
Universal "Chip Based Smart Card" Snooping Device 

By 

Dimitri Denamany 
(EE 1467) 

FINAL PROJECT DISSERTATION 

Dissertation Submitted in partial fulfillment of 

the requirements for the 

Bachelor of Engineering (Hons) 

(Electrical & Electronics Engineering) 

JUNE2004 

Universiti Teknologi PETRONAS 

Bandar Seri Iskandar 

31750 Tronoh 

Perak Darul Ridzuan 



CERTIFICATION OF APPROVAL 

Universal "Chip Based Smart Card" Snooping Device 

Approved by, 

by 

Dimitri Denamany 

A project dissertation submitted to the 

Electrical Engineering Programme 

Universiti Teknologi PETRONAS 

in partial fulfilment of the requirement for the 

BACHELOR OF ENGINEERING (Hons) 

(ELECTRIC & ELECTRONICS ENGINEERING) 

(Mr. Patrick Sebastian) 

UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

JUNE2004 



CERTIFICATION OF ORIGINALITY 

This is to certify that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and acknowledgements, 

and that the original work contained herein have not been undertaken or done by 

unspecified sources or persons. 



Dimitri Denamany (1467) 
Final Year Project Report 

TABLE OF CONTENTS 

CERTIFICATION ............................................................................. i 

TABLE OF CONTENTS ................................................................. ii 

LIST OF APPENDICES .................................................................. v 

LIST OF FIGURES ......................................................................... vi 

LIST OF TABLES .......................................................................... vii 

ABSTRACT ................................................................................... viii 

ACKNOWLEDGEMENT ............................................................... ix 

1. INTRODUCTION ......................................................................... ! 

1.1 Background of Study ........................................................................................ 1 

1.2 Problem Statement ............................................................................................ 2 

1.3 Objectives ........................................................................................................ 3 

1.4 Scope of Study ................................................................................................... 4 

2. LITRA TURE REVIEW AND THEORY .................................... 5 

2.1 Literature Review .............................................................................................. 5 

2.1.1 Smart Cards in Today's World ................................................................ .5 

2.1.1.1 In-built security ........................................................................ 5 

2.1.1.2 Pioneering E-Business Growth ................................................ 6 

2.1.1.3 Making multi application cards a reality .................................. 6 

2.1.1.4 Managing multi applications .................................................... 7 

2.1.1.5 A Secure Future ........................................................................ ? 

2.1.2 A Palm Introduction .................................................................................. 8 

2.1.2.1 Introduction .............................................................................. 8 

2.1.2.2 What is a Palm Organiser? ....................................................... 8 

2.1.2.3 Palm Software .......................................................................... 9 
-ii-

Universal "Chip Based Smart Card" Snooping Device 

• 



Dimitri Denamany {1467) 
Final Year Project Report 

2.2 Theoratical Review ........................................................................................ 10 

2.2.1 Smart Card Communications ................................................................. 10 

2.2.1.1 Smart Card Insertion and Activation ..................................... 1 0 

2.2.1.2 Data Transmission .................................................................. 11 

2.2.2 Asynchrounous Serial Transmission ....................................................... 13 

2.2.3 RS232 Interface ...................................................................................... 14 

3. METHODOLOGY ..................................................................... 17 

3.1 Brief Introduction to Project Methodology ..................................................... 17 

3.2 Flowchart of completed activities/tasks .......................................................... 18 

3.2.1 Theoratical Research Work .................................................................... 19 

3.2.1.1 Hardware Related Research ................................................... 19 

3.2.1.2 Software Related Research .................................................... .19 

3.2.2 Hardware Design, Testing and Finalisation .......................................... 20 

3.2.2.1 Hardware Design .................................................................... 20 

3.2.2.2 Hardware Testing ................................................................... 21 

3.2.2.3 Component Selection ............................................................. 22 

3 .2.3 Software Design .................................................................................... 22 

3.2.4 Prototype Construction and Troubleshooting ....................................... 23 

3.3 Main Components Description ...................................................................... 24 

3.3.1 Smart Card Contacts/Pins ..................................................................... 24 

3.3.2 MAX232CPE ........................................................................................ 25 

3 .3 .3 Device Interface : RS23 2 Connector .................................................... 25 

3.3.4 Palm Hardware ...................................................................................... 26 

3.3.5 Dummy Smart Card and Connector Fabrication .................................. 27 

3.3.5.1 Dummy Smart Card ............................................................... 27 

3.3.5.1.1 PCB Tracing .......................................................... 28 

3.3.5.1.2 Milling ................................................................... 29 

3.3.5.2 Connector .............................................................................. .30 

3.3.5.3 Overall Configuration ........................................................... .31 

-111-

Universal "Chip Based Smart Card" Snooping Device 

• 



Dimitri Denamany (1467) 
Final Year Project Report 

4. RESULTS AND DICUSSION .................................................... 32 

4.1 System Description and Functionality ........................................................... .32 

4.1.1 Snooping Module .................................................................................. .32 

4.1.2 Communication Module ....................................................................... .34 

4.1.3 Processing Module ................................................................................ .36 

4.2 System Design Details ................................................................................... .37 

4.2.1 Smart Card Communication Details ..................................................... .37 

4.2.2 Interfacing the MAX232 and the Serial Connector .............................. .40 

4.2.2.1 MAX232CPE ........................................................................ .40 

4.2.2.2 Serial Port Connector (DB-9) ................................................ .41 

4.2.3 Palm Snooping Program ....................................................................... .43 

4.2.3.1 Palm Program Developement ................................................ .43 

4.2.3.2 Program Overview ................................................................ .44 

4.2.3.3 Receiving the Bytes .............................................................. ..45 

4.2.3.4 Byte Conversion Subroutine ................................................. .46 

4.2.3.5 Data Interpretation .................................................................. 50 

4.2.3.5.1 ATR Standard Format ........................................... 50 

4.2.3.5.2 APDU Standard Format ........................................ 51 

4.3 Elaboration On the Final Output ..................................................................... 54 

5. RECOMMENDATION & CONCLUSION .............................. 58 

5.1 Recommendation ............................................................................................ 58 

5.2 Conclusion .................................................................................................. 59 

6. REFERENCES ........................................................................... 60 

7. APPENDICES ............................................................................. 62 

-IV-

Universal "Chip Based Smart Card" Snooping Device 

• 



Dimitri Denamany (1467) 
Final Year Project Report 

LIST OF APPENDICES 

Appendix A: Smart Card Development Diagram 

Appendix B: Project Gantt chart 

Appendix C: Final Design Specification 

Appendix D: MAX232 Test Circuit Schematics 

Appendix E: PALM Softwares and Programming Basics 

Appendix F: PALM Hardware Images 

Appendix G: Universal "Chip Based" Smart Card Snooping Device Snap Shots. 

Appendix H: Detailed Schematics of the Snooping and Communication Module 

Appendix I : ASCII Character Codes 

Appendix J: Screen shots of the Visual C++ Program 

Appendix K: PALM OS Functions and Structures 

Appendix L: Answer To Reset (ATR) 

Appendix M: Smart Card Communication State Diagram 

Appendix N: Complete Source Code for the PALM Snooping Program 

Appendix 0: Complete Source Code for the Visual C++ Snooping Program 

-v-

Universal "Chip Based Smart Card" Snooping Device 

• 



Dimitri Denamany (1467) 
Final Year Project Report 

LIST OF FIGURES 

Figure 2.1: Timing Diagram of Smart Card Power up sequence 

Figure 2.2: Asynchronous Serial Transmissions 

Figure 2.3: Illustration of start and stop bits 

Figure 2.4: Standard Pin out for a DB-9 RS232 Connector 

Figure 3.1: Smart Card Pin Layout 

Figure 3.2: MAX232 Pin Layout 

Figure 3.3: RS232 Serial Port Pins 

Figure 3.4: Pins on the Hot Synch Cable 

Figure 3.5: Minimal Contact Size 

Figure 3.6: Pins Position 

Figure 4.1: Snooping Module (Dummy Smart Card and Connector) 

Figure 4.2: Communication Module 

Figure 4.3: Schematics of the Snooping and Communication Module 

Figure 4.4: Smart Card Activation Sequence 

Figure 4.5: Connection to the DB-9 connector from the MAX232CPE chip 

Figure 4.6: Screen shot of the PALM snooping program 

Figure 4.7: APDU format 

Figure 4.8: APDU response format 

Figure 4.9: Classification scheme for the APDU return code (SW) 

• 

Figure 4.10: Sample log that was obtained from the snooping device program during the 

data transfer 

Figure 4.11: hnage smart card software used (Schlumberger Smart Card Toolkit) 

Figure 4.12: Taking a closer look into the program screen shot (area marked in red) 

-vi-

Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • ------------------------ '"' 

LIST OF TABLES 

Table 3.1: Smart Card Pin Functions 

Table 3.2: Measurement of Pins position based on Figure 3.6 

Table 4.1: Asynchronous data transmission details 

Table 4.2: The Answer-To-Reset structure 

Table 4.3: Interpretation of Line I (Ending) and Line 2 (beginning) 

Table 4.4: Interpretation of Line 2 (middle) 

-vn-

Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

ABSTRACT 
• 

The objective of this project is basically to design, build and test a Universal "Chip 

Based Smart Card" Snooping Device. This device would function to notify its user of 

the actual communication between the smart card and the smart card reader. The 

existence of this device not only serves as an educational tool but also saves a lot of time 

and money that are spent on debugging by smart card manufacturing companies. In 

addition to that, technological advances in the smart card world can also be sped up with 

the help of this device for research and testing. 

The hardware design of the project has been divided into 3 main sections, the snooping 

module, the communication module and the processing module. The snooping module 

taps the data, the communication module formats, encodes and transfers the data to the 

processing module, and lastly the processing module translates the data into useful 

information and display's it. 

The project has been divided into two major milestones where the first one was to set up 

the snooping device prototype with the processing module being a Computer. The second 

milestone on the other hand is the final design itself which would be to replace the 

Computer with a PALM in order to make it portable and affordable. 

This report gives a complete and detailed illustration on the hardware and software 

design process for the Universal "Chip Based Smart Card" Snooping Device. All aspects 

from the design decision, the underlying transmission protocols and also programming 

logics have been dissected and elaborately explained in the report. The design presented 

is a complete working device that fulfills all the objectives that have been set. The 

hardware device is certainly good enough to be marketed as it works flawlessly and 

achieves the most important objective of the project, which is to obtain the data transfer 

between the card and the smart card reader. 

-viii-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany {1467) 
Final Year Project Report 

ACKNOWLEDGEMENT 

The author's heartfelt gratitude is forwarded to: 

• 
• his internal supervisors, Mr. Patrick Sebastian and Mr. Zainal Arif Burhanudin, 

for their selfless imparting of knowledge and advice which guided the author 

throughout his fmal year to successfully achieve the requirements of his fmal year 

project; 

• his lecturer, Mohd. Zuki Yusoff, for his creative ideas and input on the methods 

of improving the project. 

• his external supervisor ,mentor and friend, Mr. Marc Talbot ,for his guidance and 

help that was given throughout the project duration. 

• his lab technicians, Mr.Isnani, Ms.Siti Hawa. Mr.Farid, and last but not least Mr. 

Zairi for their kindness ,patience and willingness to lend a helping hand in order 

to help obtain devices or to operate the machinery in the lab 

• his parents, Mr. and Mrs. Denamany, brothers, Darshan and Rubiin for their 

unconditional love and support which constantly propelled the author to strive for 

excellence; 

• his friend and advisor , Jim Rees who is willing to respond and help him in time 

of need by shedding light on matters that are were troubling and hard to 

comprehend; 

• and all the others whose names the author has failed to mentioned on this page, 

but has in one way or another contributed to the accomplishment of this project. 

-IX-

Universal "Chip Based Smart Card" Snooping Device 



, ',., , , I .. I ''''I''' llr'll'~'l~~"''''l'l'l''"' ,.,1 ,,,,, " '"~''' . ·rr' . "II '!r . "'1"'1 '"' "''I "I! l''''l'''ll ·'I I '!'I IT ''l!r 'IIIII"'' 'lrl ''I , 

,------------~---------~·--------1--+-+---, 

CHAPTER 1 

INTRODUCTION 

1.l BACKGROUND OF STUDY 
I I 

I 

1.2 PROBLEM STATEMENT 

1.3 OBJECtiVES 

1.4 SCOPE: OF STUDY I 

c) " 
ly L 

" 

" 



Dimitri Denamany (1467) 
Final Year Project Report • ________________________ ,:::, 

CHAPTERl 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

In today's modern world, smart cards play a major and significant role in making daily 

activities easier and more convenient. Regardless whether it helps in the communication 

sector, banking sector or in terms of security, its usefulness is undeniable hence making 

its demand grow as we head towards the future. 

When an end user purchases a smart card from a smart card company, it normalli comes 

hand in hand with smart card readers. A company that has specific application that they 

would like to implement in the cards usually does the purchase of smart cards and smart 

card readers in bulk. Hence, it is a norm for the smart cards providers to provide smart 

card technical support for the purchasing party in order to help integrate the 

implementation of smart cards in to the systems that the customers have designed. 

From an educational point of view, there are many individuals these days regardless 

whether from the industries or institutes of higher learning, that are trying to push their 

way into the world of smart cards, as it is part of today' s cutting edge technology. 

Learning the method of manipulating smart cards could boost an individual's market 

price, as it is a tough area to comprehend and also because there are not many people in 

the world today who are well versed with this technology. 

1 Some smart cards have the reader embedded in the chip. Most cards that are given with readers are Access 
cards that do not have embedded readers. 

-!-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

1.2 PROBLEM STATEMENT 
• 

In reality, the process of providing smart card technical support for the integration of the 

customers system with smart cards will definitely have all kinds of smart card and smart 

cards reader related problems due to various common errors and occasional unforeseen 

errors. These problems are a norm during the implementation of a new system that 

features smart card technology. Considering this fact, there is a need in many situations 

where it would make the troubleshooting process easier if one would be able to monitor 

the data transfer between a smart card and a smart card reader for debugging purposes. 

The data transfer between the smart card and the smart card reader is basically the lowest 
2comprehensible programming level that can be accessed, as it is the transfer of 

APDU's3
. 

This is where the problem arises, as a gadget, which features these capabilities are 

extremely expensive4
, if not unavailable. SchlumbergerSema for instance, is a smart card 

company that markets many innovative smart cards and smart card readers that are used 

worldwide today. And just like most of the other smart cards companies, they do not own 

or have a gadget that performs the above stated functions, as the technology is non

existent. Smart card developers and technical support engineers would have certainly 

save not only time, but also millions of dollars if such a device were to be engineered. 

Besides that, this gadget can also function as an analysis tool for "non-computer" smart 

card readers. Hence, if any equipment were to have a smart card reader, this gadget could 

be used for troubleshooting purposes. All in all, it would function as a universal analysis 

tool for any device with a smart card reader from PC's, ATM Readers to customized 

smart card operated systems. In fact, smart cards technological advances that are 

normally tedious to test and debug could be made very much easier with this tool. 

In addition to that, such a device could also make the process of understanding smart 

cards and its progranuning methods easier and much more effective as one would really 

be able to see the communication between the card and the reader. The steep learning 

curve could be instantly simplified with the existence of a tool like this. 

2 Refer to Appendix A 
3 Application Protocol Data Unit 
4 Approximately RM 40000 (comes with a PC attached to it) 

-2-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

1.3 OBJECTIVES 
• 

The following are the objectives of the Universal "Chip Based Smart Card " Snooping 

Device project: 

•:• To engineer a Smart Card I Smart Card reader analysis tool that is able to help 

boost technological advances in the smart card world. 

The Snooping Device will most definitely help engineers and developers speedup 

their progress in terms of creating new hardware or software that is smart card 

related. The pleasure of being able to actually view the data transfer at the lowest 

level would certainly help both in the development and the testing phase. 

•:• To make the process of debugging the smart card readers and smart cards 

(simultaneously) at the lowest programming level possible, if not easier. 

The debugging process when it comes to smart card reader and smart card are 

extremely tedious as there is nothing that is visible to the users eye except what is 

displayed on the monitor. Smart card manufacturings companies spend millions of 

dollars and a lot of time in order to detect and solve these bugs. The snooping device 

provides an opportunity for error detection to be made ridiculously easy as a study on 

the log of the data transfer basically pin points the exact problem that is encountered. 

•:• To enable developers and permitted parties to view and understand the 

communication between the smart cards and the smart card readers easily. 

Smart card communication and the protocols used in order to make the 

communication possible is an area that takes much time and patience to comprehend. 

For those who are attempting to understand these topics, the snooping device serves 

as a very practical and effective short cut. As it is able to display the exact bytes that 

are transferred, it would make the process of understanding the format of the data and 

the relationship between the commands called and the bytes transferred much easier. 

Hence, it most defmitely serves as an educational tool. 

-3-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

1.4 SCOPE OF STUDY 
• 

This project basically involves creating an electrical gadget that is able to understand and 

display the commands that are sent to and from a smart card or a smart card reader. The 

project can logically be divided into two sections, the software portion and the hardware 

portion. For the first half of the project duration, the objectives have been set to develop a 

snooping device that is linked to a Personal Computer (PC). Work on the second half of 

the duration would involve creating an enhanced portable snooping device that uses a 

PALM pilot as the processing and display module. 

Based on the two targets that have been set, the software portion involves programming 

with Visual C++ for the first half of the project duration where else a detailed level of 

PALM programming for the final design. The hardware portion on the other hand 

involves RS232 serial cables and a significant amount of hardware design in order to 

create a proper snooping module for communication. As for the processing mechanism, 

the first prototype would require a PC where else the final design would need a PALM 

Pilot (PALM Illxe ). Smart card readers and smart cards would also be items that will be 

frequently used throughout the project execution. Other additional gadgets like level 

converters (MAX232) are default gadget that must be used in order to properly format the 

data that is transmitted. The MAX232 chip is used in both the hardware architectures and 

its function in both designs are identical. 

In short, this project involves both an equal mix of software and hardware. The first 

prototype that was created was done in order to act as a stepping stone towards achieving 

the second and final hardware model. Please refer to Appendix B for the project Gantt 

chart that was created as a guideline for the first half and second half of the project 

duration. 

-4-
Universal "Chip Based Smart Card" Snooping Device 



I 

!' 
j' 

·I' ,, 

AND 

Applications 

I 

I'' :: 

:I 
I 

I 

II 
II 
II 
<I 

I 
, I 

1111 
11 1j 

Iii I 
I I 
'' I ~ 

I • ,, I 
I! 
II 

1 

I I 
II 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 

CHAPTER2 

LITERATURE AND THEORETICAL REVIEW 

2.1 LITERATURE REVIEW 

2.1.1 Smart Card in Today's World 

Today, the multi-function smart card is firmly established as the basis for a vast portfolio 

of e-business services and products. Even more significantly, the smart card is at the 

forefront of empowering a host of mobile services - m-banking, m-email, and a multitude 

of other e-applications. The smart card is pioneering tomorrow's technology today, and 

still offers the most powerful combination of security and multi-functionality that meets 

the needs of today' s service providers. 

Since the 1970's the smart card has grown to become one of the leading technologies 

underpinning a whole world of varied and complex transactions. As it grew to dominance 

in the banking and finance arenas, the arrival of the GSM mobile phone was the real 

breakthrough that brought the smart card global pre-eminence. The SIM card provided a 

highly secure, personal ID for subscribers whilst providing network operators with 

control to transfer data as necessary. The arrival of the SIM Toolkit took the development 

of the smart card further. With SIM Toolkit, the card holder could download application 

programs via their mobile phone, enabling quick access to information such as travel, 

weather and stock exchange reports. Today, subscribers can now send and receive e

mails, whilst on the move. As the smart card continues to evolve, the multi-application 

smart card brings the only realistic option for managing multiple electronic transactions. 

The market opportunities are vast; a host of service providers want to work with network 

operators to deliver value added services to customers via the Internet and mobile 

enabled e-business. 

2.1.1.1 In-built security 

The smart card revolution has been propelled by the innate security the technology 

provides. Multi-application smart cards have demonstrated they can deliver highly secure 

transactions and enforce true protection between applications held within the card itself. 

-5-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
Their powerful encryption and digital signature capabilities are ideal for the emerging 

new technology sectors. Smart cards have built-in tamper proof qualities, and PKI (public 

key infrastructure) incorporating digital signatures) functionality embedded in their chip -

all of which are essential to creating a totally secure environment for transactions. 

2.1.1.2 Pioneering E-Business Growth 

Smart cards are a cost effective, secure way to manage transactions electronically. They 

have become pivotal in the exploding e-commerce and e-business revolution. Today, one 

billion smart cards are in use- and by 2001 analysts project there will be 3.4 billion cards 

world-wide. The chip-based card opens the way to a single card managing multiple 

applications, again critical to the delivery solutions sought by service providers. Today, 

the multi-application card is already demonstrating the overall flexibility it offers 

manufacturers, issuers and users alike. A multi-application card can automatically update 

new services and existing applications. It can change and store user profiles for each 

application - and be accepted by a range of devices, including PC, POS, mobile phones 

and PDAs. For the future, multi-application cards are set to become the cardholders' 

personal ID. The multi-application smart card will become the route for individual's to 

receive personalized information services, and gain access to a range of services 

including banking, e-cash, ticketing, and loyalty programs. National government and 

state required data may also be simultaneously held on the card - driving license, 

passport and national identity information, for example. The multi-application smart card 

enables user to access a plethora of applications, together with individualized biometrics, 

all integrated into a single card. 

2.1.1.3 Making Multi-application cards a reality 

The smart card industry has driven major initiatives to support multi-application cards. 

There are now agreed industry standards to support operators, service providers, 

integrators, content developers, banks and developers that ensure inter-operability, 

application and key download. Integrity of downloaded applications is ensured by a 

certification process, developed by Oberthur Card Systems and based on the Visa Open 

platform specification. This authenticates new applets, defines operating rules and the 

-6-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
security mechanisms between applet issuer and the card issuer. Dedicated e-business 

smart cards, based on Java technology and again developed by Oberthur, enable several 

applications to be active simultaneously- ideal for payment, e-commerce and interactive 

environments. Applications such as identification-authentication-signature, debit/credit 

and e-purse payment, as well as value added services for loyalty, ID and health can all 

now be run at the same time. 

2.1.1.4 Managing Multiple Applications 

Using open platform technology, Oberthur has created a Card Management System that 

enables issuers to offer customers a range of services via a single card, and to manage 

these remotely. Based on Oberthur's Visa Open technology, the system manages the 

entire life cycle of the card, from production, card profile modification, application and 

key downloading to application removal - all conducted within a maximum security 

environment. An integral management system is critical to the successful operation of a 

multi-application smart card. Based on a system of databases, it contains information on 

the card - technical data, association profiles of the products and customer. It contains an 

application database, classified by service provider, and covering information related to 

loading the application. Key management contains master keys in a secure hardware 

module, and data to support key generation. A billing module tracks all information and 

transferred data. Finally, an audit database records all connections to the database, 

together with information relating to the behaviour of users. 

2.1.1.5 A Secure Future 

The dramatic growth of e-commerce and m-commerce, coupled with the convergence of 

IT, telecommunications, service providers, consumers and network operators means there 

is a massive demand for a single card to deliver secure, managed transactions in an open, 

platform independent environment. E-business is changing the way we do business. The 

need for secure e-payment and e-commerce is being met by today's highly secure, multi

application smart card. Supported by an open standard, scalable architecture that ensures 

inter-operability and co-operative activities between all parties who work with card 

-7-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
issuers to deliver services via the card, the multi-application smart card is truly enabling 

today' s electronic transactions. 

2.1.2 A PALM Introduction 

2.1.2.1 Introduction 

Released in 1996 from an unlikely source -- US Robotics, a modem manufacturer -- Palm 

Organizers now enjoy the dominant position in the Personal Digital Assistant (PDA) 

market place with approximately 80% of the market. It's not been an easy climb for the 

Palm, however, having to overcome Apple's Newton, Microsoft's Windows CE, and 

several smaller players like Psion. 

The key to the Palm's success has been its simplicity and open development options. A 

lot of thought went into the PalmOS and applications, to ensure that people could do 

things quickly, efficiently, and without unneeded eye-candy that added nothing to 

functionality. The fact that anyone could develop applications for the Pahn meant that 

developers were attracted to the platform in droves, creating a huge inventory of 

commercial, shareware and free applications. 

There are a wide range of Palms on the market today, each targeted for a slightly 

different audience. The III series is the workhorse variety; these handhelds tend to be the 

cheapest and thus the most popular. For example, the IIIe, with 2 megabytes of RAM, 

can be found for less than RM 600 now. The Pahn V series is targeted more towards 

executives, being slightly smaller, with a metal case and built-in rechargeable batteries. 

In addition to handhelds built directly by Palm Computing, there are also third-party 

manufactured units such as the Handspring Visor models or the IBM WordPad. They all 

are running the PalmOS, licensed from Palm, and have the same buttons, touch-screen 

and writing area. Each has different amounts of built-in RAM and expansion abilities, 

and some will have flash ROMs that will let you upgrade your OS. 

2.1.2.2 What is a PALM organizer? 

Palm Organizers are full computers, but tiny enough to be held in the hand and designed 

to be used to help people stay organized. Most models are approximately 3 by 4.5 inches 

and about 3/4 of an inch thick. They have touch-sensitive displays that are 160 pixels 

-8-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
square; depending on the model, these will be either plain black-and-white, grey-scale, or 

color. Instead of a keyboard, there's an area beneath the display where a special kind of 

handwriting, "Graffiti," is used. In addition to this, there are four "soft" buttons for 

"Home," "Menu," "Calc," and "Search." Lastly, there are physical buttons for "Calendar," 

"Phone List," "Lists," and "Memos," plus scrolling and power buttons. 

Most Pahns have processors which are about twice as powerful as the first model of 

Macintosh computers, although some newer models are even faster. Most models are 

powered by a pair of AAA batteries, while the higher-end versions have built-in 

rechargeable. Battery life can provide weeks of regular use. While not something you'd 

run an RC5 key search on, these devices are certainly powerful enough for most handheld 

applications. 

It's important to realize that Palms are not intended to replace a desktop or laptop, with 

their full environments, but instead are designed to be satellite computing devices 

supporting people while they're away from their desk. All Palms have a serial port which 

is used to synchronize information between the Pilot and the desktop by way of an 

adapter cable or cradle. While on the road, a modem can be used instead to update 

information. Some Palms also have an infrared (IR) port, which can be used to 

communicate between the devices and desktop machines if they're appropriately 

configured. And of course, wireless models can always be connected, providing they're in 

a service area. 

