Universal “Chip Based Smart Card” Snooping Device

By

Dimitri Denamany
(EE 1467) =

'FINAL PROJECT DISSERTATION

Dissertation Submitted in partial fulfillment of
the req_uirements_ forthe | |
Bachelor of Engmeermg(Hons) E
 (Blectrical & Electronics Engineering)

~ JUNE2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Universal “Chip Based Smart Card” Snooping Device

by

Dimitri Denamany

A project dissertation submitted to the
Electrical Engineering Programme
Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRIC & ELECTRONICS ENGINEERING)

Approved by,

o

(Mr. Patrick Sebastian)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

JUNE 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

W

h
DIMITRI'DENAMANY

Dimitri Denamany (1467)
Final Year Project Report

TABLE OF CONTENTS

CERTIFICATION llllll BEA SIS R RERAIRRINREEIREDENS RPN O ERNPP RIS RREIERESEINEREY'.I'...l.i
TABLE OF CONTENTSvvinrinrecrnnecsssenicconsesssosssses vesessstesesssoes ii
LIST OF APPENDICES........cccovvvenernne cesseesssteessnsssssrenten cessnssiessssnsas v
LIST OF FIGURES.........cciincninsnecsunsccnessssssassssenssonse reeensessenesens vi
LIST OF TABLES...... llllllllllllllllll SeddbadsansRR RN SRS RREE e bbibdoaneennreRR RIS vii
ABSTRACT ressssessascnsissransenases eressssssanensassansasanse casssasssasane viii
ACKNOWLEDGEMENT lllllllllllll nadsddossusERRIERRREDS A0S bt dRboenRosRIIRRIRERS liX
1. INTRODUCTIONc.ccccensunenroncsenerssoassoncssorssonsssoreass cerssssrestssssenen 1
1.1 Background of StUQYcccooerecmnirinicee et 1
1.2 Problem STAtEIMENTcecuviiieieireieeiereeeereerreereeitessseessaerssessasssenssesssesasne revevenaees 2
1.3 OBJECHVES. coeeeecrrerrcirrcerete st e e rreebertsresaeasserassestssrssssnsnerbestesssnsssanensessaneres 3
1.4 SCOPE OF STUAY 1..veoviieriiiteiiie s st ersers et easaes e aessssasssasee s eseannerranesrerbessanss 4
2. LITRATURE REVIEW AND THEORY'III.I............. IIIIIIIII sesRde e 5
2.1 LEratire REVIEW .occvecuiuiirieeiieesieessiesiesrseesssasivesssssssssessesesaesessestrasasassessasasssssns 5
2.1.1 Smart Cards in Today's World......cccccovmeiiirinnniceccencenvennne e 5
2.1.1.1 In-built SECULILY ...oeveceeeeeecereriieceree e ree e ceae e esieee e s e e aeen 5

2.1.1.2 Pioneering E-Business Growthcviinnvcennnincnne 6

2.1.1.3 Making multi application cards a realityccccvceecrnervcriecrnnnene 6

2.1.1.4 Managing multi applCatiONscceeerveecemreenerrrmvversesersseseessenes 7

2.1.1.5 A Secure FUUIEovveeeieeieerrrnnrrseseesies e ccenescanvrnnsneesessseens 7

2.1.2 A Palm Introduction..........cccoririinienninensicee sttt 8
2.1.2.1 INrodUCHION ..ocvieiirieeeee s cinnieccneenrese e aesece e eessrnss e saeeseesesasnes 8

2.1.2.2 What is a Palm Organiser?ccceenvivivnrninincennnceneccnnnuonne 8

2.1.2.3 Palm SOftWareccccconiier i, 9

-ii-

Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

2.2 Theoratical REVIEWcc.cccvcvevereeceierrrrccetias e saserssesersssssesesessesssssssssssusssnsns 10
2.2.1 Smart Card COmMMUNICATIONScerrerereererierueseesircrerensseseeensesssansesssernsses 10
2.2.1.1 Smart Card Insertion and ACtivationc.cecereereerereeseeenens 10
2.2.1.2 Data TransmiSSionceeccervreriresvecesmnierersracemrennnssssssessossence 11
2.2.2 Asynchrounous Sertal TranSmiSSIOM........courirvvsvsrercsssenissseeereenensesnesosane 13
223 RB232 INLEITACE «...veeeeeeieetieeecee e certe st e cteste s essesan e s sre e e e en s asne s 14
3. METHODOLOGY ...uuueeeeerrececcnssneens cessesersernrensannnsasnsnssssssssrasannse 17
3.1 Brief Introduction to Project Methodologycc.eccevervccercninninrannessscornnees 17
3.2 Flowchart of completed activitieS/tasksovvvevereerreseesrereeseeeesessesessssssssesnes 18
3.2.1 Theoratical Research Workccccccevvvirieieniescniecneeersiesvesesens 19
3.2.1.1 Hardware Related Researchcccocovvenneencccmnnccncenineenne 19
3.2.1.2 Software Related Researchoccecvvvvenevecennccninecerrcceeenns 19
3.2.2 Hardware Design,Testing and Finalisationccoccoveeceninrirnreivennns 20
3.2.2.1 Hardware DESIZNcooevreerivuererrrnessenesnrseseeseesesrorssssssessanans 20
3.2.2.2 Hardware TeStIEcocevveviiiecnnieieenerceserrssetssiseseseecessessenas 21
3.2.2.3 Component SeleCtionc.ccceceererrorercvneccmien s ereeserseeenes 22
3.2.3 Software DESIZILcccovvveceerriervisiaeeeecrersrneenerersaessassesssesssrssneresasesssasnses 22
3.2.4 Prototype Construction and Troubleshootingccoceeeevvmrrrenvceeenns 23
3.3 Main Components Descriptioncc.cvvriecniisnininnnnvensseesesessssesesnnnes 24
3.3.1 Smart Card Contacts/PInSccoceceeeerrrecrrrrirseeesesrmescsescermnesenessesseseens 24
3.3.2 MAXD32CPE ..ttt st aee s st s b s 25
3.3.3 Device Interface : RS232 Connectorccccvvveeveniecrnneerecncnrersessesseenes 25
3.3.4 Palm HArAWATEcoecreeieirenicieircenirses e nses s eeceer et ressssbe e esssnsnsens 26
3.3.5 Dummy Smart Card and Connector Fabricationc.cccmvmmnnvrueruennes 27
3.3.5.1 Dummy Smart Cardcccovriiiiirerreee e sve s 27
3.3.5.1.1 PCB Tracing .ccccccevevereeermrenreetseesernereesnseersessssesnens 28
3.3.5.1.2 MAHNG ettt 29
3.3.5.2 CONMECLOL ..veeeerrriiirrrrersninisnenaes i censes s ssansrsessssaessessensnassnsoses 30
3.3.5.3 Overall Configurationccveeeeecrecminnrercseveresssesceseseenns 31

-1ii-

Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

4- RESULTS AND DICUSS]ON lllll shvdeunsnididdonnen sdddssnnddtdonnen shRbaneniden 32

4.1 System Description and Functionalityc.....cccccveecrvnreenncserncenvesressnsseseses 32

4.1.1 Snooping Moduleccocvvvrineccennr s eeteerenesstaarersressaenataaean 32

4.1.2 Communication Modulec.ccooiiicininniecnnescceenenn e, 34

4.1.3 Processing ModUIE ...ttt s srane 36

4.2 System Design DEtailscccocvirvrecmiiriaaeesiissssneeeersee e sssses e sessasssesessaessneseess 37

4.2.1 Smart Card Communication Detailscccoouevrvercrienenrensnnsscerrrensenens 37

4.2.2 Interfacing the MAX232 and the Serial Connectorcccovvveerinicnne 40

4.22.1 MAX232CPE ..ottt ee e 40

4.2.2.2 Serial Port Connector (DB-9)cccovviiinvvvvniiniciicnnicniee, 41

4.2.3 Palm Snooping Program ... 43

4.2.3.1 Palm Program Developementcveervvsverecnrevisiesennssnscnn, 43

4.2.3.2 Program OVEIVIEWcccmmmremsinevsssniisscssisssiesssssssssesssssssee 44

4.2.3.3 Recelving the BYLeSscovveveevirinncccvninceeneennceentesaesreese e 45

4.2.3.4 Byte Conversion Subroutingc.oeeeveeccsinvceesrnssensensconss 46

4.2.3.5 Data IDterpretationcoeereccrimivrcssiiieerenisimnensessss e sesses 50

4.2.3.5.1 ATR Standard Formatccoeecrisennscensicrnncnnnn 50

4.2.3.5.2 APDU Standard Formatcceceevrerierirceererennseens 51

4.3 Elaboration On the Final QUIPULoouiiiiieeciiirrircce et ceeseerare s s ese e senes 54

5. RECOMMENDATION & CONCLUSIONcconeiiernrniciensnnsss 38

5.1 RecOMMENAALION ...cveeiiiiieeieitieieeseeseaesreseesaescnessesssassasserssssnsassessasssesssessassacenes 58

5.2 C0NCHISION oottt se et s dsssae e sn st s a e s n s b s ae s ss b 59

6. REFERENCES ashsébanranee thégneninibonnes dhrdonnnibidda ee dane asebdbes 60

7. APPENDICES.'O.... IIIII LA L LYY LY R R R YN L LR R YRR R YL E SRR A Y RSN R Y Y R SRS YT R L) 62
-iv-

Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

LIST OF APPENDICES

Appendix A: Smart Card Development Diagram

Appendix B: Project Gantt chart

Appendix C: Final Design Specification

Appendix D: MAX232 Test Circuit Schematics

Appendix E: PALM Softwares and Programming Basics

Appendix F: PALM Hardware Images

Appendix G: Universal “Chip Based” Smart Card Snooping Device Snap Shots.
Appendix H: Detailed Schematics of the Snooping and Communication Module
Appendix I : ASCII Character Codes

Appendix J: Screen shots of the Visual C++ Program

Appendix K: PALM OS Functions and Structures

Appendix L: Answer To Reset (ATR)

Appendix M: Smart Card Communication State Diagram

Appendix N: Complete Source Code for the PALM Snooping Program
Appendix O: Complete Source Code for the Visual C++ Snooping Program

=-V-

Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) e
Final Year Project Report

LIST OF FIGURES

Figure 2.1: Timing Diagram of Smart Card Power up sequence

Figure 2.2: Asynchronous Serial Transmissions

Figure 2.3: Hlustration of start and stop bits

Figure 2.4: Standard Pin out for a DB-9 RS232 Conneétor

Figure 3.1: Smart Card Pin Layout

Figure 3.2: MAX232 Pin Layout

Figure 3.3: RS232 Serial Port Pins

Figure 3.4: Pins on the Hot Synch Cable

Figure 3.5: Minimal Contact Size

Figure 3.6: Pins Position

Figure 4.1: Snooping Module (Dummy Smart Card and Connector)

Figure 4.2: Communication Module

Figure 4.3: Schematics of the Snooping and Communication Module

Figure 4.4: Smart Card Activation Sequence

Figure 4.5: Connection to the DB-9 connector from the MAX232CPE chip

Figure 4.6: Screen shot of the PALM snooping program

Figure 4.7: APDU format

Figure 4.8: APDU response format

Figure 4.9: Classification scheme for the APDU return code (SW)

Figure 4.10: Sample log that was obtained from the snooping deﬁce program during the
data transfer

Figure 4.11: Image smart card sofiware used (Schlumberger Smart Card Toolkit)

Figure 4.12: Taking a closer look into the program screen shot (area marked in red)

-Vi-

Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

LIST OF TABLES

Table 3.1: Smart Card Pin Functions

Table 3.2: Measurement of Pins position based on Figure 3.6
Table 4.1: Asynchronous data transmission details

Table 4.2: The Answer-To-Reset structure

Table 4.3: Interpretation of Line 1 (Ending) and Line 2 (beginning)
Table 4.4: Interpretation of Line 2 (middle)

“vii-

Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) 0
Final Year Project Report

ABSTRACT

The objective of this project is basically to design, build and test a Universal “Chip
Based Smart Card” Snooping Device. This device would function to notify its user of
the actual communication between the smart card and the smart card reader. The
existence of this device not only serves as an educational tool but also saves a lot of time
and money that are spent on debugging by smart card manufacturing companies. In
addition to that, technological advances in the smart card world can also be sped up with
the help of this device for research and testing.

The hardware design of the project has been divided into 3 main sections, the snooping
module, the communication module and the processing module. The snooping module
taps the data, the communication module formats, encodes and transfers the data to the
processing module, and lastly the processing module translates the data into useful
information and display’s it.

The project has been divided into two major milestones where the first one was to set up
the snooping device prototype with the processing module being a Computer. The second
milestone on the other hand is the final design itsclf which would be to replace the
Computer with a PALM in order to make it portable and affordable.

This report gives a complete and detailed illustration on the hardware and software
design process for the Universal “Chip Based Smart Card” Snooping Device. All aspects
from the design decision, the underlying transmission protocols and also programming
logics have been dissected and elaborately explained in the report. The design presented
is a complete working device that fulfills all the objectives that have been set. The
hardware device is certainly good enough to be marketed as it works flawlessly and
achieves the most important objective of the project, which is to obtain the data transfer

between the card and the smart card reader,

-viii-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

ACKNOWLEDGEMENT

The author’s heartfelt gratitude is forwarded to:

« his internal supervisors, Mr. Patrick Sebastian and Mr. Zainal Arif Burhanudin,
for their selfless imparting of knowledge and advice which guided the author
throughout his final year to successfully achieve the requirements of his final year
project;

» his lecturer, Mohd. Zuki Yusoff , for his creative ideas and input on the methods
of improving the project.

» his external supervisor ,mentor and friend, Mr. Marc Talbot ,for his guidance and
help that was given througho_ut the project duration.

e his lab technicians, Mr.Isnani, Ms.Siti Hawa. Mr.Farid, and last but not least Mr.
Zairi for their kindness ,patience and willingness to lend a helping hand in order
to help obtain devices or to operate the machinery in the lab

o his parents, Mr. and Mrs. Denamany, brothers, Darshan and Rubiin for their
unconditional love and support which constantly propelled the author to strive for
excellence;

¢ his friend and advisor , Jim Rees who is willing to respond and help him in time
of need by shedding light on matters that are were troubling and hard to
comprehend;

« and all the others whose names the author has failed to mentioned on this page,

but has in one way or another contributed to the accomplishment of this project.

-ix-
Universal “Chip Based Smart Card” Snooping Device

1.1

12

14

CHAPTER 1

_ INTRODUCTION

BACKGROUND OF STUDY
PROBLEM STATEMENT

OBJECTIVES

SCOPEOF STUDY

Dimitri Denamany (1467)
Final Year Project Report

CHAPTER 1
INTRODUCTION

1.1 BACKGROUND OF STUDY

In today’s modern world, smart cards play a major and significant role in making daily
activities easier and more convenient. Regardless whether it helps in the communication
sector, banking sector or in terms of security, its usefulness is undeniable hence making

its demand grow as we head towards the future.

When an end user purchases a smart card from a smart card company, it rormally’ comes
hand in hand with smart card readers. A company that has specific application that they
would like to implement in the cards usually does the purchase of smart cards and smart
card readers in bulk. Hence, it 1s a norm for the smart cards providers to provide smart
card technical support for the purchasing party in order to help integrate the

implementation of smart cards in to the systems that the customers have designed.

From an educational point of view, there are many individuals these days regardless
whether from the industries or institutes of higher learning, that are trying to push their
way into the world of smart cards, as it is part of today’s cutting edge technology.
Learning the method of manipulating smart cards could boost an individual’s market
price, as it is a tough area to comprehend and also because there are not many people in

the world today who are well versed with this technology.

! Some smart cards have the reader embedded in the chip. Most cards that are given with readers are Access
cards that do not have embedded readers.

-1-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denarnany {1467)
Final Year Project Report

1.2 PROBLEM STATEMENT

In reality, the process of providing smart card technical support for the integration of the
customers system with smart cards will definitely have all kinds of smart card and smart
cards reader related problems due to various common errors and occasional unforeseen
errors. These problems are a norm during the implementation of a new system that
features smart card technology. Considering this fact, there is a need in many situations
where it would make the troubleshooting process easier if one would be able to monitor
the data transfer between a smart card and a smart card reader for debugging purposes.
The data transfer between the smart card and the smart card reader is basically the lowest
comprehensible programming level that can be accessed, as it is the transfer of
APDU’S’.

This is where the problem arises, as a gadget, which features these capabilities are
extremely expensive®, if not unavailable. SchlumbergerSema for instance, is a smart card
company that markets many innovative smart cards and smart card readers that are used
worldwide today. And just like most of the other smart cards companies, they do not own
or have a gadget that performs the above stated functions, as the technology is non-
existent. Smart card developers and technical support engineers would have certainly
save not only time, but also millions of dollars if such a device were to be engineered.
Besides that, this gadget can also function as an analysis tool for “non-computer” smart
card readers. Hence, if any equipment were to have a smart card reader, this gadget could
be used for troubleshooting purposes. All in all, it would function as a universal analysis
tool for any device with a smart card reader from PC’s, ATM Readers to customized
smart card operated systems. In fact, smart cards technological advances that are
normally tedious to test and debug could be made very much easier with this tool.

In addition to that, such a device could also make the process of understanding smart
cards and its programming methods easier and much more effective as one would really
be able to see the communication between the card and the reader. The steep learning

curve could be instantly simplified with the existence of a tool like this.

% Refer to Appendix A
* Application Protocol Data Unit
4 Approximately RM 40000 (comes with a PC attached to it)

2.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

1.3 OBJECTIVES

The following are the objectives of the Universal “Chip Based Smart Card “ Snooping

Device project:

L/
0.0

To engineer a Smart Card / Smart Card reader analysis tool that is able to help
boost technological advances in the smart card world.

The Snooping Device will most definitely help engineers and developers speedup
their progress in terms of creating new hardware or software that is smart card
related. The pleasure of being able to actually view the data transfer at the lowest

level would certainly help both in the development and the testing phase.

To make the process of debugging the smart card readers and smart cards
(simultaneously) at the lowest programming level possible, if not easier.

The debugging process when it comes to smart card reader and smart card are
extremely tedious as there is nothing that is visible to the users eye except what is
displayed on the monitor. Smart card manufacturings companies spend millions of
dollars and a lot of time in order to detect and solve these bugs. The snooping device
provides an opportunity for error detection to be made ridiculously easy as a study on

the log of the data transfer basically pin points the exact problem that is encountered.

To enable developers and permitted parties to view and understand the
communication between the smart cards and the smart card readers easily.
Smart card communication and the protocols used in order to make the
communication possible is an area that takes much time and patience to comprehend.
For those who are attempting to understand these topics, the snooping device serves
as a very practical and effective short cut. As it is able to display the exact bytes that
are transferred, it would make the process of understanding the format of the data and
the relationship between the commands called and the bytes transferred much easier.

Hence, it most definitely serves as an educational tool.

-3-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

1.4 SCOPE OF STUDY

This project basically involves creating an electrical gadget that is able to understand and
display the commands that are sent to and from a smart card or a smart card reader. The
project can logically be divided into two sections, the software portion and the hardware
portion. For the first half of the project duration, the objectives have been set to develop a
snooping device that is linked to a Personal Computer (PC). Work on the second half of
the duration would involve creating an enhanced portable snooping device that uses a
PATLM pilot as the processing and display module.

Based on the two targets that have been set, the software portion involves programming
with Visual C++ for the first half of the project duration where else a detailed level of
PALM. programming for the final design. The hardware portion on the other hand
involves RS232 serial cables and a significant amount of hardware design in order to
create a proper snooping module for éommunication. As for the processing mechanism,
the first prototype would require a PC where else the final design would need a PALM
Pilot (PALM IlIxe). Smart card readers and smart cards would also be items that will be
frequenﬂy used throughout the project execution. Other additional gadgets like level
converters (MAX232) are default gadget that must be used in order to properly format the
data that is transmitted. The MAX232 chip is used in both the hardware architectures and
its function in both designs are identical.

In short, this project involves both an equal mix of software and hardware. The first
prototype that was created was done in order to act as a stepping stone towards achieving
the second and final hardware model. Please refer to Appendix B for the project Gantt
chart that was created as a guideline for the first half and second half of the project

duration.

4-
Universal “Chip Based Smart Card” Snooping Device

Cardin today world

1.2.1.2 Dats Trangmission

A

11)) gmact
 1.:1.2 Pioneering E-Business Grow

21,23 PALM Software
Smart Card Communication

V1l 21001 vncbuite sequriey

L2 4 PALM ntroduction
|| 2120 pmtroduction

.2\ | Asvnchronous Serial Transmission | |[1.

Dimitri Denamany (1467)
Final Year Project Interim Report

CHAPTER 2
LITERATURE AND THEORETICAL REVIEW

2.1 LITERATURE REVIEW

2.1.1 Smart Card in Today’s World

Today, the multi-function smart card is firmly established as the basis for a vast portfolio
of e-business services and products. Even more significantly, the smart card is at the
forefront of empowering a host of mobile services — m-banking, m-email, and a multitude
of other e-applications. The smart card is pioneering tomorrow’s technology today, and
still offers the most powerful combination of security and multi-functionality that meets
the needs of today’s service providers.

Since the 1970’s the smart card has grown to become one of the leading technologies
underpinning a whole world of varied and complex transactions. As it grew to dominance
in the banking and finance arenas, the arrival of the GSM mobile phone was the real
breakthrough that brought the smart card global pre-eminence. The SIM card provided a
highly secure, personal ID for subscribers whilst providing network operators with
control to transfer data as necessary. The arrival of the SIM Toolkit took the development
- of the smart card further, With SIM Toolkit, the card holder could download application
programs via their mobile phone, enabling quick access to information such as travel,
weather and stock exchange reports. Today, subscribers can now send and receive e-
mails, whilst on the move. As the smart card continues to evolve, the multi-application
smart card brings the only realistic option for managing multiple electronic transactions.
The market opportunities are vast; a host of service providers want to work with network
operators to deliver value added services to customers via the Internet and mobile

enabled e-business.

2.1.1.1 In-built security
The smart card revolution has been propelled by the innate security the technology
provides. Multi-application smart cards have demonstrated they can deliver highly secure

transactions and enforce true protection between applications held within the card itself.

5
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Interim Report

Their powerful encryption and digital signature capabilities are ideal for the emergiﬁg
new technology sectors. Smart cards have built-in tamper proof qualities, and PKI (public
key infrastructure) incorporating digital signatures) functionality embedded in their chip -

all of which are essential to creating a totally secure environment for transactions.

2.1.1.2 Pioneering E-Business Growth
Smart cards are a cost effective, secure way to manage transactions electronically. They
have become pivotal in the exploding e-commerce and e-business revolution. Today, one
billion smart cards are in use — and by 2001 analysts project there will be 3.4 billion cards
world-wide. The chip-based card opens the way to a single card managing multiple
applications, again critical to the delivery solutions sought by service providers. Today,
the multi-application card is already demonstrating the overall flexibility it offers
manufacturers, issuers and users alike. A multi-application card can automatically update
new services and existing applications. It can change and store user profiles for each
application — and be accepted by a range of devices, including PC, POS, mobile phones
and PDAs. For the future, multi-application cards are set to become the cardholders’
personal ID. The multi-application smart card will become the route for individual’s to
receive personalized information services, and gain access to a range of services
including banking, e-cash, ticketing, and loyalty programs. National government and
state required data may also be simultaneously held on the card — driving license,
passport and national identity information, for example. The multi-application smart card
enables user to access a plethora of applications, together with individualized biometrics,

all integrated into a single card.

2.1.1.3 Making Multi-application cards a reality
The smart card industry has driven major initiatives to support multi-application cards.
There are now agreed industry standards to support operators, service providers,
integrators, content developers, banks and developers that ensure inter-operability,
application and key download. Integrity of downloaded applications is ensured by a
certification process, developed by Oberthur Card Systems and based on the Visa Open

platform specification. This authenticates new applets, defines operating rules and the

-6-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) o
Final Year Project Interim Report

security mechanisms between applet issuer and the card issuer. Dedicated e—busiﬁéss
smart cards, based on Java technology and again developed by Oberthur, enable several
applications to be active simultaneously — ideal for payment, e-commerce and interactive
environments. Applications such as identification-authentication-signature, debit/credit
and e-purse payment, as well as value added services for loyalty, ID and héalth can all

now be run at the same time.

2.1.1.4 Managing Multiple Applications
Using open platform technology, Oberthur has created a Card Management System that
enables issuers to offer customers a range of services via a single card, and to manage
these remotely. Based on Oberthur’s Visa Open technology, the system manages the
entire life cycle of the card, from production, card profile modification, application and
key downloading to applicatioh removal — all conducted within a maximum security
environment. An integral management system is critical to the successful operation of a
multi-application smart card. Based on a system of databases, it contains information on
the card — technical data, association profiles of the products and customer. It contains an
application database, classified by service provider, and covering information related to
loading the application. Key management contains master keys in a secure hardware
module, and data to support key generation. A billing module tracks all information and
transferred data. Finally, an audit database records all connections to the database,

together with information relating to the behaviour of users.

2.1.1.5 A Secure Future
The dramatic growth of e-commerce and m-commerce, coupled with the convergence of
IT, telecommunications, service providers, consumers and network operators means there
is a massive demand for a single card to deliver secure, managed transactions in an open,
platform independent environment. E-business is changing the way we do business. The
need for secure e-payment and e-commerce is being met by today’s highly secure, multi-
application smart card. Supported by an open standard, scalable architecture that ensures

inter-operability and co-operative activities between all parties who work with card

e
Universal “Chip Based Smart Card” Snooping Device

Dimitti Denamany (1467) _
Final Year Project Interim Report

issuers to deliver services via the card, the multi-application smart card is truly enabling

today’s electronic transactions.

