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ABSTRACT 

VSC-HVDC has two distinct advantages over its earlier generation thyristor based High 

Voltage DC transmission. Synchronous voltage source is not required to commutate 

against, for its operation and it does not suffer from commutation failures under adverse 

conditions in interfacing ac system. These two properties make it amenable to wider 

application areas. To make it adapt to operational conditions imposed on it in various 

applications, its controller parameters need to be assessed and tuned through extensive 

simulation studies. To facilitate this, two alternative controllers viz. a fully decoupled 

controller model and also an instantaneous theory based fully decoupled hybrid controller 

model are developed in the thesis. The decoupling is achieved by exploiting similarity 

transformation in both the controllers. In the first controller model, the Park's currents 

and voltages are directly obtained from the measured network variables and the reference 

park's currents for the inner current loop are obtained from the instantaneous measured 

power. In the second one, both the feedback as well as reference Park's currents for the 

inner current loop are obtained from the Clarke's variables. An AC system interfacing 

electronics based power transmission or distribution network experiences non-sinusoidal 

voltage and current waveforms. Instantaneous power theory being suitable for steady as 

well as transient states, is used for handling measured inputs. The performance of the 

models is assessed through SIMULINK Power system Blockset aided simulations on a 

VSC-HVDC link interfacing an ac system, having normal fault level, low fault level and 

also witnessing a single line to ground fault on its rectifier transformer primary side. 

vi 



ABSTRAK 

VSC-HVDC mempunyai dua kelebihan semenjak awal pengeluaran tiristor berasaskan 

penghantaraan A. T. Voltan Tinggi. Sumber voltan segerak tidak memerlukan 

penukartertiban untuk proses operasinya dan juga ia tidak mendatangkan sebarang kesan 

jika penukartertiban gaga! untuk berfungsi pada keadaan dimana proses pengantaramuka 

sistem a.u. tidak begitu baik. Kelebihan-kelebihan ini Ielah memberi peluang kepada para 

penyelidik untuk mengkaji dengan lebih terperinci bidang ini. Dua altematif model 

pengawal iaitu pengawal penyahgandingan penuh dan pengawal hybrid penyahgandingan 

penuh diperkenalkan di dalam tesis ini. Penyahgandingan terhasil apabila kaedah 

tranformasi yang sama digunakan pada kedua-dua pengawal tersebut. Dalam model 

pengawal yang pertama, voltan dan arus Park boleh diperolehi secara terus dengan 

mengukur boleh ubah rangkaian. Rujukan arus gelung Park pula diperolehi dengan 

mengukur kuasa pada ketika itu. Bagi model pengawal yang kedua pula, kedua-dua 

suapbalik dan juga rujukan arus gelung Park diperolehi terus dari boleh ubah Clarke. 

Elektronik pengantaramuka sistem a.u. adalah berasaskan kepada penghantaraan kuasa 

atau rangkaian pengagihan ketika bentuk gelombang voltan dan arus yang tidak sinus 

berlaku. Untuk proses pengukuran pula, masukan yang digunakan adalah berasaskan teori 

kuasa ketika yang sesuai untuk status tetap dan juga beralun. Pencapaian model-model 

tersebut diukur melalui simulasi VSC-HVDC pautan pengantaramuka sistem a.u. yang 

mengalami tahap kerosakan yang normal, rendah dan juga kerosakan satu fasa ke bumi 

pada bahagian utama pengubah penerus. Perisian yang digunakan untuk simulasi tersebut 

adalah perisian SIMULINK Power System Blockset. 
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

Voltage Source Converter based High-voltage direct current transmission (VSC-HVDC) 

a high power electronics based technology, provides (i) economical alternatives to ac 

transmission for long-distance bulk power delivery from remote sources, (ii) immunity 

against network congestion or loop flow on parallel paths facilitating power trading, and 

(iii) is useful as asynchronous link to provide a firewall against propagation of cascading 

outages in one network crossing over to another network. It also facilitates 

interconnection of ac systems in the lower and middle power range [I]. 

VSC-HVDC has two distinct advantages over its earlier generation thyristor based 

HVDC transmission. Synchronous voltage source is not required to commutate against, 

for its operation and voltage source converters (VSC) do not suffer from commutation 

failures under adverse conditions in interfacing ac system, allowing fast recoveries from 

nearby ac faults [I, 2]. These two properties make it amenable to wider application areas. 

Thyristor based HVDC requires switching for polarity reversal. VSC-HVDC 

transmission reverses power through reversal of current direction rather than voltage 

polarity, facilitating power reversal at an interrnediate tap point independent of the main 

power flow direction, required in Multi-terrninal HVDC systems. 

An ac system interfacing electronics based power transmission or distribution 

network experiences non-sinusoidal voltage and current waveforrns. Events in an ac 

power network may prompt variation in fault level at the interface point or some amount 

of system unbalance or even initiation of transients. Since VSC-HVDC controller 

perforrnance depends on the accuracy in the measured values of currents and voltages 

and the reference values of the currents derived there from, it is important to use a 
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measurement processing technique appropriate for the non-sinusoidal waveforms and 

transients. Instantaneous power theory is used in this thesis for not only obtaining the 

measured values of the real and reactive powers, but also for deriving reference values of 

the currents used in the inner current control loop. A fully decoupled controller model 

exploiting similarity transformation is also developed. The performance of the model is 

assessed through simulations on a VSC-HVDC link interfacing an ac system. 

1.2 Objective of the Research 

The main objectives of the research are as follows: 

• To developed the controller dynamic model for VSC-HVDC. 

• To gauge performance of the controller dynamic model for VSC-HVDC, when 

subjected to AC grid disturbances. 

1.3 Outline of the Thesis 

Chapter 2 reviews an HVDC link and describes essential subsystems in a VSC-HVDC 

transmission link, discusses the advantages and the applications of VSC-HVDC. And 

also mention briefly about instantaneous power theory. Earlier research in VSC-HVDC 

link controllers are also summarized in this chapter. 

Chapter 3 develops the state space model of a VSC-HVDC link controller. Two 

fully decoupled controller models are developed. In the first model, the reference values 

of the currents for inner current loop are estimated from the d-q transformed values of the 

phase voltages and currents measured at the interface bus. In the second one, 

instantaneous power theory is first used to obtain Clarke's voltages and currents and then 

the reference values of the currents for inner current loop are derived from these values. 
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Chapter 4 assesses the performance of a composite power system incorporating 

the developed controllers in a VSC-HVDC link interfacing an ac system. For 

performance assessment of the first, viz. d-q controller, the SIMULINK based 

simulations are carried out on a composite system with the ac system having Normal fault 

level, low fault level and witnessing a single line to ground fault on rectifier transformer 

primary side. The second one viz. the hybrid controller, performance is assessed with the 

interfacing ac system having normal fault level. 

Chapter 5 draws conclusions, contributions, and mentions some directions for 

future work. 

1.4 List of publications 

I.Ahm ed Mahjoub and Ravindra Mukerjee, "Modeling of Controller for Voltage 

Sourced Converter based HVDC Transmission System", 2nd IEEE International 

Conference on Power and Energy (PECon 08), Johor Baharu, Malaysia, pp. 849-854, 

December 2008. 

2.Rav indra N. Mukerjee and Ahmed Mahjoub, "A Fully Decoupled Controller Model 

for VSC-HVDC Transmission System", Elsevier Electric Power Systems Research. 

Manuscript# EPSR-D-09-00189. 

3.Rav indra N. Mukerjee and Ahmed Mahjoub, "Instantaneous Power Theory Based 

Fully Decou pled Controller Model for VSC-HVDC Transmission System", European 

Transactions on Electrical Power. Manuscript# ETEP-09-0125. 



CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

High-voltage direct current transmission (HVOC), a high power electronics based 

technology provides more economical alternative to ac transmission for long-distance 

bulk power delivery from remote sources such as hydroelectric, pit head power plants or 

large scale wind farms and long submarine cable transmission. HVDC lines and cables 

are less expensive and have lower losses than those for three-phase ac transmission. 

Because of their controllability, HVDC links offer firm capacity without 

limitation due to network congestion or loop flow on parallel paths. Higher power 

transfers are achievable without distance limitation on HVDC cable systems using fewer 

cables than with ac systems having charging current. Rapid drop-off takes place in cable 

capacity over distance in ac transmission due to considerable reactive component of 

charging current. Although, this can be compensated by intermediate shunt compensation 

for underground cables, it is not practical to do so for submarine cables. 

With HVDC transmission systems, interconnections can be made between 

asynchronous networks for more economic or reliable operation. Often, these 

interconnections use back-to-back converters. The asynchronous links act as a firewall 

against propagation of cascading outages in one network from crossing over to another 

network. 

Thyristor based HVDC transmission schemes utilize line commutated current 

source converters. Such converters require a synchronous voltage source in order to 

operate. 

4 
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Converter station 

AC bua 

Shunt + 
c:~~~:.:::• AC flltera 
reactive 

equipment 

Transmission 
line or cable 

Figure 2.1: Components of Conventional HVDC Transmission Systems 

For weak ac system back-to-back applications, converters are provided with series 

capacitors connected between the valves and the transformers, known as capacitor­

commutated converters (CCC) [3, 4]. 

u,. 

u,b 

u,. 

•• -
lb -

Figure 2.2: Capacitor commutated converter 
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The series capacitor provides some of the converter reactive power compensation 

requirements with load current and provides part of the commutation voltage improving 

voltage stability. CCC configuration allows higher power ratings in areas where the ac 

network is close to its voltage stability limit. 

A conventional HVDC can only operate with ac systems having appropriate short 

circuit power, as thyristor converters always require reactive power, which varies 

according to the active power being transferred. Consequently, switched capacitor banks 

and static var compensators are required to supply reactive power demand of the 

converter stations. Thyristor converters also suffer from commutation failures during 

adverse ac system conditions or maloperation of the tiring controls [5]. 

2.2 VSC-HVDC Transmission System 

HVDC transmission using self commutated IGBT based voltage source converters (VSC­

HVDC) uses Pulse Width Modulation (PWM) with relatively high switching frequencies 

to get high speed control of both active and reactive power, making it possible to generate 

ac output voltage with any desired phase angle or amplitude instantly. AC voltage is 

created by switching very fast between two fixed voltages. The desired fundamental 

frequency voltage is created through low pass filtering of the high frequency pulse 

modulated voltage. Up to a certain limit, any phase angle or amplitude can be created by 

changing the PWM pattern [6, 7]. Higher switching frequency components perrnit use of 

pulse width modulation technology together with simple converter topology and reduced 

filter size. 

IGBT being a MOS-device, power need for the control of the component is very 

low. Due to a switching frequency that is considerably higher than the ac system power 

frequency, the wave shape of the converter is controlled to be very sinusoidal resulting in 

reduced harrnonic generation and elimination of low order harmonics. Harrnonic 
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interference of VSC converter is rather small compared to the conventional line 

commutated converters in thyristor based HVDC. Series connection of many 

semiconductors with good voltage distribution even at switching rrequencies in kHz 

range is possible, to achieve a high HVDC link voltage [8-1 0]. 

2.2.1 Components of VSC-HVDC 

Converter 
Transformer 

v 
AC flltora 

Phaao 
Reactor 

Control 
system 

oc [•p•cltJ' 

Transmission 
line or cable 

Figure 2.3: Components ofVSC- HVDC transmission system 

Converter topologies 

VSC-HVDC transmission system employs forced commutated, voltage sourced 

converters with IGBT valves. IGBT is a development of the MOSFET, in which removal 

of current from the gate switches off the through current, thereby allowing power to be 

switched on or off throughout an ac cycle. This provides a means of controlling currents 

in relation to the voltage in ac systems. Thus, V ARs may be generated or absorbed. 

Current injection into ac systems for power-flow control is achieved using these devices. 

Natural Ac output waveform of a VSC is deterrnined by the topology of the converter 

[11-14]. Two main categories of topology appropriate for de power transmission exist, 
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viz. Two-Level topology or Three-Level topology. The Two-Level converter is simple 

circuit arrangement. It has been widely used in many applications for a wide range of 

power level. The schematic of one phase of a Two-Level converter is given in Figure 

2.4(a). As shown, it is capable of generating the two-voltage levels + 0.5 Vdc and - 0.5 

v;·or 
_vdc J D 

2 

(a) One phase of a two-level convener 

(b) One phase of a three-level convener 

Figure 2.4: Convener topologies ofVSC-HVDC 



~C~H~A~P~T~E~R~T~W~O~: ~L~IT~E~RA~T~U~RE~R~E~V~I~E~W~-----------------------------9 

The three-level converter consists of four valves in on arm and additional diodes. 

Figure 2.4(b) shows one phase of a three-level converter and the output three-voltage 

levels + 0.5 Vdc, 0 and - 0.5 Vdc· However, the more complex converter and higher 

investment costs make a two-level converter preferred. Currently device of valve is IGBT 

which can be turned off under short-circuit conditions, has high switching speed 

capability, requires low control power and permits active control of the voltage cross the 

device [I 5]. 

DC capacitor 

DC capacitor is connected to the terminals of the VSC to provide energy storage on the 

de side, acting as a de voltage source which is necessary for the dynamic operation of the 

system. Capacitor must have low inductance and is placed close to VSC valve to 

minimize stray inductance in the commutating loop. Capacitance must be large enough to 

limit harmonic ripple to design limits; ripple depends on direct current amplitude and on 

the switching strategy, long pulses of high current cause more ripple, and voltage 

variations during faults in ac networks also need to be taken into account. 

Converter reactor 

Converter reactor provides constant fundamental frequency impedance for the control of 

the VSC active and reactive power output, and it provides a high frequency blocking 

filter between the ac converter and the ac network. It limits rate of rise of short-circuit 

currents. 

AC harmonic filter 

Like all power electronic converters, VSCs generate harmonic voltages and currents on 

the ac and de sides. Harmonics generated depend on: Operation topology (i.e. 6-pulse or 



~C~H~A~P~T~E~R~T~W~O~:~L~ITwE~RA~TwU~RE~RE~V~I~E~W~-----------------------------10 

12-pulse), using a 12-pulse converter to reduce the additional current and voltage 

harrnonics, filtering required for 6-pulse converter, i.e., S'h and 7'h on the ac side and 6th 

on the de side. This is because although these harrnonic currents still flow through the 

valves and the transforrner windings, they are 180" out of phase and cancel out on the 

primary side. 

The high switching frequency of the IGBTs is advantageous to reduce harrnonic 

generation. However, operation loss of the converters increase in direct proportion to the 

switching frequency applied. High operational losses not only reduce the power of a 

VSC-HVDC transmission system, they also warrn up the converter power electronics and 

thus might reduce the fundamental power transfer capability. 

Ground 

The ground reference for the VSC may be made at the mid-point of the de capacitor via 

high impedance. This has the advantage of limiting current flow during ground faults on 

the de side. 

Transformer 

In general, the converters are connected to the ac system by means of transforrners. The 

most important functions of the transforrners are to provide a reactance between Ac 

converter and ac system beneficial for harrnonics and to transforrn the voltage of the ac 

system to a level appropriate for the converter. 

DC lines 

The de link may be a cable or overhead line having two conductors. DC cable can take 

significant advantage of the fixed polarity of the de voltage. 
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VSC-HVDC converter station can comprise of either voltage-sourced converters 

or current-sourced converters (CSC). Whereas the CSCs' are robust, the VSCs' have 

higher efficiency, low initial cost, and smaller physical size. Voltage-sourced converter is 

preferred over esc, since with esc both power and control circuits are more complex. 

Filter capacitors are required at the ac terminals of a CSC to improve output ac current 

waveform quality, thus adding to cost. CSC requires switches of sufficient reverse 

voltage withstand capability such as Gate-Tum-off thyristors, capable of blocking 

voltages of both polarities in off-state. Alternatively, series diode is required with each 

switch, resulting in increased cost and conduction losses. esc also requires smoothing de 

inductors across the three-phase bridge terminals, which are generally larger and more 

expensive than capacitors used in voltage-sourced converters [16, 17]. 

IGBT module commercially available is more suitable for voltage-source PWM 

converter, since a free-wheeling diode is connected in anti-parallel with each IGBT. Thus 

the IGBT does not need to be provided with the built-in reverse voltage blocking 

capability, bringing in more flexibility to device design, a compromise between switching 

losses and short-circuit capability. 

2.3 Operation ofVSC-HVDC 

The operational requirements imposed on VSC-HYDC link keep on varying, depending 

on the changes in interfacing ac network operating conditions at its sending and receiving 

ends. Normal power transfer in forward direction, reverse power transfer, sending end 

and/or receiving end ac network short circuit capacity low due to network fault, de line 

witnessing fault, are some of the operating conditions, the VSC may have to encounter. 

The converter phase angle can be used for the active power control. A VSC operates as a 

rectifier when ac voltage of the converter Uuc phase lags the ac network voltage euc i.e. 

ouc > 0 .The active power flows into VSC from ac system in this case. 
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P = eacuac sin 8 
OC QC 

(2.1) 
xo~· 

The voltage magnitude can be used to control reactive power. The converter 

provides reactive power support to the ac network, when the converter ac voltage luacl is 

higher than the ac network voltage lead· 
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Figure 2.5: P-Q diagram for VSC-HVDC 

(2.2) 

Figure 2.5 illustrates the characteristic variation in active power, P, and reactive 

power, Q, capability of a VSC-HVDC link as a function of ac system voltage, measured 

at the network interfacing point. The reactive power delivery to the network increases 

with decreasing network voltage [ 18]. Similarly, the converter reactive power absorption 
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increases with increasing network voltage. For a given ac system voltage, the converter 

can be operated at any point within the P-Q circle, as required. 

Through control of modulation index and the phase shift between network voltage 

and converter input voltage on the sending end side and /or between converter output 

voltage and the network voltage on the receiving end side, the operational requirements 

are met by modifying the instant and duration of conduction of the IGBT switches of the 

VSC converters. The change in PWM pattern enables this. The change in PWM pattern 

realized through the controller provided with decision logics, enables change in 

fundamental frequency voltage phase angle and the fundamental frequency voltage 

magnitudes of the converters and hence the required change in active and reactive power 

flows. However, for ensuring appropriate design, extensive simulation tests on the 

composite system incorporating its controllers, need to be carried out. 

VSC with PWM can operate in all four quadrants of PQ-plane as shown in Figure 

2.5, i.e. it can operate as rectifier or inverter at variable frequency and at the same time 

absorb or supply reactive power to the ac network. Reactive power can also be controlled 

at each terminal independent of the de transmission voltage level. This control capability 

gives total flexibility to place converters anywhere in the ac network since there is no 

restriction on minimum network short circuit capacity. HVDC transmission and reactive 

power compensation with VSC technology has attributes beneficial to overall system 

performance. 

2.4 Applications ofVSC-HVDC 

Forced commutation with VSC even permits black start. In a VSC the current can be 

switched on and off by controlling the semiconductor valves, there is no need for a 

network to commutate against. The converter can be used as virtual synchronous 

generator. VSC technology thus, can supply passive networks i.e. areas which lack 
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enough power in the rotating machines implying too low short circuit power, thus, 

improving power quality of the weak system. VSC-HVDC can also feed power into 

passive networks with no local power generation. It enables fast control of active and 

reactive power independently of each other with high bandwidth and provides reactive 

power or voltage support to an area independently of the active power transmitted, if 

rating of the converter permits the total apparent power. Active power flow can be 

quickly reversed enabling short term transactions in the electric power trading. It can also 

be used for the dynamic compensation of power transmission systems, providing 

increased transient stability and improved damping. It can ensure good behaviour of the 

system variables in response to positive and negative active power steps and can be used 

in Back-to-hack schemes [19]. 