2.1.2.3 PALM software 

A key feature of the Palm design is that new software can be uploaded to the devices, 

supplementing or completely replacing the pre-installed software. The devices come with 

date book, address book, to-do list, memo pad, e-mail, and expense applications built in, 

with each application reading and writing well-documented database files. Enl!ancing a 

Palm simply involves finding an application you want to run and uploading it. There are 

lots of applications available -- some commercial but also a great many that are free. 

Palm devices don't have a hard drive, so everything is stored in a nonvolatile RAM drive. 

Palm applications are simply files in this file system, ending in .pre, and sit alongside any 

database files they create, usually ending in .pdb. The "Applications Launcher" presents 

-9-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
the user with a list of all the .pre files on the Palm, with applications optionally 

categorized to the user's preferences. 

This means that managing software is quite easy, since each application usually involves 

uploading just one file to the Palm, plus one or more database files. Backing up the 

device involves copying and saving these same files. On the Internet, Palm software is 

often distributed either packed into an archive format, or simply as an uncompressed .pre. 

Installing new software can be as easy as downloading from the Web with a browser and 

then uploading to the device. 

[Source: Chris Halsall, http:/:preilvnet.com] 

2.2 THEORETICAL REVIEW 

2.2.1 Smart Card Communications 

ISO 7816: Part 3 defines the electrical signals and transmission protocols. It describes the 

relationship between the smart card and the reader as one of a master (reader) and a slave 

(smart card). The reader establishes communication by signaling the smart card through 

the electrical contacts on the card. The smart card responds accordingly. The 

communication channel is single-threaded and so once the reader has issued a command 

to the smart card, it is blocked until a response is received. Appendix I illustrates the 

communication between the smart card and the reader through a series of state 

transitions. 

2.2.1.1 Smart Card Insertion and Activation 

Power is not applied to any of the contacts when a card is inserted into the reader. The 

reason for this is that a card could be seriously damaged if power was applied to the 

wrong contact. This could easily happen if a card were inserted into powered contacts. 

Instead an edge detector is used in order for the reader to determine when a card is 

properly aligned with the contact points. When the reader detects that the card is properly 

inserted, it applies power to the card. The smart card is powered up according to a well

defined sequence as shown on the timing diagram in Figure 2.1 

The contacts are first brought into an idle state. This is characterized as being when the 

power (V cc) is set high to a stable operating voltage of Sv. (An initial power setting of Sv 

-10-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report 

Coota.d:li 
Cud pl'Cpe.d y 

in:!.o:tcd. pc::raiti.~ tO 

Gm---r--~~i=============~----
vee --i--+---' c---------, 
CLK ----+----< 

tJ 

RST -----:--i,--;:::=t::::;;==~ 

!I 1~::!= 

r 

A'IR.mu:.t be i:i:r.ued by a.1:d. b:m:~.n-IOOc.loc.k cycle:. 
and ..j.(),OCOdod:cyd~:s ah.r RST gon higb. 

Figure 2.1: Timing Diagram of Smart Card Power up sequence 

• 

is always applied even though some microprocessor chips operate at 3v when in an VO 

state.) The VO contact is set to a reception mode on the reader side and a stable clock 

(CLK) is applied. The reset line should be in a low state and remain low for at least 

40,000 CLK cycles before the reader can initiate a valid reset sequence. The reader then 

sends a reset signal to the card by setting the reset (RST) line into a high state. This 

signals the card to begin its initialization sequence. 

Different cards may use varying specific initialization operations, however they should 

always result in the sending of an answer to reset (ATR) from the card to the reader. The 

time constraint on the first byte of the ATR being received by the reader is 40,000 clock 

cycles. If the ATR is not returned in the prescribed time, the reader begins a sequence to 

power down the card. In this sequence, the Vee, RST, CLK and I/0 lines are set low. 

Each successive byte of the ATR must be received by the reader at a minimal rate of I 

byte per second. 

2.2.1.2 Data Transmission 

The VO line carries a single bit if data per unit of time defined by the CLK whose value 

depends on its voltage relative to GND. The convention of whether to use +5v for a bit 

-11-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
value of I or to use Ov is conveyed to the reader through the "initial character" of the 

ATR, also known as TS. The 110 line is always in the high state prior to the transmission 

of a character. It takes I 0 bits to transfer I byte of data across the 110 line: the first bit is 

always a "start bit" (low state) and the last is a parity bit. The parity for each byte 

transferred should be even- the total number of bits in the byte whose value is I (incl. the 

parity bit) must be an even number. The following TS character indicates that the card 

uses an "inverse convention" i.e. H corresponds to a 0 and L corresponds to a I: 

(H)LHHLLLLLLH. A TS character of the form (H)LHHLHHHLLH signals that the card 

uses the "direct convention" where H corresponds to a I and L to a 0. 

The bit ordering in each byte is also controlled by the convention. In the inverse 

convention, the first bit following the start bit is the high-order bit of the byte. Whereas in 

the direct convention, the first bit following the start bit is the low-order bit of the byte. 

Successively higher order bits follow in sequence. 

The communication channel to and from a smart card is half-duplex - data can either 

flow from the reader to the card or from the card to the reader, but not both at the same 

time. The significance of this is that the smart card and the reader must be synchronized. 

If both reader and card transmit at the same time then data will be lost. Moreover, if both 

are listening then the system will enter a deadlock situation. During the power-up 

sequence, both the reader and the card enter a receive state in which both are listening on 

the 110 line. Once the reset operation is completed the card enters a send state (to send the 

ATR to the reader). After this, both ends of the channel alternate between send and 

receive states. 

The CLK and 110 lines are capable of supporting a wide range of data transmission 

speeds. The speed used is conveyed from the card to the reader via an optional character 

in the ATR. The transmission speed is set by establishing a "one bit time" on the 110 line, 

this means that an interval is established at which the 110 line can be sampled in order to 

read successive bits. This time is defmed as an elementary time unit ( etu). The etu during 

the ATR sequence is always defmed to be: 

etu = 372/CLK frequency 

-12-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
The CLK frequency is always between lMhz and 5Mhz - the frequency selected is 

generally such that the initial data transfer rate is 9, 600 bits per second (bps), A typical 

smart card chip is capable of transmitting and receiving data at speeds up to 115,200bps. 

However, the data channel can be noisy and reliable communication is more important 

than high-speed communication. 

2.2.2 Asynchronous Serial Transmission 

Figure 2.2 shows the waveform corresponding to a single seven-bit character. In an 

asynchronous serial transmission system the clocks at the transmitter and receiver 

responsible for dividing the data stream into bits are not synchronized. The output from 

the transmitter sits at a mark state whenever data is not being transmitted and the line is 

idle. The term mark belongs to the early days of data transmission and is represented by a 

-12V in many systems operating over short distances. 

Mark 

Space I l 1 I I 1 1 I I 
T 

Start 
bit 

Example: letter M = 1001101 (even parity) 

Mark 

Space I l 
Start I 0 

bit 

7 data bits 

One character 

J I J 
7 data bits 

I I 0 0 

Figure 2.2 : Asynchronous Serial Transmissions 

Parity Stop 
bit bit 

l I 
I 0 Stop 

Parity bit bit 

In what follows, a bit period is the shortest time for which the line may be in a logical 1 

(mark) or a logical 0 (space) state. When the transmitter wishes to transmit a word, it 

places the line in a 0 state for one bit period. A space is represented by+ 12V. When the 

receiver sees this logical 0, called a start bit, it knows that a character is about to follow. 

-13-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
The incoming data stream can then be divided into seven bit periods and the data sampled 

at the center of each bit. The receiver's clock is not synchronized with the transmitter's 

clock and the bits are not sampled exactly in the center. 

After seven data bits have been sent, a parity bit is transmitted to give a measure of error 

protection. If the receiver finds that the received parity does not match the calculated 

parity, an error is flagged and the current character rejected. The parity bit is optional and 

need not be transmitted. 

One or two stop bits at a logical 1 level follow the parity bit. The stop bit carries no 

information and serves only as a spacer between consecutive characters. After the stop bit 

has been transmitted, a new character may be sent at any time. Asynchronous serial data 

links are used largely to transmit data in character form. 

In short, Asynchronous transmission uses start and stop bits to signify the beginning 

and end of a transmission. This means that an 8-bit ASCII character with a parity bit 

would actually be transmitted using 10 bits. This method of transmission is used when 

data is sent intermittently as appose to in a solid stream. In the figure 2.3 the start and 

stop bits are in bold. The start and stop bits must be of opposite polarity. This allows the 

receiver to recognize when the second packet of information is being sent. 

0010000111 

Stop Start 

Figure 2.3: Illustration of start and stop bits 

2.2.3 RS232 Interface 

RS-232 has been around as a standard for decades as an electrical interface between Data 

Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) such as 

modems or DSUs. It appears under different incarnations such as RS-232C, RS-232D, 

V.24, V.28 or V.lO but essentially all these interfaces are interoperable. RS-232 is used 

for asynchronous data transfer as well as synchronous links such as SDLC, HDLC, 

Frame Relay and X.25 

-14-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 

Protedive grouno 

Figure 2.4: Standard Pin out for a DB-9 RS232 Connector 

The essential feature of RS-232 is that the signals are carried as single voltages referred 

to a common earth on pin 7. Data is transmitted and received on pins 2 and 3 

respectively. Data set ready (DSR) is an indication from the Dataset (i.e., the modem or 

DSU/CSU) that it is on. Similarly, DTR indicates to the Dataset that the DTE is on. Data 

Carrier Detect (DCD) indicates that carrier for the transmit data is on. Pins 4 and 5 carry 

the RTS and CTS signals. In most situations, RTS and CTS are constantly on throughout 

the communication session. 

The clock signals are only used for synchronous communications. The modem or DSU 

extracts the clock from the data stream and provides a steady clock signal to the DTE. 

Note that the transmit and receive clock signals do not have to be the same, or even at the 

same baud rate. 

The truth table for RS232 is: 

Signal> +3v = 0 

Signal < -3v = 1 

The output signal level usually swings between +12v and -12v. The "dead area" between 

+3v and -3v is designed to absorb line noise. In the various RS-232-like definitions this 

dead area may vary. For instance, the definition for V.l 0 has a dead area from +0.3v to -

0.3v. Many receivers designed for RS-232 are sensitive to differentials of 1 volt or less. 

The standards for RS-232 and similar interfaces usually restrict RS-232 to 20kbps or less 

and line lengths of 15m (50 ft) or less. These restrictions are mostly throwbacks to the 

-IS-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Interim Report • 
days when 20kbps was considered a very high line speed, and cables were thick, with 

high capacitance. 

However, in practice, RS-232 is far more robust than the traditional specified limits of 

20kbps over a 15m line would imply. Most 56kbps DSUs are supplied with both V.35 

and RS-232 ports because RS-232 is perfectly adequate at speeds up to 200kbps. 

-16-
Universal "Chip Based Smart Card" Snooping Device 



1 

3.2.1 

3.2.2 

3.2.3 

3.2.4 

3.3.1 

3.3.2 . 

J;.U 

33.4 

3.3;5 

3.2.2.3 

:rroublesluwting 

3.3.5~1 

3.3.5.2 r~~m~(:M· 

3;3.5.2 n<,.•rolllldolnr.l!ur··ti~~u 

I '.' ' 

~I i: 

I 
: 
!i 
ii 
li 

I ,, 

! I 

I 

I 

I 

J 

' i 

I 

i 
I I 

I 

. I i 

I, 1i 



Dimitri Denamany (1467) 
Final Year Project Report 

CHAPTER3 
METHODOLOGY 

3.1 BRIEF INTRODUCTION TO PROJECT METHODOLOGY 

• 

The creation of the Universal "Chip Based Smart Card" Snooping Device has been 

divided into two major milestones in order to make the development process more 

effective and organized. The first target was to create a snooping device using a 

simplified architecture where the processing module for the design would be a personal 

computer (PC). The data will be processed in the PC and displayed using the monitor 

using a C++ program. 

The second milestone on the other hand is the fmal design for the project where the 

processing module is converted into a device that is portable and convenient. This would 

logically require the use of a unique device, a PALM Pilot. The use of a PALM integrates 

the portability and affordability factors into the project's fmal design. The purpose of the 

creation of the first prototype is mainly to set the groundwork for the project research and 

to confirm that the project objectives (snooping of the data lines) are achievable using the 

proposed architectural design of the snooping module and the communication module. 

By referring to the figures in Appendix C, the block diagram clearly illustrates the 3 main 

modules that have been identified in the hardware architecture. The first and final 

prototype only differs in the processing module where, as stated above, the PC is replaced 

with the PALM. 

-17-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany ( 1467) 
Final Year Project Report 

3.2 OVERALL PROJECT FLOWCHART 

Project Planning and Organization 

• 
Preliminary Research 

Hardware Design 

Software Design 
(Visual C++ Program) 

Test Hardware Fabrication 

Software and Hardware Integration 

Troubleshooting 

Research on PALM programming 

PALM softwar; dtelopment 

Hardware Fabrication and Testing 

Software and Hardware Integration 

Troubleshooting 

-18-
Universal "Chip Based Smart Card" Snooping Device 

• 



Dimitri Denamany (1467) 
Final Year Project Report 

3.2.1 Theoretical Research Work 
• 

Theoretical research work is basically the theoretical reviews that have been done 

throughout the project duration in order to come up with the prototype and the fmal 

design. There were many books and website that have been referred to in order to obtain 

the desired information. As the project is divided into two portions, the hardware portion 

and the software portion, the research work done can also be categorized as such. 

Manuals and forums were also an important source of information as the information 

provided in these sources are relate to common problems that are normally encountered. 

3.2.1.1 Hardware Related Research 

The research done in order to come up with the hardware design mainly involved the 

identification of the use and functionality of various hardware devices that were looked 

into throughout the duration of the project. The research done on the hardware 

components was basically helpful in two ways. Firstly, it helped the process of learning 

about the different components available and its uses in order to be able to piece them 

together to create the prototypes. Data sheets and electrical websites over the web played 

a very important role in describing the components and its various uses. The second way 

in which it helped was to provide an understanding towards the smart card architecture 

and an idea of the possible action I processes that need to be done in order to obtain the 

desired output. For instance, the need for a level converter (MAX232 chip) would not 

have been apparent without the research that classified the requirements of the signal that 

is passed into the serial port. The research done was also a method of increasing the ideas 

that were created in the hardware design of the project while keeping it technically 

realistic and practical. The dilemma of whether to use a PIC micro-controller or a PALM 

for the portable processing module in the fmal design was solved by carrying out a 

structured and organized research on both devices. 

3.2.1.2 Software Related Research 

The software-based research done was wholly focused on establishing two types of 

programs that could accept serial data through a serial port, process the data and display 

it. The first program done was the Visual C++ program which was ran on the PC in order 

-19-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
to connect to the serial port and read the transmitted data. As for the final design, the 

software development portion involved writing a complete PALM application using 

specific softwares that compiled in special PALM development environments. The 

research carried out involved a thorough study of the various new softwares that were 

used and the specific methods of developing applications (especially for PALM). In 

addition, a lot of research was also in order to grasp an understanding of the serial port 

communication (PC and PALM) and the method as to which the program interprets the 

data transmitted through the serial cable. 

3.2.2 Hardware Design, Testing and Finalization 

3.2.2.1 Hardware Design 

Throughout the project, there were several hardware designs that had to be engineered in 

as these devices perform unique functions that are specific to the project requirements. 

The following are some of the hardware designing that has been done:-

•:• Concept of tapping the signals from the actual smart card 

o At the preliminary stages of the project, many designs were made in 

order to create a hardware configuration that would enable the required 

lines from the smart card to be tapped and sent to the snooper whilst 

not interrupting or affecting the communication between the card and 

the actual reader. The design that was selected after careful 

consideration is the design illustrated in Appendix C, where the 

hardware was divided into three modules. At the point of design, the 

exact content of each module was not determined yet but the snooping 

method applied in the designed seemed logical and applicable. 

•:• Dummy Smart Card 

o The dummy smart card is a totally new gadget that requires a unique 

design in order to fulfill its purpose. A complete illustration on the 

creation of the dunnny smart card can be obtained from section 3.3.5.1 

•:• The connector module 

o The connector in the snooping module also requires design work in 

order to implement a gadget that is able to ensure excellent connection 

-20-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 

between the wires that are channeled out of it and the relevant contact 

on the actual smart card. The design here should be flawless as any 

problem with the data flow at this point will cause the whole system to 

fail. 

•:• Communication module 

o This module is the module that is situated between the snooping and 

the processing modules. The design here involves putting together the 

required components that have been identified for it not to only 

function properly but also to properly connect to both its adjacent 

modules. 

3.2.2.2 Hardware Testing 

Hardware testing is an important part of the creation of the prototype due to two main 

reasons. First of all, by creating tests for a certain components, one would be able to fully 

understand and appreciate the functionality of the component. For the MAX232 chip for 

instance, Appendix D illustrates the circuit and the test method that was used in order to 

test the chip and learn the function of the chip. Practical work normally provides a more 

comprehensive understanding towards hardware components when compared to basic 

theoretical reading. 

The second and more important purpose of hardware testing is to verif'y certain 

assumptions that were taken. In any design process, there are many assumptions that have 

to be taken in order to move forward with the project. These assumptions however can be 

verified by performing specially designed tests. 

For instance, prior to starting the research on the required hardware components and the 

software portion of the project, a very general hardware design was required as the basis 

of the research. In other words, the method as to how the data was going to be tapped by 

the snooping device needed to be outlined. After considering many alternatives, the most 

outstanding design was selected (please refer to Appendix C) with certain assumptions 

made. The design specified had only one main property that had to be verified before it 

was fmalized as the fmal design. A test was carried out in order to verify whether or not 

-21-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
the tapping device from the smart card is a logical and possible method. As illustrated, 

the design involved tapping the I/0 pin of the smart card in order to get the data that is 

transmitted to and from the smart card. However, whether or not this was possible was 

yet to be verified. Considering the fact that there were no aluminum foil available at that 

point of time, a smart card reader was dismantled and the I/0 pin of the smart card reader 

was tapped using wires. This is the same principle as tapping the I/0 pin on the smart 

card as both these surfaces are in direct contact. This signal was then sent to a digital 

oscilloscope where the data transfer was studied. From the results of this test, the design 

was then verified and research on the rest of the components was started. 

3.2.2.3 Component Selection 

During the hardware design process, based on research, decisions have to be made 

regarding the components that are to be used. The decisions made are crucial as a wrong 

one may cause the project development to take a turn into the wrong direction. Factors 

that have been taken into consideration during the selection are issues such as cost, 

availability, practicability and most importantly w01kability. During the project 

execution, most of the components selected have been used. Many changes in hardware 

specification have been made during the transition of the process from the first prototype 

to the fmal product. These changes will be elaborated on in the discussion section. 

3.2.3 Software Design 

The software design involved creating a Visual C++ (I" prototype) and a PALM program 

(final design) that functions to receive the data from the serial port and display it in a 

meaningful manner. Besides reading up on documentations that are available on the web, 

the most effective manner used in order to create software was to actually do the coding 

and incrementally build the program up step by step. Examples were obtained from 

online program banks and studied. 

Generally an evolutionary software development approach was adopted in order to create 

the programs. Development of the programs were broke down into portions in order to 

simplify the coding before putting them together. For the Visual C++ program, there 

-22-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
were three portions to it where the first objective was to just develop a program that is 

able to receive serial data. The second goal was to create a subroutine in order to convert 

the data into meaningful information. The final stage was to further enhance the program 

in order to display the information in a more meaningful manner. 

For the PALM application on the other hand, 3 separate programs were created where the 

first one implemented dynamic fields. The second program on the other hand 

incorporated the serial library functions in order to create a program that is able to receive 

data via the PALM serial port. The third program on the other hand implemented the 

method of using and controlling scroll bars. Lastly, a final program, the snooping 

program was developed which incorporated all the three sample programs that were 

previously developed. It should be noted that the development of the PALM programs 

took more effort as the there were many new PALM development softwares that had to 

be mastered prior to actually developing an application. A complete explanation on the 

softwares used and its functions can be obtained from Appendix E. 

3.2.4 Hardware Fabrication and Troubleshooting 

One of the main activities of throughout the duration of the project was the work done in 

order to construct the specified hardware design. The first design was constructed in the 

middle of the first half of the project for the purpose of troubleshooting the Visual C++ 

software that is being created and also to verifying the design specifications based on the 

research. Many changes have been made since in order to overcome various problems 

and perfect the circuit so that it would be more reliable. The fabrication of the hardware 

were done involved various activities such a PCB fabrication, milling, soldering, circuit 

analysis and etc. Since most components in the design are not available commercially, 

they were all fabricated in the lab. In order to troubleshoot the hardware, various tests 

methods were designed in order to ensure that there were no flaws in the design. The test 

methods implemented were made to be as simple as possible in order to make the error 

detection simpler. 

-23-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

3.3 MAIN COMPONENTS DESCRIPTION 

3.3.1 Smart Card Contacts/Pins 

• 
The layout of the pins in all chip-based smart cards has been standardized based on the 

IS07816-2 standard. The following is a simple diagram illustrating the contact pins on a 

smart card. 

vee _-(:;;-1-----::~
RST _ _j::;,:-~ 

CLX -+~ J--.J.. -+--
GND 

VPP 

rJO 

Figure 3.1: SmartCardPinLayout 

The smart card chip, or integrated circuit card (ICC) has 8 electrical contacts. They are 

referred to as C I through C8. However, as shown above not all 8 contacts are electrically 

connected to the embedded microprocessor chip and therefore unused at the present time. 

The following table contains the contact definition according to IS07816-2 standard. 

!contact !Designation -~u;;··----

ICl -----~cc li~~:; ~~~:~;~~~s~~~~~~ 7nh~~~ :~~ating power is supplied 

~--------T [Reset line through which the IFD can signal to the smart 
lc2 iRST Icard's microprocessor chip to initiate its reset sequence of I 
! ! !instructions I 
~- I [Cio~k signal line t hrough which a clock signal can be provided 

1

1 
1 lcLK Ito the microprocessor chip. This line controls the operation 
[C3 , speed and provides a common framework for data 1 

, communication between the IFD and the ICC i 
[c4 _____ 1RFU -------fR-;;se-,:;,ed for future use --~ 
;-------------,- IG,=ound line providing common electrical ground between the lcs IGND IIFD and the ICC 

~-------,, [Pr"og.«<r::.a::.m--m=in_:g_:p_:o_w~e~r-c~o-n~n~ect-ion used to program EEPROM of 
jC6 Vpp !first generation ICCs. 

lC7 [ Input/output line that provides a half-duplex communication 
1 [I/O channel between the reader and the smart card 

jCs [Rfll ___ jReserved for future use 
·~~~~-~~---~--~~~ 

Table 3.1: Smart Card Pin Functions 

-24-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

3.3.2 MAX232CPE 

Given is the physical pin layout of all MAX232 chips. 

V+ 

C1- JIIILIXI.M 
C2+ M'\X202E 

MAXZ32E 
C2-

l20UT 1 

R21N 

Vee 
GND 

TlOUT 

R11N 

R10UT 

T11N 

T21N 

R20UT 

Figure 3.2: MAX232 Pin Layout 

• 

The purpose of the MAX232 chip is to convert the voltage levels and encode data. The 

serial port of a PC/PALM and the smart card both has different ways of representing the 

same data. The smart card represents its bits in voltage levels of 5V (high) and OV (low). 

The serial port on the other hand represents a high as a voltage between -3V and -12V 

and a low as a voltage between +3V and +12V. Basically when changing the smart card 

data signal to the serial port data signal, the MAX232 magnifies the voltage to its 

appropriate level. The magnified signal is then encoded using the Non Return To Zero 

Level (NRTZ-L) encoding scheme. The reverse happen when the data is sent from the 

serial port to any other standard devices. Common names for MAX232 chips are level 

converters. 

3.3.3 Device Interface: RS232 Connector . /.-~ .... 
E!i ~-Data oorrlor detect 
., , 6 Data set reedy 
- 2 Receive data 

~ ?~Request to send '" 3 Transm~ dato 
8 Clear to send i 4 Data !ermine! reedy 

"' 9 Rin~ lndlcato. 
CD ·- 5 Signal ground 
Q 

Protective ground 

Figure 3.3: RS232 Serial Port Pins 

-25-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
The RS232 connector functions as the data transmission connector between the MAX232 

chips and the serial port of the PC/PALM. AB illustrated in the diagram above, there are 

nine pins available on the connector. In the design specification, only seven out of the 

nine pins available are used. The transmit pin and the ring indicator pin is not used. 

3.3.4 PALM Hardware 

The PALM that was used in the final design was the PALM IIIxe. This PALM is used to 

connect to the user's personal computer via a device called a cradle. The PALM is placed 

on the cradle and a wire from it is then connected to the serial port of the PC. Besides the 

cradle, a Palm HotSync cable could also be used. The cable is basically identical to the 

cradle except for the fact that instead of placing the PALM on the device, the connector is 

directly connected to the Palm's port (please refer to Appendix F for a graphical 

illustration) 

Basically the port on the PALM that connects to the serial cable of the cradle or the Hot 

Sync Cable is actually a serial port. The only difference is that contacts on the PALM are 

all flat. 

Pin No Fun c. Pin No Func 

1 DTR 6 CTS 
... 

2 .. · Vee 7 GPil 
. 

3 ·.· RX 8 GP12 

4 RTS 9 
. ·. 

5 TX 10 . GND 

Figure 3.4: Pins on the HotSync Cable 

Figure 3.4 clearly shows the function of each pin on the HotSynch cable. Basically, the 

port for the Palm device5 also has those contacts. These contacts are then just wired to the 

female socket of a basic RS-232 connector so that it can be fitted into the male serial port 

on the PC. 

5 Refer to appendix F for the images 

-26-
Urriversal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (!467) 
Final Year Project Report 

3.3.5 Dummy Smart Card and Connector Fabrication 
• 

The dwnmy smart card and the connector were basically two gadgets that had to be 

specifically engineered as they are not available in any store. These two gadgets were 

designed using various tools in the mechanical and electrical labs. 

3.3.5.1 Dummy Smart Card 

The dummy smart card is the component of the design that will be inserted into the target 

smart card reader. The dummy card would be connected to the "connector" (explained 

next) which would be connected to (or touching) the contact of the actual smart card. 

Hence, the dwnmy smart card is required to have all eight contacts fit exactly into the 

smart card reader with absolute precision. In addition to that, these contacts must also be 

connected to pins at the edge of the card in order enable the tapping of the signallines6
• 

This card is a very unique device that was created using PCB fabrication. It is actually a 

PCB board which has been modified to become a smart card. The following are the steps 

that have been taken in order to fabricate the dwnmy smart card: -

•:• Creation of the Gerber file using the ARES LITe software 

•:• Creation of the dummy smart card on a PCB using mechanical etching. 

•:• Alteration of the width and height of the card in order to align the dwnmy smart 

card contacts with the smart card reader contacts. 