2.1.2 A PALM Introduction

2.1.2.1 Introduction
Released in 1996 from an unlikely source -- US Robotics, a modem manufacturer -- Palm
Organizers now enjoy the dominant position in the Personal Digital Assistant (PDA)
market place with approximately 80% of the market. It's not been an easy climb for the
Palm, however, having to overcome Apple's Newton, Microsoft's Windows CE, and
several smaller players like Psion.
The key to the Palm's success has been its simplicity and open development options. A
lot of thought went into the PalmOS and applications, to ensure that people could do
things quickly, efficiently, and without unneeded eye-candy that added nothing to
functionality. The fact that anyone could develop applications for the Palm meant that
developers were attracted to the platform in droves, creating a huge inventory of
commercial, shareware and free applications.
There are a wide range of Palms on the market today, each targeted for a slightly
different audience. The I series is the workhorse variety; these handhelds tend to be the
cheapest and thus the most popular. For example, the Ille, with 2 megabytes of RAM,
can be found for less than RM 600 now. The Palm V series is targeted more towards
executives, being slightly smaller, with a metal case and built-in rechargeable batteries.
In addition to handhelds built directly by Palm Computing, there are also third-party
manufactured units such as the Handspring Visor models or the IBM WordPad. They all
are running the PalmOS, licensed from Palm, and have the same buttons, touch-screen
and writing area. Each has different amounts of built-in RAM and expansion abilities,

and some will have flash ROMs that will let you upgrade your OS.

2.1.2.2 What is a PALM organizer?
Palm Organizers are full computers, but tiny enough to be held in the hand and designed
to be used to help people stay organized. Most models are approximately 3 by 4.5 inches
and about 3/4 of an inch thick. They have touch-sensitive displays that are 160 pixels

-8-
Universal “Chip Based Smart Card” Snooping Device

Dimiiri Denamany (1467)
Final Year Project Interim Report :

square; depending on the model, these will be either plain black-and-white, grey-scale::;;
color. Instead of a keyboard, there's an area beneath the display where a special kind of
handwriting, "Graffiti," is used. In addition to this, there arc four "soft" buttons for
"Home," "Menu," "Calc," and "Search." Lastly, there are physical buttons for "Calendar,"
"Phone List," "Lists," and "Memos," plus scrolling and power buttons.

Most Palms have processors which are about twice as powerful as the first model of
Macintosh computers, although some newer models are even faster. Most models are
powered by a pair of AAA batteries, while the higher-end versions have built-in
rechargeable. Battery life can provide weeks of regular use. While not something you'd
run an RC5 key search on, these devices are certainly powerful enough for most handheld
applications.

It's important to realize that Palms are not intended to replace a desktop or laptop, with
their full environments, but instead are designed to be satellite computing devices
supporting people while they're away from their desk. All Palms have a serial port which
is used to synchronize information between the Pilot and the desktop by way of an
adapter cable or cradle. While on the road, a modem can be used instead to update
information. Some Palms also have an infrared (IR) port, which can be used to
communicate between the devices and desktop machines if they're appropriately
configured. And of course, wireless models can always be connected, providing they're in

a service area.

2.1.2.3 PALM software

A key feature of the Palm design is that new software can be uploaded to the devices,
supplementing or completely replacing the pre-installed software. The devices come with
date book, address book, to-do list, memo pad, e-mail, and expense applications built in,
with each application reading and writing well-documented database files. Enhancing a
Palm simply involves finding an application you want to run and uploading it. There are
lots of applications available -- some commercial but also a great many that are free.

Palm devices don't have a hard drive, so everything is stored in a nonvolatile RAM drive.
Palm applications are simply files in this file system, ending in .prc, and sit alongside any

database files they create, usually ending in .pdb. The "Applications Launcher” presents

0.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) e
Final Year Project Interim Report

the user with a list of all the .prc files on the Palm, with applications optionaiﬁ&
categorizéd to the user's preferences.

This means that managing software is quite easy, since each application usually involves
uploading just one file to the Palm, plus one or more database files. Backing up the
device involves copying and saving these same files. On the Internet, Palm software is
often distributed either packed into an archive format, or simply as an uncompressed .prc.
Installing new software can be as easy as downloading from the Web with a browser and
then uploading to the device.

[Source: Chris Halsall, itip://preilvnet.com]

2,2 THEORETICAL REVIEW

2.2.1 Smart Card Communications

ISO 7816: Part 3 defines the electrical signals and transmission protocols. It describes the
relationship between the smart card and the reader as one of a master (reader) and a slave
(smart card). The reader establishes communication by signaling the smart card through
the electrical contacts on the card. The smart card responds accordingly. The
communication channel is single-threaded and so once the reader has issued a command
fo the smart card, it is blocked until a response is received. Appendix I illustrates the
communication between the smart card and the reader through a series of state

transitions.

2.2.1.1 Smart Card Insertion and Activation

Power is not applied to any of the contacts when a card is inserted into the reader. The
reason for this is that a card could be seriously damaged if power was applied to the
wrong contact. This could easily happen if a card were inserted into powered contacts.
Instead an edge detector is used in order for the reader to determine when a card is
properly aligned with the contact points. When the reader detects that the card is properly
inserted, it applies power to the card. The smart card is powered up according to a well-
defined sequence as shown on the timing diagram in Figure 2.1

The contacts are first brought into an idle state. This is characterized as being when the

power (Vcc) is set high to a stable operating voltage of 5v. (An initial power setting of 5v

-10-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) .
Final Year Project Interim Report

Coatacts
Casd properly
inseited positicned

]] 1
GND ; + i
1 1 i
1 1 1
i 1 1
A + I L
I t L
1 i 1
I I 1
1 1 |
CLK 1 | 1 -
1 1 1 1
f i T
RST : ' H
: : : ATR most come
1 1 t from card here
o !
1 t 1
1 1 1
) 1 t
Reader oot listening Brader listening

13 = 40000 clock creles

ATR must be issued by cad between 400 clock o yeles
and 40000 clock cycles after RST goes high

Figure 2.1: Timing Diagram of Smart Card Power up sequence

is always applied even though some microprocessor chips operate at 3v when in an /O
state.) The I/O contact is set to a reception mode on the reader side and a stable clock
(CLK) is applied. The reset line should be in a low state and remain low for at least
40,000 CLK cycles before the reader can initiate a valid reset sequence. The reader then
sends a reset signal to the card by setting the reset (RST) line into a high state. This
signals the card to begin its initialization sequence.

Different cards may use varying specific initialization operations, however they should
always resuit in the sending of an answer to reset (ATR) from the card to the reader. The
time constraint on the first byte of the ATR being received by the reader is 40,000 clock
cycles. If the ATR is not returned in the prescribed time, the reader begins a sequence to
power down the card. In this sequence, the Vcc, RST, CLK and I/O lines are set low.
Each successive byte of the ATR must be received by the reader at a minimal rate of 1

byte per second.

2.2.1.2 Data Transmission
The /O line carries a single bit if data per unit of time defined by the CLK whose value
depends on its voltage relative to GND. The convention of whether to use +5v for a bit

-11-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Interim Report

value of 1 or to use Ov is conveyed to the reader through the "initial character" of the
ATR, also known as TS. The I/O line is always in the high state prior to the transmission
of a character. It takes 10 bits to transfer 1 byte of data across the I/O line: the first bit is
always a "start bit" (low state) and the last is a parity bit. The parity for each byte
transferred should be even - the total number of bits in the byte whose value is 1 (incl. the
parity bit) must be an even number. The following TS character indicates that the card
uses an "inverse convention" i.e. H corresponds to a 0 and L corresponds to a 1:
(.H)LHHLLLLLLH. A TS character of the form (HYLHHLHHHLLH signals that the card
uses the "direct convention" where H correspondstoa 1 and L to a 0.

The bit ordering in cach byie is also controlled by the convention. In the inverse
convention, the first bit following the start bit is the high-order bit of the byte. Whereas in
the direct convention, the first bit following the start bit is the low-order bit of the byte.
Successively higher order bits follow in sequence.

The communication channel to and from a smart card is Aalf-duplex - data can either
flow from the reader to the card or from the card to the reader, but not both at the same
time. The significance of this is that the smart card and the reader must be synchronized.
If both reader and card transmit at the same time then data will be lost. Moreover, if both
are listening then the system will enter a deadlock situation. During the power-up
sequence, both the reader and the card enter a receive state in which both are listening on
the I/O line. Once the reset operation is completed the card enters a send state (to send the
ATR to the reader). After this, both ends of the channel alternate between send and
receive states.

The CLK and I/O lines are capable of supporting a wide range of data transmission
speeds. The speed used is conveyed from the card to the reader via an optional character
in the ATR. The transmission speed is set by establishing a "one bit time" on the 1/O line,
this means that an interval is established at which the I/O line can be sampled in order to
read successive bits. This time is defined as an elementary time unit (etu). The etu during

the ATR sequence is always defined to be:

etu = 372/CLK frequency

-12-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Interim Report

The CLK frequency is always between 1Mhz and 5Mhz - the frequency selectec{‘r};
generally such that the initial data transfer rate is 9,600 bits per second (bps). A typical
smart card chip is capable of transmitting and receiving data at speeds up to 115,200bps.
However, the data channel can be noisy and reliable communication is more important

than high-speed communication.

2.2.2 Asynchronous Serial Transmission

Figure 2.2 shows the waveform corresponding to a single seven-bit character. In an
asynchronous serial transmission system the clocks at the transmitter and receiver
responsible for dividing the data stream into bits are not synchronized. The output from
the transmitter sits at a mark state whenever data is not being transmitted and the line is
idle. The term mark belongs to the early days of data transmission and is represented by a

-12V in many systems operating over short distances.

Mark

Space

]
{
{
{

Start 7 dam bits Parity Stop
hit: bit bic

Cne character

Example: Letter M = 1001101 (even parity)

Mark

Space

7 data blts

Start 1] 1 | 0 0O [0 Stop
bit Parity bit bit

Figure 2.2 : Asynchronous Serial Transmissions

In what follows, a bit period is the shortest time for which the line may be in a logical 1
(mark) or a logical 0 (space) state. When the transmitter wishes to transmit a word, it
places the line in a 0 state for one bit period. A space is represented by +12V. When the

receiver sees this logical 0, called a start bit, it knows that a character is about to follow.

-13-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Interim Report

The incoming data stream can then be divided into seven bit periods and the data sampled
at the center of each bit. The receiver's clock is not synchronized with the transmitter's
clock and the bits are not sampled exactly in the center.

After seven data bits have been sent, a parity bit is transmitted to give a measure of error
protection. If the receiver finds that the received parity does not match the calculated
parity, an error is flagged and the current character rejected. The parity bit is optional and
need not be transmitted.

One or two stop bits at a logical 1 level follow the parity bit. The stop bit carries no
information and serves only as a spacer between consecutive characters. After the stop bit
has been transmitted, a new character may be sent at any time. Asynchronous serial data
links are used largely to transmit data in character form.

In short, Asynchronous transmission uses start and stop bits to signify the beginning
and end of a transmission. This means that an 8-bit ASCII character with a parity bit
would actually be transmitted using 10 bits. This method of transmission is used when
data is sent intermittently as appose to in a solid stream. In the figure 2.3 the start and
stop bits are in bold. The start and stop bits must be of opposité polarity. This allows the

receiver to recognize when the second packet of information is being sent.

0010000111

1\

Stop Start

Figure 2.3: Illustration of start and stop bits

2.2.3 RS232 Interface

RS-232 has been around as a standard for decades as an electrical interface between Data
Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) such as
modems or DSUs. It appears under different incarnations such as RS-232C, RS-232D,
V.24, V.28 or V.10 but essentially all these interfaces are interoperable. RS-232 is used
for asynchronous data transfer as well as synchronous links such as SDLC, HDLC,
Frame Relay and X.25

-14-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Interim Report

" 1ot Deds carvier detect
B¢ Dt ¢ réaCly
201 Recere deta
TOo—— Reguestio send
A+ Tranomd data
et Clvat Y0 €00
Sr=p= Dt Porminal reacly
Gt Ritg mudicator
. 50— Signa ground

DB 3 pin assigment

L— Protechve ground
Figure 2 4: Standard Pin out for a DB-9 R8232 Connector

The essential feature of RS-232 is that the signals are carried as single voltages referred
to a common earth on pin 7. Data is transmitted and received on pins 2 and 3
respectively. Data set ready (DSR) is an indication from the Dataset (i.c., the modem or
DSU/CSU) that it is on. Similarly, DTR indicates to the Dataset that the DTE is on. Data
Carrier Detect (DCD) indicates that carrier for the transmit data is on. Pins 4 and 5 carry
the RTS and CTS signals. In most situations, RTS and CTS are constantly on throughout
the communication session.

The clock signals are only used for synchronous communications. The modem or DSU
extracts the clock from the data stream and provides a steady clock signal to the DTE.
Note that the transmit and receive clock signals do not have to be the same, or even at the

same baud rate.

The truth table for RS232 is:

Signal > +3v=10

Signal <-3v=1

The output signal level usually swings between +12v and -12v. The "dead area" between
+3v and -3v is designed to absorb line noise. In the various RS-232-like definitions this
dead area may vary. For instance, the definition for V.10 has a dead area from +0.3v to -
0.3v. Many receivers designed for RS-232 are sensitive to differentials of 1 volt or less.
The standards for RS-232 and similar interfaces usually restrict RS-232 to 20kbps or less
and line lengths of 15m (50 ft) or less. These restrictions are mostly throwbacks to the

-15-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) o
Final Year Project Interim Report

days when 20kbps was considered a very high line speed, and cables were thick, Wlth
high capacitance.

However, in practice, RS-232 is far more robust than the traditional specified limits of
20kbps over a 15m line would imply. Most 56kbps DSUs are supplied with both V.35
and RS-232 ports because RS-232 is perfectly adequate at speeds up to 200kbps.

-16-
Universal “Chip Based Smart Card” Snooping Device

and Finalization |1l

cripTioN [||

ol
-

"OMPL,

5

Testin,

{ $electjon’

. -i
[\

. CHAPTER3

cewatelReloted Research | |||

frwars Related Research

~ METHODOLOGY

 BRIEF INTRODUCTION TO

- METHODOLOGY |

CHART OF C

oW

FL

Theovetical Reseneh Work |~~~

i, Lestin

»1

de1 R§232 Connectors

rdware Design

222 Hardwat

B __3;2}_,3'3:" bﬂftvs

cPE |

3

g

orinector] | | |

3513 Milling |

- MAIN COMPONEN!

smart Card ConlacPins

MAX2

3

3.3 Device Inter

3

- -3.3.52 Overall (onfiguration

oo

Dimitri Denamany (1467)
Final Year Project Report

CHAPTER 3
METHODOLOGY

3.1 BRIEF INTRODUCTION TO PROJECT METHODOLOGY

The creation of the Universal “Chip Based Smart Card” Snooping Device has been
divided into two major milestones in order to make the development process more
effective and organized. The first target was to create a snooping device using a
simplified architecture where the processing module for the design would be a personal
computer (PC). The data will be processed in the PC and displayed using the monitor
using a C++ program.

The second milestone on the other hand is the final design for the project where the
processing module is converted into a device that 1s portable and convenient. This would
logically require the use of a unique device, a PALM Pilot. The use of a PALM integrates
the portability and affordability factors into the project’s final design. The purpose of the
creation of the first prototype is mainly to set the groundwork for the project research and
to confirm that the project objectives (snooping of the data lines) are achievable using the
proposed architectural design of the snooping module and the communication module.

By referring to the figures in Appendix C, the block diagram clearly illustrates the 3 main
modules that have been identified in the hardware architecture. The first and final
prototype only differs in the processing module where, as stated above, the PC is replaced
with the PALM.

-17-
TUniversal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

3.2 OVERALL PROJECT FLOWCHART

‘ Project Planning and Organization |

i
| Preliminary Research .- - - |

Hardwaza Design o
| dware

ﬁ!
Software Design
{ Visual C++ Program)

y ' Test Hardware Fabrication |

)
l' Software and Hardware Integration |

I _Trouble‘:hooting _ : |

| Research on PALM prograrhn"_iing_ __ !

e I

{ PALM software _d%e!o’p'rhe'nt_ ' |

o
‘ Hardware Fabrication and Testing |

[- Software and Hardware Integration '

| _ Trouble.:hooting _ [

Universal “Chip Based Smart Card” Snooping Device

Dimitrt Denamany (1467)
Final Year Project Report

32.1 Theoretical Research Work

Theoretical research work is basically the theoretical reviews that have been done
throughout the project duration in order to come up with the prototype and the final
design. There were many books and website that have been referred to in order to obtain
the desired information. As the project is divided into two portions, the hardware portion
and the software portion, the research work done can also be categorized as such.
Manuals and forums were also an important source of information as the information

provided in these sources are relate to commeon problems that are normally encountered.

3.2.1.1 Hardware Related Research
The research done in order to come up with the hardware design mainly involved the
identification of the use and functionality of various hardware devices that were looked
into throughout the duration of the project. The research done on the hardware
components was basically helpful in two ways. Firstly, it helped the process of learning
about the different components available and its uses in order to be able to piece them
together to create the prototypes. Data sheets and electrical websites over the web played
a very important role in describing the components and its various uses. The second way
in which it helped was to provide an understanding towards the smart card architecture
and an idea of the possible action / processes that need to be done in order to obtain the
desired output. For instance, the need for a level converter (MAX232 chip) would not
have been apparent without the research that classified the requirements of the signal that
is passed into the serial port. The research done was also a method of increasing the ideas
that were created in the .hardware design of the project while keeping it technically
realistic and practical. The dilemma of whether to use a PIC micro-controller or a PALM
for the portable processing module in the final design was solved by carrying out a

structured and organized research on both devices.

3.2.1.2 Software Related Research
The software-based research done was wholly focused on establishing two types of
programs that could accept serial data through a serial port, process the data and display

it. The first program done was the Visual C++ program which was ran on the PC in order

-19-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) .
Final Year Project Report -

T

to connect to the serial port and read the transmitted data. As for the final design, the

software development portion involved writing a complete PALM application using
specific softwares that compiled in special PALM development environments. The
research carried out involved a thorough study of the various new softwares that were
used and the specific methods of developing applications (especially for PALM). In
addition, a lot of research was also in order to grasp an understanding of the serial port
communication (PC and PALM) and the method as to which the program interprets the
data transmitted through the serial cable.

3.2.2 Hardware Design, Testing and Finalization

3.2.2.1 Hardware Design
Throughout the project, there were several hardware designs that had to be engineered in
as these devices perform unique functions that are specific to the project requ'irerr.lents.
The following are some of the hardware designing that has been done:-
% Concept of tapping the signals from the actual smart card
0 At the preliminary stages of the project, many designs were made in
order to create a hardware configuration that would enable the required
lines from the smart card to be tapped and sent to the snooper whilst
not interrupting or affecting the communication between the card and
the actual reader. The design that was selected after careful
consideration is the design illustrated in Appendix C, where the
hardware was divided into three modules. At the point of design, the
exact content of each module was not determined yet but the snooping
method applied in the designed seemed logical and applicable.
« Dummy Smart Card
o The dummy smart card is a totally new gadget that requires a unique
design in order to fulfill its purpose. A complete illustration on the
creation of the dummy smart card can be obtained from section 3.3.5.1
% The connector module
o The connector in the snooping module also requires design work in

order to implement a gadget that is able to ensure excellent connection

-20-
Universal “Chip Based Smart Card” Sncoping Device

Dimitri Denamany {1467)
Final Year Project Report

between the wires that are channeled out of it and the relevant contact
on the actual smart card. The design here should be flawless as any
problem with the data flow at this point will cause the whole system to
fail.
% Communication module

o This module is the module that is situated between the snooping and
the processing modules. The design here involves putting together the
required components that have been identified for it not to only
function properly but also to properly connect to both its adjacent

modules.

3.2.2.2 Hardware Testing

Hardware testing is an important part of the creation of the prototype due fo two main
reasons. First of all, by creating tests for a certain components, one would be able to fully
understand and appreciate the functionality of the component. For the MAX232 chip for
instance, Appendix D illustrates the circuit and the test method that was used in order to
test the chip and learn the function of the chip. Practical work normally provides a more
comprehensive understanding towards hardware components when compared to basic

theoretical reading.

The second and more important purpose of hardware testing is to verify certain
assumptions that were taken. In any design process, there are many assumptions that have
to be taken in order to move forward with the project. These assumptions however can be

verified by performing specially designed tests.

For instance, prior to starting the research on the required hardware components and the
software portion of the project, a very general hardware design was required as the basis
of the research. In other words, the method as to how the data was going to be tapped by
the snooping device needed to be outlined. After considering many alternatives, the most
outstanding design was selected (please refer to Appendix C) with certain assumptions
made. The design specified had only one main property that had to be verified before it

was finalized as the final design. A test was carried out in order to verify whether or not

21-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

the tapping device from the smart card is a logical and possible method. As ﬂlustrat;am,
the design involved tapping the /O pin of the smart card in order to get the data that is
transmitted to and from the smart card. However, whether or not this was possible was
yet to be verified. Considering the fact that there were no aluminum foil available at that
point of time, a smart card reader was dismantled and the I/O pin of the smart card reader
was tapped using wires. This is the same principle as tapping the IO pin on the smart
card as both these surfaces are in direct contact. This signal was then sent to a digital
oscilloscope where the data transfer was studied. From the results of this test, the design

was then verified and research on the rest of the components was started.

3.2.2.3 Component Selection
During the hardware design process, based on research, decisions have to be made
regarding the components that are to be used. The decisions made are crucial as a wrong
one may cause the project development to take a turn into the wrong direction. Factors
that have been taken into consideration during the selection are issues such as cost,
availability, practicability and most importantly workability. During the project
execution, most of the components selected have been used. Many changes in hardware
specification have been made during the transition of the process from the first prototype

to the final product. These changes will be elaborated on in the discussion section.

3.2.3 Software Design

The software design involved creating a Visual C-++ (1* prototype) and a PALM program
(final design) that functions to receive the data from the serial port and display it in a
meaningful manner. Besides reading up on documentations that are available on the web,
the most effective manner used in order to create software was to actually do the coding
and incrementally build the program up step by step. Examples were obtained from
online program banks and studied.

Generally an evolutionary software development approach was adopted in order to create
the programs. Development of the programs were broke down into portions in order to

simplify the coding before putting them together. For the Visual C++ program, there

2.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

were three portions to it where the first objective was to just develop a program thaf 1s
able to receive serial data. The second goal was to create a subroutine in order to convert
the data into meaningful information. The final stage was to further enhance the program
in order to display the information in a more meaningful manner.

For the PALM application on the other hand, 3 separate programs were created where the
first one implemented dynamic fields. The second program on the other hand
incorporated the serial library functions in order to create a program that is able to receive
data via the PALM serial port. The third program on the other hand impIcmeﬁted the
method of using and controlling scroll bars. Lastly, a final program, the snooping
program was developed which incorporated all the three sample programs that were
previously developed. It should be noted that the development of the PALM programs
took more effort as the there were many new PALM development softwares that had to
be mastered prior to actually developing an application. A complete explanation on the

softwares used and its functions can be obtained from Appendix E.

3.2.4 Hardware Fabrication and Troubleshooting

One of the main activities of throughout the duration of the project was the work done in
order to construct the specified hardware design. The first design was constructed in the
middle of the first half of the project for the purpose of troubleshooting the Visual C++
software that is being created and also to verifying the design specifications based on the
research. Many changes have been made since in order to overcome various problems
and perfect the circuit so that it would be more reliable. The fabrication of the hardware
were done involved various activities such a PCB fabrication, milling, soldering, circuit
analysis and etc. Since most components in the design are not available commercially,
they were all fabricated in the lab. In order to troubleshoot the hardware, various tests
methods were designed in order to ensure that there were no flaws in the design. The test
methods implemented were made to be as simple as possible in order to make the error

detection simpler.

-23.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

3.3 MAIN COMPONENTS DESCRIPTION

3.3.1 Smart Card Contacts/Pins

The layout of the pins in all chip-based smart cards has been standardized based on the
ISO7816-2 standard. The following is a simple diagram illustrating the contact pins on a

smart card.

Voo —f- -t CND
~—)

RST — e yPp

cLx —+ —-—t—— D

b

Reseved for
future use

Figure 3.1: Smart Card Pin Layout

The smart card chip, or integrated circuit card (ICC) has 8 electrical contacts. They are
referred to as C1 through C8. However, as shown above not all 8 contacts are electrically
connected to the embedded microprocessor chip and therefore unused at the present time.

The following table contains the contact definition according to 1SO7816-2 standard.