Forced commutation, dynamic voltage control and black start capability allow 

YSC-HVDC to serve isolated loads on islands over long distance submarine cables 

without any need for running expensive local generation. VSC converters can operate at 

variable frequency providing power efficiently to large high voltage drives such as 

compressors or pumps on offshore oil or gas platforms from shore, thus eliminating the 

need of more expensive, less efficient higher emission offshore power production. 

Interconnections between asynchronous networks are often at their periphery, where 

networks tend to be weak for the desired power transfer. The dynamic voltage support 

and improved voltage stability offered by VSC-HVDC permits higher power transfers 

without need for ac system reinforcement. VSC converters do not suffer from 

commutation failures, allowing fast recoveries from nearby ac faults. Absence of 

mommum power or current restrictions facilitates reverse power flow and economic 

power schedules. 

VSC-HVDC underground transmission circuits can be placed on dual-use right­

of-way to bring in power as well as provide voltage support, allowing an economical 

power supply without compromising reliability. Large remote wind generation arrays 
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require a collector system, reactive power support for doubly fed induction generators 

and power evacuation facility. VSC based HVDC transmission allows efficient land use, 

use of submarine cables and provides reactive power support to the wind generation 

complex. VSC-HVDC transmission reverses power through reversal of current direction 

rather than voltage polarity, facilitating power reversal at an intermediate tap point 

independently of the main power flow direction in Multi-terminal HVDC systems. 

However, thyristor based HVDC requires switching for polarity reversal. 

VSC-HVDC may be the only viable choice for long distance, bulk power 

delivery, asynchronous interconnections, long submarine cable crossings, economic 

underground power transmission without distance limitations, offshore power 

applications, resource diversification, congestion relief, and replacement of reliability­

must-run generation and mitigation of voltage instability. Controllability of VSC-HVDC 

facilitates it to operate under constant power, ac voltage control and frequency control 

modes, enabling it to be radially interconnected to an electric distribution system having 

feed from synchronous generation. Thus, a remote wind generation in-feed can be 

connected to an electric distribution system as embedded or distributed generation using a 

VSC-HVDC link operating in parallel with the upstream electric utility sources. 

VSC-HVDC has STATCOM functionality, enabling it to continuously adjust 

reactive power support to an ac system to control ac bus voltage and improve system 

stability. It facilitates interconnection of AC systems in the lower and middle power 

range. The dynamic support of the ac voltage at each converter terminal improves the 

voltage stability and increases the transfer capability of the sending and receiving end ac 

systems. VSC-HVDC being an asynchronous link and connecting a wind farm in-feed to 

an electric distribution system as distributed generation can isolate the power system 

from the wind power fluctuations. Voltage in the wind farm is also not affected by 

changes of the voltage in the ac network, caused by switching actions or remote faults. 
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A VSC-HVDC link supplying power to (i) an electric distribution network with or 

without embedded generation and interfacing directly with the loads having varying 

characteristics, (ii) an industrial electric distribution system having feed from the onsite 

generation or (iii) serving as asynchronous link between two ac systems, often has to 

adjust itself to avoid oscillations under changing operating conditions. To suppress these 

oscillations, design and operational strategy of controllers in a VSC-HVDC plays a 

significant role. 

2.5 Instantaneous Power Theory 

The development of power electronics devices and their associated converters has 

brought new boundary conditions to the energy flow problem. This is not exactly because 

is new , but because these converters and the way they generate reactive power and 

harmonic components have made it clear that conventional approaches to the analysis of 

power are not sufficient in terms of taking average or rms values of variables. Therefore, 

time-domain analysis has evolved as a new manner to analyse and understand the 

physical nature of the energy flow in a nonlinear circuit. The theories that deal with 

instantaneous power can be mainly classified into the following two groups. The first one 

is developed based on the transformation from the a-b-c phases to three-orthogonal axes, 

called the p-q theory or instantaneous power theory. The second one is done directly on 

the a-b-c phase, called the abc theory. In this thesis, the first theory is our concern [20]. 

The instantaneous power theory is based on a set of instantaneous power defined 

in the time domain. No restrictions are imposed on the voltage and current waveform, and 

it can be applied to three-phase systems with or without a neutral wire for three-phase 

generic voltage and current waveforms. Thus, it is valid not only in the steady state, but 

also in the transient state. This theory is very efficient and flexible in designing 

controllers for power conditioners based on power electronics devices. 
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Other traditional concepts of power are characterized by treating a three-phase 

system as three single-phase circuits. The instantaneous power theory first transforms 

voltages and currents from the a-b-c to apo coordinates, and then defines instantaneous 

power on these coordinates. Hence, this theory always considers the three-phase system 

as a unit, not a superposition or sum of the three single-phase circuits. 

The instantaneous power theory is defined in three-phase systems with or without 

a neutral conductor. Three instantaneous powers - the instantaneous zero-sequence 

power p 0, the instantaneous real power p, and the instantaneous imaginary power q - are 

defined from the instantaneous phase voltages and line currents on the apo axes as 

(2.3) 

c=: ........ 
~ a 
ib iv 

b 
G 

c ~ v~ 
v, 

0 

~ 
Figure 2.6: Three-phase instantaneous active power 

There are no zero-sequence current components in three-phase, three-wire 

systems, that is, io=O. In this case, only the instantaneous powers defined on the ap axes 
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exist. Hence, in three-phase, three-wire systems, the instantaneous real power p 

represents the total energy flow per time unity in terms of aP components. 

In this case 

(2.4) 

The instantaneous reactive power q is proportional to the quantity of energy that 

is being exchanged between the phases of the system. It does not contribute to the energy 

delivered to the load, and also the energy oscillating the source and the load at any time. 

Figure 3.7: Physical meaning of the instantaneous real and reactive powers 

2.6 Related Research 

To facilitate dynamic simulation of a composite power system incorporating a VSC­

HVDC link and thereby assess performance of a controller supervising PWM module for 

ultimate firing control of the IGBT valves, models for the VSC-HVDC controllers were 

developed by several authors (21-25]. The control system in a VSC-HVDC comprises a 

fast inner current controller controlling the ac current within the converter's current 

carrying capability limit and a number of outer loop controllers providing reference 
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values of current to the inner current controller, for the control strategy chosen at the 

rectifier or the inverter end. The outer controllers could be de voltage controller, active 

power controller, reactive power controller and the frequency controller. Not all the outer 

controllers are used at the same time. However, one of the two converters must control 

the link de voltage to achieve active power balance between the power entering the 

rectifier end and leaving the inverter end. 

In reference [2 I], state model x = Ax+ Bu is developed with currents in direct 

and quadrature axes of a synchronously rotating reference frame as state variables and 

using d-q transformed equivalent of the source side circuit of the VSC converter, 

originally framed in a-b-c frame of reference. Synchronously rotating d-axis is assumed 

to be leading the phase 'a' by a transformation angle (), derived through a phase locked 

loop. Decou pled control rule for the current state variables or the inner current controller 

is obtained by defining the feedback loop and the PI compensation. The inner current 

controller loop is implemented in d-q frame. However, control law for determining the 

converter source side reference voltage variables ud and uq still need cross-coupled terms. 

Converter source side voltages and the de link voltage Vdc, determine the amplitude and 

angle modulation indices. The measured real and reactive power on the network side is 

assessed using the Clarke's variables viz. instantaneous voltage and current vectors. 

In reference [22], strategy is similar as in Reference [21], except that a one­

sample delay is implemented in the inner current controller for slow current control and a 

smith predictor is used in the current controller to compensate for the time delay for fast 

current control. The inner current control loop is implemented in d-q frame. The dead 

beat current control is achieved through proportional control of the current error. 

However, to wipe-off the steady state current error, integral part can also be added. The 

measured values of the d-q transformed currents are derived from the real and reactive 

power computed after transforming the voltages and the currents acquired in a-b-c 

reference frame to rotating d-q frame. The computation of converter source side reference 
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voltage variables Ud and uq need iq and id respectively, and in that sense use coupled 

expressions. These reference voltages are transformed to the a-b-c frame via Clarke's 

transformation. 

Reference [23] follows somewhat similar strategy as in References [21] and [22]. 

Fundamental frequency model in terms of d-q variables is formed through transformation 

from a-b-c frame to switching reference frame and then to dqO frame. The inner current 

loop is once again implemented in d-q frame. The current components are decoupled. 

However, computation of d component of converter source side terminal voltage needs q 

component of current and similarly, computation of q component of converter source side 

voltage needs d component of current and hence the model is like the earlier two models 

in this respect. Like in [21] converter source side voltages and the de link voltage Vdc, 

determine the amplitude and angle modulation indices. 

In References [24] and [25] converter source side phase voltages in a-b-c frame 

are transformed into Clarke's components. The components are then identified and 

separated into positive and negative sequence voltages. While positive sequence voltage 

is subjected to a counter clockwise d-q transformation, the negative sequence voltage is 

transformed to a clockwise d-q transformation. This is to transform both of them into de 

components during filtering, so as to avoid any phase shift. The two filtered components 

are then used to compute an accurate mean value of the source voltage during the sample 

period, specifically witnessing ac system disturbances. 

Reference values of the active and reactive parts of the converter currents in 

rotating d-q frame are supplied from the outer power loop. The outer loop on the rectifier 

side includes a PI-control of the de link voltage and a forward feed of the d-component of 

the reference value derived from the outer power loop of the inverter side, thus 

facilitating change of the ordered active current without influencing the de link voltage. 
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The inner current loop is implemented in d-q frame, wherein the current errors are 

computed using the measured d-q currents and two sample delayed reference currents. 

This is to avoid failure of the dead-beat current control during norrnal ac network. Dead­

beat current control works satisfactorily with strong ac network interfacing the VSC­

HVDC. The reference value of the converter source side voltages are transformed to a-b­

c frame, before feeding the PWM block with amplitude and angle modulation indices as 

inputs. 

2. 7 Conclusion 

This chapter introduces High Voltage Direct Current (HVDC), describes VSC-HVDC 

transmission system, explains the advantages and the applications of VSC-HVDC, and 

presents a critical review of the related research in the area of VSC-HVDC link 

controllers. 



CHAPTER THREE: CONTROLLERS OF VSC-HVDC SYSTEM 

3.1 Introduction 

The control system in a VSC-HVDC comprises of a fast inner current loop controlling 

the ac current within the converter's current carrying capability limit and a number of 

outer loops providing reference values of the current to the inner current controller, for 

the control strategy chosen at the rectifier or the inverter end. The outer controllers could 

be de voltage controller, active power controller, reactive power controller and the 

frequency controller. Not all the outer controllers are used at the same time. However, 

one of the two converters must control de link voltage for active power balance between 

the power entering the rectifier and leaving the inverter [22]. 

This chapter develops a fully decoupled controller for the inner current loop. Two 

fully decoupled controller models are developed. In the first (d-q) model, the reference 

values of the currents for the inner current loop are estimated using the d-q transformed 

values of the phase voltages and currents measured at the interface bus. In the second 

(Hybrid) one, instantaneous power theory is first used to obtain Clarke's voltages and 

currents from the measured phase values and then the reference values of the currents for 

inner current loop are derived from these Clarke's components. Instantaneous power 

theory, park transformation, and similarity transformation are used to develop the 

controller models. 

The models developed are valid for both rectifier as well as inverter sides of a de 

link. Both real and reactive power is controlled on the rectifier side. DC link voltage and 

the reactive power are controlled on the inverter side. 

22 
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3.2 State Space Model ofYSC-HVDC 

The schematic ofYSC-HYDC is shown in Figure 3.1. VSC-HVDC converter stations are 

connected by a de link, wherein each converter consists of three phases of two-level 

converters and each phase contains two switching devices with anti-parallel diodes. 

+ve Flow 
----•i, ,._I=;--Tcoc Lin~k"l---;:=L, +ve Flow 

i,+---

'1----Ao,..---{R,L, u, IQ +I +I IQJ--u,"'""'-1rlR,,L,}-f=CAT --'1 

0 Rectifier Inverter 0 
Filter Filter 

afJ 

Figure 3.1: VSC-HVDC Power Circuit and Measurement Scheme 

Assuming flows from the network to the converters at both rectifier and the 

inverter ends to be positive as shown in Figure 3.1, the voltage and current relationships 

at the network side of the respective coupling transformers are given by: 

d"""" 
e"k ;;;;; R iaJN: + L - 1

-'- + u"bc 
r rr r df r 

(3.1) 

d·abc 

e~hc :;;; R.i"~~c + L. -'-'- + ua~tc 
I I/ I df I 

(3.2) 
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where e;bc, e;hc are the ac network voltages, ;;be, i;abc are the ac network currents 

and u;bc, u;oc are the ac converter voltages, on rectifier and inverter ends respectively. 

p-axis 
b- axis 

q- axis 

d- axis 

Figure 3.2: Inter-relationship between frames of references for VSC-HVDC 

Transforming the equations m a-b-c frame of reference to a synchronously 

rotating reference frame as shown in Figure 3.2, equations (3.1) and (3.2) become 

d(T-1 ·dq•) r-J edqO = R r-1 ;JqO + L dqol,. + r-J dqO 
dqO r r dqO r r dt dqOU,. (3.3) 

d(T-1 ·dq•) r-1 e~qO = R.r-J ;~O + L. dqol; + r-J u~qO 
dq0 I I dqO I I df dq0 I 

(3.4) 

where, T,.. is the Park's transformation and T,~~ os the mverse Park's 

transformation with reference to Figure 3.2. These are given as 
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[

sin 8 

r.,, = ~ cos 8 
3 I 

2 

sin(8 -120') 

cos(8 -120') 
I 

2 

sin(8+ 120') 

cos(8 + 120') 
I 

2 

Pre multiplying both sides by r.,,, and expanding the 2"d term on the right hand 

side, equations (3.3) and (3.4) can be written as 

edq0 :;;; R idq 0 + L - 1
-'- + T ~idqo + uJqo 

(

d·dqO dT- 1 
) 

r , ' r d/ JqO dl ' r 

e~0 = R.i'!"0 + L. -
1
-
1 

- + T ~i~0 + udqo 
(

d·dqO dT- 1 
) 

I I I I dt dqQ d/ I I 

Noting that in equation (3.5) and (3.6), 

[

sin mt 
d _, 2 

Tdq 0 -Tdq0 =- cosmt 
dt 3 1 

2 

sin{mt-120') 

cos(mt-120') 
I 

2 

sin(mt + 120')][ mcosmt 
cos(mt + 120') mcos(mt-120') 

.!.. mcos(mt + 120') 
2 

dr-' [0 dqO r.,, -- = m 1 
dt 0 

(3.5) 

(3.6) 

~OJ - m sin{mt-120') 

-msin(mt + 120') 

- wsin mt 

(3.7) 
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Equations (3.5) and (3.6), by substituting equation (3.7) and after simplification 

can be written as 

(3.8) 

(3.9) 

where m,, m, are the angular velocity corresponding to the rated system 

frequency on rectifier and inverter sides respectively. 

Assuming balanced operation of interfacing ac network signifYing, absence of 

zero axis components, the d-q transformed versions of equations (3 .I) and (3.2) are 

(3.1 0) 

(3.11) 

Equations (3.1 0) and (3.11 ), with currents along d-q axes ;; , i," and;:, ;,• as state 

. 
variables, can be written in state space form x = Ax+ Bu as 
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[ 

R, 

:!_[i:] = -L, 
dt ., 

l,. - (1) 

' 

w, j[i"] 1 [e" -u"] 
R, i~ +L e'q_u~ 

-- ,. ,. ,. r 

L, 

(3 .12) 

(3.13) 

AC network voltages on rectifier and inverter ends of the de link are assumed to 

be 

[

e; l [ cos w,t l 
e: = E, cos(w,t -120°) 

e; cos(w,t + 120°) 

(3 .14) 

(3.15) 

where E, E; are the peak values of ac network voltage on rectifier and inverter 

sides. Ac network voltage on rectifier side in equation (3.14) can be written as 

Pre-multiplying both sides by r..,, 
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sin(wt -120•) 

cos(wt -120•) 
I 

2 

Similar equation for the inverter side is 

sin(wt+I20•)][ cosw,t ] 
cos(wt + 120•) cos(w,t -120•) 

_!_ cos(w,t + 120•) 
2 

(3.16) 

(3.17) 

Assuming balanced operation of interfacing ac network signifying, absence of 

zero axis components, the d-q transformed version of the ac network voltages in 

equations (3.14) and (3.15) can be written as 

(3.18) 

(3.19) 
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The switching functions giving the state of an IGBT in the rectifier and inverter 

end converters, assuming a sinusoidal signal modulating the carrier input in the PWM 

based IGBT gating module [26], are given by 

[!~] = 

.!_+ M, cos(m t-8) 2 2 , , 

.!_+ M, cos(m t-8 -120°) 
2 2 r r 

I M 
-+-' cos(m,t-8, +120°) 
2 2 

.!_ + M, cos(w 1- 8 ) 
2 2 I I 

I M ( ) -+-'cos wt-8. -120° 2 2 I I 

I M ( ) - + -' COS WJ- 01 + 120° 
2 2 

[ :~]=[~~]v .... -(v;·) _"f.s: 
, Sc k a,b,c 

u, ' 

(3.20) 

(3.2 I) 

The relationship between the converter ac and de side voltages on rectifier and 

inverter sides using equations (3.20) and (3.21) become as 

[:~] u~ 
[ 

cos(m,t- 8,) l 
M,;dc• cos(m,t- 8, -120°) 

cos(m,t-8, + 120°) 

(3.22) 
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I MV I I 

[
u•l [ cos(wr-8) l 
u~ =T cos(m;t-0, -120°) 
u, cos(w,r- o, + 120°) 

(3.23) 

where M,, M, are the modulation index, o, o, are the phase shift between the 

modulating signal and the carrier signal in the pulse width modulation (PWM) module 

and V,"', Vdc, are the de link voltages, on rectifier and inverter ends. 

The converter ac side voltage on rectifier side in equation (3.22) can be written as 

Pre-multiplying both sides by r.,., 

[u~l [ cos(w,l- 8,) ] 
r.,.,r;.~ u~ = M,;''" r.,., cos(w,r-8, -120°) 

u, cos(w,r- 8, + 120°) 

[

uJ l [sin wr ' 2MV u: =-~ COSWI 

' 3 2 I u, -
2 

sin(wt-120°) 

cos(wt-120°) 
I 

2 

sin(wt+l20°)1 cos(w,t-8,) J 
cos(wr + 120°) cos(w,r- 8, -120°) 

_I_ cos(w,t-8, +120°) 
2 

(3 .24) 
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Similar equation for the inverter side is 

(3 .25) 

Assuming balanced operation of interfacing ac network signifying, absence of 

zero axis components, the d-q transformed version of the converter ac voltages in 

equations (3.22) and (3.23) can be written as 

[u~] = M,Vdc, [sin t5,] 
u~ 2 cos8r 

(3.26) 

[u1] = M,Vd<~ [sin t5,] 
uj 2 cosb, 

(3.27) 

3.3 Decou piing the State Variables 

To facilitate modal analysis of a composite power system incorporating VSC-HVDC link 

and also to obtain decoupled inner current loop model, using the transformation x = Px,, 

the state matrix in equation (3.12), which is of the form,;= Ax+ Bu can be written as 

P x,::: APx, + Bu 

(3.28) 

Substituting modal matrix and its inverse for the state matrix from (A.6), (A. 7) 

and also substituting equation (3 .18) into the state equation (3.12) 
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The foregoing equation after using equation {A.8) reduces to, 

O );~] 1 [- jE,] 1 [u~- ju~] 
_ ~: _ }m, ;~ + 2L, E, - 2L, u~- ju~ 

(3.29) 

)E,, ju~ and ju~ in equation (3.29) are the projections of E, , u~, u~ on their 

respective orthogonal axes in an orthogonal system of coordinates and reduce to zero. 