•:• The thickness of the PCB was carefully reduced to the thickness of a smart card 

using a Milling machine. 

-!• Holes were drilled into the smart card in order to place connectors (pins) on it. 

•:• The PCB was cleaned using sandpaper in order to create a clean surface. 

•:• The connector pins were soldered onto the clean surface of the PCB. 

•:• The surface of the PCB was then coated with a thin layer of coating for 

protection. 

The steps given were accomplished with the guidance of technicians from each of the 

respective labs. Snap shots of the dwnmy smart card can be seen in Appendix G. With 

6 refer to Appendix G for a picture of the dummy smart card 
7 gerber file included in attached CD 

-27-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
reference to the given fabrication steps, the following is a detailed description of some of 

the challenging processes. 

3.3.5.1.1 PCB Tracing 

The PCB tracing that was done required the implementation of special techniques as the 

desired layout of the PCB is not exactly a circuit. The only type of PCB tracing that was 

available in the lab at was mechanical etching. This meant that the PCB board was placed 

in a machine that would slowly strip off the copper surface of the PCB in order to 

separate the contact. The movement of the machine is based on the Gerber file that it 

loaded into it. A Gerber file can be prepared using several softwares .. 

The ARES Lite software was selected to design the tracing patterns as it was easy to use 

and quite sufficient for the creation of the dummy card as the software did not require 

circuit analysis. The tracing process with the software was extremely important as the 

measurement of the contacts that was provided had to be exact. Based on the 1807816 

standard, the 8 contacts on a smart card have default locations and all the smart card 

readers (which are normally based on the 1807816 standard) are designed to comply with 

these measurements. 

I I 
I I l. '1:mm 
I I , _____________ , v 

: <-----------:>: 

Figure 3.5: Minimal Contact Size 

A B c D 

----+-------------------------------
C1 10.25 12.25 19.23 20.93 
C2 10.25 12.25 21.77 23.47 
C3 10.25 12.25 2'1.31 26.01 
C'l 10.25 12.25 26.85 28.55 
C5 17.87 19.87 19.23 20.93 
C6 17.87 19.87 21.77 23.'17 
C7 17.87 19.87 2'1.31 26.01 
C8 17.87 19.87 28.85 28.55 

----+-------------------------------
1507816 location 

Table 3.2: Measurement of Pin's Position based on Figure 3.6 

-28-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

• 1<------------------------------>: 
I 
I B 
1<----------------------------------->: 
I 

Figure 3.6: Pin's Position 

• 

After carefully creating the Gerber file based on the measurements above, it was 

downloaded into the PCB tracing machine and the PCB board was prepared. Upon 

completion, the PCB was then removed from the machine and the measurement process 

was done once again as the PCB would have to be cut to the proper width and height. 

3.3.5.1.2 Milling 

Once the Width and height of the PCB board have been made to be identical to that of a 

smart card, the only remaining physical alteration is to customize the thickness of the 

PCB. This is important as most smart card readers have a slot which is not more than 

O.lmm wider than the actual smart card thickness. A smart card generally has a thickness 

of 0.8mm. This is almost half the size of a normal PCB board. Hence, in order to slim 

down the PCB, the milling machine seemed to be the best tool that was available in the 

mechanical workshop. 

-29-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
The process of milling the card to become thinner was an extremely delicate job as the 

risk of the card breaking was very high given the consideration that the milling machine 

was not built to work on materials such as PCB boards. Another important consideration 

that had to be taken into account is the effect of warping. Warping is a phenomenon 

where the material in question (which is normally not very thick) begins to bend due to 

excessive force. With all the possible risk to the dunnny smart card, many trial runs were 

attempted on unused PCB board before work was actually done on the dunnny smart 

card. 

In order to protect the card from the various destructive effects of the milling machine, 

the milling process was done step by step by working on a small area at a time. Only the 

area that was going to be milled would be exposed. The rest of the card would be 

mounted down using rubber stoppers in order to ensure that the card was always flat. 

Each portion of the card is pressed down unless milling was done on its surface. After 

carefully milling the card, the dummy smart card seemed to have emerged slightly 

thinner than expected and with a little bit a warping on its edges. Nevertheless, as far as 

its contacts with the smart card reader were concerned, all eight contacts were perfectly 

aligned with the dummy smart card and the size of the card was within an acceptable 

limit. 

3.3.5.2 Connector 

The connector is the device that helps establish a connection with the actual smart card 

contacts. It is a device that is supposed to function to tap all the contacts of the actual 

smart card and transmit them to the dunnny smart card. Hence, in order to design such a 

device, the easiest method was to modify an existing smart card reader. The 

Schlumberger e-Gate connector was used as the target reader. The e-Gate was forced 

apart and its processing board was cut off. Wires were then carefully soldered to all the 

contacts that are used by the smart card reader8
. These wires were then routed out of the 

reader and into a PCB board that is connected to the dunnny smart card. Each wire was 

carefully matched with its corresponding contact on the dummy smart card. Finally, the 

e-Gate was glued back together using super glue. 

8 The smart care reader only uses six contacts. Two of the contacts are not used 

-30-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
This means that there is a direct connection between each contact in the dummy smart 

card to each contact in the actual smart card hence making the actual smart card reader 

unaware of the difference in the hardware configuration. Please refer to Appendix G for 

snap shots of the connector. 

3.3.5.3 Overall Configuration 

By connecting the dummy smart card to the connector, the snooping device is complete. 

For testing purposes, the device has been used on its own with out any snooping in order 

to examine its effectiveness. When a smart card is connected to a Reflex 20 smart card 

reader via the snooping module, the card seems to work extremely well and the reader 

does not indicate any problems at all as all operations verify that the reader is unaware 

and unaffected by the presence on the snooping device. This test was repeated with 

multiple reader and they all worked fine. 

-31-
Universal "Chip Based Smart Card" Snooping Device 



RESULTS AND 

4.1 SYSTEM DESCRIPTION &I 
i 4.1.1 Snooping M:odule 

4.1.2 Communic~Jtion Module 

4.1.3 Processing Module 

4.2 .·, SYSTEM DESIGN DET 

4.2.1 Smart Card 

4.2.2 Interfacing 

4.2.2 .. 1 MA,X232CPE 

4.2.2.2 Serial Port 

4.2.3 PALM Snooping Program 
I 

4.2.3.1 PALM Program 

· 4,2.3.2 Program Overview I 

4.2.3.3 Receiving the Bytes 1 

4.2.3.4 Byte Conversion 

4.2.3.5 Data 

4.2.3.4.2 APDU 

4.3 ELABORATION ON THE 

I

ll 
I 

I 

I, 

I 
i II 
I 
I 

I 
I 

I 
i 

! I 
I. 

i I 

Serial 

! 

II 

I 
' 
I 
I 

I 

I 

' 
I 

' I 
I 
I 

li 

I 

II 
II 
I! 

,I 
il 

, , I 

II 

r 
I 



Dimitri Denamany (1467) 
Final Year Project Report 

CHAPTER4 

PROJECT IMPLEMENTATION, RESULTS AND DISCUSSION 

4.1 SYSTEM DESCRIPTION AND FUNCTIONALITY 

• 

From the block diagram and circuits illustrated in Appendix B, it is clear that the 

snooping device can be divided into three modules, the Snooping module, 

Communication module and the Processing module. Each module has its own overall 

functionality as it consist of several components that have been interfaced together to 

achieve certain goals. 

4.1.1 Snooping Module 

Dummy smart card 

Figure 4.1: Snooping Module (Dummy Smart Card and Connector) 

The snooping module basically consists of the: 

1. Dummy Smart Card 

•!• The dummy smart card is actually a specially fabricated PCB board that has is 

the exact same size as an actual smart card and has eight contacts at the exact 

same position as the actual smart card. These eight contacts are all linked to 

the edge of the card where connector pins are connected to it. The connector 

pins will be used in order to link the contacts of the dummy smart card and the 

contacts of the actual smart card. 

-32-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 

•!• The purpose of the dummy smart card is to make the target reader "think" that 

there is a smart card in it even though the smart card is not actually physically 

in the reader; it is just connected to the reader via the dummy smart card. 

2. Connector 

<!• The connector is the interface that provides the link between the connector 

pins on the dummy smart card, and the pin contacts of the actual smart card. 

The main purpose of the connector is actually to make the design more robust 

and to make the snooping of various smart cards convenient. The connector 

has a slot (like a smart card reader) where the actual smart card is inserted. 

The pins of the smart card would then come into contact with a copper contact 

plate that is physically linked to the 8 pins on the dummy smart card. This 

gadget saves the user the trouble of manually connecting the 8 pins from the 

actual smart card to the dummy smart card. 

3. Actual smart card 

•!• This is the target card that the user decides to snoop on. The actual smart card 

will be inserted into the connector as discussed above. 

4. Actual Smart Card Reader 

•!• The actual smart card reader is the device that will house the dummy smart 

card. This is the smart card reader that is supposed to be able to communicate 

with the actual smart card. 

When the actual smart card is inserted in the connector and the dummy smart card is 

inserted into the target smart card reader, communication between the actual smart card 

and the smart card reader (via the dummy smart card and the connector) will begin. All 

the signals from the smart card will be transmitted to the smart card reader through the 

physical connection that has been set up via the dummy smart card and the connector. 

The signals from the reader to the actual card also are transmitted using the same manner. 

As far as the smart card reader is concern, the communication that takes place is just like 

the normal situation of the actual smart card being inserted into the reader. 

With that portion set up, the snooping circuitry then comes into play where certain 

contacts from the smart card are tapped in parallel with the existing circuitry. A smart 

-33-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
card has 8 contacts where there are normally 6 contacts that are used8

• In order to snoop 

on the data transfer, there are four main contacts that are tapped, the VO contact, Vee 

contact, Gnd contact and the RST (RESET) contact. 

The VO contact contains the data that is transferred from the card the reader and vice 

versa. This line basically contains all the information that needs to be displayed as all 

communication takes place via the VO contact, as it is a half-duplex line. The information 

regarding the data transfer is further illustrated in section 4.2.1. The RST contact on the 

other hand is the reset pin for the smart card chip. These two lines are linked to the 

Communication module, which will be discussed in the next section. 

4.1.2 Communication Module 

The communication module is the portion of the circuit that is in charge of transferring 

and formatting data from the snooping module to the processing module. The module 

consists of two main components, the MAX232CPE chip and the RS232 Connector. The 

functionality of these devices and some of its technical specifications can be obtained 

from section 3.3.2 and 3.3.3. 

The exact connections made for the communication module can be seen in the circuit 

illustrated in Figure 4.3(refer to Appendix H for clearer diagram). 

Figure 4.2: Connnunication Module 

8 refer to section 3.3.1 for details on the smart card contacts 

-34-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) • 
Final Year Project Report 

..... : ... ·- ............... ·. 

CQnnector 
................... 

...... - .................... ,. . ..... . . ..... r-:~~~~~:~: . ' .... ·-· .................................. ··-·. . ..... . 

''IT SIT •••••••••••.•••••••••.••• ··;~I±J±t±ti::C:~. :~:::~: ~: 
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · :fis'ci~~.: · · · · · · · · · 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : oa9:co.>naei!W~ i<S232i : : : : : 
. . . . . . . . . . . . . . . . . . ~~~ ClipS ere 22uf ~um 
· · · · · · · · · · · · · · · · · · · · · · · This will be connected to the processing module 

Figure 4.3: Schematics of the Snooping and Communication Module 

There are four contacts that have been tapped from the card and brought into the 

communication module from the snooping module. The Gnd contact is connected to both 

the MAX232 and the RS232 connector (GND-Pin 5) for the sake of standardization. The 

Vee contact is connected to the Vee of the MAX232 chip. Hence, the MAX232 chip 

actually obtains its power source from the smart card 5V V cc contact. 

The I/0 contact and the RST contact is connected to the MAX232 chip in order to 

convert the voltage level. The on both these contacts that are represented as 5V voltages 

(HIGH logic) and OV voltages (LOW logic) are converted into a representation that is 

understood by the serial port of the processing module. The HIGH logic on the serial port 

is represented as a voltage between -3V and -12V where else a LOW logic is represented 

as a voltage within 3V to 12V. All data sent to the serial port must be converted into this 

format; hence this shows the importance of the MAX232 chip. Once the signals have 

-35-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
been converted, the 1/0 line is sent to the Receive (RX - Pin 2) Line of the RS232 

connector. 

The output of the RST line from the MAX232 on the other hand is sent to the Data 

Carrier Detect (DCD-Pin I) Pin. The rest of the pins are configured as shown in Figure 

4.1. A detailed explanation on the pin configuration can be found in section 4.2.2.2. 

The RS232 Connector is then connected to the serial port of the processing module and 

data is then accepted by the module and processed. 

4.1.3 Processing Module 

The processing module server two main purposes; the first is to process the data that is 

sent in through the serial port to become meaningful information. The second function is 

to organize the information properly and display it in a meaningful manner. As 

mentioned, there are two types processing modules which have been used throughout the 

project. The first one is a PC where this was actually a prototype for the final design. In 

this module the serial port is controlled using a Visual C++ program that accepts the 

serial streams and translates the data into meaningful information. In the fmal design, the 

processing module that is used is a PALM device and the serial connector from the 

communication module is connected to the cradle or HotSynch cable of the Palm. In 

order to accept the serial data and process it, a Palm application has been developed using 

custom made softwares9 that were designed specially for Palm Application Development. 

Both the softwares written for both the processing modules are almost identical in terms 

of its programs structure. The programming enviromnent and the functions calls made in 

both programs might differ completely, however, the program implementation and the 

logics behind it is rather identical. In both programs, the initial stages of its execution 

involve the setup of the serial port of its respective hardware. Parameters such as the baud 

rate, start bit, stop bit and etc. have to be set to establish a successful communication. 

Then, the serial port is opened and the receive buffer is checked periodically10 for 

incoming data. In the Palm application, the process of moving in a loop is a default 

characteristic that is implemented (refer to Appendix E for an explanation on the Palm 

9 please refer to Appendix E in order to get an overview of the Palm Application Development Softwares 
10 also known as polling 

-36-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
programming structure). Every time data is received, memory is allocated for the data in 

order to temporarily store it. The data is then manipulated in order to actually display the 

transmitted bytes. 

In order to display a character, on the screen, the character must first be translated in to 

its ASCII11 representation. ASCII is a code in which the numbers from 0 to 255 stand for 

letters, numbers, punctuation marks, and other characters. Hence in order to display the 

bytes that were received, they must first be converted into its respective ASCII 

representation. The ASCII representation for all possible incoming data is given in 

Appendix I. 

The bytes that are transferred all comply with the standard format that is stated in the 

IS07816-3 protocol. The first few bytes received upon connection is called the ATR, the 

Answer to Reset. The ATR has a predetermined format. The bytes that are received after 

the ATR until the point of disconnection are all called APDU's (Application Protocol 

Data Units). Further details on the byte to ASCII conversion process and the explanation 

on the received data is available the following sections. The detailed explanation on the 

programming of the processing module will be covered only for the PALM device as it 

is the final design. However, screen shots of the Visual C++ program can be obtained 

from Appendix J. 

4.2 SYSTEM DESIGN DETAILS 

4.2.1 Smart Card Communication Details 

The smart card communicates with the outside world through the I/0 contact. All 

communication with the smart card is classified as a half duplex communication where 

the data transfer can only take place at one direction at any point of time. The data is 

transferred to and from the I/0 pin using asynchronous serial transmission12
• The 

following are the asynchronous data transmission details of the card: 

11 American Standard Code for Information Interchange. 
12 refer to section 2.2.2 for details an asynchronous serial transmission 

-37-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

Baud Rate 9600 . . . 

Start Bit 1 Start Bit· . 
. 

Stop Bit 
. ·· 

2 

Parity Bit Even parity 

Table 4.1: Asynchronous data transrmsswn detatls 

• ..•... 
. 

• 

With these settings made compulsory, all data transfer from and to the smart card must 

comply with these conditions. This indicates that the smart card chip actually has an in 

built Universal Synchronous Receiver /Transmitter13 (UART). 

There are four main contacts that are tapped from the smart card, the V cc, Gnd, VO and 

the RST contacts. The V cc and ground contact are basically tapped in order to power up 

the MAX232CPE chip. The VO and the RST contact are the lines that carry the important 

data that is needed. As stated, the purpose of the VO contact is to enable half duplex data 

transfer to and from the card. Hence, when the snooping device taps the VO line, it 

becomes possible to read all information transferred to and from the card with the 

condition that the signal is interpreted correctly. The VO line is normally kept high when 

there is no data transfer (idle state) between the card and the smart card reader. The RST 

(reset) line on the other hand functions as a reset for the smart card. When the card is 

functioning, this line is always kept high. A reset can be applied to the card when there is 

a low to high transition in the RST line. A more detailed explanation on the VO line and 

the RST line is illustrated in Section 2.2.1. 

When a card is first inserted into the smart card reader, all lines will remain low until all 

the contacts are properly positioned. Once the contact are positioned properly the, card is 

powered up as the V cc contact is brought high. The V cc contact will remain high until 

the card is disconnected. This in turn means that the MAX232CPE chip, which is 

powered by the V cc pin, will be activated and deactivated exactly when the card is. The 

smart card will then be RESET, as the RST line will be brought high after a certain 

period of time. 

13 UART functions to convert 8 bit bytes into the asynchronous data form by adding the start, stop and 
parity bits or vice versa. 

-38-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
The first action upon a card reset is that the card would then transfer a string of bytes 

known as the Answer to Reset (ATR) to the smart card reader The ATR sequence is 

responsible for initializing the physical communication channel between the reader and 

the smart card. It facilitates the defmition and manipulation of a number of characteristics 

of the channel. In short, the ATR is actually a long number that identifies the smart card 

to the smart card reader and it also contains some control information that specifies the 

protocol and setting that the reader should adhere to in order to establish a successful 

communication line with the card. 

ISO 7816-3 also specifies a more elaborate method of selecting a protocol known as the 

Protocol Type Selection (PTS) facility. The reader can negotiate with the card to obtain 

an optimum set of characteristics for the channel through the PTS. When the ATR has 

been transmitted, the reader would then evaluate, based on the protocol indicated in the 

ATR, whether or not a Protocol Type Selection Request (PTS) is necessary. If it is, the 

reader would execute the request and the card would reply with a Protocol Type Selection 

Response. Normally, optimum communication characteristics are usually through the 

ATR sequence without performing a PTS sequence. 

After the completion of these sequences of byte transfer, the rest of the communication 

between the smart card and the smart card reader involves only the transfer of 

Application Protocol Data Units (APDU). APDU's are basically commands that are sent 

to the smart card in order to perform certain operations. In turn, the card would respond 

with to the command in order to indicate whether the message had failed or succeeded. 

The response may be prefixed by some data bytes if the command involved a request for 

certain information from the card. A summary of the whole communication discussed 

above is briefly summarized in Figure 4.4. 

As illustrated in the figure, after the ATR and the PTS (if necessary) are sent, the reader 

(terminal) issues commands and the card will provide a response to each command. 

These actions are repeated over and over again until the card disconnects from the reader 

or it is reset. When the card is reset (RST line goes from low to high), the whole sequence 

repeats once again. 

-39-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

Figure 4.4: Smart Card Activation Sequence 

4.2.2 Interfacing the MAX232 and the Serial port connector (DB-9) 

4.2.2.1 MAX232CPE • 

• 

The MAX232CPE chip gets its power source from the Vee and Gnd contact of the smart 

card. The chip functions to convert the high and low voltage levels from the smart card to 

its corresponding voltage levels according to the standard requirements of the serial port. 

There are basically two lines from the smart card that is transmitted into the 

MAX232CPE chip, the I/0 line and the RST line. The I/0 line is inputted through pin 10 

where else the RST comes in through pin 11. The output for the I/0 line and the RST line 

are on pins 7 and 14 respectively. The output for the I/0 pin is the connected to the 

Receive pin of the DB9 connector. This pin functions to transmit the data into the serial 

port. Hence, all the data from the I/0 contact is acctualy being transmitted into the 

processing module via the receive (RX) pin on the serial port. As for the RST line, the 

output signal from the MAX232CPE chip is connected to the Data Carrier Detect (DCD) 

pin. Explanations on the connections made to the DB-9 connector are given in the 

following section. 

• refer to Appendix F for the schematics 

-40-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
The MAX232CPE circuit setup is a standard schematic from the data sheet. However, the 

only special element is the type of capacitors that are used. The standard specification 

recommends a I OuF electrolytic capacitor. However, for this project, the capacitors used 

were the 22uF tantalum capacitor. The reason these capacitors were selected was because 

tantalum capacitors are meant for high switching circuits and they are also much more 

reliable when compared to the electrolytic capacitors. 

4.2.2.2 Serial Port Connector (DB-9) 

The connector has 9 pins that are available. From these 9 pins, only 7 of the pins are used 

in order to establish the asynchronous data transfer required. 

~ ~=~1~~~l========= from pin 14 of the MAX232CPE (RST Contact) 
~ 

7
" 2~ from pin 7 of the MAX232CPE (I/0 Contact) 

.!! 30 \ 
CI>So-4;::j:=__j 
£ll 4 
Q 90 
~e>=lf------------ from the smart card Gnd pin 

Figure 4.5: Connection to the DB-9 connector from the MAX232CPE chip 

The following is a simple summary of the connections made and some brief explanation 

on the logic behind the connections. 

DCD (Pin I) 

This pin is called the Data Carrier Detect pin. The purpose of this pin is to actually detect 

the presence or the absence of a carrier wave. For normal use o the DB-9 connector, if a 

carrier is present, it indicates that the transmission is line is "alive" (either receive or 

transmit) and that the port would have to be alert of possible data transfer. On the 

contrary, an absence of the carrier means that no data will be transmitted making the port 

is "dead". A simple analogy would be to assume this pin as the power supply for the 

serial port. Hence, by connecting the RST contact to this pin via the MAX232CPE, 

whenever the reset is low, the port is basically not powered and when it goes high the 

port is powered up and able to do the data transfer. Since the reset goes from low to high 

every time it is triggered, the serial port also is deactivated and reactivated. 

-41-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

RX(Pin2) 
• 

The RX pin IS the receive pm. This pm functions to receive synchronous or 

asynchronous data. The data from the I/0 line is sent into this pin via the MAX2323CPE 

chip so that the processing module can receive the transmitted information. 

DTR (Pin 4) and DSR (Pin 6) 

The DTR, Data Terminal Ready Pin indicates that the DTE is ON and ready to 

communicate when it is asserted. The DSR pin on the other hand indicates that the DCE 

is connected and ready to transmit data when it is asserted. These two lines mainly 

function as handshaking lines in order to synchronize communication. Since handshaking 

is not used for the data transmission, these two pins have been connected together. This 

means that once the serial port is ready, it will assert the DTR line which in tum causes 

the serial port to think that the other party is also ready for communication as the DSR 

line is asserted simultaneously. 

GND (Pin 5) 

Pin 5 is the Gnd pin. This pin is connected to the Gnd contact of the smart card in order 

to ensure that voltage references for Gnd are all the same. This ensures that the voltage 

conversion in the MAX232CPE chip would be correct. 

RTS (Pin 7) and CTS (Pin 8) 

RTS is the Ready To Send pin where else CTS is the Clear To Send pin. These are 

handshaking signal where whenever one entity wants to sent some data to the other, it 

would assert the RTS line. If the other entity is ready to receive the data, it would then 

assert the CTS line indicating that the data can be sent. Since, handshaking is not 

implemented; these two lines have been connected together. They do not really serve a 

purpose, as no data will be transferred out of the serial port of the processing module. 

-42-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

4.2.3 PALM Snooping Program 

Clear Button 

/Disconnected Icon 

Figure 4.6: Screen shot of the PALM snooping prognun 

• 

Baud Rate Selector 

The PALM snooping program is the most important component m the processmg 

module. The program is in charge of establishing a connection with the serial port, 

reading the data, converting it into useful information and fmally displaying the 

information in a user friendly manner. 

4.2.3.1 Palm Program Development 

The software development process of Palm snoopmg program involved a lot of 

groundwork before an actual application was created. The softwares used in order to do 

the development were custom made for Palm Developement. The Code Warrior program 

was the main development software that contained all the source code for the application. 

The Graphical Interface of the Palm required the use of a separate software called the 

"Constructor" that will be manually linked to the CodeWarrior. Debugging the Palm 

applications also was a unique process as it involved special techniques and the use of 

special programs. 

-43-
Universal "Chip Based Smart Card'' Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
On the actual programming aspect, the method of in order to create the application was 

also special as Palm application are event based applications that run in an infinite loop. 

Basically, upon execution of the program, the application is set up and the looped using a 

while command. In the loop several handlers are available and each of these handlers 

performs certain functions. When anything is done to the Palm (a button is pressed, 

something is written or etc.) an event is dispatched into the loop and the event handler 

will take the appropriate action in order to respond to the incoming event. Once the event 

has been taken care off, it is discarded and the program goes back to looping till the next 

event is dispatched into the loop. A typical event loop and its handlers is as the 

following:-

sratic void EventLoop (void) 
f 
' 

' ! 

Word error; 
EventType event; 
ao 

' f 

EvtGetEvent (&event, evtWaitForever); 
PreprocessEvent (&event): 
il (1 SysHandleEvenr (&event)) 
il(! MenuHandleEvent (NULL. &event, &error)) 
if(! ApplicationHandleEvent (&event)) 
FrmDispmchEvent (&event): 

while (event.eType !~· appStopEvent);· II terminate program command received? 

A complete illustration on the softwares used and the event loop for the Palm 

application is available in Appendix E. 

4.2.3.2 Program Overview 

Figure 4.6 shows a screen shot of the snooping program. The method of using the 

program is relatively simple. When the program is launched from the Palm main page, a 

screen as shown in Figure 4.6 will be seen. At this point the snooping program has 

already automatically opened the serial port in order to accept data at 9600 baud rate. 

This was done as 9600 is normally a very common baud rate that is used by smart card 

readers. If there were incoming data at this point at the rate of 9600 baud, it will be 

-44-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
accepted and displayed in the display area. In order to change the baud rate of the serial 

port, the user would only have to select one of the 5 baud rates that have been specified 

by the "baud rate selector buttons". When this is done, the serial port is closed and then 

re-opened at the new baud rate. Once this happens, the system is once again ready to 

accept data through the serial port at the new selected baud rate. Once data is accepted 

and the display area begins to fill up, the "Clear" button can be used in order to clear the 

screen. When the menu item is selected, the "Close Serial Port Option" and "Open Serial 

Port" functions are available in order to close or open the serial port manually. On the 

other hand, in order to exit the program, the user would only have to select anywhere 

outside the application as the application will automatically close the serial port and exits 

the program. 

4.2.3.3 Receiving the Bytes 

When the program is launched, the serial port is automatically opened by launching the 

port initialization codes at the same time. These initialization codes are basically built in 

functions and structures that are obtained from the Seria!Mgr.h header file. 