Contact \Designation |Use
: Power connection through which operating power is supptied
C1 Ve A I
_ _ o {to the microprocessor chip in the card
: Reset line through which the IFD can signal to the smart
C2 RST Jcard's microprocessor chip to initiate its reset sequence of

_iinstructions

Clock signal line t hrough which a clock signal can be provided .
c3 CLK to the microprocessor chip. This line controls the operation '
’ speed and provides a common framework for data

. icommunication between the IFD and the ICC

i

:§C4 ~ {RFU {Reserved for future use

:C5 GND Ground line providing common electrical ground between the
IFD and the ICC

{Programming power connection used to program EEPROM of

© VPP |firstgeneration ICCs,) o
5C7 : 1/0 JInput/output line that provides a half-duplex communication

: e . _ichannel between the reader and the smart card

1C8 _ |RFU ~ |Reserved for future use

Table 3.1: Smart Card Pin Functions

24
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

3.3.2 MAX232CPE
Given is the physical pin layout of all MAX232 chips.

. 7
Ci+ E E Yo
vz 15 GND

CT-E mm 14 TIGUT
ce+fa| w0z L) R

2 [5] "F# 12] RrOUT
v-[6] 1] TI
T20UT [7] 10} T2

n 3 | RROUT

Figure 3.2: MAX232 Pin Layout

The purpose of the MAX232 chip is to convert the voltage levels and encode data. The
serial port of a PC/PALM and the smart card both has different ways of representing the
same data. The smart card represents its bits In voltage levels of 5V (high) and 0V (low).
The serial port on the other hand represents a high as a voltage between -3V and -12V
and a low as a voltage between +3V and +12V, Basically when changing the smart card
data signal to the serial port data signal, the MAX232 magnifies the voltage to its
appropriate level. The magnified signal is then encoded using the Non Return To Zero
Level (NRTZ-L) encoding scheme. The reverse happen when the data is sent from the
serial port to any other standard devices. Common names for MAX232 chips are level

CORVErters.

3.3.3 Device Interface: RS232 Connector

s,

4 1 Comtees Drdtey carrior dedect

16O~——t— Datts set ready

20—— Receive data

{7 0———Request to semd

30— Transmit dale

| Cpomeommat— Clar 109 soruf

403 Dats terminet resdy
Orsmssnnnden: G INClicaton

SO Sighal ground

\L Protective ground

Figure 3.3: RS232 Serial Port Pins

DB § pin assigmen

-25-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

The RS232 connector functions as the data transmission connector between the MAX232
¢hips and the serial port of the PC/PALM. As illustrated in the diagram above, there are
nine pins available on the connector. In the design specification, only seven out of the

nine pins available are used. The transmit pin and the ring indicator pin is not used.

334 PALM Hardware

The PALM that was used in the final design was the PALM IlIxe. This PALM is used to
conneét to the user’s personal computer via a device called a cradle. The PALM is placed
on the cradle and a wire from it is then connected to the serial port of the PC. Besides the
cradle, a P.alm HotSync cable could also be used. The cable is basically identical to the
cradle except for the fact that instead of placing the PALM on the device, the connector is -
directly connected to the Palm’s port (please refer to Appendix F for a graphical
illustration)

Basicall‘jf the port on the PALM that connects to the serial cable of the cradle or the Hot
Syhc Cable is actually a serial port. The only difference is that contacts on the PALM are
all flat.. -

Pin No | Func. | PinNo | Func
~ 1 |DIR| 6 |cCIs
: :___t;;:_!sff.ﬁ.ﬁﬂmm 2 T 7 I3
3 [RX| 8 |om

Figure 3.4: Pins on the HotSync Cable

Figure 3.4 clearly shows the function of each pin on the HotSynch cable. Basically, the
port for the Palm device’ also has those contacts. These contacts are then just wired to the
female socket of a basic RS-232 connector so that it can be fitted into the male serial port
on the PC.

S Refer to appendix F for the images

-26-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

3.3.5 Dummy Smart Card and Connector Fabrication
The dummy smart card and the connector were basically two gadgets that had to be
specifically engineered as they are not available in any store. These two gadgets were

designed using various tools in the mechanical and electrical labs.

3.3.5.1 Dummy Smart Card

The dummy smart card is the component of the design that will be inserted into the target
smart card reader. The dummy card would be connected to the “connector” (explained
next) which would be connected to (or touching) the contact of the actual smart card.
Hence, the dummy smart card is required to have all eight contacts fit exactly into the
smart card reader with absolute precision. In addition to that, these contacts must also be
connected to pins at the edge of the card in order enable the tapping of the signal lines®.

This card is a very unique device that was created using PCB fabrication. It is actually a
PCB board which has been modified to become a smart card. The following are the steps

that have been taken in order to fabricate the dummy smart card: -

% Creation of the Gerber file using the ARES LITE software

¢ Creation of the dummy smart card on a PCB using mechanical etching.

% Alteration of the width and height of the card in order to align the dummy smart
card contacts with the smart card reader contacts.

% The thickness of the PCB was carefully reduced to the thickness of a smart card
using a Milling machine.

)
”»r

Holes were drilled into the smart card in order to place connectors (pins) on it.

L/
e

The PCB was cleaned using sandpaper in order to create a clean surface.

»
0.0

The connector pins were soldered onto the clean surface of the PCB.

‘d

The surface of the PCB was then coated with a thin layer of coating for
protection.
The steps given were accomplished with the guidance of technicians from each of the

respective labs. Snap shots of the dummy smart card can be seen in Appendix G. With

5 refer to Appendix G for a picture of the dummy smart card
7 gerber file included in attached CD

27
Universat “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

reference to the given fabrication steps, the following is a detailed description of some of

the challenging processes.

3.35.1.1 PCB Tracing

The PCB tracing that was done required the implementation of special techniques as the
desired layout of the PCB is not exactly a circuit. The only type of PCB ftracing that was
available in the lab at was mechanical etching. This meant that the PCB board was placed
in a machine that would slowly strip off the copper surface of the PCB in order to
separate the contact. The movement of the machine is based on the Gerber file that it
loaded into it. A Gerber file can be prepared using several softwares..

The ARES Lite software was selected to design the tracing patterns as it was easy to use -
and quite sufficient for the creation of the dummy card as the software did not require
circuit analysis. The tracing process with the software was extremely important as the
measurement of the contacts that was provided had to be exact. Based on the ISO7816
standard, the 8 contacts on a smart card have default locations and all the smart card
readers (which are normally based on the ISO7816 standard} are designed to comply with

these measurements.

i A B C D
e e ————
Cl | 10.25 12.25 19.22 20.93
cz | 10.25 12.25 21.77 23.47
C3 [10.25 12.25 24,31 26.01
C4 | 10.25 12.25 26.85 28.55
c5 | 17.87 19.87%7 19.23 20.93
C6 | 17.87 19.87 21.77 23.4%
!
I
+

IS07816 location

Table 3.2: Measurement of Pin’s Position based on Figure 3.6

8-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

T

| [

I N

1 B

I e f—

i | €& | | €% 1 —,
{ - [J—) [—— |
1 - [I
| [€7 1 [|
I 1 e | 1w I
| P P | ATNOR posmition
| | C& | | ez 1 |
| [Jpp—1 [— |
| «TTTT +TT T . !
| | €& | I €x (| =
I | s o B ! e N

I ['] g

| I .1 | | &5 1 =
| Pt fem— 1
I eTTT T T I
| | €2 | (-2 |
| tom== l====1 | IBD?E1l6 position
| ¢TI, T |
| | €2 | [ey 1|
| imiinie o
I g ¢ T |
1 [[N
| [J—) [

|

| A

[e e e e >

|

| E

[e e A S e s s s s ——— >

|

Figure 3.6: Pin’s Position

After carefully creating the Gerber file based on the measurements above, it was
downloaded into the PCB tracing machine and the PCB board was prepared. Upon
completion, the PCB was then removed from the machine and the measurement process

was done once again as the PCB would have to be cut to the proper width and height.

3.3.5.1.2 Milling
Once the width and height of the PCB board have been made to be identical to that of a
smart card, the only remaining physical alteration is to customize the thickness of the
PCB. This is important as most smart card readers have a slot which is not more than
0.1mm wider than the actual smart card thickness. A smart card generally has a thickness
of 0.8mm. This is almost half the size of a normal PCB board. Hence, in order to slim
down the PCB, the milling machine seemed to be the best tool that was available in the

mechanical workshop.

220
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) .
Final Year Project Report

The process of milling the card to become thinner was an extremely delicate job as the
risk of the card breaking was very high given the consideration that the milling machine
was not built to work on materials such as PCB boards. Another important consideration
that had to be taken into account is the effect of warping. Warping is a phenomenon
where the material in question (which is normally not very thick) begins to bend due to
excessive force. With all the possible risk to the dummy smart card, many trial runs were
attempted on unused PCB board before work was actually done on the dummy smart
card.

In order to protect the card from the various destructive effects of the milling machine,
the milling process was done step by step by working on a small area at a time. Only the
area that was going to be milled would be exposed. The rest of the card would be
mounted down using rubber stoppers in order to ensure that the card was always flat.
Each portion of the card is pressed down unless milling was done on its surface. After
carefully milling the card, the dummy smart card seemed to have emerged slightly
thinner than expected and with a little bit a warping on its edges. Nevertheless, as far as
its contacts with the smart card reader were concerned, all eight contacts were perfecily
aligned with the dummy smart card and the size of the card was within an acceptable

limit.

3.3.3.2 Connector
The conﬁector is the device that helps establish a connection with the actual smart card
contacts. It is a device that is supposed to function to tap all the contacts of the actual
smart card and transmit them to the dummy smart card. Hence, in order to design such a
device, ‘the casiest method was to modify an existing smart card reader. The
Schlumberger e-Gate connector was used as the target reader. The e-Gate was forced
apart and its processing board was cut off. Wires were then carefully soldered to all the
contacts that are used by the smart card reader®. These wires were then routed out of the
reader and into a PCB board that is connected to the dummy sﬁlart card. Each wire was
carefully matched with its corresponding contact on the dummy smart card. Finally, the

e-Gate was glued back together using super glue.

® The smart care reader only uses six contacts. Two of the contacts are not used

-30-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

This means that there is a direct connection between each contact in the dummy smart
card to each contact in the actual smart card hence making the actual smart card reader
unaware of the difference in the hardware configuration. Please refer to Appendix G for

snap shots of the connector.

3.3.5.3 Overall Configuration
By connecting the dummy smart card to the connector, the snooping device is complete.
For testing purposes, the device has been used on its own with out any snooping in order
to examine its effectiveness. When a smart card is connected to a Reflex 20 smart card
reader via the snooping module, the card seems to work extremely well and the reader
does not indicate any problems at all as all operations verify that the reader is unaware
and unaffected by the presence on the snooping device. This test was repeated with

multiple reader and they all worked fine.

231-
Universal “Chip Based Smart Card” Snooping Device

- : : 4.2. 1 *%mart (ard ﬂommunmatwn Betaﬁs- .

CHAPTEE" I

-SYSI EM DESCREPTI()N &

'_.4_,;1.1

. 3“5422

Snaepmg Module o :

Interfaemg the MAXZSZC

, _-4221%@{232€912 e |
- -*_4 2 2 2 benal Por’t fonnector (DB»EM : .'

423 PALM Sm}ﬁpmg Program RN EI—

'4 3. 3 1 PALM ngram De

{ -zﬁf 4232 ngram Oven ew

A2 3.3 Receiving lhe Bytes :

. 4. 2 3 4 the C mwerswn Su

ELABOMHOI\ (}N THE PINAL e' UPuT ||

,"4 2. 3: S E)am Interpretatmn';;- '

Cammumca'ﬂn Moduie _3 o

R&SULTS AND DISCUSSIQN -

PE and the wui(

velopment

br_ﬂ'ut'i:ﬁéfﬁ' L

FUNm mNA‘m

Y|

pringgten | | |||

Dimitri Denamany (1467) '
Final Year Project Report

- CHAPTER 4
PROJECT IMPLEMENTATION, RESULTS AND DISCUSSION

41 SYSTEM DESCRIPTION AND FUNCTIONALITY

From the block diagram and circuits illustrated in Appendix B, it is clear that the
snooping device can be divided into three modules, the Snooping module,
Communication module and the Processing module. Each module has its own overall
functionality as it consist of several components that have been interfaced together to

achieve certain goals.

4.1.1 Snooping Module

Dummy smart card

)

Figure 4.1: Snooping Module (Dummy Smart Card and Connector)

The snooping module basically consists of the:
1. Dummy Smart Card
4% The dummy smart card is actually a specially fabricated PCB board that has is
the exact same size as an actual smart card and has eight contacts at the exact
same position as the actual smart card. These eight contacts are all linked to
the edge of the card where connector pins are connected to it. The connector
pins will be used in order to link the contacts of the dummy smart card and the

contacts of the actual smart card.

-32-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

W
ke

% The purpose of the dummy smart card is to make the target reader “think” that
there is a smart card in it even though the smart card is not actually physically
in the reader; it is just connected to the reader via the dummy smart card.

2, Connector

% The connector is the interface that provides the link between the connector
pins on the dummy smart card, and the pin contacts of the actual smart card.
The main purpose of the connector is actually to make the design more robust
and to make the snooping of various smart cards convenient. The connector
has a slot (like a smart card reader) where the actual smart card is inserted.
The pins of the smart card would then come into contact with a copper contact
plate that is physically linked to the 8 pins on the dumnmy smart card. This
gadget saves the user the trouble of mannally connecting the 8 pins from the
actual smart card to the dummy smart éard.

3. Actual smart card

¢ This is the target card that the user decides to snoop on. The actual smart card

will be inserted into the connector as discussed above.
4. Actual Smart Card Reader

% The actual smart card reader is the device that will house the dummy smart

card. This is the smart card reader that is supposed to be able to communicate

with the actual smart card.

When the actual smart card is inserted in the connector and the dummy smart card is
inserted into the target smart card reader, communication between the actual smart card
and the smart card reader (via the dummy smart card and the connector) will begin. All
the signals from the smart card will be transmitted to the smart card reader through the
physical connection that has been set up via the dummy smart card and the connector.
The signals from the reader to the actual card also are transmitted using the same manner.
As far as the smart card reader is concern, the communication that takes place is just like
the normal situation of the actual smart card being inserted into the reader.

With that portion set up, the snooping circuitry then comes into play where certain

contacts from the smart card are tapped in parallel with the existing circuitry. A smart

.33
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

card has 8 contacts where there are normally 6 contacts that are used®. In order to snooﬁ
on the data transfer, there are four main contacts that are tapped, the I/O contact, V.
contact, Gnd contact and the RST (RESET) contact.

The I/O contact contains the data that is transferred from the card the reader and vice
versa. This line basically contains all the information that needs to be displayed as ali
communication takes place via the I/O contact, as it is a half-duplex line. The information
regarding the data transfer is further illustrated in section 4.2./. The RST contact on the
other hand is the reset pin for the smart card chip. These two lines are linked to the

Communication module, which will be discussed in the next section.

4.1.2 Communication Module

The communication module is the portion of the circuit that is in charge of transferring
and formatting data from the snooping module to the processing module. The module
consists of two main components, the MAX232CPE chip and the RS232 Connector. The
functionality of these devices and some of its technical specifications can be obtained
from section 3.3.2 and 3.3.3.

The exact connections made for the communication module can be seen in the circuit

illustrated in Figure 4.3(refer to Appendix H for clearer diagram).

_,.__+ -
From snooping module To processing module

Figure 4.2: Communication Module

® referto section 3.3.1 for details on the smart card contacts

-34-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

I mehaal@manSad 1Ll

Ll s Connmater{ RESR2L L L | B BRR
-+ .. Ml caps sre R2uF Tantstum ' . B3]
e sed e e e e s Thig will be connected to the processing module

Figure 4.3: Schematics of the Snooping and Communication Module

There are four contacts that have been tapped from the card and brought into the
communication module from the snooping module. The Gnd contact is connected to both
the MAX232 and the RS8232 connector (GND-Pin 5) for the sake of standardization. The
Vee contact is connected to the Vec of the MAX?232 chip. Hence, the MAX232 chip
actually obtains its power source from the smart card 5V Vcc contact.

The /O contact and the RST contact is connected to the MAX232 chip in order to
convert the voltage level. The on both these contacts that are represented as 5V voltages
(HIGH logic) and 0V voltages (LOW logic) are converted into a representation that is
understood by the serial port of the processing module. The HIGH logic on the serial port
is represented as a voltage between —3V and —12V where else a LOW logic is represented
as a voltage within 3V to 12V. All data sent to the serial port must be converted into this
format; hence this shows the importance of the MAX232 chip. Once the signals have

~35.
Universal “Chip Based Smart Card” Snooping Device

Dimitti Denamany (1467) ‘
Final Year Project Report

been converted, the I/O line is sent to the Receive (RX — Pin 2) Line of the RS232
cornmnector.

The output of the RST line from the MAX232 on the other hand is sent to the Data
Carrier Detect (DCD-Pin 1) Pin. The rest of the pins are configured as shown in Figure
4.1. A detailed explanation on the pin configuration can be found in section 4.2.2.2.

The RS232 Connector is then connected to the serial port of the processing module and

data is then accepted by the module and processed.

4.1.3 Processing Module

The processing modu_le server two main purposes; the first is to process the data that is
sent in through the serial port to become meaningful information. The second function is
to organize the information properly and display it in a meaningful manner. As
mentioned, there are two types processing modules which have been used throughout the
project. The first one is a PC where this was actually a prototype for the final design. In
this module the serial port is controlled using a Visual C++ program that accepts the
serial streams and translates the data into meaningful information. In the final design, the
processing module that is used is a PALM device and the serial connector from the
communication module is connected to the cradle or HotSynch cable of the Palm. In
order to accept the serial data and process it, a Palm application has been developed using
custom made softwares’ that were designed specially for Palm Application Development.
Both the softwares written for both the processing modules are almost identical in terms
of its programs structure. The programming environment and the functions calls made in
both programs might differ completely, however, the program implementation and the
logics behind it is rather identical. In both programs, the initial stages of its execution
involve the setup of the serial port of its respective hardware. Parameters such as the baud
rate, start bit, stop bit and etc. have to be set to establish a successful communication.
Then, the serial port is opened and the receive buffer is checked periodically'® for
incoming data. In the Palm application, the process of moving in a loop is a default

characteristic that is implemented (refer to Appendix E for an explanation on the Palm

? pleasc refer to Appendix E in order to get an overview of the Palm Application Development Softwares
1% also known as poiling

-36-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

programming structure), Every time data is received, memory is allocated for the dataw;r;
order to temporarily store it. The data is then manipulated in order to actually display the
transmitted bytes.

In order to display a character, on the screen, the character must first be translated in to
its ASCII'' representation, ASCII is a code in which the numbers from 0 to 255 stand for
letters, numbers, punctuation marks, and other characters. Hence in order to display the
bytes that were received, they must first be converted into its respective ASCII
representation. The ASCII representation for all possible incoming data is given in
Appendix L.

The bytes that are transferred all comply with the standard format that is stated in the
ISO7816-3 protocol. The first few bytes received upon connection is called the ATR, the
Answer to Reset. The ATR has a predetermined format. The bytes that are received after
the ATR until the point of disconnection are all called APDU’s (Application Protocol
Data Units). Further details on the byte to ASCII conversion process and the explanation
on the received data is available the following sections. The detailed explanation on the
programming of the processing module will be covered only for the PALM device as it
is the final design. However, screen shots of the Visual C++ program can be obtained

from Appendix J.

4.2 SYSTEM DESIGN DETAILS

4.2.1 Smari Card Communication Details

The smart card communicates with the outside world through the I/O contact. All
communication with the smart card is classified as a half duplex communication where
the data transfer can only take place at one direction at any point of time. The data is
transferred to and from the IO pin using asynchronous serial transmission'”. The

following are the asynchronous data transmission details of the card:

! American Standard Code for Information Interchange.
2 refer to section 2.2.2 for details an asynchronous serial transmission

-37.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

Baud Rate
Start Bit

Stop Bit

Parity Bit

- Evenpaity .
Table 4.1: Asynchronous data transmission details -

With these settings made compulsory, all data transfer from and to the smart card must
comply with these conditions. This indicates that the smart card chip actually has an in
built Universal Synchronous Receiver /T ransmitter’> (UART).

There are four main contacts that are tapped from the smart card, the Vce, Gnd, I/O and
the RST contacts. The Ve and ground contact are basically tapped in order to power up
the MAX232CPE chip. The I/O and the RST contact are the lines that carry the important
data that is needed. As stated, the purpose of the I/O contact is to enable half duplex data
transfer to and from the card. Hence, when the snooping device taps the /O line, it
becomes possible to read all information transferred to and from the card with the
condition that the signal is interpreted correctly. The /O line is norinally kept high when
there is no data transfer (idle state) between the card and the smart card reader. The RST
(reset) line on the other hand functions as a reset for the smart card. When the card is
functioning, this line is always kept high. A reset can be applied to the card when there is
a low to high transition in the RST line. A more detailed explanation on the VO line and
the RST line is illustrated in Section 2.2.1.

When a card is first inserted into the smart card reader, all lines will remain low until all
the contacts are properly positioned. Once the contact are positioned properly the, card is
powered up as the Vcc contact is brought high. The Vee contact will remain high until
the card is disconnected. This in turn means that the MAX232CPE chip, which is
powered by the Vce pin, will be activated and deactivated exactly when the card is. The
smart card will then be RESET, as the RST line will be brought high after a certain

period of time.

3 UART functions to convert 8 bit bytes into the asynchronous data form by adding the start, stop and
parity bits or vice versa.

-38-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

The first action upon a card reset is that the card would then transfer a 'string of bytes
known as the Answer to Reset (ATR) to the smart card reader The ATR sequence is
responsible for initializing the physical communication channel between the reader and
the smart card. It facilitates the definition and manipulation of a number of characteristics
of the channel. In short, the ATR is actually a long number that identifies the smart card
to the smart card reader and it also contains some control information that specifies the
protocol and setting that the reader should adhere to in order to establish a successful
communication line with the card.

ISO 7816-3 also specifies a more elaborate method of selecting a protocol known as the
Protocol Type Selection (PTS) facility. The reader can negotiate with the card to obtain
an optimum set of characteristics for the channel through the PTS. When the ATR has
been transmitted, the reader would then evaluate, based on the protocol indicated in the
ATR, whether or not a Protocol Type Selection Request (PTS) is necessary. If it is, the
reader would execute the request and the card would reply with a Protocol Type Selection
Response. Normally, optimum communication characteristics are usually through the
ATR sequence without performing a PTS sequence.

After the completion of these sequences of byte transfer, the rest of the communication
between the smart card and the smart card reader involves only the transfer of
Application Protocol Data Units (APDU). APDU’s are basically commands that are sent
to the smart card in order to perform certain operations. In turn, the card would respond
with to the command in order to indicate whether the message had failed or succeeded.
The response may be prefixed by some data bytes if the command involved a request for
certain information from the card. A summary of the whole communication discussed
above is briefly summarized in Figure 4.4.

As illustrated in the figure, after the ATR and the PTS (if necessary) are sent, the reader
{(terminal) issues commands and the card will provide a response to each command.
These actions are repeated over and over again until the card disconnects from the reader
or it is reset. When the card is reset (RST line goes from low to high), the whole sequence

repeats once again.

-30.
Universal “Chip Based Smart Card™ Snooping Device

Dimitri Denamany (1467)
Final Year Project Report .

Termdra:

ATR (Answer te Reset)

[FTS necessory] PES-Requi

FT5-Resy

commend 1

rasponse 1
comupand Z

response 2 E;%

Figure 4.4: Smart Card Activation Sequence

4.2.2 Interfacing the MAX232 and the Serial port connector (DB-9)
4.2.2.1 MAX232CPE’

The MAX232CPE chip gets its power source from the Vcc and Gnd contact of the smart
card. The chip functions to convert the high and low voltage levels from the smart card to
its corresponding voltage levels according to the standard requirements of the serial port.
There are basically two lines from the smart card that is transmitted into the
MAX232CPE chip, the I/O line and the RST line. The I/O line is inputted through pin 10
where else the RST comes in through pin 11. The output for the I/O line and the RST line
are on pins 7 and 14 respectively. The output for the I/O pin is the connected to the
Receive pin of the DB9 connector. This pin functions to transmit the data into the serial
port. Hence, all the data from the I/O contact is acctualy being transmitted into the
processing module via the receive (RX) pin on the serial port. As for the RST line, the
output signal from the MAX232CPE chip is connected to the Data Carrier Detect (DCD)
pin. Explanations on the connections made to the DB-9 connector are given in the

following section.

" refer to Appendix F for the schematics

-40-
Universal “Chip Based Smart Card” Snooping Device

- Dimitri Denamany {1467)
Final Year Project Report

The MAX232CPE circuit setup is a standard schematic from the data sheet. However, the
only special element is the type of capacitors that are used. The.stan.dard specification
recommends a 10uF electrolytic capacitor. However, for this project, the capacitors used
were the 22uF tantalum capacitor. The reason these capacitors were selected was because
tantalum capacitors are meant for high switching circuits and they are also much more

reliable when compared to the electrolytic capacitors.

4.2.2.2 Serial Port Connector (DB-9)
The connector has 9 pins that are available. From these 9 pins, only 7 of the pins are used

in ord;e_r to establish the asynchronous data transfer required.

from pin 14 of the MAX232CPE (RST Contact)
from pin 7 of the MAX232CPE (I/O Contact)

DB @Temale

from the smart card Gnd pin

Figure 4.5: Connection to the DB-9 connector from the MAX232CPE chip

The following is a simple summary of the connections made and some brief explanation

on the logic behind the connections. -

DCD (Pin 1)
This pin is called the Data Carrier Detect pin. The purpose of this pin is to actually detect

the presence or the absence of a carrier wave. For normal use o the DB-9 connector, if a
carrier is present, it indicates that the transmission is line is “alive” (either receive or
transmit) and that the port would have to be alert of possible data transfer. On the
contrary, an absence of the carrier means that no data will be transmitted making the port
is “dead”. A simple analogy would be to assume this pin as the power supply for the
serial port. Hence, by connecting the RST contact to this pin via the MAX232CPE,
whenever the reset is low, the port is basically not powered and when it goes high the
port is powered up and able to do the data transfer. Since the reset goes from low to high

every time it is triggered, the serial port also 1s deactivated and reactivated.

