
UNIVERSITI

TEKNOLOGI

PETRONAS

Implementation of a Symmetric Chaotic Encryption Scheme

by

Easwari Sivanandan

1621

Dissertationsubmittedin partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and ElectronicsEngineering)

May 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

Approved by,

CERTIFICATION OF APPROVAL

Implementation of a Symmetric Chaotic Encryption

by

Easwari Sivanandan

A project dissertation submitted to the

Electrical &Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OFENGINEERING (Hons)

(ELECTRICAL &ELECTRONICS ENGINEERING)

(Associate Prof. Dr VarunJeoti)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

EASWARI SIVANANDAN

ABSTRACT . .

TABLE OF CONTENTS.

LIST OF TABLES

LIST OF FIGURES.

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

TABLE OF CONTENTS

^S.

i

iii

V

vi

INTRODUCTION 1

1.1 Background of Study 1

1.2 Literature Review 3

1.3 Problem Statement 4

1.4 Objectives and Scope of Study . 4

1.5 Thesis Organization 5

THEORY 7

2.1 Data Security in a Networked Environment 7

2.2 Voice over Internet Protocol 8

2.2.1 Voice Quality . 9

2.3 Encryption Decryption . 10

2.3.1 AES 11

2.3.2 Analysis of AES 13

2.3.3 Cryptanalysis . 14

2.4 Chaos 14

2.4.1 Chaos and Cryptography 15

2.4.2 Chaotic Encryption and its algorithm 16

2.4.3 ChaoticEncryption using logisticmap 18
2.5 HierarchicalData SecurityProtection (HDSP) 19

2.6 Proposed Two-Level Security System for VoIP 21

METHODOLOGY 22

3.1 Procedures and Methodology 22

3.2 Implementation of Chaotic Bit String Generator 23

3.3 Bit Swapping Algorithm 25

3.4 Two's Compliment OverflowNonlinearity 27

3.5 Flowchart. 30
3.6 Tools/Software..... 31

RESULTS AND DISCUSSION. 32

4.1 Proposed Security System for VoIP 32

4.2 Implementation of Proposed Security System in C: 35

4.3 Simulation and Analysis Results 38

4.3.1 Spectrogram Analysis . 38

4.3.2 Comparison between AES and Chaotic
Encryption . 41

4.3.3 Power Spectral Density and Histogram
Analysis. . 47

4.3.4 Comparison between AES and Chaotic
Encryption . 51

4.3.5 Time-WaveformAnalysis 57

111

CHAPTER 5:

REFERENCES

APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

4.4 Conclusion of Analysis

CONCLUSION

: Suggested Milestone for Semester One
: Suggested Milestone for Semester Two
: Chaotic Discrete Maps
: C-codes for the Chaotic Encryption Scheme for voice
: MATLAB codes for AdvancedEncryption Standard(AES)

59

63

65

IV

LIST OF TABLES

Table 2.1 Number ofrounds (Nr) as a function ofNb (Nb =block length/32)

and Nk (Nk = key length/32) 11

Table 2.2 Operations, Design Criteria and Performance of AES . . 13

Table 4.1 Time taken toestimate key based onorder deployed in encoder-decoder

structure in Figure 3.4 61

LIST OF FIGURES

Figure 2.1 Bifurcation Diagram 19

Figure 2.2 BlockDiagram of proposed HDSP scheme applied in VoIP 19

Figure 2.3 BlockDiagram of proposed security scheme in VoIP . . 21

Figure 3.1 Operations of inter-frame data interleaving and intra-frame data
encryption 23

Figure 3.2 The chaotic bit string generator 23

Figure 3.3 Intra-frame data encryption 25

Figure 3.4 Encoder-decoder using two's compliment overflow nonlinearity . 27

Figure 3.5 Flow chart of project work across two semesters... 30

Figure 4.1 Block Diagramof proposedsecurityscheme ... 32

Figure 4.2 Block diagram ofencryption-decryption simulation environment using the
proposed two-level encryption schemes 35

Figure 4.3 Block diagram of simulation environment ... 35

Figure 4.4 User Interface 36

Figure 4.5 Spectrogram of(a) original voice signal, (b) encrypted signal and (c)
decrypted signalusing chaoticencryption scheme . . 39

Figure 4.6 Spectrogram of original voice signal 41

Figure 4.7 The encrypted signaldisplayed usinga spectrogram for (a) 128-bit AES
and (b) Chaos 42

Figure 4.8 Spectrogram ofdecrypted voice signal using (a)AES and(b) Chaos 43

Figure4.9 The original file being fed to the AES and Chaos . . 44

Figure 4.10 The encrypted signal displayed usinga spectrogram for 128-bit AES (a)
and Chaos (b) 45

Figure 4.11 Thedecrypted signal for (a) AES and(b) Chaos... 46

Figure 4.12 Power spectral density plotof (a) original voice signal, (b)encrypted
signal and(c) decrypted signalusingchaotic encryption scheme . 47

VI

Figure 4.13 Histogram plots of (a) original voice signal, (b) encrypted signal and (c)
decrypted signalusingchaotic encryption scheme. . . 49

Figure 4.14 Power spectral density plot ofvoice signal using (a) AES and (b) Chaos 51

Figure 4.15 Power spectral density plot ofencrypted voice signal using (a)AES,
(b) and (c) Chaos using differentkey values . . . 53

Figure 4.16 Power spectral density plot ofdecrypted voice signal using (a) AES
and (b) Chaos 54

Figure 4.17 Histogram plotoforiginal voice signal. 55

Figure 4.18 Histogram plot ofencrypted voice signal using (a) AES and (b) Chaos 55

Figure 4.19 Histogram plot ofdecrypted voice signal using (a) AES and (b) Chaos 56

Figure 4.20 Original signal, encrypted and decrypted signal using AES encryption
scheme 57

Figure 4.21 Original signal, encrypted and decrypted signal using chaotic encryption
scheme 58

Vll

ABSTRACT

Voice over Internet Protocol technology (VoIP) is progressing commendably, but packet

loss, propagation delay, jitter, unreliable IP networks, and vulnerability to attacks by
Internet hackers are among critical issues that have been identified. Voice privacy and

security needs to focused upon and data encryption techniques are the answers in

providing the security needed. However, traditional cryptosystems demand high

computational complexity andhigh digital signal processors which in return increases the

cost of implementation.

There is parallel growth incryptographic techniques which originated an intense research

activity and the search for new directions in cryptography such as chaotic encryption.

Due to its deterministic nature and its sensitivity to initial conditions, chaos has a certain

potential in creating a newway of securing information to be transmitted or stored.

There are two main objectives to this project. First is study the feasibility of the chaotic

encryption scheme in providing a solution in to preserve data security while maintaining

the voice quality for voice over Internet Protocol. Secondly, a new scheme based on a

chaos system will be implemented for voice data. In order to achieve the second

objective, a study had been carried out on other proposed schemes mainly the

Hierarchical Data Security Protection (HDSP) for VoIP. This scheme performs two main

operations which is the data-frame interleaving and intra-frame data encryption using bit

swapping. Based onthe HDSP scheme, the author suggests a new scheme using two level

encryption techniques, based on chaos. In this scheme, the author uses the bit swapping

technique as the second encryption-decryption level and enhances it with a first level

encryption-decryption scheme using the two's compliment overflow nonlinearity
encoder-decoder pair.

The implementation ofthis scheme is specified to do real time processing ofvoice data. It

can also be used to read, encrypt and write awave file. The entire system is implemented,

tested and validated using MATLAB and Visual C++.

Due to the promising prospect ofchaotic encryption in the field ofcryptography, and the

lack of implementation ofthis new encryption-decryption algorithm, this project focuses

on introducing a new symmetric encryption-decryption scheme based on a chaos system
for VoIP.

n

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

The modern telecommunications networks, the Internet and mobile telephones have

expanded the possibilities of user communications and information transmission to

certain limits which were unimaginable not a very long time ago. With the great demand

indigital signal transmission and the big losses from illegal data access, data security has

become a critical and imperative issue. The increasing development of the broadband

networks and services, alongside recent demand for privacy and paid services, has led to

need for systems and algorithms to encrypt information [4]. Some of the important

applications include encryption of video messages, voice over Internet protocol (VoIP),

and data messages transmitted over telematic networks i.e. electronic banking and e-

commerce.

Voice over Internet protocol network application meets the challenges of combining

voice networks with packet networks by allowing both voice and signaling information to

be transported over the packet network. In short, it means to transmit voice over the

Internet. VoIP technology is progressing admirably, but certain drawbacks have been

indicated such as packet loss, propagation delay, jitter, unreliable IP networks, and

vulnerability to attacks by Internet hackers. Thus, it is essential to perform data

encryption onvoice transmitted over the Internet while preserving the quality of the voice

from packet loss. There are researches on voice encryption using scrambling techniques,

some of which uses discrete Fourier transform (DFT) to perform voice encryption and

decryption inthe frequency domain [1]. Although the performance has been good, but the

computational power is large because of the forward and inverse transformations. It also

increases cost as it requires a high performance digital processor to realize the

transformations in real-time voice applications.

Encryption1 technology is the practice of obscuring the privacy and security of the

information by changing readable text to gibberish. The science of encryption itself is

called cryptography. The significance of cryptography is evident as a method to secure

communication and data authentication that offers confidentiality, data integrity, data and

entity authentication. Encryption techniques are being rapidly developed, standardized

and adopted such as RSA, DES, AES and etc. With the advancement in digital

communication technology, the importance of cryptography in ensuring security and

privacy for critical data transmission has been further increased with the need for secure

communication and data authentication method. With the Internet, taking over as the

preferred medium of communication, the demand for data encryption techniques to

provide message security and authenticationhas been steadily increasing.

Hence, there is a parallel growing demand of cryptographic techniques which originated

an intense research activity and the search of new directions in cryptography. As a result

a rich variety of cryptosystems for end to end communications have been put forward,

where robustness and privacy are equally diverse.

Chaos has attracted much attention in the field of cryptography for private and secure

communications due to its deterministic nature and its sensitivity to initial values. Such

properties mean that chaos has certain potential in creating a new way of securing

information to be transmitted or stored. Methods based on chaos theory provide high

level of security and are competitive to traditional encryption techniques because they are

inexpensive to implement [4] and posses low computational complexity. Chaos and

cryptography have common features, the most prominent being sensitive to variables and

parameter changes. Shannon in his paper [C&C] wrote; "In a good mixing

transformation...functions are complicated, involving all variables in a sensitive way. A

small variation of any one variable changes the output considerably." Chaos is the

complex behavior of a simple system and it is very difficult to reproduce or decode,

which makes it an effective means to secure communications.

The process ofchanging the original data to gibberish or cipher text

1.2 LITERATURE REVIEW

Many efforts have been put into developing chaos-based cryptographic systems in recent
years as emerging chaotic systems promised a new direction for innovation in

cryptography since the development of symmetric and asymmetric cryptography. Many
ofthese works are published, which shows agreat deal ofimprovement and advancement
over the years.

One of such work is the Hierarchical Data Security Protection scheme. This technique
has been proposed in [1] as solution to the drawbacks VoIP has encountered. This

scheme maintains both the voice quality which is degraded from the packet loss and
provides high data security for the voice being transmitted. This scheme proposes two
methods of data security i.e. inter-frame data interleaving and intra-frame data
encryption. These operations will be discussed in detail in Chapter 2. This scheme as

been used as the base ofthe author's research. Based on this work, another scheme has
been implemented

The chaos based cryptosystem is new and has all the profound qualities for research.
There are crucial similarities between cryptography and chaos. The equivalent of rounds,
keys and diffusion in cryptographic algorithms in chaotic systems are iterations,
parameters and initial change sensitivity, respectively. Using chaos in data encryption
possesses features of low computational complexity, high security and no distortion.
Compared to traditional encryption techniques, chaotic systems are competitive because
they are inexpensive and easy to implement [5],

Afoundation has thus been set to study the feasibility and applicability of an encryption-
decryption scheme for voice data based on chaos systems. It is necessary to study the
feasibility and applicability of the chaos encryption scheme with emphasis on the strength

ofthe cipher. The strength of the system should be compared to current cryptosystems
standards. The secrecy level should at least be equal ifnot greater than these standards.

1.3 PROBLEM STATEMENT

The introduction of chaotic systems into cryptography marks avery interesting area for
research into innovating novel encryption schemes. In 1998, Baptista proposed Chaotic

Encryption method which is said to be better than the traditional methods present today
due to its randomness, stochastic, and mixed-ergodic characteristic.

The drawbacks of the Voice over Internet Protocol need to be addressed so that it can

emerge from a specialized application to mainstream voice communications. The main

drawbacks indicated are voice quality degradation due to packet loss and vulnerability to
attacks by hackers. The current schemes used to do real-time encryption require high
computational power and high performance digital signal processors which increase the

cost [1]. Hence, the author is carrying out a research to find new schemes which can

preserve high data security. Since chaos is a new direction in the field ofcryptography
with promising results such as low computational complexity, high security and no
distortion, this project proposes an implementation of a new scheme based on chaos

which can overcome the drawbacks ofthe Voice over Internet Protocol focusing on data
security.

1.4 OBJECTIVE AND SCOPE OF STUDY

i. To study and develop a new security system based on the HDSP scheme. The

HDSP scheme consist data interleaving for voice quality maintenance and intra-

frame data security based on pixel permutation using chaotic bit strings for VOIP
network.

ii. To study and propose a method on how chaotic encryption can be used to secure
voice communications over a VoIP network.

iii. To research, study and propose a chaotic encryption algorithm using other chaotic

maps i.e. logistic map

iv. Convert the chaotic encryption scheme based on two's compliment overflow

nonlinearity encoder-decoder developed in Simulink to C.

v. To enhance the chaotic encryption scheme in (ii) by proposing an additional level

of encryption using permutation techniques in C.

vi. To encrypt voice data sent in real-time.

The development of the proposed symmetric chaotic encryption scheme will be

developed using MATLAB, Simulink and C. The end system will be a standalone C

application which can run in terminal connected to a network. The scope of study will

focused on data encryption techniques applicable to VoIP and will not cover techniques

to reduce packet loss or maintain voice quality in a VoIP system.

1.5 THESIS ORGANIZATION

The chapters are organized to provide a flow to the report and also to aid the reader in

understanding the project in a more systematic and ordered manner.

Chapter 1 highlights the overview or background on the project and literature review to

justify the basis of the project followed by the problem statement. The objectives and

scope of work are also outlinedin this chapter.

Chapter 2 discusses the theories involved in the project and provides a base for the reader

to understand the operations and implementations involved in this project. This chapter

helps the reader obtain supporting information and the theories used inthis project.

Chapter 3 then discusses the methodology of implementation and algorithms used in

realizing the final product.

Chapter 4 further elaborates the results and observations obtained and makes a

comparison to the theories reviewed in Chapter 2. All findings and discussions are

highlighted here.

Finally, chapter 5 concludes the project report by cross-checking the relevancy to the

objectives, suggested future work and recommendations.

CHAPTER 2

THEORY

2.1 DATA SECURITY IN NETWORKED ENVIRONMENT

In the recent years, there has been a tremendous upsurge in information and data

transfers over the telephone and computer networks. Connectivity has become a buzz

word in industries and the increasing sophistication of network software and controllers

is allowing the average computer users' access to information never thought possible a
decade ago. This information ranges from very simple electronic mail to highly
complex medical imaging.

In any of these data transfers, the security of the information being transferred is a

pressing concern. However with this increase to global databases, the need to

secure/protect information from browsers, whether during transmission, reception, and
storage risen dramatically. The increasing development of broadband networks and

services, alongside the recent demand privacy, has led to the need for systems and
algorithms to encrypt information. The most vital applications include the encryption of
video messages, voice over Internet Protocol (VoIP) and data messages transmitted over

telematic networks i.e. electronic banking and commerce. Currently the solution to the

security concern is to use expensive and inefficient private networks and leased lines.

Widely used encryption and keying schemes based upon Data Encryption Standard
(DES), a secret key cryptography, and Rivest-Shamir-Adleman (RSA) a public key
cryptography. Initial investigations [19] show that a HYBRID cryptographic approach
where public key is used for authentication or key management and the symmetric key
approach for encryption would be most appropriate for This project discusses the latter,
symmetric key encryption based on a chaos system for security that will allow voice

data to be transmitted over the IP network so that only the intended receiver can
decipher.

2.2 VOICE OVER INTERNET PROTOCOL (VoIP)

Voice over Internet protocol network application meets the challenges of combining

voice networks with packet networks by allowing both voice and signaling information

to be transported over the packet network. VoIP wants to provide the efficiency of a

packet switched network while rivaling the voice quality ofa circuit switching network.

VoIP technology is progressing admirably, but certain drawbacks have been indicated

such as intolerant of lengthy delays, out of order packets, packet loss, propagation

delay, jitter, unreliable IPnetworks, and vulnerability to attacks by Internet hackers. All

these problems gravely degrade the quality ofvoice transmitted to the recipient.

The overall technology requirements of an Internet Protocol (IP) solution can be split

into four categories: signaling, encoding, transport and gateway control. The purpose of

the signaling control is to create and manage connections between endpoints, as well as

the calls themselves. Next, when the conversation commences, the analog signal

produced by the human voice, needs to be encoded for transmission across an IP

network. The IP network itself must ensure that the real-time conversation is

transported across the available media in a manner that produces acceptable voice

quality.

It is essential to perform data encryption on voice transmitted over the Internet while

preserving the quality of the voice from packet loss. There are researches on voice

encryption using scrambling techniques, some of which uses discrete Fourier transform

(DFT) to perform voice encryption and decryption in the frequency domain [I].

Although the performance has been good, but the computational power is large because

of the forward and inverse transformations. It also increases cost as it requires a high

performance digital processor to realize the transformations in real-time voice

applications.

2.2.1 Voice Quality

Many factors determine the voice quality, including the choice of codec, packet loss,

echo control, delay, delay variation and the design of the network. Packet loss causes

voice clippings and skips. Some codec algorithms can correct for some lost voice

packets. Techniques such as interleaving and error correction using CRC can be used to

maintain the voice quality. The concept of data interleaving is used to scramble the

voice packets in different frames to avoid continuous voice corruption due to packet
loss.

TCP is the internet protocol that suites main transport layer protocol. It also provides

addressing (with service addresses) services at the network layer. TCP provides reliable

full-duplex, connection-oriented transport services to upper layer protocols. TCP works

in conjunction with IP to move packets through the internetworking. TCP assigns a

connection ID (port) to each virtual circuit. It also provides message fragmentation and

reassembly using sequence numbering. Error checking is enhanced through the use of

TCP acknowledgements.

UDP is a connectionless protocol that works at the transport layer. UDP also transports

datagram butdoes not acknowledge their receipt. UDP also uses port address to achieve

datagram delivery, but this port address is simply a pointer to a process, not a

connection identifier, as it is withTCP. Mainly, voicepacket transmission uses UDP.

To make VoIP successful in real time networking interactive applications, guaranteed

QOS or quality of service networks are inevitable for minimizing the delay caused by

the packet network transmission. It is reasonable to assume that the packet network

transmission delay of a guaranteed QOS is ~25ms [1].

The proposed system in this project however does not cover the framework of packet

loss and only focuses on data security.

2.3 ENCRYPTION-DECRYPTION

Inthis project we deal with the theory ofencryption and decryption, existing encryption

standards, and mainly chaotic dynamical systems and their use in solving practical

problems like implementing anefficient cryptographic system.

Encryption standards are evaluated for their suitability according to three main criteria:

• Security

• Cost

• Algorithm and implementation characteristics

"Security" of the proposed algorithm was absolutely essential and any algorithm found

not to be secured would not be considered further. "Cost" refers to the computational

efficiency i.e. speed and memory requirements of various types of implementations

including software, hardware and smart cards. "Algorithm and implementation"

characteristics include flexibility and algorithm simplicity among other factors.

From the author's understanding, on "what makes a good encryption algorithm", though

not complete, is outlined as below:

• Iterations requiredper sample

• Speed of encryption and decryptions

• Error propagation (when you iterate something, i.e. current output depends on

the previous output etc, they tend to produce errorpropagation)

Thus, these are the criteria to look into when comparing two encryption schemes.

A need to replace DES had arisen and the replacement was to be called AES or

Advanced Encryption Standard. Rijndael was selected to be the Advanced Encryption

Standard based on its combination of security, performance, efficiency, implement
ability, and flexibility.

10

2.3.1 AES

AES algorithm is a symmetric block cipher that can process data blocks of 128 bits,

using cipher keys with lengths of 128, 192, and 256 bits. Rijndael was designed to
handle additional block sizes and key lengths; however they are not adopted in this
standard.

AES is a key-iterated block cipher; it consists of the repeated application of a round

transformation on the state. The number ofrounds denoted by Nr depends on the block

length and key length. Table 2.1 lists the value of Nr as a function of Nk and Nb. For

AES, Nb is fixed to a value of4. Nr=10 for key length 128 bits, Nr=12 for key length
192 bits and Nr=14 for key length 256 bits. For AES, the value of Nb is set to 4 since

the block length is 128 bits.

Table 2.1. Number ofrounds (Nr) as a function ofNb (Nb = block length/32) and Nk
(Nk = key length/32)

Nk

" Nb

4 5 6 7 8

4 10 11 12 13 14

5 11 11 12 13 14

6 12 12 12 13 14

7 13 13 13 13 14

8 14 14 14 14 14

The input and output ofAES is considered to be one-dimensional arrays of8-bit bytes
consisting of 128 bits (digits with values of 1or 0). These sequences will sometimes be

referred to as blocks and the number of bits they contain will be referred to as their

length. For encryption the input is a plaintext block and a key and the output is cipher
text block. For decryption, the input is a cipher text block and a key and the output is
the plaintext block. The key for the AES algorithm is a sequence of 128, 192 or 256

bits. Other input, output and key lengths are not permitted by this standard. The bits

11

within such sequences will be numbered starting at zero and ending at one less than the
sequence length (block length orkey length). The number i attached to a bit is known as

its index and will be in one of the ranges 0 </ < 128, 0 <? < 192 or 0 </ < 256

depending on the block length and key length (specified above).

The round transformation is denoted by Round and is a sequence offour transformation

called steps. The structure of the AES round transformation requires that all steps be
invertible and consist ofsimple components rather than complex ones.

According to [21] and [22], a high-level description of the AES algorithm can be
summarized as below:

I. Given a plaintext, x, initialize State to be x and perform an operation
ADD-ROUNDKEY3, which x-ors the RoundKey with State.

II. For each ofthe first Nr-1 rounds, perform a substitution operation called

SubBytes on State using an S-Box; perform a permutation ShiftRows on

State; perform an operation MixColumns on State; and perform
AddRoundKey.

III. Perform SubBytes; perform ShiftRows; and perform AddRoundKey.
IV. Define the cipher texty to be the State.

These processes are required to perform an encryption operation in AES. To decrypt, it
is necessary to perform all operations in the reverse order, and use the key schedule in
the reverse order. Further, the operations ShiftRows, SubBytes, MixColumns, must be
replaced by their inverse operation including the operation AddRoundKey. It is also
possible to construct an equivalent inverse cipher which performs AES decryption by
doing a sequence of inverse operations in the same order as it is done for AES

encryption. It is suggested in [21] that this can lead to implementation efficiencies.

3Round keys are values derived from cipher key using the Key Expansion routine; they are applied to the
State in the cipher andinverse cipher

12

2.3.2 Analysis of AES

The design criteria for AES were looked upon during this analysis on why the 4 steps

are performed as such in each round. The table 2.2 below summarizes the operations,

design criteria and its importance.