Therefore, the state matrices in equations (3. I 2) and (3.13) subjected to similarity 

transformation [27], to obtain decoupled state space equations can be written as 

:!_[;~] = [<: + jaJ, 

dt '~ 0 
(3 .30) 

d [""] [<' + jw, Jt: - I 
- ·q -
dt 1;: 0 

(3.3 I) 

whereas i~, i~, i;~, i;~ are the transformed state variables, the state variables 

related to the voltage i.e. u~, u~, u(, u'/ are the original state variables. 
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3_4 Fully Decou pled Controller Models 

In this section two fully decoupled controller models are described, based on two 

different methods for estimating reference values of currents for the inner current loop 

controller. 

3.4.1 d-q Controller 

First controller comprises of a fast inner current loop controller controlling the ac current 

within the converter's current carrying capability limit, and a number of outer loop 

controllers providing reference values of currents to the inner current loop controller. The 

reference currents in d-q frame of reference are derived from the instantaneous measured 

values of real and reactive powers and using the d-q transformed values of the phase 

voltages in a-b-c frame measured at the interfacing bus. The measured values of the 

currents are obtained by d-q transforming the currents in a-b-c frame measured at the 

interfacing bus. 

Inner Current Loop Controller 

In HVDC transmission, Vdc needs to be kept sufficiently high. For different operational 

regimes requiring real and reactive powers to be controlled independently and e, , hence 

u" and u, need to be controlled independently. Consequently, the modulation index and 

also the phase shift between the modulating signal and the carrier signal in PWM module 

need to be varied to achieve various operational requirements. With a view to achieve 

dead beat control leading to zero steady state error, using state equation (3.30) of the 

rectifier side and defining feedback loops and PI compensation, as 
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where 

(k k, )(·" .J) XI= p +- lrref -Ir 
s 

X = (k + '2)(;• - iq) 
2 psrrrfr 

implying u; = -2L,x, and u; = E, - 2L,x2 , thus 

(3.32) 

Similarly, from equation (3.31) for the inverter side, 

" 2L (k k, )(·" ·") U; = - ; P +---:; l;~J - 1; 

• - E 2L (k k, )(·• ·•) u,- ;- ; p+---; liref-li 

(3.33) 

where, r:rrf' r:ref and ;:/' ;i:/ are the reference values of the respective direct and 

quadrature axis currents on the rectifier and inverter ends computing from the outer loop 

controller. Equations (3.32) and (3.33) model the inner current loop controller. The 

control implementation involves the state variables ;~, ;: , u;, u;. and i;J, i;q, u;d, u7. 

However, to incorporate controller dynamics into the composite state matrix together 

with the VSC-HVDC power circuit dynamics and interfacing ac system dynamics for 
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carrying out modal analysis of the composite system, u:, u; and u~, uj may have to be 

transfonned to u~ , u~ and u~ , u;~ . 

Once d 
u, ' u; and u~, uj are available, required modulation index and also the 

phase shift between the modulating signal and the carrier signal in PWM module on 

rectifier and inverter side can be determined using the relations 

I d2 q2 
M = _,v_u.;.,_+_u:..,-

' v /2 
de' 

o =tan-'(u;)-B 
' d ' u, 

(3.34) 

'(u') a;= tan- u1 -B; (3.35) 

Outer Loop Controller 

The outer loop compnses of controllers such as the de voltage controller, the active 

power controller and the reactive power controller. These controllers provide reference 

values of the respective direct and quadrature axis currents to the inner current control 

loop implemented in d-q frame. 

(i) DC Voltage Controller 

Inverter side is set to control the de link voltage. A control equation for the direct axis 

current reference on the inverter side is implemented for the purpose. This outer loop 

controller is much slower than the inner current loop controller, to ensure stability. i;:,1 

being in rotating d-q frame, yields de component in steady state and is synonymous to the 

active current, assuming no power losses in the converter. 
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(3.36) 

where, vdd~/ is the reference de link voltage on the inverter side. 

(ii) Active Power Controller 

The reference value of the active part of the converter current is supplied from the outer 

active power loop. The reference value ;;~1 being in rotating d-q frame, yields de 

component in steady state. The control of active power combines both open loop and the 

feedback loop as shown in equation (3.37). For implementation of the feedback loop, 

error between the desired de power to be transferred and the active power measured on 

the interface bus is computed in the loop itself. 

·d prrtf 
1rrrJ = -.­e, 

(3.37) 

(3.38) 

where, P ~I is the reference real power, P ~• is the required real power and P, os 

the measured real power, on the rectifier end 

(iii) Reactive Power Controller 

The outer reactive power loop supplies reference value of the reactive part of the 

converter current. The reference values ;:nf at the rectifier and i~.1 at the inverter ends 
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being in rotating d-q frame, yield de component in steady state. The control of reactive 

power combines both open loop and the feedback loop as shown in equations (3.39) and 

(3.41). For implementation of the feedback loop, error between the desired reactive 

power to be exchanged between the ac network and the de link and the reactive power 

measured on the interface bus is computed in the loop itself. 

Q~t = Q..w +t.Q,( kp + i) 
where, t.Q, = Q.,"' - Q, 

where, 6Q1 = Q,."' - Q, 

., = Q~t 
'~t 

e~ 

(3.39) 

(3 .40) 

(3.41) 

(3.42) 

where, Q,ref, Q,ref are the reference reactive power, Q"'"' , Q,."' are the required 

reactive power and Q, , Q, is the measured reactive power, on the recti tier and inverter 

ends. 

Processing of Measurements 

Conventional complex power is valid only for a system in steady state with a fixed line 

frequency. While 3-phase instantaneous power is valid during steady as well as transient 
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states [28] and describes the total energy flow per second between two interfacing 

systems. Using instantaneous power theory, phase current and voltage measurements on 

the network can be transformed to Clarke variables. 

(3.43) 

(3.44) 

Instantaneous real and reactive power measured on the rectifier side and the 

reactive power measured on the inverter side in terms of the respective Clarke's 

components are given as 

(3.45) 

(3 .46) 

(3 .4 7) 

The measured values of the active power and the both end reactive power are used 

to implement open and feedback control in the outer power loop. Figure 3.3 and Figure 

3.4 show the respective d-q controller models on rectifier and inverter sides. 
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3.4.2 Hybrid Controller 

Second controller also comprises of a fast inner current loop similar to the d-q controller, 

controlling the ac current within the converter's current carrying capability limit. Real 

and reactive power outer loop controllers provide reference values of the instantaneous 

real and reactive powers for estimating reference values of the instantaneous Clarke's 

currents. These currents are then transformed to a d-q frame for the inner current loop 

controller, implemented in d-q reference frame. DC voltage controller used is similar to 

the first controller. 

Estimating Reference Values of Currents for Inner Current Loop Controller 

Usually rectifier side is set to control both real and reactive powers. Instantaneous active 

and reactive currents at the rectifier side are given as 

a 

i;"' = k )' e~ (e~ )' p~J (3.48) 

(3 .49) 

Instantaneous active and reactive reference currents in afJ frame of reference for 

the rectifier side are now computed as 

(3.50) 

;P = i~ + ;/JI 
rref r r (3.51) 
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Usually inverter side is set to control de voltage and reactive power. The d-axis 

reference current is directly derived from the reference and measured values of de 

voltages. 

Instantaneous active and reactive currents on the inverter side are given as 

p 
~ e 

i, = ( a)' ' ( p )' P.~r 
\e, + \e; 

(3.52) 

(3.53) 

(3.54) 

Instantaneous reactive reference currents in a/3 frame of reference for the 

inverter side are given as 

(3.55) 

;P =i~ +ipq 
lt'ej I I 

(3.56) 

The d-q variables can now be derived from the Clarks variables using equations 

(3.43), (3.44), (3.50), (3.51), (3.55) and (3.56), and also using the relationships as shown 

in equations (3.57) and (3.58). The transformation angle () is available as the output of 

the phase locked loop (PLL ). 
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e" =ea cosB+eP sinB 
(3.57) 

e" = -ea sin B + eP cos B 

i" = ia cos B + i P sin B 
(3.58) 

The complete hybrid controller models of the rectifier and the inverter side are 

shown in Figure 3.5 and Figure 3.6 respectively. 
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(a) Outer loop and reference value computation- Rectifier side 
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Figure 3.5: VSC-HVDC Rectifier Hybrid Controller 
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3.5 Conclusion 
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(b) Inner current loop- Inverter side 

Figure 3.6: VSC-HVDC Inverter Hybrid Controller 

This chapter develops the models of controllers for VSC-HVDC transmission system 

with a modified inner current loop wherein, not only the current errors in the d-q frame 

are decoupled, but the generation procedure of source side converter d-q voltages is also 

decoupled. The q component of the current error is not required to computed component 

of the converter source side reference voltage and the d component of the current error is 

not required to compute q component of the converter source side reference voltage. This 

is expected to speed up reference voltage generation. The two controller models 

developed, implement two different methods for estimating reference values of currents 

for the inner current loop. 

Conventional complex power is valid only for a system in steady state with a 

fixed line frequency. Whereas 3-phase instantaneous power is valid during steady as well 

as transient states and describes the total energy flow per second between two interfacing 

systems. Considering this, the computation of the measured Clarke's components of the 

real and reactive power in the outer power loop is proposed to be based on the 

instantaneous power theory. 
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The model performance is validated in chapter four, using SIMUUNK Power 

System Blockset (PSB) based simulations on a composite power system, incorporating 

the developed controllers. 



CHAPTER FOUR: MODEL VALIDATION 

4.1. Introduction 

The increasing rating and improved performance of self-commutated semiconductor 

devices has made possible High Voltage DC (HVDC) transmission based on Voltage­

Sourced Converter (VSC). Performance of the VSC-HVDC controller models developed 

in the thesis are validated through SIMULINK power system block set (PSB) based 

simulations, carried on a composite power system incorporating the VSC-HVDC link and 

the developed controllers. 

4.2. Power System Blockset 

Power System Blockset operates in the SIMULINK environment to model electrical, 

mechanical and control systems. Electrical power systems are combinations of electrical 

circuits and electromechanical devices like motors and generators. These systems use 

power electronics and control systems to achieve their performance objectives. Power 

System Blockset has libraries containing models of typical power equipment such as 

transformers, lines, machines, and power electronics. 

These models are proven ones coming from textbooks, and their validity is based 

on the experience of the Power Systems Testing and Simulation Laboratory of Hydro­

Quebec, a large North American utility located in Canada, and also on the experience of 

Ecole de Techno Iogie Superieure and Universite Laval. The Power System Blockset main 

library, powerlib, organizes its blocks into libraries according to their behavior. The main 

Power System Blockset powerlib library window also contains the Powergui block that 

opens a graphical user interface for the steady-state analysis of electrical circuits [29]. 

46 
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4.3 VSC-HVDC Transmission System Model 

VSC-HVDC transmission system model is shown in Figure 4.1. 230 kv, 2000 MVA AC 

systems (AC system I and AC system2 subsystems) are modeled by damped L-R 

equivalents with an angle of 80 degrees at fundamental frequency (50 Hz) as well as at 

third harmonic. 

230 kV. 50 Hz 
2DOOUVA~ 

Open thiS block 
IOVISu~e 

ltc:Ofde<l SiQnab 

VSC-HYDC lhnsmtsskM'I UM 
200 IIVA (+1- 100kY) 

Figure 4.1: VSC-HVDC Transmission System Model 

230 kV, 50 HZ., 
2 000 IIVA equtvalent 

Open ltus biOO: 
10 ltSuai!Ze 

IK:Ofded signals 

Dati Aoequ1sdlon ........ 

The VSC converters are three-level bridge blocks using close to ideal switching 

device model of IGBT. A converter transformer (Wye grounded /Delta) is used to permit 

the optimal voltage transformation. The winding arrangement blocks tripplen harmonics 

produced by the converter. The tap position is at a fixed position determined by a 

multiplication factor applied to the primary nominal voltage of the converter 

transformers. The multiplication factors are chosen to have a modulation index around 

0.85 (transformer ratios of0.915 on the rectifier side and 1.015 on the inverter side). The 

converter reactor and the transformer leakage reactance permit the VSC output voltage to 

shift in phase and amplitude with respect to the AC system, and allow control of 

converter active and reactive power output. 



~C~H~A~P~T~E~R~F~O~U~R~:~M~O~D~EL~V£A~L~ID~A~T~I~O~N~--------------------------~48 

AC filters are connected as shunt elements on the converter side of the converter 

transformer to meet AC system harmonic specifications. Since there are only high 

frequency harmonics, shunt filtering is relatively small compared to the converter rating. 

The shunt AC filters have 27th and 54'" high pass filter legs totaling 40 Mvar. 

The controllers of the VSC-HVDC link are modeled as described in chapter three. 

The rectifier side is set to control both real and reactive power and the inverter side is 

dedicated to control DC link voltage and reactive power. 

The sampling time of the controller model (Ts_Control) is 74.07 J1 sec, which is 

ten times the simulation sampling time. The power elements, the anti-aliasing filters and 

the PWM Generator block use the fundamental sampling time (Ts_Power) of7.407 J1 sec. 

The unsynchronized PWM mode of operation is chosen for our model. The normalized 

sampled voltages and currents (in pu) are provided to the controller. 

The Clark Transformations block transforms the three phase reference frame to 

Clark's stationary frame. The d-q transformations block computes the "d" component and 

the "q" component from Clark's stationary frame. The Phase Locked Loop (PLL) block 

measures the system frequency and provides the phase synchronous angle for the d-q 

Transformations block. The Signal Calculations block calculates and filters quantities 

used by the controller i.e. active and reactive power, modulation index, phase shift 

between modulating signal and carrier signal, ac network voltage, and DC current and 

voltage. 

4.3.1 Outer Loop Controller 

The active and reactive power and voltage loop contains the outer loop regulators that 

calculate the reference value of the converter current (lref_dq) which is the input to the 

inner current loop controller. The control modes are: in the "d" axis, either the active 
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power flow at the AC network system or the pole-to-pole DC voltage; in the "q" axis, the 

reactive power flow at the AC network system. The main functions of the Active and 

reactive power and voltage loop are described below. 

The Reactive Power Control regulator block combines a PI control with a feed 

forward control to increase the speed response. To avoid integrator wind-up, the 

following actions are taken: the error is reset to zero, when the measured AC network 

voltage is less than a constant value (i.e., during an AC perturbation); when the regulator 

output is limited, the limitation error is fed back with the right sign, to the integrator 

input. 

The Active Power Control block is similar to the Reactive Power Control block. 

The extra Ramping block ramps the power order towards the desired value with an 

adjusted rate when the control is de-blocked. The ramped value is reset to zero when the 

converter is blocked. 

The DC Voltage Control regulator block uses a PI regulator. The block is enabled 

when the Active Power Control block is disabled. The block output is a reference value, 

for the "d" component of converter current, for the Current Reference Limitation block. 

The Current Reference Calculation block transforms the active and reactive power 

references, calculated by the P and Q controllers, to current references according to the 

measured voltage at the AC network bus. The current reference is estimated by two 

different methods as described in chapter three. 

The current reference vector is limited to a maxomum acceptable value (i.e., 

equipment dependent) by the Current Reference Limitation block. In power control 

mode, equal scaling is applied to the active and reactive power reference when a limit is 

imposed. In DC voltage control mode, higher priority is given to the active power when a 

limit is imposed for an efficient control of the voltage. 
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4.3.2 Inner Current Loop Controller 

The main functions of Inner Current Loop block is to track the current reference value 

("d" and "q" components) with a feed forward scheme, to achieve a fast control of the 

current at load changes and disturbances (e.g., short-circuit faults do not exceed the 

references) [30, 31]. In essence, it consist of knowing the U_d-q voltages and computing 

what the converter voltages have to be, by adding the voltage drops due to the currents 

across the impedance between the AC network and the converter AC voltages. The state 

equations representing the dynamics of the VSC currents are used (an approximation is 

made by neglecting the AC filters). The "d" and "q" components are decoupled to obtain 

two independent first-order plant models. A proportional integral (PI) feedback of the 

converter current is used to reduce the error to zero in steady state. The output of the AC 

Current Control block is the unlimited reference voltage vector Vref_dq_tmp. 

The Reference Voltage Conditioning block takes into account the actual DC 

voltage and the theoretical maximum peak value of the fundamental bridge phase voltage 

in relation to the DC voltage to generate the new optimized reference voltage vector. In 

our model (i.e., a three-level NPC with carrier based PWM), the ratio between the 

maximum fundamental peak phase voltage and the DC total voltage (i.e., for a 

modulation index of I) is= 0.816. By choosing a nominal line voltage of 100 kV at the 

transformer secondary bus and a nominal total DC voltage of 200 kV the nominal 

modulation index would be 0.816. In theory, the converter should be able to generate up 

to 1/0.816 or 1.23 pu when the modulation index is equal to I. This voltage margin is 

important for generating significant capacitive converter current (i.e., a reactive power 

flow to the AC system). The Reference Voltage Limitation block limits the reference 

voltage vector amplitude to 1.0, since over modulation is not desired. The Inverse d-q and 

Inverse Clark transformation blocks are required to generate the three-phase voltage 

references to the PWM. 
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The system descriptions are presented in Table 4.1. Total simulation time is 3.0 

sec, carrier frequency is 1350Hz and the integration time step is 7.407 fJ sec. 

Table 4.1: System Description 

lr-c"'"o_n_v-ert""'"e-r""'T=-r-a-ns""'t<,...or_m_e_r __ ---,11 c·200 MVA, 0.15 p.u. I r-I---..23"'0"kv-/-;;1-;;-00;;-;k,-v---, 

DCLinkRating 200MW ±IOOKv 

AC Side Harmonic Filters ,. 40MVAR 

27th High Pass Damped 18 MYAR Quality Factor= 15 

54th High Pass Damped 22 MYAR Quality Factor= 15 

Outer Loop Controllers 

P controller Kp=O.O Ki=20.0 

Q controller Kp=O.O Ki=20.0 

Y de controller Kp=2.0 Ki=40.0 

I Inner loop current controller II Kp=4.0 II Ki-40.0 

4.4 Comparative Performance Assessment of d-q Controller 

Three scenarios are considered, to evaluate the performance of the developed model. In 

the first scenario, short circuit (SC) level at both rectifier and inverter end ac system 

buses is 2000 MY A i.e. the source impedance 26.45 n is less than the converter 

transformer impedance 39.675 n. The inverter end controls are activated at t=O.I sec 

and the rectifier end controls are activated at t=0.3 sec. in the second scenario, the short 

circuit level at both end ac system interfacing buses is I 000 MY A or a source impedance 

of 52.9 n is more than the converter transformer impedance. Inverter end controls are 

initiated at t=O.I sec and rectifier end controls are activated at t=0.3 sec. in the third 

scenario, while the rectifier end source impedance is 52.9 n, the inverter. end source 

impedance is 26.45 n. The activation time of respective end controls remain similar to 

the earlier two scenarios. The single line to ground fault occurs at the rectifier 

transformer primary side at t= I. 0 sec and the fault is cleared at t= /.2 sec. 
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Table 4.2: Scenario Description of d-q Controller 

Case Study Description 

AC Network SC Level 

Rectifier Side 

Inverter Side 

Rectifier Side Controller 

Active controllers activated at 

P,..r 

Orrcf 

Inverter Side Controller 

Active controllers activated at 

V dciref 

Oircr 

Normal Fault 

Level 

2000 MVA 

2000 MVA 

P,Q 

t = 0.3 sec 

1.0 p.u. 