41-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

RX (Pin 2)
The RX pin is the receive pin. This pin functions to receive synchronous or
asynchronous data. The data from the /O line is sent into this pin via the MAX2323CPE

chip so that the processing module can receive the transmitted information.

DTR (Pin 4) and DSR (Pin 6}
The DTR, Data Terminal Ready Pin indicates that the DTE is ON and ready to
communicate when it is asserted. The DSR pin on the other hand indicates that the DCE

is connected and ready to transmit data when it is asserted. These two lines mainly
function as handshaking lines in order to synchronize communication. Since handshaking
is not used for the data transmission, these two pins have been connected together. This
means that once the serial port is ready, it will assert the DTR line which in turn causes
the serial port to think that the other party is also ready for communication as the DSR

line is asserted simultaneously.

GND (Pin 5)
Pin 5 is the Gnd pin. This pin is connected to the Gnd contact of the smart card in order

to ensure that voltage references for Gnd are all the same. This ensures that the voltage

conversion in the MAX232CPE chip would be correct.

RTS (Pin 7) and CTS (Pin 8)

RTS is the Ready To Send pin where else CTS is the Clear To Send pin. These are
handshaking signal where whenever one entity wants to sent some data to the other, it
would assert the RTS line, If the other entity is ready to receive the data, it would then
assert the CTS line indicating that the data can be sent. Since, handshaking is not
implemented; these two lines have been connected together. They do not really serve a

purpose, as no data will be transferred out of the serial port of the processing module.

4D
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) '
Final Year Proj ect Report

4.2.3 PALM Snooping Program

Palm OS” Emulator
Data Display Area

Baud Rate Selector
Clear Button

Serial Port Connected |
/Disconnected Icon -

i : e o) 1 I by

Figure 4.6: Screen shot of the PAIM snooping program

The PALM snooping program is the most important component in the processing
module. The program is in charge of establishing a connection with the serial port,
reading the data, converting it into useful information and finally displaying the

information in a user friendly manner.

4.2.3.1 Palm Program Development
Thé software development process of Palm snooping program involved a lot of
groundwork before an actual application was created. The softwares used in order to do
the development were custom made for Palm Developement. The CodeWarrior program
was the main development software that contained all the source code for the application.
The Graphical Interface of the Palm required the use of a separate software called the
“Constructor” that will be manually linked to the CodeWarrior. Debugging the Palm
applications also was a unique process as it involved special techniques and the use of

sp_écial programs.

-43-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467}
Final Year Project Report

On the actual programming aspect, the method of in order to create the application Was
also special as Palm application are event based applications that run in an infinite loop.
Basically, upon execution of the program, the application is set up and the looped using a
whi_le.command. In the loop several handlers are available and each of these handlers
performs certain functions. When anything is done to the Palm (a button is pressed,
something is written or etc.} an event is dispatched into the loop and the event handler
will take the appropriate action in order to respond to the incoming event. Once the event
has been taken care off, it is discarded and the program goes back to looping till the next
gvent 1s dispatched into the loop. A typical event loop and its handlers is as the
following:-

static void EventLoop (void)

“Word error;

Lventlype event;

do ‘
EvtGetEvent (&eveni, eviWaitForever);
PreprocessEvent (&event);
if {1 SysHandleEvent (&event)}
if (! MenuHandleFveni (NULL, &event, &error))
if {1 ApplicationHandleEvent {&event)}
FrmDisparchEvent (&event);

‘
}

while (event.elype '= appStopEvent); // terminate program command received ?

f
A

A complete illustration on the softwares used and the event loop for the Palm

application is available in Appendix E.

4.2.3.2 Program Overview
Figure 4.6 shows a screen shot of the snooping program. The method of using the
program is relatively simple. When the program is launched from the Palm main page, a
screen as shown in Figure 4.6 will be seen. At this point the snooping program has
already automatically opened the serial port in order to accept data at 9600 baud rate.
This was done as 9600 is normally a very common baud rate that is used by smart card

readers. If there were incoming data at this point at the rate of 9600 baud, it will be

-44-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

accepted and displayed in the display area. In order to change the baud rate of the semal
port, the user would only have to select one of the 5 baud rates that have been specified
by the “baud rate selector buttons”. When this is done, the serial port is closed and then
re-opened at the new baud rate. Once this happens, the system is once again ready to
accept data through the serial port at the new selected baud rate. Once data is accepted
and the display area begins to fill up, the “Clear” button can be used in order to clear the
screen. When the menu item is selected, the “Close Serial Port Option” and “Open Serial
Port” functions are available in order to close or open the serial port manually. On the
other hand, in order to exit the program, the user would only have to select anywhere
outside the application as the application will automatically close the serial port and exits

the program.

4.2.3.3 Receiving the Bytes
When the program is Jaunched, the serial port is automatically opened by launching the
port initialization codes at the same time. These initialization codes are basically built in
functions and structures that are obtained from the SerialMgr.h header file.
In order to connect to the port, certain details regarding the type of transmission, the baud
rate, number of start bits, stop bits and type of parity has to be configured. All these tasks
have been made easy by an in-built class called the SerSettingsIype structure. The
following is a snippet of the coding from the C++ program in order to declare the
required configurations for the serial port.
SerSettingsiype SerCommSettings,
CommFlags = serSettingsFlagBitsPerChar8|serSettingsFlagStopBits2|
serSettingsFlagParityEvenM:
Hspecify 8 characters per bit,2 stop bits, Even parity

HComm flag is also an in-built struciure

In order to implement the coding to connect to the port, certain functions have to be
called. The following is the code snippet that connects to the serial port and sets the
attributes by declaring the SerSettings Type structure that was created above.

-45-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

#Hdefine PORT 0
ervor = SysLibFind("Serial Library", &gSerRefNumber);
error = SerOpen(gSerRefNumber, PORT. Baud):
HOpen Serial Port at specified baud, PortlD remrned to

HeSerial PortID
SerCommSettings baudRaie = Baud, //Set th specified baud rate
SerCommSettings flags = Commilags; /et flags

error = SerSetSettings(gSerRefNumber, &SerCommSettings);

//Setf communication settings

The SysLibFind is a function used to get the reference number for a library. Since “Serial
Library” was specified as the parameter in the command, this function returns the serial
number for the serial library. This number is used in order to open the serial port
{(SerOpenPort). As can be seen, the SerCommSetting is the structure that contains all the
informatton regarding the specifications of the serial port connection. After opening the
port, these settings were applied to the serial port using the SerSetSettings function.
Appendix K provides a brief overview on the ready-made function and structures that
have been used in order to create the program.

Besides the programming that has been done to achieve the successful connection and
data transfer, it is also important to acknowledge the fact the serial port contains a UART
that performs the transfer of serial bits to a single byte. In this case, the UART in the
serial port reforms the bytes by striping away the overhead bits that have been added.

4.2.3.4 Bytes conversion subroutine

The byte conversion subroutine is the portion of the program that functions to convert the
bytes received into its ASCII representation of the number in order to properly display it.
For instance if a bytes 0x00 is received, in order to display 0x00, it has to be converted in
to 0x30 and 0x30 where 0 is represented as hex 30 in ASCIL The data is received by
periodically checking the function

-46-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
anal Year Project Report

error = SerReceiveCheck(gSerRefNumber, &NumberOfBytes):
//Retrieve the number of bytes to be retrieved
while (NumberOfBytes) //Retrieve data
Sy
SerRecetve(gSerRefNumber. &chrdrray, 1, 0, &errorj;
//Retrieve byte one ai a time inio chrArray

if (error == serErrLineErr) SerClearErr(gSerRefNumber);
A Clear Error on Line Evror
if (errov)
{
SerReceiveF lush{gSerRefNumber, 1);
#Clear buffer on error

i=0; //Reset Array ndex
NumberOfBytes = (;
FeIurL;
else

it Hncrease Array index
NumberOfBytes--; //Decrease number of bytes to be retrieved
FieldP = GetObjectPtr{Main_ReceivedFromExternalField);

/Get Pointer to Field

StrCopy(&gMessageToDisplay[0], &chrdrray);

/Copy into display string
StrCopy(&gMessageToDisplay[1], "");

Y/ Terminate with NULL
ConvertMessageTolisplay();

//Convert character to hex if non-printable

DispiayData(FieldP);
#Display Data into above Field
UpdateScroilBar) ;
chrdrray = WV; //Reset array
mipBuffer = 707 //Reset buffer

H
f

I/ end while ioop
When the SerReceiveCheck function returns a value through the NumberOfBytes
parameter, this means that data is available. Upon receiving an indication that there is
incoming data, the program then enter a while loop that will last for the same number of
cycles as the lengths of the incoming bytes. SerReceive is the function that is used in

order to receive the bytes one by one. The reasons only one byte is received at one go is

47
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

because this was specified in the SerReceive function. After receiving the data (one byte),
it is then processed so that it will be converted into its ASCII representation. The function

that does this is the ConvertMessage ToDisplay function.

void ConvertMessageloDisplay()

)

ini DecNumberToConvert;

DecNumberToConvert = (int)((unsigned char){gMessageToDisplay[0])); //Get character
CornvertToHex(DecNumberToConverit); #Convert to hex

£
£

This function in turn gets the equivalent decimal value of the incoming data. The decimal
value is then sent into another function, the ConvertToHex function. This function was
created in order to convert the bytes to its ASCII representations. Given below is the
snippet of the code illustrating how the ConvertToflex function actually transforms the
bytes into its ASCII representations'.

void ConvertioHex(Int NumToConvert)

4
?

Ulnt tmpNumber = 0:
Ulnt counter = |}

Ulnt i=1{:

StrCopy(gMessageToDispiay, ""): /Clear String
do

;’f‘(coum"er ==}

itmpNumber = NumToConvert/16); //Calculate upper nibble
else
(tmpNumber = NumToConvert - (tmpNumber * 16))://Calculate lower nibble
switch (tmpNumber)
/Add appropriate values
;
case 0:
StrCat(gMessagelToDisplay, "0");
break:;
case i.
StrCai(gMessageToDisplay, "1");
break.

14 refer to Appendix I in order to view the ASCII table.

-48-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

case 2:
StrCat{gMessagelToDisplay, "2");
break;

case 3;
StrCat{gMessageToDispiay. "3");
break:

case 4:
StrCat(gMessageToDisplay, "4");
break;

case 3:
StrCat(gMessageToDisplay, "5");
break:

case 6:
StrCat{gMessagelToDisplay, "6");
break:

case 7;
StrCatigMessageToDisplay, "7");
break;

case 8
StrCuatfgMessageToDisplay, "8");
break:

cuse 9.
StrCat(gMessageToDisplay, "9");
break:

case (U
StrCat(gMessageToDisplay, "A");
break;

case {1:
StrCat{gMessageToDispiay. "B");
break:

case 12:
StrCat{gMessageloDispiay, "C");
break;
case 13:
strCat(gMessageToDispiay, "D");
break:

case 14:
StrCat{gMessageloDisplay, "E”);
break;

case 15;
StrCat(gMessageToDispiay, "F");
break;

Hif{debug)

default:
StrCat(gMessageToDispiay, "0");
break;

_49.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

#endif

HEnd Switch

counter--;
FIS o i
b End While

while (counter = -1);
I WEnd Function ConverifoHex

4.2.3.5 Data Interpretation

The data obtained from the smooping device via the PALM C-++ program is very
meaningful. As explained in section 4.2.1, there are basically two main types of data
formats that are used, the Answer to Reset (ATR) and the Application Protocol Data Unit

(APDU).

4.2.3.5.1

The ATR is a string of characters returned from the card indicating a successful power-up
sequence. The total length of the ATR sequence is limited to 33 bytes and must adhere to

the following format:

ATR Standard Format

" Name - Number |~ Funotion o
1S 1 | Tnitial Character | Mandatory
TO 1 Format Character Mandatory
TA;, TB;, TC;, TD <15 Interface Optional
i Characters
T1,T2.. TK <15 Historical Optional
Characters
TCK 1 Check Characters Conditional

TS and TO are the only mandatory bytes in the ATR sequence. As previously described,
the initial character TS is used to establish bit-signaling and bit-ordering conventions. T0

is used to indicate the presence or absence of subsequent interface or historical

Table 4.2: The Answer-To-Reset structure

Universal “Chip Based Smart Card” Snooping Device

-50-

Dimitri Denamany (1467)
Final Year Project Report

LR

%:h;iracters. The upper 4 bits (bits 5 - 8) are designated Y1 and signals the presence of

6ption'511 characters based on a logic 1 in the following bit positions:

. Bit 5 indicates TAI is present

« Bit 6 indicates TB1 is present
"+ 'Bit7 indicates TC! is present
"+ Bit 8 indicates TD1 is present

The lower 4 bits (bits 1 - 4) are designated K and is interpreted as a numeric value in the
range (- 15. It indicates the number of historical characters present.

The interface characters are used to select the protocol used for subsequent higher-level
communication between the smart card and the reader. ISO 7816-3 defines two protocols:
thé T=0 protocol and the T=1 protocol. T=0 is an asynchronous character-oriented
protocdl where an acknowledgement must be received for every byte that is sent. In
contrast, T=1 is an asynchronous block-oriented protocol where a number of bytes can be
sent before an acknowledgement must be received.

The historical characters are usually used to indicate the type, model and use of the
specific card. The manufacturer or card issuer generally defines these. There is no
established standard for the data in these historical bits. The check character (TCK) used
to determine whether a transmission error occurred in sending the ATR from the card to
the reader. TCK is a checksum calculated such that performing a bit-wise exclusive-or
(XOR) operation on all bytes in the ATR from T0 to TCK results in an answer of zero.
Refer to Appendix J for a more detailed table of the ATR.

4.2.3.5.2 APDU Standard Format

The APDU is a string of bytes that have been formatted according to a standard format
that make up a command to the smart card. In return, the card will also always reply with
its own. standardize response. This response indicates the success or failure of the

commarid and may also have information attached to it if requested by the command.

-51-
Universal “Chip Based Smart Card™ Snooping Device

Dimitr; Denamany (1467) '
Final Year Project Report

o

i

&

Q

L7

&

by o=

- o - g8

o ; (=] {_—5 i= R

L) im" é’:p LT e

e -+ s o £ L=

e o o < £ £y

= = £ £ = D —

2 E o o Ay o E

g % g & 8 5 5%

o X 3 o it —d
CLA | INS Pl | P2 'IL&Fedel hata - _[L_-B»Fa;!'&i
L N —

—-v-— ‘_v_
Header B{('ﬁ\f

Figure 4.7: APDU format

Figure-4.7 shows the basic format for.the APDU. The 5 bytes shown at the begimﬁng are
cz.lll.led tﬁe header of the APDU. The CLLA and INS bytes are indications of the type of
command that is being invoked. Bytes P1 and P2 on the other hand are bytes that contain
the setting for certain options that are related to the command. The L. field indicates the
number of bytes that would be trailing the APDU header. The data portion is filled up
with the necessary information if there is anything to be sent to the card .The final byte,
~ the 1, field is also optional as the use of it depends whether or not the card reader expects

data to be transmitted from the card.

—_ Ea
5 g
ER
R
o =

~ Dbata SW1 | Sw2
— e 4
T w
Bady (ophanal) Trailer

Figure 4.8: APDU response format

-52.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467) .
Final Year Project Report

'Fig'ur_e: 4.8 shows the standard APDU response format. For every command (APDU) sent
0 the card, the SW1 and SW2 (which are known as the status word) are two compulsory
by‘:c_es that. must be sent from the smart card to the reader after every command. These are
thé two bytes that indicate the success or failure of the command. Figure 4.9 gives a brief

overview on the possible values of the return code.

retury cade

~

process completed process abartea
rarmel warning execution chacking
processirg precessing errar e;rrl'or‘

e /' \ /' \
Gl "GTXK
SOC0T a0 CRIXX G0 BEXX
. / BEXX
EEFROM chavged

Figure 4.9: Classification scheme for the APDU return code (SW)

The data field that precedes the SW field in Figure 4.8 is the data that will be sent from
the card (if the command succeeds) to the reader. The length of this field is stated in the
APDU in the Le field.

A sample of the data log obtained from the snooping device can be seen in the following
section. The data transmission between the card and the smart card readef is briefly
discussed in this section in order to give a better understanding of the log based on the

information that has been presented above.

-53-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

43 ELABORATION ON THE FINAL OUTPUT

Palm OS Emulator

Figure 4.10: Sample log that was obtained from the snooping device program during the data transfer

Figure 4.10 is a sample log that is obtained during the insertion of a smart card into the
smart card reader. The text Palm emulator displays a portion of the data communication
that took place (first few lines). There are many more commands that were executed at
the bottom of the display. However, for the sake of illustrating the data transmission,
focus will be given to the first few lines.

As stated in the report the transmission normally begins with the card transmitting its
ATR. This is folowed by the PTS if necessary and the rest of the commands are basically
APDU’s and responses.

-54.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

The following is an exact copy of the data in Figure 4.10 with the lines numbered for the

ease of illustration.

Line 1 : 3B951840FF6201020104 F0220700
Line 2 : 009000 COA4000002A43F006114 CO
Line 3 : A4000002A40000610FC0A4000002
Line 4 : A43F006114 COA400C0A4000002A4
Line 5 : 3F006114 COA4000002A43F116114

Line 1(beginning) is the first transmission that is from the card. As stated the first
transmission is always the ATR. Hence 3B951840FF6201020104 is actually the ATR of
the card. Elaboration on the meaning of each byte can be obtained from Appendix L and

section 4.2.3.5.1. In order to verify that those bytes were actually the ATR, certain smart

card software was used in order to check the ATR.

Sedionn hesuee Sevteerd Caa 0 Tasibdt

B e ae
B Gy ONT ? AT

%] G Cryplofiex e~gate 32H - 30051 S40FFE201 020504

i Bk Yew Hep
{‘Stenderdlog Scriniog
I G L0 2] 21 4) 51 8¢ 71 &l SIL0ALIIZ$2314 0381510712119 120021

;i Ee ¥ew Help
sty sotog | .
SRl DY Lp 2 3t 41 S106) 91 81 9110111112131 14115416117 (28 (195 20ITLI

X x

" Figure 4.11: Image smart card software used (Schlumberger Smart Card Tooikit)

-55.
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467)
Final Year Project Report

R Schluniberger Snmrt {Card Taolkit

_ﬁe Card Taols Help

w%?ﬂ ﬁ?xlﬁg 3 ﬁ?

r— :E‘,h;tndmpmar
' s SchiumbergerSema e-gede 0

=Y S chiumbeigerS ema Paticx Lite 1 .
¥ @ Cryptofiex e-gade32K - 38851840FFE201 020104

Figure 4.12: Taking a closer look into the program screen shot (area marked in red)

Figure 4.11 shows the smart card software that was used, the Schlumberger Smart Card
Toolkit. When the card has been inserted, the ATR of the card appear at the portion
marked in red. A closer look at that portion is shown in Figure 4.12. Note that the ATR in
the software and the ATR in Line 1 is exactly the same.

As stated in section 4.2.1, after the transfer of the ATR bytes, the programs proceeds with
the command (APDU) and response sequence as most of the time the PTS bytes are not
needed. In the log shown, the PTS bytes are not needed as Line 4 onwards basically
cérresponds to the APDU format.

The bytes in Line i{ending) and 2 (beginning) are F0220700009000. Breaking the bytes
into two portions, we can see that the command APDU is actually F022070000 where
else the response status word (SW) is 9000. Refer to figure 4.9 to check up on the

returned status word.
CLA INS Pr1 P2 L. SW1 SW2
FO 22 07 00 00 90 00

Table 4.3: Interpretation of Line 1{Ending) and Line 2 {beginning)

-56-
Universal “Chip Based Smart Card” Snooping Device

'Ditpit{i Denamany (1467)
Final Year Project Report

!

The data in Line 2 (middle) (C0A4000002A43F006114) can also be classified using the
same manner as stated for the command in Line 1(ending) and 2 (beginning) above.
However, there are certain differences between Line 2 (middle) and Line 1{ending) and 2
(beginning). First of all, since the L, field is 02, this means that there are two data bytes
that will trail the APDU header. The second difference is that sometimes, there are some
extra bytes that are transferred to the smart card in order to act as a separator. These bytes

are not actually part of the data packet.

. Command APDU. =~ o} ResponseSW. o
"CLA | INS Pl P2 L. Data SW1 SW2
o Ad 00 00 0z | 3F | 00 61 14

Table 4.4: Interpretation of Line 2 (middle)

From the table above, it can be seen that there is one byte that was missed out, the A4
byte after the L. parameter. This is the special byte that acts as a separator. By referring
to Line 3.4 and 3, it can be seen that this byte and probably a CO byte is repeated in each

and every APDU transfer. The status words that are returned are rather straightforward.
Al the communication from line 2 onward (after the ATR in line 1) complies with the
standard APDU format. Hence, each and every APDU send to the card can be logged and
the response sent from the card to the reader can also be documented.

This repeats until the card is disconnected or reset. If the card is reset, the data
transmission starts all over again with the transmission of the ATR and the corresponding

APDU’s as shown in Figure 4.10.

-57-
Universal “Chip Based Smart Card” Snooping Device

Al
i

LU&I{)N e

CONC

52

Dimitri Denarmany (1467) .
Final Year Project Report

CHAPTER 5

RECOMMENDATION & CONCLUSION
51 RECOMMENDATION

The device created was successful as it is able to effectively snoop on the
communication between a smart card and the smart card reader. The snooping device is
portable and is able to functions at various speeds depending in the smart card reader.
Nevertheless, there are still a few modifications that could be made to the device in order
to further improve its functionality.

1. Integrate all the snooping and communication modules into a single device

that can be neatly connected to the processing module, the Palm.
The idea that could be used in order to do this would probably be do create a box
like device where all the circuit could be placed into it. This box would probably
have a slot to connect to the Palm and another slot to accept actual smart card.
The dummy smart card can be extended from this box and connected to the actual
smart card.

2. Improve the snooping program in order to be able to not only accept and
format the data but also interpret and differentiate between the ATR,
standards smart card command and the returned status word.

Currently the snooping program accepts the transmitted data and displays it on the
Palm device. The data displayed is complete but the method as to which it is
displayed could be made easier. Each function and its retuned status word are
recorded sequentially without any differentiation between them in the display. If
the program could read and make sense of the bytes , it would be possible to
format the data so that it displays the commands as a set.

This can be done by referring to the IS0 7816 standard. Since the format has been
clearly illustrated, it should be possible for the program to process he data at a
higher level.

3. Convert the device in order to be able to connect to the USB port also.

This would be a good idea in order to make the data transfer rate faster hence

ensuring that the snooping device does not miss out on any data bytes.

58
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany {1467)
Final Year Project Report

5.2 CONCLUSION

The main objective of the project was to design a “chip based smart card” snooping
device that was both portable and affordable. This device was successfully designed and
implemented using various devices and methods that have been worked on for the entire
duration of the project.

The final design for the project involved a hardware configuration that can be classified
into three modules. The first module, the snooping module is a combination of two
specially engineered components that are used in order to tap on the required signal lines
between the card and the reader. The second module, the commumnication module
functions to encode the signals into the required voltage levels and format for the serial
port. Lastly, the processing module accepts the data through the serial port, processes it
and displays the byte exact byte transfer in the screen.

The processing module for the final design was a PALM device that was an affordable
and more importantly, portable device. In addition, an initial prototype that implements
the PC as the processing module is also available as this was a preliminary design for the
project. In both designs, the data log that was created in the processing module complies
with the 1S0-7816 smart card communication standards. This standard is the basic byte
transfer format for the communication between the smart card and the smart card reader.
Hence, this verified the design of the devices and ensured confirmed the reliability of the
obtained result.

All in all, the all the project objectives have been achieved and the importance and
significance for a device such as the Universal “Chip Based Smart Card” Snooping

Device in smart card related implementations has been entirely fulfilled.

-50-
Eniversal “Chip Based Smart Card” Snooping Device

Dimitri Denamany (1467}
Final Year Project Report

CHAPTER 6
REFERENCES

Books

[1] William Stallings, Data and Computer Communication, Sixth Edition
2003,Prentice Hall International Inc.

[2] Henry Dreifus, Smart Cards:A guide to building and managing smart card
applications , 1¥ Edition 1996, John Wiley & Sons Inc.

[3] Jose Luis Zoreda, Smart Cards, 1 Edition 1994, ARTECH HOUSE Inc.

[4] Robert MykLand, PALM OS Programming from the Ground Up, 1st Edition 2000,
McGraw-Hill

[5] Steve Mann, Advanced PALM Programming, 1* Edition 2001, John Wiley & Sons
Inc.

[6] Eric Giguere, Palm Database Programming, 1st Edition 1999, John Wiley & Sons Inc.
[7] Jose Luis Zoreda, Smart Cards, 1 Edition 1994, ARTECH HOUSE Inc.