Steps

1. SubBytes

3. MixColumns

4.Key schedule

Design Criteria and importance

1. Non-linearity

a) Correlation. The maximum input-output correlation amplitude

must be as small as possible.

b) Difference propagation probability. The maximum difference

propagation probability must be as small as possible.

2. AlgebraicComplexity. Thealgebraic expression of the S-box4 in

GF (28) must be complex.

1.Dimensions. Thetransformation is bricklayer transformation

operating on4-byte columns.

2. Linearity. The transformation is linear over GF(2)

3. Diffusion. The transformation has tohave relevant diffusion power.

4. Performance on 8-bit processors. The performance of the

transformation has to be high.

Key Expansion

1. Efficiency

2. Performance

3. Symmetry Elimination

4. Diffusion

5. Non-linearity

H-

Non-linear substitution table used in several byte substitution transformations and in the Key Expansion
routine to perform a onefor-one substitution of a bytevalue.

13

2.3.3 Cryptanalysis

The current state-of-the-art in cryptanalysis indicates that the resistance of iterative

block ciphers against cryptanalytic attacks increases with the number ofrounds.

According to [21] and [23] the AES is secure against all known attacks. This is one of

the main reasons AES is chosen to be compared against chaos encryption. Various

aspects of it design incorporate features that help provide security against specific

attacks. For example, the used of the finite field inversion operation in the construction

of the S-Box yields linear approximation and difference distribution tables in which

entries areclose to uniform. This is the main factor which helps provide security against

differential and linear attacks. As well, the linear transformation, MixColumns makes it

impossible tot find differential and linear attacks that involve 'few' active S-boxes.

There are apparently no known attacks on AES that are faster than exhaustive search.

The 'best' attacks on AES apply to variants of the cipher, which the number of rounds

is reduces and are not effective for 10-round AES.

2.4 CHAOS

In signal theory, chaos is classified as one of the non-periodic signal systems which are

characterized by a continuous noise-like broad power spectrum. Chaotic signals are

naturally broadband and are noise-like. Chaotic systems are characterized by sensitive

dependence on initial conditions where a small perturbation eventually causes a large

change in the state of the system itself. The practical long-term prediction of these

signals is not possible due to the high dependence on initial conditions. Chaotic systems

also decorrelate rapidly with themselves. The autocorrelation function of a chaotic

signal has a large peak at zero and decays rapidly. They also posses deterministic

structure that makes it possible to generate noise like chaotic signals in a theoretically

reproducible manner. Chaos based algorithms offers a high degree of randomness,

stochastic and mixed-ergodic properties.

14

2.4.1 Chaos and Cryptography

Chaos describes a system that is sensitive to initial conditions, generates apparently

random behavior but at the same is completely deterministic. These properties have

much potential for any application in cryptography as it is hard to make long term

predictions on chaotic systems.

Firstly, chaotic functions are sensitive to initial conditions thus any slight change in the

initial value will yield a drastically different ciphertext. This indicates that the system

will be strong against any brute force attacks as the number of possible keys is

enormousgiven that the precisionof initial value is high.

Secondly, being deterministic means that the same mapping function and initial value

will yield the same set of values. Conventional random number generators cannot

regenerate random numbers where as chaos allows us to repeat the same string as long

as the same mapping functions and initial value is used. The apparent randomness of the

system makes attacks suchthe 'codebook' attackimpossible.

Claude Shannon had pointed out two properties which make a good cryptographic

system hinder statistical analysis. Diffusion means that changing a character of the

plaintext would affect several characters inciphertext and likewise changing a character

of ciphertext would affect several characters in the plaintext. Confusion is a technique

which corresponds to those parts of a cipher mechanism which change the association

between the input values and output values. This is generally accomplished by

substituting every fundamental block for another one according the rules dictated by the

algorithm. This technique confuses the output by modifying the data itself.

Analyzing an example of a cipher using chaos, given a set of plaintext which is to be

encrypted in integer form, a mapping function must be defined i.e. logistic map. Next, is

to define the initial value, n, of the mapping function. Thus, the first character in the

ciphertext will use n as the initial value and first number in the plaintext as the number

15

of iterations to yield the ciphertext character. The next ciphertext character will be

obtained using the previous ciphertext character as the initial value, while iterating the
number of times indicated by the present plaintext character. Hence, any change in
plaintext would affect the remaining part of the ciphertext. This means that diffusion is

introduced in the system. Secondly, the characters in the ciphertext will not only depend
on the key but the plaintext itself. Thus there are elements of confusion as well in the

system. As long as the mapping function is not disclosed, the system can withstand
statistical attacks.

2.4.2 Chaotic Encryption and its Algorithm

Chaotic map is a chaotic system with the property to evolve identically if the initial
conditions are the same. The chaotic map is the main part ofthe encryption system. The

more complex the map, the more difficult to force it. One way to enhance the

complexity ofthe maps for encryption is by mixing them. The real important part is to

be able to reproduce the maps the way it has been mixed. It will be more difficult now

to calculate all the possible situations.

The key is the only piece of information unknown to the attacker. The key could be

public knowledge and this fact should not compromise the system. One way ofsolving
it is by means ofchaotic dynamical system. There are several methods by which the
plaintext can be combined with a chaotic sequence to produce seemly cipher text, one
that appears random and disordered by permutation or invertible substitution. The digits
or the letters of the cipher text can be calculated from the original and the key as
follows:

ci = Ck (tk) =ti + k(mod m) (1)

where ci is the cipher text's i-th digit, // the i-th digit ofthe original text and kthe actual

value of the chaotic sequence, mis assumed to be the alphabet size. Decoding is simply
performed by the inverse operation of (1).

16

ti= ci -k (modm) n\

This is possible for the recipient to decode because he knows the key and can
reconstruct the chaotic sequence appearing in(2). On the other hand, it will be difficult

for the hacker because he lacks the information of the original conditions of the system
that led to the production ofk. Thus, the sender, recipient and hacker are aware of the

chaotic system being used but only the sender and recipient share the knowledge of the
exact initial condition of the system. This constitutes the key. The hacker may try to
guess the conditions but his chance ofsuccess is inversely proportional to 2n where n is

the number ofeffective bits used to describe the initial conditions. Even if he is able to

come up with a close guess, it would not help because of the chaotic system's
sensitivity to initial conditions would multiply any original discrepancy in a few
iterations. It is possible to generate efficient ciphers using for example aquadratic map
exhibiting fully developed chaos. Variations on this theme are easy to come by, instead
of resorting to substitution scheme, one might use a chaotic system to generate a
permutation matrix and use this toencode a message.

The key advantages ofthe chaos encryption are resistance to traditional form ofattacks

because it is not written like standard algorithms, ease in increasing the variety of
algorithms, difficulty in detecting spectral peaks and suitability of implementation in
analogue systems [10]. It is a simple method of encryption and can be achieved by
iteration with ahigh level of security. There is no short cut and the security depends on
the key.

But as with every system, there is always a flip side, and chaos cryptography is no
exception. Due to difficulty in cryptanalysis the security cannot be readily quantified
[10]. The system is also said to be insecure to be encrypting long messages. This
weakness is attributed to the fact that chaos mappings can go in an orbit or repeat its
pattern for various initial conditions. It is also slow in speed and requires a high
precision offloating point calculation and large number ofiteration.

17

2.4.3 Chaoticencryption using logistic map

The logistic map is given by the equation:

x(n+l)=r*x(n) *(l-x(n)) (3)

where the value of the bifurcation parameter, r should be selected as the values that can

result in chaos and 0<x (0) < 1. The successive states from the logistic map is derived
using equation in (3) and the preceding 16 or 24 bits below the decimal point of the

binary representation of x(n) where n= 1,2, ... areextracted to constitute the chaotic bit

string sequence b(0), b(l), b(2), In the chaotic systems [1], there are perfect

statistical characteristics such as (i) sensitive dependence on initial condition and (ii)
there exist trajectories that are dense, bounded but neither periodic nor quasi-periodic in

the state space. Since the one dimensional logistic map has the property of easy
realization, it is adopted to generate the unpredictable sequence b(.).The logistic
equation is as the equation in (1) and is parabolic like the quadratic mapping with f (0)
= f (1) = 0. The value of u is selected from a range of values which can cause chaos

based on the bifurcation diagram and 0 <x (0) <1. The value ofx (n) is the nth value in

the sequence and then folds it back by (1 -x (n)). The author carried outresearch onhow

to determine the value ofu such that it would create chaos. According to [5] and [14],

the parameter u varies in the interval [0, 4] so that u will be values that can generate
chaos and x (0) will stay in the range of 0 to 1. This can be observed from the

bifurcation diagram in Figure 2.1.

18

Xfc

0.2 -

Figure 2.1 BifurcationDiagram

The bifurcation parameter takes the range 0<u<4 and determines the chaotic attractor.

In the range 0<u<l, x tends to zero while Ku<4 leads to a point attractor. At u«3 the

first bifurcation occurs, the curve bifurcates again at u«3.45 and the period doubling

continues at ever closer u values to chaos. At u=4, complex chaotic behavior can be

observed.

2.4 THE HIERARCHICAL DATA SECURITY PROTECTION (HDSP)

(IMS.

voice

da!a

PCM

l/F

^ Fuirjpsy _^,

framing
inter-lram®

data
de-kiterleavirKj

Intra-frame
iiiklii

encryption

tfitra-lcema

source coding

channel

channel

channel

decode
lJ

chanrwl coding
_™ *.

Figure 2.2 Blockdiagram ofproposedHDSPscheme appliedin VoIP

19

This technique has been proposed in [1] as solution to the drawbacks VoIP has

encountered. This scheme maintains both the voice quality which is degraded from the

packet loss and provides high data security for the voice being transmitted. This scheme

proposes two methods of data security i.e. inter-frame data interleaving and intra-frame

data encryption. These operations are controlled by chaotic bit-string generated from the

chaotic bit-string generator based on the 1-D logistic map. The inter-frame data

interleaving, permutation is adopted to perform frame re-ordering. Pixel value

transformation including bit swapping and XOR or XNOR operations are adapted to

translated the original pixel value to an encrypted one. This encryption algorithm falls

in the combination form which performs both position permutation and value

transformation. The value transformation has low computational complexity and low

hardware cost. This combination normally exhibits the potential ofhigh security. The
block diagram in Figure 2.2 below illustrates the proposed HDSP scheme to be applied

in VoIP. The main focus is the framing operation, inter-frame data interleaving and

intra-frame data encryption. The framing operation would include breaking up the voice

input to a defined number of packets. The chaotic bit string generator is based on the

chaotic system utilized (chaotic maps). To generate the binary sequence b(0), b(l),

b{2\... from x(0), x(l), x(2\..., the 8 bits before the decimal 16 point of the binary

representation ofx(n) for n =0, 1, 2,... are extracted toconstitute the sequence. That is,

0.b(16n+0)b(16n+l) b(16n+14)b{16n+15) (4)

is the binary representation ofx(n) for n = 0, 1,2, n.

20

2.5 Proposed Two-Level Security System for VoIP

Voice

Data

PCMIJF

PCM Iff

SPEECH

ENCODING

SPEECH

DECODING

*LEVEL 1

ENCRYPTION

"LEVEL 2

ENCRYPTION

•ENCRYPTION-

-DECRYPTION-

LEVEL 1

DECRYPTION
LEVEL 2

DECRYPTION

CODER

MOD

IP NETWORK

DE-MOD

DECODER

Fig. 2.3Block diagram ofproposed security schemefor VoIP

Based on the scheme in Figure 2.2, a new security scheme for VoIP as depicted by the

block diagram above in Figure 2.3. The proposed level one encryption which is two's

compliment overflow nonlinearity encoder-decoder and level two encryption which is

the bit swapping are inserted in the traditional VoIP data flow between the speech

CODEC and the channel CODEC. These operations are controlled by a chaotic bit

string generator based on the chaotic system of a one-dimensional logistic map. The
implementation ofthe encryption-decryption schemes will be discussed inChapter 3 of

Methodology and Project Work while the system will be formally discussed in Chapter
4 of Results and Discussion.

21

CHAPTER 3

METHODOLOGY and PROJECT WORK

3.1 Procedures and Methodology

The project work is divided into two parts of to ensure that the time frame of two

semesters is fully utilized and organized well. For the first semester, the objectived

outlined was to get acquainted with the theory ofcryptography, focusing specifically on

the Advanced Encryption Standard and Chaos Encryption and comparing results ofboth
encryption schemes.

The objectives of the second semester has been clearly outlined in Chapter 1. Firsly, a

thorough and intense research is carried out to gather suffiecient information andresearch

papers pertaining chaos, chaos in cryptography, streaming, voice over Internet Protocol

and its security issues. The research is done based on books, IEEE publications, the

Internet, and also certain individuals inclined to this area of research. The information

being gathered is important in understanding the role ofchaos in cryptology, the concept

ofstreaming to be applied in a cryptosystem to provide real-time encryption, the security
issues in voice over Internet Protocol andencryption schemes to overcome it.

Secondly, the focus is to finalize onthe chaotic encryption scheme implementation based

on research carried out. Materials relevant to voice over Internet Protocol and its security

issues have been researched upon and the author has decided to further explore the

scheme proposed in [HDSP]. This scheme is discussed in Chapter 2 and is illustrated in

Figure 2.2. The author will focus on implementing the framing block, and intra-frame

data encryptionas illustrated in Figure 3.1.

22

PCM
voice"

speech
encoding

[War-iiame
(lata

Inlwtaiiving
(trame

ieonMrtcig)

Intra-fianiu

(laia

eriwycrtion
(piael valw

chflotlohit strlrsQ
generator (CBSG)

chaoticail STilnfj gftreaEoj
(CBEG)

y(n)=i(xx("-1):-;[l-x(rr~1}]

8(»)»tt»i.04.0,,^..„J>,6[C(*<n)

-/—»• S[n)

Figure 3.1 Operations ofinter-frame data interleaving and intra-frame data encryption

3.2 The implementation of chaotic bit string generator

S6

•chaotic M stringowwator

L

vttemxtpiiaVbixZl

Sip)m\bt.bfybyb^.,,,,^ 6i of#{tt)

16

Figure 3.2 The chaotic bitstringgenerator

23

In the proposed HDSP scheme there are three main operations i.e. framing, inter-frame

data interleaving and intra-frame data encryption as illustrated in Figure 3.1. The

operating intra-frame data encryption is controlled by the chaotic bit string generated

from the chaotic bit string generator based on a one-dimensional logistic map as
illustrated in Figure 3.2.

Determine the bifurcation parameter, randinitial point x(0) ofthe 1-D logistic mapfr(x)
= rx(l-x) where r should be selectedfrom a range of values which would result in chaos

and 0 < x(0) <1. Evolve each successive state from the map by x(n+l)=rx(n)(l-x(n)) and

the preceeding 16 bits below the decimalpoint ofthe binary representation ofx(n) where

n=l, 2, ... are extracted to constitute the chaotic bit-string sequence b(0), b(l), b(2) and
so on.

The chaotic bit string is generated by extracting 16 bits from each evolution state of the

1-D logistic map. This bit string is important as it ismanipulated in the swap bit function.

The successive states are evolved from the logistic map and the preceding 16 bits below

the decimal point for the binary representation of x(n) are extracted to constitute the

chaotic bit string sequence b(0), b(l), b(2), b(3) b(16). To generate the chaotic

binary sequence, the 16 bits before the decimal point ofthe binary representation ofx(n)

where n=0,l,2,..are extracted to constitute the sequence. For example for x (0), the 16 bit-
binary representation

O.b (16n+0)b (16n+l)b (16n+2) b (16n+7)

where ofn=0, which returns b (0), b (1) b (15). The chaotic bits would be passed to

an array with N number of elements which is equal to the number of iterations and used

in the bit swapping function.

24

3.3 Bit swapping algorithm

• rfi^dl

giTrm

iTHini
odd-bit XOR

1X01335

JLLLt

OTttirol unit lyrcu)

I
chaoticbll string

genemcar !CBSG>

A

Figure 3.3 Intra-frame dataencryption

With reference to Figure 3.3, for intra frame encryption, the pixel value transformation

which includes two operations of bit swapping and XOR operations based on the chaotic

bit string b(0),b(l) b(n) which transforms the original pixel value to an encrypted one.

The algorithm for the bit swapping is discussed as follows. Each sample is represented by

one byte which is 8 bits. The swapping will take place locally within the sample. The

pairs to be swapped is predetermined as bit zero with bit 4 (0, 4), bit one and five (1, 5),

bit two and six (2, 6) and bit three and seven (3, 7). Each pair will be assigned to one

chaotic bit. If the bit is 1, then it will be swapped. If the bit is 0, the pair will remain.

Then, the 1st, 3rd, 5th and 7th bit will be XORed to the four chaotic bits. This data

encryption approach has the features of low computational complexity. The algorithm is

as below:

g' is the result of the data encryption Definition 2: The operation SwapBitw(dr,

ds) is defined as to swap bit dr and bit ds ifw is equal to 1 or to preserve their

original values ifw is equal to 0.

Step 1: Determine the bifurcation parameter, r and initial point x(0) of the 1-D

logistic map fr(x) = rx(l-x) where r should be selectedfrom a range of values

which would result in chaos and 0 < x(0) <I. Evolve each successive state from

25

the map by using equation (3) and the preceeding 16bits below the decimalpoint

of the binary representation ofx(n) where n=I, 2, ... are extracted to constitute

the chaotic bit-string sequence b(0), b(l), b(2) andso on.

Step 2: For ctr=0 to 4 where ctr equals 4 incoming samples at one time

For bit= 0to3

SwapBltf,(4xctr +biil)(dbih dbu+4)

End

For oddjsit = 1 to 7 Step2

doddjif = doddbu'XOR b(4xctr + odd_bit)

End

End

Step3; The encryption result g' is obtained andthe algorithm terminated. "

The interframe data interleaving will be replaced by another encryption-decryption

technique as illustrated in the Figure 3.4.

26

3.4 TWO's COMPLIMENT OVERFLOW NONLINEARITY

m
•s- ©*- 0 r(t)

T T

<!•].) it;-] 3 f—^ ci

» U-'

*N^

_>"

^„,

T

—^ 5I K-
"V

-VI

Ei4t [Hi •— C2

T

<

Figure 3.4 Encoder-decoder using two's compliment overflow nonlinearity

The encoder-decoder structure with two's compliment overflow non-linearity [2], special

parameter sets and fixed-point, floating point or continuous value realization is used for

coding of speech for another level of encryption.

Basically, this system is a generalized implementation of a simplified delay-based

system. With reference to Figure 3.4, the encryptor portion of the system consists of all

the blocks to the left of the transmission line, whereas the decryptor is located to the
right.

It should be obvious that each key-pair (Gain 1 and Gain 4, Gain 2 and Gain5, Gain 3 and

Gain 6) should have the same key value to ensure that the decryption process produces

the correct recovered plaintext from a givencipher text.

The gains in the feedback loop of the system act as the encryption keys. The value for

each key is obtained from a chaotic sequence generated using the logistic map. The mod

function is recognized as the two's complement non linearity and mathematically defined
as:

27

mod(;c) =x- 2. |_(*H)/2j (1)

where x, in this case, is i(k) + K(k), and LJ is a flooring operation.

A simple generalization of delaybasedsystem implementation would then be:

s(k) =mod(i(k) +£ Cjs(k - j)) (4)

and the decoded signal would be:

1(k) =mod(r(k) - Y^c*r(k - j)). (5)

where Cj is the key and identical keys in need to be used in both the encoder and decoder.

The key values are achieved by using the logistic map. But instead of converting the

iterated values from the map to bits of ones andzeroes as done prior to bit swapping, the

iterated values of x(n) itselfwill be used as the key values. This is because the key values

need to be larger than one and never zero.

The block diagram in Figure 3.4 had been implemented in MATLAB Simulink. A C-

standalone was created and was able to execute outside of MATLAB. The author

reviewed the C-codes that were generated and it was completely using Simulink

(MATLAB) API's and libraries linked into the program. Even audio capture (from

microphone) is done via API's in Simulink and MATLAB. The makefile also seems to

indicate the usage of Simulink's owncompiler called LCC to compile the program.

From the findings, the author has discovered that Simulink has the libraries not only

needed to do the mathematical equations but also communicate with the operating system

to interface with the microphone. Unfortunately, the author could not discover a way of

interfacing Matlab / Simulink with network as well, so that the whole system in Figure

4.1 canbemodelled inMATLAB and from there create a standalone. However, assuming

the worst case scenario that Matlab simulink cannot do networking or that the overhead

28

interfacing Matlab / Simulink with network as well, so that the whole system in Figure

4.1 can be modelled in MATLAB and from there create a standalone. However, assuming

the worst case scenario that Matlab simulink cannot do networking or that the overhead

of the Matlab Simulink libraries cannot cope with "real-time-ness", then author continued

to simulate the system using Visual C++.

These definitions and steps are implemented in MATLAB using m-files for initial

development. The encryption algorithm was then enhanced and further optimized using

C-coding. The end system is implemented in C and the results that was obtained from the

encryption and decryption for real-time voice data is analyzed using MATLAB. Please

refer to Appendix D to view the C-codes for the proposed two-level encryption scheme

based on chaos. MATLAB provides tools such as spectograms, histograms and power

density spectrum plots which enables one to analyze the input signal, encrypted signal

and the output or decrypted signal. Comparisons and conclusions from the analysis can

be drawn using the tools provided.

29

3.5 Flow Chart

Project Begins

Literature Research and Understanding on CHAOS

Download AES encryption source codes

Implementationof AES encryption in MATLAB and C

Performance analysis of AES

Literature Research on chaos and VoIP

Modify current implementation of chaotic encryption to do
real time encryption

Two-level symmetric chaotic encryption scheme

Implementation and performance analysis of chaotic encryption scheme

Performance comparison of Chaos encryption with AES

Dissertation Report Oral Presentation

1
Project Completes

Figure 3.5 Flow Chart ofproject workacross twosemesters

1st Semester

2nd Semester

30

3.6 Tools/Software

The software' used are MATLAB and Visual C++. The chaotic encryption scheme will

be converted to C-standalone executable program. Hence, this encryptionprogram can be

installed in any computer as a standalone system.

31

CHAPTER 4

RESULTS AND DISCUSSION

4.1 PROPOSED SECURITY SCHEME FOR VOICE OVER INTERNET

PROTOCOL (VOIP)

MIC FCMDF SEECH

ENCODING

•LEVEL 1

ENCRYPTION

•LEVEL 2

ENCRYPTION

ENCRYPTION-

CODER

MOD

IP NETWORK

Voice
Data PCM If 4

SPEECH

DECODING

•DECRYPTION.

LEVEL 1

DECRYPTION

LEVEL 2

DECRYPTION

DE-MOD

DECODER

Fig. 4.1 Blockdiagram ofproposedsecurity schemefor VoIP

The scheme in the blockdiagram above illustrates that the proposed level one encryption

which is two's compliment overflow nonlinearity encoder-decoder and level two

encryption which is the bit swapping are inserted in the traditional VoIP data flow

between the speech CODEC and the channel CODEC. These operations are controlled by

a chaotic bit string generator based on the chaotic system of a one-dimensional logistic

map. Using the chaotic bit string in the level one and two encryption-decryption

techniques possesses the features of low computational complexity and high security. In

the followingthe author describes the system formally.

32

Level one encryption is the two's compliment encoder-decoder and the second level is

the bit swapping function which has been highlighted and discussed in Chapter2 and its

algorithmand implementationin Chapter 3.

To summarize the operation of both, the encoder-decoder in Figure 3.4, replaces the data

frame interleaving. The bit swapping function cannotbe used as a standalone encryption-

decryption scheme and is not secure enough. Hence the introduction of the first level of

encryption before bit swapping. The diffusion technique is used to achieve a certain level

of secrecy or privacy [2]. Diffusion is where the characteristics of the encoded signal are

independent of the information signal.