In order to connect to the port, certain details regarding the type of transmission, the baud 

rate, number of start bits, stop bits and type of parity has to be configured. All these tasks 

have been made easy by an in-built class called the SerSettingsType structure. The 

following is a snippet of the coding from the C++ program in order to declare the 

required configurations for the serial port. 

SerSettingsType SerCommSettings.· 

CommFlags serSettingsFlagBitsPerChar8iserSettingsFlagStopBits21 

serSettingsF/agParityEvenM,· 

ifspecify 8 characters per bit.2 stop bits. Even parity 

1/Commflag is also an in-built structure 

In order to implement the coding to connect to the port, certain functions have to be 

called. The following is the code snippet that connects to the serial port and sets the 

attributes by declaring the SerSettingsType structure that was created above. 

-45-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

#define PORT 0 

error= SysLibFind("Serial Library", &gSerRejNumber); 

error= SerOpen(gSerRe.fNumber, PORT. Baud),· 

!/Open Serial Port at specified baud. Port!D rerurned to 

1/gSeria/PortJD 

• 

SerCommSettmgs.baudRate = Baud: 

SerCommSettings.flags = CommF!ags,· 

//Set liz specified baud rate 

1/Setflags 

error= SerSetSettings(gSerRejNumber. &SerCommSettings); 

!/Set communication settings 

The SysLibFind is a function used to get the reference number for a library. Since "Serial 

Library'' was specified as the parameter in the command, this function returns the serial 

number for the serial library. This number is used in order to open the serial port 

(SerOpenPort). As can be seen, the SerCommSetting is the structure that contains all the 

information regarding the specifications of the serial port connection. After opening the 

port, these settings were applied to the serial port using the SerSetSettings function. 

Appendix K provides a brief overview on the ready-made function and structures that 

have been used in order to create the program. 

Besides the programming that has been done to achieve the successful connection and 

data transfer, it is also important to acknowledge the fact the serial port contains a UART 

that performs the transfer of serial bits to a single byte. In this case, the UART in the 

serial port reforms the bytes by striping away the overhead bits that have been added. 

4.2.3.4 Bytes conversion subroutine 

The byte conversion subroutine is the portion of the program that functions to convert the 

bytes received into its ASCII representation of the number in order to properly display it. 

For instance if a bytes OxOO is received, in order to display OxOO, it has to be converted in 

to Ox30 and Ox30 where 0 is represented as hex 30 in ASCII. The data is received by 

periodically checking the function 

-46-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

error= SerReceiveCheck(gSerRefNwnber. &NumberOfBytes),· 

!/Retrieve the number of' bytes to be retrieved 

while (NumberOJBytes) 
{ 

//Retrieve data 

SerReceive(gSerRefNumber. &chrArray, 1, 0, &error); 
!/Retrieve byte one at a time into chrArray 

if'(error == serErrLineErr) SerClearErr(gSerRejNumber); 
!/Clear Error on Line Error 

if! error) 

i 
SerReceiveFlush(gSerRefNumber, 1),· 

!/Clear bz!ff'er on error 

• 

i = 0: /!Reset Array Index 

else 
' ' 

f 

, 
) 

NumberOfBytes = 0; 
return; 

i++ · //Increase Array Index 
NumberQfBytes--: !/Decrease number of' bytes to be retrieved 
FieidP = GetObjectPtr(Main_ReceivedFromExternalField); 

!/Get Pointer to Field 
StrCopy(&gMessageToDisplay[O}, &chrArray); 

//Copy into display string 
StrCopy( &gMessageToDisplay[J}, ""); 

!!Terminate with NULL 
ConvertMessageToDisplay(); 

//Convert character to hex !(non-printable 
DisplayData(Fie/dP): 

UpdateScrollBar () : 
chrArray = '10'; 
trnp&!ffer = 'lO'; 

!/Display Data into above Field 

//Reset array 
//Reset buffer 

; /i end while loop 

When the SerReceiveCheck function returns a value through the NumberOfBytes 

parameter, this means that data is available. Upon receiving an indication that there is 

incoming data, the program then enter a while loop that will last for the same number of 

cycles as the lengths of the incoming bytes. SerReceive is the function that is used in 

order to receive the bytes one by one. The reasons only one byte is received at one go is 

-47-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
because this was specified in the SerReceive function. After receiving the data (one byte), 

it is then processed so that it will be converted into its ASCII representation. The function 

that does this is the ConvertMessageToDisplay function. 

void ConvertMessageToDisplay() 
{ 
lnt DecNumberToConven; 
DecNumberToConvert = (int){(wzsigned char)(gMessageToDisplay[Oj)): //Get character 
ConvertToHex(DecNumberToConvert); /!Convert to hex 

This function in turn gets the equivalent decimal value of the incoming data. The decimal 

value is then sent into another function, the ConvertToHex function. This function was 

created in order to convert the bytes to its ASCII representations. Given below is the 

snippet of the code illustrating how the ConvertToHex function actually transforms the 

bytes into its ASCII representations14
• 

' ' 

void Convert1oHex(lm NumToConvert) 

Ulnt tmpNumber = 0: 
Ulnt counter = 1: 
Ulnt i = 1.· 

StrCopy(gMessageToDisplay, "").· 
do 
:J 
I 

z{(counier == 1) 

I /Clear String 

(tmpNumber = NumToConvert/16); //Calculate upper nibble 
else 
(tmpNumber = NumToConvert- (tmpNumber * 16));!/Calcufate lower nibble 

switch (tmpNumberi 
/!Add appropriate values 

f 
I 

case 0: 

case 1. 

StrCat(gMessageToDisplay, "O'J; 
break: 

StrCat(gMessageToDisplay, "1 '~; 
break: 

14 refer to Appendix I in order to view the ASCII table. 

-48-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

case 2,' 

case ,'r· 

case 4.' 

case 5,' 

case 6: 

case 8' 

case 9." 

StrCat(gMessageToDisplay, "2"); 
break' 

StrCat(gMessageToDisplay. "3 "); 
break: 

.StrCat(gMessageToDisplay, "4':),' 
break; 

StrCat(gMessageToDisplay, "5"); 
break: 

StrCat(gMessageToDisplay, "6"); 
break.' 

StrCat(gMessageToDisplay. "7"),' 

break; 

StrCat(gMessageToDisplay, "8'~; 
brea/c 

StrCat(gMessageToDisplay, "9"): 
break: 

case /0: 
StrCat(gMessageToDisplay, "A'~.· 

break: 
case U: 

StrCat(gMessageToDisplay. "B"); 
break.: 

case 12: 
.StrCat(gMessageToDisplay, "C") .. ' 
breaK,' 
case 13.· 
StrCat(gMessageToDispiay, "D"); 
break,' 

case 14 .. ' 
StrCat(gMessageToDisplay, "E':),' 
break: 

case 15.· 
StrCat(gMessageToDisp/ay, "F"); 
oreak,' 

#if( debug) 
default.· 

.StrCat(gMessageToDispiay, "0"): 
break· 

-49-
Universal "Chip Based Smart Card" Snooping Device 

• 



Dimitri Denamany ( 1467) 
Final Year Project Report 

#end if 
!//End Switch 

coumer--. 
i++,· 
} /!End While 
while (counter k -i); 

! !IEI1d Function ConvertToHex 

4.2.3.5 Data Interpretation 

• 

The data obtained from the snooping device via the PALM C++ program is very 

meaningful. As explained in section 4.2.1, there are basically two main types of data 

formats that are used, the Answer to Reset (ATR) and the Application Protocol Data Unit 

(APDU). 

4.2.3.5.1 ATR Standard Format 

The ATR is a string of characters returned from the card indicating a successful power-up 

sequence. The total length of the ATR sequence is limited to 33 bytes and must adhere to 

the following format: 

Name NUinber Fllllction ' Pres~ 'c . ·' .·.. ' •· 
TS I Initial Character Mandatory 

TO I Format Character Mandatory 

TA;, TB;, TC;, TD <15 Interface Optional 

i Characters 

Tl, T2 ... TK <15 Historical Optional 

Characters 

TCK I Check Characters Conditional 

Table 4.2. The Answer-To-Reset structure 

TS and TO are the only mandatory bytes in the ATR sequence. As previously described, 

the initial character TS is used to establish bit-signaling and bit-ordering conventions. TO 

is used to indicate the presence or absence of subsequent interface or historical 

-50-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
characters. The upper 4 bits (bits 5 - 8) are designated Y I and signals the presence of 

optional characters based on a logic 1 in the following bit positions: 

• Bit 5 indicates TAl is present 

• Bit 6 indicates TB 1 is present 

• Bit 7 indicates TC 1 is present 

• Bit 8 indicates TD 1 is present 

The lower 4 bits (bits 1 - 4) are designated K and is interpreted as a numeric value in the 

range 0- 15. It indicates the number of historical characters present. 

The interface characters are used to select the protocol used for subsequent higher-level 

communication between the smart card and the reader. ISO 7816-3 defmes two protocols: 

the T=O protocol and the T= 1 protocol. T=O is an asynchronous character-oriented 

protocol where an acknowledgement must be received for every byte that is sent. In 

contrast, T= 1 is an asynchronous block-oriented protocol where a number of bytes can be 

sent before an acknowledgement must be received. 

The historical characters are usually used to indicate the type, model and use of the 

specific card. The manufacturer or card issuer generally defmes these. There is no 

established standard for the data in these historical bits. The check character (TCK) used 

to determine whether a transmission error occurred in sending the ATR from the card to 

the reader. TCK is a checksum calculated such that performing a bit-wise exclusive-or 

(XOR) operation on all bytes in the ATR from TO to TCK results in an answer of zero. 

Refer to Appendix J for a more detailed table of the ATR. 

4.2.3.5.2 APDU Standard Format 

The APDU is a string of bytes that have been formatted according to a standard format 

that make up a command to the smart card. In return, the card will also always reply with 

its own. standardize response. This response indicates the success or failure of the 

command and may also have information attached to it if requested by the command. 

-51-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

~ 
0 

·.;: 
" 

t~ 
;: .... 

.£1 "' " 
,;; 

CLA INS 

'-
~ ., 
E 
<l 
'-
H.. 

Pl 

Header 

I 

• 
<\: 

"' .: 
0 
c.. 
"'· ., 

<l <l .... .... - '-
"' ,g ·o g 0 c 
'- <l ~~· 

"' ''· E ~-c 
+- 0 

E 0- ~' 

"" ..<: ..r::.+-
E +- 0 -... 
"' 

<:f\V .,.., 
a ,;; 5 s,:-0.. ., 

"' )< 0.. ._j ""!v -' ., 

P2 tG·felj !)ata F-Felj 

Figure 4.7: APDU format 

Figure 4.7 shows the basic format for the APDU. The 5 bytes shown at the beginning are 

called the header of the APDU. The CLA and INS bytes are indications of the type of 

command that is being invoked. Bytes Pl and P2 on the other hand are bytes that contain 

the setting for certain options that are related to the command. The Lc field indicates the 

number of bytes that would be trailing the APDU header. The data portion is filled up 

with the necessary information if there is anything to be sent to the card .The final byte, 

the L. field is also optional as the use of it depends whether or not the card reader expects 

data to be transmitted from the card. 

f,\.1 

0 " 5 '-0 

3: s 

"' 
1!.•1 

:::1 .::I .... 
~ <:! - .... 
'1.1)' ~"" 

I Do.ta 

Boay (optoonal) 

Figure 4.8: APDU response format 

-52-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany ( 1467) 
Final Year Project Report • 
Figure 4.8 shows the standard APDU response format. For every command (APDU) sent 

to the card, the SWl and SW2 (which are known as the status word) are two compulsory 

bytes that must be sent from the smart card to the reader after every command. These are 

the two bytes that indicate the success or failure of the command. Figure 4.9 gives a brief 

overview on the possible values of the return code. 

/rnNm<Odo"" 
precess completed pr·ocess abortea 

I \ I \ 
nor·mal 

process~r.q 

I -
6!XX' 
'9000 

\~Jarr,~ng 

?ce,ng 

'62XX '63XX 

" 

execuhor· 
error· 

/'\ 
64XX' 65XX' 

/ 

checkrng 
error· 

I 
'67XX 

'6FXX 

Figure 4.9: Classification scheme for the APDU return code (SW) 

The data field that precedes the SW field in Figure 4.8 is the data that will be sent from 

the card (if the command succeeds) to the reader. The length of this field is stated in the 

APDU in the Le field. 

A sample of the data Jog obtained from the snooping device can be seen in the following 

section. The data transmission between the card and the smart card reader is briefly 

discussed in this section in order to give a better understanding of the Jog based on the 

information that has been presented above. 

-53-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

4.3 ELABORATION ON THE FINAL OUTPUT 
• 

Figure 4.10: Sample log that was obtained from the snooping device program during the data transfer 

Figure 4.10 is a sample log that is obtained during the insertion of a smart card into the 

smart card reader. The text Palm emulator displays a portion of the data communication 

that took place (first few lines). There are many more commands that were executed at 

the bottom of the display. However, for the sake of illustrating the data transmission, 

focus will be given to the first few lines. 

As stated in the report the transmission normally begins with the card transmitting its 

ATR. This is followed by the PTS if necessary and the rest of the commands are basically 

APDU's and responses. 

-54-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
The following is an exact copy of the data in Figure 4.10 with the lines numbered for the 

ease of illustration. 

Line I : 3B951840FF6201020104F0220700 

Line 2 : 009000 COA4000002A43F006114 CO 

Line 3 : A4000002A40000610FCOA4000002 

Line 4 : A43F006114 COA400COA4000002A4 

Line 5 : 3F006114 COA4000002A43Fl!61!4 

Line 1 (beginning) is the first transmission that is from the card. As stated the first 

transmission is always the ATR. Hence 3B951840FF6201020104 is actually the ATR of 

the card. Elaboration on the meaning of each byte can be obtained from Appendix L and 

section 4.2.3.5.1. In order to verify that those bytes were actually the ATR, certain smart 

card software was used in order to check the ATR. 

,, ,,,., ~ ,,,, ll!ii'-.' ~~'d' 

Ble !:a~d roo~s; t!BlP 

~ q'S:! .)'\''e• # 1M 'f 

<' .... E.~---~~- ~p 
' 0 S!eMaro::l Log Scr1:C Lo.;! 

- :1 --~--~.~~~ 
~~Log ~Log 

:-~ I 01. J._~ 21_3_1_-4~t-5"1'61 ·:~ -~-1 9_1l~lll_l_~_zm_l_l_~!l$U6111il~IHI~O-IUI_ 
.. • 

;_~:-I 0.1 11 21 3l415t"6'f 'l'l IH ~1101llllZ:U3U"IUilt>ll.71l!lll9120J2"ll 

. 
. I 

' 
:L-------------------------~:L'----------,-------------.--~ 

Figure 4.11: Image smart card software used (Schlumberger Smart Card Toolkit) 

-55-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

, Schlumbe1t;e! S!lidil Ca1 d lnolk11 

EJ1e >;.ard Iools t!elp 

Figure 4,12: Taking a closer look into the program screen shot (area marked in red) 

• 

Figure 4.11 shows the smart card software that was used, the Schlumberger Smart Card 

Toolkit. When the card has been inserted, the ATR of the card appear at the portion 

marked in red. A closer look at that portion is shown in Figure 4.12. Note that the ATR in 

the software and the ATR in Line 1 is exactly the same. 

As stated in section 4.2.1, after the transfer of the ATR bytes, the programs proceeds with 

the command (APDU) and response sequence as most of the time the PTS bytes are not 

needed. In the log shown, the PTS bytes are not needed as Line 4 onwards basically 

corresponds to the APDU format. 

The bytes in Line !(ending) and 2 (beginning) are F0220700009000. Breaking the bytes 

into two portions, we can see that the command APDU is actually F022070000 where 

else the response status word (SW) is 9000. Refer to figure 4.9 to check up on the 

returned status word. 

. 
Command APDU Responsesw 

.·.· ·. .• .... 
CLA INS Pl P2 Lc SWl SW2 

FO 22 07 00 00 90 00 

Table 4.3: InterpretatiOn ofLme 1(Endmg) and Lme 2 (begtmnng) 

-56-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report • 
The data in Line 2 (middle) (COA4000002A43F006114) can also be classified using the 

same manner as stated for the command in Line !(ending) and 2 (beginning) above. 

However, there are certain differences between Line 2 (middle) and Line l(ending) and 2 

(beginning). First of all, since the Lc field is 02, this means that there are two data bytes 

that will trail the APDU header. The second difference is that sometimes, there are some 

extra bytes that are transferred to the smart card in order to act as a separator. These bytes 

are not actually part of the data packet. 

' Collliii.and APDU 
· .. R~p~llSt'SW ···.·· 

. 

CLA INS Pl P2 Lc Data SWl SW2 

co A4 00 00 02 3F I 00 61 14 

Table 4.4: Interpretation ofLme 2 (tmddle) 

From the table above, it can be seen that there is one byte that was missed out, the A4 

byte after the Lc parameter. This is the special byte that acts as a separator. By referring 

to Line 3,4 and 5, it can be seen that this byte and probably a CO byte is repeated in each 

and every APDU transfer. The status words that are returned are rather straightforward. 

All the communication from line 2 onward (after the ATR in line 1) complies with the 

standard APDU format. Hence, each and every APDU send to the card can be logged and 

the response sent from the card to the reader can also be documented. 

This repeats until the card is disconnected or reset. If the card is reset, the data 

transmission starts all over again with the transmission of the ATR and the corresponding 

APDU's as shown in Figure 4.10. 

-57-
Universal "Chip Based Smart Card" Snooping Device 



5.1 

5.2 CONCLUSION 



Dimitri Denamany (1467) 
Final Year Project Report 

CHAPTERS 

RECOMMENDATION & CONCLUSION 

5.1 RECOMMENDATION 

• 
The device created was successful as it ts able to effectively snoop on the 

communication between a smart card and the smart card reader. The snooping device is 

portable and is able to functions at various speeds depending in the smart card reader. 

Nevertheless, there are still a few modifications that could be made to the device in order 

to further improve its functionality. 

1. Integrate all the snooping and communication modules into a single device 

that can be neatly connected to the processing module, the Palm. 

The idea that could be used in order to do this would probably be do create a box 

like device where all the circuit could be placed into it. This box would probably 

have a slot to connect to the Palm and another slot to accept actual smart card. 

The d=y smart card can be extended from this box and connected to the actual 

smart card. 

2. Improve the snooping program in order to be able to not only accept and 

format the data but also interpret and differentiate between the ATR, 

standards smart card command and the retorned status word. 

Currently the snooping program accepts the transmitted data and displays it on the 

Palm device. The data displayed is complete but the method as to which it is 

displayed could be made easier. Each function and its retuned status word are 

recorded sequentially without any differentiation between them in the display. If 

the program could read and make sense of the bytes , it would be possible to 

format the data so that it displays the commands as a set. 

This can be done by referring to the ISO 7816 standard. Since the format has been 

clearly illustrated, it should be possible for the program to process he data at a 

higher level. 

3. Convert the device in order to be able to connect to the USB port also. 

This would be a good idea in order to make the data transfer rate faster hence 

ensuring that the snooping device does not miss out on any data bytes. 

-58-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

5.2 CONCLUSION 
• 

The main objective of the project was to design a "chip based smart card" snooping 

device that was both portable and affordable. This device was successfully designed and 

implemented using various devices and methods that have been worked on for the entire 

duration of the project. 

The final design for the project involved a hardware configuration that can be classified 

into three modules. The first module, the snooping module is a combination of two 

specially engineered components that are used in order to tap on the required signal lines 

between the card and the reader. The second module, the communication module 

functions to encode the signals into the required voltage levels and format for the serial 

port. Lastly, the processing module accepts the data through the serial port, processes it 

and displays the byte exact byte transfer in the screen. 

The processing module for the final design was a PALM device that was an affordable 

and more importantly, portable device. In addition, an initial prototype that implements 

the PC as the processing module is also available as this was a preliminary design for the 

project. In both designs, the data log that was created in the processing module complies 

with the IS0-7816 smart card communication standards. This standard is the basic byte 

transfer format for the communication between the smart card and the smart card reader. 

Hence, this verified the design of the devices and ensured confirmed the reliability of the 

obtained result. 

All in all, the all the project objectives have been achieved and the importance and 

significance for a device such as the Universal "Chip Based Smart Card" Snooping 

Device in smart card related implementations has been entirely fulfilled. 

-59-
Universal "Chip Based Smart Card" Snooping Device 



~ 
' 
I I 
' 

.j I ' ! I I 

' II II I I 
. I I I 
II I 

\ 
II I ~ ' I I 

I I ' i 

II I ' 

II 
I 

I 
I 
I 
I 

I I 
I I 

; I 
: i 

I 
! ·i 

I '' 
I 

, ! ; I 

I I 
I I 
' II 

I 
I I 

I ' 

II: 
I 

I 
I I 
I I 
I 

I I 

I 

I 

I 
I' I I 

' I I I 
' 

I 
I 

I 
I 
I 



Dimitri Denamany (1467) 
Final Year Project Report 

Books 

CHAPTER6 

REFERENCES 

[1] William Stallings, Data and Computer Communication, Sixth Edition 
2003,Prentice Hall International Inc. 

• 

[2] Henry Dreifus, Smart Cards:A guide to building and managing smart card 
applications , 1st Edition 1996, John Wiley & Sons Inc. 

[3] Jose Luis Zoreda, Smart Cards, 1'' Edition 1994, ARTECH HOUSE Inc. 

[4] Robert MykLand, PALM OS Programming from the Ground Up, 1st Edition 2000, 
McGraw-Hill 

[5] Steve Mann, Advanced PALM Programming, I'' Edition 2001, John Wiley & Sons 
Inc. 

[6] Eric Giguere, Palm Database Progranuning, 1st Edition 1999, John Wiley & Sons Inc. 

[7] Jose Luis Zoreda, Smart Cards, 1st Edition 1994, ARTECH HOUSE Inc. 

[8] PALM OS SDK Documentation 

Softwares 

[9] Microsoft Software Developers Network (MSDN) October 1999 

[10] Microsoft Visual C++ 

[11] Code Warrior Lite for PALM OS 

[12] PALM OS Emulator 

Websites 

[13] www.codeproject.com 

[14] www.codeguru.com 

[15] http://www .epanorama.net/linksipc/interface.html#serial 

-60-
Universal "Chip Based Smart Card" Snooping Device 



Dimitri Denamany (1467) 
Final Year Project Report 

[16] htto://www.maxking.co.uk/iso78161.htm 

[17]http:/ /freebsd.unixtech.be/doc/en US.IS08859-llarticles/serial-uart,i 

[18]http://www.bVterunner.com/16550.html 

[ 19] http://www .acti vxpe11s .com/ acti vcomport/progruart/ 

[20] http://www.palmos.com 

-61-
Universal "Chip Based Smart Card" Snooping Device 

• 



Appendix A 

Smart Card Development Diagram 



APPENDIX A: Smart Card Development Diagram 

c Apps 

11 B d C 
7/16/2003 

S m a rt C a r d s D e v e I o p m e n t 
Java 
Apps 

VB Apps 

Transfer of APDU's to 
the smart card. 

C. rY f' IQAP I 
ApplicatiOns 

Schlumberger 



AppendixB 

Project Gantt chart 



APPENDIX B: Pro_ject Gantt chart for 1"1 half of Project 

No. Detail! Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

~ 
I Selection of Project Topic 

2 Submission and Conformation of Topic 

3 Preliminary Research Work 

- Possible Hardware Designs Creation 
- RS232 Components Identification 

4 Submission ofPrelimioary Report 

~ 5 Testing and conformation of hardware design 

6 Research Work 

- Smart Card Communication 

-UART 

~ 7 Research Work 

-MAX232 

-COM port -RS232 communication (VC++) 

8 Submission of Progress Report 

~ 
9 Testing card input lhrough RS232 (VC++) 

10 Creation of the software to interpret the data 

11 Hardware manipulation and iotegration 

12 Submission oflnterim Report Fioal Draft @ 

13 Submission oflnterim Report 

14 Oral Presentation 

• IS August 2003 

* 12 September 2003 

® I 0 October 2003 

* 22 October 2003 

@ TBA 

• 
liiil 



~ Jc -- I ----- -1 ----1'sunJ8rt18 j SunJan25 SunFeb1 I SunFeb8 I SunFeb15 i SunFeb22 

'---~-- ~~-N. _•rn_ ~~.-.. -. -. -~~-.-. ----------------· _ _!?_u_-_~~!9_ .. ~-----L. --.· .. St·a· rt. __ . ------.. _ F ... in.ish. ___ __ .-. --"--~~-~ _ _1_ ___ _1 Week 2_ Week 3 1. _We_~-~-~ Week ~ I_" Week 6,_ vvt:eK r 
1 

1 

Processing Module 51 days Mon 1/26/04 Fri 4/2/04 

',~~~=~- PrelimlnaryR~se:arch · - -- 10~ays· ~on1/26/04_- · · --~~-216~~4• 
3 _ Microcontrol!ers 1 wk Man 1/26/04 Fri 1/30/041 

, __ 4j Palm Devices f Wk-- MOri2/2td4 - Fri"2i6/64 11 

5 1 LogQirlg DeviCe Selection 1-Wk MOn.2/9i04 Fil2i13/64. 

~l 
Research Wofk 

sOttw;:ire and Hai-dware fdentiflcation 

-Pi-ogrammirig Study 
-g--l Pi-oCessinQ -MOdule ProgramrriiriQ 

10-1 -SOftWare TeSting 
~111 . . . 
, __ f2~ Snoopiilg & Conimunlcatlon -Mod-Uie 

:~~1~3 H·ai-dW. ··re_~-~--~~-g.n "_"~ i=~-brlcat!Orl 
14 Dummy Smart Card 

, ___ 15_ Connector MOdUle 

-16~ 
17 ' 

H'a.i-dWare. li1tegration-

--18--i Mcidules li-Jtegn:ltiOn 

15 days 
-1- wk-

2Wks 
3 Wks-· 

.. i wk 

21 days 
21 days 

1 wk 

1 wk 

iWks 

1 wk 

--MOri-2J16i04. 