[8] PALM OS SDK Documentation

Softwares

[9] Microsoft Software Developers Network (MSDN) October 1999

[10] Microsoft Visual C++

[11] CodeWarrior Lite for PALM OS

[12] PALM OS Emulator

Websites

[13] www.codeproject.com

[14] www.codeguru.com

[15] http://www.epanorama.net/links/pe/interface. htmi#serial

‘ -60-
Universal “Chip Based Smart Card” Snooping Device

Dimitri Denamany {1467)
Final Year Project Report

[16] http://www.maxking.co.uk/iso78161.htm

[17]http://freebsd.unixtech.be/doc/en US.ISO8859-1/articies/seriai-uart/

[18]http://www .bvierunner.con/ 16350 himi

[19]http://www.activxperts.com/activcomport/progruart/

[20] http://www.palmos.com

-61-
Universal “Chip Based Smart Card” Snooping Device

Appendix A

Smart Card Development Diagram

APPENDIX A: Smart Card Development Diagram

SmartCards Development

L PKCS#11
 Applications

7187008 Schlumberger

|

Transfer of APDU’s to
the smart card.

Appendix B
Project Gantt chart

APPENDIX B: Project Gantt chart for 1* half of Project

No. [Detail/ Week 1 2 3 4

=

Selection of Project Topic :

[y

Submission and Conformation of Topic

%

Preliminary Research Work

- Possible Hardware Designs Creation

- R$232 Components Identification

4{Submission of Preliminary Report ®
Testing and conformation of hardware design g e
Research Work

Lh

=5

- Smart Card Communication
-UART '

~

Research Work

-MAX232

- COM port -R8232 communication (VC++)

o0

Submission of Progress Report

D

Testing card input through RS232 (VC++)

10|Creation of the sofiware to interpret the data
11{Hardware manipulation and integration
12{Submission of Interim Report Final Draft

13|Submission of Interim Report

14{Oral Presentation

ol®|

@® 15 August 2003 ® 22 Qctober 2003

® 12 September 2003 @ TBA

® 10 October 2003

Task Name 3) «L Duration Start Finish

26

"‘?_7"*|

Pracessing Module
* Preliminary Research
" Micrecontrofiers
" PalmDevices
Logging Device Selection
" Research Work

" Saftware and Hardware [dentffication

" Programming Study
Processing Module Programming

‘ Software Testing ~

| Snooping & Communication Module

‘Hardware Deslgn and Fabrication
Dy St Card

" Connector Module

"Hardware Integration ~

Modules Integration

"I Testing and Troubleshootng
“iProgress Report 1

| Progress Report2

3 Draft RepOi"t o

- 24" | Final Report {Soft Cover)

I Oral Presentation

Extended Abstract

Final Report (Hard Cover)

" 10days Mon1/26/04 Fri2/8i04

" 2wks Mon2/9/04 T Fri2/20/04

CUiwk Mon4/i2/04 T Fri 4116/04

S1days Mon 1/26/04 Fri 4/2104 |

" wk T Mon 1426/04 T Fri 1730/04
TUwk T MonZ/2i04 T Fri2ie/04
TTiwk T Mon 2804 Fri 21304
15days 04 Fri3i5i04
Zwks Mon2/23/04
Fwks T Mon3/8/04 7 FH 3/28/04
C Tdwk T Mon 3200047 Fri 4f2/04

‘2idays Mon1/26/04 Fri 2/20/04
21days Mon 1/26/04 Fri2/20/04
1wk Mon #/26/04 " Fri{/30/04

TTwk T Mon22004 T Fri2fiod

“Uqwk T Mon 457047 Fri 419704

TOdays Fri2A3io4 T Frizi3/04
“Odays FA3M0/04 Friafi%os
“Odays Mon4/5/04°7 Mon 4/5/04
Odays Wed 421/04 Wed 4/21/04"
‘Odays Wed5/504 - Wed Sfélbd'i

0 days Fri 5/21/04 Fri 5/21/04

‘Odays Frigidjod FriBaio4
- !

Sun Jan 18

Sun Jan 25

]
Weekt | Week?2 |

Sun Feb 8
Week 4

I SunFeb 15
C Weekd |

Sun Feb 28 _

L.

Project : FYP (Sem 2) Gantt Chart
Name - Dimitrt Denamany
Praject : Uiniversal "Chip Based" Smart Card Snooping Device

Bun Mar 7
Week 8

Sun Mar 14 l sun Mar 21 Sun Mar 2t sun Apr 4 SUn Apr11 SUN APr 1B i

Iun may £

Week 16

| oun gy ¥ JUN Widy 19
I
!

Week 10 | Week11 | Week 12 Week 13 Week 12 |

& Mar19

s

&}; Apr &

?’ Apr 2‘:|

(A) May 5§

Project : FYP (Sem 2) Gantt Chart
Name : Dimitsi Denamany
Project : Universal "Chip Based" Smart Card Shooping Device

Week 17 | Week18 | Week 19

Appendix C

Final Design Specification

APPENDIX C: Final Design Specification

General Block Diagram of Hardware Design

Dummy Smart Card Actual Smart Card
Host Gadget that /
has a smart card
reader attached ES =l
to it. I \
Connector
Universal “Chip
. Based Smart
Point A Card * Snooping
Device

Detailed Block Diagram of Hardware Design (First and Final prototype)

.......... ettt ssangesase Acmal Smart Card

: Serial Cable ! :
: ena ;a e: Monitor/
Connector : i Screen
: .1 | (Display)
(3= Point A———— MAX232 —— DC/
5 | PALM
. Wires E. ' i.
: Aluminum foil ;]
Dummy Smart Card E :.
- > i > — >
Snooping Module 5 Communication Module E Processing

Module

Schematics of the connection from the MAX232 to the RS232 (DB9) cable

DB 9 Temale

WEE
W13
10FEE v Cla 1___&
4 o ci- 3 T 10uF
+
1DuF£—; -8
T 3o 1o Vee | Gnd
MAX232 L
13 12 ——RST | Vp
[CLK [1/0 -
8 DC 8_ . R
7 10 A
<]
a<} 11
T
Smart card

chip

Appendix D
MAX232 Test Circuit Schematic

APPENDIX D: MAX232 Test Circait Schematics

MAX232 Chip Pin out

% ﬂj.iF!m

- AW Inigni

6.
91

0§
W

ng;

8 ,3

"
1.0uF ﬂ._

5.3

{ed s

=l

Vg

7

+BY To « 10y W

o1 Voltage Doubler

EEG

t,ngF-'fA |

16V “T

G2+
10V To 10V i
c,;:} Woltage fwaror

-1y

5

¥

T

ETCOMOS
INPLITS

[
“i

L

-2

THLACNOS
GUTPUTS

M{n
B
F B

5y
: Tiowgt

[~
2

T
/l'

& F
4

13

X 1'3

i4 oo
AS-232
GLITPUTS
.?_..__..,.)...

T ey

s i
")

{

<

-y

1 { rs.2a2

CINPUTS

Test Circuit

)
L m

g
RS232 « e e T
i ::'E] jﬁ_ f MO=
3 Input voltage
. o 44 11 &
to multimeter « =} < from power
s supply

In order to test the chip, a high (5V) input and a low (0V) was inserted in pin 11. The
output voltage was the measured using a multimeter and recorded. The recorded value

was then compared against the theoretical value.

Appendix E
PALM Software and Programming

Basics

APPENDIX E: PALM Softwares and Programming Basics
E.1. PALM Softwares

After deciding on using the PALM as the processing module, a thorough research was
done on the various tools needed for PALM programming. The research identified the

following softwares to be the main requirements for programming:-

%+ PALM OS Software Developers Kit (SDK)
Code Warrior Lite

PALM OS Emulator

PALM Handheld Software

D

L/
0‘0

All the above stated softwares were downloaded from online sources. The following is a

brief description of each of the softwares

E.1.1 PALM OS Software Developers Kit (SDK)

The PALM SDK is basically a bunch of files that contains the various header (.h) and
library (.lib) files that are used in order to program the PALM. These files are needed in
order to implements the thousands of predetermined function calls that have been
outlined in the PALM Programmers Documentation that comes with the kit. The
documentation provided with this install is also very helpful as it is basically a complete
guide to PALM programming. In the documentation, there is an implementation of a
Serial Manager class which contains the various functions in order to manipulate the
serial port of the PALM. This is a good indication that the possibility of the success of the
project using the PALM is very high.

E.1.2 CodeWarrior Lite

This software is the main tool used in order to create applications for the PALM. Code
Warrior Lite is the target software where the programming for the PALM is done. This
software has a built in compiler and debugger that makes it a complete development tool.
Even so, the debugger actually needs the emulator (next section) in order to fully operate.

Code Warrior also comes with another software called the Constructor. This software

was specially created in order to design the User Interface of the PALM. The files created
by the Constructor are then imported into Code Warrior Lite in order to link the

programming codes to the User Interfaces.

E.1.3 PALM OS Emulator

The PALM Emulator is a unique software that is designed in order to test and debug
applications without affecting the actual PALM Pilot system. The emulator is basically a
virtual PALM device that runs on the PC. Hence, in order to test a device, it need not be
physically downloaded into the actual PALM but instead it can be tested on the PC itself.
In terms of debugging, the Emulator also plays an important role as it can be linked to the
Code Warrior debugger. Upon loading the program into the emulator, the debugger is
then executed hence allowing the developer to single step through the program via the
emulator. The emulator most definitely is a useful tool as it saves the actual PALM from
the abuse of corrupt and harmful programs.

The only catch with the emulator is that it requires a .ROM file in order to function. A
.ROM file is actually a carbon copy of the Operating system running in the actual PALM,
Once obtained, this file is loaded into emulator in order for it to function. There are only
2 ways of obtaining the ROM file for an emulator. The first method is to manually
download the file from a PALM device. The second method is to apply for the file online
and then mail original signed contracts to the PALM Head quarters at the USA in order to

gain access to these files.

E.14 Palm Handheld Software

This software is the software that comes together with the PALM device that is being
used. The purpose of this software (in regards to this project) is to help download the
developed applications into the PALM device.

E.2. PALM Programming

E.2.1 Programming Environment Setup
E.2.1.1 Overall Application Development

As stated in the previous section, the CodeWarior Lite software is the main programming
environment that will be used in order develop the source code, and link all the required
files in order to output a PALM executable application (.prc). For every PALM
application that is developed, a project file has to be created in order to contain all the
relevant source files, header files and resources files. The Constructor software on the
other hand, is used specifically to create the resource file and save it in the project file.
The emulator is the software used in order to run applications on the desktop computer as
well as debug them'. The following is a simplified step by step guide on how to create a
PALM application. Note the fact that the PALM programs must include all of these steps

but not necessarily in the given order.

1. Create a project file using the Code Warrior.

2. Set all the proper project setting in order to compile the project successfully.

3. Design the User Interface of the PALM program using the Constructor
software. This is a program that comes with the Code Warrior Installer.

4. Save the interface files of the constructor programs into the “Src” folder in the
Code Warrior project file.

5. Close the constructor and re-launch the code warrior project.

6. Add the constructor files to the project.

7. Include the *“h” files from the constructor software into the Code Warrior
“cpp” file in order to be able to link the User Interface objects and the
program coding.

8. Program the application based on the standard application writing format for
PALM devices. Refer to section 4.1.2 for an explanation of the basic
programming loop used.

9. Download the program into the PALM emulator software.

! Refer to the previous section for a detailed explanation of each software that is mentioned.

10. Launch the debugger from the Code Warrior program in order to debug the
application on the emulator.

11. Single step through the program and effectively debug the application.

12. Finalize the program and build a release version of it.

13. Download the program into the PALM device using the software that comes
with the PALM (PALM Quick Install)

E.2.1.2 Debugging

The method of debugging a PALM application is rather unique as they are two methods
of doing so. The first method is to download the program into the actual PALM device
and debug it in the hardware itself. The downloading of the software is not done normally
via the PALM Quick Install software which is provided upon .purchasing the PALM.
Instead, it is done by the programming environment where the program is not fully
transferred to the PALM but instead swamped in and out in order to monitor the variables
and changes done to it. The instructions that are swapped in are based on the single
stepping that is done or breakpoints that are set in the program. In order to setup the
PAILM device to debug the program, it must be firstly changed to the debug mode. This is
done by typing “£..2” on the console with the stylus. In this mode, the PALM device is
basically set to listen to whatever instruction that comes through the serial port.
Nevertheless, manipulating the actual hardware is always never a good idea as corrupt
programs might cause damage to the existing operating system on the PALM device.

Hence, this is where the uniqueness and specialty of the second method comes into play

The second method is implemented by debugging the program using an external software
called the PALM emulator. The PALM emulator is a software that is designed to
simulate the exact workings of a PALM device on the PC environment. PALM
applications can be loaded into the emulator and ran in order to see the exact response of
the PALM device towards the application. Every emulator program needs a .ROM file in
order to function as the PALM applications will be run in this file. A .ROM file is the
content of a PALM device OS along with all the data and settings that are in it. As stated
in the previous section, the two method of obtaining the .ROM file is either by
downloading it from the PALM device or by applying for it online. As far as debugging

'is concerned, the emulator can be linked to the Code Warrior software through certain
setting. When the emulator is selected as the debugging tool and the debugger in Code
Warrior is launched with the emulator running, the target application is automatically
loaded into the emulator and the code is seen at its starting point. As illustrated with the
actual hardware implementation, the developer can now single step through the program
or set breakpoints in order to view that changes in the variables. The only difference
between this method and the previous method 1s that the PALM device in this method is

being simulated by the emulator.

E.2.2 Basic PALM Application Loop

A PALM program is actually an infinite loop that is executed until an indication to exit
the program is submitted. It is categorized as an event based program that takes into
consideration every possible occurrence. Basically when an application is launched it
goes into a loop that detects events. When an event is detected, the program sends the
type of event into several handlers that would either process or ignore the event. Once all
handlers have responded to the event, the program goes back to waiting for the next
event. Hence, the definition an “event based” application. For everything that is done on
a PALM device, an event is generated. For instance, if a stylus is placed on the PALM,
and event “penDownEvent” is generated an sent into the program. This event contains a
complete structure where it also provides the exact co-ordinates of the stylus, the resource
that it is touching and etc. All in all, everything that happens is reported to the event loop
and processed immediately. The event loop is only terminated if a terminate command is

sent to the program.

In the event loop, the functions that will be called have been predetermined. There are
several function that will be called by default in order to process each and every event.

The following are the functions:-
1. PreprocessEvent
2. SystemHandleEvent

3. MenuHandleEvent

4. ApplicationHandleEvent

5. FrmDispatchEvent

o
3 E\’t(ielE\'—'em)

Retwiey in logyp until
theke isanevent. |

Mrocess evenl.
getnrale othel evenls |

o
- bs there an event?
¥y
5jgr::i~l.mnlleE\rmD
ves

is this wsystan Einction?

0% Peessaly, etuim.

Fandle menu interlise,
Lhetr geon.

Ianddlet bor Faim boaded.

Lsrd Fram resourves. sel vent

ve.., [rewer-cil, Lirallit inpuity

1

MelmH-.mdleE\‘enD

b this 3 nvehy?

(.='u|1|1IimtionHund⪙‘mu)
L

bx i 2 Frm Loadvent

¥ 0

Dxigprateh ovent te application’s
Frndter Far Farm.

e S T

@rmlliqu:mhliwm _>

i application handlet
complete event processinng !

{ 15

@nHmcl[eliwm D

Provide default provessing
for event.

The following is the typical source code for the event loop:-

static void EventLoop (void)
{
Word error;
EventType event;
do

{

EvtGetEvent (&event, evtWaitForever),;
PreprocessEvent (&event);
if (! SysHandleEvent (&event})

if (! MenuHandleEvent (NULL, &event, &error))

if (! ApplicationHandleEvent (&event))
FrmDispatchEvent (&event);

/

while (event.eType /= appStopEvent), // terminate program command received ?

The following is a step by step explanation of the given source code

L.

Fetch an event from the event queue.

2. Call PreprocessEvent to allow the datebook event handler to see the command

keys before any other event handler gets them. Some of the datebook views
display UI that disappears automatically; this UI needs to be dismissed before the
system event handler or the menu event handler displays any Ul objects. Note that
not all ‘applications need a PreprocessEvent function. It may be appropriate to call
SysHandleEvent right away.
Call SysHandleEveni to give the system an opportunity to handle the event. The
system; handles events like power on/power off, Graffiti input, tapping silk-
screened icons, or pressing buttons. During the call to SysHandleEvent, the user
may also be informed about low-battery warnings or may find and search another
application. Note that in the process of handling an event, SysHandleEvent may
generate new events and put them on the queue. For example, the system handles
Graffiti input by translating the pen events to key events. Those, in turn, are put
on the event quene and are eventually handled by the application.
SysHandleEvent returns true if the event was completely handled, that is, no
further ;processing of the event is required. The application can then pick up the
next event from the queue.
If SysHandleEvent did not completely handle the event, the application calls
MenuHandleEvent. MenuHandleEvent handles two types of events:

— If the user has tapped in the area that invokes a menu,

MenuHandleEvent brings up the menu.
— If the user has tapped inside a menu to invoke a menu command,

MenuHandleEvent removes the menu from the screen and puts the

events that result from the command onto the event queue.
MenuHandleEvent returns TRUE if the event was compietely handled.

. If MenuHandleEvent did not completely handle the event, the application calls
ApplicationHandleEvent, a function the application has to provide itself.
ApplicationHandleEvent handles only the frmioadEvent for that event; it loads
and activates application form resources and sets the event handler for the active
form.

. If ApplicationHandleEvent did not completely handle the event, the application
calls FrmDispatchEveni. FrmDispatchEvent first sends the event to the
application’s event handler for the active form. This ié the event handler routine
that was established in ApplicationHandleEvent. Thus the application’s code is
given the first opportunity to process events that pertain to the current form. The
application’s event handler may completely handle the event and return true to
calls from FrmDispatchEvent.In that case, FrmDispatchEvent returns to the
application’s event loop. Otherwise, FrmDispatchEvent calls FronHandleEvent to
provide the system’s default processing for the event. For example, in the process
of handling an event, an application frequently has to first close the current form
and then open another one, as follows:

— The application calls FrmGotoForm to bring up another form.
FrmGotoForm queunes a trmCloseEvent for the currently active form,
then queues frmLoadEvent and frmQOpenEvent for the new form.

— When the application gets the frmCloseEvent, it closes and erases the
currently active form.

— When the application gets the frmLoadEvent, it loads and then activates
the new form. Normally, the form remains active until it’s closed. The
application’s event handler for the new form is also established.

— When the application gets the frmOpenEvent, it performs any required
mitialization of the form, and then draws the form on the display.

. After FrmGotoForm has been called, any further events that come through the
main event loop and to FrmDispatchEvent are dispatched to the event handler for

the form that’s currently active. For each dialog box or form, the event handler

knows how it should respond to events, for example, it may open, close, highlight,
or perform other actions in response to the event. FrmHandleEVént invokes this
default UI functionality. After the system has done all it can to handle the event
for the specified form, the application finally calls the active form’s own event

handling function.

Appendix F
PALM Hardware Images

APPENDIX F: PALM Hardware Images

This is the PALM Illxe cradle, The Palm will be placed on the cradle in order to connect to the serial pott.
The flat contacts seen on the cradle is connected directly to the pins in the female DB-9 connector

o me.!ﬂﬂ.mnwm,mnﬁmmm

The Palm placed on the cradle. The serial port on the Palm (refer to the following image) connect directly
to the flat contacts on the cradle.

The Palm serial port

Appendix G
Universal “Chip Based” Smart Card
Snooping Device Snap Shots

APPENDIX G: Universal “Chip Based” Smart Card Snooping Device
Snap Shots

s

‘ Dummy SI{ Card Connector

Communication Module

The complete hardware setup for the snooping device

The figure above illustrates the complete setup for all three modules and the method as to
which it is connected. The white card is the actual smart card that is snooped on and the

gray reader is the Schlumberger Reflex 72 v2 smart card reader.

Appendix H
Detailed Schematics of the Snooping

and Communication Module

APPENDIX H: Detailed Schematics of the Snooping and

Communication Module

e e e e B AR PR ThlSWlllbeconnectedto

the processing module

Appendix I
ASCII Character Codes

-
al. RS S~ EE QM MNP I D FXR DN}
[
flecpezrostedguldbepepreproeahepdRRRRE
Ul e O m = e oo s e oo Oy ™ vy e [~
&l o S8=2esg888 8o oaao b= pu
_ﬂ- o e L - E R SRR~ =t I 5

o o~ q M w o T O D O R ko oo e O OO R
-+ o W ow wk oW W W oW ow omr W WA WM A1 NN W WD A W WY W W A A A
T2E L [ECRERRRIERRRERER aaesa

Hax Char Dac Hax Cla:

ASCII Character Codes

P -

g oeC) [LI [

RRadLsaAaLzRdaLgdanan aheosdAzgdl

2

mn.ai-.l.j.ﬁ 0w th O — & p = w} v I~ 00 Ch O v~ 4 M = v 2 M~ 00 th O — & M

MMM oM M M w v o W w ow w w W w W3 W VMW VW NN N e e S e
£ E ']

8 S0 EYHsEredaua il RsEE3983rsys

-

il o P HA O ERO G L TR T HF@ I 44 03 ap

=

Bleospzgssgadifdldemumrasnsd80AKE

(&)

& B8O 0SRAARANNZIRRERARR

H —

St P AR D Fp p R BED RO R DB RPN g

APPENDIX I

Appendix J
Screenshots of the Visual C++

program

APPENDIX J: Screenshots of the Visual C++ Program

This 1s the initial user interface when the program is started

#7 Serinl Cemmunication

. Mmlm H.ecéiving Messages. .

" Manitor Sending Messages: .

After selecting the serial port and the Baud rate, the “Open Port” button is pressed

= Sertal Communic ation

 Moritor Recsiving Messages:

- Mritor Sending Messagss:

We are now connected to the serial port

The RS5232 (DB-9) male connector of the the PC is connected to the female connector on

the communication module. Hence, all data transfer between the card and the reader

would be logged.

7= Serial Communication _
. Monitar Receiving Messages:: .

on. o - . ﬂ 1
o0 A _‘ienaEE:ontmlw .
3BBE1S4DFF5201 Dzmn4 - . . e . ff Jed 5; art
FO22700008000 0 . ' e | e S
COA4000002443F006 114, L © 4 "Close Port
E&MUUEIODZ:MUEIEIDNEIFE&M&BUBSZMEFGUE‘: R R R
14 ‘ 4t U SendData
. |coasgoooozatariteria T N R -
- 1C0A4000002540020610F N < . Bsit Program |-

. Monitar Sending Messages: *

O sl

The receive pin picks up the data (as it is connected to the communication module) and

displays it in the received text box.

Appendix K
PALM OS Functions and Structures

APPENDIX K: PALM OS C Functions and Structures

The following are the descriptions of some of the most important functions that were
used in order to establish serial communication. In addition to that, the structure that

registers the setting for the serial port is also illustrated at the end.

K.1 SysLibFind function

Purpose Return a reference number for a library that is already loaded, given

its name.

Prototype Err SysLibFind (CharPtr nameP, UIntPtr refNumP)

Parameters

nameP Pointer to the name of a loaded library.

refNumpP Pointer to a variable for returning the library

reference number (on failure, this variable is undefined)

Result 0 if no error; otherwise: sysErrLibNotFound (if the library is not

yet loaded), or another error returned from the library's install entry
point.

Comments Most built-in libraries (NetLib, serial, IR) are preloaded automatically when
the system is reset. Third-party libraries must be loaded before this call can
succeed (use SysLibLoad). You can check if a library is already loaded
by calling SysLibFind and checking for a 0 error return value (it will
return a non-zero value if the library is not loaded).

K.2 SerOpen function

Purpose Acquire and open a serial port with given baud rate and default settings.
Prototype Err SerOpen (UInt refNum, UInt port, ULong baud)
Parameters

refNum Serial library reference number.
port Port number.

baud Baud rate.

Result 0 No error.

serErrAlreadyOpen Port was open. Enables port sharing by
“friendly” clients (not recommended).
serErrBadParam Invalid parameter.
memErrNotEnoughSpace Insufficient memory.

Comments Acquires the serial port, powers it up, and prepares it for operation.To
obtain the serial library reference number, call SysLibFind with “Serial

Library” as the library name. This reference number must be passed as a
parameter to all serial manager functions. The device currently contains
only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200, 2400,
9600, 19200, 38400, 57600, etc.). The Palm OS device has been tested at
the standard baud rates in the range of 300 - 57600 baud. Baud rates
through 1 Mbit are theoretically possible. Use CTS and shaking at baud
rates above 19200 (see SerSetSettings). An error code of 0 (zero) or
serErrAlreadyOpen indicates that the port was successfully opened.
If the port is already open when SerOpen is called, the port’s open
count is incremented and an error code of serErrAlreadyOpen is
returned. This ability to open the serial port multiple times allows
cooperating tasks to share the serial port. Other tasks must refrain from
using the port if serErrAlreadyOpen is returned and close it by
calling SerClose.

K.3 SerSetSetting function

Purpose Set the serial port settings; that is, change its attributes.
Prototype Err SerSetSettings (UInt refNum,SerSettingsPtr
settingsP)
Parameters
refNum Serial library reference number.
settingsP Pointer to the filled in SerSettingsType structure.
Resuit 0 No error.
serErrNotOpen The port wasn’t open.
serErrBadParam Invalid parameter.
Comments The attributes set by this call include the current baud rate, CTS
timeout,handshaking options, and data format options. See the definition
of the SerSettingsType structure for more details.

K.4 SerReceiveCheck function

Purpose Return the count of bytes presently in the receive queue.

