listeners and notifies all the registered listeners by invoking the event-handling
method, known as the handler, on the listeners object to respond to the event, as shown in
Figure D.2.

Event Object
Generate
an eventi Notify listener
Trigger an event
Source Object Listener Object
Register a listener object Event Handier

Figure D.2: Event-handling.

For example, if a JFrame object is interested in the external events on a JButfon source
object, it must register with the JButfon object. The registration is done by invoking a
method from the JButfon object to declare that the JFrame object is a listener for the
JButton object. When the button is clicked, the JButfon object generates an ActionEvent

and notifies the listener by invoking a method defined in the listener to handle the event.

Registration methods are dependent on event type. For ActionEvent, the method is
addActionListener. In general, the method is named addXListener for XEvent.

To become a listener, the listener must implement the standard handler. The handler is

defined in the corresponding event-listener interface. Java provides a listener interface for

every type of graphics event. For example, the corresponding listener interface for

54

ActionEvent is ActionListener, each listener for AcfionEvent should implement the

ActionListener interface.

Table D.2 lists event types, the corresponding listener interfaces, and the methods

defined in thé listener interfaces.

Table D.2: Events, Event Listeners, and Listener Methods

Iovent Class

ActionEvent

Lastener Inrerlace

ActionListener

Fastener Methods (Handlers)

actionPerformed (ActionFEvent)

ItemEBvent

Ttemlistener

itemStateChanged (TtemEvent ¢)

WindowEvent

WindowListener

windowClosing {WindowEvent e)

windowQOpened (WindowEvent)

windowlconified (WindowEvent ¢)

windowDeiconified (WindowEvent ¢)

windowClosed (WindowEvent ¢)

windowActivated (WindowEvent ¢)

windowDeactivated (WindowEvent)

ContainerEvent

ContainerListener

componentAdded {ContamnerEvent e)

componentRemoved (ContainerEvent e)

ComponentEvent

ComponentlListener

componentMoved (ComponentEvent &)

componentHidden (ComponentEvent e)

componentResized (ComponentEvent ¢}

componentShown (ComponentEvent e)

FocusEvent

FocusListener

focusGained (FocusEvent e)

focusLost (FocusEvent)

TextEvent

TextListener

textValneChanged (TextEvent ¢)

KeyEvent

KeyListener

keyPressed (KeyEvent e)

keyReleased {(KeyFvente)

keyTyped (KeyEvente)

MouseEvent

MouseListener

mousePressed (MouseEvent e)

mouseReleased (MouseEvent e)

mouscEntered {MouseEvent €)

mouseExited (MouseEvent)

mouseClicked {MouseEvent)

33

MouseMotionListener mouseDragged (MouseEvent)

mouseMoved (MouseEvent e}

AdjustmentEvent AdjustmentListener adjustmentValueChanged (AdjustmentEvent ¢}

¢) Handling Events

A listener object must implement the corresponding listener interface. For example, a
listener for a JBatton source object must implement the ActionListener interface. The
ActionListener interface contains the actionPerformed(ActionEvent e) method. This
method must be implemented in the listener class. Upon receiving notification, it is

executed to handle the event.

An event is passed to the handling method. The event object contains information
pertinent o the event type. Useful data values can be obtain from the event object for
processing the event. For example, e.getSource() can be used to obtain the source object

in order to determine whether it is a button, a check box, a radio button, or a menu item.

56

APPENDIX E

THREADSM!

A thread is a flow of execution, with a beginning and an end, of a task in a program.
When program executes as an application, the Java interpreter starts a thread for the
main() method. Additional threads can be created to run concurrent tasks in the program.
Each new thread is an object of a class that implements the Runnable mterface or
extends a class that implements the Runnable interface. This new object 1s referred to as
a runnable object. Threads can be created either by extending the Thread class or
implementing the Runnable interface. Both Thread and Runnable are defined in the

javalang package. Thread actually implements Runnable.

The Runnable interface is rather simple. It contains just the run() method. However, this
approach works well if the user thread class inherits only from the Thread class, but not
if it inherits multiple classes, as in the case of an applet. We need to implement this
method to tell the system how our thread is going to run. Figure E.1 illustrates the key
elements of a thread class that implements the Runnable interface, and how to use it to

create a thread i a class.

/ /Custom thread class / /Client class
public class CustomThread B public dass Client
implements Runnable {..
{.. public someMethod()
public CustomThread(...) {..
{.. [/ Creale an inslanve of CustomThread
3 CustomThread cuslomThread
7/ implements the run method in Runnable Lrendge = new CustomThread(...);
public void runf)
§ / /Creale a thread
// Tell the system how 1o run custons theead Throad thread = new Thrcad customThreacd);

H / /Slarta thread
thread.starl();

y
i

]...

Figure E.1: Define a thread class by implementing the Runnable interface,

57

Threads can be in one of five states: new, ready, running, blocked, or finished, as
described in Figure E.2. When a thread is newly created, it enters the new state. After a
thread is started by calling its start() method, it enters the ready state. A ready thread is

rannable but may not be running yet. The operating system has to allocate CPU time to it.

Thread created

resume,
notify or
notify All

ready p{ finished
M—ﬂ # M

yiekd, or time
expired

stop or
complete stop

\J

runni& #félvc;(ed
suspend,
sleep, or
wait

Figure E.2: Thread states.

When a ready thread begins executing, it enters the running stafe. A running thread may
enter the ready state if its given CPU time expires or its yield() method is called. A thread
may enter the blocked state (i.e., become nactive) for several reasons. it may have
invoked the sleep(), wait(), or suspend() method, or some other thread may have invoked
its sleep() or suspend() method. it may be waiting for an [/O operation to finish. A
blocked thread may be reactivated when the action inactivating it is reversed. For
example, if a thread has been put to sleep and the sleep time has expired, the thread is
reactivated enters the ready state. Finally, a thread is finished if it completes the

execution of its run() method or if its stop() is invoked.

The isAlive() method is used to find out the state of a thread. It returns rue if a thread is
in the ready, inactive, or running state; it returns fafse if a thread is new and has not

started or if 1t is finished.

58

Java assigns every thread a priority. By default, a thread inherits the priority of the thread
that spawned 1t. You can increase or decrease the priority of any thread by using the
setPriority method, and you can get the thread’s priority by using the getPriority
method. Priorities are numbers rangmg from 1 to 10. The Thread class has int constants
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY, representing 1,5, and
10, respectively. The priority of the main thread is Thread NORM_PRIORITY,

The Java runtime system always picks the currently runnable with the highest priority. If
several runnable threads have equally high priorities, the CPU is allocated to all of them
in round-robin fashion. A lower-priority thread runs only when no higher-priority threads

are Tunning.

59

APPENDIXF

C MAIN PROGRAM CODE FOR PIC16F84

[fmmn SRt

//Aauthor : Murni Masri

//File Name : pushbuttonl.c

//Description : This program uses PIC16F84 to handle serial data input. The data is

/ translated and used to trigger designated pins. It monitors changes on
r ' pims to trigger other designated pins, and transmit serial data.

!

// mikeslib.c

$ifndef MikeslLibrary
#define MikesLibrary

// Following is the Software Driven Serail driver written by HI-TECH

#ifdef STRIALSONTWARE
#ifandef TxPort
#define TXTris TRISA
#define TxPort PORTA
#define TxBit 1
fendif

#ifndef RxPort
#define RxTris TRISA
#define RxPort PORTA
$define RxBit
$endif

#ifndef XTAL
fdefine XTAL 4000000
$endif

#ifndef BRATE
#define BRATE 9500
#endif

#define DLY 3
#define TX OHEAD 13
#define RX OHRAD 12
#define RSDELAY (ohead) ((({XTAL/4/BRATE} - (ohead))/DLY)

// Serail Initialisation Reutine

static bit TxData € PORTRIT(TxPort, TxBit); //T¥D Pin
static bit RxData @ PORTBIT (RxPort, RxBit); //R¥D Pin
static bankl bit TxTRIS @ PORTBIT(TxTris, TxBit);

static bankl bit RxTRIS @ PORTBIT(RxTris, RxBit);

bit TxRxInit = 0;

veid InitSerial (void)

{

TxData = 1; // set pin high to start with
TXTRIB = 0;
RxTRIS = 1;

TRRxInit = 1;
}

void putch (char)
{

unsigned char dly, bitno;

60

CLRWDT{} ;

bitno = 11;
if {TxRxInit == 0)
{
InitSeriali);
}
TxData = D; // start bit
bitne = 12;
do
{
dly = RSDELAY{TX_OHEAD); // wait one time
do

{ //nix
fwhile (~--dly);
if{c & 1) TxData = 1;
if(i(c & 1)) TxData = 0Q;
c = (c >»» 1} | OxB0;
} while {--bitne);
H

// Software Getch Routine

char getchi{void)
{
unsigned char ¢, bitneo, dly;
if {TRxInit == ()
i
Initsexial();
]
fori::)
{
while (RxData) { CLRWDT{}; continue; } // wait for start bit
dly = RSDELAY{3) / 2:
do ; [*nix*/
while {(--dly};
if (RgData) continue; // was just noise
bitnoe = 8;
c = {;
do
{
dly = RSDELAY {RX_OHRAD) ;
do ; //nix
while {~-dly);
c = (g >»» 1) | (RxData << 7);
} while {--bitno};
return oy

#endif /{ End of Serial Software routines

#include <16F84.H>

#define RS232_XMIT PIN_AL

#define RSZ32 RCV PIN AL

#use delay{clock=4000000) //4MEz OSC

#use rs232{baud=9%600, xmit=PIN Al, rcv=PIN_AD;

#include <ctype.h>

// Serail Port Settings - must be before MikesLib
#define SERIALSOFTWARE

fdefine TePort PORTA

#define RxPort PORT

#define TxBit

#define RxBit 1

#define TxTris TRISA

61

#define RxTris TRISA

#define BUFFER SIZE 32
byte buffer [BUFFER_SIZE];
byte next_in = 0;

byte next out = 0;

#int_ext
veid serial isr{} {

}

#int_rb
volid checkrb{}

{

if(INPUT(PINhﬁ4))
i
if (INPUT (PIN AZ))
{
'OUTPUT_LOW(PIN~A2);
printf ("LO");
H
@lse 1f{!INPUT (PIN_AZ))
E
OUTPUT HIGH({PIN A2):
printf{"L1");
t
else
break;
1

else 1f(INPUT(PTN_B5})
{
if(INPUT(PIN_A3))
{
OUTEUT_LOW(PIN_A3);
printf("F0"};
}
else LI(1INPUT (PIN_A3})
[
OQUTPUT_HIGH (PIN A3);
printf ("Fi7);
}
else
break;

}

else if (INPUT{PIN Bg))
{
1if (INPUT (PIN B1})
{
OUTPUT_LOW(RIN _Bl};
printf ("RO®);
}
else if {1INPUT{PIN Bl))
{
OUTPUT_HIGH (PIN Bl);
printf ("RL™) ;
}
else
break;
]

else if {INPUT{PIN B7))
E if {INPUT (RIN_B2))
[CUTEUT_LOW(PIN B2);
printf{"so");
élse if(1INEUT {PIN_B2})

62

OUTPUT_HTIGH (PIN B2);
printf("si"};

}

alse
break;

)

else
break;
delay ms(200);
}

fdefine bkbhit (next_in!=next_out)

byte bgetc() |
byte c;

while (!bkbhit)

c=buffer[next_out};

next out={next out+l) % BUFFER_STIZE;
returnic);

}

void cut (byte long arrayizj)
[

int e;

hyte part]2]:

forle=0; e<2; a++)
{
memcpy{&partiel, &lonyg arrayiel,l):
1

if (parcC)] == L")
[
if{partil] == "1}
OUTPUT_HIGH(PIN_AZ)?
else if{part{l] == '0'}
OUTPUT_TOW(PIN_AZ);
i
else if(part[0] == 'F'}
{
ifi{parc{i] == ‘1)
OU'I‘PUT__HIGH (PINQA?:) H
slse if (part[i] == '0')
OUTPUT_LOW(PIN_A3};
}
else if(part[0] == 'R")
{
if{part[1] == '1%)
OUTPUT_ﬂIGH(PINmﬁl);
else if(part{i] == '0’)
QUTEUT LOW(PEN__Bl) H
}

alse if{parti0] == '$')
{
if {part{l) == '1i"}
OUTPUT KIGH (PIN B2);
else iffpart[l] == '0'}
OUTPUT LOW(PIN B2);
}
elzse if{part][0] == 'D'}
{
if{partil] == 1)
QUTBUT_HIGH (PIN B3);
else if(part{l] == '0")

OUTPUT_LOW (PIN B3}
)
else if(part[0] == 'W')
[

if {part(i] == "1'}
OUTPUT_HIGH (PIN BO);

else if(part[i] == '0%)
QUTPUT LOW{PIN EQ);

else
break;

main()