Man 2/16/04 

. MOn -:212'3io4 

rVlOn 3!8!04 

MOn 3/29/04 . 

rViOrl -1-J26J04 

MOn 1i26ro4 
-- M·o·n 1126164 

Mcin 2/2/04-
-- rvi"cii-i 2-1~1104 

MOn. 4/5i04 -· 

-Fri '3/s/o4 
· Fr!'272bti:i4 

Fi-1 '3J5/o4-

Frr 3i26fo4 
.. Fi-14/2/0lf 

Fri 2/20/04 

_Fr~-~/2~/04_, 
_ Fri 1!30/0~ j 

Fri 2/6/041 

i='rt-2/io/64-

Fri 4191041 

, ___ 
26 

, ___ _ Fr(4h6to4:1 

=d Progre.sS Re···pcirt ~ _ o days .F.· __ rf 21.1 ·3/~~- Fri ~i-~ ·3·/·0·4 __ -
1

1
, 

19-l Testlrig a"nd Ti-OubieSh-ociting- 1 wk Man 4112104 

_ 22 -I Progress Report 2 0 days Fri 3/19/04 Fri 3/19/04 1 

,_!2 1 Draft _Report_ _ _ 0 _d_ays __ .. ~on 41~/o: ·- ~-o_n _4i5/041 

'-~~_j Final_ Re~ort(So_~ Cove? 0 days We_d 4/21/04 W_ed _4~2_1!04j 

....-- ---~~~ -.....-

....--------------------.---·-· ...... 

+Feb 13 

25 , Oral Presentation 0 days Wed 5/5/04 Wed 5/5/041 

'_26-~ Extended"Abstfact_ _ 0 days Fri-_5121104 F_r(512_11041 I 
,_271 Final Report (Hard Cover) 0 days -Fri 6/4/04 Fri 614/04 , i 
, ____ j_ __ ~-~----·---~~-----~-------~~---·---~-------------L--------------------·---------~~---~-~----~·--------·-- --~-~_j 

Project : FYP (Sem 2) Gantt Chart 
Name : Dimitri Denamany 
Project · Universal "Chip Based" Smart Card Snooping Device 



Project 
Name 
Project 

(~.) Mar 19 
"-·-· 

FYP (Sem 2) Gantt Chart 
Dimitri Denamany 
Universal "Chip Based" Smart Card Snooping Device 

Apr5 

T Apr 21 

~l May5 

May21 * Jun4 



Appendix C 

Final Design Specification 



APPENDIX C: Final Design Specification 

General Block Diagram of Hardware Design 

Dwnmy Smart Card Actual Smart Card 

Host Gadget that 
has a smart card 
reader attached 

to it. 

Point A 

Universal "Chip 
Based Smart 

Card " Snooping 
Device 

Connector 

Detailed Block Diagram of Hardware Design (First and Final prototype) 

Connector 

Wires 

Aluminum foil 

Dwnmy Smart Card 

Snooping Module 

.......................... Actual Smart Card 

' Serial Cable : 
' 
! 
i 
i 

\ 
! 
1 

l MAX232 
' 

Communication Module 

Monitor/ 
Screen 

(Display) 

I 
PC/ 

PALM 

Processing 
Module 

' 



Schematics ofthe connection from the MAX232 to the RS232 (DB9) cable 

1 
.!! 6 
"' 2 E 7 
!1 30 13 12 
"' a cc 4 
Q 90 

5 
8 9 

10uF 

"J+ 10uF Vee Gnd 
RST v 
CLK 1/0 

1;\ 

Smart card 
chip 



AppendixD 

MAX232 Test Circuit Schematic 



APPENDIX D: MAX232 Test Circuit Schematics 

MAX232 Chip Pin out 

(• )iloo-·~1--'-"~~ 
fTI..JCMOS 

INFurS ~ 
l .... -'-'=+-=-41--t 

Tn.JCMOS·{· 
OUTPUTS 

9 R20\Jt 
1;._ -<E---'+-="'"'-U::..I 

TlO<..JT 14 

} 
AS-232 

T2om 
7 

OUTPUTS 
X}--~~· 

MAX 232 



Test Circuit 

In order to test the chip, a high (SV) input and a low (OV) was inserted in pin II. The 

output voltage was the measured using a multimeter and recorded. The recorded value 

was then compared against the theoretical value. 



Appendix E 

PALM Software and Programming 

Basics 



APPENDIX E: PALM Softwares and Programming Basics 

E.l. PALM Softwares 

After deciding on using the PALM as the processing module, a thorough research was 

done on the various tools needed for PALM programming. The research identified the 

following softwares to be the main requirements for programming:-

•!• PALM OS Software Developers Kit (SDK) 

•!• Code Warrior Lite 

•!+ PALM OS Emulator 

•!• PALM Handheld Software 

All the above stated softwares were downloaded from online sources. The following is a 

brief description of each of the softwares 

E.l.l PALM OS Software Developers Kit (SDK) 

The PALM SDK is basically a bunch of files that contains the various header (.h) and 

library (.lib) files that are used in order to program the PALM. These files are needed in 

order to implements the thousands of predetermined function calls that have been 

outlined in the PALM Programmers Documentation that comes with the kit. The 

documentation provided with this install is also very helpful as it is basically a complete 

guide to PALM programming. In the documentation, there is an implementation of a 

Serial Manager class which contains the various functions in order to manipulate the 

serial port of the PALM. This is a good indication that the possibility of the success of the 

project using the PALM is very high. 

E.1.2 Code Warrior Lite 

This software is the main tool used in order to create applications for the PALM. Code 

Warrior Lite is the target software where the programming for the PALM is done. This 

software has a built in compiler and debugger that makes it a complete development tool. 

Even so, the debugger actually needs the emulator (next section) in order to fully operate. 

Code Warrior also comes with another software called the Constructor. This software 



was specially created in order to design the User Interface of the PALM. The files created 

by the Constructor are then imported into Code Warrior Lite in order to link the 

programming codes to the User Interfaces. 

E.1.3 PALM OS Emulator 

The PALM Emulator is a unique software that is designed in order to test and debug 

applications without affecting the actual PALM Pilot system. The emulator is basically a 

virtual PALM device that runs on the PC. Hence, in order to test a device, it need not be 

physically downloaded into the actual PALM but instead it can be tested on the PC itself. 

In terms of debugging, the Emulator also plays an important role as it can be linked to the 

Code Warrior debugger. Upon loading the program into the emulator, the debugger is 

then executed hence allowing the developer to single step through the program via the 

emulator. The emulator most definitely is a useful tool as it saves the actual PALM from 

the abuse of corrupt and harmful programs. 

The only catch with the emulator is that it requires a .ROM file in order to function. A 

.ROM file is actually a carbon copy of the Operating system running in the actual PALM. 

Once obtained, this file is loaded into emulator in order for it to function. There are only 

2 ways of obtaining the ROM file for an emulator. The first method is to manually 

download the file from a PALM device. The second method is to apply for the file online 

and then mail original signed contracts to the PALM Head quarters at the USA in order to 

gain access to these files. 

E.1.4 Palm Handheld Software 

This software is the software that comes together with the PALM device that is being 

used. The purpose of this software (in regards to this project) is to help download the 

developed applications into the PALM device. 



E.2. PALM Programming 

E.2.1 Programming Environment Setup 

E.2.1.1 Overall Application Development 

As stated in the previous section, the Code W arior Lite software is the main programming 

environment that will be used in order develop the source code, and link all the required 

files in order to output a PALM executable application (.pre). For every PALM 

application that is developed, a project file has to be created in order to contain all the 

relevant source files, header files and resources files. The Constructor software on the 

other hand, is used specifically to create the resource file and save it in the project file. 

The emulator is the software used in order to run applications on the desktop computer as 

well as debug them 1. The following is a simplified step by step guide on how to create a 

PALM application. Note the fact that the PALM programs must include all of these steps 

but not necessarily in the given order. 

1. Create a project file using the Code Warrior. 

2. Set all the proper project setting in order to compile the project successfully. 

3. Design the User Interface of the PALM program using the Constructor 

software. This is a program that comes with the Code Warrior Installer. 

4. Save the interface files of the constructor programs into the "Src" folder in the 

Code Warrior project file. 

5. Close the constructor and re-launch the code warrior project. 

6. Add the constructor files to the project. 

7. Include the ".h" files from the constructor software into the Code Warrior 

".cpp" file in order to be able to link the User Interface objects and the 

program coding. 

8. Program the application based on the standard application writing format for 

PALM devices. Refer to section 4.1.2 for an explanation of the basic 

programming loop used. 

9. Download the program into the PALM emulator software. 

1 Refer to the previous section fur a detailed explanation of each software that is mentioned. 



10. Launch the debugger from the Code Warrior program in order to debug the 

application on the emulator. 

II. Single step through the program and effectively debug the application. 

12. Finalize the program and build a release version of it. 

13. Download the program into the PALM device using the software that comes 

with the PALM (PALM Quick Install) 

E.2.1.2 Debugging 

The method of debugging a PALM application is rather unique as they are two methods 

of doing so. The first method is to download the program into the actual PALM device 

and debug it in the hardware itself. The downloading of the software is not done normally 

via the PALM Quick Install software which is provided upon purchasing the PALM. 

Instead, it is done by the programming environment where the program is not fully 

transferred to the PALM but instead swamped in and out in order to monitor the variables 

and changes done to it. The instructions that are swapped in are based on the single 

stepping that is done or breakpoints that are set in the program. In order to setup the 

PALM device to debug the program, it must be firstly changed to the debug mode. This is 

done by typing "t .. 2" on the console with the stylus. In this mode, the PALM device is 

basically set to listen to whatever instruction that comes through the serial port. 

Nevertheless, manipulating the actual hardware is always never a good idea as corrupt 

programs might cause damage to the existing operating system on the PALM device. 

Hence, this is where the uniqueness and specialty of the second method comes into play 

The second method is implemented by debugging the program using an external software 

called the PALM emulator. The PALM emulator is a software that is designed to 

simulate the exact workings of a PALM device on the PC environment. PALM 

applications can be loaded into the emulator and ran in order to see the exact response of 

the PALM device towards the application. Every emulator program needs a .ROM me in 

order to function as the PALM applications will be run in this file. A .ROM me is the 

content of a PALM device OS along with all the data and settings that are in it. As stated 

in the previous section, the two method of obtaining the .ROM me is either by 

downloading it from the PALM device or by applying for it online. As far as debugging 



is concerned, the emulator can be linked to the Code Warrior software through certain 

setting. When the emulator is selected as the debugging tool and the debugger in Code 

Warrior is launched with the emulator running, the target application is automatically 

loaded into the emulator and the code is seen at its starting point. As illustrated with the 

actual hardware implementation, the developer can now single step through the program 

or set breakpoints in order to view that changes in the variables. The only difference 

between this method and the previous method is that the PALM device in this method is 

being simulated by the emulator. 

E.2.2 Basic PALM Application Loop 

A PALM program is actually an infinite loop that is executed until an indication to exit 

the program is submitted. It is categorized as an event based program that takes into 

consideration every possible occurrence. Basically when an application is launched it 

goes into a loop that detects events. When an event is detected, the program sends the 

type of event into several handlers that would either process or ignore the event. Once all 

handlers have responded to the event, the program goes back to waiting for the next 

event. Hence, the definition an "event based" application. For everything that is done on 

a PALM device, an event is generated. For instance, if a stylus is placed on the PALM, 

and event "penDownEvent" is generated an sent into the program. This event contains a 

complete structure where it also provides the exact co-ordinates of the stylus, the resource 

that it is touching and etc. All in all, everything that happens is reported to the event loop 

and processed immediately. The event loop is only terminated if a terminate command is 

sent to the program. 

In the event loop, the functions that will be called have been predetermined. There are 

several function that will be called by default in order to process each and every event. 

The following are the functions:-

!. PreprocessEvent 

2. SystemHandleEvent 

3. MenuHandleEvent 



4. ApplicationHandleEvent 

5. FrmDispatchEvent 

., · \E1Ki<IE1<1~ 
Rt'm.tin in J,Jt.f•.untill ll(.t 111 Lh'"'fo!: an ~o'\~tr.·l 
l.hoCr..:' i.s >Ill ~enL I ' ~"' 

~;~ll;u~<llrev.''0 
PR"~~;o;~ ..:0\~lll. • - t!,lo'll\!J~1l'G' ~..~lh t"t' \;,~\VIll~ Y•' I I> tl1i> a >)"'-"'ll fun<ti~n·.' ·I 
:.t-.: n~~(\f'::-i....;;.}J')':. ro.-tum. J ~~-~., p .. -nwt';.'-J:l'f.liraflili int~ll' 

''"'' 
(\.kmuH:.mdNE\'~n-;) 

~ Handl~ menu interl:we.j ~\''!0 
.j, 

Lh~l g~..~ .. ·n. I Is thi-; a Oll!lltf.' 1 . "'·' 
c .\jljlli,'ationHandkEwry 

' Lt.t.td frum l'o;;\,QJ.II'..:"~~. M"l '"~wnl ~"""~ 1~ tl1i-::. a lhn Lo.-.d:Ewnc 1 
hathilt~l~ fer r(tnll k\;ld-..-d. 

' "''' H lli~,~tdl "'~\:~;ill tt!Jpj)li('.Jii·.m ·.; ! 
h-~lndl~r ffll' fo.mn. G',•rmUi'!lll<hEI<rU 

+ 
:·"I Did "j'plkatk!ll handl<r :I 

1 .. • ... •mp t"tli'- .. ~\'ellt pa·o.;_~,;~Ul':!.": 

~no 

FnnH>l11dl0Ewnt ) 

"' I PI\~\ i(lt:' J~ault t.-"'fc\~t:ssing I 
r•.JI' t'Yt.~lll. 

The following is the typical source code for the event loop:-

static void EventLoop (void) 
{ 

Word error; 
EventType event; 
do 
{ 

EvtGetEvent (&event, evtWaitForever); 
PreprocessEvent (&event); 
if(! SysHandleEvent (&event)) 
if(! MenuHandleEvent (NULL, &event, &error)) 



} 

} 

if(! ApplicationHandleEvent (&event)) 
FrmDispatchEvent (&event); 

while (event.eType != appStopEvent); II terminate program command received? 

The following is a step by step explanation of the given source code 

1. Fetch an event from the event queue. 

2. Call PreprocessEvent to allow the datebook event handler to see the command 

keys before any other event handler gets them. Some of the datebook views 

display UI that disappears automatically; this UI needs to be dismissed before the 

system event handier or the menu event handier displays any UI objects. Note that 

not all applications need a PreprocessEvent function. It may be appropriate to call 

SysHandleEvent right away. 

3. Call SysHandleEvem to give the system an opportunity to handle the event. The 

system handles events like power on/power off, Graffiti input, tapping silk

screened icons, or pressing buttons. During the call to SysHandieEvent, the user 

may also be informed about low-battery warnings or may fmd and search another 

application. Note that in the process of handling an event, SysHandieEvent may 

generate new events and put them on the queue. For example, the system handles 

Graffiti input by translating the pen events to key events. Those, in tum, are put 

on the event queue and are eventually handled by the application. 

SysHandleEvent returns true if the event was completely handled, that is, no 

further processing of the event is required. The application can then pick up the 

next event from the queue. 

4. If SysHandieEvent did not completely handle the event, the application calls 

MenuHandleEvent. MenuHandleEvent handles two types of events: 

- If the user has tapped in the area that invokes a menu, 

MenuHandleEvent brings up the menu. 

- If the user has tapped inside a menu to invoke a menu command, 

MenuHandleEvent removes the menu from the screen and puts the 



events that result from the command onto the event queue. 

MenuHandleEvent returns TRUE if the event was completely handled. 

5. If MenuHandleEvent did not completely handle the event, the application calls 

ApplicationHandleEvent, a function the application has to provide itself. 

ApplicationHandleEvent handles only the fhnLoadEvent for that event; it loads 

and activates application form resources and sets the event handler for the active 

form. 

6. If ApplicationHandleEvent did not completely handle the event, the application 

calls FrmDispatchEvent. FrmDispatchEvent first sends the event to the 

application's event handler for the active form. This is the event handler routine 

that was established in ApplicationHandleEvent. Thus the application's code is 

given the first opportunity to process events that pertain to the current form. The 

application's event handler may completely handle the event and return true to 

calls from FrmDispatchEvent.In that case, FrmDispatchEvent returns to the 

application's event loop. Otherwise, FrmDispatchEvent calls FrmHandleEvent to 

provide the system's default processing for the event. For example, in the process 

of handling an event, an application frequently has to first close the current form 

and then open another one, as follows: 

- The application calls FrmGotoFom1 to bring up another form. 

FrmGotoForm queues a funCloseEvent for the currently active form, 

then queues flmLoadEvent and fhnOpenEvent for the new form. 

- When the application gets the funCloseEvent, it closes and erases the 

currently active form. 

- When the application gets the frmLoadEvent, it loads and then activates 

the new form. Normally, the form remains active until it's closed. The 

application's event handler for the new form is also established. 

- When the application gets the funOpenEvent, it performs any required 

initialization of the form, and then draws the form on the display. 

7. After FrmGotoForm has been called, any further events that come through the 

main event loop and to FrmDispatchEvent are dispatched to the event handler for 

the form that's currently active. For each dialog box or form, the event handler 



knows how it should respond to events, for example, it may open, close, highlight, 

or perform other actions in response to the event. FrmHandleEvent invokes this 

default UI functionality. After the system has done all it can to handle the event 

for the specified form, the application finally calls the active form's own event 

handling function. 



Appendix F 

PALM Hardware Images 



APPENDIX F: PALM Hardware Images 

This is the PALM illxe cradle. The Palm will be placed on the cradle in order to connect to the serial port. 
The flat contacts seen on the cradle is connected directly to the pins in the female DB-9 connector 

The Palm placed on the cradle. The serial port on the Palm (refer to the following image) connect directly 
to the flat contacts on the cradle. 



The Palm serial port 



Appendix G 

Universal "Chip Based" Smart Card 

Snooping Device Snap Shots 



APPENDIX G: Universal "Chip Based" Smart Card Snooping Device 
Snap Shots 

Dummy Smart Card Connector 

Snooping module 

Communication Module 



The complete hardware setup for the snooping device 

The figure above illustrates the complete setup for all three modules and the method as to 

which it is connected. The white card is the actual smart card that is snooped on and the 

gray reader is the Schlumberger Reflex 72 v2 smart card reader. 



AppendixH 

Detailed Schematics of the Snooping 

and Communication Module 



APPENDIX H: Detailed Schematics of the Snooping and 

Communication Module 

· · • :Actu~t• smart car<~ • 

·············n·······~················ .. I ~~ ,=. =.= ... = .. = ... = .. =. =.= .. ~.~==. ll 
I I i I . • • • . ! •.. 

....... "! ~-· ~ i: ...... .L .. . 
. . . . . . . . . . . . . . . . ... i I ..... C1 ................ ·I· . 

.- ! • , I ~~.~·m·· ................ ~ .. 
• • r;:g'!!~!!; I · , l · · · :-,1, .· . · · · · · i · 
.· .. ·.n 

1
oo

1
· i 1 ' • • • .. • • • • • • • • • • • i · 

,.~~ j · · • : r · ... · · · · - · · t 

•••••••••••••••••• 'tl. +•t-i!l+•l ,tl, --' I ,L~~ r ' ~~\. riJ 1.:~ 
................ · ....... ·J, [ i ·~· ...... 1 .. "' ••• ~1 ... T .. cs. 

, i . . ·a· 14' '. . . -tauF . 
. . . • • • .. .. . . . • .. j' 1 I , . +. . . . . . . . ct· nour 1-f.' L_____, . . . . 

: : l c""''"", I 'I *"I ' ~: :::~ l: 
: : : : : : : ·: : : : : : : : : : : : UJJ· t uo ~~- _ ~ijf ~: ~; _ ; , 

:II ...... ·!·l·. 'Gnft' : IUIN IUDI.Ffp.:;:! ..... . ·I m .. L • """"· . ''I .. . ·it"!= . . C2 q:. · .. ·.. . ·I ... 1,DCD 

II . . . . . . • • . . . . .,. w . . . : I 2;RD 

Dummy Srnart Card · · · · · • ........ . 
. i. 3;tiL: 

This will be connected to 
the processing module 

l;otR • 
s;cmo• 
&;oslt 

r;Rts : I : 
a,crs •j: 
9-Rl . . . 



Appendix I 

ASCII Character Codes 



APPENDIX 1: ASCII Character Codes 

Cttl Doc Ho• Cba.I Coda Doc Ho• cw Doc H"" Chu Doc ilo• Ch>I 

"@ 0 00 NUL 32 20 sp 64 40 @ 96 60 . 
"A I 01 Q !OR 33 21 ! 65 41 lA '71 61 a 
"B 2 02 fl SIX 34 22 " 66 42 B 00 62 b 
·c 3 03 • EIX 35 23 # 61 43 c 99 63 c 
"D 4 04 .. ED! 36 24 $ 68 44 D 100 64 d 
"E 5 05 .Q. ENQ 37 25 ::1. 69 45 E 101 65 e 
"F 6 06 + ACK 38 26 a 'i!) 46 F 102 66 t 
"G 7 07 • BEL 39 27 ' 71 47 G 103 61 g 
"H 8 08 a BS 40 28 ( 72 48 H 104 68 h 
"I 9 09 0 HI 41 29 ) 73 49 I 105 69 i 
•] 10 OA &l LF 42 2A * 74 4A J 106 6A j 
"K 11 OB 4 VI 43 2B .. 15 4B ]( 107 6B k 
"L 12 oc \! !iF 44 2C 

' 
16 4C L 108 6C 1 

"M 13 OD r CR 45 2D - 77 4D 1'1 109 6D M 
"N 14 OE 11 :10 46 2E . 78 4E tl 110 6E n 
•o 15 OF '* Sl 47 2F .I 79 4F () lll 6F 0 
•p 16 10 ... su 48 30 9 80 so p 112 'i!) p 
"Q 17 II ~ CSI 49 31 1 81 51 Q 113 71 q 
"R 18 12 t DC2 so 32 :z 82 52 ]I 114 72 r 
•s 19 13 !! DC3 51 33 3 83 53 s liS 73 s 
"I 20 14 'II DC4 52 34 4 84 54 T 116 74 i 
·u 21 IS § NAK 53 35 !5 85 ss u 117 15 u 
•v 22 16 - SliN 54 36 6. 86 56 " 118 16 u 
·w 23 17 t EIB 55 37 7 87 51 u 119 77 w 
·x 24 18 t CAN 56 38 8 88 58 X 120 78 X 
•y 25 19 ... EM 57 39 9 89 59 y 121 79 y 
·z 26 lA -i> SIB 58 3A : 90 SA z 122 7A :z 
"[ 27 IB ... ESC 59 3B 

' 
91 SB [ 123 7B { 

"\ 28 IC L FS 60 3C < 92 sc ' 124 7C I 
I 

"] 29 lD ... GS 61 3D = 93 SD ] 125 7D } .. 30 IE ... RS 62 3E } 94 SE .A 126 7E -. 31 IF ... us 63 3F ? 95 SF - 127 7F ,ot -



Appendix J 

Screenshots of the Visual C++ 

program 



APPENDIX J: Screenshots of the Visual C++ Program 

This is the initial user interface when the program is started 

~.:;t'll;ll ( mnntumcat10n ' 
1~,~~ 

Monitor Receiving Me._ 

Monitor Sending Mess_.: 

,. Serial Control 

ltq;;ent!mfJi I 
I •.: .. · ~it·~:;ePooi _ 

I 
SendData I i 

' .[><il~aml\ 
L__ ....) 

Jssoo iJ 
JCDMl iJ 

After selecting the serial port and the Baud rate, the "Open Port" button is pressed 

Monitor Receiving Messages: 

Morular Sending Messages: 

We are now connected to the serial port 

j~i+~:ji:,:;.,.;u: ·,. :2!1: 
,-Status Poll-··-·-. 
; ' ! 

\- lcon~iecte:d I j 
L---~-------~---- ____ ! 

:·Serial Conttol ···-·· 

I :,,: jJpen :::-1.:/- _ 

g.,., Poll I I 
iend Data I j 
.[lli~am I i 

lssoo 3 
jcor.l1 3 



The RS232 (DB-9) male connector of the the PC is connected to the female connector on 

the communication module. Hence, all data transfer between the card and the reader 

would be logged. 

~Serial Communicatmn 1 ~ ;'VZ: < ~r~~~~:::_::r!''-!-,:.~ ~;_: : -~ 
Monitor Receiving Messag .. : 

00 
00 
38951840FF6201020104 
F0220700009000 
COA400000~43FOOS114 
COA400000~40000610FCOA400~43F0061 
14 
COA4000~43F11 6114 
COA40000~4002061 OF 

Mon~or Sending Messages: 

, .. Status Port ----, 

\ . lconned•3d I ! 
' , _______ .,__ ' 

1-- Serial Control ·-1 
j ( Q.pc:n P:Jr;· I ) 
i ~:~ose Port 1 \ 
I ~end Data I I 
~~-' &><it Plcgram : 

Cleat ; 
r.~__;. .... ~------·-----.J 

19600 ::1 
lcoM1 · ::J 

The receive pin picks up the data (as it is connected to the communication module) and 

displays it in the received text box. 



Appendix K 

PALM OS Functions and Structures 



APPENDIX K: PALM OS C Functions and Structures 

The following are the descriptions of some of the most important functions that were 

used in order to establish serial communication. In addition to that, the structure that 

registers the setting for the serial port is also illustrated at the end. 

K.l SysLibFind function 

Purpose Return a reference number for a library that is already loaded, given 
its name. 

Prototype Err SysLibFind (CharPtr nameP, UintPtr refNumP) 
Parameters 
nameP Pointer to the name of a loaded library. 
refNumP Pointer to a variable for returning the library 
reference number (on failure, this variable is undefined) 
Result 0 if no error; otherwise: sysErrLibNotFound (if the library is not 

yet loaded), or another error returned from the library's install entry 
point. 

Comments Most built-in libraries (NetLib, serial, IR) are preloaded automatically when 
the system is reset. Third-party libraries must be loaded before this call can 
succeed (use SysLibLoad). You can check if a library is already loaded 
by calling SysLibFind and checking for a 0 error return value (it will 
return a non-zero value if the library is not loaded). 

K.2 SerOpen function 

Purpose Acquire and open a serial port with given baud rate and default settings. 
Prototype Err SerOpen (Uint refNum, Uint port, ULong baud) 
Parameters 
refNum 
port 
baud 
Result 

Serial library reference number. 
Port number. 
Baud rate. 
0 No error. 
serErrAlreadyOpen Port was open. Enables port sharing by 
"friendly'' clients (not recommended). 
serErrBadParam Invalid parameter. 
memErrNotEnoughSpace Insufficient memory. 

Comments Acquires the serial port, powers it up, and prepares it for operation.To 
obtain the serial library reference number, call SysLibFind with "Serial 



Library'' as the library name. This reference number must be passed as a 
parameter to all serial manager functions. The device currently contains 
only one serial port with port number 0 (zero). 
The baud rate is an integral baud value (for example - 300, 1200, 2400, 
9600, 19200, 38400, 57600, etc.). The Palm OS device has been tested at 
the standard baud rates in the range of 300 - 57600 baud. Baud rates 
through 1 Mbit are theoretically possible. Use CTS and shaking at baud 
rates above 19200 (see SerSetSet tings). An error code of 0 (zero) or 
serErrAlreadyOpen indicates that the port was successfully opened. 
If the port is already open when SerOpen is called, the port's open 
count is incremented and an error code of serErrAlreadyOpen is 
returned. This ability to open the serial port multiple times allows 
cooperating tasks to share the serial port. Other tasks must refrain from 
using the port if serErrAlreadyOpen is returned and close it by 
calling SerClose. 