In the encoder the information signal i(t) has be encoded by the operation q>(i, k) using

the key signal k(t) where the operation is based on a two's compliment overflow linearity

function. The operation is realized by complex scrambling using signal transformations.

The mod function is illustrated as

mod (x) - x-2 * floor ((x+l)/2)

which is the two's compliment nonlinearity. To have the identical key signals, the chaotic

encryption scheme is realized based on a feed back-feed forward control of the encoder

and the decoder by the encoded signal as in Figure 3.4 also known as the self-

synchronizing structure which does notneedan extrasynchronization signal.

The coder states that s (t-j) based on equation (4) and (5) in Chapter 3, is simply time-

delayed versions ofthe encoded signals ofs (t). Lets say for a 3rd order encoder-decoder
pair, to encode sample 7 which is i (7) where n=3 (order), thus the equation in (1) would

be

s (7) - mod (i(t) + (k (1) s(6) + k(2) s(5) + k(3) s(4))

The rangeof s (t) is always limitedto [-1 1] due to the modulo-property.

33

The self-synchronizing scheme leads to a dynamical system with chaotic behavior [2].

The sensitivity of the system to the initial condition and the keyvalue and number of key

used, has it made it a suitable candidate to be implemented in this VoIP securitysystem.

Replacing the interleaving block in the HDSP scheme with this encoder-decoder pair has

also another notable advantage. The interleaving techniques groups frames of perhaps 10

and swap the frames with one another. This increases processing delay as all 10 frames

need to be complete before swapping takes place. The encoder-decoder pair on the other

hand, handles samples and receives them in a continues manner. The processing delay is

dependant onlyon the nth orderof the system. If it is of order 16, there would be a delay

of 16 samples which is within microseconds and not perceivable by the human ear. The

speech is also continuously scrambled.

However, the signal s (t), which controls the key generator, is accessible and hence can

be used for cryptanalysis. This is one of the main factors of why a second level of

encryption, the bit swapping is introduced. Thus as the samples s (t) is sent out of the

encoder, it will be further encrypted locally within the sample itself before being sent to

the network.

The intra frame encryption, the pixel value transformation which includes two operations

of bit swapping and XOR operations based on the chaotic bit string b(0),b(l) b(n)

which transforms the original pixel value to an encrypted one. This occurs locally within

the sample. This data encryption approach has the features of low computational

complexity. A factor, which affects processing time, is the number of iterations used.

Increasing the number iteration by a factor of two will double the required processing

time. Hence, instead of iterating the map to the number of samples which is not

necessary, the logistic map is iterated every two values. Two values of x (n) and x (n+1)

will produce 32-bit chaotic bit string. Each 4 bit will be assigned to the first 8 incoming

samples. Once this is completed, the next two values are iterated.

34

If a scheme involves with pixel permutation, XOR operation will be included to enhance

the security. But based on the bit-swapping algorithm in Chapter 3, the XOR operation on

each pixel is done outside the permutation looping. In short, after the permutation process

is repeated for a said number of iterations, eachpixel value is XORed with the generated

chaotic bit string.

4.2 IMPLEMENTATION OF PROPOSED SECURITY SYSTEM FOR VOIP

INC

To verify the performance of the two's compliment overflow nonlinearity encoder-

decoder and bit swapping done locally within the sample in the proposed scheme, the

author performed a software simulation using the Visual C++ on test voices. Figure 4.2

illustrates the simulation environment.

Audio Capture Audio Stream Encrypt Thread Audio Stream Send

Network

Audio Stream Receive Audio Stream Decrypt Thread Audio Stream Playback

Fig 4.2 Block diagram of encryption-decryption simulation environment using the proposed two-level

encryption schemes

NETWORK

Fig. 4.3 Block diagram ofsimulation environment

35

The proposed system will be simulated on a setup such as the one in Figure 4.3. Two

computers running the standalone application will be connected via the local area

network (LAN).

£%• Sec_Aud_Strm a*ss.J 4>isi
-1 Ii n rf r-r ji ur f- mf urn n-iliU

R nHFru 1H1

Ei |.l^E*d

E,

r I L ^ rvp
iPd F bdl J

Fig. 4.4 User interface

Each application will have a dialog box as the user interface as such in Figure 4.3. The

receiver will click on the 'Receive, Decrypt and Playback' button and awaits the sender's

response. The sender clicks on the 'Record from Mic' button and speaks into the

microphone. The voice input will be captured every say for every l/25th ofa second and

stored into a global buffer. A sampling rate of 11025 KHz at 8 bits per sample is used

which means that 11025 KHz / 25 will give 441 bytes per network packet. These

parameters are user-definable in the codes audio_param.h attached in Appendix E and are

used for testing purposes.

As said earlier, every l/25th of a second, it will record from microphone and store the

samples byte by byte it into a global buffer. The buffer will consist of 25 packets each

containing 441 bytes. Each slot will have a flag. Thus if, slot one has captured all 441

bytes, the flag will be set to 1. The encryption thread will check the flag status. If 1,

sample by sample (8 bits per sample) will be sent to the first level of encryption which is

the two's compliment overflow nonlinearity encoder. Once encrypted, it will store the

encrypted output in a local buffer. Then, byte by byte will be encrypted using the bit

swapping function. Once encrypted, the samples will be packetised in TCP packets to the

36

receiver side. At the receiver end, the decryption thread will receive the packet and

decrypt in reverse order, second level decryption followed by first level. Once decrypted,

it will store samples into the global buffer for playback.

Only one thread is used on both sides of encryption and decryption. To enhance the

efficiency of the system and decrease processing delay, there can be two encryption

threads for both level of encryptions so that the encryption of both levels can be done

simultaneously and no need for intermediate buffers. This is to be applied to the

decryption side as well.

The size of frame/packet should be carefully selected so that it has lower latency and

overhead processing. The smaller the packet size, the better error recovery and will

reduce the end-to-end delay in a VoIP system.

The TCP transport protocol is not suitable for the VoIP applications because of its

complex retransmission mechanism. For this reason, all the VoIP applications at present

transmit via the UDP transport protocol. However, assuming that the delay is minimal

and less than 240ms, TCP is used in this transmission because the proposed system does

not offer a framework for packet loss. Hence, using UDP may cause the packet loss to be

critical resulting in the recovered signal or voice on the receiver end to seem as if it was

not decrypted completely. Hence for simulation purposes and to demonstrate the

workability of the two-level encryption scheme by assuming minimal delay on the LAN,

TCP was adapted into the system.

37

4.3 SIMULATION AND ANALYSIS RESULTS

The AES encryption scheme is used to compare against the symmetric chaoticencryption

scheme and will be discussed in the following sections.

The MATLAB implementation of the AES encryption was obtained from

http://buchhloz.hs-bremen.de/aes/aes.htm. This encryption scheme is used to compare

against the symmetric chaotic encryption scheme and will be discussed in the following

sections. These m-files were compared to the AES standards to ensure its validity. This

implementation of AES is fully operational but only does not optimize speed. For each of

the first Nr-1 iterations or rounds, it performs a substitution operation called Sub Bytes

on State using an S-Box; perform a permutation Shift Rows on State; perform an

operation Mix Columns on State; and perform AddRoundKey.

The key for the chaotic encoder-decoder had been synchronized and obtainedby iterating

the logistic map for n times where n is equivalent to the number of keys used. For

comparison with AES, the keys for the chaotic encryption have been set to 128 bits as

equivalent to the AES key length.

4.3.1 Spectrogram Analysis

The spectrogramfunction in MATLAB divides a long signal into windows and performs

a Fourier Transform on each window. It basically shows the reader what is the frequency

content of the signal at any point of time. It produces a pseudo color display of spectral

energy with frequency on the vertical axis and time on the horizontal axis. The colors

represent the most important acoustic peaks for a given time frame, with red representing

the highest energies, then in decreasing order of importance, orange, yellow, green, cyan,

blue, and magenta, with gray areas having even less energy and white areas below a

threshold decibel level. For a given spectrogram, S the strength of a frequencycomponent

38

fat a given time of t is represented by the darkness or the colorof the corresponding point

S(f,t).

The spectrogram in Figure 4.5 in the following page illustrates the voice signal "Hello.

Testing 1, 2, 3." An experienced spectrogramreader would be able to identify the words

from the patterns in the image above. The vertical line patterns in red and blue could

depict the sounds of the certain alphabet at the end of a word or syllable. The other

speech sounds or phonemes are equally distinctive in their shapes. It is not possible to

obtain or read the phonemes from a normal speech waveform. However, when analyzing

the frequency contentof the waveform, a spectrogram is produced as above which can be

deciphered. Nevertheless, the distinctive shapes, patterns and colors need to be present in

order to be able to identify the words.

The spectrogram in Figure 4.5(b) shows that the signal has been distorted and also

displays onlyno significant frequency or energy content. Hereby, no distinctive shapes or

patterns are seen and the rows of frequency content are not at all visible for a code

crackerto makeout the speech that is being said. It is impossible to distinguish or deduce

the original signal from it since there are no distinctive significance betweenthe original

signal and the encrypted one.

F* Bit W» &wt T«*« HMdm H# i

(a)

39

«u? >»// .

1 ' I *

_ 1 I : bi' i*l

f u

(b)

flE£93^33
hij a>t wm Emrt Tatfc *Wan mb

ID «fl3! t A> X' SB 1

1 'smt*4m

(c)

-to*

Figure 4.S Spectrogram of(a) original voice signal, (b) encrypted signal and

(c) decryptedsignal using chaotic encryption scheme

The decrypted signal as in Figure 4.5(c) is not 100% similar to the original signal though

theoretically it should be the same. The author suggests that the blue line in the original

signal and the yellow line in the decrypted occurs at the same instance for any recording,

and may be caused by internal hardware. However, when the decrypted signal is played

back, it sounds exactly as the original signal with no distortion or noise corrupting it.

40

4.3.2 Comparison between Advanced Encryption Standard (AES) and

Symmetric Chaotic Encryption

To compare AES and chaos, a speech signal "Hello.wav" was used and the results are

shown in the figuresbelow and both encryptionschemes using 128-bitkey.

Figure 4.6 illustrates the speech signal that was fed into both the AES and chaos

encryption scheme. The signal that was sent it is identical and thus only the method of

encryption will hence produce different results in the encrypted as illustrated in Figure

4.7 (a) and (b).

^^^^^^^^H
Re ESlh iftw Smoil T«k Widow iHeb

JD I* O Si * A * /\0>&O

,|,p{xi

0 500 1000 1500 <2000 MAS 1000 3500 MM
Time

Figure 4.6 Spectrogram oforiginal voice signal

41

•SftiSw-.^^
We ,Eitt;; fewf•tB^^^7Viw»4f HM^g'^^^fr?-fi'^ ' "'""fe

1 -1- u - ' ' SHI,- rAJ __? -

01 f

0
IDOO 1500 2000 2500 3Q00 3BM 4111)0

i Tiro

(a)

^^^^R^Q
We £« Vat Insert IMs WWwr Hep

QEJHaUAZ/1

S..„JW -^;_TJ. Bl

•-•5;W_'g-:---T ,£Zi **: ^**"1~*-'

*iSI«l

•JSm dfci
GQ0 1000 1500 2000 2500 3000 3500 4000

Tmw

(b)

Figure 4.7 The encryptedsignal displayed using a spectrogramfor (a) 128-bit AES

and (b) Chaos

42

hfc till Vm,j»tfl Tqdt Mh Ht<>

In i-jo -5* k a * •! © fl i

£&; '^iEJj<J

0 SCO 1500 1500 2G0O liOO 3060 3509 40C0
"Pino

(a)

.•JDl*!J^^^^^Q
F!e est «m In«t To* VftiiM Htto

J0£#HS[A A .» X[^^D

SOO, TD00' 1500 2000 2500 3000 3500 4000
Tdm

(b)

Figure 4,8 Spectrogram ofdecrypted voice signal using (a)AESand (b) Chaos

The encrypted signal for AES in Figure 4.7 (a) shows all kinds of frequency content and

is clearly distorted if compared to the original one. As mentioned earlier, for any speech

signal to be read from the spectrogram, it has to have distinctive shapes and patterns,

which is clearly not the case for this image of the spectrogram. Even Chaos in Figure

4.7(b) displays the same kind of characteristics; randomly distorted with no distinctive

patterns and the rows of frequencies is not visible as the original image. Only the energy

content in both this these spectrograms differ. If the key values were changed, the cipher

text obtained was totally different from one another though resulting in the same

decrypted spectrogram. Since this is the portion to be viewed by the code cracker, it

43

would be hard to pick out any kind of frequency variation and read out the phonemes, as

there is no significant resemblance to the original spectrogram.

For AES, since the decryption process is just an inverse of encryption, thus the original

signal is hence recovered with not the slightest changes to it. For chaos however, there is

a slight shift to the right in the decrypted signal. Based on the Figure 3.4, for any given

signal encrypted by chaos, the decryptedportion of the signal experiences a slight shift to

the right or in other words a delay due to the delay system used in the encryption-

decryptionblock. But the delay is not obvious nor is it perceivable to human ears.

Using another wav file produced the results as illustrated in Figure 4.9 and Figure 4.10(a)

and (b) and Figure 4.11(a) and (b).

-JDf*l
Fft Bit Mr* Inert Took WMoti m I

liDfSHflf "t A J> / 1J9B ->

40I»^|L
•

^•^*e|?!£ = v
l

-

3500^H
:Haoof^l

,v^H 1

SM^M ii
-

izoDO^H jy'. _

4<^^^H RSB- 4 t j
tfOj^H
i^^^H•v^^M

-iooo^H
t^H

SOD^H

*•
01* .j4 .0.2 6^

flaw
Ut

M^^OT^^

Figure 4.9 The originalfde beingfed to theAESand Chaos

44

• * ert Teas HMsw Hefe

(a)

He Edt Star-Insert Tods VMat I**)
few .dUalit

cusoai u//

4000

3500

3000

2500

j.2000

' 1500

1000

SOD

||'-"T"IV'I™ -"W-i^'n <•)"* iy

111. S'S^V^-a'W u'/i" ivS »,',,

*3 Ss JEc.» \ 4

1 j' 1' Jor?

••Maltea-Uto-M
15 2 2.5 3 3S 4 4 5

Tims

(b)

Figure 4.10 The encryptedsignal displayed using a spectrogramfor 128-bit (a) AES

and (b) Chaos

45

.» U =f u// ,- -

_l

(a)

.U5 * h ? /

t DC5 0-1 015 0.2 - 025 03 03E 04 C45 05
Time

(b)

Figure 4,11 The decrypted signalfor (a) AES and (b) Chaos

46

4.3.3 Power Spectral Density and Histogram Analysis

The power spectral density is to describe the distribution of the power containedin the

signal over frequency. According [32], the estimation of this power spectral density is

useful in detecting signals buried in wide-band noise.

(a)

r*VS

(b)

47

(c)

Figure 4.12 Power spectral densityplot of(a) original voice signal, (b) encryptedsignal

and (c) decryptedsignal using chaotic encryption scheme

The noise like signal in Figure 4.6(b) is close to that of white noise. This is because, it

portrays the characteristics of white noise in terms of being uncorrelated, completed

random and has a relatively flat spectrum. The closer it is to white noise, the better.

This is because white noise is uncorrelated meaning there is no implication of the

relationship between the original signal and the noise produced. Also, detecting the

significant frequencies from a relatively uniformed signal as in Figure 4.6(b) is a

highly difficult task. Hence recovering the original signal would take more time and

effort for the code cracker. The case of uniformity can be further illustrated with a

histogram analysis. The histogram block computes the frequency distribution of the

elements in each column of the input, or tracks the frequency distribution in a

sequence of inputs over a period of time. The histogram values represent the

frequency of occurrence of the input values

48

(a)

ill i ttJiiWi ' i'

(b)

(c)

Figure 4.13 Histogram plots of(a) original (b) encrypted and (c) decrypted voice signal using

chaotic encryption scheme.

49

The original signal in Figure 4.13(a) is seen to have significantly high and low

frequencies unlike the encrypted one in (b) for which the frequencies occur more closely

to one another and there are no significantly high and low levels of frequencies.

From the figure in 4.13(b), the histogram plot is seen to be relatively uniform. It is harder

to detect the original frequencies from uniformity as depicted in (b) and less information

is perceived from a poor intensity distribution.

50

4.3.4 Comparison between Advanced Encryption Standard (AES) and

Symmetric Chaotic Encryption

Hi *
&&u

(a)

twm&i&akSf.

Ud *• A /• /

1 40r GuO BOQ]"ZH 1200 '400 1 GO

-tiinn.. ihS I is jr I. y'luj-niisonpjlt) r

(b)

Figure 4.14 Power spectral densityplot ofvoice signal using (a) AES and (b) Chaos

51

V ' " A /•

(a)

fi ir *>

it _. • A / •

40d GOO 630 1000 1200 1409 1EC0

hsmBlizedFre^isnc],'(mmdejirple) "*

(b)

j?'ii

52

If A. -IPltJ

(c)

Figure 4.15Power spectral densityplot of encrypted voice signalusing (a)AES,

(b) and(c) Chaos using different key values

Based on the power spectral density plots gathered on both the encrypted signal and

original signal using chaotic encryption, the noise signal or encrypted one, there is no

significant similarity in pattern between the original signal and the encrypted one. The

original signal depicts a typical voice signal, which decays at the end as the voice gets cut

off.

Both encrypted signals using AES and Chaos are randomly distorted using different

methods, producing almost similar power spectral density plots. However, the encrypted

data has been spread quite uniformly over the frequency range for AES using 128 bits

and for Chaos in Figure 4.14(b) and (c) which uses different key values. The noise like

signal is close to that of white noise. This is because, it is uncorrelated, completed

random andhas a relatively flat spectrum. Spreading thedatauniformly is a good thing as

it makes it harder for code cracker. He or she has to have a device to listen to all

frequency range. Listening to all freq range is also difficult as there will be other

frequency signal like TV, Radio, andmobile phone. Having said that, comparing AES in

(a) and Chaotic in (c), the magnitude of Chaotic (10A-2 to 10A2) is higher than the

53

magnitude of AES (10A-1 to 10A1). This means the chaotic signal carried more power

that represents its content over the same band of frequency.

vj u//

(a)

aft.

} ^8LjQ ^000 1200 1400 16D0

(b)

Figure 4.16 Power spectral densityplot ofdecryptedvoice signal using (a) AES and (b) Chaos

Once again the case ofuniformity can be further explained using the histogram plots.

54

V j * \ r /

Figure 4.17 Histogramplot oforiginal voice signal

(a) (b)

Figure 4.18 Histogram plot ofencrypted signal using (a) AES and (b) Chaos

As observed, the histogram plots from the output of encryption in Figure 4.17 are almost

similar and uniformly distributed for both AES and Chaos encryption scheme. Thus this

is also indicates a certain potential possessed by a chaos system to produce encryption

results as similar to that of the existing standards such as AES.

55

-QiJSJ

* ' ? /

ISM

B9ECES3XHRMHMHSSHBSSB
Fte W liletjvSBBl- Ttefa /VMan H* *

-!S * A ? / *P*i

Figure 4.19 Histogram plots ofdecrypted signal using (a) AES and (b) Chaos

4.3.5 Time-Waveform Analysis

Using a wave file "Hello.wav", the illustrations in Figure 4.20 and 4.21 shows that the

time waveforms of the encrypted signal from both the AES and chaotic encryption

scheme were noise like broadband power spectrum. The output was completely erratic

andwhen played back, wascompletely unintelligible.

The author observed a DC shift in the decrypted signal obtained from the chaotic

encryption when compared to the original signal. Since this a trivial issue and was

identified only later in the testing stage, the author is currently debugging the codes to

rectify the error.

56

Mi i

I'

(a)

TjJSf

mmmmm

(b)

&E35CS39I fo* -JEI.SI

300-

, l I
'J1 'U

• l3(a«2 rtietfisHMffli l

(fill

U I i"! 'lli'i'i-flifihirt iWii *
HI 0? OJ 0 0.5 06 07

^pri
i -?*_'Hi* rf)*A r- «- i if r I r

| H*i«1(f(
a. —

••

(C)

Figure 4.20Plot of(a) Original signal, (b) encrypted and(c) decrypted signal using AES
encryption scheme

57

nr.

•Ii11" 'i fNir,'J'(||»lii,ll ll "I'l.l, I'

II 02 ^ . 03 ,94 05 05
Ting r

29 e - / IDS

(a)

»#•»'»««*

njxl

l

MM NMV *HW*

(b)

fi i"i
t >il il'fflt iiiiIku i | [i

V'i '' i!l , l[
U'!

jViftV '̂VVVfVW/VV'A'V

(c)

Figure 4.21 P/etf of(a) Original signal, (b) encryptedand(c) decryptedsignal using Chaos
encryption scheme

58

4.4 CONCLUSION OF ANALYSIS

From the observation and results, it can be deduced that chaotic encryption schemes have

a good future and have produced attractive results, which can be further researched and

enhanced.

Though both the AES and Chaos based encryption schemes deploy random

characteristicsto encrypt the incoming data be it voice, text or video, but the outcome of

the encryption still differs due to the operation or method used to encrypt the data.

From the author's understanding, on "what makes a good encryption algorithm", though

not complete, is outlined as below:

• Iterations required per sample

• Speed of encryption and decryptions

• Error propagation (when you iterate something, i.e. current outputdepends on the

previous output etc, they tend to produce error propagation)

Thus, these are the criteria to look into when comparing two encryption schemes.

Encryption strength would relate to the time it would take to decryptnot having the right

key. In this case, the algorithm is unknown and attempts are being made to detect an

encrypted signal disguised as noise. Having detected the presence of a signal, an attempt

to decrypt it will depend on whether the code cracker has access to the encryption

algorithm and has to figure out the key, or on whether the encryption method has to be

worked out as well. Looking at AES and Chaos based encryption and the corresponding

results, the noise signal obtained is completely random, and thus with a power density

spectral which is relatively uniformly distributed, it does not indicate any similarity in

pattern corresponding to original signal which could provide anypossibility to decrypt it.

59

Be it for audio, text, video or image, based on [1] and [10], there are no known
cryptanalysis attacks to have worked on AES and due to its operations especially the key
expansion operation which fulfills the design criteria to reduce the symmetric
characteristics of the encryption scheme and round transformations; it is highly resistive
against attacks especially as the number ofrounds (iterations) increases.

Chaos on the other hand, possessing characteristics ofrandomness, stochastic and mixed-

ergodic, enhances the security of the encryption process by the means of a chaotic

dynamical map. With reference to the results obtained, it can be said that the chaotic

encryption scheme is quite attractive to be used as replacement for currently existing
standards. The cipher text is seen to be a very erratic plot compared to the plaintext. It
was observed that for audio encryption, the system shows great sensitivity to initial
conditions, changes in number ofkeys and changes in key values. Using asingle channel
voice data as input, thecipher textobtained was a noise-like sound.

Itwas observed that, with the key value zeroes; the encryption did not have any effect on
the signal. But when the key values were greater than zero, the cipher text was

successfully obtained. This has to be looked into, as sometimes, the key values are picked
at random and may give anall zero value. To avoid this, the logistic map is used toobtain
chaotic values between 0 and 1.

Based on the author in [1], the fractal dimensions of the original and encrypted voice

should range from 1.7 to 1.9. Since the maximal fractal dimension for a one-dimensional

curve is 2.0000, all the encryption results is said to be in a state of chaos.