{
int a, b;
char ¢y

byte read[2];

/f D = outputs ; 1 = ipputs
set ktris a{0x00); /70000 0100
set_tris_b{OxF0): /71111 0000

OUTPUT_TLOW{PIN_AZ);
OUTPUT LOW{EIN_A3):
//OUTPUT_LOW{PIN Ad);
QUTPUT_LOW{PIN_B1);
OUTPUT_LOW{PIN B2);
QUTPUT_LOW{PIN_B3};
QUTPUT_LOW{PIN_B4);
OUTPUT LOW({FIN B5);
OUTEUT_LOW{PIN_BE6);
OUTFUT _LOW(PIN_B7}:

OUTPUT_HIGH (PIN_BO);
delay _ms {1000} ;

printf("FI{ connected.\r\n"};
OUTPUT_LOW{BIN_BO);

delay ms(1000);

epable intexrupts(global);
enable interrupts(RB_CHANGE};

while(c = getch{))
{ while({c I= '~")
{ for{ a=0; a < 2; a++)
{ readlal] = ¢
/{ cannct bave any other command to aveoid delay in receiving next character

¢ = geteh!);
if(g == '~1)
break;

}

c o= '~"';

putciread0]);
purtc{read{l]};

cut (read);
c = |er;

printf{"\n");

64

APPENDIX G

JAVA CLASSES PROGRAM CODE

i

//Author

//File

Name

/fDescription

i
/i
1/

: Murni Masri

: MainFrame.java
This program is an applicatien with advance GUI.
Tt can communicate with a serial pert and handle signals and data
available on the serial port.

import
import
import
import
import

import
impert
impert
import
import
import

import
import
import
import
import
import
import

import
import
impert
import
import
import

public
{

Java.awt.*;
java.awt.event.¥;
java.awt.BorderLayout;
Java.awt.FlowLayout;
java.awt.GridLayout;

Java,.io
java,.ic
java.io
java.ie
java.io
java.ic

R

LFile;
.FilieInputStream;
LFileQutputsSizream;
.I0Exception;
LFileNotFoundException;

javax,swing.*;
javay.swing.pborder. *;
javax.swing.Imagelcon;
Javax.swing.event.*;
javax.swing.border, *;
jevax.swing.tree.*;
Javax.swing.tree.TreePath;

Java.util.*;

Java.util. TooManylListenersException;
java.util.StringTokenizer;
java.util.Properties;
java.util,Enumeration;

Javax.comm. *;

class MainFrame extends JFrame implements ActionListener

final int HEIGHYT = 550;
fipal int WIDTH = 430;

private

private
private
private
private
private
private

private
private
private
private
private

private
private

private

private JPan

private
private
private

Container container;

JButton JbOpen;

JButten ibCloss;

JFrPanel jpbutton;

IMenuBar menubar;

JMenu conngctionMenu;

IMenuitem jmiOpenPort, jmiClosePort;

SerialParameters parameters;
SerialConnection connection;
JPanel JjpMessage;

JTextArea messageArealut;
JTextArea messagelrealn;

MyButton myButton;
Status status;

JPanel jpCenter;

el JpTab;

Jpanel jpTree;
JTakbedlane 3tpTabPane;
JPanel ipModule;

63

private JPanel jplist;
private JTree jtTree;

private IntroView introview;
private GensralView mGeneralView;
private KitchenView mKitchenView;
private LivingView mbivingView;
private DiningView mDiningView;
private BedroomViewl mBedroomViewl;
private BedroomView? mBedrooriView2:
private BedroomView3 mBedroomView3d;

private J3crollPane jspSend;
private JScrellPane jspReceive;
private TreePanel tree;

private UpperPanel clock:
private TimerThread timerthread;
private JPanel 3pNorth;

private JLabel jlLogo;

String general = "{root, Generall";

String living = "{root, Living Roomi";
String dining = "[root, Dining Room}";
String kitchen = ™{root, Kitchenl}";

String bedrooml = "[root, Bedroom 11";
String badroom? = "lreot, Bedroom 2}V;
String bedroom3 = "[roet, Bedroom 3]7;

CardLayout cardlayout;
MyRAccessPad access;

Dimension tabsize = new Dimension (600,700} ;
Dimension messagesize = new Dimension{l50,250};
Color lightgray = new Colori{225,225,225};

Coelor selected = new Color (130,138,253

Color lightgreen = new Color(0,255,64);

public MainFrame ()

{
setTitle("Home Guard System"};
container = getContentPane ();

nmenubar = new JMenuBax();

conhectionMenu = new JMenul{”Connecticn™);
jmilpenPort = new JMenultem("Open Serial Port"};
JniClosePort = new JMenultem({"Close Serial Pori");
JjmiclosePort.setEnabled{false};
connectionMenu. add (jmiOpenkort) ;
connectionMenu.add {jmiClesePort);

menubazr . add {connectionMenu) ;

setIMenuBar {menubar} ;

jmiOpenEort.addAc;ionListenex(this);
jmiClosePort.addhctionkistener (this);

messageAreadut = new JTextArea(}:;
messagedreaOut. setBackground (selescted) ;
messageArealut.setForeground (Color.white);
messageAreaOut . add (new J3crollPane(};};

messageArealn = new JTexthreal);
messageAreain.setBackground{Color.black);
messageArealn. setForeground(lightgreen);

messageArealn.setBditable {false);

jspSend = new J3crollPane (megsageAreadul);
jspSend.setBorder (new TitledBorder{"Send Message")}:;

JspReceive = new J3crollPane (messageArealn);
jepReceive.setBorder (new TitledBorder ("Recelived Message"”))

66

jpMessage = new JRanel (};

jpMessage. setlayvout (new GridlLayout(2,1,20,20));
jpMessage. setPreferredSize {(messagesize);
jpMeszage. add (Ispsend) ;
jpMessage.add{jspReceive};

parameters = new SerialParameters();
connection = new SeriaiConnection(this, parameters, messageRreaOut, messageArealn);

status = new 3tatus();

introview = new IntroView{):

mseneralView = new GeneralView(this, conmnection, status);
mGeneralView. setDoubleBuffered {true);

mKitchenView = new KitchenView{this, connection, status);
mKitchenView.setDoubieBuffered{true);

mbivingView = new LivingView (this, connection, status);
mLivingView.seiDoubleBuffered (true};

mbiningvView = new DiningvView{this, connectien, status);
mDiningView.setDoubleBuffered{true);

mBedroonViewl = new BedroomViewl{this, commection, status);
mBedroomvViewl . setDoubleBuffered {true) ;

mBedroomvViewZ = new BedroomView2 (this, connection, status);
mBedroonvView?. setbDoubleBuffereditrue} ;

nmBedroomViewd = new BedroomView3(this, connection, status);
mBedroomView3. setDoubleBuffered{true) ;

jpModule = new JTPanel{};

JpModule, setMaximumsize (tabsize);

cardlayout = new CardLayout();

jpMedule. setLayout {cardlayout) ;

jpModule. setBorder {new BevelBorder (BeveiBorder ,.LOWERED)) ;

jpModule. add (mKitchanView, "Kitchen™);

JpModule.add (mGeneralView, "General”™;;

jpModule.add (MlivingView, "Living Room"):
Iptiodule.add{mbiningView, "Dining Room"):

JpModule.add {mBedroomViewl, "Bedrocom 1"}:
JpModule. add (MBedrodmvView2, “"Bedroom 2");
JpModule. add (mBedroomvView3, "Bedrcom 3"};

ipModule.add (introview, "Welcome to Home Guard System”);

introview, setVisible (true);
nKitchenView.setVisible{false);
mGeneralView. setVisible (false);
mbivingView.setVisible {falze);
nbiningview.setVisible {false);
mBedroomViewl.setVisible (false) ;
mBedroomView? . setViaible{falae) ;
mBedroonmViewd.setVisible (false);

jpCenter = new JPanel (};
4pCenter.setLayout (new. BorderLayout (5,5))7
jplenter. setBorder (new EmptyBorder(5,3%,5,5)};
jpCenter, setBackground (new Colox (180, 180,1%84));

tree = new TreePanel (this};

jpTree = new JPanel();

JjpTree. setLayout (new BeorderLayout (5,5));

jplrez. setRackground (Coleor.white);

jpTree. setBorder (new LineBorder (Color.gray, 2)};

jpTree.add{tree, BorderLaycut.NORTH);
jpTree.add{jpMessage, BorderLayout.SOUTH);

cleck = new UpperPanel():

jllogo = new Jhabel():

jllogo.setivoninew Imagelcon{"image/loge_company.jpg")}:
jlLogo.setVerticalAlignment (SwingConstants.TOP};
jlLogo.setVerticalTextPosition (SwingConstants,ROTTOM) ;
ipNoxrth = new JPanel{};

67

Jporth. setlayout (new BorderLayout {10,10}};
ipNorth.setBackground {new Color (180,184,184));
dpNorth.add{jlloge, BorderLayout.WEST):
ipNorth.add(clock, BorderlLayout.CENTER);

jpCenter.add{jpNorth, BorderLayout.NCRTH);
jpCenter.add{jpMedule, BorderLayout.CENTER) ;
dpCenter.add{jpTree, BorderLayout.WEST):
container. setlLayout (new BorderLayout(}};
container.add {JpCenter, BorderLayout.CENTER);

Dimension screenSize = Toolkit.getDefaultToolkit{).getScreensize{}:

int WIDTH = screenSize.width:

int HEIGHT = screenSize.height - 30;
setlLocation{0,0);

setSize (WIDTH, HEIGHT);

timerthread = new TimerThread{clock);
timeyxthread.start();

access = new MyAccessPad({this);

accass.setDefaultCloseOperation (JFrame . EXIT_ON CTL.OSE);

this.setVisible (false);
access.setVisible (true);

public static void main(String argsil}

{

try
{

UIManager.setLookhndFeel (UIManager. getSystemlookhndFeclClassName{});

}
catch{Exception e}

{
e.printStackTrace();

}
MainFreme frame = new MainFrame ();

Lrame.zetDefaultCloseOperation (JFrame.EXIT ON CLOBE);

frame.sstVisiblae(falsa);

public void acticenPerformed (ActionBvent e}

{

5tring cmd = e.getBActionCommand();

if {(emd.equals ("Open Ssrial Port"))
{

}

portOpenad{);

if (cmd.eguals{"Close Serial Poxrth}}

{
portCloaed(};

1

public void portOpened()

£

jmiOpenFort.setEnabled (false};
try I
connection. openConnection();

}
catch {SerialConnectionException e2} {

68

JoptionPane.showMessagebialog (this,

"Frror opening port," +

22 _getMessage () + "." +

"Select new settings, try again.",
"Port Error",
JoptionPane.ERROR_MESSAGE) ;

jmiCpenkort.setEnabled(truea);

}

imiClosePort. setEnabled(true};

3

public
{

void portClosed(}

connection.closeConnection();
jmiopenPort, setEnabled {true);

jmiClosePort. setEnabled{false);

}

class CloseHandler eztends WindowAdapter

{

MainFrame sd;

public CloseHandler (MainFrame sd)

i

this.sd = sd;

}

public void windowClosing (WindowEvent &)

{
sd.
}
i

shutdown{);

private void shutdown()

{

connection.closelonnection();
system.exit{l);

}

public

{
this.