K.3 SerSetSetting function 

Set the serial port settings; that is, change its attributes. Purpose 
Prototype Err SerSetSettings (Uint refNum, SerSettingsPtr 

settingsP) 
Parameters 
refNum 
settingsP 
Result 

Serial library reference number. 
Pointer to the filled in SerSet tingsType structure. 
ONo error. 
serErrNotOpen The port wasn't open. 
serErrBadParam Invalid parameter. 

Comments The attributes set by this call include the current baud rate, CTS 
timeout,handshaking options, and data format options. See the definition 
of the SerSettingsType structure for more details. 

K.4 SerReceiveCheck function 

Purpose Return the count of bytes presently in the receive queue. 



Prototype Err SerReceiveCheck (Uint refNum, 
numBytesP) 

Parameters 
Serial library reference number. refNum 

numBytesP 
Result 

Pointer to location for returning the byte count. 
ONo error. 

ULongPtr 

serErrLineErr Line error pending (see SerClearErr and 
SerGetstatus). 

Comments Because this call does not return the byte count ifline errors are pending, 
it is important to acknowledge the detection of line errors by calling 
SerClear·Err. 

K.S SerReceiveFlush function 

Purpose Discard all data presently in the receive queue and flush bytes coming into 
the serial port. Clear the saved error status. 

Prototype void SerReceiveFlush (Uint refNum, Long timeout) 
Parameters 
refNum Serial library reference number. 
timeout Interbyte time out in system ticks (-1 =forever). 
Result Returns nothing. 
Comments SerReceiveFlush blocks until a timeout occurs while waiting for the 

next byte to arrive. 

K.6 SerReceive function 



Purpose Receives size bytes worth of data or returns with error if a line error or 
timeout is encountered. 

Prototype ULong SerReceive (Uint refNum, VoidPtr rcvBufP, 
ULong count, Long timeout, Err* errP) 

Parameters 
refNum 
rcvBufP 
count 
timeout 
errP 
Result 

Serial library reference number. 
Buffer for receiving data. 
Number of bytes to receive. 
Interbyte timeout in ticks, 0 for none, -1 forever. 
For returning error code. 
Number of bytes received: 

*errP = 0 No error. 
serErrLineErr RS232line error. 
serErrTimeOut Interbyte timeout. 

K.7 SerSettingType function 

The SerSet tingsType structure defmes serial port attributes; it is used by the calls 
SerGetSettings and SerSetSettings. The SerSettingsPtr type points to a 
SerSettingsType structure. 

typedef struct SerSettingsType 
{ 
Uint32 baudRate; 
Uint32 flags; 
Long ctsTimeout; 
} 
serSettingsType; 
typedef SerSettingsType* SerSettingsPtr; 

Field Descriptions 
baudRa te Baud rate 
flags Miscellaneous settings 
ctsTimeout Maximum number of ticks to wait for CTS to become asserted before 

transmitting; used only when configured with the 
serSettingsFlagCTSAutoM flag. 



Appendix L 

Answer To Reset (ATR) 



APPENDIX L: ANSWER TO RESET (ATR) 

I Character 
I ID 

TS 

I 
I TO 

TBz 

... TD; 

I 

... 
•. 

Definition 

Mandatory initial character 

Indicator for presence of interface characters 

Global, codes F I and D I 

Global, codes II and Pll 

Global, code N 

Codes Y 2 and T 

Specific 

Global, code Pl2 

Specific 

Codes Y3 and T 

TAi, TB; and TC; are specific 

Codes Y;+l and T 

I T1 Card specific information 

I ... TK (Maximum of 15 characters) 

~"'"'· · .---,.,..-.,...-,---'"c_ne_ek_·•"""·c-''11-itn""''·•~...,~te'.·· ... .-,. .-.$(!(.-. t:ti..., •• ~Qn"'"· . .-........ '..,-. .-.-.. • .... '"'" .. -•.. .,..· •. ;"'".~ •• -•.. """. ·"""'·""·.··• r- TCK2 Optional check character 

For a even more detailed specification and explanation of the ATR , refer to 

http:/ /www.hackersmssia.ru/Cards/Svncro/IS07816.php 



AppendixM 

Smart Card Communication State 

Diagram 



APPENDIX M: Smart Card Communication State Diagrams 

Communication between smart card and reader through a series of state transitions 

Appendix M .1 

"id.J.co" 

C""'""""' 
compkti.o.o. J --~ 

'j.'l.".ait 

SondAPDU 
to cmrl 

Reader State Diagram 

C.ud. imco11ion 



Appendix M .2 

® 
~A1R 

Di:.patch APDU 
to pl'OCC!i::!.OJ: 

Card State Diagram 



AppendixN 

Complete Source Code for the PALM 

Snooping Program 



**********************************************************************\ 

Title: 

Version: 
File Name: 
Author: 
Date: 
Language: 

Purpose: 

Universal 
II 

1. DO 

"Chip Based Smart Card" Snooping Program 

Snooper.c 
Dimitri Denarnany 
March 27, 2004 
c 

To snoop on the data communication lines between the 
smart card and the smart card reader 

II 

II 
II 
II 
II 

II II 

II 
II 

**********************************************************************/ 

elude <Pilot.h> 
.elude <SysEvtMgr. h> 
.cl ude <SerialMgr. h> 
.elude <Field.h> 
.cl ude <Window. h> 
.elude "Snooper_res. h" 

**********************************************************************\ 
Internal Constants I I 

**********************************************************************/ 

~fine appFileCreator 
~fine appVersionNum 
~fine appPrefiD 
~fine appPrefVersionNum 
,fine TRANSMIT_STRING_LENGTH 
~fine MAX_LENGTH 
~fine HELP_TEXT_LENGTH 
~fine PORT 
~fine errNone 

'BBPT' 
OxOl 
OxOO 
OxOl 
24 
60000 
255 
0 
0 

,lerts display only if in Debug Mode which is defined in stdhdr.h 
rse: dbgAlert {DebugAlert, "Stringl", 
'his will display a message box with 

"String2 11 
, " 

11 
) 

"Stringl: String2 11 

(debug) 
~fine dbgAlert (a, b, c, d) FrrnCustomAlert (a, b, c, d) 
se 
,fine dbgAlert(a, b, c, d) 
.dif 

Define the minimum OS 
~fine ourMinVersion 

version we support 
sysMakeROMVersion(2,0,0,sysROMStageRelease,O) 

**********************************************************************\ 
Global variables I I 

**********************************************************************! 

•lean 
.t 
·lean 
d 
r 
r 
.r 
ng 

gSerialPortOpen; 
gSerRefNUITiber; 
gisHex; 
gPrefsSize = 0; 
gReceivedFrornExternal; 
gTransmittedFromPalm; 
gMessageToDisplay[TRANSMIT_STRING_LENGTH]; 
Baud ; 

**********************************************************************\ 
Internal Function Prototypes I I 
**********************************************************************! 

d ClearScreenData(Word objectiD); 
d CloseSerialPort(void); 
d OpenSerialPort(void); 
d ReceiveData(void); 
d ConvertMessageToDisplay(); 
d DisplayData(FieldType* FieldP); 

d SaveTransrnitStrings{); 
d LoadTransrnitStrings(); 
d TransmitString(char strBuffer[TRANSMIT_STRING_LENGTH]); 
d RetrieveTransmitStrings(Word TextToTransrnit); 

1 



tt IsValidHex (char* chrBuffer) i 
tt ConvertToDec (char* chrBuffer); 
.d ConvertToHex ( Int NumToConvert) ; 

.d MainForminit(FormPtr frmP); 
,lean MainFormDoConunand (Word command) ; 
,lean MainFormHandleEvent(EventPtr eventP); 

.d TextForminit(FormPtr FrmP); 
,lean TextFormHandleEvent(EventPtr eventP); 

.dPtr GetObjectPtr(Word objectiD); 
· RomVersionCompatible(DWord requiredVersion, Word launchFlags); 
llean AppHandleEvent( EventPtr eventP); 
.d AppEventLoop (void); 
: AppStart (void); 
.d AppStop (void); 
)rd SerialCommPilotMain(Word crnd, Ptr crndPBP, Word launchFlags); 
)rd PilotMain( Word cmd, Ptr cmdPBP, Word launchFlags); 

ttic void Scroll ( int flag ) 
ttic void UpdateScrollBar () 
Ltic void EditViewScroll (Short linesToScroll); 

'**********************************************************************\ 
Internal Functions I I 

'**********************************************************************! 

'*********************************************************************\ 

II 
FUNCTION: ClearScreenData 

DESCRIPTION: Clear data from Transmit and Receive Fields 

II 
PARAMETERS: FieldToClear - Which field to clear 

RETURNED: Nothing 

REVISION HISTORY: II 
II 

'*********************************************************************! 
.d ClearScreenData(Word FieldToClear) 

FieldType* 
Handle 

CurrentField; 
TextHandle; 

CurrentField 
TextHandle 

rith field 

= (FieldPtr) (GetObjectPtr(FieldToClear)); 
FldGetTextHandle(CurrentField); 

if { TextHandl e) 
{ 
FldSetTextHandle(CurrentField, NULL); 

d to NULL 
MemHandleFree(TextHandle); 

te handle 
FldDrawField{CurrentField); 
) 

//End Function ClearScreenData 

//Get pointer to field 
//Get memory handle associate 

//Will return NULL if no text 

//Set handle of the current f 

//Free memory associated with 

//Refresh field 

*********************************************************************\ 

FUNCTION: CloseSerialPort 

DESCRIPTION: Close serial port 

PARAMETERS: none 

RETURNED: nothing 

REVISION HISTORY: 

II 
II 
II 

*********************************************************************/ 
d CloseSerialPort(void) 

Err 
FormPtr 
Word 

error = 0; 
frmP; 
Objectindex; 

2 



error = SerSendWait{gSerRefNumber, -1); 
!nt before exiting 

if (error== serErrTimeOut) FrmAlert(PortTimeoutAlert); 
display timeout alert 

SerClose{gSerRefNumber); 
frmP = FrmGetActiveForm(); 

//The following two lines hide the port open icon. 
//If you are connected to the serial port, 
//the icon is displayed, otherwise there is nothing there. 
Objectindex = FrmGetObjectindex(frmP, Main_PortOpenBitMap); 
FrmHideObject(frmP, Objectindex); 

gSerialPortOpen = false; 

//End Function CloseSerialPort 

//Make sure all data has been 

//If SerSendWait times out th 

//Close Serial Port 
//Get Pointer to Active Form 

//Set PortOpen to False 

'*********************************************************************\ 

FUNCTION: OpenSerialPort 

DESCRIPTION: Open serial port 

PARAMETERS: none 

RETURNED: nothing 

REVISION HISTORY: 

II 

II 
'*********************************************************************/ 
.d OpenSerialPort(void) 

Err 
DWord 
Word 
SerSettingsType 
ForrnPtr 
Word 

error = 0; 
CommFlags = 0; 
SizeOfFlags = sizeof(CommFlags); 
SerCommSettings; 
frmP; 
Objectindex; 

error SysLibFind {"Serial Library", &gSerRefNumber); 

if {error) 
( 
FrmAlert(OpenPortAlert); 

~d error message 
) 

error= SerOpen{gSerRefNumber, PORT, Baud); 
1rtiD returned to gSerialPortiD 

switch (error) 
( 

case serErrAlreadyOpen: 
another application 

SerClose(gSerRefNumber}; 
by sharing the serial port, 

FrmAlert(PortBusyAlert); 
break; 

case errNone: 
d successfully 

gSerialPortOpen = true; 
frmP = FrmGetActiveForm(); 
//The following two lines show the port open icon. 
//If you are connected to the serial port, 
//the icon is displayed, otherwise there is nothing there. 
Objectindex = FrmGetObjectindex(frmP, Main_PortOpenBitMap); 
FrmShowObject(frmP, Objectindex); 
break; 

default: 
FrmAlert(OpenPortAlert}; 

d error message 
break; 

SerReceiveFlush{gSerRefNumber, 200); 
ation didn't 

//Get Serial Reference Number 

//Default Open Serial Port fa 

//Open Serial Port 9600 baud, 

//Error checking 

//Serial Port is already open 

//Close port: problems can ar 

//Display port busy message 

//No errors returned, port op 

//Set flag to port open 
//Get Pointer to Active Form 

//Other Error 
//Default Open Serial Port fa 

//Clear port in case last app 

//Define Communications settings, set to default settings, 8,N,l, No Flow Control, 
//Since this is the default it can be omitted 
CommFlags = serSettingsFlagBitsPerChar8 I serSettingsFlagStopBits2 I serSettingsFlagParityEve 

3 



SerCommSettings.baudRate; Baud; 
SerCommSettings.flags ; CommFlags; 

error= SerSetSettings{gSerRefNumber, &SerCommSettings); 

if (error) FrmAlert(CommSettingsAlert); 
r message 

//End Function OpenSerialPort 

//Set baud rate 
//Set flags 

//Set communication settings 

//Set Comm Settings failed er 

k*********************************************************************\ 

FUNCTION' ReceiveData II 
DESCRIPTION: Receive data through serial port II 

II 

PARAMETERS' none 

RETURNED' Nothing 

REVISION HISTORY' 

~*********************************************************************/ 

Ld ReceiveData{void) 

Err 
DWord 
char 
Word 
FieldType 
char 
//VoidPtr 
I /pBuffer 

error ; 0; 
NurnberOfBytes; 
chrArray; 
i ; 0; 
*FieldP; 
tmpBuffer; 

pBuffer; 
; new char [9] 

if (l {gSerialPortOpen)) return; 

error; SerReceiveCheck(gSerRefNurnber, &NurnberOfBytes); 
:o be retrieved 

if (error;= serErrLineErr) SerClearErr{gSerRefNurnber); 
if (error) 

:o retrieve data. 
( 
//FrmAlert(CheckPortAlert); 

return; 
) 

if ((NurnberOfBytes + i) > MAX_LENGTH) 
tg than there is buffer space 

( 
NurnberOfBytes = MAX_LENGTH - i - 1; 

1r terminating null 
) 

II pBuffer =new char[NurnberOfBytes] ; 
while {NurnberOfBytes) 

( 
SerReceive(gSerRefNumber, &chrArray, 1, 0, &error); 

to chrArray 

if (error serErrLineErr) SerClearErr(gSerRefNumber); 

if (error) 
( 
SerReceiveFlush(gSerRefNumber, 1); 
i ; 0; 
NumberOfBytes ; 0; 
return; 
} 

else 
( 
i++; 
NumberOfBytes--; 

retrieved 
FieldP ; GetObjectPtr{Main_ReceivedFromExternalField); 
StrCopy(&gMessageToDisplay[O], &chrArray); 

4 

//Not connected 

//RetrieVe the number of byte 

//Clear Error on Line Error 
//If error, notify user unabl 

//Receive failed error messag 

//If there are more bytes wai 

//MaxBuffer- Array Index- 1 

//Retrieve data 

//Retrieve byte one at a time 

//Clear Error on Line Error 

//Clear buffer on error 
//Reset Array Index 

//Increase Array Index 
//Decrease number of bytes to 

//Get Pointer to Field 
//Copy into display string 



StrCopy{&gMessageToDisplay[l], ""); 
ConvertMessageToDisplay{); 

•n-printable 
DisplayData(FieldP); 

UpdateScrollBar {) 

chrArray = '/0'; 
tmpBuffer = '/0'; 
} 

J //end while 
//UpdateScrollBar {) 

//End Function ReceiveData 

//Terminate with NULL 
//Convert character to hex if 

//Display Data into above Fie 

I /Reset array 
//Reset buffer 

'*********************************************************************\ 

ConvertMessageToDisplay 

DESCRIPTION: This routine displays the data to hex format 
if necessary 

PARAMETERS: none 

RETURNED: nothing 

REVISION HISTORY: 

II 
II 

II 
~*********************************************************************/ 
id ConvertMessageToDisplay() 

Int DecNumberToConvert; 

DecNumberToConvert = (int) ((unsigned char) (gMessageToDisplay[O})); //Get character 

ConvertToHex(DecNumberToConvert); //Convert to hex 

**********************************************************************\ 

II 

II 

DisplayData 

DESCRIPTION: This routine display to a field 

PARAMETERS: FieldP - the field to display the message in 

RETURNED: NOTHING 

REVISION HISTORY: 

**********************************************************************/ 
id DisplayData(FieldType* FieldP) 

Err 
Handle 
char 
char 
char 
Word 
Word 
Word 
Int 

error = 0; 
TextHandle 0; 
*tmpBuffer; 
*tmpTextl; 
*tmpText2; 
tmpBufferLength; 
MessageToDisplayLength; 
CharactersToRemove; 
i = 0; 

MessageToDisplayLength 
to display 

StrLen{gMessageToDisplay); 

TextHandle = FldGetTextHandle{FieldP); 
if { TextHandl e) 

he field 
{ 
FldSetTextHandle{FieldP, NULL); 

tmpBuffer = MemHandleLock{TextHandle); 
of the field 

tmpBufferLength = StrLen{tmpBuffer); 
in field 

if {trnpBufferLength < MAX_LENGTH) 
less than maximum 

{ 

5 

//Get length of strin 

//Get handle of field 
//If there is text in 

//Strip Text 

//Retrieve the text o 

//Get length of strin 

//Text field string i 



MemHandleUnlock{TextHandle); 
to accommodate new data 

error = MemHandleResize(TextHandle, min(MAX_LENGTH + 1, 
tmpBufferLength + MessageToDisplayLength + 1)); 

if (error) FrmAlert(MemoryAlert); 
trnpBuffer = MemHandleLock(TextHandle); 

·etrieve text 
J //End if 

if {tmpBufferLength + MessageToDisplayLength > MAX_LENGTH) 
) big 

//Unlock handle, resi 

/*Plus one for NULL*/ 
//Plus one for NULL 
//Out of memory Alert 
//Lock the text field 

//If final string is 

CharactersToRemove = MessageToDisplayLength + tmpBufferLength- //Determine number of 
taracters to remove 

MAX_LENGTH; 
tmpText2 = &trnpBuffer[CharactersToRemove]; //Start tmpBuffer at 

;t character to remove 
for (tmpTextl = tmpBuffer; *trnpText2 l= chrNull; ++tmpTextl, ++tmpText2) 

{ //While there are cha 
:ters to remove, increment array 

*tmpText1 = *tmpText2; 
Buffer 

J //End for 
*tmpText1 = chrNull; 
J //Endif 

StrCat(tmpBuffer, gMessageToDisplay); 
of old message 

} 
else 

{ 

TextHandle = MemHandleNew(MessageToDisplayLength + 1); 
lrmation 

~ssage 

if {TextHandle == chrNull) FrmAlert{MemoryAlert); 
tmpBuffer = MemHandleLock(TextHandle); 
StrCopy(tmpBuffer, gMessageToDisplay); 

} 
MemHandleUnlock(TextHandle); 
FldSetTextHandle(FieldP, TextHandle); 
FldDrawField{FieldP); 
gMessageToDisplay[O] = chrNull; 

.ay 

·agma mark ----------------

*********************************************************************\ 

FUNCTION: ConvertToHex 

DESCRIPTION: Convert Decimal Numbers to Hex, surrounded by <> 

PARAMETERS: NumToConvert - Decimal to convert to Hexadecimal 

RETURNED: nothing 

REVISION HISTORY: 

*********************************************************************/ 
d ConvertToHex(Int NumToConvert) 

Uint 
Uint 
Uint 

tmpNumber 
counter 
i = 1; 

= 0; 
1· 

StrCopy(gMessageToDisplay, ""); 
I /StrCat (gMessageToDisplay, "<"); 
do 

{ 

//Clear String 
//Start "<" 

//Transfer character 

//Terminate null 

//Add new message to 

//If the field was em 

//Create memory fori 

//Out of memory alert 
//Lock handle 
//Replace memory with 

I /Unlock Handle 
//Set handle to field 
//Refresh field 
//Reset message to di 

if (counter== 1) {tmpNumber = NumToConvert/16); 
else (tmpNumber = NumToConvert- (tmpNumber * 16)); 
switch (tmpNumber) 

{ 

//Calculate upper nibble 
//Calculate lower nibble 
//Add appropriate values 

case 0: 
StrCat(gMessageToDisplay, "0"); 
break; 

case 1: 
StrCat{gMessageToDisplay, "1"); 
break; 

6 



case 2: 
StrCat(gMessageToDisplay, "2"); 
break; 

case 3: 
StrCat(gMessageToDisplay, "3"); 
break; 

case 4: 
StrCat (gMessageToDisplay, "4"); 
break; 

case 5: 
StrCat(gMessageToDisplay, "5"); 
break; 

case 6: 
StrCat(gMessageToDisplay, "6"); 
break; 

case 7: 
StrCat(gMessageToDisplay, "7"); 
break; 

case 8: 
StrCat(gMessageToDisplay, "8"); 
break; 

case 9: 
StrCat(gMessageToDisplay, "9"); 
break; 

case 10: 
StrCat (gMessageToDisplay, "A"); 
break; 

case 11: 
StrCat (gMessageToDisplay, "B"); 
break; 

case 12: 
StrCat(gMessageToDisplay, "C"); 
break; 

case 13; 
StrCat(gMessageToDisplay, "D"); 
break; 

case 14: 
StrCat{gMessageToDisplay, "E"); 
break; 

case 15: 
StrCat(gMessageToDisplay, "F"); 
break; 

#if (debug) 
default: 

StrCat(gMessageToDisplay, "0"); 
break; 

#endif 
}//End Switch 

counter--; 
i++; 
} //End While 

while (counter != -1); 
I /StrCat(gMessageToDisplay, ">"); 

//End Function ConvertToHex 

~agma mark ----------------

//Close String 

'*********************************************************************\ 

FUNCTION: MainForminit 

DESCRIPTION: This routine initializes the MainForm for.m. 

PARAMETERS' frm - pointer to the MainForm form. 

RETURNED' nothing 

REVISION HISTORY' 

II 
II 
II 

'*********************************************************************/ 
.d MainForminit(FormPtr frmP) 

//Word 
Word 

fldindex; 
Objectindex; 

//fldindex = Fr.mGetObjectindex(frmP, Main_TransmittedFrornPalrnField); //Get field index 
//FrmSetFocus{frmP, fldindex); //Set focus to field 

//The following two lines hide the port open icon. 
//If you are connected to the serial port, 
//the icon is displayed, otherwise there is nothing there. 
Objectindex = FrmGetObjectindex(frmP, Main_PortOpenBitMap); 
FrmHideObject(frmP, Objectindex); 

7 



**********************************************************************\ 

FUNCTION: MainFormDoCornmand 

DESCRIPTION: This routine performs the menu command specified. 

PARAMETERS: command - menu item id 

RETURNED: nothing 

REVISION HISTORY: 

II 
II II 

II 
**********************************************************************! 
Jlean MainFormDoCommand(Word command) 

ForrnType 
Boolean 

*FrrnP; 
handled false; 

switch (command) 
{ 
case Info_About: 

MenuEraseStatus (O); 
FrmP = FrrninitForm(About_Forrn); 
FrrnPopupForrn(Help_Form); 

behind the loaded form 
FrmDoDialog(FrmP); 
FrrnDeleteForrn(FrrnP}; 

handled = true; 
processed 

break; 
case Info_Help: 

MenuEraseStatus (0); 
FrrnP = FrrninitForrn(Help_Form); 
FrrnPopupForrn(Help_Forrn); 

behind the loaded form 
FrrnDoDialog(FrrnP); 
FrrnDeleteForrn(FrmP); 

handled = true; 
processed 

break; 
case Options_OpenSerialPort: 

MenuEraseStatus (0); 
if (! (gSerialPortOpen)) OpenSerialPort(); 

Lal port 
handled = true; 

processed 
break; 

case Options_CloseSerialPort: 
MenuEraseStatus (0); 
if (gSerialPortOpen) CloseSerialPort(); 
handled = true; 

processed 
break; 

case Options_DefineTransmitString: 
MenuEraseStatus (0); 
//if (gSerialPortOpen) CloseSerialPort(); 

//FrmGotoForrn(Text_Form}; 
handled = true; 

processed 
break; 

return handled; 

I /Load About form 
//Saves initiating form inforrnati 

//Display and wair for "Ok" 
//Delete form and return to Main_ 

//Tell Event Handler, the event w 

//Load Help form 
//Saves initiating form inforrnati 

//Display and wait for "Ok" 
//Delete form and return to Main_ 

//Tell Event Handler, the event w 

//If not already open, open the s 

//Tell Event Handler, the event w 

//If open, close the serial port 
//Tell Event Handler, the event w 

//If serial port open, close 

//Switch to text form 
//Tell Event Handler, the event w 

'*********************************************************************\ 

FUNCTION: MainForrnHandleEvent 

DESCRIPTION: This routine is the event handler for the 
"Main_Form" of this application. 

PARAMETERS: 

RETURNED: 

eventP - a pointer to an EventType structure 

true if the event has handle and should not be passed 
to a higher level handler. 