0.0 p.u. 

Ydc• Q 

t= 0.1 sec 

1.0 p.u. 

-0.1 p.u. 

Lower fault 

Level 

1000 MVA 

1000MVA 

P,Q 

t = 0.3 sec 

1.0 p.u. 

0.0 p.u. 

vd.,Q 

t= 0.1 sec 

1.0 p.u. 

-0.1 p.u. 

Single Line-Ground 

Fault 

1000 MVA 

2000MVA 

P,Q 

t = 0.3 sec 

1.0 p.u. 

0.0 p.u. 

vd.,Q 

t= 0.1 sec 

1.0 p.u. 

-0.1 p.u. 

Figure 4.2 shows the ac network voltage at the rectifier end in the three scenarios. 

The dynamic over voltage corresponding to higher source impedance is 6% as against 3% 

for the lower source impedance. With the real and reactive power controls activated at 1 = 

0.3 sec on the rectifier end but without ac voltage control, ac network voltage is 4% lower 

than the rated one, under norrnal fault level condition. However, ac network voltage is 

7% lower than the rated one, under lower fault level and single line to ground fault. The 

single line to ground fault occurs at the rectifier transformer primary side at 1=/.0 sec and 

the fault is cleared at 1=1.2 sec, ac network bus voltage is stable at 1=1.3 sec. 

Figure 4.3 shows the ac network voltages at the inverter end in the three 

scenarios. Only de link voltage and the reactive power flow control are activated at 1 = 

0.1 sec on the inverter end and ac voltage remains inactive. The wave forrns do not get 

influenced by the rectifier end asymmetrical fault at the transformer primary. Ac network 

voltage is 3% higher than the rated one, under all the three scenarios. 
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Figure 4.3: AC Network Bus Voltages- Inverter Side d-q Controller 

Figure 4.4 shows the real power flow into de link at rectifier side. Real power 

controller is activated at the rectifier side at t=O.J sec and the real power reference is 

ramped up slowly to nominal rated power 1.0 p.u. Steady state is reached at t= 1.35 sec on 
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normal and lower fault level. However, under single line to ground fault, real power 

drops to around 0.4 p.u. and the real power is controlled to a steady state by t=I.6 sec 

following the fault cleared at t=l.2 sec. 

1.2,------.----,----.----,-------,,-------, 

.~·.:, 
1 •.••..•.•....•. ; ...............• p..__.,._..;:.. ___ ....,.. ___ -+----1 

j r' . 

~ :: .. : ........ :.::: ...... ··::: .. ::1: .. :.;!:::::::·:::::··:::::·:.:1·:·:::·:·:::::·.·:·.:.·:::::: .. . 

; o .• ··············'rt·············-~·-·······l·················f················; .............. . 
. ! I. . : : : : 

o.2 IT······------ . ~---····· .. ······-~---------------- ~---- ........ -----~ ............. ·r-"· -"':N"':onnal----:-n 
jl A I ~ ~ ~ ~ ......... . 
,\ · J: : : : -----Lower 

0 

· v··r·············-r··············r·· ············:·············· =~~~al 
0.5 1.5 

Thne (s) 
2 2.5 

Figure 4-4: Real Power Flow into DC Link -Rectifier Side d-q Controller 

3 

0.3,------,------r-------,------.------;=====il 
··········Normal . . . 

0.21-···············i·················; ................ ; ................. ; ............ . 
: : ll : : 
: : ~ i! : : 

-----Lower 
- -·-·- SLOF 

0.

1 ···········h·················tr.J.ti1·r;·····················-:············· 
-= 01 f "'-~ : ;,.,.. ,. ; : . "-~i. /'' .5 ,- ·;- ~!i , 

--Ref Val 

1 : 1-1 I !i 

0 ~.1 ·········r··:·················:r·····-''-·····;·················:················;················ 
..0.2 .•... -.-. t ... -~- ........ -...... -~-.- ·- -- .. -.. -... ~ .. -.... -... ----- -~ ....... -........ ~- ... -....... -.. ·-

l : : : : : 
~.3 b/::.=i ..... j ................. ; ................ j·················t················1················-. . . . 

; 
~•o;-----,o,':.5,.-----'-----..,.,_':-5----~2----~2.'=-5-----!3 

Thne (s) 
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Figure 4.5 shows the reactive power flow into the de link at rectifier side. The 

rectifier end has the reactive power controller activated at t~O.J sec. In all the scenarios 

reactive power reference import or export is set at zero. The reactive power flow is 

indeed controlled to its set value. However, oscillations are witnessed, when the rectifier 

side source impedance is higher than the converter transformer impedance. Under single 

line to ground fault, rectifier side changes operation 1Tom reactive power generation to 

consumption and reverse between -0.2 and 0.2 p.u. Furthermore, the reactive power is 

controlled to a steady state by t~/.6 sec following the fault cleared at t~/.2 sec. 

Figure 4.6 shows the de ink voltage at the inverter side during all the three 

scenarios, the de link voltage increases at the beginning cause dynamic overvoltage 25% 

and then goes back to the de voltage reference 1.0 p.u wherein the de voltage controller is 

activated at t~O.I sec. Steady state is reached at t~l.l sec on normal and lower fault 

level. Under single line to ground fault, de voltage is oscillating around the reference 

value 1.0 p.u and the de voltage is controlled to steady state by t~/.5 sec. 
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Figure 4.6: DC Link Voltage Measured on Inverter Side d-q Controller 
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Figure 4.7 presents' ac network phase voltages under single line to ground fault 

near rectifier transfonner primary; the fault recovery time is 0.25 sec. 
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Figure 4.7: AC Network Phase Voltages- Single Line to Ground Fault near Rectifier 

Transformer Primary d-q Controller 
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Figure 4.8: Modulation Index- Rectifier Side d-q Controller 
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Figure 4.8 shows the variation of the modulation index at the rectifier end. Over 

modulation is witnessed before the rectifier side controller is activated at /=0.3 sec. Since 

over modulation is not desired, the rectifier side controller is controlled the modulation 

index close to its nominal value 0.816. The modulation index is become 0.84 under 

normal fault level, and 0.82 under lower fault level and single line to ground fault. Under 

single line to ground fault, modulation index drops to around 0.35 and the modulation 

index is controlled to a steady state by t=/.8 sec following the fault cleared at t=/.2 sec. 

4.5 Comparative Performance Assessment of the Hybrid Controller 

In the scenario considered to evaluate the performance of the developed model, the short 

circuit level at both rectifier and inverter end ac system buses is 2000 MVA i.e. the 

source impedance 26.45 n is less than the converter transformer impedance 39.675 n. 
The inverter and the rectifier end controls are activated at t=O.I sec and 1=0.3 sec. 

Table 4.3: Scenario Description of Hybrid Controller 

j Case Study Description II Normal Fault Level 

AC network Short Circuit Level 

Rectifier Side 

Inverter Side 

Rectifier Side Controller 

Active controllers activated at 

Inverter Side Controller 

Active controllers activated at 

Pner 

v dcin:f 

Qiref 

2000 MVA 

2000 MVA 

P,Q 

t = 0.3 sec 

1.0 p.u. 

0.0 p.u. 

vd.,Q 

t= 0.1 sec 

1.0 p.u. 

1.0 p.u. 

-0.1 p.u. 
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Figure 4.9 shows the ac network voltage at the rectifier end bus. The dynamic 

over voltage is 3%. Since real and reactive power controls activated at /=0.3 sec on the 

rectifier end and ac voltage control remains inactive, the ac network voltage is 4% lower 

than the rated one. 
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Figure 4.10: AC Network Bus Voltage- Inverter Side Hybrid Controller 
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Figure 4.10 shows the ac network voltages at the inverter end bus. Only de link 

voltage and the reactive power flow control are activated at this end and ac voltage 

controller remains inactive. 
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Figure 4.11 shows the real power flow into de link in rectifier side. Real power 

controller is activated at the rectifier side at 1=0.3 sec and the real power reference IS 

ramped up slowly to nominal rated power 1.0 p.u. Steady state is reached at J=/.4 sec. 

Figure 4.12 shows the reactive power flow into the de link on rectifier side. The 

rectifier end has the reactive power controller activated at /=0.3 sec. The reactive power 

import or export is set at zero. The reactive power flow is indeed controlled to its set 

value with some amount of oscillations within acceptable limits. 
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Figure 4.13: DC Link Voltage Measured on Inverter Side Hybrid Controller 

3 

Figure 4.13 shows the de ink voltage at the inverter side with the de voltage 

controller activated at J=O.I sec. the de link voltage increases at the beginning cause 

dynamic overvoltage 25% and then goes back to the de voltage reference 1.0 p.u wherein 

the de voltage controller is activated at 1=0.1 sec. Steady state is reached at J=/.1 sec on 

normal and lower fault level 

Figure 4.14 presents the inverter side reactive power flow from the interfacing ac 

network into the inverter. The inverter end has the reactive power controller activated at 
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t=O.J sec and the reactive power reference consumption is set at 0.1 p.u. The reactive 

power flow is indeed controlled to its set value. However, oscillations are witnessed and 

the reactive power is controlled to a steady state by t=l.l sec. 
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Figure 4.15: Modulation Index- Rectifier Side Hybrid Controller 
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Figure 4.15 shows the variation of the modulation index at the rectifier end. Over 

modulation is witnessed before the rectifier side controller is activated at /=0.3 sec. Since 

over modulation is not desired, the rectifier side controller is controlled the modulation 

index close to its nominal value 0.816 which is 0.84. The modulation index is controlled 

to a steady state by 1=1.2 sec. 

4.6 Conclusion 

The performance of the developed controller models is assessed through SIMULINK 

Power System Blockset (PSB) simulations on a VSC-HVDC link interfacing an ac 

system. The simulation results show that the two controller models under normal fault 

level perform in the similar way and have fast response. 
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5.1 Conclusion 

Instantaneous power theory is advantageous for measuring real and reactive power, as it 

is suitable for steady and transient states as well as for non sinusoidal waveforms, a 

distinct possibility in presence of harmonics during system operation. Similarity 

transformation can be used to obtain a fully decoupled model for the inner current control 

loop control circuit implementation involves original current and voltage state variables. 

The results discussed from system disturbances imposed on the AC grid and the 

HVDC link controller's ability to restore the values of the key variables is demonstrated 

on the time and event labeled response curves. conclusion on the appropriate 

behaviour of the performance of the developed controller is demonstrated through the 

behaviour of the variables such an active power, reactive power and the Vdc, which 

converge to the set point values for the given disturbances in the AC network. A lower 

fault level ac system interfacing with the VSC-HVDC link may lead to longer settling 

time, higher dynamic over voltages and relatively a longer fault recovery time. 

However, to facilitate small signal stability assessment of a composite system 

comprising of VSC-HVDC link as well as interfacing ac system, the variables need to be 

transformed while framing the state matrix. 

63 
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5.2 Contributions of the Research 

The main contributions of the research are as follows: 

• A fully decoupled controller model exploiting similarity transformation is 

developed. 

• Instantaneous power theory is used for obtaining the measured values of the real 

and reactive powers, and also for deriving reference values of the currents used in 

the inner current control loop. 

5.3 Future Work 

The future direction may be towards improving the simulation procedure. The simulation 

carried out through SIMULINK Block set involves fixed integration time steps. This 

poses problems while simulating a model involving transfer functions having derivative 

terms. Such a model has also been developed during the course of this research and is 

available in the paper presented at PECON2008, and provided in the appendix of this 

thesis. To handle this model, integration with variable time step is required to introduce 

shorter time steps during steep changes, a common feature with semiconductor devices 

responding to fast network changes. 
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APPENDIX 

Appendix A 

Eigen values of the state matrix for rectifier side in equation (3.12) can be determined by 

solving the characteristic equation given by A- A.J = 0 

(A. I) 

Equation (A.l) yields two Eigenvalues 

' R, . 
A =---jllJ 

rl L , 
' 

' R, . 
A =---jllJ 

r2 L, r 

Eigen vector corresponding to A..~ can be determined from lA- A..,JIV. = 0 

(A.2) 

Substituting A. = _ R, + 1·w in equation (A.2) yields 
rl L, r 
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-[f!_,__f!_,_+}.llJ ]v +W v = 0 L,. L,.. , II ,. 21 

[
R, R, . ] O -(1) \1 - ---+j(J) v = 

r II £,. £,. r 21 

{A.3) 

Treating v, as the free variable in equation {A.3) and assigning an arbitrary value of I 

yields 

[v,=IJ IC= 
• v21 = jl 

Likewise, eigenvector corresponding to A.,,, can be determined from lA- .-l,,IIV, = 0 

{A.4) 

Substituting ,t =_I!_,_- 1·w into equation {A.4) yields 
r2 L,. r 

[ 
R, R, . ] O - ----}(1) v +OJ v = L,. L, ,. 12 ,. 22 

-llJ v -[~!_,_- 1!_,_- j.llJ ]v = 0 
,. 12 L,. L, ,. 22 

(A.S) 
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Treating v22 as the free variable in equation (A.5) and assigning an arbitrary value of l 

yields 

-[V12 =}I] v,-
v22 ::::::I 

Modal matrix and its inverse of the state matrix in equation (3.12) are 

[I }I] 
P=(V, V,]= }I I 

p-1 = _!_[ I -}I] 
2 -}I I 

(A.6) 

(A.7) 

Similarity transformation p-' AP of state matrix in equation (3.12), which is of the form, 

. 
x = Ax+ Bu is given by 

1 I [ I -JIJ[- ~' m, } I jl] p-AP=- ' 2 -jl I _ m _ R, jl I 
, L, 

(A.8) 
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Modeling of Controller for Voltage Sourced 
Converter based HVDC Transmission System 
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Abstract: This paper develops the dynamic mathematical 
model of the rectifier and inverter side controllers for a 
Voltage Sourced Converter (VSC) based high voltage DC 
(VSC-HVDC) link employing Insulated Gate Bipolar 
Transistor (IGBn with PWM control. The controller 
derived using instantaneous power theory, parlu 
transformation, and similarity transformation is expe:ded to 
maintain the de link voltage and reactive power at the 
sending end and control both active and reactive power at 
the receiving end under changing operating conditions. The 
model also facilitates systems oscillatory performance 
assessment 

Keywords: VSC-HVDC, PWM Controller Modeling, HVDC 
Dynamic Perfonnonce 

I. INTRODUCTION 

High Voltage Direct Current (HVDC) technology has 
characteristics which make it especially attractive for 
long distance bulk power transmission or asynchronous 
interconnection applications. Most of the HVDC links 
currently in operation use line commutated converter 
(LCC) technology. However, HVDC transmission system 
based on I ine com mutated thyristor have few 

shortcomings: converters absorb reactive power to the 
extent of 50% of the real power being transferred, 
injection of low order harmonic currents into the 

interfacing AC system, risk of inverter commutation 
failures in presence of Faults and switching operations in 
AC network, and its dependence on reasonably strong 
AC systems having active sources to provide 
commutating voltages [I]. With the emergence of 
offshore renewable energy sources resulting in increased 
distance between offshore generation and onshore 
distribution grid, developments in the high voltage and 
high current self commutated GTO and IGBT based 

voltage sourced converters together with Pulse Width 
Modulation (PWM) control, feasible use of polymeric 
cables having light weight and requiring smaller bending 

radius, absence of charging current endangering marine 
life, VSC-HVDC provides a preferred alternative for 

power evacuation from the off-shore renewable energy 
installations. 

VSC-HVDC transmission system has the following 
advantages compared with conventional LCC-HVDC 
transmission system: capability to rapidly control both 
active and reactive power independently of each other, 
PWM control moves characteristic hannonics to higher 
order, no communication required between the sending 
and receiving end converter stations, possible operation 
with weak AC systems and lower dynamic over voltages. 
Voltage sourced converters in VSC-HVDC not only 
control the power flow but also, provide dynamic voltage 
regulation to the interfacing ac network[ I, 2, 3]. 

HVDC converter station can comprise of either 
voltage-sourced converters or current-sourced converters. 

Whereas the CSCs' are robust, the VSCs' have higher 
efficiency, low initial cost, and smaller physical size. 
Voltage-sourced converter is preferred over current­
sourced converter since current-sourced converter has 
series diode with each switch, resulting in increased cost 
and losses. CSC also requires smoothing DC inductors 
across the three-phase bridge terminals, which are 
generally larger and more expensive than capacitors used 
in voltage-sourced converters [2, 6]. IGBT module 

commercially available is more suitable for voltage­
source PWM converter, since a free-wheeling diode is 
connected in anti-parallel with each IGBT. Thus the 
IGBT does not need to be provided with the built-in 
reverse voltage blocking capability, thus bringing more 
flexibility to device design, a compromise between 
switching losses and short-circuit capability. 

The operational requirements imposed on an HVDC 
link keep on varying, depending on the changes in 
interfacing ac network operating conditions at its sending 
and receiving ends. Nonnal power transfer in forward 
direction, reverse power transfer, sending end and/or 
receiving end ac network short circuit capacity low due to 
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network fault, DC line witnessing fault, are some of the 
operating conditions, the VSC may have to encounter. 
Through control of modulation index and the phase shift 
between network voltage and converter input voltage on 
the sending end side and /or between converter output 
voltage and the network voltage on the receiving end 
side, the operational requirements are met by modifying 
the instant and duration of conduction of the IGBT 
switches of the VSC converters. The change in PWM 
pattern enables this. The change in PWM pattern realized 
through the controller provided with decision logics, 
enables change in fundamental frequency voltage phase 
angle and the fundamental frequency voltage magnitudes 
of the converters and hence the required change in active 
and reactive power flows [3]. However, for ensuring 
appropriate design, extensive simulation tests on the 

composite system incorporating its controllers, need to be 
carried out. 

This paper develops the model of the controller, to 
facilitate dynamic perfonnance assessment of the 
composite system through digital simulation. The model 
takes into account the complete dynamics of a VSC­
HVDC link. The model performance is validated through 
SIMULINK power system blockset (PSB) based 
simulations on the composite power system incorporating 
the developed controllers. 

II. VSC-HVDC OPERATION 

The converter phase angle can be used for the active 
power control. A VSC operates as a rectifier when AC 

voltage of the converter U oc phase lags the AC network 

voltage eac i.e. t5oc > 0 .The active power flows into 

VSC from AC system in this case. 

(I) 

The voltage magnitude can be used to control reactive 
power. The converter provides reactive power support to 

the AC network, when the converter AC voltage luocl is 

higher than the AC network voltageleacl· 

e' e u 
Q = _z:.- ....E£....Ef._ cos 8 oc a< (2) 

xoc xac 

Fig. 2 illustrates the characteristic vanatlon in active 
power, P, and reactive power, Q, capability of a VSC­
HVDC link as a function of AC system voltage, 
measured at the network interfacing point,. The reactive 
power delivery to the network increases with decreasing 
network voltage [3, 4]. Similarly, the converter reactive 
power absorption increases with increasing network 
voltage. For a given ac system voltage, the converter can 
be operated at any point within the P-Q circle, as 
required. 