In [4], it is mentioned that statistical analysis needs to be conducted on the publicly

available encrypted signal at the encoder-decoder. The principle behind this is to create

statistical measure based on the encoded signal and key parameters and then try to

estimate the keys. This is much similar to the exhaustive scheme used in cryptanalysis

although the former is supported by statistical data. Although it is easy to break an

encryption using this type of analysis, it was pointed out by the author that choosing a

larger key set from a larger setwould increase the time taken to estimate the keys. The

60

table below illustrates the number of days taken to estimate the key with an accuracy of

0.1 in coefficients.

Table 4.1. Time taken to estimate key based on order deployed in encoder-decoder

structure in Figure 3.4.

OiiUtu. '1 imc

2 25 s

3 8.3 m.n

4 4.2 hr

5 3.5 days

The issue of security for this scheme still needs to be resolved since this implementation

has not dealt with the level of secrecy of the encryption scheme.

The secrecy level of this chaotic encryption though not greater should be equally as good

as the existing standards such as the Advanced Encryption Standard (AES). Though, the

level as of encryption for chaos is greater with increasing number of keys, however, a

bettersolution is to have a smaller number of keys but able to produce the same level of

security andsecrecy. The AES encryption provides this ability being able to only use one

key to encrypt and decrypt butwith the choice of 128,192 and 256 bits. Forthis analysis,

only the 128 bitkey was used. The encoder-decoder had to have an order of 8 delays to

produce a set of 128-bit key. With the bit swapping algorithm aiding the encoder-

decoder, the encrypted signal produced by chaos is almost similar to the one produced by

theAES encryption scheme as observed in the illustrations above.

Pertaining to the issue on the security of the symmetric key, an alternative would be to

integrate the chaos encryption with Public-Key Infi-astructure based encryption such as

theRSA.

61

To enhance the security of symmetric chaotic encryption, the integration between a

symmetric encryption and PKI based encryption also using chaos would prove to be a

work around to reduce the probability of the key being known to a code cracker. The

symmetric key or keys used to encrypt the plaintext is encrypted using the public key

before sending it over the transmission line to the receiver. Only the receiver is aware of

his or her private key and hence will be able to decrypt the symmetric key, obtain it and

use it to decrypt the cipher text. In this case, even the receiver need not know of the

symmetric key to be used before hand.

If this concept is successfiilly applied to chaotic encryption, hence the security will be

further heightened.

62

CHAPTERS

CONCLUSION and RECOMMENDATION

Cryptography provides a solution to the problem of information security and privacy.

Encryption is the correct method to implement confidentiality for Internet traffic. VoIP

technology is progressing admirably, but certain drawbacks have been indicated such as

packet loss, propagation delay, jitter, unreliable IP networks, and vulnerability to attacks

by Internet hackers. Thus, it is essential to perform dataencryption on voice transmitted

over theInternet while preserving the quality of the voice from packet loss.

Chaos, a relatively new science is open for exploitation in broadranging fields. Chaos

has attracted much attention in the field of cryptography for private and secure

communications due to its deterministic nature and its sensitivity to initial values. Such

properties mean that chaos has certain potential in creating a new way of securing

information to be transmitted or stored. It is a simple method of encryption and can be

achieved by iteration with a high levelof security.

This project allowed the author study, develop and implement a chaotic encryption

scheme. The project proposes a chaotic encryption scheme based on a chaotic system

whichwillpreserve data security for real-time voicedata encryption. Thisproject work is

based on the scheme in [1] and proposes a two-level encryption decryption scheme based

on the two's compliment overflow nonlinearity encoder-decoder and bit swapping. This

scheme will apply to a VoIP network.

With regards to the objectives outlined in Chapter 1, which is to implement a two-level

encryption-decryption scheme for voice data, this project is considered successful. The

author has successfiilly drawn up a new scheme and tested it across the local area

network. The results and observations has been laid and discussed in Chapter4 as well as

compared to the AES encryption scheme. From observations, the encrypted signal of the

chaoticencryption schemeis almostsimilarto that of the AES encryption.

63

Due to time constrainthowever, the author,had not dealt withIhe analysisof the security

level of the scheme. However since the scheme was based on the [1] and [2], this issue

has been solved by referring to arguments presented in the two, which has also been

discussed in Chapter 4. However, it is to be noted that these arguments cannot be one

hundred percent be used to validate the algorithms strength and level of security. It is

hence recommended that future work will deal with this issue and proper cryptanalysis

measures be taken to test and validate the algorithms implemented. To warrant an

algorithm as secure, it has to be proven to resist attacks. Mathematical functions such

autocorrelation that for a highly random signal produces a delta function and zero

elsewhere and fractal dimensions calculationsas in [1] should also be included.

Based on the discussion in Chapter 4, the codes provided in the appendices can be further

optimized by increasing the number of threads to encrypt and decrypt as to decrease the

processing delay. Also, the packetization using TCP should be replaced by UDP before

implementing in a WAN or MAN based environment. However, the scheme should be

enhanced and a framework for packet loss must be considered.

Since the codes have been written as a stand-alone C program, it can be further used for

FPGA implementation and for the use of smart card based solution. From the author's

own understanding and reading, chaotic encryption can be realized to be a powerful tool

in cryptography if exploited and researched further. This chaotic encryption scheme can

be further analyzed, fully realized and implemented on hardware or other areas, which

can be explored further.

In short, the author has managed to implement a two-level encryption-decryption scheme

for voice data. However, the strength of this scheme needs to be further analyzed, tested

and validated.

64

REFERENCES

1. J.I. Guo, J.C. Yen and H.F Pai. "New voice over Internet Protocol technique

with hierarchical data security protection," IEEE Proc. Visual Image

Processing, vol.149, No.4,August, 2002.

2. Goltz, M. Kelber, K Schwarz, W. "Discrete Time Chaotic Encryption

Systems," IEEE Trans. Circuit Sys. I, Fundamental Theory and Applications,

vol.44, No 10, October. 1997.

3. Dachselt, F. Kelber, K Schwarz, W. "Discrete Time Chaotic Encryption

Systems-Part III: Cryptographical Analysis," IEEE Trans. Circuit Sys. I,

Fundamental Theory andApplications, vol.45, No 9, September. 1998.

4. F.Beritelli, E. Di Cola, L.Fortuna and F.Italia., "Multilayer Chaotic

Encryption for Secure Communications in Packet Switching Networks"

IEEE.2000

5. Princy Mehta and Sanjay Udani. Voice over Internet Protocol: Soundinggood

on the Internet.

6. Bur, Goode. "Voice over InternetProtocol,"IEEE, vol.90, No. 9, September.

2002.

7. Hun-Chen Chen, Jui-Cheng Yen, Jiun-In Guo. "A new hierarchical chaotic

Image encryption and its VLSI realization", IEEE Proc. Vis. Image Signal

Process, 147,(2),pp 167-175, 2000.

8. WU, C.W, and Rulkov, N.F, "Studying Chaos via 1-D maps-a tutorial," IEEE

Trans. Circuit Sys. I, Fundamental Theory andApplications, 40, (10), pp 707-

72, 2000.

9. Mieczyslaw, Jessa, "Data Encryption Algorithms using One-Dimensional

Chaotic Map," ISCAS 2000. IEEE International Symposium on Circuits and

Systems,pp 1711-714, May, 2000.

10. Goce Jamoski and Ljupco Kocarev, "Chaos and Cryptography: Block

encryption ciphers based on chaos maps," IEEE Trans. Circuit Sys. I,

Fundamental Theory andApplications, vol. 48, No.2, February. 2001

11. Ljupco Kocarev, "Chaos based cryptography: A brief overview," IEEE. 2001

65

12. Christopher P. Silva and AlbertM.Young. 2000. Introduction to chaos based

communications andsignalprocessing

13. Gonzalez Alvarez and Shujun Li. 2003. Cryptographic requirements for

chaotic secure communications

14. He Kangwei and TanChaur Lih, Chaos and cryptography: Applications and

Analysis

15. Terry Rowlands and David Rowlands, A more resilient approach to Chaotic

Encryption.

16. Ramiro Pablo Costa, Numerical Investigation ofthe Logistic Map

17. Kennedy, M.P., Rovatti, R., Setti, G. 2000. Chaotic Electronics in

Telecommunications, CRC Press LLC.

18. Brian W.Kernighan and Dennis M.Ritchie, The C Programming Language,

Prentice Hall

19. J. Cordova Zecena, Chaotic Dynamical Systems and TheirApplications

20. Nick Whitehead, Michael Overton, Zach Labry, Franklin Hamilton, Brian

Leising, Encrypting Chaos: Fractal Encryption

21. Douglas R. Stinson 2000, CRYPTOGRAPHY Theory and Practice, Chapman

&Hall/CRC.

22. Joan Daeman and Vincent Rijmen 2002, The Design ofRijndael: AES- The

Advanced Encryption Standard, Springer.

23. Elizabeth Oswald, Joan Daeman, andVincent Rijmen 2002, AES- The State of

theArtRijndael's Security

24. Baptista,1998, Chaotic Encryption Techniques

25. J.Cordova Zecena, University of Arkansas, Chaotic Dynamical Systems and

TheirApplications

26. Irma B.Fernandez, Wunnava V. Subbarao, "Encryption based Security for

ISDN Communication: Technique and Applications,"IEEE. pp70~72. 1994.

27. Michael Welschenbach ^Cryptography in CandC++, Apress0^

28. MikeMcgrath, CProgramming, Computer Step.

29. htto://www.altavista.com/archive/crvptography/chaos encrvption.txt

30. http://www.mathworks.com

66

31. htto://www.mamworks.com/accessM

32. htto://www.mathworks.com/access/helpdesk/toolbox/signal/psd.shtml

33. http://www. chipcenter.com/dsp/DSP000531Fl .html
34. htto://www.nwmsion.com/columnists/2003/l 1lOtavlor/voipstillamaiorissue.ht

ml

67

APPENDICES

V
J
C

tl

N
o

.
D

e
ta

il
/
W

e
e
k

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4

1
Se

le
ct

io
n

of
Pr

oj
ec

tT
op

ic
K

X
ii

l
-P

ro
po

se
T

op
ic

:
Im

pl
em

en
ta

ti
on

o
fa

sy
m

m
et

ri
c

ch
ao

ti
c

en
cr

yp
ti

on

2
P

re
li

m
in

ar
y

R
es

ea
rc

h/
D

es
ig

n
W

or
k

_
^_

J
H

J
B

B
B

I
-I

n
tr

o
d

u
c
ti

o
n

-O
bj

ec
ti

ve

-L
is

t
o

f
re

fe
re

n
c
e
s/

li
te

ra
tu

re

-P
ro

je
ct

pl
an

ni
ng

3
Su

bm
is

si
on

o
fP

re
lim

in
ar

y
R

ep
or

t
(P

ro
po

sa
l)

*

4
P

ro
je

ct
W

o
rk

R
Ij

IH
b

-L
it

er
at

u
re

R
es

ea
rc

h
o

n
ch

ao
s

an
d

A
E

S

5
S

ub
m

is
si

on
o

fP
ro

gr
es

s
R

ep
or

t
•

6
P

ro
je

ct
w

o
rk

co
n

ti
n

u
e

-M
A

T
L

A
B

Im
pl

em
en

ta
ti

on
o

fA
E

S
-

A
n

al
y

si
s

an
d

co
m

p
ar

is
o

n
w

it
h

C
h

ao
s

7
S

u
b

m
is

si
o

n
o

f
In

te
ri

m
D

ra
ft

•

8
O

ra
l

P
re

se
n

ta
ti

o
n

•

9
S

ub
m

is
si

on
o

fI
nt

er
im

R
ep

or
t

•
S

ug
ge

st
ed

m
il

es
to

ne

P
ro

c
e
s
s

> •o m z D X >

Su
gg

es
te

d
M

ile
st

on
e

fo
r

th
e

Se
co

nd
Se

m
es

te
r

of
th

e
F

in
al

Y
ea

r
D

es
ig

n
P

ro
je

ct

N
o

.
D

e
ta

il
/
W

e
e
k

1
2|

3
4

5
6

7
8

9
1

0
i
i

1
2

1
3

1
4

1
P

ro
je

ct
W

o
rk

C
on

ti
nu

e
r^

B
if

p
iP

!
-R

es
ea

rc
h

on
ne

w
en

cr
yp

ti
on

sc
he

m
es

fo
r

V
oI

P
ba

se
d

on
a

ch
ao

s
sy

st
em

-S
tr

ea
m

in
g

in
C

an
d

M
A

T
L

A
B

-S
tu

d
y

H
D

S
P

sc
h

em
e

2
S

ub
m

is
si

on
o

fP
ro

gr
es

s
R

ep
or

t
1

•

3
P

ro
je

ct
W

o
rk

C
on

ti
nu

e
B

B
il

!
-

Im
pl

em
en

ta
ti

on
o

ft
he

pr
op

os
ed

tw
o-

le
ve

l
en

cr
y

p
ti

o
n

sc
h

em
e

in
C

4
S

ub
m

is
si

on
o

fP
ro

gr
es

s
R

ep
or

t2
•

5
P

ro
je

ct
w

o
rk

co
nt

in
ue

B
il

l"
!

-I
m

pl
em

en
ta

ti
on

o
fp

ro
po

se
d

sc
he

m
e

in
C

-U
ni

t
te

st
in

g
an

d
in

te
gr

at
io

n
te

st
in

g
A

na
ly

si
s

o
fr

es
ul

ts
in

M
A

T
L

A
B

-C
o

m
p

ar
is

o
n

w
it

h
A

E
S

6
S

u
b

m
is

si
o

n
o

f
D

is
se

rt
at

io
n

F
in

al
D

ra
ft

•
7

O
ra

l
P

re
se

n
ta

ti
o

n
•

8
S

ub
m

is
si

on
o

fP
ro

je
ct

D
is

se
rt

at
io

n
•

S
ug

ge
st

ed
m

il
es

to
ne

P
ro

c
e
s
s

> "
0

m z D X w

APPENDIX C

Table 1 Ashort catalog ofchaotic discrete maps.

Map Definition Chaotic Regime

Logistic x(kn)=fH(x(kyrA,B)=B(A2~x(kf)-A x(k) e [~A,A]
3/2<AB<2

Quadratic x(kn)=fy{x(kyAB)~B-Ax(kf •x{k)€[-2IA.2/A)
%<AB<2

Exponent 4^+l)=/e,PW;^5)-#)expW-^))) x{k)e[0,txp{AB4)/B]
AB>2

Sine Circle
6$ +1) =fMW) =%k) +A-2fcin(9(Jfc)) 6(k) e [0,2k]

0<^<27t;B>0

Bernoulli x{k +!}= •<
Bx(k) +A x(k)<0
fum-AB)

Bx{k)-A x(k)>Q

x(k) € [-A.A]
Q<B<2

Tent 4k+l)=fmmiB)=A-B\x(k)\ x(k)€[A{UB)J]
0<5<2

Congruent
CBx(k)'C x(k)>A

#+0= HfUx(k)-AB)=Bx(k) \x(k)\^
LB^)+C x(k)<-A

x(k)e[-C,q
1<B<2

C-2A

Hopping X(t'rl)~ -
"D{x(kyA)+C x(k)>A

fkap(x(kyj,B,D)=Bx(k) \x(k)\<A
^D(x(k)+A)-C x(k)<~A

x(k) s [<q
B,-D>1
C=BA

UQ e (-CO)

Henon
x(k+\)=C+y(k)-Ax(k?

y(k+l)-Bx{k) ^>(l-5)2/4C, |5|<1
%<AC<2

Standard
6(A+1)= 0(kyBsm(p(k))

M W e [0,2ti]
5>0

Lozi
x{kn)=C+y(kYMk)\

y(m)-Bx(k)

0<5</

S + l<^<2-5/2

O/2

Arnold
y(k+i)=fmoMkM{ky4,i) 1<S<2

C = U

Baker
\By(k)+A x{k)<Q

lBy(k)-A x(k)>Q

#)e[-c,q
X*)e[-^]

1<5<2

C=2A

APPENDIX D

The C codes attached run the encryption-decryption program on the user's terminal. The
audio capture and playback files are generated based on the sample codes provided in the
Internet and the MSDN library-April 2003.

Aud__StreamlDlg.cpp- the behavior of your application's main dialog.

Aud_Strm_DSnd_Cap.cpp - to create the capture sound buffer

Aud_Strm_DSnd_Play. cpp- to create the playback sound buffer

Aud_Strm_Encrypt.cpp -contains the two's compliment overflow nonlinearity encoder-decoder
and bit swapping.

Aud_Strm_Net_Send. cpp and Aud_Strm_Net_Recv. cpp - to create the socket and send/receive
TCP voice packets.

Aud_param.h - contains the user definable parameters i.e. sampling frequency, bits per
sample and mono or stereo channel.

//Aud_Streantl. cpp

// Aud_Streaml.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"

#include "Aud^Streaml.h"
#include "Aud_StrearalDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] - FILE ;
#endif

///
// CAud_StrearalApp

BEGIN_MESSAGE_MAP(CAud_StreamlApp, CWinApp)
//{{AFX_MSG_MAP(CAud_StreamlApp)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//})AFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE__MAP()

///
// CAud_StreamlApp construction

CAud_StrearalApp::CAud_StreamlApp()
{

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

}

///
// The one and only CAud_StreamlApp object

CAud_StreamlApp theApp;

///
// CAud_StreamlApp initialization

BOOL CAud_StreamlApp::Initlnstance{)
{

// Standard initialization

// If you are not using these features and wish to reduce the size

// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

CAud_StreamlDlg dig;
m_pMainWnd = Sdlg;
int nResponse = dig.DoModal();
if (nResponse == IDOK)

{

// TODO: Place code here to handle when the dialog is
// dismissed with OK

}

else if (nResponse == IDCANCEL)
{

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump,
return FALSE;

// Aud_StreamlDlg.npp

#include "stdafx.h"

#include <process.h>
#include "Aud_Streaml.h"
#include "Aud_StreamlDlg.h"
#include "Aud_Strm_DSnd_Cap.h"
#include "Aud_Strm_DSnd_Play.h"
#include "Aud_Strm_Net_Send.h"
#include "Aud_Strm_Net__Recv.h"
#include "Aud_Strm_Encrypt.h"

iinclude "windowsx.h"

#ifdef _DEBUG
#define new DEBUGJ3EW
#undef THIS_FILE
Static char THIS_FILE[] = FILE
#endif

Aud_Enc_Buff Aud_Enc_Buff__Fifo [NOM_PACKETS] ;
Aud__DS_Cap_Params Aud_Params;
Aud_Enc_Params Enc_Params;
static started_from_main;

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{

public:
CAboutDlg() ;

// Dialog Data
//{{AFX_DATA(CAboutDlg)
enum (IDD - IDD_ABOUTBOX };
//}}AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)
protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:

//{(AFX_MSG(CAboutDlg)
//))AFX_MSG
DECLARE MESSAGE MAP ()

CAboutDlg::CAboutDlg() : CDialog{CAboutDlg::IDD>
{

//{{AFX_DATA_INIT(CAboutDlg)
//})AFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
//}}AFXJDATA_J4AP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
//{(AFX_MSG_MAP(CAboutDlg)

// No message handlers
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

///
// CAud__StreamlDlg dialog

CAud__StreamlDlg::CAud_J3treamlDlg (CWnd* pParent /*=NULL*/)
: CDialog(CAud_StreamlDlg::IDD, pParent)

{

//{{AFX_DATA_INIT(CAud_StreamlDlg)
// NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT
// Note that Loadlcon does not require a subsequent Destroylcon in Win32
mjilcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CAud_StreamlDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAud_StreamlDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here
//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAud_StreamlDlg, CDialog)
//()AFX_MSG_MAP(CAud_StreamlDlg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
0NJ3N_CLICKED(IDC_REC_MIC, OnRecMic)
ON_BN_CLICKED(IDC_PLAY, OnPlay)
ON_BN_CLICKED(IDC_ST0P, OnStop)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

///
// CAud_StreamlDlg message handlers

BOOL CAud_StreamlDlg::OnlnitDialogf)

{

CDialog::OnInitDialog() ;

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX S OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

CString strAboutMenu;

strAboutMenu.LoadString(IDS_ABOUTBOX);
if (! strAboutMenu.IsEmptyO)
{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu (MF__STRING, IDM ABOUTBOX, strAboutMenu)

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(ra_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here
started_from_main= 0;

return TRUE; // return TRUE unless you set the focus to a control

void CAud_StreamlDlg::OnSysCommand(UINT nID, LPARAM lParam)
{

if ((nID S OxFFFO) == IDM_ABOUTBOX)
{

CAboutDlg dlgAbout;

dlgAbout.DoModal();

}

else

CDialog::OnSysCommand(nID, lParam);

)

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CAud_StreamlDlg::OnPaint()
{

if (IslconicO)

{

CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(srect);

int x = {rect.Widthf) ~ cxlcon +1) / 2;
int y = (rect.Height() - cylcon + 1) / 2;

}

else

// Draw the icon

dc.Drawlcon(x, y, m hlcon);

CDialog::OnPaint

}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.