8 

II 
II 



REVISION HISTORY: I I 
II 

~*********************************************************************! 
)lean MainFormHandleEvent{EventPtr eventP) 

Boolean 
ForrnPtr 
FieldType 
char 

handled = false; 
frrnP; 
*FieldP; 
chrBuffer; 

frmP = FrmGetActiveFor.m{); 
switch (eventP->eType) 

//Get Pointer to Active Form 

{ 
case menuEvent: //Process menu item 

return MainForrnDoCommand(eventP->data.menu.iterniD); 
break; 

case frmOpenEvent: 
FrmDrawForm ( frmP) ; 
MainForminit{ frmP); 
if ( !gSerialPortOpen) 

I /On Form Open 
//Refresh Form 
//Initialize Form 

{ 

) 

Baud = 9600 ; 
OpenSerialPort{); //Open serial port 

handled = true; 
processed 

//Tell Event Handler, the event w 

break; 
case ctlSelectEvent: //Will Handle Item Select Events 

3tring 1 

::tring 2 

ltring 3 

itring 4 

ltring 5 

switch (eventP->data.ctlSelect.controliD) 
{ 

case Main_TextlPushButton: 

if (gSerialPortOpen) CloseSerialPort(); 
Baud = 2400; 
OpenSerialPort(); 
break; 

case Main_Text2PushButton: 

if (gSerialPortOpen) CloseSerialPort(); 
Baud = 9600; 
OpenserialPort(); 
break; 

case Main_Text3PushButton: 

if {gSerialPortOpen) CloseSerialPort{); 
Baud = 19200; 
OpenserialPort(); 
break; 

case Main_Text4PushButton: 

if (gSerialPortOpen) CloseSerialPort(); 
Baud = 38400; 
OpenSerialPort(); 
break; 

case Main_Text5PushButton: 

if (gSerialPortOpen) CloseSerialPort(); 
Baud = 57600; 
OpenserialPort(): 
break; 

case Main_HelpButton: 
MenuEraseStatus (0); 
frmP = FrminitForm(Help_Form); 
FrmPopupForm{Help_Form); 

1rmation behind the loaded form 
FrrnDoDialog(frmP); 

Main_Form) 

,cei ve and transmit 

FrmDeleteForm(frmP); 

handled = true; 
break; 

case Main_ClearButton: 

//Open port, send Transmi 

//Open port, send Transmi 

//Open port, send Transmi 

//Open port, send Transmi 

//Open port, send Transmi 

//Displays Help Dialog 

//Load the Help form 
//Saves initiating form i 

//Display and wait for "0 

//Delete the form (return 

//Clears the screen, both 

ClearScreenData(Main_ReceivedFromExternalField); 
UpdateScrollBar(); 

break; 

break; 
default: 

break; 

case keyDownEvent: 

9 



if (eventP->data.keyDown.chr 
{ 

pageUpChr l //if it is a scroll up 

} 

Scroll (0) ; I /up 
handled = true ; 

else if (eventP->data.keyDown.chr 
{ 

pageDownChr) //if it is a scroll down 

Scroll (1 ;//down 
handled = true 

else //if it is a character that is entered 
{ 

break; 

frmP = FrmGetActiveForm (); 
FrmHandleEvent (frmP, eventP); 
UpdateScrollBar () 
handled = true ; 

case sclRepeatEvent: II P13. the scroll bar was pressed 
EditViewScroll (eventP->data.sclRepeat.newValue -
eventP->data.sclRepeat.value); 

II Repeating controls don't repeat if handled is set true. 
break; 

default: 
break; 

return handled; 
was handled 

~agma mark ----------------

//Tell Event Handler, whether eve 

~*********************************************************************\ 

I 

FUNCTION: TextForminit 

DESCRIPTION: Initializes the text form. 

PARAMETERS: form - pointer to the text form. 

RETURNED: nothing 

REVISION HISTORY: II 
"*********************************************************************/ 
Ld TextForminit(For.mPtr FrmP) 

//Word fldindex; 

//fldindex = FrmGetObjectindex(FrmP, Text_TextlField); 
//FrmSetFocus(FrrnP, fldindex); 

//Get field index 
//Set focus to field 

~agma mark ----------------

'*********************************************************************\ 

FUNCTION: GetObjectPtr 

DESCRIPTION: This routine returns a pointer to an object in the 
current form. 

PARAMETERS: objectid - id of the object to retrieve 

RETURNED: VoidPtr - pointer to the object passed 

REVISION HISTORY: 

II 
II 

II 
II 

"*********************************************************************/ 
.dPtr GetObjectPtr(Word objectiDI 

{ 
FormPtr frmP; 

fr.mP = FrmGetActiveForm(); 
return (FrmGetObjectPtr(frmP, FrmGetObjectindex(frmP, objectiD))); 

10 



**********************************************************************\ 

FUNCTION: RornVersionCornpatible 

DESCRIPTION: Verifies that ROM version meets minimum requirement. 

PARAMETERS: 

RETURNED: 

requiredVersion - minimum rom version required 
(see sysFtrNurnROMVersion in 

launchFlags 
SysteiDMgr.h for format) 

- flags that indicate if the 
application UI is initialized. 

error code or zero if rom is compatible 

REVISION HISTORY: 

II 

II 
II 
II 

'**********************************************************************I 
RomVersionCornpatible(DWord requiredVersion, word launchFlags) 

DWord rornVersion; 

II See if we're on in minimum required version of the ROM or later. 
FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion); 
if (romVersion < requiredVersion) 

{ 
if ((launchFlags & (sysAppLaunchFlagNewGlobals I sysAppLaunchFlagUIApp)) 

(sysAppLaunchFlagNewGlobals I sysAppLaunchFlagUIApp)) 
{ 
FrmAlert (RomincompatibleAlert); 

II Pilot 1.0 will continuously relaunch this app unless we switch to 
II another safe one. 
if (romVersion < sysMakeROMVersion(2,0,0,sysROMStageRelease,0)) 

AppLaunchWithCommand(sysFileCDefaultApp, sysAppLaunchCrndNormalLaunch, NULL); 

return (sysErrRornincornpatible); 
) 

return (0); 

'*********************************************************************\ 

FUNCTION: AppHandleEvent 

DESCRIPTION: This routine loads form resources and set the event 
handler for the form loaded. 

PARAMETERS: 

RETURNED: 

event - a pointer to an EventType structure 

true if the event has handle and should not be passed 
to a higher level handler. 

REVISION HISTORY: 

II 
II 

II 
II 

'*********************************************************************I 
>lean AppHandleEvent( EventPtr eventP) 

Word formid; 
ForrnPtr frmP; 

if (eventP->eType == frmLoadEvent) 
{ 
II Load the form resource. 
formid = eventP->data.frmLoad.formiD; 
frrnP = FrminitForm{formid); 
FrmSetActiveForm(frmP); 

II Set the event handler for the form. The handler of the currently 
II active form is called by FrmHandleEvent each time is receives an 
II event. 
switch {formid) 

{ 
case Main_Form: 

FrmSetEventHandler(frmP, MainFormHandleEvent); 
break; 

default: 
break; 

11 



return true; 
} 

return false; 

**********************************************************************\ 

FUNCTION: AppEventLoop 

DESCRIPTION: This routine is the event loop for the application. 

PARAMETERS: nothing 

RETURNED: nothing 

REVISION HISTORY: 

**********************************************************************/ 
id AppEventLoop(void) 

Word 
Event Type 
DWord 

error; 
event; 
ResetTimeOut; 

//Initialize Variables 
ResetTimeOut = TimGetSeconds(); 

do { 
//To handle input received, since input received does not generate an event 
EvtGetEvent(&event, 50); //Generates an event 

//Prevent sleep mode, to handle incoming data, 
//call EvtResetAutoOffTimer every 45 seconds 
if (TimGetSeconds() - ResetTimeOut > 45) 

arliest sleep at one minute) 
{ 
EvtResetAutoOffTimer(); 
ResetTimeOut = TimGetSeconds(); 
} 

//Retrieve Data from Serial Port 
ReceiveData(); 

//Handle Events 
if (! SysHandleEvent(&event)) 

if (! MenuHandleEvent(O, &event, &error)) 
if ( ! AppHandl eEven t (&event) ) 

FrmDispatchEvent(&event); 

if (event.eType == appStopEvent) 
{ 

CloseSerialPort(); 

while (event.eType != appStopEvent); 

//If time exceeds 45 seconds 

//Reset timer 

**********************************************************************\ 

II FUNCTION: AppStart 

DESCRIPTION: Get the current application's preferences. 

II 
PARAMETERS: nothing 

RETURNED: Err value 0 i£ nothing went wrong 

REVISION HISTORY: 

II 
**********************************************************************/ 
r AppStart(void) 

gPrefsSize = sizeof(SerialCommPreferenceType); 

gPrefs.Textl[O] 
gPrefs.Text2[0] 

chrNull; 
chrNull; 

12 

//Set size of preferences 

//Initialize preferences 



gPrefs.Text3[0] 
gPrefs.Text4[0] 
gPrefs.Text5[0] 

chrNull 
chrNull 
chrNull 

if (PrefGetAppPreferences(appFileCreator, appPrefiD, 
&gPrefs, &gPrefsSize, true) == noPreferenceFound) 

ed-state information. 
II Read the saved preferences I s 

{ 
gPrefs.Textl[O] chrNull; //If No Preferences Found, fill w 

h NULL 
gPrefs.Text2[0] 
gPrefs.Text3[0] 
gPrefs.Text4[0] 
gPrefs.Text5[0] 
} 

return 0; 

chrNull; 
chrNull; 
chrNull; 
chrNull; 

**********************************************************************\ 

II 
II 

AppStop 

DESCRIPTION: Save the current state of the application. 

PARAMETERS: nothing 

RETURNED: nothing 

REVISION HISTORY: 

II 
**********************************************************************! 
ld AppStop{void) 

if (gSerialPortOpen) CloseSerialPort(); 
FrmCloseAllForrns(); 

II Write the saved preferences I saved-state information. This data 
II will be backed up during a HotSync. 

gPrefsSize = sizeof(SerialCommPreferenceType); 

PrefSetAppPreferences {appFileCreator, appPrefiD, appPrefVersionNum, 
&gPrefs, gPrefsSize, true); 

FUNCTION: 

DESCRIPTION: 
PARAMETERS: 

RETURNED: 

SerialCommPilotMain 

This is the main entry point for the application. 
crnd - Word value specifying the launch code. 
crndPB - pointer to a structure that is associated with 

the launch code. 
launchFlags - Word value providing extra information 

about the launch. 

Result of launch 

REVISION HISTORY: 

Err error; 

error= RomversionCornpatible (ourMinVersion, launchFlags); 
if (error) return (error); 

switch {cmd) 
{ 
case sysAppLaunchcrndNorrnalLaunch: 

gSerialPortOpen = 0; 
error= AppStart{}; 
if (error) 

return error; 

13 



FrmGotoForm(Main_Form); 
AppEventLoop(); 
AppStop(); 
break; 

default: 
break; 

return 0; 

**********************************************************************\ 

II 
II 

PilotMain 

DESCRIPTION: This is the main entry point for the application. 

PARAMETERS: cmd -
cmdPB 

Word value specifying the launch code. II 
- pointer to a structure that is associated with 

launchFl~~: :au~~~dc~~~;e providing extra information 
1

1

1

1 
about the launch. 

II 
RETURNED: Result of launch 

REVISION HISTORY: 

**********************************************************************I 
'ord PilotMain { Word cmd, Ptr cmdPBP, Word launchFlags) 

return SerialCommPilotMain{cmd, cmdPBP, launchFlags); 

*************************************************************************** 

.a tic void Scroll (int flag ) 
{ 
FieldPtr fld 
Short value,· 
Short min; 
Short max; 
Short pageSize; 
Word linesToScroll; 
ScrollBarPtr bar; 

fld = GetObjectPtr {Main_ReceivedFromExternalField) 

if ( FldScrollable ( fld, (DirectionType) flag) ) II check if it is scrollable in the spec . 
. fied direction 

linesToScroll = FldGetVisibleLines {fld) - 1; 
FldScrollField {fld, linesToScroll, {DirectionType)flag ); 

II Update the scroll bar. 

} 

bar= GetObjectPtr (Main_ScrollBarScrollBar); 
SclGetScrollBar (bar, &value, &min, &max, &pageSize); 

if (flag == O) 
value - linesToScroll; 

else 
value += linesToScroll; 

SclSetScrollBar (bar, value, min, max, pageSize); 

return 
} 

!*************************************************************************** 

:atic void UpdateScrollBar {) 

14 



Word scrollPos; 
Word textHeight; 
Word fieldHeight; 
Short maxValue; 
FieldPtr fld; 
ScrollBarPtr bar; 
Word Len ; 
fld GetObjectPtr ( Main_ReceivedFromExternalField ); 
bar GetObjectPtr (Main_ScrollBarScrollBar); 

Len FldGetTextLength{fld); 
FldSetScrollPosition ( fld, Len); 

II get the values necessary to update the scroll bar. 
FldGetScrollValues (fld, &scrollPos, &textHeight, &fieldHeight); 

if (textHeight > fieldHeight) 
maxValue = textHeight - fieldHeight; 

else if (scrollPos) 
maxValue scrollPos; 

else 
maxValue 0; 

SclSetScrollBar (bar, scrollPos, 0, maxValue, fieldHeight-1); 

~************************************************************************** 

itic void EditViewScroll (Short linesToScroll) 

Word 
Short 
Short 
Short 
Short 
FieldPtr 
ScrollBarPtr 

blankLines; 
min; 
max; 
value; 
pageSize; 
fld; 
bar; 

fld = GetObjectPtr (Main_ReceivedFromExternalField); 

if (linesToScroll < 0) 
{ 
blankLines = FldGetNumberOfBlankLines {fld); 
FldScrollField (fld, -linesToScroll, (DirectionType)O); 

II If there were blank lines visible at the end of the field 
II then we need to update the scroll bar. 
if (blankLines) 

{ 
II update the scroll bar. 
bar= GetObjectPtr (Main_ScrollBarScrollBar); 
SclGetScrollBar (bar, &value, &min, &max, &pageSize); 
if (blankLines > -linesToScroll) 

max += linesToScroll; 
else 

max - blankLines; 
SclSetScrollBar (bar, value, min, max, pageSize); 
} 

else if (linesToScroll > 0) 
FldScrollField (fld, linesToScroll, (DirectionType)l); 

************************************************************************** 

15 



Header generated by Constructor for PalmOS 1.2 

Generated at 1:23:45 PM on Saturday, March 27, 2004 

Generated for file: D:\sem10\FYP\PALM Programs\Snooper\Src\Snooper.rsrc 

THIS IS AN AUTOMATICALLY GENERATED HEADER FILE FROM CONSTRUCTOR FOR PALMOS; 
- DO NOT EDIT - CHANGES MAOE TO THIS FILE WILL BE LOST 

Palm App Name: "Smart Card Snooper" 

Palm App Version: "1. 0" 

Resource: tFRM 1000 
::fine Main_Form 
158, Height = 160, Usable 
~lt Button ID = 0) 
::fine Main_ClearButton 

= 34, Height = 10, Usable = 

::fine Main_HelpButton 
th = 16, Height = 16, Usable 
I 
efine Main_HelpBitMap 

1000 //(Left Origin= 0, Top Origin 
1, Modal = 0, Save Behind = 0, Help ID = 0, Menu Bar ID 

1008 //(Left origin= 1, Top Origin 
1, Anchor Left = 1, Frame = 1, Non-bold Frame = 1, Font 

1, Anchor Left 
1016 //(Left Origin= 142, Top Origin 
1, Frame = 1, Non-bold Frame = 1, Font 

1010 //(Left Origin = 142, Top Origin 

0, Width 
1000, De 

149, Wid 
Standard 

142, w 
Standa 

142, B 
nap Resource ID = 1010, Usable = 1) 
::fine Main_PortOpenBitMap 1011 I I (Left Origin = 38, Top Origin = 144, Bi 
~P Resource ID = 1011, Usable = 1) 
efine Main_ReceivedFromExternalFie1d 
= 140, Height = 104, Usable = l, Editable = 
~eft Justified = 1, Max Characters = 60000, 
~umeric = D) 

1002 //(Left Origin 9, 
1, Underline = 0, Single Line 
Font = Standard, Auto Shift = 

Top Origin = 29, Widt 
= 0, Dynamic Size = 1 
0, Has scroll Bar = 0 

efine Main_MainindicatorGrafittiShift 
::fine Main_ReceivedLabel 
= 1, Font = Standard) 

1007 
1001 

//(Left Origin= 
//(Left origin 

:fine Main_Text1PushButton 1020 //(Left Origin 
1 = 22, Height= 12, Usable 1, Group ID 1, Font = Standard) 
:fine Main_Text2PushButton 1021 //(Left Origin 
1 = 22, Height = 12, Usable 1, Group ID = 1, Font = Standard) 
:fine Main_Text3PushButton 1022 //(Left Origin 
1 = 24, Height = 12, Usable 1, Group ID 1, Font = Standard) 
:fine Main_Text4PushButton 1023 //(Left Origin 
1 = 24, Height = 12, Usable 1, Group ID 1, Font = Standard) 
:fine Main_TextSPushButton 1024 //(Left Origin 
:h = 24, Height = 12, Usable = 1, Group ID = 1, Font = Standard) 
:fine Main_ScrollBarScrol1Bar 1005 //{Left Origin 
1 = 7, Height= 109, Usable= 1, Value= 0, Minimum Value= 0, Maximum 

~fine SmartCardSnooperFormGroupiD 1 

Resource: tFRM 1100 

131, Top Origin 
0, Top Origin = 

71, Top Origin 

96, Top Origin 

58, Top Origin 

85, Top Origin 

112, Top Origin 

151, Top Origin 
Value = 0' Page 

= 148) 
17, Usab 

132, Wi 

= 132, Wi 

147, Wi 

147, Wi 

= 147, w 

= 24, Wi 
Size = 0 

~fine About_Form 1100 //(Left Origin= 0, Top Origin= 0, Width 
160, Height = 160, Usable = 1, Modal = 1, Save Behind = 1, Help ID = 0, Menu Bar ID = 0, Defau 
Button ID = 0) 
~fine About_Unnamed1113Button 
:h = 36, Height = 12, Usable 

~fine About_CompLLBitMap 
> Resource ID = 1006, Usable 
~fine About_PalmBitMap 
> Resource ID = 1000, Usable 
~fine About_CableBitMap 
> Resource ID = 1001, Usable 
~fine About_CompLRBitMap 
>Resource ID = 1007, Usable 
~fine About_CornpULBitMap 
l Resource ID = 1002, Usable 
~fine About_CompURBitMap 
l Resource ID = 1003, Usable 
!fine About_CompMLBitMap 
l Resource ID = 1004, Usable 
!fine About_CompMRBitMap 
> Resource ID = 1005, Usable 
!fine About_AppTitleLabel 
= 1, Font = Bold) 
~fine About_VersionLabel 
= 1, Font = Standard) 
!fine About_CopyrightLabel 
o = 1, Font = Standard) 
:fine About_CompanyinfoLabel 
' = 1, Font = Standard) 

1, Anchor Left 

11 

11 

1) 

11 

1) 

1 I 

1) 

1) 

1 

1113 //(Left Origin= 120, Top Origin 
1, Frame = 1, Non-bold Frame = 1, Font 

143, w 
Standa 

1006 //(Left Origin 73, Top Origin 79, Bit 

1000 //(Left Origin 56, Top Origin 96, Bit 

1001 //(Left Origin 56, Top Origin 80, Bit 

1007 //(Left Origin 89, Top Origin 79, Bit 

1002 //(Left Origin= 73, Top Origin 48, Bit 

1003 //(Left Origin 89, Top Origin 48, Bit 

1004 //(Left Origin 73, Top Origin 63, Bit 

1005 //(Left Origin 89, Top Origin= 63, Bit 

1101 //(Left Origin 2, Top Origin 15, Usab 

1102 //(Left Origin 2, Top Origin 32, Usab 

1103 //(Left Origin= 2, Top Origin= 120, Usa 

1104 //(Left Origin 1, Top Origin 135, Usa 



Resource: tFRM 1200 
~fine Help_Form 
160, Height = 160, Usable 
Button ID = 0) 

1200 //(Left Origin= 0, Top Origin= 0, Width 
1, Modal = 1, Save Behind = 1, Help ID = 0, Menu Bar ID = 0, Defau 

~fine Help_Unnamed1203Button 
:h = 36, Height = 12, Usable 1, Anchor Left 

1203 //(Left Origin= 120, Top Origin 
1, Frame = 1, Non-bold Frame = 1, Font 

144, w 
Standa 

~fine Help_HelpLabel 
= 1, Font = Standard) 

1204 //(Left Origin= 0, Top Origin= 13, Usab 

Resource: Talt 1001 
~fine RomincompatibleAlert 
~fine RomincompatibleOK 

Resource: Talt 1000 
~fine SerialManagerAlert 
~fine SerialManagerOK 

Resource: Talt 1002 
~fine OpenPortAlert 
~fine OpenPortOK 

Resource: Talt 1003 
~fine CheckPortAlert 
~fine CheckPortOK 

Resource: Talt 1004 
~fine PortBusyAlert 
~fine PortBusyOK 

Resource: Talt 1005 
~fine DataTransmitAlert 
~fine DataTransmitOK 

Resource: Talt 1006 
~fine PortTimeoutAlert 
~fine PortTimeoutOK 

Resource: Talt 1007 
~fine ClosePortAlert 
~fine ClosePortOK 

Resource: Talt 1008 
~fine NoDataToSendAlert 
~fine NoDataToSendOK 

Resource: Talt 1100 
~fine DebugAlert 
~fine DebugOK 

Resource: Talt 1009 
~fine CommSettingsAlert 
~fine ComrnSettingsOK 

Resource: Talt 1010 
~fine MemoryAlert 
~fine MemoryOK 

Resource: MBAR 1000 
~fine Main_MenuBar 

Resource: MENU 1100 
~fine Options_Menu 
~fine Options_OpenSerialPort 
~fine Options_CloseSerialPort 
~fine Options_DefineTransrnitString 

Resource: MENU 1200 
~fine Info_Menu 
~fine Info_About 
~fine Info_Help 

Resource: tSTR 1000 

1001 
0 

1000 
0 

1002 
0 

1003 
0 

1004 
0 

1005 
0 

1006 
0 

1007 
0 

1008 
0 

1100 
0 

1009 
0 

1010 
0 

1000 

1100 
1100 
1101 
1103 

1200 
1200 
1201 

~fine HelpString 1000 
the serial port will drain your battery. Use Define 

'e hex numbers in < > brackets, and send one byte at 
L3><10> " 

Resource: PICT 1005 
~fine CompMRBitrnap 

Resource: PICT 1004 
~fine CompMLBitrnap 

Resource: PICT 1003 
~fine CornpURBitrnap 

2 

1005 

1004 

1003 

II Conunand Key: 0 
II Command Key: c 
II Command Key: D 

II Command Key: A 
II Command Key: H 

II "Close your serial port when not in us 
Transmit String to send hex numbers. Enc 
a time, eg.: carriage return & linefeed = 



Resource: PICT 1002 
~fine CompULBitmap 

Resource: PICT 1001 
~fine CableBitmap 

Resource: PICT 1000 
~fine PalmBi tmap 

Resource: PICT 1006 
~fine CompLLBi tmap 

Resource: PICT 1007 
~fine CompLRBitmap 

Resource: PICT 1010 
~fine HelpBi tmap 

Resource: PICT 1011 
~fine PortOpenBitmap 

3 

1002 

1001 

1000 

1006 

1007 

1010 

1011 



Appendix 0 

Complete Source Code for the Visual 

C++ Snooping Program 



SerialApp.cpp : Defines the class behaviors for the application. 

nclude "stdafx.h" 
nclude "SerialApp.h" 
nclude "serialCtl.hpp" 
nclude "SerialAppDlg.h" 

fdef DEBUG 
efine new DEBUG_NEW 
ndef THIS_FILE 
atic char THIS_FILE[] = __ FILE __ ; 
ndif 

111111111111111111111111111111111111111111111111111111111111111111111111111 
CSerialAppApp 

~IN_MESSAGE_MAP(CSerialAppApp, CWinApp) 
II{{AFX_MSG_MAP(CSerialAppApp) 

II NOTE- the ClassWizard will add and remove mapping macros here. 
II DO NOT EDIT what you see in these blocks of generated code! 

I/} } AFX_MSG 
ON_COMMAND(ID_HELP, CWinApp::OnHelp) 

D_MESSAGE_MAP () 

111111111111111111111111111111111111111111111111111111111111111111111111111 
CSerialAppApp construction 

erialAppApp: : CSerialAppApp () 

II TODO: add construction code here, 
II Place all significant initialization in Initinstance 

111111111111111111111111111111111111111111111111111111111111111111111111111 
The one and only CSerialAppApp object 

•rialAppApp theApp; 

1 11111111111111111111111111111111111111111111111111111111111111111111111111 
CSerialAppApp initialization 

)L CSerialAppApp::Initinstance() 

AfxEnableControlContainer(); 

II Standard initialization 
II If you are not using these features and wish to reduce the size 
II of your final executable, you should remove from the following 
II the specific initialization routines you do not need. 

'def AFXDLL 
Enable3dControls(); 

.se 
Enable3dControlsStatic(); 

tdif 

CSerialAppDlg dlg; 
m_pMainWnd = &dlg; 

II 

II 

int nResponse = dlg.DoModal(); 
if (nResponse == IDOK) 
{ 

Call this when using MFC in a 

Call this when linking to MFC 

II TODO: Place code here to handle when the dialog is 
II dismissed with OK 

} 
else if (nResponse == IDCANCEL) 
{ 

II TODO: Place code here to handle when the dialog is 
II dismissed with Cancel 

shared DLL 

statically 

II Since the dialog has been closed, return FALSE so that we exit the 
II application, rather than start the application's message pump. 
return FALSE; 

1 



SerialAppDlg.cpp implementation file 

nclude "stdafx.h" 
nclude "serialCtl.hpp" 
nclude "serialThread.hpp" 
nclude "SerialApp.h" 
nclude "SerialAppDlg.h" 

fdef _DEBUG 
efine new DEBUG_NEW 
ndef THIS_FILE 
atic char THIS_FILE[] = __ FILE __ ; 
ndif 

111111111111111111111111111111111111111111111111111111111111111111111111111 
CAboutDlg dialog used for App About 

ass CAboutDlg : public CDialog 

blic: 
CAboutDlg () ; 

Dialog Data 
II{{AFX_DATA(CAboutDlg) 
enum { IDD = IDD_ABOUTBOX }; 
Ill } AFX_DATA 

II ClassWizard generated virtual function overrides 
II{{AFX_VIRTUAL(CAboutDlg) 
protected: 
virtual void DoDataExchange{CDataExchange* pDX); // DDX/DDV support 
II} } AFX_ VIRTUAL 

Implementation 
Jtected: 

II{{AFX_MSG(CAboutDlg) 
I ll } AFX_MSG 
DECLARE_MESSAGE_MAP() 

ooutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) 

II{{AFX_DATA_INIT(CAboutDlg) 
II)}AFX_DATA_INIT 

Ld CAboutDlg::DoDataExchange{CDataExchange* pDX) 

CDialog: :DoDataExchange{pDX); 
II{{AFX_DATA_MAP(CAboutDlg) 
Ill } AFX_DATA_MAP 

3IN_MESSAGE_MAP(CAboutDlg, CDialog) 
II{{AFX_MSG_MAP(CAboutDlg) 

II No message handlers 
II)}AFX_MSG_MAP 

l_MESSAGE_MAP () 

'11111111111111111111111111111111111111111111111111111111111111111111111111 
CSerialAppDlg dialog 

~rialAppDlg::CSerialAppDlg(CWnd* pParent /*=NULL*/) 
: CDialog(CSerialAppDlg: :IDD, pParent) 

II{{AFX_DATA_INIT(CSerialAppDlg) 
m_namePort = _T ( "") ; 
m_baudRate = _T ("") ; 
m_monitorRec = _T(""); 
m_monitorSend = _T(""); 
m_s ta tus_port = _T ( " " ) ; 

)penPortActivate = false; 
:losePortActivate = false; 
;endActi vate = false; 
tctiveProccess = FALSE; 

IIJ}AFX_DATA_INIT 
II Note that Loadicon does not require a subsequent Destroyicon in Win32 
m_hicon = AfxGetApp()->Loadicon(IDR_MAINFRAME); 
m_baudRate "9600"; 
m_namePort = "COMl"; 

d CSerialAppDlg: :DoDataExchange(CDataExchange* pDX) 

1 



CDialog::DoDataExchange(pDX); 
//((AFX_DATA_MAP(CSerialAppDlg) 
DDX_Control(pDX, IDC_MONITOR_REC, m_DISPLAY); 
DDX_CBString(pDX, IDC_NAME_PORT, m_namePort); 
DDX_CBString(pDX, IDC_BOUDRATE, m_baudRate); 
DDX_Text{pDX, IDC_MONITOR_REC, m_monitorRec); 
DDX_Text{pDX, IDC_MONITOR_SEND, m_monitorSend); 
DDX_Text(pDX, IDC_STATUS_PORT, m_status_port); 
//}}AFX_DATA_MAP 

GIN_MESSAGE~P(CSerialAppDlg, CDialog) 
//((AFX_MSG_MAP(CSerialAppDlg) 
ON_WM_SYSCOMMANO () 
ON_WM_PAINT () 
ON_WM_QUERYDRAGICON ( ) 
ON_BN_CLICKED(IDC_OPEN_PORT, OnOpenPort) 
ON_BN_CLICKED(IDC_CLOSE_PORT, OnClosePort) 
ON_BN_CLICKED(IDC_EXIT, OnExit) 
ON_BN_CLICKED(IDC_SEND_DATA, OnSendData) 
ON_BN_CLICKED(IDC_Clear, OnClear) 
I/} } AFX_MSG_MAP 

D_MESSAGE_MAP () 

!//!!!ll!!!///!!///!!1///!l//!!////!////ll///ll///ll!/!111!!111!!1111!11/!! 
CSerialAppDlg message handlers 

)L CSerialAppDlg::OninitDialog() 

CDialog::OninitDialog(); 

I I Add "About ... " menu item to system menu. 

