¥
Q

\'

UNIVERSITI
TEKNOLOG]
PETRONAS

;

Implementation of a Symmetric Chaotic Encryption Scheme

by

Easwari Sivanandan

1621

Dissertation submitted in partial fulfilment of
the requirements for the
Bachelor of Engineering (Ions)

(Electrical and Electronics Engineering)

May 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Implementation of a Symmetric Chaotic Encryption

by

Easwari Sivanandan

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

Voo~

(Associate Prof. Dr Varun Jeoti)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

May 2004
k’
U
pEAN
/S
PNk
Ny CodiA N 7y
2 Loy v

AN TET . NeeAa |

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

B —

EASWARI SIVANANDAN

ABSTRACT .
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES.
CHAPTER 1: INTRODUCTION
1.1 Background of Study
1.2 Literature Review
1.3 Problem Statement . .
1.4 Objectives and Scope of Study .
1.5 Thesis Organization
CHAPTER 2: THEORY .
2.1 Data Security in a Networked Enwronment
22 Voice over Internet Protocol
2.2.1 Voice Quality
2.3 Encryption Decryption .
23.1 AES .
23.2 Analysis of AES
233 Cryptanalysis
24 Chaos .
241 Chaos and Cryptography
2.4.2 Chaotic Encryption and its al gonthm
24.3 Chaotic Encryption using logistic map
2.5 Hierarchical Data Security Protection (HDSP) .
2.6 Proposed Two-Level Security System for VoIP .
CHAPTER 3: METHODOLOGY
3.1 Procedures and Methodology
32 Implementation of Chaotic Bit String Generator
33 Bit Swapping Algerithm
34 Two’s Compliment Overflow Nonhnearlty
35 Flow Chart.
3.6 Tools/Software. .
CHAPTER 4: RESULTS AND DISCUSSION., .
4.1 Proposed Security System for VoIP
4.2 Implementation of Propesed Security System in C
43 Simulation and Analysis Results

TABLE OF CONTENTS

4.3.1 Spectrogram Analysis

4.3.2 Comparison between AES and Chaotlc

Encryption

4.3.3 Power Spectral Density and Hlstogram

Analysis,

434 Comparison between AES and Chaotlc

Encryption .
43.5 Time-Waveform Analysw

Lh B o —

oo ~1 -

\D

11
13
14
i4
15
16
18
19
21

22
22
23
25
27
30
31

32
32
35
38
38

4]

47

51
57

ii

CHAPTER 5:
REFERENCES
APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

44 Conclusion of Analysis 59

CONCLUSION - 63
65

: Suggested Milestone for Semester One

: Suggested Milestone for Semester Two

: Chaotic Discrete Maps

: C-codes for the Chaotic Encryption Scheme for voice

: MATLAB codes for Advanced Encryption Standard (AES)

iv

LIST OF TABLES

Table 2.1 Number of rounds (Nr) as a function of Nb (Nb = block length/32)
and Nk (Nk = key length/32) 11

Table 2.2 Operations, Design Criteria and Performance of AES . . 13

Table 4.1 Time taken to estimate key based on order deployed in encoder-decoder

structure in Figure 3.4 61

Figure 2.1
Figure 2.2
Figure 2.3

Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8
Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

LIST OF FIGURES

Bifurcation Diagram 19
Block Diagram of proposed HDSP scheme applied in VoIP : 19
Biock Diagram of proposed security scheme in VoIP . : 21
Operations of inter-frame data interleaving and intra-frame data

encryption 23
The chaotic bit string generator . : . . . 23
Intra-frame data encryption 25
Encoder-decoder using two’s compliment overflow nonlinearity . 27
Flow chart of project work across two semesters . . . 30
Block Diagram of proposed security scheme . . . 32

Block diagram of encryption-decryption simulation environment using the

proposed two-level encryption schemes 35
Block diagram of simulation environment . . . 35
User Interface 36

Spectrogram of (a) original voice signal, (b) encrypted signal and (c)
decrypted signal using chaotic encryption scheme . . 39

Spectrogram of original voice signal 41

The encrypted signal d1splayed using a spectrogram for (a) 128-bit AES
and (b) Chaos . . 42

Spectrogram of decrypted voice signal using (a) AES and (b) Chaos 43

The original file being fed to the AES and Chaos . . 44
The encrypted signal displayed using a spectrogram for 128-bit AES (a)

and Chaos (b) 45
The decrypted signal for (a) AES and (b) Chaos . . . 46

Power spectral density plot of (a) original voice signal, (b) encrypted
signal and (c) decrypted signal using chaotic encryption scheme . 47

vi

Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16

Figure 4.17
Figure 4.18
Figure 4.19

Figure 4.20

Figure 4.21

Histogram plots of (a) original voice signal, (b) encrypted signal and (c)
decrypted signal using chao_tic encryption scheme. . . 49