HCURSOR CAud_StreamlDlg::OnQueryDraglcon()
{

return (HCURSOR) m_h!con;
}

void CAud_StreamlDlg::OnRecMic()

// TODO: Add your control notification handler code here
int loop;

for(loop=0; loop < NUM__PACKETS; ++loop)
{

memset(&Aud_Enc_Buff_Fifo[loop].sample_bits, 0,PACKET_SIZE);
Aud_Enc_Buff_Fifo[loop].filled = 0;

}

Aud_Params.frequency = WAV_FREQ;
Aud_Params.bits_sample = WAV_BPS;
Aud_Pararas. channel = WAV__CHNL;
Aud_Params.fifo_ptr = Aud_Enc_Buff_Fifo;
Aud_Params.g_hDlg = GetSafeHwnd();
Aud_Params.done = 0;

Enc_Params.global_fifo = Aud_Enc_Buff_Fifo;
Enc_Params.max_element_in_fifo = NUM_PACKETS;
Enc_Params.size_of_element = PACKET_SIZE;
Enc_Params.done =0;

Key_Gen_Encrypt__Decrypt () ;
//Aud_Strn__Bit_Swap_Encrypt__Init () ;
_beginthread((void(_cdecl*)(void*))Aud_Strm_Encrypt_Fifo_Thread, 0, (void *)

&Enc_Params);

_beginthread[(void(cdecl*)(void*))Aud_Strm_DS_Capture, 0, (void *) &Aud_Params;

started_from_main = 1;

GetDlgItem(IDC_REC_MIC)->EnableWindow(FALSE);
GetDlgltem(IDC_PLAY)->EnableWindow(FALSE);
GetDlgItem(IDC__STOP)->EnableWindow(TRUE) ;

}

void CAud__StreamlDlg: :0nPlay()
{

// TODO: Add your control notification handler code here
int loop;

for(loop=0; loop < NUM_PACKETS; ++loop)
{

memset(&Aud_Enc_Buff_Fifo[loop].sample_bits, 0,PACKET_SIZE);
Aud_Enc_Buff_Fifo[loop].filled = 0;

}

Aud_Params.frequency = WAV_FREQ;
Aud_Params.bits_sample = WAV_BPS;
Aud_Parans.channel = WAV_CHNL;
Aud_Params.fifo_ptr = Aud_Enc_Buff_Fifo;
Aud_Params.g_hDlg = GetSafeHwnd();
Aud_Params.done = 0;

Enc_Params.global_fifo = Aud_Enc_Buff_Fifo;
Enc_Params.max_element_in_fifo = NUM_PACKETS;
Enc_Params.size_of_element = PACKET_SIZE;
Enc_Params.done = 0;

//Key_Gen_Encrypt_Decrypt();
Aud_Strm_Bit_Swap_Decrypt_Init();
_beginthread((void(cdecl*)(void*))Aud_Strn_Decrypt_Fifojrhread, 0, (void *)

SEnc_Params);

_beginthread((void(cdecl*) (void*))Aud_Strm_DS_Play, 0, (void *) &Aud_E>arams) ;

started_fron_main = 1;

GetDlgltem(IDC_REC_MIC)->EnableWindow(FALSE);
GetDlgltem(IDC_PLAY)->EnableWindow(FALSE);
GetDlgItem(IDC STOP)->EnableWindow(TRUE);

GetDlgltem!IDC_REC_MIC)->EnableWindow(FALSE)
GetDlgltem(IDC_PLAY)->EnableWindow(FALSE);
GetDlgltem(IDC STOP)->EnableWindow(TRUE);

void CAud StreamlDlg::OnStopi

Aud_Params.done = 1;
Enc_Params.done = 1;

// TODO: Add your control notification handler code here
GetDlgItem(IDC_REC_MIC)->EnableWindow(TRUE);
GetDlgItem(IDC_PLAY)->EnableWindow(TRUE);
GetDlgltem(IDC STOP)->EnableWindow(FALSE);

void CAud_StreamlDlg::OnOK()

{
II TODO: Add extra validation here

if(started_fron_main)
{

while(Aud_Pararas.done!=3 SS Enc_Params.done !=3]
{

}

}

CDialog::OnOK();

//

// Name: DspMsg(NULL, NULL, x,y,...)
// Desc: Displayes debug messages on the main screen
//

int _cdecl DspMsgf HWND hWnd, HDC hDc, int x, int y, LPSTR msgfmt, ...
{

int igdc;
LPSTR pel,txbf;

char msgbf[768];

void FAR *VarArgList = (LPSTR *)&msgfmt + 1;
HFONT hfnt,ofnt,hobj;

wvsprintff msgbf,msgfmt,(char *)VarArgList);
if (hDc)

igdc = 0;
else

{

hDc = GetDC(hWnd);

hfnt = (HFONT)SendMessage(hWnd,WM_GETFONT,0,0L);
ofnt = (HFONT)SelectObject(hDc,hfnt);
igdc = 1;

}
txbf = msgbf;

hobj = (struct HFONT *)SelectObject(hDc,GetStockObject(SYSTEM_FIXED_FONT)
while (*txbf)

{

pel = __fstrchr(txbf,'\n');
if (pel) *pcl++ - 0;
TextOut(hDc,x,y,txbf,lstrlen(txbf));
if (pel) txbf - pel;
else break;

y += 17;

}

SelectObject(hDc,hobj);
if (igdc)

{

SelectObject(hDc,ofnt);
ReleaseDC(hWnd,hDc);

)

return

// Aud_Strm_DSnd_Cap.cpp

#include "stdafx.h"

#include "Aud_Strm_DSndjCap.h"
#include <windows.h>

#include <mmsystem.h> // used for multimedia wave format structure - audio mixer in this
case

#include <objbase.h>
#include <mmreg.h>
#include <dsound.h>

#include <process.h>
//#include "windowsx.h"

// used for direct sound - because it's COM

// needed for Windows Multimedia API

// direct sound header file

// needed for multithreading

Static LPDIRECTSOUNDCAPTURE

Static LPDIRECTSOUNDCAPTUREBUFFER

Static LPDIRECTSOUNDNOTIFY

Static DSBPOSITIONNOTIFY

static HANDLE

static WAVEFORMATEX wfcapcap;

g_pDSCapture = NULL;

g_pDSBCapture = NULL;
g_pDSNotify = NULL;

g_aCapPosNotify [NUM__PACKETS + 1];
g hCaptureNotificationEvents[NUM PACKETS + i;

int _cdecl DspMsg(HWND hWnd, HDC hDc, int x, int y, LPSTR msgfmt, .

//

// Name: InitDirectSoundCapture()
// Desc: Initilizes DirectSound for capture
//

HRESULT InitDirectSoundCapture! HWND hDlg)
{

HRESULT hr;

// Free the memory for DirectSound notification structure
ZeroMemory(&g_aCapPosNotify, sizeof(DSBPOSITIONNOTIFY) *

(NUM_PACKETS +1));

// Initialize COM

hr - CoInitialize(NULL);

if (FAILED(hr))

return hr ;

//create the DirectSoundCapture object
iff FAILED(hr = DirectSoundCaptureCreate(NULL, &g_pDSCapture, NULL

return hr;

return S OR;

//

// Name: InitCaptureNotifications()
// Desc: Sets the notifications on the capture buffer which are handled
// in WinMainl(). Sets two notifications - at the beginning and at the end.
//

HRESULT InitCaptureNotifications()

{

HRESULT hr;

if' NULL == g_pDSBCapture
return E FAIL;

// Create the notification interface

iff FAILED(hr = g_pDSBCapture->QueryInterface
(VOID**)&g_pDSNotify)))

return hr;

IID__IDirectSoundNotify,

// Setup the notification positions
for(int i = 0; i < NUM_PACKETS; i++)

{

g_aCapPosNotify[i].dwOffset - ((PACKET SIZE * i) + PACKET SIZE) %(NUM PACKETS *
PACKET_SIZE);

g_aCapPosNotify[i].hEventNotify = g_hCaptureNotificationEvents[i];

iff FAILED(hr = g_pDSNotify->SetNotificationPositions(NUM PACKETS,
g_aCapPosNotify)))

return hr;

return S__OK;
}

//

// Name: CreateCaptureBuffer()

// Desc: Sets the format, creates a capture buffer, set notifications for
// DirectSound Capture and initialize the network for multicasting.

HRESULT CreateCaptureBuffer(int freq, int bits__per_sample, int channels)

HRESULT hr; // keep error message if any
DSCBUFFERDESC dscbd;// Create a DirectSound buffer description structure

WAVEFORMATEX wfcap; // Create a wave format structure

// Release and free the memory for the wave format structure
ZeroMemory (&wfcap, sizeof (WAVEFORMATEX));

// Release and free the memory for the DirectSound capture and notify structure
SAFE_FREE(g_pDSNotify);
SAFE_FREE(g_pDSBCapture);

// Sets the wave format

wfcap.wFormatTag = WAVE_FORMAT_PCM;
wfcap.nChannels = channels;
wfcap.nSamplesPerSec = freq; //11025;
wfcap.wBitsPerSample = bits_per_sample;//16

wfcap.nBlockAlign - wfcap.nChannels * wfcap.wBitsPerSample / 8;
wfcap.nAvgBytesPerSec = wfcap.nBlockAlign * wfcap.nSamplesPerSec;

SAFE_FREE(g_pDSNotify);
SAFE_FREE f g_pDSBCapture);

// Sets the capture buffer description
ZeroMemoryf sdscbd, sizeof(dscbd));
dscbd.dwSize = sizeof(dscbd);
dscbd.dwFlags = DSCBCAPS_WAVEMAPPED ;
dscbd.dwBufferBytes = 1 * wfcap.nAvgBytesPerSec;//CAP_BUFFER SIZE ; //5512 ; //l

wfcap.nAvgBytesPerSec;

dscbd.IpwfxFormat = (LPWAVEFORMATEX) swfcap; // Set the format during creation

// Create the DirectSound capture buffer
if{ FAILED(hr = g_pDSCapture->CreateCaptureBuffer(sdscbd,

&g_pDSBCapture, NULL)))
return hr;

// Set notifications for DirectSound Capture
if(FAILED(InitCaptureNotifications()))

return hr;

return S_OK;

}

//

// Name: FreeDirectSoundCapture
// Desc: Releases DirectSound
//

HRESULT FreeDirectSoundCapture()
{

// Release DirectSoundCapture interfaces for capturing
SAFE_FREE(g_pDSNotify);
SAFE_FREE(g_pDSBCapture);
SAFE_FREE(g_pDSCapture);

// Release COM

CoUninitialize();

return S OK;

//

// Name: Aud_Strm__DS_Capture ()
// Desc: threaded function that captures wave data from mic via DirectSound
//

void cdecl Aud_Strm_DS_Capture{void * params)
{

int loopl;

void * ptr_to__ds_data;
int ds_data_size;
int index;

HRESULT hr;

int max element in fifo = 0;

Aud_DS__Cap_Params_ptr aud__params;
unsigned int frequency;
unsigned char bits_sample;
unsigned char channel;

Aud_Enc_Buff_ptr global_fifo;
unsigned int * done;
HWND g_hDlg;
unsigned int fifo index;

if(!params)

AfxMessageBox("DS CAPT NO PARAMS!", MB_OK, NULL);
_endthread();

}

aud_params = (Aud_DS_Cap_Params_ptr) params;
frequency = aud_params->frequency;
bits__sample = aud_params->bits_sample;
channel = aud_params->channel;
global_fifo = aud_params->fifo_ptr;
done = &(aud_params->done);
g_hDlg = aud_params->g_hDlg;
max_element_in_fifo = NUM_PACKETS;

SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_ABOVE_NORMAL);

//Get the handle to the foreground window
if (g_hDlg == NULL)

{

g_hDlg = GetDesktopWindowf);
}

//create some event handles used later for DS capture notifcations
for (loopl = 0; loopl<NUM_PACKETS ; ++loopl)
{

gJiCaptureNotificationEvents[loopl] = CreateEvent(NULL, FALSE, FALSE,
NULL);

if (NULL == g_hCaptureNotificationEvents[loopl])
{

MessageBoxfNULL, "Failed on CreateEvent for audio capture",
"Aud_Cap" , MB_OK);

*done = 3;

_endthread();
}

}

// Initialize DirectSound

iff FAILED(InitDirectSoundCapture(g_hDlg)))
{

MessageBox(NULL, "Error Initializing DirectSound Capture", "Aud Cap", MB OK |
MB_ICONERR0R);

FreeDirectSoundCapture();
*done = 3;

_endthread();
!

// Create the sound capture buffer
iff FAILED! CreateCaptureBuffer(frequency, bits sample, channel)))

{

MessageBox(NULL, "Error Creating DirectSoundCapture Buffer.","Aud Cap", MB OK]
MB_ICONERROR); ~

FreeDirectSoundCapture();
*done = 3;

_endthread f);
)

// Start recording sound from mic
// Tell the capture buffer to start recording

iff FAILED(hr = g_pDSBCapture->Start(DSCBSTART_LOOPING)))
{

MessageBox(NULL, "Error Starting DirectSoundCapture.","Aud Cap", MB OK |
MB_ICONERROR); ~

FreeDirectSoundCapture();
*done = 3;

_endthread();
}

fifo_index = 0;

// This is the loop for processing the event which is capturing audio.
while(!*done)

{

index = MsgWaitForMultipleObjects(NUM_PACKETS, g_hCaptureNotificationEvents,
FALSE, 1000, QS_ALLEVENTS);

// This means that DirectSound just finished filling
// a section of the buffer, so we need to fill the
// global Aud_Enc_Buff buffer with new raw wav data

index -= WAITJ3BJECT_0;
if(index<NUM_PACKETS && index>=0)

{

if(!FAILED(hr = g_pDSBCapture->Lock(PACKET_SIZE * index,

PACKET_SIZE,

(LPVOID *) &ptr_to_ds_data,

(unsigned long*)&ds data size,

NULL, 0, 0L)

f

if(fifo_index == max_element_in_fifo)
fifo_index = 0;

while(global_fifo[fifo_index].filled)
Sleep(2);

{

ptr_to_ds data, ds data size);
memcpyf(unsigned char *)global_fifo[index].sample bits,

%d",index,ds data size);
DspMsg (0,0,100,100,"copied from mic index = %d size

}

}

else break;

// Stop the recording
g_pDSBCapture->Stop f);

// Clean up everything
SAFE_FREE(g_pDSNotify);
SAFE__FREE (g_pDSBCapture
SAFE_FREE(g_pDSCapture)

// Release COM

CoUninitialize() ;

// Unlock the capture buffer
g_pDSBCapture->Unlockf ptr_to_ds_data, ds data size, NULL,

global fifo[index],filled = 1;

for (loopl - 0; loopK NUM_PACKETS; ++loopl)
{

CloseHandle(g_hCaptureNotificationEvents[loopl]);
1

*done = 3;

endthread();

//Aud_Strm_DSnd_Play.cpp

#include "stdafx.h"

#include "Aud_Strm_DSnd_Play.h"
#include "Aud__Strm_DSnd_Cap.h"
#include <windows.h>

#include <mmsystem.h>// used for multimedia wave format structure - audio mixer in this
case

#include <objbase.h>// used for direct sound - because it's COM
#include <mmreg.h> // needed for Windows Multimedia API
jfinclude <dsound.h> // direct sound header file

#include <process.h> // needed for multithreading
//#include "windowsx.h"

LPDIRECTSOUND 9_pDS = NULL;
LPDIRECTSOUNDBUFFER pDSBPrimary = NULL;
LPDIRECTSOUNDBUFFER g_pDSPlayBuffer = NULL;
LPDIRECTSOUNDNOTIFY gjpDSPlayNotify = NULL;
DSBPOSITIONNOTIFY g_aPlayPosNotify[NUM_PACKETS + 1];
HANDLE g_hPlayNotificationEvents[NUM__PACKETS + 1] ;
static WAVEFORMATEX wfplay;

int _cdecl DspMsgl HWND hWnd, HDC hDc, int x, int y, LPSTR msgfmt, ...);

//

// Name: InitDirectSoundPlayback()
// Desc: Initilizes DirectSound for playback
//

HRESULT InitDirectSoundPlaybackf HWND hDlg, int freq, int bits_per_sample, int channels)
{

HRESULT hr;

// Initialize COM

hr = Colnitialize(NULL);

if (FAILED(hr))

return hr ;

// Create IDirectSound using the primary sound device
iff FAILED) hr = DirectSoundCreate(NULL,'Sg_pDS, NULL)))

return hr;

// Set coop level to DSSCL_PRIORITY so that wave volume can be set
if(FAILED (hr = g__pDS->SetCooperativeLevel (hDlg, DSSCL_PRIORITY)))

return hr;

// Get the primary buffer
DSBUFFERDESC dsbd;

ZeroMemory(sdsbd, sizeof(DSBUFFERDESC));

dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd.dwFlags - DSBCAPS_PRIMARYBUFFER | DSBCAPS_CTRLVOLUME;
dsbd.dwBufferBytes = 0;

dsbd.lpwfxFormat = NULL;

// Create a primary audio playback buffer
iff FAILED(hr = g_pDS->CreateSoundBuffer(sdsbd, spDSBPrimary, NULL ;

return hr;

// Set primary buffer format to 44kHz, 8-bit and mono output.
ZeroMemory(Swfplay, sizeof(WAVEFORMATEX));
wfplay.wFormatTag = WAVE_FORMAT_PCM;
wfplay.nChannels = channels;

wfplay.nSamplesPerSec = freq;
wfplay.wBitsPerSample = bits_per_sample;
wfplay.nBlockAlign = wfplay.wBitsPerSample / 8 * wfplay.nChannels,
wfplay.nAvgBytesPerSec = wfplay.nSamplesPerSec * wfplay.nBlockAlign;

iff FAILED(hr = pDSBPrimary->SetFormat(Swfplay)))
return hr;

// Free up the primary audio buffer
SAFE_FREE(pDSBPrimary);

return S OK;

)

//

// Name: FreeDirectSoundPlay()
// Desc: Releases DirectSound
//

HRESULT FreeDirectSoundPlay(void)

{

// Release DirectSoundCapture interfaces for listening
SAFE_FREE(g_pDSPlayNotify);

if (g_pDSPlayBuffer != NULL)
SAFE_FREE(g_pDSPlayBuffer);

SAFE_FREE(g_pDS);

// Release COM

CoUninitialize();

return S_OK;

}

//

// Name: CreateStreamingPlaybackBuffer()
// Desc: Creates a streaming buffer, and the notification events to handle
// filling it as sound is played
//

HRESULT CreateStreamingPlaybackBuffer(void)

{
HRESULT hr;

DSBUFFERDESC dsbd;

char* _pbBuffer;
DWORD dwBufferLength;

// Release and free the memory for the notification structure
ZeroMemory(&g_aPlayPosNotify, sizeof(DSBPOSITIONNOTIFY) *

(NUM_PACKETS +1));//start to comment here

// Sets the playback buffer description
// Set up the direct sound buffer, and only request the flags needed
// since each requires some overhead and limits if the buffer can
// be hardware accelerated

ZeroMemoryf Sdsbd, sizeof(DSBUFFERDESC));

dsbd.dwSize = sizeof(DSBUFFERDESC);

dsbd.dwFlags = DSBCAPS_CTRLPOSITIONNOTIFY | // Needed for notification
DSBCAPS_GETCURRENTPOSITION2 |
DSBCAPS_GLOBALFOCUS;

dsbd.dwBufferBytes = 1 * wfplay.nAvgBytesPerSec;
dsbd.lpwfxFormat = fLPWAVEFORMATEX) Swfplay;

// Create a DirectSound buffer

if! FAILED! hr = g_pDS->CreateSoundBuffer(sdsbd, &g_pDSPlayBuffer, NULL)))
return hr;

if(FAILED(hr = g_pDSPlayBuffer->Lock(0,
NULL,

(LPVOID *)&_pbBuffer,
sdwBufferLength,
NULL,

0,

DSBLOCK_ENTIREBUFFER)))
{

MessageBox(NULL,"Lock EntireBuffer failed", "Failed", MB_OK);
}

else

1

// Fill with silence

memset (_j)bBuffer, 0x7f, dwBufferLength) ;
}

// Unlock the playback buffer
g_pDSPlayBuffer->Unlockf_pbBuffer, dwBufferLength, NULL, 0);

return S OK;

//

// Name: InitPlaybackNotifications()
// Desc: sets up the direct sound notification by setting
// the offset trigger and passing the event handle
//

HRESULT InitPlaybackNotifications(void)

(

int loopl;
HRESULT hr;

for {loopl = 0; loopl<NUM_PACKETS ; ++loopl)
[

g_aPlayPosNotify[loopl].dwOffset = PACKET_SIZE * loopl;
g_aPlayPosNotify[loopl].hEventNotify = g_hPlayNotificationEvents[loopl"

1

iff FAILED(g_pDSPlayBuffer-
>QueryInterface(IID_IDirectSoundNotify,(void**)Sg__pDSPlayNotify)))

{

MessageBox(NULL,"Failed on IDirectSoundCaptureBuffer_QueryInterface",
"Debug" , MB_OK);

return -1;

}

hr = g_pDSPlayNotify->SetNotificationPositions(NUM_PACKETS, g_aPlayPosNotify);
if(FAILED(hr))

{

switch (hr)

{

case DSERR__INVALIDPARAM:
break;

case DSERR_OUTOFMEMORY:
break;

default :

break;

}
return hr;

return S OK;

}

//

// Name: Aud__Strm_DS_Play ()
// Desc: threaded function that plays
// back wave data from global buffer via DirectSound
//

void cdecl Aud_Strm_DS_Play(void * params)
{

int loopl;
//void * ptr_to_ds_data;
//int ds_data_size;
int play__index;
int fifo___index;
HRESULT hr;

Aud_DS_Cap_Params_ptr aud_params;
unsigned int frequency;
unsigned char bits_sample;
unsigned char channel;

Aud_Enc_Buff_ptr global__fifo;
unsigned int * done;
HWND g_hDlg;

void * pblnputl = NULL;
void * pblnput2 = NULL;

unsigned long szlnputl;
unsigned long szlnput2;
unsigned long status;

if(!params)
{

AfxMessageBox("DS PLAY NO PARAMS!", MB_OK, NULL);
_endthread();

1

aud_params = (Aud_DS_Cap_Params_ptr) params;
frequency = aud_params->frequency;
bits_sample = aud_params->bits_sample;
channel = aud_params->channel;
global_fifo = aud_params->fifo_ptr;
done = s(aud_params->done);
g_hDlg = aud_params->g_hDlg;

SetThreadPriorityfGetCurrentThread!), THREAD_PRIORITY_ABOVE_NORMAL)

//Get the handle to the foreground window
if (g hDlg == NULL)

{
g_hDlg = GetDesktopWindow(

//create some event handles used later for DS playback notifcations
for (loopl = 0; loopK NUM_PACKETS; ++loopl)

{

g_hPlayNotificationEvents[loopl] = CreateEvent(NULL, FALSE, FALSE, NULL);
if {NULL == g_hPlayNotificationEvents[loopl])

{

MessageBox(NULL,"Failed on CreateEvent", "Debug" , MB_OK);
*done = 3;

_endthread();

}

}

// Init DirectSound

iff FAILED(InitDirectSoundPlayback(g_hDlg, frequency, bits_sample, channel)))
{

MessageBox(NULL, "Error Initializing DirectSound Playback", "Aud_Play" ,
MBJDK) ;

// Clean up everything
FreeDirectSoundPlay();
*done = 3;

_endthread();

}

// Create the sound buffer object from the data
iff FAILED(CreateStreamingPlaybackBuffer()))
f

MessageBox! g_hDlg, "Error Creating DirectSound Playback Buffer.",
"Aud_Play", MB_OK);

// Clean up everything
FreeDirectSoundPlay();
*done = 3;

_endthread();

1

// Init Notifications

iff FAILED(InitPlaybackNotifications()))

{

MessageBox(NULL, "Error Setting-up Playback Notifications", "Aud_Play" ,
MBjDK) ;

// Clean up everything
FreeDirectSoundPlay();
*done = 3;

_endthread();

}

g_pDSPlayBuffer->Play(0, 0, DSBPLAY_LOOPING);
DspMsg (0,0,200,250,"playback start ");

play_index = 0;
fifo_index = 0;
while(!*done)

{

DspMsg (0,0,200,250,"playback start 1");

if(fifo_index == NUM_PACKETS)
fifo__index = 0;

DspMsg (0,0,200,250,"playback start 2");

iff!(global_fifo[fifo_index].filled))
{

Sleep(1);

continue;

DspMsg (0,0,200,250,"playback start 3");

g_pDSPlayBuffer->GetStatus(sstatus) ;
iff Status S DSBSTATUS_BUFFERLOST)
{

g_pDSPlayBuffer->Restore() ;
g_pDSPlayBuffer->Play(0, 0, DSBPLAY_LOOPING);

}

DspMsg (0,0,200,250,"playback start 4");

play_index = MsgWaitForMultipleObjects(NUM_PACKETS, // How many

g_hPlayNotificationEvents,// Location of handles
FALSE, // Wait for all?

1000, // How long to wait

QS_ALLEVENTS); // Any message is an event

DspMsg (0,0,200,250,"playback start 5");

play^index -= WAIT_OBJECT_0;

if(play_index < NUM_PACKETS)
{

play__index+=6;

if (play_index > (NUM_PACKETS - 1))
play_index -= NUM_PACKETS;

hr- g_j>DSPlayBuffer->Lock(PACKET_SIZE * play_index,
PACKET_SIZE,
Spblnputl,

Sszlnputl,

&pblnput2,
Sszlnput2,

0);

if(FAILED(hr))

{

MessageBox(NULL,"Playback Buffer Lock failed", "Aud_Play",

global_fifo[fifo_index].filled=0;
++fifo__index;
DspMsg (0,0,200,280,"playback start F");
continue;

)

else

{

memcpyfpblnputl, global_fifo[fifo_index].sample_bits,

g_pDSPlayBuffer->Unlock(pbInputl, szlnputl, pblnput2,

possible events

MB OK)

szlnputl]

szinput2;

%d",fifo_index,szlnputl)

}

global_fifo[fifo_index].filled = 0;
DspMsg (0,0,300,400,"play to direct sound = %d size -

++fifo__index;
DspMsg (0,0,200,250,"playback start 6");

}//while !*done

DspMsg (0,0,200,250,"playback stopped");

//Stop audio playback
g_pDSPlayBuffer->Stop();

for (loopl - 0; loopl<NUM_PACKETS; ++loopi;

{

CloseHandle(g_hPlayNotificationEvents[loopl]);
}

// Clean up everything
FreeDirectSoundPlay();

*done = 3;

__endthread() ;
1

//Aud_Strm_Encrypt.cpp

#include "stdafx.h"

#include "Aud_Strm_Encrypt.h"
#include "Aud_Strm_DSnd_Cap.h"
#include "Aud_Strm_Net_Recv.h"
#include "Aud_Strm_Net_Send.h"
#include "process.h"
#include "math.h"

#include "string.h"

#define DELAY 3

BOOLEAN b[32];

int ctr = 0;

long double x[3] ;

long double log_val[4];
double key[DELAY];

double max_norm=0.0; //change values here
double max_s_val_new=0.0;
double min=1.0;

double mod(double x);

int _cdecl DspMsgf HWND hWnd, HDC hDc, int x, int y, LPSTR msgfmt, ...