II IDM_ABOUTBOX must be in the system command range. 
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX); 
ASSERT(IDM_ABOUTBOX < OxFOOO); 

CMenu* pSysMenu = GetSysteffiMenu{FALSE); 
if (pSysMenu != NULL) 
( 

CString strAboutMenu; 
strAboutMenu.LoadString{IDS_ABOUTBOX); 
if (!strAboutMenu.IsEmpty()) 
( 

pSysMenu->AppendMenu(MF_SEPARATOR); 
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); 

II Set the icon for this dialog. The framework does this automatically 
II when the application's main window is not a dialog 
Seticon(m_hicon, TRUE); //Set big icon 
Seticon(m_hicon, FALSE); II Set small icon 

II TODO: Add extra initialization here 
etDlgitem(IDC_CLOSE_PORT)->EnableWindow(FALSE); 
serialProcess = 
(SerialThread*)AfxBeginThread{RUNTIME_CLASS{SerialThread), 
THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED); 

erialProcess->setowner(this); 
return TRUE; //return TRUE unless you set the focus to a control 

d CSerialAppDlg: :OnSysCommand{UINT niD, LPARAM lParam) 

if ((niD & OxFFFO) == IDM_ABOUTBOX) 
( 

else 
( 

CAboutDlg dlgAbout; 
dlgAbout.DoModal(); 

CDialog::OnSysCommand(niD, lParam); 

[f you add a m~n~m~ze button to your dialog, you will need the code below 
to draw the icon. For MFC applications using the document/view model, 
this is automatically done for you by the framework. 

l CSerialAppDlg::OnPaint() 

if (Is Iconic()) 
( 

CPaintDC dc(this); II device context for painting 

2 



SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0); 

II Center icon in client rectangle 
int cxicon = GetSystemMetrics(SM_CXICON); 
int cyicon = GetSystemMetrics(SM_CYICON); 
CRect rect; 
GetClientRect(&rect); 
int x (rect.Width() - cxicon + 1) I 2; 
int y = (rect.Height() - cyicon + 1) I 2; 

else 
{ 

II Draw the icon 
dc.Drawrcon(x, y, m_hicon); 

CDialog::OnPaint(); 

The system calls this to obtain the cursor to display while the user drags 
the minimized window. 

URSOR CSerialAppDlg::OnQueryDragicon() 

return {HCURSOR) m_hicon; 

id CSerialAppDlg::OnOpenPort() 

II TODO: Add your control notification handler code here 
UpdateData(TRUE); 
UpdateConfig () ; 
openPortActivate = true; 
closePortActivate = false; 
activeProccess = TRUE; 
UpdateData(TRUE); 
serialProcess->ResumeThread(); 
3etDlgitem(IDC_CLOSE_PORT)->EnableWindow(TRUE); 
;etDlgitem(IDC_OPEN_PORT)->EnableWindow(FALSE); 
JpdateData(FALSE); 

id CSerialAppDlg::OnClosePort() 

II TODO: Add your control notification handler code here 
II Set signal of closing port serial communication. 
:losePortActivate = true; 
JpenPortActivate = false; 
;etDlgitem(IDC_CLOSE_PORT)->EnableWindow(FALSE); 
;etDlgitem(IDC_OPEN_PORT)->EnableWindow(TRUE); 
JpdateData(FALSE); 

Ld cserialAppDlg::OnExit() 

II TODO: Add your control notification handler code here 
'I Set signal of closing port serial communication. 
;erialProcess->SuspendThread(); 

this->DestroyWindow(); 

cd CSerialAppDlg: :OnSendData() 

II TODO: Add your control notification handler code here 
'! Set signal to send data of serial communication. 
JpdateData (TRUE); 
;endActivate = true; 

.d cserialAppDlg: :UpdateConfig() 

'/ constant parameter. 
:onfigSerial_.ByteSize = 8; 
:onfigSerial_.StopBits = TWOSTOPBITS; 
:onfigSerial_.Parity = EVENPARITY; 

:witch(atoi(m_baudRate)) 

:ase 110: 
configSerial_.BaudRate 
break; 

:ase 300: 
configSerial_.BaudRate 
break; 

:ase 600: 

CBR_llO; 

CBR_300; 

3 



configSerial_.BaudRate 
break; 

case 1200: 
configSerial_.BaudRate 
break; 

case 2400: 
configSerial_.BaudRate 
break; 

case 4800: 
configSerial_.BaudRate 
break; 

case 9600: 
configSerial_.BaudRate 
break; 

case 14400: 
configSerial_.BaudRate 
break; 

case 19200: 
configSerial_.BaudRate 
break; 

case 38400: 
configSerial_.BaudRate 
break; 

case 56000: 
configSerial_.BaudRate 
break; 

case 57600: 
configSerial_.BaudRate 
break; 

case 115200 : 
configSerial_.BaudRate 
break; 

case 128000: 
configSerial_.BaudRate 
break; 

case 256000: 
configSerial_.BaudRate 
break; 

default: 
break; 

id CSerialAppDlg::OnC1ear{) 

m_monitorRec = "" ; 
UpdateData{FALSE); 

CBR_600; 

CBR_1200; 

CBR_2400; 

CBR_4800; 

CBR_9600; 

CBR_14400; 

CBR_19200; 

CBR_38400; 

CBR_56000; 

CBR_57600; 

CBR_l15200; 

CBR_128000; 

CBR_256000; 

4 



stdafx.cpp : source file that includes just the standard includes 
SerialApp.pch will be the pre-compiled header 
stdafx.obj will contain the pre-compiled type information 

nclude "stdafx.h" 

1 



{{NO_DEPENDENCIES}} 
Microsoft Developer Studio generated include file. 
Used by SerialApp.rc 

efine IDM_ABOUTBOX 
efine IDD_ABOUTBOX 
efine IDS_ABOUTBOX 
efine IDD_SERIALAPP_DIALOG 
efine IDR_MAINFRAME 
efine IDR_ACCELERATOR1 
efine IDB_BITMAPl 
efine IDC_OPEN_PORT 
efine IDC_CLOSE_PORT 
efine IDC_EXIT 
efine IDC_MONITOR_REC 
efine IDC_MONITOR_SEND 
efine IDC_SEND_DATA 
efine IDC_NAME_PORT 
efine IDC_BOUDRATE 
efine IDC_STATUS_PORT 
efine IDC_Clear 

Next default values for new objects 

fdef APSTUDIO_INVOKED 
fndef APSTUDIO_READONLY_SYMBOLS 
efine _APS_NEXT_RESOURCE_VALUE 
efine _APS_NEXT_COMMAND_VALUE 
efine _APS_NEXT_CONTROL_VALUE 
efine _APS_NEXT_SYMED_VALUE 
ndif 
ndif 

Ox0010 
100 
101 
102 
128 
130 
135 
1000 
1001 
1002 
1003 
1004 
1005 
1007 
1008 
1009 
1011 

136 
32777 
1012 
101 

1 



SerialApp.h : main header file for the SERIALAPP application 

f !defined(AFX_SERIALAPP_H __ 361F5FC9_B80B_4224_805D_20EA4F9314AC __ INCLUDED_) 
lefine AFX_SERIALAPP_H __ 361F5FC9_B80B_4224_805D_20EA4F9314AC __ INCLUDED_ 

f _MSC_VER > 1000 
•ragrna once 
'ndif II _MSC_VER > 1000 

fndef _AFXWIN_H_ 
#error include 'stdafx.h' before including this file for PCH 

,ndif 

nclude "resource.h" II main symbols 

111111111111111111111111111111111111111111111111111111111111111111111111111 
CSerialAppApp: 
See SerialApp.cpp for the implementation of this class 

ass CSerialAppApp : public CWinApp 

blic: 
CSerialAppApp I ) ; 

Overrides 
II ClassWizard generated virtual function overrides 
II{{AFX_VIRTUAL(CSerialAppApp) 
public: 
virtual BOOL Initinstance{); 
Ill } AFX_ VIRTUAL 

Implementation 

II{{AFX_MSG(CSerialAppApp) 
II NOTE- the ClassWizard will add and remove member functions here. 
II DO NOT EDIT what you see in these blocks of generated code ! 

I/) } AFX_MSG 
DECLARE_MESSAGE_MAP() 

111111111111111111111111111111111111111111111111111111111111111111111111111 

{{AFX_INSERT_LOCATION}} 
Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

ndif II !defined(AFX_SERIALAPP_H __ 361F5FC9_B80B_4224_805D_20EA4F9314AC __ INCLUDED_) 

1 



SerialAppDlg.h : header file 

.f !defined(AFX_SERIALAPPDLG_H __ 81B8D820_84F4_495C_A799_9659B5277C70 __ INCLUDED_) 
lefine AFX_SERIALAPPDLG_H __ 81B8D820 84F4_495C_A799_9659B5277C70 __ INCLUDED_ 

.f _MSC_VER > 1000 
)ragma once 
mdif // _MSC_VER > 1000 

llllll//lllllllllllllllllllllllllllll/1111111111111111111111111111111111111 
CSerialAppDlg dialog 

.ass Serial Thread; 

.ass CSerialAppDlg : public CDialog 

Construction 
.blic: 

CSerialAppDlg{CWnd* pParent 

Dialog Data 
//((AFX_DATA(CSerialAppDlg) 

NULL); 

enum ( IDD = IDD_SERIALAPP_DIALOG ); 
CEdit m_DISPLAY; 
CString m_namePort; 
CString m_baudRate; 
CString m_monitorRec; 

DCB configSerial_; 
cstring m_monitorSend; 

bool openPortActivate; 
bool closePortActivate; 
bool sendActivate; 

CString m_status_port; 
SerialThread* serialProcess; 
BOOL activeProccess; 

I/) ) AFX_DATA 

II standard constructor 

II ClassWizard generated virtual function overrides 
I/((AFX_VIRTUAL(CSeria1AppDlg) 
protected: 
virtual void DoDataExchange{CDataExchange* pDX); II DDXIDDV support 
//) )AFX_VIRTUAL 

Implementation 
otected: 

HICON m_hicon; 

II Generated message map functions 
/I((AFX_MSG(CSerialAppDlg) 
virtual BOOL OninitDialog{); 
afx_msg void OnSysCommand(UINT niD, LPARAM lParam); 
afx_msg void OnPaint(); 
afx_msg HCURSOR OnQueryDragicon(); 
afx_msg void OnOpenPort(); 
afx_msg void OnClosePort{); 
afx_msg void OnExit{); 
afx_msg void OnSendData(); 
afx_msg void OnClear(); 
I I) ) AFX_MSG 
DECLARE_MESSAGE_MAP ( ) 

ivate: 
void UpdateConfig(); 

((AFX_INSERT_LOCATION)) 
Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

odif II !defined(AFX_SERIALAPPDLG_H __ 81B8D820_84F4_495C_A799_9659B5277C70 __ INCLUDED_) 

1 



stdafx.h : include file for standard system include files, 
or project specific include files that are used frequently, but 

are changed infrequently 

f !defined(AFX_STDAFX_H __ C4A22ECB_4372_4960_A828_4B794461B5C3 __ INCLUDED_) 
efine AFX_STDAFX_H __ C4A22ECB_4372_4960_A828_4B794461B5C3 __ INCLUDED_ 

f _MSC_VER > 1000 
ragma once 
ndif // _MSC_VER > 1000 

efine VC_EXTRALEAN II Exclude rarely-used stuff from Windows headers 

nclude <afxwin.h> II MFC core and standard components 
nclude <afxext.h> II MFC extensions 
nclude <afxdisp.h> II MFC Automation classes 
nclude <afxdtctl.h> II MFC support for Internet Explorer 4 Common Controls 
fndef _AFX_NO_AFXCMN_SUPPORT 
nclude <afxcmn.h> II MFC support for Windows Common Controls 
ndif // _AFX_NO_AFXCMN_SUPPORT 

({AFX_INSERT_LOCATION}} 
Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

ndif // !defined(AFX_STDAFX_H __ C4A22ECB_4372_4960_A828_4B794461B5C3 __ INCLUDED_) 

1 



******************************************************************* 

filename: D:\Applicaiton testing\SerialApp\serialCtl\SerialCtl.hpp 
file path: D:\Applicaiton testing\SerialApp\serialCtl 
file base: SerialCtl 
file ext: hpp 
author: Dimitri Denamany. 

purpose: Use to control the serial communication's signal. 
*******************************************************************I 
nclude "afxwin.hn 
nclude "serialCtl.hpp" 
nclude "SerialApp.h" 
nclude "SerialAppDlg.h" 

SerialCtl::SerialCtl() 

Description: Constructor 

rialCtl::SerialCtl() 
tatusPort_(FALSE), 
andlePort_(NULL) 

II default parameter. 
config_.Bytesize = 8; 
config_.StopBits = ONESTOPBIT; 
config_.Parity = NOPARITY; 
config_.BaudRate = CBR_9600; 

SerialCtl::-SerialCtl() 

Description: Destructor 

eialCtl::-SerialCtl() 

~andlePort_ = NULL; 

II Byte of the Data. 
II Use one bit for stopbit. 
II No parity bit 
II Buadrate 9600 bit/sec 

SerialCtl::openPort(DCB deb, canst char* portName) 

Description: Open the serial communication port by calling CreateFile 
function is as the API function. The deb is a argument 
that contain the serial communication configuration. 
The portname is as name of device that want to open and perform. 

JL 
~ialCtl::openPort(DCB deb, canst char* portName) 

11 TODO: Add your control notification handler code here 
~f (statusPort_ ==false) II if port is opened already, not open port again. 

handlePort_ = CreateFile(portName, 
GENERIC_READ I GENERIC_WRITE, 
0' 
NULL, 
OPEN_EXISTING, 
0, 
NULL); 

II Specify port device: default "COMl" 
II Specify mode that open device. 
II the devide isn't shared. 
II the object gets a default security. 
II Specify which action to take on file. 
II default. 
I I default. 

II Get current configuration of serial communication port. 
if (GetCommState(handlePort_,&config_) == 0) 
{ 

AfxMessageBox ("Get configuration port has problem.") ; 
return FALSE; 

) 
II Assign user parameter. 
config_.BaudRate = CBR_9600; 
config_.StopBits = TWOSTOPBITS; 
config_.Parity = EVENPARITY; 

II Specify baud rate of communicaiton. 

config_.ByteSize = 8; 11 specify 

II Specify stopbit of communication. 
II Specify parity of communication. 
byte of size of communication. 

II Set current configuration of serial communication port. 
if (SetCommState(handlePort_,&config_) == 0) 
{ 

AfxMessageBox ("Set configuration port has problem."); 
return FALSE; 

) 

II instance an object of COMMTIMEOUTS. 
COMMTIMEOUTS comTirneOut; 
II Specify time-out between character for receiving. 
comTirneOut.ReadintervalTirneout = 5; 
II Specify value that is multiplied 

1 



II by the requested number of bytes to be read. 
comTimeOut.ReadTotalTimeoutMultiplier = 5; 
II Specify value is added to the product of the 
II ReadTotalTimeoutMultiplier member 
comTimeOut.ReadTotalTimeoutconstant = 5; 
II Specify value that is multiplied 
II by the requested number of bytes to be sent. 
comTimeOut.WriteTotalTimeoutMultiplier = 5; 
II Specify value is added to the product of the 
II WriteTotalTimeoutMultiplier member 
comTimeOut.WriteTotalTimeoutconstant = 5; 
II set the time-out parameter into device control. 
SetCommTimeouts(handlePort_,&comTimeOut); 
II Updata port's status. 

statusPort_ 
return TRUE; 

TRUE; 

return FALSE; 

SerialCtl::closePort() 

Description: close communication by destroy handle of communication. 

OL 
rialCtl::closePort{) 

if (statusPort_ == TRUE) 
{ 

II Port need to be open before. 

statusPort_ = false; 
if(CloseHandle(handlePort_) -- 0) 
{ 

II Update status 
II Call this function to close port. 

AfxMessageBox("Port Closeing isn't successed."); 
return FALSE; 

return TRUE; 

return FALSE; 

read_scc(char* inputData,unsigned int sizeBuffer,unsigned int lengh) 

Description: read data from serial communication port. 

OL 
·rialCtl: :read_scc (char* inputData, 

canst unsigned int& sizeBuffer, 
unsigned long& length) 

if (ReadFile(handlePort_, 
inputData, 

II handle of file to read 
II handle of file to read 
II number of bytes to read 

} 

sizeBuffer, 
&length, 
NULL) == 0) 

II pointer to number of bytes read 
II pointer to structure for data 

AfxMessageBox ("Reading of serial conrrnunication has problem."); 
return FALSE; 

if. (length > 0) 
{ 

inputData[length] =NULL; II Assign end flag of message. 
return TRUE; 

return TRUE; 

SerialCtl::write_scc(const char* outputData, 
canst unsigned int& sizeBuffer, 
unsigned long& length) 

Description: write the data to serial communicaiton. 

OL 
·rialCtl: :write_scc (LPCVOID outputData, 

if (length > 0) 
{ 

canst unsigned int& sizeBuffer, 
unsigned long& length) 

if {WriteFile(handlePort_, II handle to file to write to 
outputData, II pointer to data to write to file 
sizeBuffer, II number of bytes to write 

2 



&length,NULL) == D) II pointer to number of bytes written 

AfxMessageBox ("Reading of serial communication has problem."); 
return FALSE; 

} 
return TRUE; 

return FALSE; 

SerialCtl::getStatusPort() 

Description: the entry point to get port's status. 

OL 
rialCtl::getStatusPort() 

return statusPort_; 

***************************End of file**************************************/ 

3 



~******************************************************************* 

filename: D:\Applicaiton testing\SerialApp\serialCtl\SerialCtl.hpp 
file path: D:\Applicaiton testing\SerialApp\serialCtl 
file base: SerialCtl 
file ext: hpp 
author: Dimitri Denarnany. 

purpose: Use to control the serial communication's signal. 
'*******************************************************************I 
.nclude "afxwin. h" 
.nclude "serialCtl.hpp" 
.nclude "resource.h" 
.nclude "serialAppDlg. h" 
.nclude "serialThread.hpp" 

)nst unsigned short MAX_MESSAGE = 100; 

[PLEMENT_DYNCREATE(SerialThread,CWinThread) 
serialThread: :SerialThread() 

Constructor 

rialThread: :SerialThread() 
trDlg(NULL) 

SerialThread::-SerialThread() 

Deconstructor 

rial Thread: :-SerialThread() 

~trDlg = NULL; 

SerialThread::Initinstance() 

Jeconstructor 

JL 
rialThread: :Initinstance() 

return TRUE; 

Serial Thread: :Run () 

Description: This is a virtual function that is called when thread process 
is created to be one task. 

~ialThread: :Run() 

'I Check signal controlling and status to open serial communication. 
rhile(l) 

II Start process of serial communication operation. 
while(ptrDlg->activeProccess == TRUE} 
{ 

II enter if there is command of openning 
if ((SCC::serialCtl() .getStatusPort() 

ptrDlg->openPortActivate) 

and port has be closed before. 
FALSE) && 

II open port by calling api function of class serialCtl. 
if (SCC::serialCtl() .openPort(ptrDlg->configSerial_, 

ptrDlg->m_namePort} TRUE} 
{ 

II Indicate message to status moditor that commnication connected already. 
ptrDlg->SetDlgitemText (IDC_STATUS_PORT, "Connected"); 

else 
{ 

II Have problem since opening serial communication. 
ptrDlg->activeProccess = FALSE; 

else i£ (ptrDlg->openPortActivate) 
{ 

char mess[MAX_MESSAGE]; 
unsigned int lenBuff = MAX_MESSAGE; 
unsigned long lenMessage; 
static CString outPut; 
if (SCC::serialCtl{).read_scc(mess,lenBuff,lenMessage) 

1 

TRUE) 



if (lenMessage > O) 
{ 

LPTSTR lpTempAPDU= new char [2*lenMessage+l]; 

//this is the function to convert the bytes into its ASCII representation so that it 
n be displayed 

d 

ByteArrayToHexString ( (PBYTE)mess, lenMessage , (char*) lpTempAPDU ) ; 

ptrDlg->GetDlgitemText(IDC_MONITOR_REC,outPut); 

outPut = outPut + "\r\n" + lpTempAPDU; 

ptrDlg->SetDlgitemText(IDC_MONITOR_REC,outPut); 

delete [] lpTempAPDU ; 

II these are lines added so that the display dialog box would browse down by itself 
//without the user'''''''''' having to pull the scroll bar every time a byte is recei 

int NumLine =ptrDlg->m_DISPLAY.GetLineCount(); 
ptrDlg->m_DISPLAY.GetLineCount(); 
ptrDlg->m_DISPLAY.LineScroll(NumLine); 
ptrDlg->m_DISPLAY.SetFocus{); 

else 
{ 

ptrDlg->activeProccess FAlSE; 

II Check signal controlling to send data. 
if (ptrDlg->sendActivate && {ptrDlg->m_monitorSend.GetLength{) > 0)) 
{ 

unsigned long len; 
SCC: :serialCtl() .write_scc{ptrDlg->m_monitorSend 

ptrDlg->m_monitorSend.GetLength() ,len); 
ptrDlg->sendActivate = false; 
ptrDlg->SetDlgitemText(IDC_MONITOR_SEND,""); 

II Check status and signal controlling to close serial communication. 
if {ptrDlg->closePortActivate) 
{ 

if (SCC::serialCtl() .closePort() ==TRUE) 
{ 

II Show message that close when perforrnming of closing port okay. 
ptrDlg->SetDlgitemText I IDC_STATUS_PORT, "Closed") ; 
ptrDlg->closePortActivate = false; 

return 0; 

JL SerialThread::ByteArrayToHexstring(PBYTE pbuff, long length, LPTSTR outgoing) 

int i; 
LPBYTE pbuff2; 
pbuf£2 =new BYTE[length*2+1];//2 characters per byte, plus one extra for the null terminator 

LPTSTR outgoingl; 

for{i=O;i<length;i++) 
{ 

pbuff2[i*2] = UpperNibbleToChar(pbuff[i]); 
pbuff2[i*2+1] = LowerNibbleToChar(pbuff[i]); 

pbuff2[length*2]=0; //null terminate the string 

//This constructor uses SysAllocString so free pbuff2 when we are done 
outgoingl = (LPTSTR) pbuff2;//(char*)pbuff2; 

memcpy{outgoing, outgoingl , strlen{outgoingl)+l 
delete [] pbuff2 
return 1 ; 

ir SerialThread: :UpperNibbleToChar(char ch) 

return NibbleToHexChar{ch >> 4); 

2 



lar SerialThread::LowerNibbleToChar(char ch) 

return NibbleToHexChar(ch & OxF); 

lar SerialThread::NibbleToHexChar(char ch) 

char hexVal; 
ch = ch & OxF; 
hexval = 'D'+ch; //for 0 to 9 

if(ch>=Oxa) 
{ 

hexVal = 'A' - 10 + ch; //set A-F 
) 
return hexVal; 

***************************End of file**************************************/ 

3 



******************************************************************* 

filename: D:\Applicaiton testing\SerialApp\serialCtl\SerialCtl.hpp 
file path: D:\Applicaiton testing\SerialApp\serialCtl 
file base: SerialCtl 
file ext: hpp 
author: Dimitri Denamany. 

purpose: Use to control the serial communication's signal. 
*******************************************************************I 

fndef SERIAL_CTL_HPP 
efine SERIAL_CTL_HPP 

class SerialCtl 

Description: This class handle the functionality that interface with 
the serial communication. 

ass SerialCtl 

blic: 
SerialCtl (I ; 
-serialCtl (I ; 

blic: 

I I Constructor 
I I Destructor 

void setStatusPort(BOOL on_off); 
BOOL closePort(); 

II set Status port whether no or off. 
II close port operator. 

BOOL openPort(DCB deb, 
canst char* portName = "COMl"); 

BOOL read_scc(char* inputData, 
canst unsigned int& sizeBuffer, 
unsigned long& length); 

II open serial communicaiton port. 
II Default port is COMl. 

II read data from serial communication. 
II sizeBuffer is the size of pakcet that 
II receive from serail port. 

BOOL write_scc(LPCVOID data, II write data to serial communication 
canst unsigned int& sizeBuffer, II sizeBufer is the size of packet that 
unsigned long& length); II want to send to serial port. 

HANDLE getHandlePort(l; 
BOOL getStatusPort(l; 

ivate: 
BOOL statusPort_; 

HANDLE handlePort_; 
DCB config_; 

ndif //SERIAL_CTL_HPP 

II The Entry point to get port's handle. 
II The entyy point to get port's staus. 

II port's status. 
II the object that is a instace of port. 

II configuation of serial communication. 

***************************End of file**************************************/ 

1 