Ill. 

--.: ... •l.lptl 

••••••• .:.., =I.Opt1 
-- •', "'0.9 P'' u-

-

Fig. 2: P-Q diagram for VSC-HVOC 

VSC-HVDC DECOU PLED CONTROLLER 
MODEL 

Assuming flows from the network to the converters at 
both rectifier and the inverter ends to be positive as 
shown in Fig. I, the voltage and current relationships at 
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the network side of the respective coupling transformers 
are given by (3) and (4): 

d'ahc 
abc R •abc L 1, abc e, = ,.1,. + ,--+u, 

dt 
(3) 

(4) 

Assuming balanced interfacing ac network operation 
signifying absence of zero axis components, the d-q 
transformed versions of(3) & (4) after rearranging can be 
written as [7, 8] 

ed =(di; + R, id)L -w L ;• +ud 
r dt L r r r rr r 

' 

"_ (di;" R; ·•J ·• " e, - --+--t, L, -m;L;t, +u, 
dt L; 

e - --+--t. . +m ./. +u. • -(di;• R; ·•JL L ·d • 
I dt L I I I I I I 

b 

I 

q fJ 

a a 

Fig. 3: Inter-relationship between frames 
of references for VSC-HVDC 

(5) 

(6) 

With reference to Fig. 3, network voltage on the 
rectifier side is given by 

(7) 

Similar equation exists for inverter side as well with 
suffix r replaced by i. Equation (7) when d-q transfonned 
with reference to Fig.3 yields: 

e" = E e• = 0 e" = E e• = 0 r r • r • 1 1 • 1 
(8) 

Assuming a sinusoidal signal modulating the carrier 
input in the pulse width modulator based IGBT gating 
module, the switching function giving the state of a IGBT 
in the converter, is given by 

.!..+ M, cos(m t-5) 
2 2 r r 

.!..+ M, cos(m t-5 -120°) 
2 2 ' ' 
IM 
-+-'cos(mt-5 +120°) 
2 2 ' ' (9) 

The relationship between the converter as side and de 
side voltages is given by 

(10) 

The d-q transfonnation of(IO) with reference to Fig. 3 
for both converters yields 

" - M, V 5 • - M, V . 5 
U, -2 dcr COS r 'U, - -2 dcr Sin r 

(II) 

" M V " • - M; V . " u. =--' _,_.cosu. ,u. ---- _,_.smu. 
I 

2 
c...-1 I I 

2 
uc.·t I 

L L 
Defining T = --' and 7; = --' , then linearizing (5) 

' R, R; 
& (6) results in, [8] 

t:..u; = -L,( S +;, Jt:..i; + m,L,t:..i: 

t:..u: =-L,( S+ ;Jt:..i: -m,L,t:..i; 

t:..u~ = -L{ S +;, Jt:..i~ + m;L;t:..i;• 

t:..u'/ = - L{ S + ;, };;• - m;L;t:..i;" 

Linearization of(ll) yields, 

(12) 

( 13) 
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(!.u• V V . I!.M [/!.u~J=[- v~, M,sino V~, coso, l[I!.S,] 
r -~M cosO - Jcr smO ' 

2 ' ' 2 ' ( 14) 

[l!.u~J=[_v~'M,sino v~'coso,l[I!.S,] 
tlu; - VJc; M-cost5. - V~~c; sinO. 11M; 

2 I I 2 I 

Since (14) are a set of coupled equations, to achieve 
decoupled control, Subjecting (14) to similarity 
transformation yields: 

( 15) 

Where, 

,t = -(M,+l)sino,+~(M,+l)2 sin 2 S,-4M, .v..,, 
rl 2 2 

_ -(M, +!)sinS, +~(M, +l)'sin 2 S, -4M, • v..,, 
A;.- 2 2 

-(M, +!)sinS,- ~(M, + 1)' sin 2 S, -4M1 • v..,, 
Ail= 2 2 

From (I 5), 

I d 
l!.o, =-l!.u, 

A.,, 

I d 
1!. o, = --:;-l!.u, 

1\.il 

I 
11M = -!!.u• 

' A. ' ,, 
I 

11M = -!!.u• , A. ' 
i2 

Processing of Measurements: 

(16) 

Conventional complex power is valid only for a system 
in steady state with a fixed line frequency. Whereas 3-
phase instantaneous power is valid during steady as well 
as transient states [5] and describes the total energy flow 

per second between two interfacing systems. Using 
instantaneous power theory, phase current and voltage 
measurements on the network can be transformed to 
Clarke variables. 

e' = ~[.j) e'- .J3 e'] 
3 2 2 

.• 2 [ .• I ·• I ., ] I =- l --1 --1 
3 2 2 

;P = ~[.j) ;'- .j3 i'] 
3 2 2 

( 17) 

Instantaneous reactive power on the rectifier and both 
real & reactive powers on the inverter sides can be now 
derived as 

Q _ P·a a ·P 
r - er lr - er lr 

Deriving Qrref, P;ref and Qiref 

Deriving d-q variables from Clarks variables 

ed =e"cosB+ePsinB 

e• = -e" sinB+eP cosB 

i" = i" cosB+iP sin B 

(18) 

(19) 

i•=-i"sinB+iPcosB (20) 

Estimating current values of modulation and the phase 
angle 
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Fig.4 Controller scheme for Voltage-Sourced Rectifier 

"~10 

"~ 
Fig.S: Controller scheme for Voltage-SoW'Ced Inverter 

/ a 2 p2 
M = vu, +u,. 

' VJc)2 

(21) 

Equations ( 12) through (21) model the proposed 
controllers on rectifier and the inverter sides of a VSC· 
HVDC. 

The controllers detennine the incremental corrections 
required in the current values of both modulation index 
and the phase angles, at both the ends, to achieve a 
specified operating condition. 

IV. MODEL PERFORMANCE 

The operating scenario related to the system shown in 
Fig. I, is generated on SIMULINK. The control initiation 
takes place at T~O.I sec on rectifier side and at T~0.3 sec 
on inverter side. As result of this, ramping up/down 
continues until T=I.O sec. At T=2.0 sec on rectifier side 

V"' is reduced by 5%, additional Q supply becomes 

available to network. 

On the inverter side real power outflow to the network 
is reduced by I 00/o and Q supply to the network is 
maintained at 0.1 pu. Figures 6-10, depict the changes in 
the controlled variables during this operating regime. 
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Fig. I 0: Phase angle variation between modulating signal and carrier 
wave input of inverter 

V. CONCLUSION 

The instantaneous power theory based network real 
and reactive power measurement estimation is 
appropriate for VSC-HVDC. The proposed model 
realizes incremental correction in both modulation index 
and phase shift angle between modulating signal and 
carrier input to PWM module. 

The controller models can be put into state space fonn 
to facilitate small disturbance oscillatory performance 
analysis of a composite power system with VSC-HVDC 
link . 

REFERENCES 

f 11 Michael P. Bahnnan, Jan G. Johansson nnd Bo A. Nilsson, 
"Voltage source converter transmission technologies-the right lit 
for the application .. , 2003 . 

[2] F. Schettler, H. Huang nnd N. Christl, .. HVOC Transmission 
Systems using Voltage Sourced Converters- Design and 
Application .. , p 715-720, 2(X)(}. 

{31 Michael Bahnnan, Abdei-Aty Edris and Rich Haley, 
.... Asynchronous back-to-back HVOC link with the voltage source 
converters .. , presented at Minnesota power systems conference, 
USA, Nov 1999. 

14] 

151 

161 

B. R. Andersen, .... VSC transmission", CIGRE B4, HVOC and 
Power Electronics HVOC Colloquium, Oslo, April 2006 . 

Hirofumi Akagi, Yoshihira Kanazawn and Akira Nabae, 
"Instantaneous reactive power compensators comprising switching 
devices without energy storage components", IEEE transactions 
on industry applications, vol. JA-20, No.3, May/June 1984 . 

B. R. Andersen, L. Xu, P. J. Horton and P. Cartwright, 
.. Topologies for VSC transmission". POWER ENGINEERING 
JOURNAL, JUNE 2002. 

Pl JL lbomns, S. Poullain and A. Benchnib, "Analysis of a Robust 
OC - Bus Voltage Control System for a VSC Transmission 
Scheme", Conference publication No. 485, lEE 2001. 

rs1 C. Schauder and H. Mehta, "Vector analysis and control of 
advanced static VAR compensators", lEE PROCEEDINGS-C, 
Vol. 140.No.4.JULY 1993. 



~ALPLPE~N~D~IX~-------------------------------------------------79 

Appendix C 

Ravindra N. Mukerjee and Ahmed Mahjoub, "A Fully Decoupled Controller Model for 

VSC-HVDC Transmission System," Elsevier Electric Power Systems Research. 

Manuscript# EPSR-D-09-00 189. 



~A~P~PE~N~DliiX~---------------------------------------------------80 

A Fully Decoupled Controller Model for VSC-HVDC Transmission System 

Ravindra N. Mukerjee*, Ahmed Mahjoub 

ABSTRACT 

Department of Electrical & Electronic Engineering 

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, MaJaysia. 

mmukeriee@gmail com. mahjoub ahmedt@yahoo com 

VSC-HVDC has two distinct advantages over its earlier generation thyristor based High Voltage DC 

transmission. Synchronous voltage source is not required to commutate against, for its operation and it does not 

suffer fTom commutation failures under adverse conditions in interfacing ac system. These two properties make 

it amenable to wider application areas. To make it adapt to operational conditions imposed on it in various 

applications, its controller parameters need to be assessed and tuned through extensive simulation studies. To 

facilitate this, a fully decoupled controller model exploiting similarity transformation and using instantaneous 

power theory based measurements suitable for steady as well as transient states is developed in the paper. The 

performance of the model is assessed through simulations on a VSC-HVDC link interfacing an ac system 

having nonnal fault level, low fault level and witnessing a single line to ground fault on rectifier transformer 

primary side. 

Keywords: VSC-HVDC, Instantaneous Power Theory, Modal Transfonnation, Distributed Generation. Park's 

Transfonnation. 

1. Introduction 

VSC-High-voltage direct current transmission a high power electronics based technology provides economical 

alternatives to ac transmission for long-distance bulk power delivery from remote sources, provides immunity 

against network congestion or loop flow on parallel paths facilitating power trading. is useful as asynchronous 

link to provide a firewall against propagation of cascading outages in one network crossing over to another 

network. It also facilitates interconnection of AC systems in the lower and middle power range. VSC-HVDC 

has two distinct advantages over its earlier generation thyristor based High Voltage DC transmission. 

Synchronous voltage source is not required to commutate against, for its operation and voltage source 

converters (VSC) do not suffer from commutation failures under adverse conditions in interfacing ac system, 

allowing fast recoveries from nearby ac faults. These two properties make it amenable to wider application 
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areas. VSC-HVDC reverses power through reversal of current direction rather than voltage polarity, facilitating 

power reversal at an intermediate tap point independent of the main power flow direction in Multi-terminal 

HVDC systems [I]. 

VSC-HVDC transmission using self com mutated IGBT and Pulse Width Modulation (PWM) with switching 

frequencies considerably higher than the AC system power frequency , permits simple converter topology, 

achieves high speed control of both active & reactive power, generates ac output voltage with any desired phase 

angle or amplitude instantly with a close to sinusoidal wave shape, reducing harmonic generation and 

eliminating low order harmonics, and causing a rather small harmonic interference compared to the line 

commutated converters in thyristor based HVDC. Up to a certain limit, any phase angle or amplitude can be 

created by changing the PWM pattern [2,3]. IGBT being aMOS-device, power need for the control of the 

component is very low. To achieve a high HVDC link voltage, series connection of many semiconductors with 

good voltage distribution even at switching frequencies in kHz range is possible [ 4-6]. 

VSC-HVDC converter station can comprise of either VSC or current-sourced converters (CSC). Whereas the 

CSCs' are robust, the VSCs' have higher efficiency, low initial cost, and smaller physical size. VSC is preferred 

over CSC, since both power and control circuits in CSC are more complex. Filter capacitors are required at the 

ac terminals of a esc to improve output ac current waveform quality, adding to cost. esc requires switches of 

sufficient reverse voltage withstand capability such as Gate-Tum-off thyristors, capable of blocking voltages of 

both polarities in off-state. Alternatively, series diode is required with each switch, resulting in increased cost 

and conduction losses. CSC also requires smoothing DC inductors across the three-phase bridge terminals, 

which are generally larger and more expensive than capacitors used in VSCs (7,8]. IGBT module commercially 

available is more suitable for voltage-source PWM converter, since a free-wheeling diode is connected in anti­

parallel with each IGBT. Thus IGBTs do not need the built-in reverse voltage blocking capability, bringing in 

more flexibility to device design. 

The operational requirements imposed on an HVDC link keep on varying, depending on the changes in 

interfacing ac network operating conditions at its sending and receiving ends. Normal power transfer in forward 

direction, reverse power transfer, sending end and/or receiving end ac network short circuit capacity low due to 

network fault, DC line witnessing fault, are some of the operating conditions, the VSC may have to encounter. 

Through control of modulation index and the phase shift between network voltage and converter input voltage at 

the sending end and /or between converter output voltage and the network voltage at the receiving end, the 
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operational requirements are met by modifying the instant and duration of conduction of the IGBT switches of 

the VSC converters. The change in PWM pattern enables this. The change in PWM pattern realized through the 

controller provided with decision logics, enables change in fundamental frequency voltage phase angle and the 

fundamental frequency voltage magnitudes of the converters and hence the required change in active and 

reactive power flows [9]. 

VSC with PWM can operate in all four quadrants ofPQ-plane, i.e. it can operate as rectifier or inverter at 

variable frequency and absorb or supply reactive power to the interfacing AC network. Reactive power can also 

be controlled at each terminal independent of the de transmission voltage level. This control capability gives 

total flexibility to place converters anywhere in the ac network as there is no restriction on minimum network 

short circuit capacity. HVDC transmission and reactive power compensation with VSC technology has 

attributes beneficial to overall system perfonnance. It can be used for the dynamic compensation of power 

transmission systems, providing increased transient stability and improved damping. The STA TCOM 

functionality enables it to adjust reactive power support to an AC system to control AC bus voltage and improve 

system stability [6]. The dynamic support of the ac voltage at each converter terminal improves the voltage 

stability and increases the transfer capability of the sending and receiving end ac systems. 

Controllability ofVSC-HVDC facilitates it to operate under constant power; ac voltage control and frequency 

control modes, enabling it to be radially interconnected to an electric distribution system having feed from 

synchronous generation. A VSC-HVDC link supplying power to (i) an electric distribution network with or 

without embedded generation and interfacing directly with the loads having varying characteristics, (ii) an 

industrial electric distribution system having feed from the onsite generation or (iii) serving as asynchronous 

link between two ac systems, has to adjust itself to avoid oscillations under changing operating conditions. To 

suppress these oscillations, design and operational strategy of controllers in a VSC-HVDC arrived at through 

dynamic simulations, plays a significant role. 

To facilitate dynamic simulation of a composite power system incorporating a VSC-HVDC link and assess 

perfonnance of a controller supervising PWM module for ultimate firing control of the IGBT valves, models for 

the VSC-HVDC controllers were developed by several authors [10-14]. The control system in a VSC-HVDC 

comprises a fast inner current controller controlling the ac current within the converter's current carrying 

capability limit and a number of outer loop controllers providing reference values of current to the inner current 

controller, for the control strategy chosen at the rectifier or the inverter end. The outer controllers could be de 
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voltage controller, active power controller, reactive power controller and the frequency controller. Not all the 

outer controllers are used at the same time. However, one ofthe two converters must control the link de voltage 

to achieve active power balance between the power entering the rectifier end and leaving the inverter end [II]. 

In [I 0], state model x = Ax+ Bu is developed with currents in direct and quadrature axes of a synchronously 

rotating reference frame as state variables and using d-q transformed equivalent of the source side circuit of the 

VSC converter, originally framed in a-b-c frame of reference. Synchronously rotating d-a·<is is assumed to be 

leading the phase 'a' by a transformation angleO, derived through a phase locked loop. Oecoupled control rule 

for the current state variables or the inner current controller is obtained by defining the feedback loop and the PI 

compensation. The inner current controller loop is implemented in d-q frame. However, control law for 

determining the converter source side reference voltage variables ud and Uq still need cross-coupled terms. These 

voltages and the de link voltage V de. determine the amplitude and angle modulation indices. The measured real 

and reactive power on the network side is assessed using the Clarke's variables viz. instantaneous voltage and 

current vectors. 

In [II], strategy is similar as in [10], except that a one-sample delay is implemented in the inner current 

controller for slow current control and a smith predictor is used in the current controller to compensate for the 

time delay for fast current control. The inner current control loop is implemented in d-q frame. The dead beat 

current control is achieved through proportional control of the current error. However, to wipe-off the steady 

state current error, integral part can also be added. The measured values of the d-q transformed currents are 

derived from the real and reactive power computed after transforming the voltages and the currents acquired in 

a-b-c reference frame to rotating d-q frame. The computation of converter source side reference voltage 

variables ud and Uq need iq and id respectively, and in that sense use coupled expressions. These reference 

voltages are transformed to the a-b-c frame via Clarke's transformation. 

[12] also follows somewhat similar strategy as in [10] and [II]. Fundamental frequency model in terms ofd-q 

variables is formed through transformation from a-b-c frame to switching reference frame and then to dqO 

frame. The inner current loop is once again implemented in d-q frame. The current components are decoupled. 

However, computation of d component of converter source side terminal voltage needs q component of current 

and similarly, computation of q component of converter source side voltage needs d component of current and 

hence the model is like the earlier two models in this respect. Like in [10] converter source side voltages and the 

de link voltage V de. determine the amplitude and angle modulation indices. 
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In [13] and [14] converter source side phase voltages in a-b-c frame are transformed into Clarke's components. 

The components are then identified and separated into positive and negative sequence voltages. While positive 

sequence voltage is subjected to a counter clockwise d-q transformation, the negative sequence voltage is 

transformed to a clockwise d-q transformation. This transforms both of them into de components during 

filtering, and avoids any phase shift. The two filtered components are then used to compute the mean value of 

the source voltage during the sample period, specifically witnessing AC system disturbances. Reference values 

of the active and reactive parts of the converter currents in rotating d-q frame are supplied from the outer power 

loop. The outer loop on the rectifier side includes a PI-control of the de link voltage and a forward feed of the d­

component of the reference value derived from the outer power loop of the inverter side, thus facilitating change 

of the ordered active current without influencing the de link voltage. The inner current loop is implemented in d­

q frame, wherein the current errors are computed using the measured d-q currents and two sample delayed 

reference currents. This avoids failure of the dead-beat current control during normal ac network conditions. 

Dead-beat current control works satisfactorily with strong ac network interfacing the VSC-HVDC. Converter 

source side reference voltages are transformed to a-b-c frame, before feeding the PWM block with amplitude 

and angle modulation indices as inputs. 