}

public
{

thisa.
}

public
{

this
}

rublic
{

this
}

public
{

this.
1

public

{
this

void setlivingView()

cardlayout. show {{pModule,

void setDiningView()

cardlayout.show{jpModule,

void setKitchenView(}

.cardlayout. show (jpModule,

void setGeneralvView()

.cardlayout. show{ipModule,

void setpedroomviewl ()

cardlayout.show {jpModule,

void setBedroomView?Z ()

.cardlayocut.show {jpModule,

"Living Room™);

"Dining Room");

YKitchen") ;s

"General™);

"Bedroom 1");

"RBadroom 2");

69

}

public void setBedroomView3 ()
{
this.cardlayout.show (jpModule, "Bedroom 37);

}

/ End of metheds inveived directly with MailnFrame

I Child classes of MainFrame S=s=s——=femmssnosssssssRsSsssssssemmmS=s
f e e M B Om = e e e e e e e

¢lass MyButton extends JPanel implements ActionListener
{

private MainFrame parsnt;

private SerialConnection connection;

private JRadioButton buttonOn;

private JRadioButton buttonOff;

private Icon icon;

final int HEIGHT = 100;:

final int WIDTH = 230;

public MyRButton(MainFrame parent, SerialConnecticen cennection)
{

this.parent = parent;

this.ronnection = connection;

buttonOn = new JRagdioButton{"ON");

buttonOn.setIcon{new ImageIcon{"image/none.jpy”});:
buttonOn.setRolloverIcon (new ImageIcon("imagefblurmetalﬂgreen.jpg")};
buttonOn.setSelectedIicen(new Imagelcon{"image/alien green.ipg"});

buttonOff = new JRadioButton ("OFE");

buttonCfif. setIcon (new ImageTcon{"image/none.ipg”));
buttonOff.setRolloverIcon {new Imagelcon("image/blurmetal red.jpg"}):
buttonOff.setselectedlicon (new Imagelcon{"image/alien red.jpg”});

ButtonGroup btg = new ButtonGroupl};
btg.add (buttonon);
btg.add{buttonOff);
buttonOn.addActionLlstencr (this);
buttonOff.addActionEistener (this);

setLayout {new FlowLayout {FlewLayout.CENTER, 1Q,18});
add (buttonon} ;
add (buttonoff};

}

public void actionPerformed{ActionEvent e}

{

String cmd = e.getActionCommand ()7

if {conmection.isOpen(})

{

if {emd.equals {"ONT)) // eithar one can
//if [{e.getSourcte() == butionOn}
i

connection.settingRTS {true};

}

1f {cmd.equals ("OFF"})
//if {e.getSource!) == butbonOff)
{
connection, settingRTE (false);

70

}

class SerialConnection implements SerialPortEventListener,CommPortOwnershipListener
{
private MainFrame parent;
private JTextArea messageAreaOub;
private JTextArea messagefrealn;
private SerialParsmeters parameters;
private OutputStream os;
private InputStream is;
private KeyHandler keyHandler;
private CommPortldentifier portId;
private SerialPort sPort;
private boolean open;
private MyButton myButton;

public SerialComnection (MainFrame parent, SerialParameters parameters,
JTextArea messageAreslut, JTextArea nessagelArealn)

{ .

this.parent = parent;

this.parameters = parameters;

this.messagedreadut = messageAreadut;

this.messageArealn = messageArealn;

open = false;

myButton = new MyButton{parent, this);

}

public void openConnection({) throws SerialConnectionException

{

try §

portld = CommPortidentifier.getPortidentifier{parameters,.getPortName{));
} catch (NoSuchPortExzception &) {

throw new SerialConnectionException(e.getMessage(}):

}

try {

sPort = {(SerialPort)portid.cpen{"MainFrame", 5000};
} catch (PortInUseException s) {

throw new SerizlConnectionBxception(e.getMessagei});

}

try §

setConnecticnParameters{);

} catch {(SerialConnectionBaception e) {
sPort.close{};

throw e;

i

try {

os = sPort.getCutputStream();

is = sPort.getInputStream!);

1} catch {ICEzception e) |

sPort.cleose();

throw new SerialConnectionException("Error opening i/o streams"};

1

keyHandler = new XevHandler(os):
nessageAreacut .addKeylListener (keyHandler) ;

try {
aPort.addBventListener (this);

71

}

} catch {(ToocManyListenersBxception e} {
sPort.close ()
throw new SerialConnectionBxception{"toc many listeners added™};

1

sPort.notifyOnDataRAvailable (true);
sPort.notifyOncTs (true) ;
sPort.notifyOonDsSR (true} ?
sPort.notifyOnRingIndicator{true);
sPort.notifyOnCarrierRetect {true};
sPort.notifyonBreaklnterruptitrue);

try {
sPort.enableReceiveTimeout (30);
} catch (UnsuppertedCommOperationException e) |

}
portld.add®ortOwnershiplListener {this};

sPort.setRT3 (false);
s5Port,.setBTR(true);

open = true;

public vold setConnectionParameters() throws SerialComnectionException

{

}

int cldBaudRate = sFort.getBaudRete (};

int oldDatabits = sPort.getDataBits():

int oldStopkits sPort.getStopBits ()

int oldParity = asPort.getParity():

int oldFlowControl = sPort.getFlowlControlMede();

try |

sPort.setSerialPortParams {parameters.getBaudRate!),
paraneters.getDatakitsl),
parameters.getStophits{},
parameters.getParity (});

} catch (UnsupportedCommOperationException e} |

parameters. setBaudRate (ocldBaudRate) ;

parameters.setbatabits (oldDatabits);

parameters.set3topbits (oldstopbits)?

parameters.setParity(oldParity);

throw new SerialConnectionException{"Unsupported parameter™);

}

try {

sPort.setFlowControlMods (parameters. getFlowControlIn{} |
parameters.getFlowContrelOut());

} catceh (UnsupportedCommOperationException e} |

throw new SerialConnectionZxception ("Unsupported flow control™);

}

public void closeConnection{)

{

if (lopeny { return; 1}

messageArealut . removekKeyListener (keyHandler) ;

if {(sPort != null}
{
try {
og.close(};

is.close{};
] catch (ICEXgepticn e) [
System.err.println{e};

I

sPort.close();

72

portid, removePortOwnershiplistener{this};

1

open = false;

1

public void sendBreak()
(

sPort.sendBreak {1000} ;
}

public boclean isOpen(}
{

return open;

——————————————————————— Setting the RTS,DIR and serisl data to transmib--

public void settingRTS (boolean rts}
[

sFort.2etRTS{(rts);
i

public wvoid settingd¥R(booliean dtr}
{
sPort.setDTR{dtr);

}

public void setlight (boclean light}
{
byte{] on = {"L','1',"'1"};
bytel] off = ['L','9',°0');

try
{
if (light)
{
os.writafon,, 3);

os.write (off,0,3};
}
}catch (IDException ax)
{
System.err.printlniex);
return;

}

public void setDoor {boolean door}
{
byte{] on = {'D','1',11'};
bytell off = {'D','0','0"};

try
{
if (door)
[
os.write{on, ¥, 3}

o3.write(of£,0,3);
}
Jeatch (IOBxception ex)
{

System.err.priatin(ex);
return;

73

H

public void setWindow(boolean window)
{

byte[]l on = {'R',*1','1"};

byte[] off = {'R','0','0"};

try
{
if (window)
{
os.write{on,0,3);
}
else
{
os.write(cff, 0, 3);
}
}catch {(IODException ex)
{
System.srr.println{ex};
return;
}

}

public vold setAircond(booclean aircond)
(.
byte[] on = {'R','1%,'1"};
bytel] off = {'R*','4','0'};

Ery
(
if{aircond)
{
os.writefon,0,3};

os.write (off, 9,3},
!
leatch (IOException ex}
{

System.err.printiniex;;
return;

}

public void setFan({boolean fan)
{
byte[] on = ['F','1",'1%};
byte{] off = {'F','0', 0'}s

Ery

{
if {fan)
{

cs.wxite{on,Q,3};

es.write{off,0,3});
}
Yeatch |(I0Excepticn ex)
{
System.erk.printiniex);
return;

}

public void setSmoke (boolean smoke)
{

byte{l on = {'D','1i','i'};
bytel]l off = {'D','0','0']);

try
{
if (smoke)
{
cs.write{on, D, 3);
H
alse

{

os.write{off,0,3);

}catch (IOException ex)

{
System.err.println{ex);
return;
}
}
R End of setting the RTS,DTR and serial data to transmit---—--—-—-—---
[l Serial port Event handling———----=--m—-ommmm oo

public void serialBwvent (SerialPortEvent e}

{
StringBuffer inputBuffer = new StringRuffer{);
int newData = 0;

switch (e.getEventTyped!)}
(
cage SerialPortBvent.DATA AVAILABLE:

while (newData 1= -1)
{
try |
newbhata = is.read();
if (newbhata == -1} {
break;
]
if ({'\r' == {(char)newData) {
inputBuffer.append{'\n');
1 elze {

inputBuffer,append{ {char)newbata);
!

} catch (IOException ex) {
System.err.printin{ex);
return;

}

messayehrsaln. append {new String(inputBuffer));
break;

cage SeriaiPortBvent.DBI:
messagehrealn. append {"\n--~ BREAK RECEIVED ——~\n"™);

break;
case SerialPortiEvent.CTS:
if (sPort.isCTS{) == false)
messageArealn. append {"\n—-- CT8§ = OFF ——"};
if (8Port.isCTs() == true}
messageArealn. append ("\n--- CT8 = ON ——-");
break;
casa SerialPortBvent .DSR:
if (sPort.ishsR() == false)
{
nessageArealn.append ("\n--- DSR = OFF ---");
}
if {sPort.isDSR{} == true)

75

{
messagehrealn. append {"\n--~- DSR = ON ---7");

}

break;

case SerialPoriBwent RT:
if {sPort.isCTsS() == false)

messageArealn. append {"\n-—~ RI = OFF ---");

if {s8Port.isCT3(} == true}
messagehreain.append ("\n-—— RI = ON ---");
break;

case SerialPortBvent.CD:
it (sPort.iscls{} == false)
{
nessageArealin. append {("\n—~- €D = OFF —-=¥);

}
if (8Port.isCTS8{) == true}

{

messageArealn. append {"\n—~ €D
parent.setGeneralvView();
parent.mGeneralView.mLivingsmoke.setdlarm();

oN ---");

break;

public void ownershipChange {int type)

{
if {type == CommPortOwnershipListener.PORT OWNERSHIF REQUESTED)
{

!

FortRequestedbialog prd = new PortRequestedDialegiparent);

}

class KeyHandler extends KevAdapter
{

Output8tream o3;

public KeyHandler {Qutputstream os)
{

super {);

this.os = os;

}

public void keyTyped{KeyEvent evt)

{
char newCharacter = evt.getKeyChar({)};
try 1
os.write{ (int)newCharactex);
1 catch [(I0Exception e} {
System.err.println{"Outputsiream write error: " + e};
}
i
}
} /7 end of 5erialCORneCtion —m = oo s e e
S e e BLAtUS ~m e e e

vlass Status
{

MainFrame parent;

76

boolean frontdoor = true,

backdoor = false;

beolean dininglight = false,
diningfan = false,
diningsmoke = false;

boolean livingwindow = false,
livinglight = true,
livingfan = true ,
livingaircond = true,
iivingsmoke = false;

boolean kitchenwindow = false,
kitchenlight = false,
kitehenfan = £false,
kitchensmoke = false;

boclean bedroomdcorl = true,
hedroomwindowl = true,
bedroomtightl = true,
bedroomfant = true,
bedroomaircondl = true,;
bedroomsmekel = true;

boolean bedrcomdoor? = true,
bedroomwindow? = true,
bedroomliight2 = true,
bedroomfan2 = true,
bedroomaircond2 = true,

) bedrocmsmokeZ = true;

boolean bedroomdoor3 = false,
bedroomwindowd = false,
hedroomlight3 = false,
bedroomfand = false,
bedroomaircond? = false,
bedrocnsmoked = false;

int temperature = 25;

public Status()

{
}

public boolean getStatus{String name)
{

if (name == "frontdoor")
return this.frontdoor;
else if (name == "backdoor™)

return backdoor;
else if (name == "dininglight")
return this.dininglight:
elge if (name == "diningfan™}
return this.diningfan;
eise if (name == “diningsmcke”)
return this.diningsmoke;
else if (name =~ "livingwindow")
return this.livingwindow;
else if (name == "livinglight")
return this.livinglight;
else if {name == "livingfan"}
return this.livingfan;
else if [name == "livingaircond"}
return this.livingaircond;
glse if (name == "livingsmoke"}
return this.livingsmoke;
alse if {name == "kitchenwindow™)
return this.kitchenwindow;
else if {name == "kitchenlight")
return this.kitchenlight;
else if (name == "kitchenfan"}
return this.kitchenfan;
else 1f [(name == "kitchensmoke™)
return this.kitchensmoke;
glse if (name == "hedroomdoorl®)

}

return this.bedroomdoorl;
else if (name == "bedroomwindowl™)
return this.hedreomwindowl;
else if (name == "bedroomlighti™)
return this.bedroomlightl;
else if (name == "bedrocomfanl")
return this.bedrcomfani;

else if (name == "bedroomeircondli"}
return this.bedroomaircondl;
else if {name == "bedroowsmckel™)
return this.bedroomsmokel;
else 1f (name == "bedroomdoorZ™)
return this.bedroomdoor?;
else if (name == "bedroomwindow2™)

return this.bedroomwindow?;
else if (name == "bedrcomlightl2™)
return this.bedroomlightz;

else if {name == "bedroomfan?®}
return this.bedroomian2;
else if {(name == "bedroomaircond?"}

return this.bedroomaircond?2;
2lse if (name == "bedroomsmoke2")
return this.bedroomsmokel;
else if {(name == "bedroomdeor3i™)
return this.bedroomdoor3;
else if {(name == "bedroomwindow3")
return this.bedrocmwindowd;
else if {name == "bedroomlight3™}
return this.bedroomlight3;
else if {name == "hedroomfani")
return this.bedroomfand;
else if (name == "bedrocmaircond3™)
return this.bedroomaircond3;
elae if (name == "bedroomsmokal"}
return this.bedroomsmokel;

else
return false:

public veid =etStatus (String name, boolean state)