Prototype Err SerReceiveCheck (UInt refNum, ULongPtr

numBytesP)
Parameters
refNum Serial library reference number.
numBytesP Pointer to location for returning the byte count.
Result 0 No error.
serErrLineErr Line error pending (see SerClearErr and
SerGetStatus).

Comments Because this call does not return the byte count if line errors are pending,
it is important to acknowledge the detection of line errors by calling
SerClearErr.

K.5 SerReceiveFlush function

Purpose Discard all data presently in the receive queue and flush bytes coming into
the serial port. Clear the saved error status.

Prototype wvoid SerReceiveFlush (UInt refNum, Long timeout)

Parameters

refNum Serial library reference number.

timeout Interbyte time out in system ticks (-1 = forever).

Result Returns nothing.

Comments SerReceiveFlush blocks until a timeout occurs while waiting for the
next byte to arrive.

K.6 SerReceive function

Purpose Receives size bytes worth of data or returns with error if a line error or
timeout is encountered.

Prototype ULong SerReceive (UInt refNum, VoidPtr rcvBufP,
ULong count, Long timeout, Err* err?P)

Parameters

refNum Serial library reference number.

rcvBufP Buffer for receiving data.

count Number of bytes to receive.
timeout Interbyte timeout in ticks, O for none, -1 forever.
errP For returning error code.

Result Number of bytes received:
*errP = (0 No error.
serErrLineFrr RS232 line error.
serErrTimeOut Interbyte timeout.

K.7 SerSettingType function

The SerSettingsType structure defines serial port attributes; it is used by the calls
SerGetSettings and SerSetSettings. The SerSettingsPtr type points to a
SerSettingsType structure.

typedef struct SerSettingsType

{

UInt32 baudRate;

UInt32 flags;

Long ctsTimeout;

}

SerSettingsType;

typedef SerSettingsType* SerSettingsPtr;

Field Descriptions

baudRate Baud rate

flags Miscellaneous settings

ctsTimeout Maximum number of ticks to wait for CTS to become asserted before
transmitting; used only when configured with the
serSettingsFlagCTSAutoM flag.

Appendix L
Answer To Reset (ATR)

APPENDIX L: ANSWER TO RESET (ATR)

Character

D

Definition

InmﬂIChﬂm e ect

TS

Mandatory initial character

TA;
TB;
TC,
™D,
TA;
TB:
TC,
TD,
TA;
DS

Global, codes F1 and D1
Global, codes 11 and Pi1
Global, code N
Codes Yand T
Specific
Global, code P12
Specific
Codes Y;and T
TA;, TB; and TC; are specific
Codes Yirjand T

Card specific information
(Maximum of 15 characters)

TCK,

Optional check character

For a even more detailed specification and explanation of the ATR

http://www hackersrugsia.ru/Cards/Syncro/[SQ7816.php

, refer to

Appendix M
Smart Card Communication State

Diagram

APPENDIX M: Smart Card Communication State Diagrams

Communication between smart card and reader through a series of state transitions

Appendix M .1
Card Lm
Caud insevhicn
Power
the card
Card
removal

Send APDU
Recmive
full vesponse

Eequest comimiznd
completion

Reader State Diagram

Appendix M .2

Caid Besct
Piepare
ATR
“4 ATR
Issue vesponse Dizpatch APDU
to r=ade)

to processor

Card State Diagram

Appendix N
Complete Source Code for the PALM

Snooping Program

**\

Title: Universal "Chip Based Smart Card" Snooping Program

Version: 1.00

File Name: Snooper.c

Author: Dimitri Denamany

Date: March 27, 2004

Language: C

Purpose: To snoop on the data communication lines between the [
smart card and the smart card reader

**/

clude <Pilot.h>
clude <SysEvtMgr.h>
clude <SerialMgr.h>
clude <Field.h>
clude <Window.h>
clude "Snooper_res.h”

**\

Internal Constants
**/

fine appFileCreator - ' BEPT.
fine appVersionium 0x01
fine appPreflID 0x00
fine appPrefVersionNum 0x01
:fine TRANSMIT STRING_LENGTH 24
fine MAX LENGTH 60000
fine HELP_TEXT_ LENGTH 255
:fine PORT 0
fine errNone 0

Jderts display only if in Debug Mode which is defined in stdhdr.h

'se: dbgAlert (DebugAlert, "Stringl*, "String2", *")

his will digplay a message box with "Stringl: String2"
(debug)

«fine dbgAlert{a, b, ¢, d) FrmCustomAlert(a, b, ¢, 4}

se

fine dbgalertia, b, ¢, 4}

Adif

Define the minimum 0S version we support
fine ourMinVersgion sysMakeROMVersion(2, 0,0, sysROMStageRelease, 0)

**\

Global variables
**/

lean gSerialPortOpen;

t gSerRefNumber;

lean gIsHex;

d gPrefsSize = 0;

xr gRecelivedFromExternal;

r gTransmittedFromPalm;

xr gMessageToDisplay [TRANSMIT STRING LENGTH];
nes Baud ;

**\

Internal Function Prototypes
**/

ClearScreenData (Word cbjectlID);
CloseSerialPort{void);
OpenSerialPort (void) ;
ReceiveData{void) ;
ConvertMesgsageToDisplay () ;
Displaybata(FieldType* FieldP);

O o O s

SaveTransmitStrings();

LoadTransmitStrings () ;

TransmitString (char strBuffer [TRANSMIT STRING _LENGTH]}:
RetrieveTransmitStrings (Word TextToTransmit});

jsTg e TR o TR ol

it IsValidHex(char* chrBuffer);
it ConvertToDec (char* chrBuffer);
d ConvertToHex(Int NumToConvert);

d MainFormInit (FormPtr f£rmP);
vlean MainFormDoCommand {Word command) ;
1lean MainFormHandleEvent (EventPtr eventP);

.d TextFormInit {FormPtr FrmP);
1lean TextFormHandleEvent (EventPtr eventP);

AdPtr GetObjectPtr (Word objectID):;

* RomVersionCompatible (DWord requiredvVersion, Word launchFlags);

ylean AppHandleBvent(EventPtr eventP);
.d AppEventLoop (void) ;

; AppStart (void);

.d AppStop (void) ;

ird SerialCommPilotMain {Word cmd, Ptr cmdPBP, Word launchFlags);

ird PilotMain{ Word cmd, Ptr cmd®BP, Werd launchFlags);

itie void Scroll { int flag) ;
itic void UpdateScrollBar () ;
itic void EditViewScroll {Short linesToScroll};

.'*'k*-k*****~k***-k*-k*-k***-k*************-k**********************************\

Internal Functions

:‘k*‘:\‘****'k*‘k*'k‘k****'ki"k*'k‘k*‘9{**‘k'k*ﬁ-***************************************/

f***\

FUNCTION: ClearScreenData

DESCRIPTION: Clear data from Transmit and Receive Fields

PARAMETERS: FieldToClear - Which field to clear
RETURNED: Nothing

REVISION HISTORY:

-*******‘k'k‘k‘k‘k‘k**/

.d ClearScreenData(Word FieldToClear)

FieldType* CurrentField;
Handle TextHandle;

CurrentField = {FieldPtr) (GetChjectPtr(FieldToClear));

TextHandle = FldGetTextHandle{CurrentField);
rith field

1f (TextHandle)
{
FldSetTextHandle (CurrentField, NULL};
4d te NULL
MemHandleFree (TextHandle) ;
i@ handle
FldDrawField (CurrentField);

//End Functicon ClearScreenbata

//Get pointer to field

//Get memory handle associate
//Will return NULL if no text
//Set handle of the current f
//Free memory associated with

//Refresh field

*'k***s\'****-k-k***\

FUNCTION: CloseSerialPort
DESCRIPTION: Close gerial port
PARAMETERS: none

RETURNED : rothing

REVISICN HISTORY:

*‘i“k‘k‘k**********-k*****-k-k**************‘k*******************************/

d CloseSerialPort (voild)

Err error = (;
FormPtr frmP;
Word ChijectIndex;

error = SerSendWait{gSerRefNumber, -1);
mt before exiting

if (error == serErrTimeOut) FrmAlert(PortTimeoutdlert);
display timeout alert

SerClose{gSerRefNumber) ;

frmP = FrmGetActiveForm(};

//The following two lines hide the port open icon.

//If you are connected to the serial porg,

//the icon is displayed, otherwise there is nothing there.
ObjectIndex = FrmGetObjectIndex({fxrmP, Main_PortOpenBitMap) ;
FrmHdideObject (frmP, ObjectIndex);

gSerialPortOpen = falge;

//8nd Function CloseSerialPort

//Make sure all data has been
//If SerSendwait times cut th

//Close Serial Port
//Get Pointer to Active Form

//Set PortOpen to False

r***\

FUNCTICON: OpensSerialPort
DESCRIPTION: Open serial port
PARAMETERS: none

RETURNED: nething

REVISION HISTORY:

r***********-k-k***-k***************‘k**********‘k*i"k'k'k‘k‘k*****‘k************/

.4 OpenSerialPort(void)

Err error = 0;

DWord CommFlags = 0;)

Word SizeOfFlags = sizeof (CommFlags) ;
SerSettingsType SerCommSettings;

FormPtr frmP;

Word ObjectIndex;

error = SysLibFind{"Serial Library", &gSerRefNumber);

if (error)
{
FrmaAlert (OpenPortAlert) ;
id error message

}

error = SerOpen{gSerRefNumber, PORT, Baud);
rtID returned to gSerialPortID

switch (errox)
{
case serErrAlreadyCpen:
* another application
SerClose {gSerRefNumber} ;
: by sharing the serial port,
FrmAlert (PortBusyAlert) ;
break;
case errNone:
d successgfully
gSerialPortOpen = true;
frmP = FrmGetActiveForm();
//The following two lines show the port open icon.
//If you are connected to the serial port,

//the icon is displayed, otherwise there is nothing there.
ObjectIndex = FrmGetObjectIndex (frmP, Main_PortQOpenBitMap);

FrmShowCbject (frmP, ObjectIndex);
break;
default:
FrmAlert (OpenPortalert) ;
d error message
break;

}

SerReceiveFlugh{gSerRefNumber, 200);
ation didn't

//Get Serial Reference Number

//Default Open Serial Port fa

//0Open Serial Port 9600 baud,

//Brror checking

//Serial Port is already open
//Close port: problems can ar
//Display port busy message
//No errors returned, port op

//8et flag to port open
//Get Pointer to Active Form

//0Other Error
//Default Open Serial Port fa

//Clear port in case last app

//Define Communications settings, set to default settings, 8,N,1, No Flow Control,

//8ince this is the default it can be omitted

CommFlags = serSettingsFlagBitsPerChar8 | serSettingsFlagStopBits2 | serSettingsFlagParityEve

SerCommSettings.baudRate = Baud;
SerCommSettings.flags = CommFlags;

error = SerSetSettings{gSerRefNunber, &SerCommSettings);

if {(error) FrmAlert {CommSettingsalert);

r message

//End Punction OpenSerialPort

//Set baud rate
//8et flags

//8et communication settings

//8et Comm Settings failed er

k*'k*‘k'k'k**********‘k‘k*******************'k***'k***************************\

FUNCTION: ReceiveData

DESCRIPTICON: Receive data through serial port

PARAMETERS: none

RETURNED: Nothing

REVISICN HISTORY:

k'k'k*‘k******'k'k'k‘k******'k*'lc‘k*‘k*****'k‘ic**************‘k*********************/

Ld ReceiveData(void}

Exrr errcr = 0;
DiWoxrd NumberOfBytes;
char chrarray;
Word i = 0;
FieldType *FieldP;

char tmpBuffer;
//VoidPtr pBuffer;

//pRuffer = new char [9] ;

if {(!{gSerialPortOpen)) return;

error = SerReceiveCheck(gSerRefNumber, &NumberOfBytes):;

:0 be retrieved

if {error == serErrLineFErr) SerClearErr {gSerRefNumber):;

if {error}
.0 retrieve data.

{

//FrmAlert (CheckPortAlert) ;

raeturn;

}

if ((NumberQfBytes + i) > MAX_ LENGTH)

ig than there is buffer space
{

NumberOfBytes = MAX_LENGTH - 1 - 1;

r terminating null
1

/7 pBuffer = new char[NumberOfBytes] ;

while (NumberOfBytes)
{
SerReceive (gSerRefNumber,
to chrArray

&chrArray, i, 0, &error);

if {error == gerErrLineErr) SerClearErr (gSerRefNumber);

if {error)

{

SerReceiveFlush{gSerRefNumber, 1);

i=0;
NumberCfBytes = 0;
return;

}
{

1++;
NumberOfBytes—-;
retrieved

else

FieldP = GetObjectPtr{Main_ ReceivedFromExternhalField);

StrCopy (&gMessageToDisplay[0], &chrirray);

//Not connected

//Retrieve the number of byte

//Clear Error on Line Error
//1f error, notify user unabl

//Receive failed error messag

//If there are more bytes wai

//MaxBuffer - Array Index - 1

//Retrieve data

//Retrieve byte one at a time

//Clear Error on Line Error

//Clear huffer on error
//Reset Array Index

//Increase Array Index
//Decrease number of bytes to

//Get Pointer to Field
//Copy into display string

Strlopy (&gMessageToDisplay([l]l, ""); //Terminate with NULL .
ConvertMessageToDisplay () //Convert character to hex if

n-printable

DisplayData (FieldP); //Display Data into above Fie

UpdateScrollBar () ;

chrArray = '/0'; //Reset array
tmpBuffer = '/0'; //Reset buffer

}
1 // end while
//UpdateScrollBar () ;
//End Function ReceiveData

:****'k-k-k*************‘i‘*************'k****‘k:k‘k***************************\

FUNCTION: ConvertMessageToDisplay

DESCRIPTION: This routine displays the data to hex format
if necessary

PARAMETERS: none
RETURNED: nothing

REVISION HISTORY:

***************-k**‘k‘k*'k*****'k*****‘ki‘******‘k'k*********************‘k*****/

id ConvertMessageToDisplay ()

Int DecNumberToConvert;

DecNumberToConvert = {int) {{unsigned char) {gMessageToDisplay[01)}; //Get character

ConvertToHex { DecNumberToConvert) ; //Convert to hex

*******7\"k'k‘k*'k***‘k‘k‘k*'k'k***‘k‘k**i**'k*‘k*'kir**‘k'k'k***************************\

FUNCTION: DisplayData

DESCRIPTION: This routine display to a field

PARAMETERS: FieldP - the field to display the message in
RETURNED: NOQTHING

REVISION HISTORY:

************‘k*********************************'k'k******'k***************/
id DisplayData(FieldType* FieldP)

Brr error = 0;

Handle TextHandle = 0;

char *tmpBuffer;

char *tmpTextl;

char *tmpText?;

Word tmpBuffertength;

Word MessageToDisplayLength;
Word CharactersToRemove;

Int i = 0;

MessageToDisplayLength = StrlLen(gMessageTolisplay);
to display

TextHandle = FldGetTextHandle (FieldP);
if (TextHandle)
he field

{
FldSetTextHandle(FieldP, NULL);

tmpBuffer = MemHandleLock (TextHandle) ;
. 0of the field

tmpBufferLength = StrLen{tmpBuffer};
in field

if (tmpBufferlLength < MAX_LENGTH)
less than maximum

{

//Get length of strin

//Get handle of field
//TEf there is text in
//8trip Text

//Retrieve the text o
//Get length of strin

//Text field string i

MemHandleUnlock {(TextHandle) ;
to accommodate new data

error = MemHandleResize(TextHandle, min(MAX LENGTH + 1.
tmpBufferLength + MessageToDisplayLength + 1)} ;
if (error) FrmAlert {MemorvAlert):

tmpBuffer = MemHandleLock (TextHandle) ;
‘etrieve text

} //End if

if (tmpBufferlLength + MessageToDisplaylLength > MAX_ TENGTH)

v big

{

CharactersToRemove =
laracters toc remove

MessageToDisplayLength + tmpBufferLength -

MAX_LENGTH:
tmpTextZ = &tmpBuffer [CharactersToRemove];
it character to remove

for (tmpTextl = tmpBuffer; *tmpTextZ != chrNull; ++tmpTextl,
{
‘ters to remove, increment array
*tmpTextl = *tmpText2;
Buffer
} //End for
*tmpTextl = chrNull;
} //Endif

Strlat (tmpBuffer, gMessageToDisplay);
|l of old message

}

else
{
TextHandle = MemHandleNew (MessageToDisplayLength + 1);
yrmation
if {TextHandle == chrNull) FrmAlert (MemoryAlert);
tmpBuffer = MemHandleLock (TextHandle);

StrCopy (tmpBuffer, gMessageToDisplay);
1Issage

}
MemHandleUnlock (TextHandle) ;
FldSetTextHandle (FieldP, TextHandle);
FldDrawField (FieldP) ;
gMessageToDisplay[0] =
.ay

chrNull;

‘agma mark

***\

FUNCTICN: ConvertToHex

DESCRIPTION: Ccnvert Decimal Numbers to Hex, surrounded by <>

PARAMETERS :

NumToConvert - Decimal to convert to Hexadecimal

RETURNED: nothing

REVISICN HISTORY:

*****‘k**************************'k'k'k**********************************/
d ConvertToHex (Int NumTolonvert)

Ulnt fmpNumber = Q;
UInt counter = 1;
UInt i=1;

StrCopy (gMessageToDisplay,
//8trCat {(gMessageToDisplay,
do

{

if (counter == 1) (tmpNumber = NumToConvert/16);

||||);

||<|r);

//Clear String
//Start v<r

//Unlock handle, resi

/*Plus one for NULL*/
//Plus one for NULL

//0ut of memory Alert
//TLock the text field

//1If final string is

/ /Determine number of

//8tart tmpBuffer at

++tmpText2)

//While there are cha

//Transfer character

//Terminate null

//8dd new message to

//If the field was em
//Create memory for i

//0ut of memory alert
//Lock handle
//Replace memory with

//Unlock EHandle
//Set handle to
//Refresh field
//Reset message

field

to di

//Calculate upper nibble
//Calculate lower nibble
//Add appropriate wvalues

else (tmpNumber = NumToConvert - (tmpNumber * 16});
switch (tmpNumber)

case 0:
StrCat (gMessageToDigplay,
break;

case 1:
StrCat {gMessageToDisplay,
break;

"0“);

|r1|!);

case 2:
StrCat {gMessageToDisplay, "2");
break;

case 3:
StrCat (gMessageToDisplay, "3");
brezk;

case 4:
StrCat (gMessageToDisplay, "4");
break;

case 5;:
StrCat {(gMessageToDisplay, "5");
break;

case 6:
StrCat {gMessageToDisplay, "6");
break;

case 7:
StrCat (gMessageToDisplay, "7');
break;

case 8:
Strcat (gMessageToDisplay, "8");
brezak;

case 9:
StrCat (gMegsageToDisplay, "9"):
break;

case 10:
StrCat (gMessageToDisplay, "A");
break;

case 11:
StrCat (gMegsageToDisplay, "B");
break;

case 12:
StrCat (gMessageToDisplay, "C");
break;

case 13:
StrcCat (gMessageToDisplay, "D");
break;

case 14:
Strcat (gMessageToDisplay, "E"};
break;

case 15:
StrCat {gMessageToDigplay, "F");
break;

#if (debug)

default:
StrCat {gMessageToDigplay, "0");
break;

#endif

}//End Switch

counter—--;

1++;
} //End while
while (counter I= -1);
//StrCat (gMessageToDisplay, ">"); //Close String

//End Function ConvertToHex

':***********'k'k'k'k‘k*‘k****************'k'k**'k‘k'k'Ic'k*'k**‘k‘k*****’k*****‘k********\
FUNCTION: MainFormInit

DESCRIPTION: This routine initializes the MainForm form.
PARAMETERS: frm - pointer to the MainForm form.
RETURNED : nothing

REVISION HISTORY:

:'k*********-k**'k'k'k‘)r'k'k**'k**********‘Ir‘k‘i"k'k‘k‘k‘k‘k****‘k*‘k*********************/

.4 MainFormInit (FormPtr frmP)

/ /Word fldIindex;
Word ObjectIndex;

//£ldIndex = FrmGetObjectIndex(frmP, Main_TransmittedFromPalmField); //Get field index
/ /FrmSetFocus {fxrmP, fldIndex); //8et focus to field

//The following two lines hide the port open icon.

//If you are connected to the serial port,

//the icon is displayed, otherwise there is nothing there.
ObjectIndex = FrmGetObjectIndex(frmP, Main_PortOpenBitMap);
FrmHideObject (£xmP, ObjectIndex};

'k*'k‘k'k'k'k********************‘A‘**‘k*********‘k*******************‘k***\

FUNCTION: MainFormDoCommand

DESCRIPTICN: This routine performs the menu command specified.

PARAMETERS: -command - menu item id
RETURNED: nothing

REVISION HISTORY:

*‘***/

olean MainFormDoCommand (Word command)

FormType *FrmpP;
Boolean handled = falge;

switch {(command)
{
case Info_About:
MenuEraseStatus (0);
FrmP = FrmInitForm(About_Form);
FrmPopupForm (Help_Form) ;
behind the loaded form
FrrDoDialog (FrmP) ;
FrmDeleteForm (FrmP} ;
rm
handied = true;
processed
break;
case Info_Help:
MenuEraseStatus (0);
FrmP = FrmInitForm(Help_Form);
- FrmPecpupForm(Help_Form) ;
behind the loaded form
FrmDoDialog (FrmP) ;
FrrDeleteForm{FrmP} ;
rm
handled = true;
processed
" break;
case Options_OpenSerialPort:
MenuEraseStatus (0);
if (! (gSerialPortOpen)) OpenSerialPort();
ial port
handled = true;
processed
break;
case Options_ClogeSerialPort:
MenuEraseStatus (0);
if {gSerialPortOpen) CloseSerialPort();
handled = true;
processed
break;
case Options_DefineTransmitString:
MenuEraseStatus (0);
//1if {gSerialPortCpen) CloseSerialPort!();

/ /FrmGotoForm (Text_Form} ;

handled = true;
processed

break;

return handled;

//Load About form
//8aves initiating form informati

//Display and wair for "QOk"
//Delete form and return to Main_

//Tell Event Handler, the event w

//Load Help form
//8aves initiating form informati

//Display and wait for *Ok"
//Delete form and return to Main_,

//Tell Event Handler, the event w

//1f not already open, open the s

//Tell Event Handler, the event w

//1If open, close the serial port
//Tell Event Handler, the event w

//1f gerial port open, close

//8witch to text form
//Tell Event Handler, the event w

:******'k**'k'k'k'k'k'k***************‘k**************************************\

FUNCTION: MainFormHandleEvent

DESCRIPTICON: This routine is the event handler for the
"Main_Form" of this application.

PARAMETERS: eventP - a pointer to an EventType structure

RETURNED: true if the event hags handle and should not be passed

to a higher level handler.

REVISION HISTCRY:

R A AR AR AR A A A A AR A AN A AR AN AR A KA I A AL I AR AR A AT A I A A F IR IR A AL T AL AARA

slean MainFormHandleEvent (EventPtr eventP)

Boolean handled = false;

FormPtr frmP;

FieldType *FieldP;

char chrBuffer;

frmP = FrmGetActiveForm({}; //Get Pointer to Active Form

gswitch {eventP->eType)
{

case menuEvent: //Process menu item
return MainFormDoCommand{eventP->data.menu.itemID};
break;

case frmOpenEvent: //0n Form Open
FrmDrawForm { frmP); / /Refresh Form
MainFormInit{ frmP); //Initialize Form

if (!gSerialPortOpen)

Baud = 9600 ;
OpenSerialPort{); //Open serial port
}

handled = true; //Tell Event Handler, the

processed
break;

cage ctlSelectEvent: //Will Handle Item Select

gswitch (eventP->data.ctlSelect.controllD)
{
case Main TextlPushButton:
itring 1 ' _
if {gSerialPortOpen) CloseSerialPort(}:
Baud = 2400;
OpenSerialPort();
break;
case Main_ Text2PushButton:
String 2
if (gSerialPortOpen} CloseSerialPort();
Baud = 9600;
OpenSerialPort();
break:
case Main_Text3PushButton:
String 3
if {gSerialPortOpen) CloseSerialPort(};
Baud = 19200;
CpenSerialPort(};
break;
case Main_Text4PushButton:
itring 4
if (gSerialPortOpen) CloseSerialPort{);
Baud = 38B400;
OpenserialPort();
break;
case Main_Text5PushButton:
itring 5
if (gSerlalPortOpen) CloseSerialPort();
Baud = 57600;
OpenSerialPort();
break;
case Main_ HelpButton:
MenuEraseStatus (0}
frmP = FrmInitForm{Help_Form};
FrmPopupForm{Help Form};
rmation behind the loaded form
FrmDoDialog (£rmP} ;

FrmDeleteForm(£rmP) ;
'+ Main_Form)
handled = true;
break;
case Main_ClearButton:
wceive and transmit

//Open port, send

//0pen port, send

//Open port, send

//Open port, send

//Open port, send

event w

Events

Transmi

Transmi

Transmi

Transmi

Transmi

//Displays Help Dialog

//Load the Help form
//S8aves initiating form i

//Digpiay and wait for "0

//Delete the form

{return

//Clears the screen, both

ClearScreenData (Main_ReceivedFromExternalField);

UpdateScrollBar () ;
break;
default:
break;
1
break;

case keyDownEvent:

if {eventP->data.keyDown.chr == pageUpChr } //if it is a scrolil up

{
Scroll (0) ;//up
handled = true ;
1
else if {(eventP->data.keyDown.c == pageDownChr) // if it is a scroll down
{

Scroll (1} ;//down
handled = true ;

else //if it is a character that is entered

{
frmP = FrmGetActiveForm () ;
FrmHandleEvent (frmP, event?P):
UpdateScrollBar () ;
handled = true ;
}
break;

case sclRepeatEvent: // P13. the scroll bar was pressed
EditViewScroll (eventP->data.sclRepeat.newValue -
eventP->data.sclRepeat.value);

// Repeating controls don't repeat if handled is set true.
break;

default:
break;

return handled; //Tell Event Handler, whether eve
was handled

cagma mark ~~-—--——————————

i‘*'k**************************‘k***‘k************************************\

FUNCTION: TextFormInit

DESCRIPTICN: Initializes the text form.
PARAMETERS: form - pointer to the text form.
RETURNED: nothing

REVISION HISTCRY:

\‘******************'k'k‘k'k*‘k*'k*'ki"k*‘kﬁ'****‘k*‘k*****************************/
ld TextFormInit (FormPtr FrmP)

//Word fldIndex;

//f£1dIndex = FrmGetObjectIndex (FrmP, Text_TextlField); //Get field index
/ /FrmSetFocug (FrmP, fldIndex); //8et focus to field
‘Aagma mark ——-——-—--—eemeo—————

r*******'k***‘k*‘k***‘k*****\
FUNCTION: GetObjectPtr

DESCRIPTION: This routine returns a pointer to an object in the
current form.