This paper develops the model of the controller with a modified inner current loop wherein, not only the current 

errors in the d-q frame are decoupled, but the generation procedure of source side converter d-q voltages is also 

decoupled. The q component of the current error is not required to computed component of the converter source 

side reference voltage and the d component of the current error is not required to compute q component of the 

converter source side reference voltage. This is expected to speed up reference voltage generation. 

Conventional complex power is valid only for a system in steady state with a fixed line frequency. Whereas 3-

phase instantaneous power is valid during steady as well as transient states [ 15] and describes the total energy 

flow per second between two interfacing systems. Considering this, the computation of the measured Clarke's 

components of the real and reactive power in the outer power loop is proposed to be based on the instantaneous 

power theory. The model performance is validated through SIMULINK Power System Blockset (PSB) based 

simulations on the composite power system incorporating the developed controllers. 

2. vsc.nvoc OPERA noN 

The converter phase angle can be used for the active power control. A VSC operates as a rectifier when AC 

voltage of the converter Uae phase lags the AC network voltage eae i.e. li ac > 0 .The active power flows into 

VSC from AC system in this case as shown in Fig. I. 



~A£P~PE~N~D~IX~-----------------------------------------------------'85 

(I) 

The voltage magnitude can be used to control reactive power. The converter provides reactive power support to 

the AC network, when the converter AC voltage ju ,..j is higher than the AC network voltage je ...-I· 

(2) 

3. State Space Model 

Assuming flows from the network to the converters at both rectifier and the inverter is positive as shown in Fig. 

2, the voltage and current relationships at the network side ofthe respective coupling transformers are given by: 

d·abc 
abc R ·abc L l, abc er = ,J, + ,--+u, ' 

dl 

d·abc 
e ~bc = R.l·~bc L I; abc ' '' + .--+u 

I dt I 

(3) 

Transforming the equations in a~b-c frame of reference to a synchronously rotating reference frame shown in 

Fig. 3, Eq. (3) can be written as 

d(T-1 ·dq•) d(T-1 ·dq•) 
T -1 dqO _ R T-1 ·dqO L dqol, T-1 dqO T-1 dqO _ R T-1 ·dqO L dqo1; T-1 dqO (4) 

dqOer - r rJqo 1r + r + dqOUr ' dqOei - ; d:[Ol; + ; + dqOUi 
dl dl 

Where, the transformation and its inverse transformation with reference to Fig. 3 are given as 

[

sinB sin(B-120") sin(B+I20")] 
r..,, =~ cosB cos(B-120") cos(B+I20")' 

3 I I I 
- - -
2 2 2 

[ 

sin B cosB '] 
r,;;~ = sin(B-120") cos(B-120") I 

sin(B+I20") cos(B+I20") I 

Pre multiplying both sides by Tdqo, and expanding the 2nd term on the right hand side, Eq. (4) yields 

e<~qo = R iJq0 +L -
1
'-+T ~i'Jqo +uJq0 ,e'!'l0 = R.i'!'i0 +L. - 11-+T __!:1.!!_;~0 +u~0 

(
d·dqO dT-

1 
) (d'dqo dT-

1 
) 

r r r r dt dq0 dt r r I I I I dt Jq0 dt I I 
(5) 

Eq. (5) after simplification [appendix A, Eq. (A. I) & (A.2)] and assuming balanced operation of interfacing ac 

network signifYing, absence of zero axis components, the d-q transformed versions ofEq. (3) is 

(6) 

(7) 
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Eq. (6) and (7), with currents along d-q axes i~, i;J and i~ , i;q as state variables, can be written in state space 

form;=Ax+Buas 

[ 

R, 

!!...[;;] = -~; 
dt ., 

t,. -m, 

(8) 

Ac network voltages on rectifier and inverter sides of the de link are assumed to be 

[
e;] [ COS<V,/ ] e: = E, cos{w,t-120") 

e; cos(w,t + 120") 

(9) 

Assuming balanced operation of interfacing ac network signifying, absence of zero axis components, the d-q 

transformed version ofEq. (9) can be written as [appendix A, Eq. (A.3)] 

(10) 

The relationship between the converter ac side and de side voltages on rectifier and inverter sides is given by 

[appendix A, Eq. (A.5)] 

[
u;] [ cos(w,t-8,) ] 
u: = M '; ,., cos(w,t- 8, -120") ' 

u; cos(w,t- o, + 120") 

(II) 

Assuming balanced operation of interfacing ac network signifying, absence of zero axis components, the d-q 

transformed version ofEq. (II), [appendix A, Eq. (A.6)] can be written as 

[u;] = M ,V ""'[sin 8,], 
u: 2 cosO,. [u,']= M,V""' [sino,] 

u1
9 2 cosO, 

( 12) 

The state matrices in Eq. (8) can be subjected to similarity transformation [16], to obtain decoupled state space 

equations [appendix A, Eq. (C.3) & (C.4)] 

(13) 

( 14) 
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4. Fully Decou pled Controller Model 

4.1. Inner current loop 

In HVDC transmission, V de needs to be kept sufficiently high. For different operational regimes requiring real 

and reactive powers to be controlled independently, eq and hence ud & Uq need to be controlled independently. 

Consequently, the modulation index and also the phase shift between the modulating signal and the carrier 

signal in PWM module need to be varied to achieve various operational requirements. With a view to achieve 

dead beat control leading to zero steady state error, using state Eq. (13) and defining feedback loops and PI 

compensation, as 

Where, x = (k + ~)v' _ ;' ). 
I p S ~J r X = (k + ~)(i' - i') 2 p

5
rrtfr 

(I 5) 

Similarly, from state Eq. (14) 

(16) 

Eq. (I 5) and (I 6) model the inner current control loop. The control implementation involves the state 

variables i:, t/., u;, u;_. However, to incorporate controller dynamics into the composite state matrix together 

with the VSC-HVDC power circuit dynamics and the interfacing ac system dynamics for carrying out modal 

analysis of the composite system u~, u~ may have to be transformed to u~, u~. Once u~, u~ d ui, u? are 

available, required modulation index and also the phase shift between the modulating signal and the carrier 

signal in PWM module can be determined using the relations 

( 
' ) I ,, •' _1 U, VU; + U; 

b" = tan - - 8 , M. = -'--':-:--::-':-:-
, ' ' 'V/2 u, del 

, " = tan-•('!1..)-e I d i 
u, 

( 17) 

4.2. Outer loop 

The outer loop comprises of the DC voltage controller, the active power controller and the reactive power 

controller. These controllers provide reference values of the respective direct and quadrature axis currents to the 

inner current control loop, implemented in d-q frame. 



~A~PPwE~N~D~I~X~--------------------------------------------------88 

4.2.1. DC voltage controller 

Inverter side is set to control the DC link voltage. A control equation for the direct axis current reference on the 

inverter side is implemented for the purpose. This outer controller is much slower than the inner loop current 

controller, to ensure stability. i;'1ref being in rotating d-q frame, yields de component in steady state and is 

synonymous to the active current, assuming no power losses in the converter. 

(18) 

4.2.2. Active power controller 

The reference value of the active part of the converter current is supplied from the outer active power loop. The 

·d 
reference value I rref being in rotating d-q frame, yields de component in steady state. The control of active 

power combines both open loop and the feedback loop as shown in Eq. (19). For implementation of the 

feedback loop, error between the desired de power to be transferred and the active power measured on the 

interface bus is computed in the loop itself. 

4.2.3. Reactive power controller 

.J p rrrf 
'"tj =-,­

e, 
(19) 

The outer reactive power loop supplies reference value of reactive part of the converter current. The reference 

values i~ref at the rectifier and ii~f at the inverter ends being in rotating d-q frame, yield de component in 

steady state. The control of reactive power combines both open loop and the feedback loop as shown in Eq. (20) 

& (21). For implementing the feedback loop, error between the desired reactive power to be exchanged between 

the ac network and de link and the reactive power measured on the interface bus is computed in the loop itself. 

(20) 

(21) 

4.3. Processing of Measurements 

Transfonning network phase currents & voltages to Clarke variables using instantaneous power theory, 

e =~(• _.!_e _.!_e) e =~(J3 e- J3 e) 
a3a2b2c'J132b 2c 

(22) 
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Instantaneous real and reactive power measured at the rectifier side and the reactive power measured at the 

inverter side in terms of the respective Clarke's components are given as [15] 

(23) 

The measured values ofthe active power and the both end reactive power are used to implement open and 

feedback control in the outer power loop. Fig. 4 and Fig. 5 show the respective converter controller models on 

rectifier and inverter sides. 

5. Controller Model Performance Assessment 

The system and the scenario descriptions are presented in Tables I & 2 respectively. Total simulation time is 3.0 

sec, carrier frequency is 1350Hz and the integration time step is 7.407 J.I.SCC 

5.1 Comparative Performance Assessment 

Three scenarios are considered, to evaluate the performance of the developed model. In the first scenario, short 

circuit level at both rectifier and inverter end AC system buses is 2000MV A i.e. the source impedance 

26.45 0. is less than the converter transformer impedance 39.675 0. The inverter end controls are activated at t 

= 0.1 second and the rectifier end controls are activated at t = 0.3 sec. In the second scenario, the short circuit 

level at both end ac system interfacing buses is IOOOMVA or a source impedance of52.90. is more than the 

converter transformer impedance. Inverter end controls are initiated at t = 0.1 sec and rectifier end controls are 

activated at t = 0.3 sec. In the third scenario, while the rectifier end source impedance is 52.9 n, the inverter 

end source impedance is 26.45 0. The activation time of respective end controls remain similar to the earlier 

two scenarios. The single line to ground fault occurs at the rectifier transformer primary side at t=l.O sec and the 

fault is cleared at t= 1.2 sec. 

Fig. 6 shows the ac network voltages at the rectifier end in the three scenarios. The dynamic over voltage 

corresponding to higher source impedance is 6% as against 3% for the lower source impedance. With the real 

and reactive power controls activated at the rectifier end but without ac voltage control, ac voltage is 4% lower 

than the rated one, under normal fault level condition. Fig. 7 shows the ac network voltages at the inverter end in 

the three scenarios. Only de link voltage and the reactive power flow control are activated at this end and ac 

voltage control remains inactive. The wave forms do not get influenced by the rectifier end asymmetrical fault at 

the transformer primary. Fig. 8 shows the real power flow into DC link on rectifier side. Real power controller is 

activated at the rectifier side at t =0.3 sec. Fig. 9 shows the reactive power flow into the DC link on rectifier 

side. The rectifier end has the reactive power controller activated at t= 0.3 sec. In all the scenarios Q import or 
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export is set at zero. Taking reactive power flow from network to the converter at both the ends as positive, Fig. 

9 shows that the Q flow is indeed controlled to its set value. However, oscillations are witnessed, when the 

rectifier side source impedance is higher than the converter transformer impedance. Fig. 10 shows the DC link 

voltage at the inverter side during all the three scenarios, wherein the DC voltage controller is activated at 0.1 

sec. Fig. II shows the variation of the modulation index at the rectifier end. 

6. Conclusion 

Instantaneous power theory is advantageous for measuring real and reactive power, as it is suitable for steady 

and transient states as well as for non sinusoidal waveforms, a distinct possibility in presence of harmonics 

during system operation. Similarity transfonnation can be used to obtain a fully decoupled model for the inner 

current control loop control circuit implementation involves original current and voltage state variables. 

However, to facilitate small signal stability assessment of a composite system comprising ofVSC-HVDC link 

as well as interfacing ac system, the variables need to be transfonned while framing the state matrix. A lower 

fault level ac system interfacing with the VSC-HVDC link may lead to longer settling time, higher dynamic 

over voltages and relatively a longer fault recovery time. 

Appendix A 

Noting that in Eq. (5), 

Eq. (5) reduces to 

sin (mt- 120") 

cos(mt- 120") 
I 

2 

~] 

sin (mt + 120" )][ m cos mt 
cos{mt+l20") mcos{mt-120") 

.!. m cos(mt + 120") 
2 

Ac network voltage on rectifier side in Eq. (9) can be written as 

0~] - msin{mt-120") 

- msin{mt + 120") 

- m sin mt 

(A. I) 

(A.2) 



QA~PwPE~N~D~IX~-----------------------------------------------------91 

Pre-multiplying both sides by T ,.,, 

[
e"] [sin wt sin(wr-120•) sin(wr + 120•)][ cosw,l ] e: =fE, coswt cos(wr-120•) cos(wt+l20°) cos(w,t-120°) 

e~ .!.. .!.. .!.. cos(w,l + 120•) 
2 2 2 

[ :~] = [ {] , simi I~ equation for the inverter side is [ :~] = [ ~'] (A.3) 

The switching functions giving the state of an IGBT in the rectifier and inverter end converters, assuming a 

sinusoidal signal modulating the carrier input in the PWM based IGBT gating module, are given by 

.!..+ M, cos(m t-o) 
2 2 r r 

.!..+ M, cos(m t-o -120•) 
2 2 ,. ' 
I M 
-+ -' cos(w 1- o + 120•) 2 2 ,. r 

I M, ( ) -+--cos OJ.t- f5 2 2 I I 

.!.. + M, cos(w./- o -120•) 
2 2 I I 

I M 
- + --' cos(w,r- o, + 120•) 
2 2 

(A.4) 

Using Eq. (A.4), the relationship between the converter ac side and de side voltages on rectifier and inverter 

sides is given by 

[
u,"l [ cos{w,r-<5,) ] MV 
u1b =~ cos(w;t-61 -120°) 

u~ 2 
cos(m;t- c51 + 120°) 

(A.5) 

The converter ac side voltage on rectifier side in Equation (A.5) can be written as 
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Pre-multiplying both sides by T""' 

[u~ l [sin wt sin(wt-120•) sin(wt + 120•)][ cos(w.t- o,) ] 
u: =fM':"'' co~wt cos(wt

1
-120•) cos(wtt120•) cos(w,t-o,-120:) 

u, _ _ _ cos(w,t-o, + 120) 
2 2 2 

[u~l [sino,] :~ = M,:...,, co~o, , similar equation for the inverter side is [u~] [sino,] 
:; = M,: d<' co~ o, (A.6) 

Appendix B 

Eigenvalues of the state matrix for rectifier in Eq. (8) can be determined by solving the characteristic equation 

given by A - ).,! = 0 

Eq. (8.1) yields two Eigenvalues ;. = _ R, _ jw & ;. = _ R, _ jw 
d L,. ,. ,-2 L,. ,. 

Eigenvector corresponding to A.,.1 , v
1 
= [v"], can be determined from lA- A,. 1 ~v; ;;;; 0 

v, 

Substituting A.,.
1 
=- ~,. + jw,. 

' 

in Eq. (8.2) yields 

[
R, R, . ] o -w v - ---+;m v = 

,. II L,. L,. ' 21 

(B.I) 

Treating v11 as the tree variable in Eq. (8.3) and assigning an arbitrary value of I yields V, = [ v" = 
1 

] 
v2t ::;; Jl 

Eigenvector corresponding to ).,. 2 , v, = [ :~] can be determined rrom lA- ..t, 2~V2 = 0 

(8.2) 

(8.3) 
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S b 
. . R 

u stttutmg .< =--' - 1·w 
r2 L r 

in (B.4) yields 

' 

[ 
R, R, . ] O - ----JW v +m v = L. L , 12 , n 
' ' 

& 

(B.4) 

[ 
R, R, . ] O -m v - ----1m v = 

r 12 L, L,. r 22 

(B.5) 

Treating v22 as the free variable in Eq. (B.5) and assigning an arbitrary value of I yields v, = [v" =_J'] 
Vzz -I 

Modal matrix of the state matrix in Eq. (8) is p = (V, I [ I }I] . . . 1 I [ I -}I] V
2 

= . , Its mverse IS p- =- . 
Jl I 2 - Jl I 

Similarity transformation p-• AP of state matrix in Eq. (8), which is of the form, x = Ax + Bu is given by 

[ ~ I I ~ . I ·1 -- w, I ·1 --+ 101' p-'AP=-'-[. -J] L, [. J] or r'AP= L, 
2 - Jl I -w _!!r_ Jl I O 

' L, 

(B.6) 

Appendix C 

To facilitate modal analysis of a composite power system incorporating VSC-HVDC link, using the 

transformation x = Px:, the state matrix in Eq. (8), which is of the form, x = Ax + Bu can be written as 

P x: = APx, + Bu Or ;z = p-t APx, + p-• Bu (C. I) 

Modal matrix and its inverse for the state matrix are given as p = [ 
1 

}I 
}I] and p-' = -'-[ I - jl] 
I 2 -}I I 

Substituting these into the state equation and also substituting Eq. (10), 

The foregoing equation after using Eq. (B.6) reduces to, 
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:!._[i~] = [<: + )m, 
dt ., 'r: 0 

0 }·'] [ '£] [' ''] In +-'- -} r __ l_ Ur:- JUr: 

_ ~: _ }m, i~ 2L, E, 2L, u~ - ju~ 
(C.2) 

)E,, Ju;. and ju~ in Eq. (C.2) are the projections of E, u'/, u; on their respective orthogonal axes in an 

orthogonal system of coordinates and reduce to zero. Eq. (C.2) can be written as 

:!._[i~] = [<: + Jm, 
dt i! 0 R, O . }::] + 2~ [£-~:,] -4- j(J), r: r ' r 

(C.3) 

Similarly the state equation for inverter in Eq. (8) reduces to, 

[·'] [-!i.+ jm, d '• L. - = ' 
dt i! 0 

0 }·'] [ J ] 
'1: I -U; _ i _ jw, i,; + 2L, E, -u,' 

(C.4) 

Whereas i~, i~, i::, i,~ are not the original state variables, the state variables related to the voltage i.e. u; and 

u;. are the original state variables. 
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Tables 

Converter Transformer 

DC Link Rating 

AC Side Harmonic Filters 

27<h High Pass Damped 

54<h High Pass Damped 

Outer Loop Controllers 

P controller 

Q controller 

V de controller 

Inner loop current controller 

Case Study Description 

AC network Short Circuit Level 

Rectifier Side 

Inverter Side 

Rectifier Side Controller 

Active controllers activated at 

Pmr 

Qmr 

Inverter Side Controller 

Active controllers activated a 

V dcircf 

Qiref 

Table I 

System Description 

200 MVA, 0.15 p.u. 

200MW 

40MVAR 

18MVAR 

22MVAR 

Kp=O.O 

Kp=O.O 

Kp=2.0 

Kp=4.0 

Table 2 

Scenario Description 

Normal Fault Lower fault 

Level Level 

2000 MVA IOOOMVA 

2000 MVA 1000 MVA 

P,Q P,Q 

t = 0.3 sec t = 0.3 sec 

1.0 p.u. 1.0 p.u. 

0.0 p.u. 0.0 p.u. 

Vdc' Q VdoQ 

t= 0.1 sec t= 0.1 sec 

1.0 p.u. 1.0 p.u. 

-0.1 p.u. -0.1 p.u. 

230kV/100kV 

± IOOKv 

Quality Factor= 15 

Quality Factor= 15 

Ki=20.0 

Ki=20.0 

Ki=40.0 

Ki-40.0 

Single Line·Ground 

Fault 

1000 MVA 

2000 MVA 

P,Q 

t = 0.3 sec 

1.0 p.u. 

0.0 p.u. 

VdoQ 

t= 0.1 sec 

1.0 p.u. 