{

if {(name == "frontdoor"}
this. frontdoor = state;
else if {name == "backdoor")
{
JoptionPane cptionPane = new JOptionPane ("Back door changes state.”,
JoptionPane ERROR MESSAGE };
Jbialog dialeg = optionPane.createDialog(parent, "Port ERrror™);
dialog.show():
this.backdoor = state;

else if (name == "dininglight")
this.dininglight = state;
else if {name == “diningfan")
this.diningfan = state;
glse if {name == "diningemoke®}
this.diningsmoke = state;
else if (name == "livingwindow")
this.livingwindow = state;
else 1f (name == "livinglight"}
this.livinglight = state;
else if {name == "livingfan"}
this.livingfan = state;
else if (name == "livingaircond")
this.livingaircond = state;
else if (name == "livingsmoke")
this.livingsmoke = state;
alse 1f {nhame == Ykitchenwindow™}
this.kitchenwindow = state;
else 1f {name == "kitchenlight")}

78

else

else

elze

else

else

elae

else

else

else

else

else

else

else

else

else

else

else

else

this.kitchenlight = state;
if (name == "kitchenfan™)
this.kitchenfan = state;
if {name == "kitchensmoke")
this,. kitchensmoke = state;
if (name == "bedrogmdoori™)
this.kedroomdoorl = state;
if {(name == "pedroomwindowl')
this.bedroomwindowl = state;
if (name == "bedroomlightl")
this.bedroomlightl = state;
if (name == "bhedroomfanl”}
thiz.bedroomfani = state;
if {name == "bedroomaircoendl™}
this.bedroomaircondl = state;
if {name == "bedroomsmckel™)
this.bedroomsmokel = state;
if (name == "hedroomdooxrZ™)
this.bedroomdoor? = state;
if [name == "bedroomwindow2™)
this.bedroomwindow2 = state;
if (name == "bedroomlight2"}
this.bedroomlight? = state;
if (name == "bedroomfanz™)
this.bedroomfan? = state;
if (name == "badroocmaircond2™)
this.bedroomaircondz = state;
if {(name == "bedrocmsmoke2™)
this.bedrocmsmoke? = state:
if (name == "bedroomdoor3i")
this.bedroomdecor3 = state;
if [name == "bedroomwindow3")
this.bedroomwindow3 = state;
if [name == "bedroomlight3™)
this.bedroomlightd = state;
if (name == "bedroomfani™)
this.bedrcomfan3 = state;
if (name == "bedroomaircondd")
thisg.hedroomaircond3 = state;
if {name == "bedroomsmoke3™}
this.bedroomamoked = state;

JOptionPane coptionPans = new JOptionPane{"No Valid Status Assigned”,
JoptionFane .ERROR MESSAGE);
JDialog dialeg = optionPane.createbRialog{parent, "Port Error”);

dialog.show ()

} // end of Status Class ———————m s e e e e o

class Module sxtends JPanel implements ActionListenexr

{

private MainFrame parent;

private SerialConnection comnection;

private Status status;
private sString title;
private String iconName;
private string on = "ON";
private 8String off = "OFF™;

private String open = "QPEN";
private String close = "CLOSE";
private String lock = "LOCK";
private String unlock = "UNLOCK";

private String disable = "DISABLE"

private String enable = "ENABLE";

79

private String alert = "ALERT";
private String name;

boolean state;

boclean locked;

boolean detector;

private JLabel jilmage;

private Imagelcen iczonOn;

private Imageicon iconoff;

private ImageXfcon iconOther;

private ImageIcon doorlock = new ImageIcon{"image/dooxr lock.jpg"):
private ImageIcon windowlock = new ImageTcon("image/window _lock.jipg"):

private JLabel jlstatus;
private JLabel jiCurrentsStatus;

private JPanel Jjp3tatus;
private JPanel jpAction;
private JRadioButton jrbon;
private JRadioButton JrbOfE;
private JButton JbOption;

private JPanel jpSouth;
private JPanel jpNorth;
private JPanel -JpBase;

public Module{SerialCennection connection, Status status, String title,

{

String iconName, String name)

this.gonnection = connection;
this.status = status;
this.name = nane;

this.state = status.getStatus (name);

this.iconName = iconName;

String sIconOn = "image/™ + iconName + "_onl.dpg";
String sTconOff = "image/" + iconMame + “_offl.jpg";
this.iconOn = new Imagelcon{siconOn):

this,iconOff = new ImageIcon(zIconOff};

jpBase = new JPanel{);
jpBase.setLayout (new BorderLayout (10, 10}};
jpBase. setBorder (new TitledBorder (title));

jlimage = new JLabel();
jl8tatus = new JLabel("3tatus :");
jlCurrentStatus = new JlLabel{)}:

JrbOn = new JRadioButton{);

Jroon.setIcon(new ImageIcon("image/nonel.jpg™)};

3rbon. setRolloverIcon (new ImageIcon{"image/blurmetsl greenl.jpg"));
jrbon.setSelectedicon{new ImageIcon(“imagelalien greenl.jpg"));
this.setjrbon{};

jrhon.addActiontistener (this);

Jrboff = new CRadioButton();

JrbOff, setIcon{new Imagelcon{"image/nonel.jpg™}):

4rbOff. setRolloverIcon(new Imagelcen("image/Plurmetal redl.ipg™));
Jrboff. setSelectedIcen {new ImageIcon{"image/alien_redl.ipg™)};
this.setjxrpOff{) ;

Jzboff.addActionListener (this);

jphction = new JPanel(};

jpAction.setBorder (new TitledRorder {"Action"}};
jpAction.setLayout {new FlowLayout{Flowhayout.LEFT,10,5});
dpaction.add{irboOn};

jpAction.add{)rbOff) ;

ButtonGroup bigAction = new ButtonGroup{);

btgaction.add {jrbon);

btgAction.add (Jrboff);

if (state)
{

80

jlimage.seticon{icondn) ;
if (iconName == "geor™ |] iconWame == "window"}

{

jlCurrentStatus.setText (open);
this.disableAction()

}

else if (iconMName == "fan" || iconName == "

{

jlCurrentStatus. setText (on};
jrbon.setSelected {true);

)

else 1f {(iconName == "smoke'")

{

JlturrentStatus.setText (enable);
jrboOn.setSelected {true);

1

else

jlCurrentStatus.setText (on};

}

else

{

jiImage. setTcon{iconOff) ;

if (iconName == "dooxr" |} iconName == "wind

{

jilCurrentStatus.setText (close);
this.enabledction();
Frp0ff . setSelected{true);

]

else if {iconName == "fan" |} iconName == "

{

jiCurrentStatus.setText (off);
JrhCEf. setSelected {true};

else if {iconMName == "smoke")

{

jlCurrentStatus. setText (disable);
JrhOff.setSelected(trne};

]

else

JicurrentStatus. setText (off);

}

aircond®

OW"}

aircend”

I

41Tmage.setBorder {new BevelBorder {BevelBorder.LOWERED)};

Dimension dlmage = new Dimension{iconOn.getlconWidth{},
iconOn.getlconHeight (});
JlImage.setSize (dImage) ;

jiCurrentStatus. setBorder {new BevelBeorder (BevelBorder . LOWERED) } ;

jpStatus = new JPanel(};
jpStatus.setlayout (new GridLayout{2,1,5,5});
jpStatus.add{jiStatus);
JpStatus.add(jiCurrentstatus);

JpNorth = new JPanel();

JpNerth.setLayout {new

BorderLayout {20,10});

jpNorth.setBorder [new EmptyBorder (10,10,10,10)};
YpNorth.add (jlImage, BorderLayout.WEST);

Jplorth.add{ipStatus,

BorderLayout . CENTER) ;

JhOption = new JButton{"Option");
jbopticon.addhctionlistener {this);

jpSouth = new JPanel ();

dpdouth. setlayout (new

BorderLayout (10,10});

4p8cuth. setBorder (new EmptyBorder{10,10,10,10});

jpSouth.add {3pAction,
jpSeuth.add{iboption,

BorderLayout .CENTER) ;
BorderlLayout . EOUTH) ;

jpBase.add (ip¥orth, BorderLayout.NORTH) !

81

iconMName == "light")}

iconName == "light™)

jpBase.add (jpSouth, Berderlayout.SOUTH);

setLayout (new BorderLayout{l(,10)):
setBorder(new LineBorder{iightgray, 3));¢
add {ipBase);

}

public void actionPerformed (ActionEvent &)
{
if (lconnecticn.isOpen(})
{
JoptionPane.showMessageDialog {(this,
"The serial port is nct opened. "
“"Port Error",
JOptionPane.BERROR MESSAGE) ;

;

)

else

1
if {jrbOn.is3elected{}}
i

jlImage.setTcon{iconOn} ;

if (iconName == "door™)

{
jiCurrentStatus.setText (lock);
jlImage.setlIcon({doorlock);

if {(name == "backdoor")

{
connection. settingRIS (true} s
connection. setDoor{trua);

3

else if (iconName == "window"}

i
jlCurrentStatus.setText (lock);
31lImage.setIcon{windowlock};

if {name == "kitchenwindow"}
{

connection. setWindow (true) ;
}

}

eise if {iconName == "fan” || iconMame == "aircond" ||
iconName == "light")

{

jicCurrentStatus.setPext (on};

if {name == "kitchenfan")}
{

connection.setFan(true);

}

+f (name == "kitchenlight")

{ connection. setLight {true};
}}
else if (iconName == "smcke")

{
jleurrentStatus.setText (enable);

if {name == "livingsmoke™}
i

//connection.settingDTR (true) ;
]

82

if (name == "kitchensmoke™)
{
connection. setSmoke (true);
}
}
else
FlCurrentStatus.setText {on);

}

else if (jrboff.issSelected{)}
(
jlImage.seticon{iconOff);

if {iconName == "door" {]| iconName == "window")
{
jlCurrentdtatus.setText {close);
if {(name == "backdocr")
{

connection. settingRTs {false);
connection. sethDooxr (false);
}

if {name == "kitchenwindow"}
i
connection. setWindow (false);

}
)

else if {iconMame == “fan" || iconlame == “aircond"” ||
iconName == "light")
{
jlCurrentStatus.setText (off);

if (name == "kitchenfan™)
{

connection. setfan(false);
}

if (name == "kitchenlight"}
{

connection.setLight(false);
}

alse if (iconName == "smoke™)
{
jlcurrentStatus.setText (disable)

if (name == "livingsmoke™)

{
//connection.settingDTR(false};
}
if [(name == "kitchensmoke™)
{
connection. set8moke (false};
}
H
glse

jlCurrentStatus.setText (oL} ;

]

public void setjiImageOther ()
{

thiz.}iTmage.setIcen {icondther);
}

public veoid setIcenOther(String icon)
£
this.icoenOther = new Imagelcon{icon);

H
public boolean getState()
{
return this.state;
}

pulic veid setjiCSAlexrt()
{

this.jlCurrentS8tatus.setText (alert);
¥

public wvoid setjlC8Disable ()
{

this.jlCurrentStatus.setText (disable);
}

public void seti1C3Enable(}
(
this.jlcurrentstatus.setText (enable};

}

public veid disablehetion{)

{
this.jrbCn.setEnabled{false);

this.irbOff.setEnabled{false);
]

public void enableRction ()

i ;
this.jrbOn.setEnabled(true);
thig.jrbOLf, setEnabled (true);

i

public void setjrbOnLock()
{

this.jrbon. setText {lock)
}

public void setjrbCEfunlock{)
[

this. jrbkOn, setText (unlock) ;
}

public woid setjrbOnEnable(}
{

this.jrbon. setText (enable) ;s
}

public void setjrbOffDisable)
{

this.jrbOn. setText (disable) s
}

public void setirbOn(}
{
if (iconName == "door™ || iconName == "window")

{
jrbOn.setText {lock);

}
alse if {iconName == "fan" |{ iconName == "aircond” |!{ iconName == "light")
{
JepOn. setText (on) ;
]
else if (iconlame == "smoke"}

{
jrbon. setText (enable);

J

84

}

alse

Jrbon. setText (on}

public void setjrboff{}

{

}

if
i

}

else if (iconhName == "fan™

{
}

else if

{
}

{iconName == Y“door"

H

iccnName == "wihdow")

JrbOff.setText (unlock);

jrbOff. setPext (off};

iconName

I

{iconName == "amoke")

Jrboff. setText (disable};

else

GrhOLf.setText{off);

== "ajircond"

il

iconName == Ylight™)

public wveid setSeriaiConnsction(SerialConnection connection)

{
}

this.connection =

public void setAlarm{)