PARAMETERS: objectId - id of the object to retrieve
RETURNED: VoidPtr - pointer to the cobject paszed

REVISICN HISTORY:

'***‘k‘k‘k‘k*'k*******'k*************'k*‘kﬁ"k*‘ki"k*‘k***‘k************************/

dPtr GetObjectPtr{(Word cbjectID}
{
FormPtr frmP;

frmP = FrmGetActiveForm();
return (FrmGetObjectPtr (frmP, FrmGetObiectIndex(frmP, objectID))};

i0

‘***********i‘**‘k‘k'k'k'k**********'k************‘k***********************‘k***\

FUNCTION: RomVersionCompatible
DESCRIPTION: Verifies that ROM version meets minimum requirement.
PARAMETERS: requiredVersion - minimum rom version reguired
(see sysFtrNumROMVersion in
SystemMgr.h for format)
launch¥Flags - flags that indicate if the
application UI is initialized.
RETURNED: error code or zero if rom is compatible

REVISION HISTORY:

r********-k**********-k*'k'k*********‘**********************************‘k***/
: RomVersionCompatible (DWord requiredVersion, Word launchFlags}

DWord romVersion;

// See if we're on in minimum required version of the ROM or later.
FtrGet (sysFtrCreator, sysFtrNumROMVersion, &romVersion);

if (romVersion < reguiredVersion)

{
if {((launchFlags & {(sysAppLaunchflagNewGlcbals | sysAppLaunchFlagUIApp)) ==
{sysAppLaunchFlagNewGlobals | sysAppLaunchFlagUIApp))

{

FrmAlert {(RomIncompatibleAlert):

// Pilot 1.0 will continuously relaunch this app unless we switch to
// another safe omne.

if {romVersion < sysMakeROMVersion(2,0,0,sysROMStageRelease,0))
AppLaunchWithCommand (sysFileCDefaultapp, sysApplaunchCmdNormallaunch, NULL) ;

return {sysErrRomIncompatible);
1

return (0);

:*****************'k***\

FUNCTION: AppHandleBvent

DESCRIPTION: This routine loads form rescurces and set the event
handler for the form loaded.

PARAMETERS: event - a pointer to an EventType structure

RETURNED: true if the event has handle and should not be passed
to a higher level handler.

REVISION HISTORY:

f*'ﬂ\'**'***************************[

ylean AppHandleEvent(EventPtr event?P)

Word formId;
FormPtr frmP;

1f (eventP-»eType == frmloadEvent)
{
// Load the form resource.
formId = eventP->data.frmLoad.formID;
frmP = FrmInitForm{formIid);
FrmSetActiveForm{frmP) ;

// Set the event handler for the form. The handier of the currently
// active form is called by FrmHandleEvent each time is receives an
// event.
switch (formId)
{
case Main_Form:
FrmSetEventHandler (fxmP, MainFormHandleEvent}:;
break:
default:
break;

11

}
return true;

}

return false;

***'k**\
FUNCTION: AppEventLoop

DESCRIPTION: This routine is the event loop for the application.
PARAMETERS: nothing

RETURNED: nething

REVISION HISTCRY:

*******'k'k***/

id AppEventLoop (void)

Word error;
EventType event;
DiWord ResetTimeCut;

//Initialize Variables
ResetTimeOut = TimGetSeconds();

do {

//To handle input received, since input received does not generate an event
EvtGetEvent (&event, 50} ; //Generates an event

//Prevent gleep mode, to handle incoming data,
//call EvtResetAutoOffTimer every 45 seconds

if (TimGetSeconds() -~ ResetTimeOut > 45) //If time exceeds 45 seconds

arliest gleep at one minute)

EvtResetAutoOffTimer(); //Reget timer
ResetTimeCut = TimGetSeconds();
}

//Retrieve Data from Serial Port
ReceliveDatal() ;

//Handle Events
if (! SysHandleEvent {&event))
if (! MenuHandleEvent (0, &event, &errcr))
if (! AppHandleEvent (&event))
FrmDigpatchEvent (&event) ;

if (event.eType == appStopEvent)
{

1

CloseSerialPort();

} while (event.eType != appStopEvent};

'k*********************\
FUNCTION: AppStart

DESCRIPTICN: Get the current application's preferences.
PARAMETERS : nothing

RETURNED: Err value 0 if nothing went wrong

REVISION HISTORY:

'k'k'k*'ki‘*********i"k*****/

r AppStart (veid)
gPrefsSize = sizeof (SerialCommPreferenceType); //8et zize of preferences

gPrefs.Textl[0] = chrNull; //Initialize preferences
gPrefs.Text2[0] = chrNull;

12

gPrefs.Text3[0] = chrNull;
gPrefs.Text4[0] = chrNull;
gPrefs.Text5[0] = chrNull;

if (PrefGetAppPreferences (appFileCreator, appPreflD,

&gPrefs, &gPrefsSize, true) == noPreferenceFound) // Read the saved preferences / s
ed-state information.

{

gPrefs.Text1[0] = chrNull; //If No Preferences Found, £ill w
h NULL

gPrefs.Text2{0] = chrNull;

gPrefs.Text3{0] = chrNull;

gPrefs.Text4{0]} = chrNull;

gPrefs.Text5{0]1 = chrNull;

}

return 0;

'k'k‘k**************'k'k******'k***************'k‘k*'k***********************\

FUNCTION: AppStop
DESCRIPTION: Save the current state of the application.
PARAMETERS: nothing
RETURNED: nothing

REVISION HISTORY:

*********‘k*‘k‘k************‘k**‘k*************‘k***************************/

id AppStop{void)

if (gSerialPortOpen) CloseSerialPort();
FrmCloseAllFormg () ;

// Write the saved preferences / saved-state information. This data
// will be backed up during a HotSync.
gPrefsSize = sizeof (SerialCommPreferenceType);

PrefSetAppPreferences {appFileCreator, appPreflID, appPrefVersionNum,
&gPrefs, gPrefsSize, true);

k********‘k‘k‘k‘k*****‘k******‘k‘k*******‘k'k'k'k********************************\

FUNCTION: SerialCommPilotMain

DESCRIPTION: This ig the main eniry point for the application.
PARAMETERS: c¢md - Word value specifying the launch code.
c¢mdPB - pointer to a structure that is associated with
the launch ccde.
launchFlags - Word value providing extra information
about the launch,

RETURNED: Result of launch

REVISION HISTORY:

r*********************‘k‘k*‘k*******‘k*‘k********-k-!r************************/

'rd SerialCommPilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)
Err error;
error = RomVersionCompatible (ourMinVersion, launchFlags);
if (error} return (error);
switch (cmd)
case sysApplaunchCmdNormalLaunch:
gSerialPortOpen = 0;
error = AppStart();

if (error)
return error;

13

FrmGotoForm (Main_ Form};
AppEventLoop () ;
AppStop () ;

break:

default:
break;

}

return 0;

*'k'k'&"k*****‘k‘k‘k********‘k*******‘k-k******‘k*******‘k*************'k‘k*********\

FUNCTION: PilotMain
DESCRIPTION: This is the main entry point for the application.
PARAMETERS: cmd - Word value gpecifying the launch code.
cmdPB - pointer tc a structure that is associated with
the launch code.
launchFlags - Word value providing extra information
about the launch.
RETURNED: Result of launch

REVISION HISTORY:

*'k'k**-k************************-k*******************************‘k*******/

‘ord PilotMain{ Word cmd, Ptr cmdPBF, Word launchFlags)

return SerialCommPilotMain(cmd, cmdPBP, launchFlags);

LR RS S S R R EE RS E R R E R S R RS R R R E R S S R EEE LS S AR LR RS R R R

atic void Screoll (int flag)
{

Fieldptr fl4 ;
Short wvalue;

Short min;

Short max;

Short pageSize;
Word linesToScroll;
ScrollBarPtr bar;

fild = GetChjectPtr (Main_ReceivedFromExternalField) ;

if (FldScrollable (fld , (DirectionType) flag }) // check if it is scrollable in the spec.
fied direction

{
linesToScroll = FldGetVisibleLines (fld) - 1;
FidScrollField (fld, linesToScroll, (DirectionType)flag):

// Update the scroll bar.
bar = GetObjectPtr {Main_ScrollBarScrollBar);
SclGetScrollBar (bar, &value, &min, &max, &pageSize);
if (flag == O)
value -= linesToScroll;
else
value += linesToScroll;

SclSetSecrcllBar (bar, value, min, max, pageSize);

return ;

}

IEE AR AR R L E SRS S S R RS AR S E LS A S RS TR RS AN E LI T A RE R SRS RS RS SRS L R SRR EEE LR X T

:atic void UpdateScrellBar ()}

14

Word scrollPos;

Word textHeight;

Word fieldHeight;

Short maxValue;

FieldPtr f£1d;

ScrollBarPtr bar;

Word Len ;

fid GetObjectPtr { Main_ReceivedFromExternalField);
bar GetObjectPtr {Main_ScrollBarScrollBar);

Len = FldGetTextLength(fld};
FldSetScrollPosition (fld , Len);

// get the values necegsary to update the screoll baz.
FldGetScrollValues (f1d, &scrollPos, &textHeight, &fieldHeight);

if (textHeight > fieldHeight}

maxValue = textHeight - fieldHeight;
else if {scrollPos}

maxValue = scroliPos;
else

maxValue = 0;

SclSetScrollBar (bar, scrcllPos, 0, maxValue, fieldHeight-1):

L A S R R R R S SR L R R R R RSN R R LR SRR SR R R IS AR R R R

itic void EditViewScroll (Short linesToScroll)

Word blankLines;
Short min;

Short max;

Short value;
Short pageSize;
FieldPtr f14;
ScrollBarPtr bar;

fld = GetObjectPtr (Main_RecelvedFromExternalField);
if (linesToScroll < 0)
{

blankLines = FldGetNumberOfBlanklLines (fid};
FldScrollField (fld, -linesToScroll, (DirectionType)();

// If there were blank lines vigible at the end of the field
// then we need to update the scroll bar.
if (blankLines)

{

// Update the scroll bar.

bar = GetObjectPtr (Main_ScrollBRarScrollBar);

SclGetScrollBar (bar, &value, &min, &max, &pageSize);

if (blankLines > -linesToScroll)

max += linesToScroll;

else

max -= blankLines;
SclSetScrollBar (bar, value, min, max, pageSize);
}

}

else if (linesToScroll > ()
FldScrollField (fld, linesTeScroll, (DirectionType}l};

LR R R e R R R L R R X T R R R LR R LR TR TR R RO R R R e

i5

Header generated by Ceonstructor for Palm0sS 1.2

Generated at 1:23:45 PM on Saturday, March 27,

2004

Generated for file: D:\seml0\FYP\PALM Programs\Snooper\Src\Sncoper.rsrc

THIS IS AN AUTOMATICALLY GENERATED HEADER FILE FROM CCONSTRUCTCR FOR PALMOS;
- DO NOT EDIT - CHANGES MADE TO THIS FILE WILL BE LOST

Palm App Name: "Smart

Palm App Version: "1

Resource: £FRM 1000
2fine Main_Form
158, Height = 160, Usable =
1lt Button ID = 0)
2fine Main_ClearButton
= 34, Height = 10, Usable =

2fine Main_HelpButton

th = 16, Height = 16, Usable

)
zfine Main HelpBitMap

rap Resource ID = 1010, Usable

afine Main_ PortOpenBitMap

ap Resource ID = 1011, Usable
2fine Main_ReceivedFromiExternalField
1,
Left Justified = 1, Max Characters

= 140, Height = 104, Usable

Jumeric = 0)

zfine Main MainIndicatorGrafittisShift

efine Main ReceivedlLabel
= 1, Font = Standard)
afine Main_ TextlPushButton

1 = 22, Beight = 12, Usable =

afine Main_Text2PushButton

1 = 22, Height = 12, Usable =

xfine Main_Text3PushButton
1 = 24, Height = 12, Usable
:fine Main_Text4PushButton
1 = 24, Height = 12, Usable
afine Main_ Text5PushButton
ch = 24, Height = 12, Usable

:fine Main_ScrollBarScrollBar

1 = 7, Height = 102, Usable

>fine SmartCardSncoperFormGroupID

Resource: tFRM 1100
:fine About_Form

160, Height = 160, Usable = 1, Modal

Button ID = 0)

:fine About_Unnamedlll3Button

:h = 36, Height = 12, Usable

:ifine About_CompLLBitMap

) Resource ID = 1006, Usable
:fine About_PalmBitMap

> Resource ID = 1000, Usable
:fine About_CableBitMap

> Regource ID = 1001, Usable
:fine About_CompLREitMap

» Resource ID = 1007, Usable
:fine About_CompULBitMap

) Resource ID = 1002, Usable
:fine About_CowmpURBitMap

y Resource ID = 1003, Usable
:fine About_CompMLBitMap

» Resource ID = 1004, Usable
:fine About_CompMRBILtMap

» Regource ID = 1005, Usable
:fine About_AppTitleLabel

= 1, Font = Becld}

ifine About_VersionLabel

= 1, Font = Standard)

1fine About_CopyrightLabel

1 = 1, Font = Standard)

1fine About_CompanyInfolabel
vy = 1, Font = Standard)

Card Sncoper"

1, Meodal

1, Anchor Left

1, Anchor Left = 1,

1)

1, Group ID
1, Group ID
1r

1,

1, Anchor Left

1}
1)
1)
1)
1}
1)
1)

1)

Font

I}

it

1608 //(Left Origin = 0, Top Origin
Save Behind = 0, Help ID = ¢, Menu Bar ID

1008

//{Left Origin = 1, Top Origin

Frame = 1, Non-hcld

1016

io0lo0

1011

1002

1007
1001

1020

Font
1021
Font

1022

Font

1023

Font

1024

= 1, Group ID = 1, Font

1005

1

1100

1113

//{Left Origin

// (Left Origin
//{Left Origin

//{Left Origin

1, Underline = (, Single
= Standard, Auto Shift

/7 (Left Origin
// (Left Origin

// (Left Origin
Standard)
// (Left Origin
Standard)
//{Left Origin
Standard)
//{Left Origin
Standard)
// (Left Origin
Standard)
//Left Origin

Frame = 1, Font

Frame = 1, Non-bold

H

142, Top Origin
Frame = 1, Font

142, Top Origin
38, Top Origin

9, Top Origin =

Line = {, Dynamic =
= O, Has Scroll Bar = 0

1, Value = 0, Minimum Value = 0, Maximum

131, Top Origin
0, Top Origin =

71, Top Origin
96, Top Origin
58, Top Origin
85, Top Origin
112, Top Origin

151, Top Origin
Value = 0, Page

//(Left Origin = 0, Top Origin =

1, Save Behind = 1, Help ID

// {Left Origin

1, Frame = 1, Non-bold

1006
1000
1001
1007
1002
1003
1004
1008
1101
1102
1103
1164

//{Left Origin
//{Left Origin
// (Left Origin
//(Left Origin
//{Left Origin
//{Left OQOrigin
//{Left Qrigin
// (Left Origin
// (Left Origin

//{Left Origin

//{Left Origin

//{Left Origin

0, Mena Bar ID

120, Top Origin
Frame = 1, Font

73, Top Origin
56, Top Origin
56, Top Qrigin
89, Top Origin
73, Top Origin
89, Top Origin
73, Top Qrigin
89, Top Origin
2, Top Origin =

2, Top Origin =

it

2, Top Origin

1, Top Origin

fl

0, width
1000, De

149, wid
Standard

142, W
Standa

142, B
144, Bi
2?, widt
Size =1
= 148)
17, Usab

132, wi

132,.Wi

147, Wi

147, wi
= 147, W

= 24, Wi
Size = 0

79, Bit
96, Bit
80, Bit
79, Bit
48, Bit
48, Bit
63, Bit

63, Bit

15, Usab

32, Usab

120, Usa

135, Usa

Resource: tFRM 1200

:fine Help_Form 1200 //{Left Origin = 0, Top Origin = G, Width
160, Height = 160, Usable = 1, Mcdal = 1, Save Behind = 1, Help ID = 0, Menu Bar ID = (, Defau
Button ID = ()

sfine Help Unnamedl1203Button 1203 //{Left Origin = 120, Top Origin 144, W

:h = 36, Height = 12, Usable = 1, Anchor Left = 1, Frame = 1, Non-bold Frame = 1, Font = Standa
|

:fine Help_HelpLabel 1204 //(Left Origin = ¢, Top Origin = 13, Usab
= 1, Font = Standard)

Resource: Talt 1001

afine RomIncompatibleAlert 1001

afine RomIncompatibleOK 0
Resource: Talt 1000

sfine SerialManagerAlert 1000

afine SerialManagerCK 0
Resource: Talt 1002

zfine OpenPortalert 1002

:fine OpenPortlK [t}
Regource: Talt 1003

afine CheckPortalert 1003

afine CheckPortOK 0
Resource: Talt 1004

2fine PortBusyAlert 1004

afine PortBusyQK 0
Resource: Talt 1005

afine DataTransmitAlert 1005

afine DataTransmitOK 0

Resource: Talt 1006
zfine PortTimeoutAlert 1006
zfine PortTimeoutOK 0

Resource: Talt 1007

2fine ClosePortaAlert 1607
afine ClogePortOK 0
Rescurce: Talt 1008
:fine NoDataToSendAlert 1608
:fine NoDataToSendOK 0
Resource: Talt 1100
sfine DebugAlert 1100
zfine DebugOK 0
Resource: Talt 1009
afine CommSettingsAlert 1008
afine CommSettingsOK 0
Resource: Talt 1010
afine MemoryAlert 1010
:fine MemoryOK o
Resource: MBAR 1000
afine Main_MenuBar 1000
Resource: MENU 1100
afine Options_Menu 1100
afine Options_OpenSerialPort 1100 // Command Key: O
afine Optiong_CloseSerialPort 1101 // Command Key: C
afine Options_ DefineTransmitString 1103 // Command Key: D
Resource: MENU 1200
afine Info_Menu 1200
afine Info_About 1200 // Command Key: A
afine Info_Help 1201 // Command Key: E

Resource: tSTR 1000
>fine HelpString 1000 // "Cloge your serial port when not in us
the serial port will drain your battery. Use Define Transmit String to send hex numbers. Enc
;e hex numbers in < > brackets, and send one byte at a time, eg.: carriage return & linefeed =
L3><10>

Resource: PICT 1405

afine CompMRBitmap 1005
Resource: PICT 1004

sfine CompMLBitmap 1004
Resouxce: PICT 1003

afine CompURBitmap 1003

Resource: PICT 1002
:fine CompULBitmap
Regource: PICT 1001
:fine CableBitmap
Resource: PICT 1000
:fine PalmBitmap
Resource: PICT 1006
:fine CompLLBitmap
Regource:; PICT 1007
:fine CompLRBitmap
Resource: PICT 1010
af ine HelpBitmap
Regource: PICT 1011
:fine PortOpenBitmap

1002
1001
1600
1006
io007
1010

1011

Appendix O
Complete Source Code for the Visual

C++ Snooping Program

SeriallApp.cpp : Defines the c¢lass behaviors for the application.

nclude *stdafx.h"
nclude *Seriall2pp.h”
nclude "serialCtl.hpp!
nclude "SerialZAppDlg.h"

fdef _DEBUG .

efine new DEBUG_NEW

ndef THIS FILE

ati¢ char THIS_FILE[] = _ FILE__;
ndif

FILTLFLTLT LTI TP T 7T F LTI 777 i iiiiriiiiifirtiriris
CSerialippipp

FIN_MESSAGE_MAP({CSerialAppApp, CWinApp)
/7 { {AFX_MSG_MAP{CSerialAppApp)
// NOTE - the ClassWizard will add and remove mapping macros here.

// DO NOT EDIT what yvou see in these blocks of generated code!
//}YAFX _MSG

ON_COMMAND { ID_HELF, CWinApp::0nHelp)
D_MESSAGE_MAP(}

FETELETETEETT I P77 iiiirirririiriririiririliiitirirrs/
CSerialippipp construction

arial AppApp: :CSerialAppapp ()

// TODO: add construction code here,
// Place all significant initialization in InitInstance

FIIITTIETEF I ETIIEE TR EIITIT I I I E i I d i EEt i 7 T E T ddiiI 070801077877 177
The one and only CSerialApplpp object
arialApbApp thedpp;

TEETTEETII T LTI 70 i i b0 7 r b7 r i i iiiiiiriididiiiiiditiitieiitiiiiirel
CSerialApplApp initialization

JL CSerialAppdpp::InitInstance()
AfxEnableControlContainer () ;

// Standard initialization

// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

def _AFXDLL

Enable3dControls(}; // Call this when using MFC in a shared DLL
.se

Enable3dControlsstatic(); // Call this when linking to MFC statically
dif

CserialappDlyg dlg;

m_pMainind = &dlg;

int nResponse = dlg.DoModall():

if (nResponse == IDOK)

{
// TODC: Place code here to handle when the dialog is
// digmissed with CK

else if (nResponse == IDCANCEL)
{

// TODC: Place code here to handle when the dialog is
// dismissed with Cancel
}

// Since the dialog has heen closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;

SerialAppDlg.cpp : implementation file

nclude "stdafx.h"

nclude "serialCtl.hpp®
nclude "serialThread.hpp"
nclude "Serialdpp.h"
nclude "SeriallippDlg.h"

fdef _DEBUG

efine new DEBUG_NEW

ndef THIS_FILE

atic char THIS_FILE[] = _ _FILE__;
ndif

FILPIILTEI I IR IR PP I iiiiiriiiiitriiiiiiiiirtirir/s
CAboutDlg dialog used for App About

ass CAboutDlg : public Chialog

blic:
CAboutDlg () ;

Dialog Data
//{{AFX_DATA{CAboutDlyg)
enum { IDD = IDD AROUTBOX };
//}}AFX_DATA

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL (CAboutDlg)

protected: :
virtual void DoDataExchange (CDataExchange* pDX): // DDX/DDV support
//} YAFX_VIRTUAL

Implementation
stected:
//{ (AFX_MSG (CAboutDlyg)
//}YAFX_MSG
DECLARFE, MESSAGE_MAP ()

ooutDlg: :CAboutDlg () : CDialog{CAboutDlg: :IDD)

/7 { {AFX_DATA INIT{CAboutDlg)
//}YAFX_DATA_INIT

Ld CcaboutDlg: :DoDataExchange {ChataExchange* pDX)

CDialog: :DoDataExchange (pDX} ;
//{{AFX_DATA MAP{(CAboutllg)
//)}YAFX_DATA_MAP

3IN_MESSAGE_MAP (CAboutDlg, CDialog)
// ({AFX_MSG_MAP (CAboutDlg)
// No message handlers
//}}AFX_MSG_MAP
) _MESSAGE_MAP ()

CILLTI T T E7 il d i iiiiiriiiriiiiirririirtriiririritititiriiily
CSerialAppDlg dialog

:rialAppDlg: :CSerialappDlg {CWnd* pParent /*=NULL*/)
: Cbhialog(CSerialappblg: :IDD, pParent)

//{{AFX_DATA INIT(CSerialAppDlg)
m_namePort = _T("");
m_baudRate = _T(*"};
m_monitorRec = _T(""};
m_monitorSend _T{"");
m_status_port T{v);
penPortiActivate = false;
:losePortActivate = false;
sendActivate = false;
ictiveProccess = FALSE:
//YYAFZ_DATA_INIT
// Note that LoadIcon deoes not require a subsequent DestroyIcon in Win32
m _hlicon = AfxGetRpp()->LoadIcon(IDR_MATNFRAME) ;
m_baudRate = "9600";
m_namePort = "COML";

d CSerialAppDlg: :DoDataExchange (CDataExchange* pDX)

CDialog: :DoDataExchange (pDX) ;

//{{AFX_DATA MAP(CSeriallAppDlg)

DDX_Contrel (pbX, IDC_MONITOR_REC, m_DISPLAY);
DDX_CBString (pDX, IDC_NAME_PORT, m_namePort);
DDX_CBString{pDX, IDC_BOUDRATE, m_baudRate);
DDX_Text {phX, IDC_MONITCOR_REC, m_monitorRec);
DDX_Text (pDX, IDC_MONITOR_SEND, m_monitorSend);
DDX_Text (pDX, IDC_STATUS PORT, m_status_port);
//YYAFX_DATA_MAP

GIN_MESSAGE_MAP (CSeriallippDlg, CDialog)
//{{AFX_MSG_MAP (CSerialAppDlyg)
ON_WM_SYSCOMMAND ()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON{}
ON_BN_CLICKED{IDC_OPEN_PCRT, OnOpenPort)
ON_BN_CLICKED (IDC_CLOSFE_PCRT, OnClosePort)
ON_BN_CLICKED(IDC_EXIT, OnExit)
ON_BN_CLICKED{IDC SEND DATA, OnSendData}
ON._BN_CLICKED(IDC_Clear, OnClear)
//}}YAFX_MSG_MAP

D_MESSAGE_MAP ()

PILIIITEEL TR L LRI LIPS PP LI EE I E P77 i Fiiiidrirtitirillzi
CSerialappDlg message handlers

OL CSerialAppDlg::OnInitDialog()
Chialog::0nInitDialogl};
// Add "About..." menu item te system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT{ (IDM_ABOUTBOX & O0xFFF0) == IDM_ABOUTBCX);
ASSERT (IDM _ABQUTBOX < 0xFO000);

CMenu* pSysMenu = GetSystemMenu (FALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LeoadString (IDS_ABOUTBCX) ;
if {istrAboutMenu. IgEmpty())
{
pSysMenu->AppendMenu (MF_SEPARATOR) ;
pSysMenu->AppendMenu {MF_STRING, IDM_ABOUTBOX, strAboutMenu);

3

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon

SetIcon{m _hlIcon, FALSE}; // Set small icon

// TODO: AJd extra initialization here
etDlgltem{IDC_CLOSE. PORT) ->EnableWindow (FALSE) ;

serialProcesg = ’

{SerialThread*) AfxBeginThread (RUNTIME_CLASS (SerialThread),

THREAD PRIORITY NORMAL, 0, CREATE_SUSPENDED) ;
erialProcess->getOwner (this); :

return TRUE; // return TRUE unlesg you set the focus to a control

d CSerialappDlg::0nSysCommand (UINT nID, LPARAM lParam)

if ((nID & OxFFF0) == IDM_ABOUTBOX)
{
CaboutDlg dlgabout;
dlgAbout.DoModal() ;
}
else

{
1

CDialog: :0nSysCommand {nIb, lParam);

[f vou add a minimize button teo your dialog, you will need the code below
to draw the icon. For MFC applications using the document/view model,
this is automaticaily done for you by the framework.