-0.1 p.u. 
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Appendix 0 

Ravindra N. Mukerjee and Ahmed Mahjoub, "A Instantaneous Power Theory Based 

Fully Decoupled Controller Model for VSC-HVDC Transmission System," European 

Transactions on Electrical Power. Manuscript# ETEP-09-0125. 
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A Instantaneous Power Theory Based Hybrid Controller for VSC-HVDC 
Transmission System 

SUMMARY 

Ravindra N. Mukerjee*, Ahmed Mahjoub 
Department of Electrical & Electronic Engineering 

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia 
mmukerjeet@gmail.com. Mahjoub ahmed®vphoo com 

An AC system interfacing electronics based power transmission or distribution network 
experiences non-sinusoidal voltage and current waveforms. Events in an ac power network 
may prompt variation in fault level at the interface point or some amount of system unbalance 
or even initiation of transients. Since VSC-HVDC controller performance depends on the 
accuracy in the measured values of currents and voltages and the reference values of the 
currents derived there from, it is important to use a measurement processing technique 
appropriate for the non-sinusoidal waveforms and transients. Instantaneous power theory is 
used in this paper for not only obtaining the measured values of the real and reactive powers, 
but also for deriving reference values of currents used in the inner current control loop. A 
fully decoupled controller model exploiting similarity transformation is also developed. The 
performance of the model is assessed through simulations on a VSC-HVDC link interfacing 
an ac system. 

Keywords: VSC-HVDC, Instantaneous Power Theory, Modal Transformation, Distributed 
Generation, Park's Transformation. 

l. Introduction 

VSC-High-voltage direct current transmission a high power electronics based technology 
provides economical alternatives to ac transmission for long-distance bulk power delivery 
from remote sources, immunity against network congestion or loop flow on parallel paths 
facilitating power trading and is useful as asynchronous link to provide a firewall against 
propagation of cascading outages in one network crossing over to another network. It also 
facilitates interconnection of AC systems in the lower and middle power range. VSC-HVDC 
has two distinct advantages over its earlier generation thyristor based HVDC transmission. 
Synchronous voltage source is not required to commutate against, for its operation and 
voltage source converters (VSC) do not suffer from commutation failures under adverse 
conditions in interfacing ac system, allowing fast recoveries from nearby ac faults. These two 
properties make it amenable to wider application areas. Thyristor based HVDC requires 
switching for polarity reversal. VSC-HVDC transmission reverses power through reversal of 
current direction rather than voltage polarity, facilitating power reversal at an intermediate 
tap point independent of the main power flow direction in Multi-terminal HVDC systems [1]. 

VSC-HVDC transmission using self commutated IGBT based VSC and Pulse Width 
Modulation (PWM) with a switching frequency considerably higher than the AC system 
power frequency, permits simple converter topology and reduced filter size, achieves high 
speed control of both active and reactive power, generates ac output voltage having desired 
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phase angle or amplitude instantly with a close to sinusoidal wave shape, reducing harmonic 

generation and eliminating low order harmonics and causing a rather small harmonic 
interference compared to a line commutated converter in thyristor based HVDC. The desired 

fundamental frequency voltage is created through low pass filtering of the high frequency 
pulse modulated voltage. Up to a certain limit, any phase angle or amplitude can be created 
by changing the PWM pattern [2, 3]. IGBT being a MOS-device, power need for the control 

of the component is very low. Series connection of many semiconductors with good voltage 
distribution even at switching frequencies in kHz range is possible, to achieve a high HVDC 

link voltage [4--6]. 
VSC-HVDC converter station can comprise of either VSC or current-sourced converters 

(CSC). Whereas the CSCs' are robust, the VSCs' have higher efficiency, low initial cost, and 
smaller physical size. vsc is preferred over esc, since both power and control circuits in 
CSC are more complex. Filter capacitors are required at the ac terminals of a CSC to improve 
output ac current waveform quality, adding to cost. CSC requires switches of sufficient 
reverse voltage withstand capability such as Gate-Turn-off thyristors, capable of blocking 

voltages of both polarities in off-state. Alternatively, series diode is required with each 
switch, resulting in increased cost and conduction losses. CSC also requires smoothing DC 

inductors across the three-phase bridge terminals, which are generally larger and more 
expensive than capacitors used in VSCs [7, 8]. IGBT module commercially available is more 
suitable for voltage-source PWM converter, since a free-wheeling diode is connected in anti­

parallel with each IGBT. Thus IGBTs do not need the built-in reverse voltage blocking 
capability, bringing in more flexibility to device design. 

VSC with PWM can operate in all four quadrants of PQ-plane. It can operate as rectifier or 
inverter at variable frequency and absorb or supply reactive power to the interfacing AC 
network. Reactive power can also be controlled at each terminal independent of the de 

transmission voltage level. This control capability gives total flexibility to place converters 
anywhere in the ac network as there is no restriction on minimum network short circuit 

capacity. HVDC transmission and reactive power compensation with VSC technology has 

attributes beneficial to overall system performance. It can be used for the dynamic 
compensation of power transmission systems, providing increased transient stability and 
improved damping. The STATCOM functionality enables it to adjust reactive power support 

to control AC bus voltage and improve system stability. The dynamic support of the ac 
voltage at each converter terminal improves the voltage stability and increases the transfer 

capability of sending and receiving end ac systems. 
VSC can be used as virtual synchronous generator supplying passive networks or areas 

which either have no local power generation or lack enough power in the rotating machines 
implying low short circuit power, thus improving power quality of the weak system. 
Controllability of VSC-HVDC facilitates a remote wind generation in-feed using a VSC­

HVDC link to be radially interconnected to an electric distribution system having feed from 

upstream synchronous generation and operate in parallel under constant power, ac voltage 
control and frequency control modes. Absence of minimum power or current restrictions 

facilitates reverse power flow and permits economic power schedules. It can be used in Back­

to-back schemes [I]. 
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Forced commutation, dynamic voltage control and black start capability allow VSC­
HVDC to serve isolated loads on islands over long distance submarine cables without any 
need for running expensive local generation. VSC converters can operate at variable 
frequency to feed large drives such as compressors or pumps on offshore oil or gas platforms 
from shore, eliminating expensive, less efficient higher emission offshore power production. 
Large remote wind generation arrays require (i) a collector system, (ii) reactive power 
support for doubly fed induction generators and (iii) power evacuation facility. VSC-HVDC 
underground transmission circuits can be placed on dual-use right-of-way to bring in power 
as well as provide voltage support. VSC-HVDC being an asynchronous link and connecting a 
wind farm in-feed to an electric distribution system as distributed generation can isolate the 
power system from the wind power fluctuations. 

The operational requirements imposed on an HVDC link keep on varying, depending on 
the changes in interfacing ac network operating conditions at its sending and receiving ends. 
Normal power transfer in forward direction, reverse power transfer, sending end and/or 
receiving end ac network short circuit capacity low due to network fault, DC line witnessing 
fault, are some of the operating conditions, the VSC may have to encounter. Through control 
of modulation index and the phase shift between network voltage and converter input voltage 
on the sending end and /or between converter output voltage and the network voltage on the 
receiving end, the operational requirements are met by modifying the instant and duration of 
conduction of the IGBT switches in VSC. The change in PWM pattern enables this. The 
change in PWM pattern realized through the controller provided with decision logics, enables 
change in fundamental frequency voltage phase angle and the fundamental frequency voltage 
magnitudes of the converters and hence the required change in active and reactive power 
flows [9). A VSC-HVDC link often has to adjust itself to avoid oscillations under changing 
operating conditions. To suppress these oscillations, design and operational strategy of 
controllers in a VSC-HVDC arrived at through dynamic simulations, plays a significant role. 

To facilitate dynamic simulation of a composite power system incorporating a VSC­
HVDC link and assess performance of a controller supervising PWM module for ultimate 
firing control of the IGBT valves, VSC-HVDC controller models were developed by several 
authors [10-14). The control system in a VSC-HVDC comprises a fast inner current loop 
controlling the ac current within the converter's current carrying capability limit and a 
number of outer loops providing reference values of current to the inner current controller, 
for the control strategy chosen at the rectifier or the inverter end. The outer controllers could 
be de voltage controller, active power controller, reactive power controller and the frequency 
controller. Not all the outer controllers are used at the same time. However, one of the two 
converters must control de link voltage for active power balance between the power entering 
the rectifier and leaving the inverter [II) . . 

In [I OJ, state model x = Ax + Bu is developed with currents in direct and quadrature 
axes of a synchronously rotating reference frame as state variables and using d-q transformed 
equivalent of the source side circuit of the VSC converter, originally framed in a-b-c frame of 
reference. Synchronously rotating d-axis is assumed to be leading the phase 'a' by a 
transformation angle e, derived through a phase locked loop. Decou pled control rule for the 
current state variables or the inner current controller is obtained by defining the feedback 
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loop and the PI compensation. The inner current controller loop is implemented in d-q frame. 
However, control law for determining the converter source side reference voltage 

variablesudand u. still need cross-coupled terms. These voltages and the de link voltage V"", 

determine the amplitude and angle modulation indices. The measured real and reactive power 
on the network side is assessed using the Clarke's variables viz. instantaneous voltage and 
current vectors. 

[II], is similar to [10], except that a one-sample delay is implemented in the inner current 
controller for slow current control and a smith predictor is used in the current controller to 
compensate for the time delay for fast current control. The inner current control loop is 
implemented in d-q frame. The dead beat current control is achieved through proportional 
control of the current error. However, to wipe-off the steady state current error, integral part 
can also be added. The measured values of the d-q transformed currents are derived from the 
real and reactive power computed after transforming the voltages and the currents acquired in 
a-b-c reference frame to rotating d-q frame. The computation of converter source side 

reference voltage variables ud and u. need i• and id respectively, and in that sense use 

coupled expressions. These reference voltages are transformed to the a-b-c frame via Clarke's 
transformation. 

[12] also follows similar strategy as in [10] and [II]. Fundamental frequency model in 
terms of d-q variables is formed through transformation from a-b-c frame to switching 
reference frame and then to dqO frame. The inner current loop is once again implemented in 
d-q frame. The current components are decoupled. However, computation of d component of 
voltage needs q component of current and computation of q component of converter source 
side voltage needs d component of current like the earlier two models. Like in [10] converter 

source side voltages and the de link voltage V"", determine the amplitude and angle 

modulation indices. 
In [13] and [14] converter source side phase voltages in a-b-c frame are transformed into 

Clarke's components. The components are then identified and separated into positive and 
negative sequence voltages. While positive sequence voltage is subjected to a counter 
clockwise d-q transformation, the negative sequence voltage is transformed to a clockwise d­
q transformation. This transforms both of them into de components during filtering and 
avoids any phase shift. The two filtered components are then used to compute the mean value 
of the source side converter voltage during the sample period, specifically witnessing AC 
system disturbances. Reference values of the active and reactive parts of the converter 
currents in rotating d-q frame are supplied from the outer power loop. The outer loop on the 
rectifier side includes a PI-control of the de link voltage and a forward feed of the d­
component of the reference value derived from the outer power loop of the inverter side, thus 
facilitating change of the ordered active current without influencing the de link voltage. The 
inner current loop is implemented in d-q frame, wherein the current errors are computed 
using the measured d-q currents and two sample delayed reference currents. This avoids 
failure of the dead-beat current control during normal ac network conditions. Dead-beat 
current control works satisfactorily with strong ac network interfacing the VSC-HVDC. The 
reference value of the converter source side voltages are transformed to a-b-c frame, before 
feeding the PWM block with amplitude and angle modulation indices as inputs. 
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This paper develops the model of the controller with a modified inner current loop 
wherein, not only the current errors in the d-q frame are decoupled, but the procedure of 
generation of source side converter d-q voltages is also decoupled. The q component of the 
current error is not required to compute d component and the d component of the current 
error is not required to compute q component, of the converter source side reference voltage. 
This is expected to speed up reference voltage generation. Conventional complex power is 
valid only for a system in steady state with a fixed line frequency. Whereas 3-phase 
instantaneous power is valid during steady as well as transient states [ 15] and describes the 
total energy flow per second between two interfacing systems. Considering this, the 
computation of the measured Clarke's components of the real and reactive power in the outer 
power loop is proposed to be based on the instantaneous power theory. The reference values 
of currents are first calculated using Clarke's components and then the d-q form of the same 
is derived using the transformation. The model performance is validated through SIMULINK 
power system blockset (PSB) based simulations on the composite power system 
incorporating the developed controllers. 

2. VSC-HVDC OPERATION 

The converter phase angle can be used for the active power control. A VSC operates as a 

rectifier when AC voltage of the converter u~ phase lags the AC network voltage e~ i.e. 

ooc > 0 .The active power flows into VSC from AC system in this case as shown in Figure I. 

(I) 

The voltage magnitude can be used to control reactive power. The converter provides 

reactive power support to the AC network, when the converter AC voltage luacl is higher than 

the AC network voltageleacl· 
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Figure I. P-Q diagram for VSC-HVDC 
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Figure I illustrates the characteristic variation in active power, P, and reactive power, Q, 
capability of a VSC-HVDC link as a function of AC system voltage, measured at the network 
interfacing point. The reactive power delivery to the network increases with decreasing 
network voltage [5, 9]. Similarly, the converter reactive power absorption increases with 
increasing network voltage. For a given ac system voltage, the converter can be operated at 
any point within the P-Q circle, as required. 

3. State Space Model 

+ve Flow 
____. i, DC Link 

+ve Flow 
i; .,....._____ .-1 !C) 1-u,JV"'-......--{R,, L,)---;OfCT~ 

0 Inverter 
Filter Filter 

Figure 2. VSC-HVDC Power Circuit and Measurement Scheme 

Assuming flows from the network to the converters at both rectifier and the inverter ends 
to be positive as shown in Figure 2, the voltage and current relationships at the network side 
of the respective coupling transformers are given by: 

d ·obc 
abc = R ,·abc L I, abc e, ,, + ---+u 

r d/ r 
& 

d·ubc 
abc R ·abc L 1; abc e; = ;l; + ;--+u; 

dt 
(3) 

P-axis 
b- axis 

q- axis 

d- axis 

Figure 3. Inter-relationship between frames of references for VSC-HVDC 
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Transforming the equations in a-b-c frame of reference to a synchronously rotating 
reference frame as shown in Figure 3, Equations in (3) become 

d(r-l ·dq•) r-1 dqo- R r-1 ·dq• + L dqo', + r-1 udq• (4) 
dqOer - r Jqo 1r r dt dqO r 

d(T- 1 ·dq•) r-1 dqo - R r-1 -dqo + L ""•'• + r-1 dqo ( 5) 
dqoe; - 1 Jqo 1; ; dt dqoU; 

The transformation and its inverse transformation with reference to Figure 3 are given as 

[

sinO sin(0-120•) sin(0+120•)] [ sinO cosO I] 
T..,, =~ cosO cos(0-120•) cos(0+120•) ' r;,~ = sin(0-120•) cos(0-120•) I 

3 .!_ .!_ .!_ sin(0+120•) cos(0+120•) I 
2 2 2 

Pre multiplying both sides by Tdq 0 , and expanding the 2nd term on the right hand side, 

Equations (4) and (5) can be written as 

edqo = R ;Jqo + L _,_, _ + T ~ ;Jqo + uJqo 
( 

d·dqO dT- 1 
) 

,. ,. r r dt dqO dl r ,. 
(6) 

e~qo = R.i~qo + L. -
1
-1 -+ T ~i~qo + u~qo 

(

d·dqo dT- 1 
) 

I I I I dt dqQ dt I I 
(7) 

(8) 

(9) 

Assuming balanced operation of interfacing ac network signifying, absence of zero axis 
components, the d-q transformed versions of Equations in (3) are 

[~ 0 l ~, [:n= ~ ~: [:n+[:, (I 0) 

[~ 0] ~.[:::J= ~ ~: [:::H~. (II) 

Equations (I 0) and (I I), with currents along d-q axes;:, i," and;: , i,' as state variables, 

can be written in state space form x = Ax + Bu as 

d -d -- (J),. .J I ' ' 
t, L 1,. e,. - u, 

[ 

R, J dt[i;]= -w: <: ;;]+L,[e;-u;] (12) 
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.J -- m, .J J d 

[ 

R, l ~[::.]= -~ <: [::} L [::. =:~] ( 13) 

Ac network voltages on rectifier and inverter sides of the de link are assumed to be 

[:~] = £,[cos(::~':2o•)] & [:~] = £,[cas(:::·,
1

2o•)] 
e; cos(w,l + 120°) e~ cos(w1t + 120°) 

(14) 

Balanced operation of interfacing ac network signifying absence of zero axis components, 
lead to the d-q transformed version of Equations in (14) as [appendix A, (A.3) and (A.4)] 

[:n=[;J & [:;J=[;.J (15) 

The relationship between the converter ac and de voltages on rectifier and inverter sides is 
given by [appendix A, (A.6)] 

[
u; l [ cos(w,t- b,) ] [u;] [ cos(w,t- b,) ] 
u~ = M,;<~cr cos(w/-0, -120°) & u: = M;;dc1 cos(m;t-c5, -120°) 

u: cos(m,t-0,+120°) u~ cos(m1t-61 +120°) 

(16) 

Balanced operation of interfacing ac network signifying absence of zero axis components, 
lead to the d-q transformed version of Equations in (16) as (Appendix A, (A. 7) and (A.8)] 

[:~]= M,;.-, [;~:~] & [:;]= M,;oo [;~:~.] (17) 

The state matrices in Equations (12) and (13) can be subjected to similarity transformation 
(16], to obtain decoupled state space equations (Appendix C, (C.3) and (C.4)]. 

_ In _ L, In +-'- -u, d 
[

""] --+ jtJJ, ·d] [ J ] 

[ 

R, · 0 J 
dt i~ - 0 _ ~: _ jw, i~ 2L, £, -u; 

(18) 

!:!._[i~J=[- i + }lll, 
dt i! 0 

0 J·J] [ J ] 
Irz 1 -u1 

_ ~: _ }w, ;z + 2L, £,- u,' 
(19) 

Whereas i~, i~, i,~, i,~ are the transformed state variables, the state variables related to the 

voltage i.e. u; and u~ are the original state variables. 

4. Fully Decou pled Controller Model 

4.1. Inner current loop 

In HVDC transmission, Vdc needs to be kept sufficiently high. For different operational 

regimes requiring real and reactive powers to be controlled independently and e., hence ud 

and u. need to be controlled independently. Consequently, the modulation index and also the 

phase shift between the modulating signal and the carrier signal in PWM module need to be 
varied to achieve various operational requirements. With a view to achieve dead beat control 
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leading to zero steady state error, using state equation (18) and defining feedback loops and 
PI compensation as, 

[x,] I [-u~ ] 
x2 = 2L, E, -u; 

Where, x, = ( k, + ; )v:~1 - ;: ) , x, = ( k, + ; )k~1 - ;; ) 

Implying, u: = -2L,x, and u;' = E, - 2L,x, Thus, 

"- 2L (k k,)(·" ·") & • -E 2L (k k,)(·• ·•) U, -- r P + ~ lrr~f -I, U, - r - r p +--;- lm~J - l, (20) 

Similarly, from state Equation (19) 

" 2L (k k, )(·" ·") U; = - ; P +- lin/ -I; 
s 

& u'j = E,- 2L,(k, + k, )V,':.,1- i'/) 
s 

(21) 

Equations (20) and (21) model the inner current control loop. The control implementation 

involves the state variablesi:, i'j, u:, u;. However, to incorporate controller dynamics into 

the state matrix together with the VSC-HVDC power circuit dynamics and the interfacing ac 

system dynamics for carrying out modal analysis of the composite system, u:, u; may have 

to be transformed to u~,u~. Once u:, u'jandu~, u?are available, required modulation 

index and also the phase shift between the modulating signal and the carrier signal in PWM 
module can be determined using the relations 

( 
q) ~ •' •' _ 1 u, u; +u; , o, =tan -;; -8, , M 1 = / 

u, v dd 2 
(22) 

4.2. Outer loop 

The outer loop comprises of controllers such as the DC voltage controller, the active power 
controller and the reactive power controller. These controllers provide reference values of the 
respective direct and quadrature axis currents to the inner current control loop, implemented 
in d-q frame. 
4.2.1. DC voltage controller 
Inverter side is set to control the DC link voltage. A control equation for the direct axis 
current reference for the inner loop on the inverter side is implemented for the purpose. This 

outer controller is much slower than the inner loop current controller, to ensure stability. ;;;,1 

being in rotating d-q frame, yields de component in steady state and is synonymous to the 
active current, assuming no power losses in the converter. 