{

connection;

setDoubleBuffered {true);

for {int a=0;

{

a<6;

sethorder (new
for {int 3=0;
setborder (new
for {int j=0;
setBorder (new
for f(int 3=0;
setBorder (new
for (int J=0;
setBorder (new
for {int j=0;
setBorder (new
for f{int j=0;

f—

a++)

LineBorder (Color.red,
J<S0000000; j++) {1}
LineBorder (lightgray,
J<S0UC0000; J++) {1}
LineBorder (Color.red,
A<50060000; 3++) ([}
EineBorder (lightygray,
3<50000000; 5++) {1}
LineBorder (Color.red,
$<50000000; 3++) {}
LineBPordex{lightgray,
4§<50000000; j++) {}

class Introview extends JPanel

{

final int WIDTH = 549;

final int HEIGHT =
Image image =

485;

JPanel jpRoom;
JLabel 3}1Roocm;

public IntroView()

(

JpRoom =
JpRoom

new JPanel(};

4pRoon, setBackground {new Color (200,200,210} };

JpRoon

85

. setBorder (new BevelBorger (BevelBorder.RAISED));

new ImageIcon{"image/intropane.ipg™).getlmage(};

.setLayout (new FlowlLavout (FlowLayout.CENTER, %,3)};

$iRoom = new JLabel ("Welcome to Home Guard System");

jiRoom. setFont (new Font{"BankGothic Lt BT", Font.PLAIN, 15)):
JpRoom. add (4 1Room} ;

this.add {(jpRoom) ;

satBackground{Color.klack};
set3ize (WIDTH, HEIGHT):

this.validate{);

}
public void paintComponent {Graphics g)

{

super.paintComponent {qg) ;

g.drawImage (image, 15C, 100, this);
revalidate{);

}

class GeneralView extends JPanel

{
private MainFrams parent;
private SerialConnection connection;
private Status status;

private Mcdule mFrontdoor;
private Module mBackdeor;
private Module mLivingsmoks;

private String[} sfd {"Front Dooxr"™,"door”,"frxontdoor™};
private Stringl] shd = ["Back Door™, "door™, "backdoor™};
private String[j sls = {"Smoke Detector™,"smoke","livingsmoke"};

private Dimension maxSize = new Dimension (250,250} ;
fipal int HEIGHY = 700;
final int WIDTH = 550;

private JPanel JpRoom;

private JPanel jpInnerModule;
private JLabel jlReoom;

private S3tring room = "General”;

public GeneralvView{MainFrame parent, SerialConnection connection, Status status)
{

this . parent = parent;

this.connection = connection;

this.status = status;

enableEvents {AWIEvent . WINDOW _EVERT MASK) ;

mErontdoor = new Module {connection, status, this.getTitle(sfd),
this.geticonName (sfd}, this.getName (sfd)];

mbackdoor = new Module {connection, status, this.getTitle(sbd),
this.geticonName (sbd}, this.getName (shd));

mbivingsmoke = new Module (connection, status, this.getTitle(sls),
this.geticonMame (3ls),this.getName (sls));

mErontdoor.setPreferredsize (maxsize) ;
mBackdoor. setPreferred8ize (maxsize)
mLivingsmoke. setPreferrediize (maxSize);

ipRoom = new JPaneli};

jpRoom. setlLayout {new FlowLayout (FlowLayout.CENTER, 5,65));
jpRoom. setBackground (new Coler (200,200,210));

JpRoom, setBorder {new BevelBorder {BevelBorder .RAISED));
J1lRoom = new JLabel (room);

jlRoom. setFont {new Font("BankGothic Lt BT", Font.PLAIN, 15)):
IpRoom. add {jLRoom) ;

86

jpInnerModule = new JPanel();

YplnnerModule. setlayoul (new Flowlayout (FlowLayout.LEFT, 5,5));
jplanerModule.setBackground {new Color (200,200,210)};
JpInnerModule.add (mFrontdoor);

iplnnerModule. add {mBackdoor) ;

JplnnerModule.add (mLivingsmoke) ;

sethayout {new Borderlayout(iQ,10)};
add { jpRoom, BorderLayout.NORTH) ;
add{ipInnerModule, BorderlLayout.CENTER};

setBackground {new Color{200,200,2107);
}

public String getTitle(Stringl[} module)
1
return module [03;

}

public String geticonName (Stringl) module)
{

return module{l];
]

public String getName {Stringi] module)
i

return module[2];

}

public vold setModuleCliear{)

{
mFrontdoor. setBorder {new LineBorder {lightgray, 3));
mBackdoor.setBorder (new LineBorder(lightgray, 3));
mLivingsmoke.setBorder {new LineRBorder{lightgray, 3)):

class KitchenView extends JPanel

t
private MainFrame parent;
private SerialConnection connection;
private Status atatus;

private Module mXitchemwindow;

private Module mKitchensmoke;

private Module mKitchenfans

private Module mKitchenlight;

private String[] sbd = {"Back Door", "door”,"backdoor"};

private Stringll skw {"Window", "window", "kitchenwindow"};
private 8tringl}] skf {"Fan", "fan", "kitchenfan™};

private Stringf{l sks {"Smoke Detector™,"smoke","kitchensmoke™};
private Stringl] skl = {"Light","light”,"kitchenlight"};

[

private Dimension maxSize = new Dimension{250,230);
final int HBIGHT = 700;
final int WIDTH = 550;

private JPanel JjpRoom;

private JPanel jpInnerModule;
private JLabel j1Roocm;

private String room = "Kitchen";

public KitchenView!{MainFrame parent, SerialConnection connection, Status status)

[
this.parent = parent;
this.connection = connsction;

87

this.status = status;
enablebBvents (A#TEvent .WINDOW EVENT MASK) ;

wKitchenwindow = new Meodule {connection, status, this.getTitle(skw},
this.geticonName {skw), this.getName {skw});

miitchensmoke = new Module (connection, status, this.getTitle{sks),
this. geticonName (sks), this.getName (sks))}

mKitchenfan = new Module {connection, status, this.getTitle{skf),
this.geticonName (skf), this.getName (skf));

mKitchenlight = new Module {(connection, status, this.getTitle(skl),
thia.geticon¥Name(skl), this.getName(ski)):

n¥itchenwindow.setPreferredSize {maxsize)
mKitchensmoke. setPreferredSize (maxdize) ;
mKkitchenfan.setPreferredSize (max3ize);

miitchenlight.setPreferredSize (maxSize);

jpRoom = new JFPanel();

jpRoom. setLayout {new FlowLayout (FlowLayout.CENTER, 5,5});
4pRoots. setBackground (new Colox (200,200,210));

4pRoom. 3etBorder (new BevelBorder (BevelBorder . RATSED})

J1lRcom = new JlLabel {room};

JiRoom. setFont (new Font{"BankGothic Lt BT", Font.PLAIN, 15}};
jpRoom. add (j1Rocm) ;

jpInnerModule = new JPanel(};

jpInnerMedule.setLayout {new FlowlLayout({FlowLayout.LEFT, 3,35));
JpInnerModule. setBackground (new Colox (200,200,210});

jpInnerModule. add (mKitchenlight);
JpinnerModule.add{mKitchenwindow) ;
ipInnerModule.add{mKitchenfan);

jpInnerModule.add (mKitchensmeke);

setLayout {new BorderLayout{10,10));
add (jpRoom, BorderLayout.NORTH) ;
add (JpInnerModule, BorderLayout.CENTER);

setBackground{new Colox{200,200,210})};

}

public String getTitle(String(} module)
[
return module{0];

}

public String geticonName (String[l module)
{

return moduleill;

i

public String getName (String{] module)
{

return modulel2];

}

public void setModuleClear()

{
mKitchenwindow. setBorder {new Lineporder (lightgray, 3}):;

n¥itchensmoke. setBorder {new LinePorder (lightgray, 3));
miitchanfan. setBorder (new LineBorder{lightgray, 3}}:
mKitchenlight.setRBorder (new LineBorder {(lightgray, 3));

1 /7 end of KitchenView Class —=m——m— s oo s e e e e e e e e

class LivingvView extends JPanel

88

private MainFrame parent;
private SerialConnection connection;
private Status status;

private Module miivinglight;

private Module mLivingwindow;

private Module nmLivingsmoke;

private Mcdule nLivingfan;

private Module mlivingaircond;

private String{} s1i = {"Light","light","livinglight®};

private 3tringl[] slw {"Window", "window", "livingwindow"};

private String[] sif {"Fan", "fan", "livingfan"};

private Stringl[] sla {"Air-Conditioner™, "aircond", "livingaircond”};
private String{] sls {"smoke Detector","smoke","livingsmoke"};

to#

private Dimension maxSize = new Dimension({250,250);
final int HEIGHT = 700;
final int WIDTH = 550;

private JPanel ipRoom;

private JPanel jpInnerModule;
private JlLabel J1Room;

private String room = YLiving Room";

public LivingView(MainFrame parent, BerialConnection connection, Status status)
{

this.parent = parent;

this.connection = connection;

this.status = status;

enableBvents (AWTEvent . WINDOW_EVENT _MRSK} ;

mLivinglight = new Module {connection, status, this.getTitle(sil},
this.geticonName (511}, this.getName{s1l));

mLivingwindow = new Module (connection, status, this.getTitle(sliw},
this.geticonlame (slw),this.getName (slw});

mLivingsmoke = new Module (connection, status, this.getPitle(sls),
this.geticonName {sls),this.getName (sls));

nLivingfan = new Module (connecticn, status, this.getTitle{slf},
this.geticonName{sif),this.getName{s1£)};

mLivingaircond = new Module (connection, status, this.getTitle(sla},
this.geticonName(sla},this.getName (sla});

mLivinglight.setPreferredSize{max8ize),
mLivingwindow,.setPreferredSize (maxsize);
mLivingsmoke.setPreferredsSize (maxSize);
mLivingfan.setPreferredsize (maxsize);
mLivingaircond. setPreferredSize (maxSize};

jpRoom = new JPanel();

ipRoom. setLayout (new FlowLayout (FlowLayout.CENTER, 5,5));
4pRoom. setBackground (new Color{(268,200,210});

JpRoom, setBorder (new BevelBorder {BevelBorder .RRISED});

j1iRoom = new JLabel {room);

q1Rocm. setFont {new Font ("BankGothic Lt ET", Font.PLAIN, 15});:
jpRocom. add {1 1Room) ;

jpinnerModule = new JFPanel(}!

jpInnerModule.setlayout (new FlowLayout{FlowLayout .LEFT, 5,5)};
iplnnerModule. setbBackground (new Color{200,200,210)};

jpInnerModule.add (mLivinglight);
JpInnerMcdule. add (mLivingwindow) ;
jpInnerModule. add (mlivingfan);
jpInnerModule . add (mLivingaircond});
jplnnerModule . add (mLivingsmoke) ;

setLayout {new Borderlayout(10,10)};

add (jpRoom, BorderLayoub.NORTH);
add (ipInnerModule, BorderLayout.CENTER);

89

setBackground (new Color(200,200,210));
}

public String getTitle(Stringl] module)
{

return module iG]
}

public 8tring geticonName (String{] module)
{
return modulefl];

}

public String getName {Stringi]l module)
{
return module[27;

}

public void setModuleClear{)

{
mLivinglight.setBorder ({new LinsBorder {lightgray, 3});
mLivingwindow.setBeorder {new LineBorder (lightgray, 3));
mLivingsmoke. setBorder (new LineBorder{lightgray, 3));
mLivingfan.setBorder {new LineBorder (lightgray, 3}):
nlivingaircond.setBorder {new LineBorder{lightgray, 3)};

1

} /7 end of LivingView Class —rr o oo e e o e

f DiningView ——— - e
¢lass DiningView extends JPanel
{
private MainFrame parent;
private SerialConnection connection;
private Status status;

private Module mDininglight;

private Module mDiningfan;

private Module mDiningsmoke;

private stringl} sdl = {"Light", "light","diningilight"};

private Stringf{] sdf {"®an”, "fan", "diningfan”};

private Stringl] sds = {"Smoke Detector”™,"smoke","diningsmoke");

]

private Dimension max3ize = new Dimension{250,250};
final int BEIGHT =~ 700;
final int WIDTH = 550;

private JPanel JjpRoom;

private JPanel jpInnerModule;
private JLabel ilRoom;

private String room = "Dining Room";

public DiningView(MainFrame parent, SerialConnection connection, Status status)
{

this.parent = parent;

this.connection = connection;

this.status = status;

enableBvents (AWTEvent .WINDOW_EVENT_WASK) ;

mbininglight = new Module (connection, status, this.getTitle(sdl),
this.geticonlame (sdl), thia.getName (sdl)};

mbiningfan = new Module (connection, status, this.getTitle(sdI),
this.geticonName {sdf), this.getName (sdf)};

mDiningamoke = new Module (¢onnection, status, this.getTitle(sds),
this.geticonName (sds), this.getName{sds));

miininglight.setPreferredsize (maxdize)};
mbiningfan.setPreferredSize (maxSize);