1 CSerialAppDlg::0nPaint()
if (IsIgonic{))

{
CPaintDC de{this); // device context for painting

SendMessage (WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(}, 0};

// Center icon in client rectangle

int ecxIceon GetSystemMetrics {SM_CXICON) ;
int cyIcon GetSystemMetrics (SM_CYICON) ;
CRect rect;

GetClientRect {&rect};

int % = (rect.wWidth({) - ¢xIcon + 1) / 2;

int v = (rect.Height() - cyIcon + 1} / 2

// Draw the iccn
dc.DrawIcon({x, v, m_hIcon}:;
i
else
{

}

CDhialog::OnPaint(};

The system calls this to obtain the curscr to display while the user drags
the minimized window.
URSOR CSerialappDlg::0nQueryDragIcon()

return (HCURSOR) m_hIcon;

id CSerialappDlg: :0nOpenPort{)

// TODC: Add your control notification handler code here
UpdateData (TRUE) ;
UpdateConfig();
openPortActivate = true;
closePortActivate = false;
activeProccess = TRUE;
UpdateData ('TRUE) ;
serialProcess->ResumeThread(} ;
JetDlgItem({IDC_CLOSE_PORT)} ->EnableWindow (T'RUE) ;
SetDlgItem (IDC_OPEN_PORT) ->EnableWindow {FALSE) ;
JpdateData (FALSE) ;

id CSerialAppbig: :0nClosePort(}

// TOBQ: Add your control neotification handler code here
// Set signal of cloging port serial communication.
slosePortActivate = true;
spenPortActivate = false;
setDlgItem(IDC_CLOSE_PORT} ->EnableWindow (FALSE) ;
setDlgIltem (IDC_OPEN_PORT) ->EnableWindow (TRUE) ;

JpdateData (FALSE) ;

id CseriallppDlg::OnExit()

// TODO: Add your control notification handier code here
// Set signal ©f closing port serial communication.
serialProcess->SuspendThread () ;

this->DestroyWindow () ;

id CSerialAppDlg: :OnSendDatal}

// TODO: add your control notification handler code here
'/ Set signal to send data of serial communication.
JpdateData (TRUE) ;
sendActivate = true;

.4 CSerialAppDlg: :UpdateConfig()

'/ constant parameter.

ronfigSerial_ .ByteSize 8;
onfigSerial_ .StopBits TWOSTOPBITS:
ronfigSerial . Parity = EVENPARITY:

LR}

witch(atoi (m_baudRate))

ase 110:
configSerial_.BaudRate
break;

rase 300:
configSerial_.BaudRate = CBR_300;
break;

‘age 600:

CBR_110;

configSerial_.BaudRate
break;

case 1200:
configSerial_ _.BaudRate
break;

case 2400:

configSerial_,BaudRate

break;

case 4800:
configSerial _.BaudRate
break;

cage 2600:
configSerial_.BaudRate
break;

case 14400:
configSerial_.BaudRate
break;

case 19200:
configSerial_.BaudRate
break;

case 38400:
configSerial_.BaudRate
break;

cagse 56000:
configSerial_.BaudRate
break;

case 57600:
configSerial_.BaudRate
break;

case 115200
configSerial_.BaudRate
break;

case 128000:
configSerial_ . BaudRate
break;

case 256000:
configSerial_.BaudRate
break;

default:
break;

}

id CSerialAppDlg::0nClear(}

m_monitorRec = "' ;
UpdateData (FALSE) ;

CBR_600;

CBR_1200;

CBR_2400;

CBR_4800;

CBR_9600;

CBR_14400;

CBR_19200;

CBR_38400;

CBR_56000;

CBR_57600;

CBR_115200;

CBR__128000;

CBR_256000;

stdafx.cpp : source file that includes just the standard includes
Seriallpp.pch will be the pre-compiled header
stdafx.cbj will contain the pre-compiled type information

nclude "stdafx.h"

{ {NO_DEPENDENCIES}}
Microscft Developer Studio generated include file.
Used by Seriallpp.zxc

efine IDM_ABOUTBOX 0x0010
efine IDD_ABROUTROX 100
efine IDS ABQUTROX 101
efine IDD_SERIALAPP_DIALOG 102
efine IDR_MAINFRAME 128
efine IDR_ACCELERATORI1 130
efine IDB_BITMAPIL 135
efine IDC_OPEN_PORT 1000
efine IDC_CLOSE_PORT 1001
efine IDC_EXIT 1002
efine IDC_MONITOR_REC 1003
efine IDC_MONITOR_SEND 1004
efine IDC_SEND_DATA 1065
efine IDC_NAME_PORT 1007
efine IDC_BOUDRATE 1008
efine IDC_STATUS_PORT 1009
efine IDC_Clear 1011

Next default values for new objects

fdef APSTUDIC_INVOKED
fndef APSTUDIO_READONLY_ SYMBOLS

efine _APS NEXT_RESQURCE VALUE 136
efine _APS_NEXT_COMMAND VALUE 32777
efine _APS_NEXT_CCNTROL_VALUE 1012
efine _APS_NEXT_ SYMED VALUE 101
ndif

ndif

' SerialApp.h : main header file for the SERTALAPP application

f !defined (AFX_SERIALAPP_H 361F5FC9_B80B_4224 805D 20EA4F9314AC_ INCLUDED_)
lefine AFX SERIALAPP_H__361FLFCY9_BB0B_4224_805D 20EA4F9314AC__ INCLUDED

f _MSC_VER > 1000
‘ragma once
mdif // _MSC_VER > 1000

fndef _ AFXWIN H
#error include ‘'stdafx.h' before including this file for PCH
:ndi £

nclude *"resource.h" // main symbols

FLILTETETIT 0707000707000 0 0007000000000 E i i i i i i it i it iiriririiiiiliiririirii
CSerialAppApp:
See Serialipp.cpp for the implementation of this class

asg CSerialdpplpp : public CWinZpp

blic:
CSerial AppApp(};

Overrides

// ClassWizard generated virtual function overrides
//{ {AFX_VIRTUAL (CSerialAppApp}

public:

virtual BOOL InitInstance();

//3})YAFX _VIRTUAL

Implementation

//{{AFX_MSG (CSerialAppApp)
// NOTE - the ClassWizard will add and remove member functions here.
'y DO NOT EDIT what you see in these blocks of generated code !
//YIAFX _MSG
DECLARE_MESSAGE_MAP (}

FELLLTTTIEELT T ET I T I 708707000 T i TP 7070707770777 0777

{ {AFX_INSERT_LOCATION}}
Microseft Visual C++ will insert additional declarations immediately before the previocus line.

ndif // tdefined(AFX SERIALAPP_H___361F5FC9_B80B 4224 805D 20EA4F9314AC_ INCLUDED)

" SerialappDlg.h : header file

£ ldefined (AFX_SERIATLAPPDLG_H 81B8D820_84F4_495C_A793 9659B5277C70__TINCLUDED_)
lefine AFX_SERIALAPPDLG_H_ 81ER8D820_B4F4_495C_AT799_%658B5277C70__INCLUDED_

£ _MSC_VER > 1000
yragma once
mndif // _MSC_VER > 1000

SIS ETTFLS IR 2P E T TP PT il Ti i i i i riir7iiiiinirririlidiliriiry
CSerialippDlg dialog

.ass SerialThread;

.ass CSerialappDlg : public Chialog

Construction
blic:
CSeriallppDlg(CwWnd* pParent = NULL) ; // standard constructor

Dialog Data

// {{AFX_DATA (CSerialAppDlg)

enum { IDD = IDD_SERIALAPP_DIALOG };

CEdit m_DISPLAY;

CString m_namePort;

Cstring m_baudRate;

Cstring m_monitorkec;

DCB configSerial_;

CString m_monitorSend;
bool openPortActivate;
bool closePortActivate;
bocl sendActivate;

C8tring m_status_port;
SerialThread* serialProcess;
BOOL activeProccess;

//}Y}AFX _DATA

// ClassWizard generated virtual function overrides

//{ {AFX_VIRTUAL (CSerialAppDlg)

protected:

virtual wvoid DoDataExchange {CDataExchange* pDX); // DDX/DDV support
//}3AFX_VIRTUAL

Implementation
ctected:
HICON m _hIcon;

// Generated mesgage map functions
// {{AFX_MSG (CSerialAppDlg)
virtual BOOL OnInitDialog!();
afx_mgg void OnSysCommand (UINT nID, LPARAM lParam};
afx_msg void OnPaint();
afx_msg HCURSOR OnQueryDragIcon();
afx_msg void OnOpenPort();
afx_msg void OnClosePort();
afx_msg void OnExit();
afx_msg void OnSendDatal) ;
afx _msg void OnClear(};
/ /) }AFX_MSG
DECLARE_MESSAGE_MAP (}

ivate:
veid UpdateConfig() ;

{ {AFX_INSERT_LOCATION}}
Microgoft Visual C++ will ingert additional declarations immediately before the previous line.

adif // tdefined{AFX_SERIALAPPDLG_H__81BB8DB20_84F4_495C_AT799_96598B5277C70__INCLUDED_}

stdafx.h : include file for standard system include files,
or project specific include files that are used frequently, but
are changed infrequently

f tdefined(AFX STDAFX H__C4A22ECB_4372_4960_A828_4B794461B5C3__ INCLUDED_)
efine AFX STDAFX H C4A22ECB_4372_4960_A828_4B794461B5C3__INCLUDED_

f _MSC_VER > 1000
ragma once
ndif // _MSC_VER > 1000

efine VC_EXTRALEAN // Exclude rarely-used stuff from Windows headers
nelude <afxwin.h> // MFC core and standard components

nclude <afxext . h> // MFC extensions

nclude <afxdisp.h> // MFC Automation classes’

nclude <afxdtctl.h> // MFC support for Internet Explorer 4 Common Controls
fndef _AFX_NO_AFXCMN_SUPPORT

nclude <afxeomn.h> // MFC support for Windows Common Controls

ndif // _AFX_NO_AFXCMN_SUPPORT

{ {AFX_ INSERT_LOCATION}}
Microsoft Visual C++ will insert additional declarations immediately before the previous line.

ndif // !defined(AFX_STDAFX_H__C4A22ECB;4372_4960_A828_4B794461B5C3;_INCLUDED_)

LR R R A R R R R R R AR T SRR L R R RS R ETE R R R AR

filename: D:\Applicaiton tegting\Serialapp\serialCtli\SerialCtl.hpp
file path: D:\Applicaiton testing\Serialapp\serialCtl

file base: SerialCtl

file ext: hpp

author: Dimitri Denamany.

purpose: Use to control the serial communication's gignal.
******************************-k1:‘k******i‘****‘k***‘k***************‘k**/
nclude "afxwin.h"

nclude "serialCtl.hpp"

nclude "Serialdpp.h"

nclude "SerialaAppDlg.h"

SerialCtl::Serialctl()

Description: Constructor
rialCtl::SerialCtl (}
tatusPort_ (FALSE},
andlePort_ {NULL}

// default parameter.

config .ByteSize = 8; // Byte of the Data.

config .StopBits = ONESTOPBIT; // Use cne bit for stopbit.
config .Parity = NOPARITY; // No parity bit

config .BaudRate = CBR_9600; // Buadrate 9600 bit/sec

Serialctl::~SerialCtl ()

Description: Desgtructor
rialCel::~SerialCctl(}

aandlePort_ = NULL;

SerialCtl: :openPort (DCE dcb, const char* peortName)

Description: Open the serial communication port by calling CreateFile
function is as the API function. The deb is a argument
that contain the serial communication configuration.
The portname is as name of device that want to open and perform.

JL
cialCtl: :openPort (BCB dcb, const char* portName)

// TODO: Add vour control notification handler code here

Ef {statusPort_ == false) // if port is opened already, not open port again.
handlePort_ = CreateFile({portName, [/ Specify pcrt device: default "COM1®
GENERIC_RE2AD | GENERIC_WRITE, // Specify mode that open device.

0, // the devide isn't shared.

NULL, // the object gets a default security.
OPEN_EXISTING, // Specify which action to take on file.
0, // default.

NULL} ; // default.

// Get current configuration of serial communication port.
if (GetCommState (handlePort_, &config_) == 0)
{

AfxMessageBox("Get configuration port has problem."};
return FALSE;
)

// Assign user parameter.

config .BaudRate = CBR_9600; /¢ Specify baud rate of communicaiton.
config_.StcopBits = TWOSTOPBITS; // Specify stopbit of communication.
config .Parity = EVENPARITY; // Specify parity of communication.
config_.ByteSize = 8; // Specify byte of size of communication.

// Set current configuratiocn of serial communication port.
if (SetCommState(handlePort_, &config)} == 0}
{
AfxMessageBox ("Set configuration port has problem."};
return FALSE;
}

// instance an object of COMMTIMEOUTS.

COMMTIMEQUTS comTimeQut;

// Specify time-ocut between charactor for receiving.
comTimeQut.ReadIntervalTimeout = 5;

// Specify value that is multiplied

// by the requested number of bytes to be read.
comTimeOut ,ReadTotalTimecutMultiplier = 5;

// Specify value is added teo the product of the
// ReadTotalTimeoutMultiplier member
comTimeQut.ReadTotalTimeoutConstant = 5;

// Specify value that ig multiplied

// by the reguested number of bytes to be sent.
comTimeOut .WriteTotalTimeoutMultiplier = 5;

// Specify value is added to the product of the
// WriteTotalTimeoutMultiplier member
comTimeQut . WriteTotalTimeoutConstant = 5;

// set the time-ocut parameter into device control.
SetCommTimeouts {handlePort_, &comTimeOut) ;

// Updata port's status.

statusPort_ = TRUE;
return TRUE;

}

return FALSE;

SerialCtl::closePort()

Description: close communication by destroy handle of communicaticon.

OL
rialCtl::closePort{)
if (statusPort_ == TRUE) // Port need to be open before.
{
statusPort_ = false; // Update status
if (CloseHandle(handlePort_} == 0) // Call this funetion to close port.

{
AfxMessageBox("Port Clogeing isn't successed."};
return FALSE;
}
return TRUE;
1
return FALSE;

read_scc(char* inputData,unsigned int sizeBuffer,unsigned int lengh)

Description: read data from serial communication port.

0L

rialCtl::read_scc(char* inputData,
const unsigned int& sizeBuffer,
unsigned long& length)

if (ReadFile(handlePort_, // handle of file tc read
inputData, // handle of file to read
sizeBuffer, // number of bytes to read
&length, // pointer to number of bytes read
NULL} == 0) // pointer to gtructure for data

{

AfxMessageBox("Reading of serial communication has problem.");:
return FALSE;

}

if (length > 0)

{
inputDataflength] = NULL; // Assign end flag of message.
return TRUE;

1
return TRUE;

SerialCtl::write_ scc{const char* ocutputData,
const unsigned int& sizeBuffer,
unsigned long& length)

Degcription: write the data to serial communicaiton.

QL

rialCtl: :write_scc(LPCVOID outputData,
const unsigned int& sizeBuffer,
unsigned long& length)

if (length > 0}
{
if (WriteFile(handlePort_, // handle to file to write to

outputbData, // pointer to data to write to file
sizeBuffer, // number of bytes to write

&length, NULL) == 0) // peinter to number of bytes written
{ AfxMessageBox ("Reading of serial communication has problem."):
return FALSE;
:ieturn TRUE;
ieturn FALSE;

SerialcCtl: :getStatusPort()

Description: the entry peint to get port's status.

oL
rialCtl: :getStatusPort ()

return statusPort_;

'k*'k'k***********************End Of fil@***********‘k*‘k******:\'********‘k****‘k***/

LR S S A R R R R S R R RS E R R L EE R S E RS AR RS S TS AR RS R EE RS TS XL EEE LT R S L

filename: D:\Applicaiton testing\SerialApp\serialCtl\SerialcCtl.hpp
file path: D:\Applicaiton testing\SerialApp\serialCtl

file base: SerialCtl

file ext: hpp

author: Dimitri Denamany.

purpose: Use to control the gerial communication's signal.
.“k**-ki-**'k‘k‘k***'k********i‘***#:-k***************************************/

nclude "afxwin.h"

nclude "serialctl.hpp”
nclude "resource.h'
nclude "serialAppDlg.h®
neclude "serialThread.hpp"

net unsigned short MAX_MESSAGE = 100;

[PLEMENT_DYNCREATE (SerialThread, CWinThread)
SerialThread: :SerialThread{}

Consgtructor

rialThread: :SerizlThread()
trDlg (NULL)}

SerialThread: :~SerialThread()

Deconstructor
rialThread: :~SerialThread ()
ptrDlg = NULL;
JeriglThread::InitInstance(}

Jdeconstructor

L
rialThread: :InitInstance()

return TRUE;

SerialThread: :Run()

Description: This is a virtual function that is called when thread process
is created to be cne task.

“ialThread: :Run()

"/ Check signal controlling and status to open serial communication.
thile{l)

// Btart process of serial comminication operation.

while(ptrDlg->activeProccess == TRUE)
{
// enter if there is command of openning and port has be closed hefore.
if ((8CC::serialCtl{) .getStatusPort{) == FALSE) &&
ptriig->openPortActivate)
{

// open port by calling api function of class serialCtl.
1f (8SCC::serialCtl().openPort (ptrDlg->configSerial_,
ptrDlg->m_namePort) == TRUE)

// Indicate messgsage to status moditor that commnication connected already.
ptrDlg->SetblgltemText (IDC_STATUS_PORT, "Connected”);

else

{
// Have problem since opening serial communication.
ptrDlg->activeProccess = FALSE;

}
else if (ptrDlg->»openPortActivate}
{
char mess[MAX_MESSAGE] ;
unsigrned int lenBuff = MAX MESSAGE;
unsigned long lenMessage:;
static CString outPut;
i1f (8CC::serialCtl{).read_scc(mess, lenBuff, lenMessage) == TRUE)

{

if (lenMessage > 0)

{

LPTSTR lpTempAPDU= new char [Z2*lenMessage+l];

//this is the function to convert the bytes into its ASCII representation so that it

n be displayed

ByteArrayToHexString ((PBYTE)mess, lenMessage , (char*)}lpTempAPDU) ;
ptrDlg->GetDlgltemText (IDC_MONITOR_REC, outPut);

outPut = cutPut + "\r\n" + lpTempAPDU;

ptrDlg->SetDlgltemText (IDC_MCONITOR_REC, outPut) ;

delete [] lpTempAPDU ;

// these are lines added so that the display dialog box would browse down by itself]
//without the uger® """ having to pull the scroll bar every time a byte is recei

d
int NumLine =ptrDlg->m_DISPLAY.GetLineCount():;
ptrDlg->m DISPLAY.GetLineCount{);
ptrDlg->m_DISPLAY.LineScroll (NumLine);
ptrDlg->m_DISPLAY.SetFocus{);
1
}
else
{
ptrDlg->activeProccess = FALSE;
}
// Check signal contrelling to send data.
if (ptrDlg-»sendhctivate && {ptrDlg->m_monitorSend.GetLength{) > 0})
{
unsigned long len;:
SCC::serialCtl() .write_scc{ptrDlg->m monitorSend ,
ptrDlg->m_monitorSend.GetLength(),len);
ptrDlg->sendActivate = falsge;
ptrDlg->SetDlgItemText (IDC_MONITOR_SEND, "*);
}
// Check status and signal centrelling to close serial communicatiom.
if (ptrDlg->closePortActivate)
{
if (SCC::serialctl{).clogePort() == TRUE)
{
// Show message that cloge when performming of closing port ckay.
ptrDlg->SetDlgltemText {IDC_STATUS_PORT, "Closed™) ;
ptrDlg->closePortActivate = false;
1
1
1
return 0;

OL SerialThread::ByteArrayToHexString (PBYTE pbuff, long length, LPTSTR outgoing)

int i;

LPBYTE pbuff2;

pbuff2

= new BYTE[length*2+11;//2 characters per byte, plus one extra for the null terminator

LPTSTR outgoingl;

for(i=0;i<length;i++)

{

pbuff2[i*2] = UpperNikbleToChar (pbuff[il);
pbuff2[i*2+1] = LowerNikbleToChar (pbuff[i]);

pbuff2{length*2]=0; //null terminate the string

//This constructor uses SysAllocString so free pbuff2 when we are done
outgoingl = {LPTSTR) phuff2;//(char*)pbuff2;

memcpy {outgoing, outgoingl , strlen{cutgoingl)+l } ;
delete [] pbuff2 ;
return 1 ;

1r SerialThread: :UppexrNibbleToChar {char ch)

return NibbleToHexChari{ch >> 4);

1ar SerialThread: :LowerNibbleToChar (char ch)

return NibbleToHexChar{c¢h & OxF);

lar SerialThread::NibbleToHexChar (char ch)

char hexval;
ch = ¢ch & 0xF;
hexval = '0'+ch; //for 0 to 9

if{ch>=0xa)
{

}

return hexval;

hexval = 'a' - 10 + ch; //set A-F

*-A-'k************************End Of file***********'k'k*************************l

IR R R R RS X ES R R R EE RS SR R LSRR R RS R R R R R LEEERREEEREEREL SRS EEEE RSN

filename: D:\Applicaiton testing\SerialApp\serialCtl\SerialCtl.hpp
file path: D:\Applicaiton testing\SerialZpp\serialcCtl

file base: SerialCtl
file ext: hpp
author: Dimitri Denamany .

purpose: Use to control the serial communication's signal.
************************************-k*****‘k************************/

fndef SERIAL_CTL_HPP
efine SERIAL_CTL_HPP

class SerialCtl

Description: This class handle the functionality that interface with

the serial communication.
ass SerialCtl

blic:
SerialcCtl(); // Constructor
~SerialCtl(); // bestructor

blic:
void setStatusPort (BOOL on_off);
BOQOL closePort(};

BOCL openPort {DCB dcb,
congt char* portName = "COM1"};

BOOL read_scc(char* inputData,
const unsigned int& sizeBuffer,
unsigned longi& length);

// set Status port whether no or off.
// close port operator.

// open serial communicaiton port.
// Default port is COM1.

// read data from serial communication.
// sizeBuffer is the size of pakcet that
// receive from serail port.

BOOL write_sgcc{LPCVOID data, // write data to gerial communication

const unsigned int& sizeBuffer,
unsigned long& length);

HANDLE getHandlePort();
BOOL getStatusPort();

ivate:

BOCL statusPort_;
HANDLE handlePort_;

DCB config ;

ndif //SERIAL_CTL_HPP

// sizeBufer is the size of packet that
// want to send to serial port.

// The Entry point to get port's handle.
// The entyy point to get port's staus.

// port's status.
// the cbject that is a instace of port.
// configuation of serial communication.

***************************En_d of file******7’:*****************************‘k*/