;,~1 = (v"''"1 - v .. ,J( kp + i) (23) 

4.2.2. Active power controller 
The reference value of the active part of the converter current for the inner loop is supplied 

from the outer active power loop. The reference value ;;"1 being in rotating d-q frame, yields 

de component in steady state. The control of active power combines both open loop and the 
feedback loop as shown in Equation (24). For implementation of the feedback loop, error 
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between the desired de power to be transferred and the active power measured on the 

interface bus is computed in the loop itself using 

~=~-~&~=~+~(~+~) 9~ 
4.2.3. Reactive power controller 
The reference value of the reactive part of the converter current for the inner loop is supplied 

from the outer reactive power loop. The reference values i:nf at the rectifier and i,",.1 at the 

inverter ends being in rotating d-q frame, yield de component in steady state. The control of 

reactive power combines both open loop and the feedback loop as shown in Equations (25) 
and (26). For implementation of the feedback loop, error between the desired reactive power 
to be exchanged between the ac network and the de link and the reactive power measured on 

the interface bus is computed in the loop itself. 

LlQ, = Q"'"' - Q, & Q,.l = Q"'"' + LlQ, ( k p + ~ ) (25) 

LlQ, = Q."" - Q, & Q,,.l = Q,""' + !lQ.( k p + ~ ) (26) 

4.3. Processing of Measurements 

Using instantaneous power theory, phase current and voltage measurements on the network 
can be transformed to Clarke variables. 

e =3_(• --'-e --'-e) & e =3_(../3 e - ..fj e) (27) "3"2b2c 11 32b2c 

Instantaneous real and reactive power measured on the rectifier side, and the reactive powers 
measured on the inverter side, in terrns of the respective Clarke's components are [IS] 

p _ a.a fJ·/1 , - e, 1, + e, 1, (28) 

(29) 

(30) 

The measured value of the rectifier end active power and the reactive power both ends are 
used to implement open and feedback control in the outer power loop. 

4.4. Estimating Reference Values Of Currents for inner Current Control Loop 

Usually rectifier side is set to control both real and reactive powers. Instantaneous active and 
reactive currents on the rectifier side [IS] are given as 

, .... e" 
;~tJ = 

eP 

' 0 2 r f!l Prnj ' •' ' pl Prnf 
e, + r e, +e, 

;ta~ = 
eP 

ipq = 
-e" 

' ·' , pl qrnf ' 0
2 r pl qnT/ 

e, +e, e, + e, 

Instantaneous active and reactive reference currents on the rectifier side are now computed as 
·a - ·ap ·aq 
lmj -1, +1, & (31) 
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Usually inverter side is set to control DC voltage and reactive power. The d-axis reference 
current is directly derived from the reference and measured values of DC voltages. 

;;-:,. : (v .... ,"'-v ... J( k" + i) (32) 

Instantaneous active and reactive currents on the inverter side are given as 

Instantaneous reactive reference current on the inverter side is give as 
·a ·ap ·aq 
1iref = 1; + 1; & (33) 

The d-q variables can now be derived from the Clarks variables from Equations (27), (31 ), 
and (33) using the relationships as shown in Equations (34) and (35).The transformation 
angleB is available as the output of the phase locked loop. 

ed :e"cos8+ePsin8 & e•:-e"sin8+ePcos8 (34) 

id =iacosfJ+iPsin(J & iq =-iasinB+iPcosB (35) 

The complete model of the rectifier and the inverter side controllers are shown in Figure 4 
and Figure 5 respectively. 

p ""1]---;::=::::;=::;--j 
k 

k, 
+­

p s 

·afJ 
I' 

·afJ 
I' 

a 
·ar>- e, p 
I,. - 2 2 rrif 

e• +eP 
' p ' 

·It> - e, p 
I, - 2 2 rref 

ea +ep 
' ' 

p 
.,. - e, Q 
1,. - al p2 ,.,.q 

e,. +e,. 
a 

·Ill - -e, Q 
I,. - 2 p2 n-ef 

k +~ 
p . s 

ea +e 
' ' 

·d 
~· !----""+ 1 rrTj 

' ·q 
i--+ 1rref 

~d I e, 
:-----+ eq 
L_ .~ 
' I' 

'~-q I I, 

Q,.,.f -=-t~:::::;=-~ 
(a) Outer loop & Reference value computation- Rectifier side 
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·d 
'ITI!f + M, 

B, 

(b) Inner current loop- Rectifier side 
Figure 4. VSC-HVDC RECTIFIER CONTROLLER 

.ap ,, 

.ap 
I, 

a 
·ap- e, p 
I; - 2 2 irrf 

ea +eP 
' I p 

·It>- e, p 
I; - 2 2 itT/ 

j"~ = 
' 

k 
k +__!_ 

p s 

a P e; +e1 

•ap ,, 

.pq ,, 

k k, 
+­

p s 

-~iq 
1 ltTj 

I d 
i-----+ e, 
1-eq 
I -~ i__..,, 
I ·q 
_, 

I , 

(a) Outer loop & Reference value computation- Inverter side 



~A£P~PE~N~D~IX~---------------------------------------------------IIS 

1 J2 q2 

M = _,v_".:...• .......,+,...".:...' -
j v dcl/2 M, 

t5, 

e, 
(b) Inner current loop - Inverter side 

Figure 5. VSC-HVDC INVERTER CONTROLLER 

5. Controller Model Performance Assessment 

The system and the scenario descriptions are presented in Tables I & 2 respectively. Total 

simulation time is 3.0 sec, carrier frequency is 1350 Hz and the integration time step is 

7.4071'5ec 

5.1. Comparative Perfornwnce Assessment 

In the scenario considered to evaluate the performance of the developed model, the short 
circuit level at both rectifier and inverter end AC system buses is 2000MV A i.e. the source 
impedance 26.45 Q is less than the converter transformer impedance 39.675 n. The inverter 
end controls are activated at t = 0.1 second and the rectifier end controls are activated at t = 

0.3 sec. Figure 6 shows the ac network voltage at the rectifier end bus. The dynamic over 
voltage is 3%. Since real and reactive power controls at this end are activated and the ac 
voltage controller is inactive, ac voltage is 4% lower than the rated one. 

••r-----~----~------r-----~----~====~ -I 
1.2 l·'· 

.JI /o.•l• 

.. 
0.2 

·.~----~ .. ~----~----~.~.----~~----~, .. ~--~ 
.... (t) 

Figure 6. AC Network Bus voltage- Rectifier side 

Figure 7 shows the ac network voltage at the inverter end bus. Only de link voltage and the 
reactive power flow control are activated at this end and ac voltage control remains inactive. 
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•• 
~ .• .. 

•• 

" 

1.~ .. 

·.~----.,7,------~----~ .... ------~----~.~.~----~ 
IDI(t) 

Figure 7. AC Network Bus voltage- Inverter side 

Figure 8 shows the real power flow into DC link on rectifier side. Real power controller is 
activated at the rectifier side at t =0.3 sec. Figure 9 shows the reactive power flow into DC 
link on rectifier side. The rectifier end has the reactive power controller activated at t= 0.3 
sec. Q import or export is set at zero. Taking reactive power flow from network to the 
converter at both the ends as positive, it shows that the Q flow is indeed controlled to its set 
value with some amount of oscillations within acceptable limits. 

llr-----~------~----~------~----~-------, 

.. 1.0 .. .. 

. , ....... ,.... _.., .. 
··.~----..... ------~----~,7,------~.------,~.~====~ 

IDI(t) 

Figure 8. Real Power Flow into DC Link -Rectifier side 

···,---~~------~----~------~-----,:==::=11 
:; I 0 I= ......... -.... 

... 
t .0.1: 

~ .0.\S; 

:~ ... '\! 
.O.l \ v 

1\;\ ... ~--·· .. -·~.--1· .. 

O.lt 
.0.115,~"---.,7, ------~----~ .... ------;------...,,~.----~ 

IIIM(t) 

Figure 9. Reactive Power Flow into DC Link- Rectifier side 
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Figure I 0 shows the DC link voltage at the inverter side wherein the DC voltage controller is 
activated at 0.1 sec. Figure II presents the inverter side reactive power flow from the 
interfacing ac network into the inverter. 

1=::: 

~'J 1 
• OJ t 

.. 
'' 
•,c------;;0,.., ------:c------:",_7-, -----,;-----...,,~,-------! 

IIIM(t) 

Figure 10. DC Link Voltage Measured on Inverter side 

OMr----~----.-----~-----r-----r==~~ 

1=:: 0 

" " " ... (1) 

Figure II. Reactive Power Flow into DC Link- Inverter side 

,, 

·~ ' 
0.1 

! 
01 0.11 

0.4 

O.l 

00 
" '' '' li!M(t) 

Figure 12. Modulation 1 ndex- Rectifier side 

Figure 12 shows the variation of the modulation index at the rectifier end. 
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6. Conclusion 

Instantaneous power theory is advantageous for measuring real and reactive power, as it is 
suitable for steady and transient states as well as for non sinusoidal waveforms, a distinct 
possibility in presence of power electronics related harmonics, during system operation. 
Similarity transformation can be used to obtain a fully decoupled model for the inner current 
control loop. Control circuit implementation involves original current and voltage state 
variables. However, to facilitate small signal stability assessment of a composite system 
comprising of VSC-HVDC link as well as interfacing ac system, the variables need to be 
transformed while framing the state matrix. 

7. LIST OF SYMBOLS AND ABBREVIATIONS 

7.1. SYMBOLS 
u 
e 

R 

L 

p 

Q 

Suffix r, i 
Suffix a-b-c 
Suffix a, f3 
Suffix d, q 

M 
t5 
B 

ac voltage of the converter 
ac network voltage 
ac network current 
resistance of the transformer 
inductance of the transformer 
angular velocity corresponding to the rated system frequency 
de link voltage 

real power 

reactive power 

indicate rectifier and inverter sides respectively 

three phase reference frame 

Clarke's stationary frame 

Synchronously rotating reference frame 

modulation index 

phase shift between modulating signal and carrier signal in PWM module 

phase angle obtained through phase locked loop 

7.2. ABBREVIATIONS 
VSC Voltage-Sourced Converter 
HVDC 
IGBT 
PWM 
esc 
PT 
CT 
PLL 

High-Voltage Direct Current transmission 
Insulated Gate Bipolar Transistor 
Pulse Width Modulation 
Current-Sourced Converter 
potential Transformer 
Current Transformer 
Phase locked loop circuit 
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Appendix A 
Noting that in Equations (6) and (7), 

[

sin mt 
d _, 2 

Taq 0 -TJqo =- cos cot 
dt 3 1 

2 

sin(mt - 120°) 
cos(mt- 120°) 

I 

2 

sin (wt + 120° )][ m cos mt 
cos{wt + 120°) w cos(mt - 120°) 

.!_ mcos(mt + 120°) 
2 

- wsin mt 

- m sin(mt -120°) 
- msin(wt + 120°) 

[
0 -1 OJ 

T "<' ~ Ti,~ = m I 0 0 
0 0 0 

-I 

~HJ+[:~J 0 
0 

-I 

H:::J+[ :~J 0 
0 

Relationship related to the rectifier side in Equation (14) can be written as 

[e~] [ cos m,t ] 
r;~ e: = E, cos(m,t -120°) 

e; cos(w,t + 120°) 

Pre-multiplying both sides by r..,, 

TJqor;,~ e; = E,TJqo cos(w,t-120°) [e~] [ cos m,t ] 

e~ cos(m,t + 120°) 

sin{mt-120°) sin(mt+l20°)][ cosm,t ] 
cos(mt -120°) cos(mt + 120°) cos(m,t -120°) 

.!. .!. cos(m,t + 120°) 
2 2 

[~]=[ ~] 
Similarly, relationship related to the inverter side in Equation (14) becomes 

[:;]=[!] 

0~] 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

The switching functions describing state of an lGBT in rectifier and inverter end converters, 

and assuming a sinusoidal signal modulating the carrier input in the PWM based lGBT gating 

module are given by 
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[
s•] ~ + ~· cos(m,l- o,) 

' I M 
S' = -+-' cos(m 1-o -120•) r 

2 2 
r r 

~ I M ( ) -+-'cos m,t -0, + 120° 
2 2 

& 

& 

[ ] 

.!_ + M, cos(m
1
1-o,) 

s· 2 2 
' I M 

S,b = - + --1 cos(m;t - 0, -120°) 
' 2 2 

S, I M ) - + --1 cos(w;l- 01 + 120° 
2 2 

(A.5) 

Using Equations in (A.5), the relationship between the converter ac side and de side voltages 
on rectifier and inverter sides is given by 

[:~]= M,;d" [cas(::~:·~,-:;~o•)] & 
u~ cos(m,l-o, +120•) 

Rectifier related expression in Equation (A.6) can be written as 

r;;,~ u; = M,.;,a,, cos(m,t-0, -120°) [
u;] [ cos(m,l- o,) ] 

u~ cos(w,.t-0,.+120°) 

Pre-multiplying both sides by To~q, yields 

[
u;] [sin lVI 
u; =~M,VJc,. cosmt 

o 3 2 I 
u, -

2 

Similarly at the inverter end 

Appendix B 

sin(ml-120•) sin(ml + 120•)1 cos(m,l- o,) ] 
cos(mt-120°) cos(m1+120°) cos(w,t-o, -120•) 

.!_ .!_ cos(m,l- o, + 120•) 
2 2 

[
u; l [sino, ] :~ = M,;.., co~o, 

[u~] [sino,] 
::: = M,; d" co~ o, 

(A.6) 

(A.7) 

(A.8) 

Eigen values of the state matrix in Equation (12) can be determined by solving the 
characteristic equation given by A- J..,I = 0 

[

_R, w l 
L ' [I ,. R -A, 

-m, - L: 0 
~J=o (B. I) 

Equation (B.l) yields two Eigenvalues 
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A =-~-;·w and A =-~-;·w 
rl L, r r2 L, r 

Eigen vector corresponding to A,,, v, = [v"], can be determined from lA- 2,,IIV, = 0 
v, 

Substituting 2 = _ R, + 1·m in (8.2) yields 
rl L r 

' 

[ 
R, R, . ] O - ---+ JW, vn +m,v21 = 
L, L, 

& [
R, R, . ] O -m v - ---+;w v = 

r II [ L r 21 

' ' 

Or 

(8.2) 

(8.3) 

Treating v, as the free variable in equation (8.3) and assigning an arbitrary value of I yields 

[ 
v, =I ] v: = 

t v2J =JI 

Eigenvector corresponding to 2,2 , v, = [v"] can be determined from lA- 2,2/IV, = 0 
v, 

Substituting 2 = _ R, _ 1·m in equation (8.4) yields 
r2 L r 

' 

[ 
R, R, . ] O & [ R, R, · ] 0 - ----;w v +m v = -m v - ----;m v = L L r 12 , n ,. 12 L L , n 

r r r r 

(8.4) 

Or (8.5) 

Treating v22 as the free variable in Equation (8.5) and assigning an arbitrary value of I 

yields v, = [v" =}I] 
v22 =I 

[I ·1] Modal matrix of the state matrix in Equation (12) is given as P=[V, v,]= Jl ~ and it's 

inverse p-' = .!._[ 1 -}I] 
2 -}I I 

Similarity transforrnation r'APof state matrix m Equation (12), which is of the form, 

; =Ax+ Bu is given by p-' AP = .!._[ 1 - jll- ~: m, ][ 1 }I] leading to, 
2 -}I I _ m _ !l_ }I I 

' L, 
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[ 

R, . 
--+}OJ 

r'AP= L, O ' 0 l 
- ~: - }m, 

(8.6) 

Appendix C 

To facilitate modal analysis of a composite power system incorporating VSC-HYDC link, 

using the transformation x = Px,, the state matrix in Equation (12), which is of the form, 

x =Ax+ Bu can be written as . 
P x, = APx, + Bu or x, = p-i APx, +p-i Bu 

Modal matrix and its inverse for the state matrix are given as p = [ 1 

)I 

p-' =.!_[ I -)I] 
2 -)I I 

(C. I) 

"I] ~ and 

Substituting these into the state equation and also substituting rectifier related expression in 

Equation ( 15), 

{ R, l ~[~J=H- 1JI -:'{~~: -OJ~:[;~ ~Tn+H-~~ -:'J{L[~J n:J 
The equation after using Equation (8.6) reduces to, 

d --+ )QJ d 
!!_ in = L, ' in +-1- - jE, __ I_ u~- Ju:r 

[ 

R, · 0 J 
dt [;J O <: _}OJ, i~] ZL, [ £, ] 2L,[ u~ -juJ (C.2) 

)E,, )u'/ and ju; in Equation (C.2) are the projections of E, , u'/, u; on their respective 

orthogonal axes in an orthogonal system of coordinates and reduce to zero. Equation C.2 can 

be written as 

d [id] [- ~' + )w, 
0 j[id] 1 [ -ud ] 

dt ;~ = ' 0 _ ~: _ )w, i~ + 2L, E, -'u; (C.3) 

Similarly the state Equation (13) reduces to, 

.'!._[i~] = [- ~: + jOJ, 

dt ;: 0 0 J·"] [ J ] 

I;" I -u~ 

_~_}OJ, ;,: + 2L, E, -u,' 
(C.4) 

Whereas i~, i~, ;:, , i,~ are not the original state variables, the state variables related to the 

voltage i.e. u; and u; are the original state variables. 
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Tables 
Table I. System Description 

Converter Transformer 200 MVA, 0.15 p.u. 230kV/IOOkV 
DC Link Rating 200MW ± IOOKv 
AC Side Harmonic Filters 40MVAR 
27th High Pass Damped 18MVAR Quality Factor= 15 
54th High Pass Damped 22MVAR Quality Factor= 15 

Outer Loop Controllers 
P controller Kp=O.O Ki=20.0 
Q controller Kp=O.O Ki=20.0 
Y do controller Kp=2.0 Ki=40.0 

Inner loop current controller Kp=4.0 Ki=40.0 

Table 2. Scenario Description 

Case Study Description Normal Fault Level 
AC network Short Circuit Level 
Rectifier Side 2000 MYA 
Inverter Side 2000 MYA 
Rectifier Side Controller P,Q 
Active controllers activated at t = 0.3 sec 
P mof 1.0 p.u. 

Qrref 0.0 p.u. 
Inverter Side Controller vd.,Q 
Active controllers activated at t= 0.1 sec 

Prrer 1.0 p.u. 

V dciref 1.0 p.u. 
Q,.,r -0.1 p.u. 