90

mDiningsmoke.setPreferredsize (maxsize);

jpRoom = new JPanell};

jpRoom. setLayout (new Flowlayout {FlowLayout.CENTER, 5,5));
JpRoom. setBackground{new Coleor(200,200,210)});

jpRoom. setBorder (new BevelBorder{BevelBorder.RAISED));

jiRoom = new JLabel{rcom};

J1iRoom. zetFont (hew Font ("BankGothic Lt BTY, Font.PLATN, 15));
JpRoom. add {3 1Room) ;

jpInnerModuie = new JPanel();

jpInnerMeodules. setlayout (new FlowLayout (FlowLayout.LEFT, 5,5)):
jpInnerModule.setBackground (new Color{200,200,210});

jpInnerModule.add {mbDininglight);
jpInnexModule. add (mDiningfan) ;
ipInnerMeodule.add (mDiningsmoke) ;

setLayout (new BorderLayout{1l0,10});
add (ipRoom, BorderLsgyout.NORTH) ;
add (JjpInnerModule, BorderLayout.CENTER);

satBackground (new Color (200,200,210));
}

public String getTitle{Stringl] module)
{

return module[0];

1

public String geticonName{String[l module)
l
retukrn module [1};

]

public String getName (String[] mcdule)
{

return module[2}];
1

public 8tring getRoom()
{
return this.room;

}

public void setModuleClear ()

{
whininglight.setRorder {new LineRorder{lightgray, 3});
mDiningfan.setBorder {new LineBorder{lightgray, 3)):
mhiningsmeke. setBorder {new LineBerder (Jightgray, 3));

}

class BedroomViewl extends JPanel

{
private MainFrame parent;
private SerialConnection connection:
private Status status;

private Module mBedroomdoor;
private Module mBedroomlight;
private Module mBedroomwindeow;
private Module mBedroomsmoke:
private Module mBedroomfan;
private Module mBedroomaircond;

private 8tringl! sbd = ["Door”,"door", "bedroomdoorli™};
private String{] sbi = {"Right”,"light","bedroomiightl®™};
private Stringll sbw = ["Window", "window", "bedrocmwindowl™};

91

private String[] shf = {"Fan"”,"fan”, "bedroomfani™};
private Stringl[] sba = [("Alr-Conditioner”,"aircond", "pedroomaircondl®};
private String[] sbs = {"Smoke Detector","smoke”, "bedroomsmokel™};

private Dimension maxSize = new Dimension(250,250);
final int HEIGHT = 7006;
final int WIDTH = 55§;

private JPanel jpRoom;

private JPanel jplInnerModule;
private JLabel jlRoom;

private String room = "Bedroom 1";

public BedrocomViewl (MainFrame parent, SerialConnection conmection, Status
status)
{
this.parent = parent;
this.connection = connection;
this.status = status;

enablefvents (AWTEvent.WINDOW BEVENT MASK):

mBedrocmdoor = new Module {connection, status, this.getTitle{shd},
this.geticonName [sbd},this.getName (sbd)};

mBedroomlight = new Module (connection, status, this.getTitle(sbl},
this.geticonName (sbl},this.getName (sbl));

mBedroomwindow = riew Module (connection, status, this.getTitle{sbw),
this.geticonName (sbw}, this.getName (abw});

mBedroomsmoke = new Module {connection, status, this.getTitle(sbs},
this.geticoniame {sbs),this.getName (sbs});

mBedroomian = new Module (connection, status, this.getTitle(sbf),
this.geticonName {5bf), this.getName (sbf});

mBadroomaircend = new Module (connection, status, this.getTitle(sba},
this.geticonName [sba), this.getName (sha});

mBadroomdoor, setPreferredsize (maxSize);
mBedrocnmlight.setPreferredsSize {maxsSize);
mBedroomwindow. setPreferredsize (maxSize);
mBedroomsmeke.set?Preferredsize (maxsize);
mBedroomfan. setPreferredSize (maxSize};
mBedroemaircond. setPreferredsize (maxsize);

jpRoom = new JPanel();

jpRoon. setLayout {new FTlowlLayout (FlowLazyout.CENTER, 5,5));
jpRoom. setBackgroundi{new Color (200,200,210});

jpRoom. setBorder (new BevelBorder {BsvelBorder.RAISED));

J1Rodm = new Jrhabel {xroom);

J1Room. setFont (new Font ("BankGothic Lt BT", Font.PLAIN, 15));
jpRoon. add {j1Reom) ;

JpinnerModule = new JFRanel();

jpInnerModule. setLayout (new FlowLayout (FlowLayout.LEFT, 5,5});
JjpInnerModule. setBackground (new Color (200,200,210)};

jpInnerModule. add (mBedroomdoor} ;
jpInnerModule. add (mBedroomiight);
JpInnerModule, add (mBedroomwindow} ;
jpIinnerMedule.add (mBedroomfan) ;
JpinnerModule. add (mBedroomaircond) ;
JpInnerModule. add (mBedroomsmoke) ;

setLayout (new BorderZLayout {10,10}));
add {(3pRoom, BorderlLayout.NORTH);
add{jpInnerModule, BorderlLayout.CENTER);

setBﬁckground(new Colior(200,200,210));

public String getTitle(String(] module)
{

92

return module[0];

}

public String geticonName (String[] module)

{

return module[1}:

}

public String getName {String{] module)

{

return module(2];

}

public void setModuleClear{)

{

midedroomdoor. setBorder (new LineBorder{lightgray, 3)):
mBedroomiight.setBorder (new LineBorder{lightgray, 3)};
mBedroomwindow. setBorder (new LineBorder (lightgray, 3));
mBedrocmsmoke . setBorder (new LineBorder{lightgray, 3)};
mBedroomfan.setBorder (new LineBoxder {lightaray, 3)};
mBedroomaircond. setBorder (new LineBorder{lightgray, 3));

}

class BedroomvView? sxtends JPanel

[
private
private
private

private
private
private
private
privete
private
private
private
private
private
private
privaete

private

private
private
private
private

Main¥Frame parent;
SerialConnection connection;
Status status;

Module mBedroomdoor;
Modula mBedroomlight;
Module mBedroomwindow;
Module mBedroomsmoke;
Module mBedroomfan;
Module mBedroomaircond;

String(!
Stringf{]
string(]
Stringl]
Biringl]
Stringf]

sbd
shi
shw
sht
sba
shs

i

i n

#

{"Boor", "door”, "bedroomdoor2™};
{"Light", "light”, "bedroomlight2"};
{"Window"”, "window", "bedroomwindow2”};

{"Fan”, "fan®, "hedroomfan2");
{"Air-Conditioner", "aircond", "bedroomaircond2®};
{"3moke Detector”, "smoke™, "bedrcomsmokez"};

Dimension max8ize = new Dimension(250,230);
final int HEIGHT = 700;
£inal int WIDTH = 550;

JPanel jpRoom;
JPanel jpInnexrMocdule;
JLabel 3j1Room;
String room

"RBedroom 2%;

public BedroomView? {MainFrame parent, SerialConnection connection, Status

status)

{

this.parent = parent;
this.connection =
thias.status =

co

nnection;

status;

enableBvents (AWTEvent .WINDOW EVENT MASK);

nbedroomdoor

mBedroomwindow

new Module (connection, status, this.getTitle(sbd},
this.geticonName (shd), this.getName (sbd)};

medrocmlight = new Module (connection, status, this.getTitle({sbl),
this.geticonName {sbl},this.getName{sbl));
= new Module {connection, status, this.getTitle(sbw),
this.geticonName (sbw), Lhis.getNanme (sbw));

mBedroomsmoke = new Module (connection, status, this.getTitle(sba),
this.geticonName {sbsz),this.getName (sbs));

mBedroomfan = new Module {connection, status, this.getTitle(sbf),
this.geticonName (sbf), this.getName (sbf));

mBedroomaircond = new Module {comnection, status, this.getTitle{sha},
this.geticon¥ame {sba),this.getName (sbhal);

mBedroomdoor.setPreferredSize {maxSize) ;
nBedroomlight . setPreferredSize (maxSize);
mBedroomwindow. setPreferredSize {maxsize);
mBedroomsmoke.setPreferredSize (max3dize);
mBedroomfan. setPreferredSize (maxSize)
mBedroomaircond. setPreferredSize (maxSize);

jpRoom = new JPanel{};

JpRoom. setLayout {new FlowLayout (FlowLayout.CENTER, 5,5));
JjpRoom. setBackground {(new Color (200,200,210},

JpRoom. setBorder (new BevelBorder {BevelBorder.RAISED});

JlRoom = new JLabel {room};

J1Rcom. setTent (new Font ("BankGothic Lt BT", Font.PLATIN, 15)};
jpRoom. add (31Room) ;

ipInnerModule = new JPanei{);

3pInnerModule.setLayout (new FlowLayout (Flowlayout.LEFT, 5,5));
jpInnerModule. setBackground {new Color{200,208,210));

jpInnardodule.add (mBedroomdoor) ;
jplInnerModule, add (mBedroomlight) ;
JpInnerModule . add (mBedrocomwindow) ;
JpInnerMocule. add (mBedrcomfan) ;
jpInnerModule. add{mBedroomaircond) ;
jpInnerModule, add (mBedroomsmoke) ;

setLayout (hew BorderLayout{l0,10)};
add (ipRoom, BorderLavyout.NORTH) ;
add (jpInnerMedule, BorderLayout.CENTER);

setBackground (new Color {200,200,210));

public dtring getTitle{String[] module)
{

return module[0];

}

public String geticonName (String{] module}
{

return module[1];

}

public String getWame (String[] medule}
{

return meduje 23

}

public void setModuleClear(}

{
mBedroomdoor. setBorder (new LineBorder (lightgray, 3));

mBedrocmlight.setBorder {new LineBorder(iightgray, 3)});

mBedroomwindow. setBorder {new LineBorder{lightgray, 3});

mBedroomsmeke . setBorder (new LineBorder(lightgray, 3));

mBedroomfan. setBorder (new LineBorder{lightgray, 3)}:

mBadrocmaircend. setBorder (new LineBorder{lightgray, 3));
}

i} // end of BedroomView2 Clags «———— === e e e o e e e e e e e e e e

94

class BedroomViewl extends JPanel

{
private MainFrame parent;
private SerialSomnection connection;
private Btatus status;

private Module mBedrocmdoor;

private Module mBedroomlight;

private Module mBedrocomwindow;

private Module mBedroomsmoke;

private Module mBedroomfan;

private Module mBedroomaircond;

private String{] sbd = {"Dooz®,"door", "hedroomdoor3i®};

private String[] sbl = ["Liqht“,“light“,"bedroomlight3“};

private String([] sbw = {"Window", "window", "bedroomwindow3™};
private Stringl} sbf = {"Fan”,"fan", "bedroomfani™};

private Stringf) sba = {"Air-Conditioner®,"aircond®,K "pedroomaircond3"};
private String{] sbs = {"Smoke Detector”,"smcke"”, "bedrocomsmoke3V};

private Dimension maxSize = new Dimension{250,250);
final int EEIGHT = 700;
final int WIDTH = 350;

private JPanel jpRoom;

private JPanel jpinnerModule;
private Jhabel ilRoom;

private String room = “Bedroom 37;

public Bedroomview3 (MainFrame parent, SerialConnection comnnection, Status
status)
{
this.parent = parent;
this.connecticn = connection;
this.atatus = status;

enableEvents {(AWIEvent . WINDOW EVENT MASK) ;

mBedroomdoor = new Module (connection, status, this.getTitle(shd),
this.geticonName {shd}, this.getName (shd));

mBedroomlight = new Module {connection, status, this.getTitle(shl),
this.geticonName (sbl}, this.getName (sbl});

mPedroomwindow = new Module (connection, status, this.getTitle(sbw),
this.geticontame {sbw), this.getName (sbw));

mBedroomsmoke = new Module {connection, status, this.getTitle(sba},
this.geticonName (sbs),this.getName (sbs));

mBedroomfan = new Module (connection, status, this.getTitle!sbf),
this.geticonName (sbf}, this.getName (sbf));

mBedroomaircond = new Module ({(connection, status, this.getTitle{sba),
this.geticonName (sba), this.getName (sha));

mBedroomdoor . setPreferredSize (maxSize) ;
mBedroomlight.setPreferredSize {maxSize);
mBedroomwindow. setPraferyedsSize (maxSize) ;
nbedroomsmoke. setPreferrediize (maxsize);
mBedroomfan. setPreferredSize (maxSize};
mBedroomaircond. setPreferredSize (maxsSize)

jpRoom = new JPanel {);