//TWO'S COMPLIMENT OVERFLOW NONLINEARITY

void Key_Gen_Encrypt_Decrypt(void)
{

log_val[0]=INIT_CONDITION;

for (int n=0;n<3;n++)

{

log_val[n+l]=3.6 * log_val[n] * (l-log_val[n]);
//generating chaotic value x[i+l]

key[n]=log val[n+l];

double mod(double x)

{

return (x - 2 * floor((x +1) 12));

}

void Aud_Strm_Encrypt_Sample(unsigned char *input_val, unsigned char *output_val)
{

double temp_val[PACKET_SIZE], intermediate_val[PACKET_SIZE];
double enc_sig_buffer [PACKET__SIZE] ;
double sum_val;
double encoded_sig;
int i, j;
int k=0;

for (i=0; i<PACKET_SIZE; i++)
{

if ((double)input_val[i]>max_norm)
{

max_norm=(double)input_val[i];
1

for (i=0; i<PACKET_SIZE; i++)
{

intermediate_val[i]=((double)input val[i])/255.0;

for (i=0; i<PACKET_SIZE; i++)
{

enc_sig_buffer[i] = 0.0;

}

for (i=0; i<PACKET_SIZE; i++)
{

sum_val = 0.0;

for (j=l; j<=DELAY; j++)

{

sum_val = sum_val + enc_sig_buffer[j-1]*key[j-i;

)

temp_val[i]=mod(intermediate_val[i]+sum_val);

for (k=DELAY; k>0; k—)

{

encoded_sig = enc_sig_buffer[k-1];
enc_sig__buffer [k] = encoded_sig;

}

enc_sig_buffer[0] = temp_val[i];

}

for (i=0; i<PACKET_SIZE; i++)
{

intermediate_val[i] = temp_val[i];
if (intermediate_val[i]<min)
{

min = intermediate_val[i];
}

for (i=0; i<PACKET_SIZE; i++)
{

intermediate_val[i]=intermediate_val[i]-min;
)

for (i=0; i<PACKET_SIZE; i++)
{

if (intermediate_val[i]>max_s_val_new)
{

max_s_val_new=intermediate_val[i];
}

}

for (i=0; i<PACKET_SIZE; i++)
{

output_val[i]=(unsigned char)(((intermediate val[i])/max s val new)*255;

void Aud_Strm_Decrypt_Sample(unsigned char *input_val, unsigned char *output_val'
{

double temp_val [PACKET__SIZE] ,
intermediate_val[PACKET_SIZE];//,intermediate_temp[PACKET_SIZE];;

double enc_sig_buffer [PACKET_SIZE] ,-
double encoded_signal;
double sum_val;
int i, j;
int k=0;

for (i=0; i<PACKET_SIZE; i++)

{

intermediate_val[i]=(((((double)input_val[i]))*2.0)/255);

}

for (i=0; i<PACKET_SIZE; i++)
I

intermediate_val[i]=intermediate_val[i]+(-1.0);

}

for (i=0; i<PACKET_SIZE; i++)
f

enc_sig__buffer [i] = 0.0;
}

for (i=0; i<PACKET_SIZE; i++)
{

sum_val = 0.0;

for (j=l; j<=DELAY; j++)

{

sum_val = sum_val + key[j-1]*enc_sig_buffer[j-1];
}

temp_val [i] =mod(intermediate_val [i] -sum__val) ;

if ftemp_val[i] < 0)
{

temp_val[i] = temp_val[i] * (-1.0);
)

for (k=DELAY; k>0; k—)

{

encoded_signal = enc_sig_buffer[k-1];
enc_sig_buffer [k] = encoded__signal;

}

enc_sig_buffer[0] = intermediate_val[i];
}

for (i=0; i<PACKET_SIZE; i++)
{

intermediate_val[i] = temp_val[i];
output_val[i]=(unsigned char)((intermediate_val[i]*255.0) +0.51

)

1

//BIT SWAPPING

void Aud_Strm_Bit_Swap_Encrypt_Init(void)
{

x[0] = INIT_CONDITION;
x[l] = 0; /* dont matter coz will be derived later from map*/

x[2] = 0; /* dont matter coz will be derived later from map*/
ctr = 0;

// next sample will be the first.

}

void Aud__Strm_Bit_Swap_Decrypt_Init (void)

{

x[0] = INIT_C0NDITION;
x[l] = 0; /* dont matter coz will be derived later from map*/
x[2] = 0; /* dont matter coz will be derived later from map*/
ctr = 0;

// next sample will be the first.

1

unsigned char Aud_Strm_Bit_Swap_Encrypt_Sample(unsigned char sample_byte)
f

int i, j;
double remainder;

BOOLEAN tempjDOol, sample_bit[8];
unsigned char sample__new;

if (ctr % 4 == 0) //checking for
every 4 in-coming samples

{

value x[i+l]

value x[i+2]

}

x[l]=3.9 * x[0] * fl-x[0]); //generating chaotic

x[2]=3.9 * x[l] * fl-x[l]); //generating chaotic

for (j=0;j<2;++j)

{

remainders[j+1];

for (i=0;i<16;i++)

{

if ({remainder ==0) || (remainder - pow(2, (-l*(i+l))) <

}

x[0]=x[2];

x[l]=0;

x[2]=0;

{

else

{

b[(j*16)+i]=0;

remainder=remainder - pow(2, (-1* (i +1)));
b[(j*16)+i]=l;

for (i-0;i<8;i++)

{

sample_bit [i] = (sample__byte»i) Si;
}

for (i=0;i<4;i++)

{

if (b[(fctr%4)*4)+i])

{
temp_bool = sample__bit [i] ;
sample__bit [i] = sample_bit [i+4] ;
sample_bit[i+4] = temp bool;

1

for

I

1

sample„new=0;

for ti-0»i<B'i++1 Plej)itlil«";
;sami

{
le new

sample^ •«*
)

ctr++;

re
turn sample--new;

Decrypt_SamPle(—igned char
iample^Yte)

unsigned char

1 int ir 1'

McLS«m>tJ«aP-

every

^--^ool, sample>t^;
B0OLE^ temp --le_old;
unsigned char

booli
r sami

== 01if (ctr %4
* Vc«iM Bampl-4 in-c

:[IV,-3.9 * *[01

X121-3.9

a-xtouf

value xli+n

value *li+25
for U-0*<i>*+»

for f3.-u,i

//checking ^r

//generating chaotic
//generating chaotic

(i+Dl

remainder == 0)
(remainder - PoW (2, l-l'

0))

for

i

1

x[X^0;
x[21=0;

si++)

if I <

{

)
else

{

i*l6)+il=0;blO

U=0;i<8^

sampleJ>
iUU =fsampl e byte»1i)&l;

,f (-iMi+l^l!

_n:i<=1;i+-2)
ul - sample^

%4)*4)+il'

sampl^

1

for ti-0;i<4'i++1
if fbt^ctr

)

temp_bool = sample_bit[i];
sample_bit[i] = sample_bit[i+4];
sample_bit[i+4] = temp_bool;

}

}

sample__old=0;

for (i=0;i<8;i++)

{
sample_old= sample_old | (sample_bit[i] «i) ;

}

ctr++;

return sample old;

void cdecl Aud_Strm_Encrypt_Fifo_Thread(void * param)
{

int index, loop, y=0;
Aud_Enc_Buff_ptr global_fifo;
int max_element_in_fifo;
int size_of_element;
unsigned int * done; .
Aud_Enc_Params_ptr aud_enc_param = (Aud_Enc_Params_ptr) param;
unsigned char local_encrypted_data[PACKET_SIZE];
unsigned char output_Aud_Strm_Encrypt__Sample [PACKET__SIZE] ;

FILE * file;

FILE * filel;

global_fifo = aud_encj?aram->global_fifo;
max_element_in_fifo = aud_enc_param->max_element_in_fifo;
size_of_element = aud_enc_param->sizemof_element;
done = s(aud_enc_param->done);

SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_ABOVE_NORMAL);

index = 0;

Key_Gen___Encrypt_Decrypt() ; //iniate key for first level
encryption

Aud_Strni_Bit_Swap_Encrypt_Init() ; //iniate key for second level encryption

//CreateSocket for sending
if(Aud_J3trm__Net_Send_Init ())

{
*done = 3;

_endthread();
return;

)

file = fopen("c:\\encrypted.wav","wb");
filel = fopen("c:\\raw.wav","wb");

while(! *done)

{
if(index == max_element_in_fifo)

index = 0;

iff!(global_fifo[index].filled))

{
Sleep(1);

continue;

Aud_Strm_Encrypt_Sample(global_fifo[index].sample^bits,output_Aud_Strm_Encrypt_Sam
pie);

global__fifo [index] .filled = 0;

for (loop=0;loop<PACKET_SIZE;loop++)
{

local_encrypted_data[loop]
=Aud_Strm__Bit_Swap_Encrypt_Sample(output_Aud_Strm_Encrypt_Sample[lo
op]);

}

filel!

fwritef(const void *)local_encrypted_data, PACKET_SIZE, 1, file);
fwrite((const void *)global__fifo[index].sample bits, PACKET SIZE, 1,

DspMsg (0,0,100,120,"encrypt to index = %d size = %d",index,PACKET SIZE);

Aud_Strm_Net_Send(local_encrypted_data);

++index;

fclose(file);

fclose(filel);

'done = 3;

//closesocket

Aud__Strm_Net_Send_Clean () ;

endthread();

void cdecl Aud_Strm_Decrypt_Fifo_Thread(void * param)
f

int index, loop;
Aud_Enc__Buff_ptr global_fifo;
int max_element_in_fifo;
int size__of_element;
unsigned int * done;

unsigned char local_to_decrypt[PACKET_SIZE];
// unsigned char local_done[PACKET_SIZE];

unsigned char local___to_be_decrypted[PACKET_SIZE] ;
Aud__Enc_Params_ptr aud_enc_param = (Aud_Enc_Params_ptr) param;

//FILE *file;
FILE *filel;

global_fifo = aud_enc_param->global_fifo;
max_element_in_fifo = aud_enc_param->max_element_in_fifo;
size_of_element = aud_enc_param->size_of__element;
done = &(aud_enc_param->done);

SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_ABOVE_NORMAL)

index = 0;

Aud_Strm_Bit_Swap_Decrypt_Init();

Key_Gen_Encrypt_Decrypt();

//create socket recv

if(Aud Strm Net Recv Init())

{

*done = 3;

_endthread() ;
return;

}

//file = fopen("c:\\encrypted.wav","rb");
filel = fopen("c:\\decrypted.wav","wb");

DspMsg (0,0,200,420,"reading start ");

while(! *done)

{

DspMsg (0,0,200,420,"reading start 1");

if(index == max_element_in_fifo)
index =0;

DspMsg (0,0,200,420,"reading start 2");

if((global_fifo[index].filled))
{

Sleep(1);

continue;

)

DspMsg [0,0,200,420,"reading start 3 ");

//recv socket directly into local_to_be_decrypted_data[index]
if(Aud_Strm_Net_Recv((unsigned char *) local_to_be__decrypted))
{

DspMsg (0,0,200,420,"reading start 3a");
break;

}

//if (feofffile))

// break;

//freadf(void *)local_to_be_decrypted,PACKET_SIZE, 1, file);

DspMsg (0,0,200,420,"reading start 4 ");
DspMsg (0,0,300,520,"decrypt to index = %d size = %d",index,PACKET SIZE)

for(loop=0;loop<PACKET_SIZE;loop++)

{
local_to_decrypt[loop]=

Aud_Strm_Bit_Swap_Decrypt_Sample(local_to_be_decrypted[loop]);
1

Aud_Strm_Decrypt_Sample(local_to_decrypt,global_fifo[index].sample_bits)

//Aud_Strm_Decrypt_Sample(local_to_be_decrypted,global_fifo[index].sample_bits);

global_fifo[index].filled = 1;

DspMsg (0,0,200,420,"reading start 5");

fwrite((void *)global_fifo[index].sample_bits, PACKET_SIZE, 1, filel);

++index;

DspMsg fO,0,200,420,"reading ending ");

fclose(filel);

Aud_Strm_Net_Recv_Clean();

*done = 3;

endthread();

//Aud_Strm__Net_Send.cpp

#include "stdafx.h"

#include "Aud_Strm_Net_Send.h"
#include "winsock.h"

^include "Aud_params.h"

static WORD wVersionRequested;
static WSADATA wsaData;

static SOCKET sendsock;

static SOCKET sessionsock;

static char chLocalAddress[16];

static struct sockaddr_in sock_addr;// new_sock_addr;
static struct sockaddr_in send_addr;// target_sock_addr;
static DWORD Err;

static u_short usPort;
static int true_int;
static int iRet;

int _cdecl DspMsg! HWND hWnd, HDC hDc, int x, int y, LPSTR msgfmt, ...);
void Aud_Strm_Net_Err_Translate(int error_val);

int Aud_Strm_Net_Send_Init(void)
{

int error;

wVersionRequested = MAKEWORD(2,0);
iRet - WSAStartup(wVersionRequested, SwsaData);//request winsock version + service
if (iRet != 0)

{

MessageBox(NULL,"Failed Net Send WSAStartup", "Debug" , MB_OK);
return -1;

}

// Creating UDP Socket
if ((sendsock = socket(AF_INET, SOCK_STREAM, 0)) -= INVALID_SOCKET)

)
MessageBox(NULL,"Failed Net Send socket creation", "Debug" , MB_OK);
return -1;

}

true_int = 1;
if(setsockopt(sendsock,SOL_SOCKET,SO_REUSEADDR, (char *)&true_int,

sizeof(int))==SOCKET_ERROR)

{

closesocket(sendsock);

MessageBox(NULL,"Failed Net Send set socket option 1", "Debug" , MB_OK);
return -1;

1

usPort = PORT_NUMBER;
sock_addr.sin_family = AF_INET;
sock_addr.sin_addr.s_addr = htonl(INADDR_ANY);
sock_addr.sinjport = htons(usPort);

send_addr.sin_family = AF_INET;
send_addr.sin_addr.s__addr = inet_addr(DESTINATION_ADDRESS);
send_addr.sin_port = htons(usPort);

if (bind(sendsock, (LPSOCKADDR) &sock_addr,
sizeof(sock_addr))==SOCKET_ERROR)

{

closesocket(sendsock);

MessageBox(NULL,"Failed Net Send socket binding", "Debug" , MB OK);
return -1;

)

if(connect(sendsock, (LPSOCKADDR) &send_addr,
sizeof (send__addr))==SOCKET ERROR)

{

true_int = 1;

if(setsockopt(sendsock,SOL_SOCKET,SO_REUSEADDR, (char *)&true int,
sizeof(int))==SOCKET_ERROR) ~~
{

closesocket(sendsock);

MessageBox(NULL,"Failed Net Send set socket option 2", "Debug" ,

return -1;

}

if(connect(sendsock, (LPSOCKADDR) &send_addr,
sizeof(send_addr))==SOCKET ERROR)

MB OK);

{

closesocket(sendsock);
error = WSAGetLastError();

Aud_Strm_Net_Err_Translate(error);
MessageBox{NULL,"Failed Net Send at connect", "Debug" , MB OK)
return -1; —

return 0;

}

void Aud_Strm_Net_Send(unsigned char * buffer)
<

int tot__sent = 0;
int ret = 0;

while(tot_sent!=PACKET_SIZE)
{

ret = send(sendsock, (const char *) sbufferftot sent], PACKET SIZE -
tot_sent, 0) ; ~~ -

if(ret==SOCKET_ERROR)
{

MessageBox(NULL,"Failed Net Send at send", "Debug" , MB OK);
break; ""

}

else tot sent += ret;

void Aud_Strm_Net__Send_Clean (void)
{

closesocket(sendsock) ;
WSACleanup() ;

return;

}

void Aud_Strm_Net_Err_Translate(int error)
{

switch(error)

{

case WSAEINTR:

MessageBox(NULL, " case WSAEINTR", "NET_ERR", MB_OK);
break;

case WSAEACCES:

MessageBox(NULL, " case WSAEACCES", "NET_ERR", MB_OK);
break; ~~

case WSAEFAULT:

MessageBox(NULL, " case WSAEFAULT", "NET_ERR", MB_OK);
break;

case WSAEINVAL:

MessageBox(NULL, " case WSAEINVAL", "NET_ERR", MB_OK);
break;

case WSAEMFILE:

MessageBox (NULL, " case WSAEMFILE", "NET_ERR", MB_OK) ;
break;

case WSAEWOULDBLOCK:

MessageBox(NULL, "WSAEWOULDBLOCK", "NET_ERR", MB_OK);
break; ~~

case WSAEINPROGRESS:

MessageBox (NULL, "WSAEINPROGRESS", "NET_ERR", MB_OK) ;
break; ~~

case WSAEALREADY:

MessageBox(NULL, "WSAEALREADY", "NET_ERR", MB_OK);
break;

case WSAENOTSOCK:

MessageBox(NULL, "WSAENOTSOCK", "NET_ERR", MB_OK);
break;

case WSAEDESTADDRREQ:

MessageBox(NULL, "WSAEDESTADDRREQ", "NET_ERR", MB_OK);
break;

case WSAEMSGSIZE:

MessageBox(NULL, "WSAEMSGSIZE", "NET_ERR", MBjOK);
break;

case WSAEPROTOTYPE:

MessageBox(NULL, "WSAEPROTOTYPE", "NET_ERR", MB_OK);
break;

case WSAENOPROTOOPT:

MessageBox(NULL, "WSAENOPROTOOPT", "NET_ERR", MB_OK);
break;

case WSAEPROTONOSUPPORT:

MessageBox(NULL, "WSAEPROTONOSUPPORT", "NET_ERR", MB_OK);
break; _

case WSAESOCKTNOSUPPORT:

MessageBox(NULL, "WSAESOCKTNOSUPPORT", "NET_ERR", MB_OK);
break;

case WSAEOPNOTSUPP:

MessageBox(NULL, "WSAEOPNOTSUPP", "NET_ERR", MB_OK);
break;

case WSAEPFNOSUPPORT:

MessageBox (NULL, "WSAEPFNOSUPPORT", "NET_ERR", MB___OK) ;
break;

case WSAEAFNOSUPPORT:

MessageBox(NULL, "WSAEAFNOSUPPORT", "NET_ERR", MB_OK);
break;

case WSAEADDRINUSE:

MessageBox (NULL, "WSAEADDRINUSE", "NET_ERR", MB__OK) ;
break;

case WSAEADDRNOTAVAIL:

MessageBox(NULL, "WSAEADDRNOTAVAIL", "NET_ERR", MB_OK);
break;

case WSAENETDOWN:

MessageBox(NULL, "WSAENETDOWN", "NET_ERR", MBJOK) ;
break;

case WSAENETUNREACH:

MessageBox(NULL, "WSAENETUNREACH", "NET_ERR", MB_OK);
break;

case WSAENETRESET:

MessageBox(NULL, "WSAENETRESET", "NET_ERR", MB_OK);
break;

case WSAECONNABORTED:

MessageBox(NULL, "WSAECONNABORTED", "NET_ERR", MBjOK);
break;

case WSAECONNRESET:

MessageBox(NULL, "WSAECONNRESET", "NET_ERR", MB_OK);
break;

case WSAENOBUFS:

MessageBox(NULL, "WSAENOBUFS", "NET_ERR", MB_OK);
break;

case WSAEISCONN:

MessageBox(NULL, "WSAEISCONN", "NET_ERR", MB_OK);
break;

case WSAENOTCONN:

MessageBox (NULL, "WSAENOTCONN", "NETJ5RR", MB__OK) ;
break;

case WSAESHUTDOWN:

MessageBox(NULL, "WSAESHUTDOWN", "NET_ERR", MB_OK);
break;

case WSAETIMEDOUT:

MessageBox(NULL, "WSAETIMEDOUT", "NET_ERR", MB_OK);
break;

case WSAECONNREFUSED:

MessageBox(NULL, "WSAECONNREFUSED", "NET_ERR", MB OK);
break; —

case WSAEHOSTDOWN:

MessageBox (NULL, "WSAEHOSTDOWN", "NET__ERR", MB OK) ;
break; _

case WSAEHOSTUNREACH:

MessageBox(NULL, "WSAEHOSTUNREACH", "NET_ERR", MB_OK);
break;

case WSAEPROCLIM:

MessageBox(NULL, "WSAEPROCLIM", "NET_ERR", MB_OK);
break;

case WSASYSNOTREADY:

MessageBox (NULL, "WSASYSNOTREADY", "NET__ERR", MB_OK) ;
break;

case WSAVERNOTSUPPORTED:

MessageBox(NULL, "WSAVERNOTSUPPORTED", "NET ERR", MB OK);

break;

case WSANOTINITIALISED:

MessageBox(NULL, "WSANOTINITIALISED", "NET_ERR", MBJDK);
break; ~

case WSAEDISCON:

MessageBox(NULL, "WSAEDISCON", "NET_ERR", MB_OK);
break;

case WSATYPE_NOT_F0UND:

MessageBox(NULL, "WSATYPE_NOT_F0UND", "NET_ERR", MBJDK);
break; ~

case WSAHOST_NOT_FOUND:
MessageBox(NULL, "WSAHOSTJN0T_FOUND", "NET_ERR", MBjDK);

break; ~"

case WSATRY_AGAIN:

MessageBox (NULL, "WSATRY_AGAIN", "NET__ERR", MB_OK) ;
break;

case WSAN0_RECOVERY:

MessageBox(NULL, "WSANO_RECOVERY", "NET_ERR", MBJOK);
break;

case WSANO_DATA:

MessageBox(NULL, "WSANO_DATA", "NET_ERR", MBJDK);
break;

case WSA_INVALID_HANDLE:

MessageBox(NULL, "WSA_INVALID_HANDLE", "NET_ERR", MBJDK);
break; ~

case WSA__INVALID_J?ARAMETER:
MessageBox(NULL, "WSA_INVALID_PARAMETER", "NET_ERR", MB_OK);

break; ~~

case WSA_IO_INC0MPLETE:

MessageBox(NULL, "WSA_IO_INC0MPLETE", "NET_ERR", MB_OK);
break; ~

case WSA_IO_PENDING:

MessageBox (NULL, "WSA_IO__PENDING", "NET_ERR", MB_OK) ;
break;

case WSA__NOT_ENOUGH_MEMORY:

MessageBox(NULL, "WSA_NOT_EN0UGH_MEMORY", "NETJERR", MB_OK);
break;

case WSA_OPERATION_ABORTED:

MessageBox(NULL, "WSA_OPERATION_ABORTED", "NET_ERR", MB_OK);
break; -

case WSAINVALIDPROCTABLE:

MessageBox(NULL, "WSAINVALIDPROCTABLE", "NET_ERR", MB__OK);
break; ~

case WSAINVALIDPROVIDER:

MessageBox (NULL, "WSAINVALIDPROVIDER", "NET__ERR", MB_OK) ;
break;

case WSAPROVIDERFAILEDINIT:

MessageBox(NULL, "WSAPROVIDERFAILEDINIT", "NET_ERR", MBJOK);
break; -

case WSASYSCALLFAILURE:

MessageBox(NULL, "WSASYSCALLFAILURE", "NET_ERR", MBJDK);
break;*/ -

default:

MessageBox(NULL, "???", "NETERR", MBJDK)
break;

// Aud_Strm_Net_Recv.cpp

#include "stdafx.h"

#include <winsock.h>

#include "AudJ5trm_Net_Recv.h"
#include "Aud_params.h"

static WORD wVersionRequested;
static WSADATA wsaData;

static SOCKET recvsock;

static SOCKET sessionsock;
static char chLocalAddress[16];
static struct sockaddr_in sock_addr;// new_sock_addr
static DWORD Err;

static u__short usPort;
static int truejlnt;
static int iRet;

int _cdecl DspMsg(HWND hWnd, HDC hDc, int x, int y, LPSTR msgfmt, ...);

int AudJ3trm_NetJRecv_lnit(void)
{

wVersionRequested = MAKEWORD(2,0);

iRet = WSAStartup(wVersionRequested, SwsaData);//request winsock version + service
if (iRet != 0)

{

MessageBox(NULL,"Failed Net Recv WSAStartup", "Debug" , MBJDK);
return -1; ~~

)

if ((recvsock = socket(AF_INET, SOCKJSTREAM, 0)) == INVALID SOCKET)
{

MessageBox(NULL,"Failed Net Recv socket creation", "Debug" , MBJDK);
return -1;

}

true_int = 1;

if(setsockopt(recvsock,SOLJ30CKET,SO_REUSEADDR, (char *)Strue_int,
sizeof(int))==SOCKET_ERROR)

I

closesocket(recvsock);

MessageBox(NULL,"Failed Net Recv set socket option", "Debug" , MBJDK);
return -1; ~~

)

usPort = PORTJNUMBER;
sock__addr.sin_family = AF_INET;
sock_addr.sin_addr.s_addr = htonl(INADDR_ANY);
sock_addr.sin_port = htons(usPort);

if (bind(recvsock, (LPSOCKADDR) &sock_addr,
sizeof(sock_addr))==SOCKET_ERROR)

{

closesocket(recvsock);

MessageBox(NULL,"Failed Net Recv socket binding", "Debug" , MBJDK);
return -1;

)

if(listen(recvsock, 1)==S0CKET_ERROR)
{

MessageBox(NULL,"Failed Net Recv at listen", "Debug" , MBJDK);
return -1; ~~

}

sessionsock = accept(recvsock, NULL, NULL);

if(sessionsock == INVALIDJ30CKET)
{

MessageBox(NULL,"Failed Net Recv at accept", "Debug" , MBJDK);
return -1;

1

return 0;

)

void AudJ3trm_NetJRecvJDlean(void)
{

closesocket(sessionsock);

closesocket(recvsock);

WSACleanup();

return;

}

int AudJStrmJNetJRecv(unsigned char * buffer)
{

int tot_recv = 0;
int ret = 0;

while(tot_recv!=PACKET_SIZE)

{
ret = recvfsessionsock, (char *) &buffer[tot_recv], PACKETJ5IZE -

tot_recv, 0);
if(ret==SOCKETJERROR)

{
MessageBox (NULL,"Failed Net Send at send", "Debug" , MBJDK)
break;

)

else tot__recv += ret;

}

return 0;

// Aud_Strearal.h : main header file for the AUD_STREAM1 application
//

#if !defined(AFX_AUD_STREAM1_H 567C9B98_D4FF_42C1_9509_B06A91B91DDC INCLUDED_
#define AFX_AUDJ3TREAM1_H__567C9B98_D4FF_4 2C1J9509_B06A91B91DDC INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // JXTSCJVER > 1000

#ifndef AFXWIN_H
#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h" // main symbols

///
// CAudJStreamlApp:
// See AudjStreaml.cpp for the implementation of this class
//

class CAudJ5treamlApp : public CWinApp
{
public:

CAud_StreamlApp();

// Overrides

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CAud_StreamlApp)
public:

virtual BOOL Initlnstance();
//}}AFX VIRTUAL

// Implementation

};

//{ (AFXjyiSG(CAud_StreamlApp)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

//}}AFX_MSG
DECLARE MESSAGE MAP f)

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif // !defined (AFX_AUD_STREAM1__H___567C9B98_D4FF 42C1 9509 B06A91B91DDC INCLUDED

// Aud_StreamlDlg.h : header file

#if !defined(AFX_AUD_STREAM1DLG_H 0873lE50_8968_4 6F6j3F87_BE79DA234B89 INCLUDED
#define AFX_ADDJ3TREAM1DLG_H 08731E50_8968_4 6F6_8F87_BE79DA234B89 INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

///
// CAudjStreamlDlg dialog

class CAudjStreamlDlg : public CDialog
{

// Construction

public:

CAudjStreamlDlg(CWnd* pParent - NULL); // standard constructor

// Dialog Data

//{{AFX_DATA(CAudjStreamlDlg)
enum { IDD = IDD_AUD_STREAMl_DIALOG };

// NOTE: the ClassWizard will add data members here
//}}AFX_DATA

// ClassWizard generated virtual function overrides
//){AFX_VIRTUAL(CAudjStreamlDlg)
protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}(AFXJVIRTUAL

// Implementation
protected:

HICON m_hIcon;

// Generated message map functions
//{|AFX_MSG(CAudJ5treamlDlg)
virtual BOOL OnlnitDialog();
afxjnsg void OnSysCommand(UINT nID, LPARAM lParam);
afx_msg void OnPaint();
afxjnsg HCURSOR OnQueryDraglcon();
afxjnsg void OnRecMicO;
afx_msg void OnPlayf);
afx_msg void OnStop();
virtual void OnOK();
//) jAFxjyrsG
DECLARE MESSAGE MAP!)

//({AFX__INSERT_LOCATION})
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif // !defined(AFX_AUD_STREAMlDLG_H_08731E50_8968_46F6_8F87_BE79DA234B89 INCLUDED

//Aud_Strm_DSnd_Cap. h

#ifndef AUDJ3TREAMJDAP
#define AUDJ3TREAMJDAP

#include "Aud_params.h"

//Release the pointer
#define SAFEJFREE(p) { if(p) { (p)->Release(); fp)=NULL;] }

typedef struct Aud_Enc_Buff
{

unsigned char sample_bits[PACKETJSIZE];
unsigned char filled;

>Aud_Enc_Buff_t, * Aud__Enc_Buff_ptr;

typedef struct Aud_DSjDap_Params
{

unsigned int frequency;
unsigned char bits_sample;
unsigned char channel;
AudJEnc_Buff_ptr fifo^ptr;
unsigned int done;
HWND gJhDlg;

}Aud_DS_Cap_Params_t, * Aud_DS_Cap_Params_ptr;

void cdecl Aud_StrmJDSJDapture(void *);
HRESULT InitDirectSoundCapture(HWND hDlg);
HRESULT CreateCaptureBuffer(void);
HRESULT InitCaptureNotifications(void);
HRESULT FreeDirectSoundCapture(void);

#endif

//Aud_Strm__pSnd_Play. h

#ifndef AUD_STREAM_PLAY
#define AUD STREAM PLAY

void cdecl Audj3trm_DS_Play(void * params);
HRESULT InitDirectSoundPlaybackf HWND hDlg, int freq, int bits per sample, int channel'
HRESULT CreateStreamingPlaybackBuffer(void);
HRESULT InitPlaybackNotifications(void);
HRESULT FreeDirectSoundPlay(void);

#endif

//Aud_Strm_EncrYpt. h

#ifndef AUDJ3TREAM_ENCRYPT
#define AUD_STREAM_ENCRYPT

#include "AudJ5trm_DSnd_Cap.h"

typedef struct Aud_Enc_Params
{

Aud_Enc__Buff_ptr global_fifo;

int max_element_in_fifo;
int size_of_element;
unsigned int done;

}Aud_Enc_Paramsjt, * Aud_Enc_Params_ptr;

#define INIT CONDITION 0.876786

void Aud_Strm_Bit_Swap_Encrypt_Init(void);
void Aud_StrnjBit_SwapJDecrypt_Init(void);
void KeyJ3en_EncryptJDecrypt (void) ;
void Audj5trm_Bitj3wap_Encryptj3ample(unsigned char * sample byte);
void Aud_Strm_Bit_SwapJDecrypt_Sample(unsigned char * sample~byte);
void AudJStrm_EncryptJ3ample(unsigned char *input_val, unsigned char *output_val)
void AudJ3trm_DecryptJ3ample(unsigned char *input_val, unsigned char *output~val)
void cdecl AudJ5trm_Encrypt_Fifo_Thread(void * param); ~~
void cdecl AudJ3trm_DecryptJFifoJThread(void * param);

#endif

//Aud_S trm_Net_Recv.h

#ifndef AUD_STREAMJsIET_RECV
#define AUDJ3TREAM_NET_RECV

#define NET_RECV_TEST 0

int Aud_Strm_Net__Recv_Init(void) ;
int AudJ3trm_Net_Recv(unsigned char * buffer)
void Aud_Strm_Net_Recv_Clean(void);

#endif

//Aud_StrmJNet_Send.h

#ifndef AUDJ3TREAMJtfET_SEND
#define AUD_STREAM_NET_SEND
#define NETJ3ENDJTEST 0

int Audj3trm_Netj3end_Init(void);
void Audj3trm_NetjSend(unsigned char * buffer)
void Aud_Strm_Net_Send_Clean(void);

ttendif

//Aud_param.h

#ifndef AUD_PARAMS
#define AUD_PARAMS
#define PORTJMUMBER 15150
idefine DESTINATION_ADDRESS "160.0.108.41"
/* currently system only validated on llKhz, 8bps, mono*/
#define NUM^PACKETS 25 // 25 notifications per second
#define PACKETJ3IZE 441 // 441 per Aud_enc_buff (and network packets)

// which equates to about l/25th of sec
// should match num of notifications above

/* with llKhz Sampling rate at 8 bits per sample in mono, we have HKilobytes per second,
11025/25= 441bytes */

#define WAVJFREQ 11025 //sampling frequency
#define WAV__BPS 8 //bits per sample
#define WAV_CHNL 1 111 = mono, 2 = stereo

#endif

APPENDIX E

The M-files attached run the Advanced Encryption Standard (AES) encryption-decryption
program on the user's terminal in the MATLAB software. The codes were obtained from
http://buchhloz.hs-bremen.de/aes/aes.htm

%aes_encrypt.m

a-1;

b=16;

fid=fopen('C:\Miscj2\hello.wav', 'rr); %insert filename accordingly
sound_file=fread(fid) ;

%textl='i must do this properly and i will do it1
%textl=double(textl);

%tlength=length(textl);

%num=ceil(tlength/16);
sound_length=length(sound_file);
num=ceil (sound__length/16) ;

[s_box, inv_sjDox, w, polyjnat, inv_poly_mat] - aes_init;

for i=l:num;

%y=textl(a:b);

y=sound_file(a:b);
%a = a + hex2dec(10);

%b = b + hex2dec(10);

n=length(y);

z=zeros(16,1);

for m=l:n;

z(ra)=z(m)+y(m);
end

plaintext=z;

ciphertext = cipher (plaintext, w, s_box, poly_mat, 1);
re_plaintext = inv_cipher (ciphertext, w, inv_s__box, inv_polyjnat, 1) ;

if i=l

matl=plaintext;
mat2=re_plaintext;
mat3=ciphertext;

else

mat4=plaintext;
mat5=re_plaintext;
mat6=ciphertext;

original=cat(l,matl,mat4)
decrypted=cat(2,mat2,mat5)
encrypted=cat(2,mat3,mat6)

matl=original;
mat2=decrypted;

mat3=encrypted;

end

a = a + 16;

b = b + 16;

if b>sound_length
b=sound_length;

end

end

% aesjLnit.m

function [s_box, inv_s_box, w, polyjnat, inv poly mat] = aes init

%AES_INIT Initialisation of AES-components.
%

% [S__BOX, INV_S__BOX, W, POLY_MAT, INV_POLY_MAT] = AES_INIT
% initializes AES-components to be used by subsequent functions.
% In the initialization step the S-boxes (S_BOX and INV_S_BOX) and the polynomial
% matrice (POLY_MAT and INV_POLY_MAT) are created and an example cipher key is expanded
% into the round key schedule (W).

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Clear the command window

clc

% Create the S-box and the inverse S-box

[sjoox, inv_s_box] = s_box_gen (1);

% Create the round constant array
rcon = rcon_gen (1);

^global key
key=randint(1,16,[0 255])

% Create the expanded key (schedule)
w = key_expansionfkey, s_box, rcon, 1);

% Create the polynomial transformation matrix and the inverse polynomial matrix
% to be used in MIXJDOLUMNS
[polyjnat, inv_polyjnat] = poly_mat_gen (1);

%affJtrans.m

function b_out = affjtrans (b_in)
%AFF_TRANS Apply an affine transformation over GF(2"8).
%

% BJDUT = AFFJTRANS (B_IN)
% applies an affine transformation to the input byte B_IN.
%

% The transformation consists of

% 1. a polynomial modulo multiplication
% by a predefined multiplication polynomial
% using a predefined modulo polynomial over GF(2A8) and
% 2. the addition (XOR) of a predefined addition polynomial
%

% B_IN has to be a byte (0 <= B_IN <= 255).

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Define the modulo polynomial
%to be used in the modulo operation in poly_mult
mod_pol = bin2dec ('100000001');

% Define the multiplication polynomial
% In the Rijndael AES Proposal
% they say they use the polynomial '11110001',
% which is wrong.
mult__pol = bin2dec ('00011111');

% Define the addition polynomial
add_pol - bin2dec ('01100011');

% Modular polynomial multiplication
% of the input byte and the fixed multiplication polynomial
temp = polyjnult (b_in, mult_pol, mod_pol);

% Add (XOR) the constant (addition polynomial)
b_out = bitxor (temp, add_pol) ,-

%cipher,m

function ciphertext = cipher (plaintext, w, sJdox, polyjnat, vargin)
%CIPHER Convert 16 bytes of plaintext to 16 bytes of ciphertext.
%

% CIPHERTEXT - CIPHER (PLAINTEXT, W, S_BOX, POLY_MAT)
% converts PLAINTEXT to CIPHERTEXT,
% using the expanded cipher key W,
% the byte substitution table S_BOX, and
% the transformation matrix POLY MAT.

%

% CIPHERTEXT - CIPHER (PLAINTEXT, W, S_BOX, POLY_MAT, 1)
% switches verbose mode on, which displays intermediate results.
%

% PLAINTEXT has to be a vector of 16 bytes (0 <= PLAINTEXT(i) <= 255).
% W has to be a [44 x 4]-matrix of bytes (0 <= W(i,j) <= 255).

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 4

% Switch the verbose mode flag on
verbosejnode = 1;

%If there is no optional "verbose mode" argument
else

% Switch the verbose mode flag off
verbosejnode = 0;

end

%if the input vector is a cell array or does not have 16 elements
if iscell (plaintext) | prod (size (plaintext)) ~= 16

% Inform user and abort

error ('Plaintext has to be a vector (not a cell array) with 16 elements.')

end

%If any element of the input vector cannot be represented by 8 bits
if any (plaintext < 0 | plaintext > 255)

% Inform user and abort

error ('Elements of plaintext vector have to be bytes (0 <= plaintext(i) <= 255).

end

% If the expanded key array is a cell arrray or does not have the correct size
if iscell (w) | any (size (w) ~= [44, 4])

% Inform user and abort

error ('w has to be an array (not a cell array) with [44 x 4] elements.')

end

% If any element of the expanded key array can not be represented by 8 bits
if any (w < 0 | w > 255)

% Inform user and abort

error ('Elements of key array w have to be bytes (0 <= w(i,j) <= 255).')

end

% Display headline if requested

if verbosejnode
disp (' ')
disp ('**')

disp ('* *')
disp ('* CIPHER *')

disp ('* *')
disp (' ***)

disp (' ')
end

% Copy the 16 elements of the input vector
% column-wise into the 4x4 state matrix

state = reshape (plaintext, 4, 4);

% Display intermediate result if requested
if verbosejnode

disp_hex ('Initial state : ', state)
end

% Copy the first 4 rows (4x4 elements) of the expanded key
% into the current round key.

% Transpose to make this column-wise
roundjcey = (w(l:4, :))';

% Display intermediate result if requested
if verbosejnode

disp_hex ('Initial round key : ', roundj^ey)
end

%Add (xor) the current round key (matrix) to the state (matrix)
state = add__round__key (state, round_key);

% Loop over 9 rounds

for i_round =1:9

% Display intermediate result if requested
if verbosejnode

disp_hex (['State at start of round ', num2str(i_round),' : '], state)
end

% Substitute all 16 elements of the state matrix

% by shoving them through the S-box
state = subjoytes (state, s_box);

% Display intermediate result if requested

if verbosejnode
dispjiex ('After sub_bytes : ', state)

end

% Cyclically shift the last three rows of the state matrix
state = shiftjrows (state) ;

% Display intermediate result if requested
if verbosejnode

dispjiex ('After shift_rows : ', state)
end

% Transform the columns of the state matrix via a four-term polynomial
state = mix_columns (state, polyjnat);

'% Display intermediate result if requested
if verbosejnode

dispjiex ('After mix_columns : ', state)
end

% Extract the current round key (4x4 matrix) from the expanded key
roundJcey = (w((l:4) + 4*i__round, :))';

% Display intermediate result if requested
if verbose mode

dispjiex ('Round key : ', round_key)
end

%Add (XOR) the current round key (matrix) to the state (matrix)
state = add_round_key (state, round_key);

end

% Display intermediate result if requested
if verbosejnode

dispjiex ('State at start of final round : ', state)
end

% Substitute all 16 elements of the state matrix

% by shoving them through the S-box
state = subjaytes (state, s_box);

% Display intermediate result if requested
if verbosejnode

dispjiex ('After sub_bytes : ', state)
end

% Cyclically shift the last three rows of the state matrix
state = shift_rows (state);

% Display intermediate result if requested
if verbosejnode

dispjiex ('After shift_rows : ', state)
end

% Extract the last round key (4x4 matrix) from the expanded key
round_key = (w(41:44, :))';

% Display intermediate result if requested
if verbosejnode

disp_hex ('Round key : ', round_key)
end

%Add (xor) the current round key (matrix) to the state (matrix)
state = add_round_key (state, roundjcey);

% Display intermediate result if requested
if verbosejnode

dispjiex ('Final state : ', state)
end

% reshape the 4x4 state matrix into a 16 element row vector

ciphertext = reshape (state, 1, 16);

%inv_cipher.m

function plaintext = inv_cipher (ciphertext, wl, inv_sj30x, inv_poly_mat, vargin)
%INVJCIPHER Convert 16 bytes of ciphertext to 16 bytes of plaintext.
%

% PLAINTEXT = INVJCIPHER (CIPHERTEXT, W, INVJ3JBOX, INV_POLY_MAT)
% converts CIPHERTEXT (back) to the plaintext PLAINTEXT,
% using the expanded cipher key W,
% the inverse byte substitution table INVJ3_B0X, and
% the inverse transformation matrix INV_POLYJ*IAT.
%

% PLAINTEXT = INVJDIPHER (CIPHERTEXT, W, INV_S_BOX, INV_POLY_MAT, 1)
% switches verbose mode on, that displays intermediate results.

% CIPHERTEXT has to be a vector of 16 bytes (0 <= CIPHERTEXT(i) <= 255).
% W has to be a [44 x 4]-matrix of bytes (0 <= W(i,j) <= 255).

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 4

%Switch the verbose mode flag on
verbose^mode = 1;

% If there is no optional "verbose mode" argument
else

% Switch the verbose mode flag off
verbosejnode = 0;

end

% If the input vector is a cell array or does not have 16 elements
if iscell (ciphertext) | prod (size (ciphertext)) ~= 16

% Inform user and abort

error ('Ciphertext has to be a vector (not a cell array) with 16 elements.')

end

% If any element of the input vector cannot be represented by 8 bits
if any (ciphertext < 0 | ciphertext > 255)

% Inform user and abort

error ('Elements of ciphertext vector have to be bytes (0 <= ciphertext(i) <= 255).

end

% If the expanded key array is a cell arrray or does not have the correct size
if iscell (wl) | any (size (wl) ~= [44, 4])

% Inform user and abort

error ('w has to be an array (not a cell array) with [44 x 4] elements.')

end

% If any element of the expanded key array can not be represented by 8 bits
if any (wl < 0 | wl > 255)

% Inform user and abort

error ('Elements of key array wl have to be bytes (0 <= wl(i,j) <= 255).')

end

% Display headline if requested
if verbosejnode

disp

' * *

'* INVERSE CIPHER *'

disp
disp
disp
disp
disp
disp

i**i

' ')

end

% Copy the 16 elements of the input vector column-wlise into the 4x4 state matrix
state = reshape (ciphertext, 4, 4);

% Display intermediate result if requested
if verbosejnode

dispjiex ('Initial state :
end

', state)

% Copy the last 4 rowls (4x4 elements) of the expanded key
% into the current round key.
% Transpose to make this column-wlise
roundJcey = (wl(41:44, :))';

% Display intermediate result if requested

if verbosejnode
dispjiex ('Initial round key : ', round_key)

end

%Add (xor) the current round key (matrix) to the state (matrix)
state = add_round_key (state, round_key);

% Loop over 9 rounds backwlards
for i_round = 9 : -1 : 1

% Display intermediate result if requested
if verbosejnode

disp_hex (['State at start of round ', num2str(i_round),' : '], state)
end

% Cyclically shift the last three rowls of the state matrix
state = inv__shift_rows (state);

% Display intermediate result if requested
if verbosejnode

dispjiex ('After inv_shift_rowls : ', state)
end

% Substitute all 16 elements of the state matrix

% by shoving them through the S-box
state = sub_bytes (state, inv_s_box);

% Display intermediate result if requested
if verbosejnode

disp_hex ('After inv_sub_bytes : ', state)
end

% Extract the current round key (4x4 matrix) from the expanded key
round_key = (wl((l:4) + 4*i_round, :))';

% Display intermediate result if requested
if verbosejnode

dispjiex ('Round key : \ round_key)
end

% Add (XOR) the current round key (matrix) to the state (matrix)
state = add_roundJkey (state, roundjcey);

%Display intermediate result if requested
if verbosejnode

disp_hex ('After add_round_key : ', state)
end

% Transform the columns of the state matrix via a four-term polynomial.
% Use the same function (mix_colurans) as in cipher,
% but wlith the inverse polynomial matrix
state = mix_columns (state, inv_poly_mat);

end

% Display intermediate result if requested
if verbosejnode

disp_hex ('State at start of final round : ', state)
end

%Cyclically shift the last three rowls of the state matrix
state = inv_shift__rows (state);

% Display intermediate result if requested
if verbosejnode

dispjiex ('After inv_shift_rows : ', state)
end

% Substitute all 16 elements of the state matrix
% by shoving them through the inverse S-box
state = sub bytes (state, inv_s_box);

% Display intermediate result if requested
if verbosejnode

dispjiex ('After inv_subjaytes : ', state)
end

%Extract the "first" (final) round key (4x4 matrix) from the expanded key
roundjcey = (wl(l:4, :))';

% Display intermediate result if requested
if verbose_mode

dispjiex ('Round key : ', round__key)
end

% Add (xor) the current round key (matrix) to the state (matrix)
state = add_round_key (state, round_key);

% Display intermediate result if requested
if verbosejnode

dispjiex ('Final state : ', state)
end

% reshape the 4x4 state matrix into a 16 element row vector

plaintext = reshape (state, 1, 16);

%cycle.m

function matrix_out = cycle (matrix_in, direction)
%SHIFT_ROWS Cyclically shift the rows of the state matrix.
%

% MATRIXJDUT = CYCLE (MATRIX_IN, 'left')
% cyclically shifts the last three rows of the input matrix to the left.
% The first row is not shifted: [12 3 4]
% The second row is cyclically shifted once to the left: [2 3 4 1]
% The third row is cyclically shifted twice to the left: [3 4 12]
% The fourth row is cyclically shifted thrice to the left: [4 12 3]

% MATRIXJDUT = CYCLE (MATRIXJEN, 'right')
$ cyclically shifts the last three rows of the input matrix to the right.
% The first row is not shifted: [12 3 4]
% The second row is cyclically shifted once to the right: [4 12 3]
% The third row is cyclically shifted twice to the right: [3 4 12]
% The fourth row is cyclically shifted thrice to the right: [2 3 4 1]

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-breraen.de

% Version 1.0 30.05.2001

% If the matrix has to be shifted to the left,
if strcmp (direction, 'left')

i generate the column vector [0 5 10 15] '

col = (0 : 5 : 15) ';

% If the matrix has to be shifted to the right,
else

% generate the column vector [16 13 10 7] '
col = (16 : -3 : 7) ';

end

% Generate the row vector [0 4 8 12]

row = 0 : 4 : 12;

% Repeat the column to create the matrix [0000] (left shift)
% [5555]
% [10 10 10 10]
% [15 15 15 15]
cols = repmat (col, 1,

% Repeat the row to create the matrix [0 4 8 12]

% [0 4 8 12]

% [0 4 8 12]

% [0 4 8 12]
rows = repmat (row, 4, 1);

% Add both matrices,

% fold back into the 0 ... 15 domain,

% and add 1, because Matlab indices do start with 1
% I 1 5 9 13]

% [6 10 14 2]

% [11 15 3 7]

% [16 4 8 12]

ind_mat = mod (rows + cols, 16) + 1;

% Apply the just created index matrix to the input matrix.
% Elements of the index matrix are linear (column-wise) indices.
matrix out = matrix in (ind mat);

%find_inverse.m

function b_inv = find_inverse (b_in, mod_pol)
%FIND_INVERSE Find the multiplicative inverse in GF(2"8).
%

% B_INV = FIND_INVERSE (B_IN, MOD_POL)
% finds the multiplicative inverse of B_IN
% in the finite Galois field GF(2n8)

% with respect to the predefined (irreducible modulo polynomial.
%

% B_IN has to be a byte (0 <= B_IN <= 255).
%

% This implementation is extremely simple, uneconomic, and slow;
% but it works and clearly demonstrates the definition of the inverse.
% Smarter implementations e.g. use the "extended Euclidean algorithm".