JpRoom. setLayout {new FlowLayout (FlowLayout.CENTER, 5,%));
jpRoom. setBackground{new Color{200,200,210}};

ipRoom. setBorder {new BevelBorder {BevelBorder .RAISED));

j1Room = new JLabel (room);

j1Room. setFont (new Font {"BankGothic Lt BTY, Font.PLAIN, 15)};
JpRoom. add {J1Room} ;

JpInnerModule = new JPanel{);

jpinnerMedule . setlLayout {new Flowkayout (Flowbayout.ILEFT, 5,5)}:
JpInnerModiil e. setBackground{inaw Color{2Q0,200,210));

jpInnerdModule.add (mBedroondoor) i

jpInnerMedule. add (mBedroomlight);
jpinnerModule. add (mBedroomwindow) ;

95

jpInnerModule. add {mBedroomfan) ;
JpInnerModule. add (nBedrocmaircondd ;
jpinnerModule. add (mBedroomsmoke) ;

setLhayout (new Borderbayout(10,10));
add {ipRoom, BorderLayout.NORTH};
add {ipInnerModule, Bordexlayout.CENTER);

setBackground (new Color{(200,200,210)};

public 8tring gefTitle {8tringl] module)
{
return module[0];

1

public String geticonName(String[} module)
{
return module|l};

1

public 3tring getName (String|] module)
{

return module[2);
}

public void setModuleClear|)

{
mBedroomdoor. setBorder (new LineBorder (lightoray, 3)};
mBedroomlight. setBorder (hew LineBorder (lightgray, 3));
mBadroomwindow. setBorder (new LineBorder (lightgray, 3)};
mBedroomemoke . setBorder {new LineBordex(lightgray, 3));
mBedroomfan. setBorder {new LineBorder(lightgray, 3}):
mBedroomaircond. setBorder {new LineBorder {lightgray, 3}):

}

class TreePanel extends JPanel

{

private JScrellPane 4spTree;
public JTree jtTree;

final int WiDTH = 500;

final int HEIGET = 500;

Hashtabkle hiMain;

Hashtakle htBedrooms;

Chject{] obiGeneral, okjliving, objDining, objKitchen, objBathroom,
obiBedrooml, objBedroom2, objBedroomi;

Icon open = new Imagelcon("image/right.jpg®);
Icen close = new ImageTcon("image/down.jpg¥);
fcon leaf = new Imagelcon("image/leaf.3pg"):

MainFrame mainframe;
String general = "[rocot, Generall®;

String living = "[root, Living Room}™;

8tring dining = "[root, Dining Room]*®;

String kitchen = "[root, Kitchenl";

string bedrooms = "{root, Bedroomsl®;

String bedrooml = "[root, Bedrooms, Bedrcom 117;
String bedroom? = "[root, Bedrooms, Bedroom 2]1';
string bedroom3 = "[root, Bedrooms, Bedrcom 317;

96

Generalvisw mEereralview;
KitchenView mKitchenview;
LivingView mLivingView;
DiningView mDiningView;
RedroomViewl mBedroomviewl;
BedroomvView? mBedrocomView?;
BedroomView3 mBedroomView3d;

public TreePaneli{MainFrame mainframe;}
i

this.mainframe = mainframe;

htMain = new Hashtable({};

htBadrooms = new Hashtable();

objGeneral = new Obiect{] { "Front Door”, "Back Door", "Smoke Detector”);

objLiving = new Object{] {"Window", "Light", ™Fan", "Air-Conditioner™,
"Smoke Detector™};

objbining = new Object] {"Light", "Fan", "Smoke Detector"};

objKitchen = new Object{] {"Wwindow", “Light", "Fan", "Smoke Detector"}:

objBathroom = new Object[] {"Light"™, "Smoke Detector"};

objBedrocml = new Object[] {"Decor", "Window”, "Light"”, "Fan”,
"Air-Conditioner™, "Smoke Detector™};

obijBedroom? = new Objecti] {"Door”, “Window™, "Light", “Fan",

"Air-Conditioner", "Smoke Detector™};
objBedroom3 = new Object{] {"Door", "Window", "Light", "Fan",
"rir-Conditioner™, "Smoke Detector'i:

hiBedrooms.put {"Bedroom 1%, objBedrooml);
htBedrooms.put ("Bedroom 2", objBedroomi);
htBedrooms.put{"Bedroom 37, objBadroom?):;

htMain.put {"Kitchen", objKitchen);
hiMain.put{"Dining Room”, objDining);
htMain.put {("Living Room", objLiving);
htMain.put {"Genexral”, ocbjGeneral);
htMain.put ("Bedrooms", htBedrooms} ;

DefaultTreeCellRendarer renderer = new DefauliTreeCellRenderer();
renderer.setClosedicon(close);

renderar, setOpenicon {open);

renderer.setleafIcon (leaf);

jtTree = new JTree{htMain);

itTree.setFont (new Font{"Verdana", Font.PLAIN, 12});
jtTree.setCellRenderer (renderer);

jtTree.setBditable (true};

jtTree.setBackground (Color.white);

japTree = new JScrpllPane (JETree):
jspTree.setBackground {Color.white);
jspTree.setBorder (new EmptyBorder{10,10,10,10));
getlayout (new Bordertayout (10,10}) 7
add(jspTree, BorderLayout.CENTER};

Dimension screenSize = Toolkit.getDefaultToolkit() .getScreenSize();

jtTree.addTreeSelectionListener
new TreeSelectionListener{){
public woid valueChanged{TreeSelectionEvent e} {
TreePath path = e.getNewleadSelectionPath();

m@eneralvView = getGeneralview();
mGeneralView. setModuleCliear () ;
mKitchenView = getKitchenview();
mKitchenView. setModuleClear () ;
whivingView = getLivingView():
mLivingView.setModuleClear{};
mbiningView = getDiningview();
nbiningView. setModuleClear{};
mBedroomviewl = getBedroomviewl(};
nBedroomViewl.setModuleClear{);

97

mBedroomview? = getBedroomvView2{);
mBedroonView? . setModulellear{);
mBedroomViewl = getBedroomView3 ()
mBedroomView3. setModuleClear(};

if (path==null) {}
glse |
TreePath parentPath = path.getParentPathi};

String parent = parentPath.toString();

String child = path.toString();

TreeNode treenods =
{TreeNode)path.getlLastPathCemponent {) ;7

String node = treencde.toltringl():

if {(parent.equals{general) |]
child.equals (general))

setGeneralView() ;

if {neode.equals{"Back Docr"})
{
mEeneralView.mBackdoox. setBoxder {naw
LineBorder(selected, 3)};

}

if (nede.equals({"Front Doox™))
(

meneralview.nFrontdoor. sethborder (new
LineBorder {selected, 3));

}

if (node.equals ("Smcke Detector"})
{

mGeneralView.mLivingsmoke. setBorder {new LineBorder (selected, 3}}:;
}
}
else if{parent.equals{living) ||
child.eguals{living))

{

setLivingView(};

if {node.egquals{"Window"))
{

rLivingView.mLivingwindow.setBorder (new LineBorder{selected, 2});

}

if (node.equals("3moke Detector™})}
{

rhivingView,mLivingsmoke.setBorder {new LineBorder(seliected, 3}});

}

1f (node.,equals("Light™))
{

nLivingView.mLivinglight.setBorder (new LineBorder{selected, 3)};
}

if (node.eguals{"Fan"})
{
mLivingView.mLivingfan.setBorder {new
LineBorder (pelected, 3));

1

if (node.eguals{"Air-Conditioner™))
{

98

mlivingview.mlivingaircond. setBorder (new LineBorder(selected, 3));

}
}

else if{parent.equals(dining) 1|
child.equals (dining))
{
setbiningview{};

if (node.equals{"Smoke Detector”))
{

mDiningView.mDiningamoke.setBorder (new LineBorder{selected, 3}};

}

if (node.eguals({"Light"}}
i

mPiningView.mBininglight.setBorder (new LineBorder{selected, 3}):

}

1if {(node.eguals("Fan"};

i
mpiningView.mbiningfan. setBorder (new
lLineBorder {selected, 3}};

else if{parent.equals{kitchen) il
child.eguals{kitchen))
{
setKitchenview();

if (node.eguals{"Window")}
{

mKitchenview.mKitchenwindow, sethorder {(new LineRorder (selected, 3));
}

if (node.squals("SmoXe Detector™})
{

nKitchenView.mKitchensmoke.setBorder{new LineBorder (selected, 3});

}

if (node.equals{"Light")}
{

nKitchenvView.mKitchenlight.setBorder (new LineBorder (selected, 3)};
}

1if (node.eguals{"Fan"})

{

nKitchenView mKitchenfan. setBorder (new LineBorder({selected, 3)};
}

}
else 1f({child.equals{bedrooms))
i

}

setBedroomvViewl{};

else if {parent.equals(bedroomnl) |
child.equals{badroonl})

l
setBedroomViewl () ;

if {node.eguals ("Window"))
{

99

mBadroomViewl. nRedroomwindow. setRorder (new LineBorder (selected, 3));
}

if {node.equals ("Bmoke Detector™))}
{

mBedroomViewl.mRedroonsmoke. setBorder (new LineBorder(selected, 3));
¥

if (node.eguals(MLight"))
{

mBedroomViewl, mBedroomlight. setBorder {new LineBorder {selected, 3});
}

if (node.equals{"Fan®)}
{

mBedroomViewl . mBedroomfan., setBorder {new LineBorder (selected, 3));

}

if (node.eguals ("Rir-Conditioner™})
{

mBedroomViewl . mBedroomaircond. setRPorder {new LineBorder (selectad, 3)}:
}
}
else if{parent.equals(bedrocom?) ||
ehild.equals (bedroom?} }
{
setBedroomView2 {};

if (neode.eguals{"Window"))
{

nBedreomview? , nBedroomwindow. set8order (new LineBorder (selected, 3}):

i

if {node.equals("3moke Detactor”})
{

mBedroonmView? . mBadroomsmoke.setBorder (new LineBorder {sslected, 3});
1 .

if {node.equals ("Light")}
{

mBedroomView?.mBedroomlight. setBorder (new LineBorder(selected, 3)};
}

if (node.eguals("Fan"))
(

mBedroomView? . mBedroomfan. setBorder {new LinsBorder (selected, 3)};

}

if {(node.eqguals{"Air-Conditioner"”}}
{

nBedroomiew? . mBedrocmaircend. setBorder (new LineBorder {sslected, 3));
i
}
elge if (parent.equals(bedroom3} |!
child.eguals {bedroom3)}
{

setBedroomView3 () s

if [(node.equals ("Window"})
{

100

mBedroomView3 . mBedroonwindow. setBorder {(new LineBorder (selected, 3});
}

if {(node.equals{"Smoke Detector"})
{

mBedroomViews . mBadroomsmoke. setBorder (new LineBorder (selected, 3));
}

if (node.eguals("Light"™))
{

mBedroomViewd . mBedrooml ight . setBorder (nrew LineBorder (selected, 3)};

}

if (node.eguals("Fan™))
{

mBedroomView3.mBedroonfan. setBorder {new LineBorder {selected, 3)};

}

if {nede.eguals {("Air-Conditioner®;)
{

mBedroomView3 . mBedroomalrcond. setBorder {new LineBorder(selected, 3});
}
i
else

{
setGenaralView();
}

public JTree getTreel()
{

return this.jtTree;

}

public void setlivingvView ()
{
this.mainframe.setlivingView(};

}

public void setDinimgView()
{
this.mainframe.setdiningvView{};

1

public veid setKitchenView{)

{

this.mainframe. setKitchenView({};

}

public void setGeneralview()

{
this,mainframe.setGeneralView(};

]

public veid setBedroomViewl ()
{

thiz.mainframe.setBedroomViewl {):

¥

161

public void setrBedrocomView2 {}
{
this.mainframe. setBedroomvView? (};

}

public void setBedroomView3 |}
{

this.mainframe.setBedroomView3 () ;

}

public GeneralView getGeneralView{)
{

return this.mainframe.mGeneralView;

¥
public KitchenView getKitchenView ()
{
return this.mainframe.mKitchenView;
}

public LivingView getLivingView!)
{
return this.mainframe,mLivingview;

}

public DiningView ¢ethiningView()}
{ :
return this.mainframe.mDiningView;

1

public BedroomvViewl getBedroomViewl()
{

returii this.mainframe.mBedrcomViewl;
}

public BedroomView? getBedroomView2!{)
{
return this.mainframe.mBedroomView?;

}

public BedroomView3 getBedroomView3{)

{
raturn this.meinframe.mBedroomviewl;
]
1 // end of TreePanel Class —————— -~ ===
I == Fnd of Child classes in MainFrame e