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Loop over all possible "test" bytes.
% The inverse of zero is defined as zero

for i = 1 : 255

% "Test-wise" compute the polynomial multiplication
% of the input byte and the current "test byte"
prod = polyjnult (b_in, i, mod_pol);

% If the polynomial modulo multiplication leaves a remainder of "1"
% we have found the inverse

if prod == 1

% Declare (save and return) the current test byte as inverse,
b_inv = i;

% and abort the search

break

end

end

%key_expansion.m

function w = key_expansion (key, sjaox, rcon, vargin)
%KEY_EXPANSION Expand the 16-byte cipher key.
%

% W = KEY_EXPANSION (KEY, S_B0X, RCON)
i creates the 44x4-byte expanded key W,

%Repeat the row to create the matrix [0 4 8 12]
% [0 4 8 12]
% [0 4 8 12]
* [0 4 8 12]
rows = repmat (row, 4, 1);

% Add both matrices,
% fold back into the 0 ... 15 domain,
% and add 1, because Matlab indices do start with 1
% [1 5 9 13]

% [6 10 14 2]

% [11 15 3 7]

% [16 4 8 12]

indjnat = mod (rows + cols, 16) + 1;

% Apply the just created index matrix to the input matrix.
% Elements of the index matrix are linear (column-wise) indices.
matrix_out = matrix in find mat);

%find_inverse.m

function b_inv = find_inverse (b__in, mod__pol)
%FIND_INVERSE Find the multiplicative inverse in GF(2A8).
%

% B_INV = FIND_INVERSE (B_IN, MOD_POL)
% finds the multiplicative inverse of B_IN
% in the finite Galois field GF(2A8)

% with respect to the predefined (irreducible modulo polynomial.
%

% B_IN has to be a byte (0 <= B_IN <= 255).
%

% This implementation is extremely simple, uneconomic, and slow;
% but it works and clearly demonstrates the definition of the inverse.
% Smarter implementations e.g. use the "extended Euclidean algorithm".

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Loop over all possible "test" bytes.
% The inverse of zero is defined as zero
for i = 1 : 255

% "Test-wise" compute the polynomial multiplication
% of the input byte and the current "test byte"
prod = polyjnult (b_in, i, mod_pol);

% If the polynomial modulo multiplication leaves a remainder of "1"
% we have found the inverse

if prod = 1

% Declare (save and return) the current test byte as inverse,
b_inv = i;

% and abort the search

break

end

end

%key_expansion.m

function w = key_expansion (key, sjaox, rcon, vargin)
%KEY_EXPANSION Expand the 16-byte cipher key.
%

% W = KEY_EXPANSION (KEY, S_BOX, RCON)
% creates the 44x4-byte expanded key W,

% Repeat the row to create the matrix [0 4 8 12]
% [0 4 8 12]
* [0 4 8 12]
% [0 4 8 12]
rows = repmat (row, 4, 1);

% Add both matrices,

% fold back into the 0 ... 15 domain,
% and add 1, because Matlab indices do start with 1
% [1 5 9 13]

% [6 10 14 2]
% [11 15 3 7]

% [16 4 8 12]

indjnat = mod (rows + cols, 16) + 1;

% Apply the just created index matrix to the input matrix.
%Elements of the index matrix are linear (column-wise) indices.
matrix_out = matrix in (ind mat);

%find inverse.m

function b_inv = find_inverse (b_in, raod_pol)
%FIND_INVERSE Find the multiplicative inverse in GF(2A8)
%

% B_INV = FIND^INVERSE (B_IN, M0D_POL)
% finds the multiplicative inverse of B_IN
% in the finite Galois field GF(2A8)
% with respect to the predefined (irreducible modulo polynomial.
%

% B_IN has to be a byte (0 <= B_IN <= 255).

% This implementation is extremely simple, uneconomic, and slow;
% but it works and clearly demonstrates the definition of the inverse.
% Smarter implementations e.g. use the "extended Euclidean algorithm".

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Loop over all possible "test" bytes.
% The inverse of zero is defined as zero
for i = 1 : 255

% "Test-wise" compute the polynomial multiplication
%of the input byte and the current "test byte"
prod = polyjnult (b_in, i, mod_pol);

% If the polynomial modulo multiplication leaves a remainder of "1"
% we have found the inverse

if prod == 1

% Declare (save and return) the current test byte as inverse,
b_inv = i;

% and abort the search

break

end

end

%key_expansion.m

function w = key_expansion (key, s_box, rcon, vargin)
%KEY_EXPANSION Expand the 16-byte cipher key.
%

% W = KEY_EXPANSION (KEY, S_BOX, RCON)
% creates the 44x4-byte expanded key w,

% using the initial 16-byte cipher KEY,
% the predefined byte substitution table S_BOX, and
% the round constant RCON to be added to every fourth 16-byte sub-key.
%

% W = KEY^EXPANSION (KEY, S_BOX, RCON, 1)
% switches verbose mode on, that displays intermediate results.
%

% KEY has to be a vector of 16 bytes (0 <= KEY(i) <= 255).
%

% KEY_EXPANSION has to be called prior to CIPHER and INVJCIPHER.

% Copyright 2001-2005, J. j. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

%If there is an optional "verbose mode" argument
if nargin > 3

% Switch the verbose mode flag on
verbosejnode = 1;

%If there is no optional "verbose mode" argument
else

% Switch the verbose mode flag off
verbosejnode = 0;

end

%If the key vector is a cell array or does not have 16 elements
if iscell (key) | prod (size (key)) ~= 16

% Inform user and abort

error ('Key has to be a vector (not a cell array) with 16 elements.')

end

% If any element of the key vector cannot be represented by 8 bits
if any (key < 0 [key > 255)

% Inform user and abort

error ('Elements of key vector have to be bytes (0 <= key(i) <= 255).')

end

% Display headline if requested
if verbosejnode

disp (' ')
disp ('**!)
disp ('* *'j
disp ('* KEY EXPANSION *')
disp ('* *i)
disp ('**'\

disp (• ')
end

% Copy the 16 elements of the key vector row-wise
% into the first four rows of the expanded key
w= (reshape (key, 4, 4))';

% Display intermediate result if requested
if verbosejnode

dispjiex ('w(l:4, :) : ', w)
end

% Loop over the rest of the 44 rows of the expanded key
for i = 5 : 44

% Copy the previous row of the expanded key into a buffer
temp = w(i - 1, :);

% Every fourth row is treated differently:
if mod (i, 4) === 1

% Perform a cyclic (byte-wise) permutation to the buffer
temp = rot_word (temp);

% Display intermediate result if requested
if verbosejnode

dispjiex (['After rot_word : '], temp)
end

% Substitute all 4 elements of the buffer
I by shoving them through the S-box
temp = sub_bytes (temp, sjoox);

% Display intermediate result if requested
if verbosejnode

dispjiex (['After subjsytes : '], temp)
end

% Compute the current round constant

r = rcon ((i - 1) /4, :);

% Display intermediate result if requested
if verbosejnode

dispjiex (['rcon(', num2str(i,'%02d'), ', :) : '],
end

% Add (XOR) the current rount constant

% to every element of the buffer
temp = bitxor (temp, r);

% Display intermediate result if requested
if verbosejnode

dispjiex (['After rcon xor : '], temp)
end

end

% The new row of the expanded key
% is the sum (XOR) of the row four rows before
% and the buffer

w(i, :) = bitxor (w(i - 4, :), temp);

% Display intermediate result if requested
if verbosejnode

dispjiex (['w(', num2str(i,'%02d') , ', :) : '], w(i,
end

end

%add__round_key. m

function state_out = add_round_key (state_in, round_key)
%ADDJIGUND_KEY Add (XOR) the round key to the state.
%

% STATEJDUT = ADD_ROUND_KEY (STATE_IN, ROUNDJCEY)
% adds the current round key matrix ROUND_KEY
% to the current state matrix STATE_IN.
% Adding in GF(2'18) is performed via bitwise XOR.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-breraen.de

% Version 1.0 30.05.2001

% Add state (matrix) and round key (matrix) via bitwise XOR
state_out = bitxor (state__in, round key);

%mix_columns.m

function state_out = mix_columns (statejLn, poly_mat)
%MIX_COLUMNS Transform each column of the state matrix.
%

% STATEJDUT = MIX_COLUMNS (STATE_IN, POLY_MAT)
% operates on the state matrix STATE_IN column-by-column
% using POLYJ4AT as the transformation matrix.

% MIXJDOLUMNS can also directly compute
% the inverse column transformation INVJYIIXJDOLUMNS
% by utilizising the inverse transformation matrix INV_P0LYJ4AT.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Define the irreducible polynomial
% to be used in the modulo operation in polyjnult
modjpol - bin2dec ('100011011');

% Loop over all columns of the state matrix
for i_col_state =1:4

I Loop over all rows of the state matrix
for i_row_state =1:4

% Initialize the scalar product accumulator
temp__state = 0;

% For the (innner) matrix vector product we want to do
% a scalar product

% of the current row vector of polyjnat
i and the current column vector of the state matrix.

% Therefore we need a counter over

% all elements of the current row vector of polyjnat and
% all elements of the current column vector of the state matrix

for i_inner =1:4

% Multiply (GF{2A8) polynomial multiplication)
% the current element of the current row vector of polyjnat with
% the current element of the current column vector of the state matrix
tempjprod = polyjnult (..,

polyjnat(i_row_state, i_inner), ...
state_in(i__inner, ijcol_state) , ...
modjpol) ;

% Add (XOR) the recently calculated product
% to the scalar product accumulator

temp_state = bitxor (temp_state, tempjprod);

end

% Declare (save and return) the final scalar product accumulator
% as the current state matrix element

state_out(i_row_state, i_col_state) = temp_state;

end

end

%shift_rows,m

function state__out = shiftjrows (state__in)
%SHIFT_ROWS Cyclically shift the rows of the state matrix.
%

% STATEJDUT = SHIFTJROWS (STATE_IN)
% cyclically shifts the last three rows of the state matrix to the left,
% The first row is not shifted: [12 3 4]
% The second row is cyclically shifted once to the left: [2 3 4 1]
% The third row is cyclically shifted twice to the left: [3 4 12]

% The fourth row is cyclically shifted thrice to the left: [4 12 3]

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Call the function cycle to do the actual left shifting
state_out = cycle (state_in, 'left');

%inv_shit_rows.m
function state__out=inv_shift_rows (state_in)

%INV_SHIFT_ROWS Cyclically shift (back) the rows of the state matrix.
%

% STATEJDUT = INVJSHIFTJROWS (STATE_IN)
% cyclically shifts the last three rows fo the state matrix to the right.
% The first row is not shifted: [12 3 4]
% The second row is cyclically shifted once to the right: [4 12 3]
% The third row is cyclically shifted twice to the right: [3 4 12]
% The fourth row is cyclically shifted thrice to the right: [2 3 4 1]

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

%Call the function cycle to do the actual right shifting
statejmt = cycle (state_in, 'right');

%poly_mat_gen.m

function [polyjnat, invjpolyjnat] = polyjnatjgen (vargin)
%POLY_MAT Create polynomial coefficient matrices.
%

% [POLYJ4AT, INV_POLY_MAT] = P0LY_MATj3EN
% creates the polynomial coefficient matrices
% to be used by the function MIXJDOLUMNS.
%

% [P0LY_MAT, INV_POLY_MAT] = POLY_MAT_GEN (1)
% switches verbose mode on, that displays intermediate results.
%

% POLY_MATJ3EN has to be called prior to CIPHER and INVJCIPHER.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 0

% Switch the verbose mode flag on
verbosejnode = 1;

% If there is no optional "verbose mode" argument
else

% Switch the verbose mode flag off
verbosejnode = 0;

end

% Display headline if requested
if verbosejnode

disp (' ')
disp ('**ij
disp (' * * ')
disp (** POLY_MAT CREATION *')
disp ('* *')

disp ('**!j
disp (' ')

end

% Define the first row of the polynomial coefficient matrix
% to be used in MIXJCOLUMNS in hexadecimal representation.
%Small values are chosen for computational speed reasons
rowjiex = {'02' '03' '01' '01'};

% Convert the polynomial coefficients to decimal "numbers"
% row =[2311]

row = hex2dec (rowjiex)';

% Construct a matrix with identical rows
% rows =[2311]
% [2 3 1 1]
% [2 3 11]
% [2 3 11]
rows = repmat (row, 4, 1);

i Construct the polynomial matrix
% by cyclically permuting the rows to the right
% polyjnat =[2311]
% [12 3 1]
% [112 3]
% [3 112]
polyjnat = cycle (rows, 'right');

% Define the first row of the inverse polynomial coefficient matrix
% to be used in INV_MIX_COLUMNS in hexadecimal representation,
invjrowjiex = ('0e' 'Ob' 'Od' '09'];

% Convert the polynomial coefficients to decimal "numbers"
invjrow = hex2dec (inv_rowjiex) ';

% Construct a matrix with identical rows
invjrows = repmat (invjrow, 4, 1);

% Construct the polynomial matrix
invjpolyjnat = cycle {invjrows, 'right');

% Display intermediate result if requested
if verbosejnode

dispjiex (' polyjnat : ', polyjnat)
dispjiex (' invjpolyjnat : ', invjpolyjnat)

end

%polyjnult.m
function ab = polyjnult (a, b, modjpol)
%POLY_MULT Polynomial modulo multiplication in GF(2n8)
%

% AB = POLY_MULT (A, B, MOD_POL)
% performs a polynomial multiplication of A and B
% in the finite Galois field GF(2A8),
% using MOD_POL as the irreducible modulo polynomial.

% A and B have to be bytes (0 <= A, B <= 255).
% MOD_POL is of degree 8.

% Copyright 2001-2005, J. j. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Initialize the product term
% to be used on the right-hand side of the XOR-iteration
ab = 0;

% Loop over every bit of the first factor ("a")
%starting with the least significant bit.
% This loop multiplies "a" and "b" modulo 2

for ijbit =1:8

% If the current bit is set,
% the second factor ("b") has to be multiplied
% by the corresponding power of 2
if bitget (a, i_bit)

% The power-2-multiplication is carried out
% by the corresponding left shift of the second factor ("b"
b_shift = bitshift (b, ijait - 1);

% and the modulo 2 (XOR) "addition" of the shifted factor
ab = bitxor (ab, b_shift);

end

end

% Loop over the 8 most significant bits of the "ab"-product.
% This loop reduces the 16-bit-product back to the 8 bits
% of a GF(2A8) element by the use of
% the irreducible modulo polynomial of degree 8.
for i_bit = 16 : -1 : 9

% If the current bit is set,

% "ab" (or the reduced "ab" respectively) has to be "divided"
% by the modulo polynomial
if bitget (ab, ijait)

% The "division" is carried out

% by the corresponding left shift of the modulo polynomial,
modjpoljshift = bitshift (modjpol, i_bit - 9) ;

% and the "subtraction" of the shifted modulo polynomial.
% Since both "addition" and "subtraction" are
% operations modulo 2 in this context,
% both can be achieved via XOR

ab = bitxor (ab, modjpol_shift);

end

end

%rconjjen.m

function rcon = rconjgen (vargin)
%RCON_GEN Create round constants.
%

% RCON = RCONJ3EN
% creates the round constants vector RCON
% to be used by the function KEY_EXPANSION.
%

% RCON = RCONJ3EN (1)
% switches verbose mode on, that displays intermediate results.
%

% RCONJ3EN has to be called prior to KEYJSXPANSION.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 0

% Switch the verbose mode flag on
verbosejnode = 1;

% If there is no optional "verbose mode" argument
else

% Switch the verbose mode flag off

verbosejnode = 0;

end

% Display headline if requested
if verbosejnode

disp (' ')
disp ('**'\
disp ('* *')
disp ('* RCON CREATION *•)
disp ('* *')
disp ('**m

disp (' ')
end

% Define the irreducible polynomial
% to be used in the modulo operation in polyjnult
modjpol = bin2dec ('100011011');

% The (first byte of the) first round constant is a "1"
rcon(l) = 1;

% Loop over the rest of the elements of the round constant vector
for i = 2 : 10

% The next round constant is twice the previous one; modulo
rcon(i) = polyjnult (rcon(i-l), 2, modjpol);

end

% The other (LSB) three bytes of all round constants are zeros
rcon = [rcon(:), zeros(10, 3)];

% Display intermediate result if requested
if verbosejnode

dispjiex ('rcon : ', rcon)
end

%rot_word.m

function w_out = rotjtford (w_in)
%ROT_WORD Rotate the elements of a four element vector.
%

% WJDUT = ROT_WORD (W_IN)
% performs a cyclic shift of the elements
% of the four element vector W_IN.
% [al, a2, a3, a4] —> [a2, a3, a4, al]

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-breraen.de

% Version 1.0 30.05.2001

% Do the shift...

w out = w in([2 3 4 1]);

%sj30x_gen.m

function [sJdox, inv_sJbox] = sj^oxjjen (vargin)
%S_BOX_GEN Create S-box and inverse S-box.
%

% [S_BOX, INV_S_BOX] = S_BOX_GEN
% creates the S-box and the inverse S-box

% to be used by the function SUBJ3YTES.
% The S-box is created in two steps:
% 1. Take the multiplicative inverse of the finite field GF(2'
% 2. Apply an affine transformation.
%

% [S BOX, INV S BOX] = S BOX GEN (1)

% switches verbose mode on, that displays intermediate results.
%

% S_BOX_GEN has to be called prior to
% KEY_EXPANSION, CIPHER, and INV_CIPHER.
%

% In the AES Specification Standard the S-boxes are depicted
% as arrays. For the sake of indexing-simplicity they are internally
% stored as vectors in this implementation.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 0

% Switch the verbose mode flag on
verbosejnode = 1;

% If there is no optional "verbose mode" argument
else

% Switch the verbose mode flag off
verbosejnode = 0;

end

% Display headline if requested
if verbosejnode

disp (' ')
disp ('**i \

disp ('* *')
disp ('* S-BOX CREATION *')
disp ('* * ')
disp ('* (this might take a few seconds ;-)) *')
disp ('* *')
disp ('**')

disp (' ')
end

% Define the irreducible polynomial
% to be used in the modulo operation in polyjnult,
% called by findjLnverse
modjpol = bin2dec ('100011011');

% The polynomial multiplicative inverse of zero is defined here as zero.
% Matlab vectors start with an index of "1"

inverse(1) = 0;

% Loop over all remaining byte values
for i = 1 : 255

% Compute the multiplicative inverse of the current byte value
% with respect to the specified modulo polynomial
inverse(i + 1) = find_inverse (i, modjsol);

end

% Loop over all byte values
for i = 1 : 256

% Apply the affine transformation
sj)ox(i) = affj:rans (inverse(i));

end

% Create the inverse S-box by taking the values
% of the elements of the S-Box as indices:

invjsjDox = sJboxjLnversion (sJjox) ;

% Display intermediate result if reguested

if verbose mode

%Display the sjoox and the inverse s_box in 16x16 matrix format.
%Notice the transpose character for row-wise matrix representation
sjooxjnat = reshape (sJdox, 16, 16)';
dispjiex (' sj^ox : ', sjsoxjnat)
invj3jDox_mat = reshape (inv_sjDox, 16, 16)';
dispjiex (' inv_sJdox : ', inv_sjDoxjnat)

end

%sjDoxjlnversion.m
function inv_sjoox = sjDox_inversion (sjoox)
%SJ30X_INVERSION Invert S-box.
%

% [INV_S_BOX] = S_BOX_INVERSION (S_BOX)
% creates the inverse S-box

% from the previously created S-box.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Loop over all byte values
for i = 1 : 256

%Create the inverse S-box by taking the values
% of the elements of the S-Box as indices:

% e.g.: sjx>x(00hex) = 63hex ==> inv_sjDox (63hex) = OOhex
% (except the fact, that Matlab vectors start at 1...)
inv_sjoox (sjdox (i) +1) = i - 1;

end

%subjDytes.m

function bytesjsut = subjjytes (bytes_in, sJdox)
%SUB_BYTES Nonlinear byte substitution using a substitution table.
%

% BYTESJDUT = SUB_BYTES (BYTES_IN, SJBOX)
% transforms the input array BYTES_IN
% into the output array BYTESJDUT
% using the substitution table SJ30X,
%

% BYTES_IN has to be an array of bytes (0 <= BYTES_IN(i) <= 255).

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Thanks to Matlab's marvellous matrix manipulation mastery,
% the substitution of a whole array can be formulated
% in just one statement
bytesjDut = sJdox (bytes_in + 1);