} // end of MainFrame CLlas s — e e o o et e e o e e e e e e b

17 ===Fnd of MainFrane S=s—e— oo emnos SEses

// Another class tc handle thread

class TimerThread extends Thread implements Runnablie

{
UpperPanel myclock;

public TimerThread (UpperPanel myclock)
{

this.myclock = myclock;
}

public void runi}

102

while{true)
[
try

{
this.sleep{l0G0};
}

catch(InterruptedException e) {}
myclock, setTime () ;

103

ff

//Author : Murni Masri
//File Name : MyAccessPad.java
i

import Java.awh.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.Image;

class MyAccessPad extends JDialog
{
final int WIDTH = 549;
final int HEIGHT = 485;
MainFrame parent;
private String pass = "murni";

public MyAccessPad{MainFrame parent}
{
this.parent = parent;
setTitle{("Home Guard System - Access Password");

Container container = getContentPane{};
container. setlayout {new GridLayout{});
container.add{new ImagePanel{parent, this));

Dimensicn screenSize = Teoolkit.getDefaultToolkit{).getScreenSize();

setLocation{screenSize.width/2 - WIDFH/Z, screenSize.height/Z - HEIGHT/2):
setSirze (WIDTH, HEIGHT};

this.validate(};

]

class ImagePanel extends JPanel implements ActioniListener

{
private JPasswordField jpfPassword;
Image image = new Imagelcon("image/intro,jpy").getImage{);
private String pass = "murni";
Icon icon = new ImageIcon{"image/logo kecikl.3pg"™):
MainFrame parent;
MyAccessPad frame;

public ImagePanel{MainFrame patent, MyRccessPad frame}
{
this.parent = parent;
this.frame = frame;
satLayout {(new FlowLayout (FlowLayout.LEFT,200,285));
ipfPassword = new JPasswordField(20};
jpfPassword.addhctionListener (this);

add (ipfPassword) ;
setOpadque (true);

}

public void paintComponent{Graphics g}
f
super.paintConponent (g} ;
g.drawlmage {image, O, 0, this);
revalidate();

]
public void actionPerformed{ActionEvent e)
{

String enter = new String (JpfPassword.getPassword());

if{entet.equals(pass);

104

JOptionPane. showMsssageDialog {this,
"Welcome to Home Guard system."”,

"Informaticn,
JOptionPane ., INFORMATION MESSAGE,

icon);

this. frame.setDefauliCloseOperation (WindowConstants HIDE ON_CEOSE} }
parent,setvisible (true);

i

else

{
JTOoptionPane.showMessagebDialog (this,
"Your password is not wvalid. Please try again.”

"Information®,
JOptionFane.ERROR MESSAGE) ;

this.frame.setDefaultCloseOperation (WindowConstants.DISFOSE_ON_CLOSE) ;
this. frame.addWindowlistener {new WindowAdapter() {
public void windowClosed{WindowEvent e} {

System.exit (0} ;

105

/7

//author t Murni Masri
//File Kame : UpperPanel.java
f

import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;
import javax.swing.border,*;
import java.text.*;

import java.util.*;

public class UpperPanel extends JPanel
{

SimpleDateFormat formatter;

Date currentTime;

public String dateString;

JLabel jl1Clock, jllLogo;

JButten jbIcon, JbIcon2;

JPanel inner, jpClock, jpIcon, IpLogo;

public UpperFanel ()
{
String time = getCurrentTime();
jltlogk = new JLabel(};
jiClock.setText{time);
j1Clock.setDoubleRuffered {true);
jiClock.setFont{new Font{"Verdana", Font.BOLD, 15)):
jiClock. setBorder (new BevelBorder (BevelBorder.LOWERED}) ;

ipClock = new JPanel(};

jpClock.setLayout{new FlowlLaycout (FlowLayout.CENTER, 5,3});
JpClock.add (J1Ciock) ;

jpicon = pew JPanel();

ipIcon. setLhayout {new Flowlayout {FlowLavout.LEFT, 5,5});

iplogo = new JPanel()};
31Logo = new Jhabel{}:
j1Logo. setIcon (new Imagelcon(“image/logo_bulatmkeciKS.jpg")};

inner = new JPanel(}:

inner.setLayout {new BordexrLayout()}};
inner.setBorder (new EmptyBorder(5,5,5,5));
inner.add{jpClock, BorderLayout.BAST);
jinner.add{ipicon, BorderLayout.CENTER};

this.setLaycut {new BorderLayout{19,i0}};
this.setBorder (new BevelBorder {BevelBorder.LOWERED));
this.add{jpLogo, BorderLayout.WBsT);
this.add (inmner, BorderLayout.CENTER};

1

public void setTimel()

{
String time = getCurrentTime{};
jlelock.zetText {time) ;

}

public String getCurrent®ime ()
[
int s = 0, m = 10, h = 10;
Date currentTime = new Date();
simpleDateFormat formatter = new SimplebDateFormat{"s", Locale.getDefault(}};

try
£
s = Integer.parselnt{formatter.format(currentlime})’

}
cateh (NumberFormatException n)

t

106

formatter. applyPattern{"m"};
try
{

m = Integer.parselnt (formatter.format{currentTime});

] .
catch {(NumberFormatException n)

{
}

m = 10;

formatter.applyPattern ("h"};
tzy
f

h = Integer.parseint{formatter.format {currentTime));

}
catch {NumberFormatException nj

{
}

h = 10;

formatter.applyPattern{™ dd/MM/yyyy HH:mm ");
String dateString = formatter.format{curzentTime);
return dateString;

107

£/

//Author
//File Name

I

: Murni Masri
: SerialParameters.java

import javax.comm.*;

public class SerilaiParanmeters

{

private String portName;
private int baudRate:
private int flowContrelin;
private int flowControlout;
private int databits;
private int stopbits;
private int parity;

pubklic
{

public

public
{

1

public

public

{
]

public

SerialParameters ()

this ("“CoM1l™,

9600,
SerialPort.FLOWCONTROL _NONE,
SerialPort.FLOWCCHNTROL_NONE,
SerialPort.DATARITS 8,
SerialPort.STOPBITS 1,
SerialPort, PARTTY NONE };

SerialParameters (String portName, int baudRate, int flowControlin,

int fiowControlOut,int databits,int stopbits, int parity)

this.portHame = portName;
this.bauwdRate = baudRate;

this. flowControlin = flowCeontreling
this, flowControlout = flowControlOut;
this.databits = databits;
this.stopbits = stopbits;

this.parity = parity:

void setPortName (String portName)

this.portName = portName;

String getPortName ()

return portiame;

void setBaudRate {(int baudRate}

this.baudRate = baudRate;

void setBaudRate (String baudRate)

this.baudRate = Integer.parseInt{baudRate);

int getBaudRate{)

return baudRate;

String getbaudRateString{)

return Integer.tostring{baudRate);

void setfFlowControlin{int fiowConiroellIn)

108

{
this.flowContrelIn = flewControlln;
}
public veid setFlowControllIn(string flowControlln)

this. flowControlln = stringToFlow (flowCentrolln};

public int getFlowControlTn{)
return flowControling
public String getFlowlontrelindtring()
{
}

return fiowTedtring(flowlontrollInd;

public void setFlowControloOut {int flowControlOut)

{
this. flowControlout = flowContrelout;
}

public void setFlowControlout($tring flowControlOut)
{

this.flowControlOut = atringToFlow(flowContrelOut};
}

public int getFlowControlout()

return flowControlOut;

public String getFlowControlOutstring()

return flowToString (flewControlout};

public void setDatabits{int databits)
{

this.databits = databits:
]

public veid setDatabits (String databits)

if (databits.egquals{"5"})
{
this.databkits = SexialPort.DATABITS#S;

}
if (databits.equals("&"})
{
this.databits = SerialPort.DATABITS_6&;
}
if (databits.eguals{®7"})
{
this.databits = SerialPori.DATABITS 7;
}
if {databits.eguals{"8"))
{
this.databits = SerialPort.DATABITS 8;
}
H

public int getDatabits{)
{

return databits;
i

public String getDatabitsString{)
{

109

switch (databits)

[
case SerialPort.DATARITS 5:
return "5"; B
case SerialPort.DATABITS &:
return "&";
case SerialPort.DATABITS 7:
return "7"; -
case SerialPort.DATABITS 3:
return *8";
default:
return “8";

}

public void setStopbits{int stopbits)
{

this.stopbits = siopbits;
!

public veid setStopbits (String stophits)

[if {(stopbits.equals{"1")}
{ this.stopbits = SerialPort.sSTOPBITS 1;
if {atopbits.equals {"1.5"))
{ this.stopbits = SerialPort.STOPBITS 1 5;
lf {stopbits.equals("2"})
[this.stopkits = SerialPort.STOFBITS_2;

X }

public int getStopbits()
{

return stopbits;
]

public String getStopbitsString!)
{
switch(stopbits)
{
cage SerialPort.STOPBITS_1:
return "1";
case SerialPort.STOPBITS 1 5:
return "1.5"; -
case SerialPort.3TOPBITS 2:
return "2";
default:
return "1";

}

public void setParity(int parity)
{

this.perity = parity;
}

public void setParity(5tring parity)
{
if {parity.eguals{"None"))

l
this.parity = SerialPort.RARITY NONE;

]
if {parity.equals{"Even"”))

t
this.parity = SerialPort.FARITY_EVEN;

]

110

if ({parity.eguals ("Odd"))
{
this.parity = SerialPort.PARITY ODD;
}
}

public int getParity()
£

return parity;
}

public String getParitysStringi)
{
switch{parity)
{
case SerialPort.PhARITY NONE:
return "Nene; -
case SerialPort.PARITY EVEMN:
return "Even";
case SerialPort.PARITY ODD:
return "odd"; -
default:
return "Nene”;

}

private int stringToFlow{String flowlontrol)
{
if {flowControl.eguals("None"))
{
return SerialPort.FLOWCONTROL_NONE;

if {flowControl.eguals {("Xon/Xcff Out"j)

return SerialPort.FLOWCONTROL XONXQFF OUT;
if (flewControl.equals{"Xon/Xcff In"})

return Serial?ort.FLOWCONTROL_XONXOFF_IN;
if (flowControl.equals ("RTS/CTS In"})

return SerialPort.FLOWCONTROL RTSCTS_IN;
if {(flewControl.eguals {("RTS/CTS Oui"})

return SerialPort.FLOWCONTROLE RTSCTS OUT;
}
return SerialPort.FLGWCONTROL*NONE;
}

String flowToString(int flowControl)
{
switch{flowControl)
{
case 8erialPort.FLOWCONTROL NONE:
return "None;
case SerialPort.FLOWCDNTRDL_XONXOFF_OUT:
return "Xon/Xoff Out";
case SerialPort. FLOWCONTROL XONXOFF_IN:
return "Xon/Xoff In";
case SerialPort.FLOWCONTIROL_RTSCTS_IN:
return "RTS/CTS In";
case SerialPort.FLOWCONTROL RTSCTS_OUT:
return "RTS/CTS Out®;
default:
return "None";

111

Iy

//Aauthor : Murni Masri
//File Name : PortRequestedDialog.java
7

import java.awkh.*;
import java.awt.event.¥;
import javax.swing.*;

public olass PortRequestedDizlog extends JDialcg implements Actionlistener
{
private MainFrame parent;
Container container;
private JPanel jpInfo, jpButton;
private JButton yesButton, ncButton:
private String infoc = "Your port has been requested by another application. " ;
private String ask = "Do you want to give up your port?";

public PortRequestedDialogi{MainFrame parent)
{
super (parent, "Port Requested!"™, true);
this.parent = parent;

container = getContentPane{);

jpIinfo = new JPanel{);
jpInfo.add{new JLabeli (info, JFLabel.CENTER)};
JjpInfo.add{new JLabel (ask, JLabel.CENTER});

yesButton = new JButton("Yes"};
noButton = new JButton{"No"):;
jpButton = new JPanell};
JpButton.add(yesButton)
jpRutton. add (noButton);

yesButton.addActionListener (this);
noButton.addhctionListener (this);

container.add{jpInfo, BorderLayout.CENTER):
container,add(jpButton, BorderLayout.SOUTH);

int width = 200;

setSize (400, 150);
setlocation{parent.getlocationOnScreeni}.x + 30,
parent.getlLocationCnScreen().y + 30};
setVisible(true);

this.pack();

public void actionPerformed{Actionkvent e}

{
string cmd = e.gethctionCommand();

if {(cmd.equals ("Yes"))

§
parent.portClosed();

}

setVisible (false);
digposea();

112

’H

/ /Author s Murni Masri
//File Name : SerialConnectionException.java
r/

public class SerialConnectionkxception extends Exception

{
public ZerialConnectionException{String str) |

super (str);

}

public SerialConnectionException{) [
super(};
}

113