Power spectral density plot of voice signal using (a) AES and (b) Chaos 51

Power spectral density plot of encrypted voice signal using (a) AES,

(b) and (c) Chaos using different key values . . . 53
Power spectral density plot of decrypted voice s1gnal using (a) AES

and (b) Chaos 54
Histogram plot of original voice signal, 55

Histogram plot of encrypted voice signal using (a) AES and (b) Chaos 55
Histogram plot of decrypted voice signal using (2) AES and (b) Chaos 56

Original signal, encrypted and decrypted s1gnal using AES encryptlon
scheme 57

Original signal, encrypted and decrypted signal using chaotic encryption
scheme 58

vil

ABSTRACT

Voice over Internet Protocol technology (VoIP) is progressing commendably, but packet
loss, propagation delay, jitter, unreliable IP networks, and vulnerability to attacks by
Internet hackers are among critical issues that have been identified. Voice privacy and
security needs to focused upon and data encryption techniques are the answers in
providing the security needed. However, traditional cryptosystems demand high
computational complexity and high digital signal processors which in return increases the

cost of implementation.

There is parallel growth in cryptographic techniques which originated an intense research
activity and the search for new directions in cryptography such as chaotic encryption.
Due to its deterministic nature and its sensitivity to initial conditions, chaos has a certain

potential in creating a new way of securing information to be transmitted or stored.

There are two main objectives 1o this project. First is study the feasibility of the chaotic
encryption scheme in providing a solution in to preserve data security while maintaining
the voice quality for voice over Internet Protocol. Secondly, a new scheme based on a
chaos system will be implemented for voice data. In order to achieve the second
objective, a study had been carried out on other proposed schemes mainly the
Hierarchical Data Security Protection (HDSP) for VoIP. This scheme performs two main
operations which is the data-frame interleaving and intra-frame data encryption using bit
swapping. Based on the HDSP scheme, the author suggests a new scheme using two level
encryption techniques, based on chaos. In this scheme, the author uses the bit swapping
technique as the second encryption-decryption level and enhances it with a first level
encryption-decryption scheme using the two’s compliment overflow nonlinearity

encoder-decoder pair.

The implementation of this scheme is specified to do real time processing of voice data. Tt
can also be used to read, encrypt and write a wave file. The entire system is implemented,
tested and validated using MATLAB and Visual C++.

Due to the promising prospect of chaotic encryption in the field of cryptography, and the
lack of implementation of this new encryption-decryption algorithm, this project focuses

on introducing a new symmetric encryption-decryption scheme based on a chaos system
for VoIP.

il

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

The modern telecommunications networks, the Internet and mobile telephones have
expanded the possibilities of user communications and information transmission to
certain limits which were unimaginable not a very long time ago. With the great demand
in digital signal transmission and the big losses from illegal data access, data security has
become a critical and imperative issue. The increasing development of the broadband
networks and services, alongside recent demand for privacy and paid services, has led to
need for systems and algorithms to encrypt information [4]. Some of the important
applications include encryption of video messages, voice over Internet protocol (VolP),
and data messages transmitted over telematic networks i.e. electronic banking and e-

commerce.

Voice over Internet protocol network application meets the challenges of combining
voice networks with packet networks by allowing both voice and signaling information to
be transported over the packet network. In short, it means to transmit voice over the
Internet. VolP technology is progressing admirably, but certain drawbacks have been
indicated such as packet loss, propagation delay, jitter, unreliable IP networks, and
vulnerability to attacks by Internet hackers. Thus, it is essential to perform data
encryption on voice transmitted over the Internet while preserving the quality of the voice
from packet loss. There are researches on voice encryption using scrambling techniques,
some of which uses discrete Fourier transform (DFT) to perform voice encryption and
decryption in the frequency domain [1]. Although the performance has been good, but the
compultational power is large because of the forward and inverse transformations. It also
increases cost as it requires a high performance digital processor to realize the

transformations in real-time voice applications.

Encryption' technology is the practice of obscuring the privacy and security of the
information by changing readable text to gibberish. The science of encryption itself is
called cryptography. The significance of cryptography is evident as a method to secure
communication and data authentication that offers confidentiality, data integrity, data and
entity authentication. Encryption techniques are being rapidly developed, standardized
and adopted such as RSA, DES, AES and etc. With the advancement in digital
communication technology, the importance of cryptography in ensuﬁng security and
privacy for critical data transmission has been further increased with the need for secure
communication and data authentication method. With the Internet, taking over as the
preferred medium of communication, the demand for data encryption techniques to

provide message security and authentication has been steadily increasing.

Hence, there is a parallel growing demand of cryptographic techniques which originated
an intense research activity and the search of new directions in cryptography. As a result
a rich variety of cryptosystems for end to end communications have been put forward,

where robustness and privacy are equally diverse.

Chaos has attracted much attention in the field of cryptography for private and secure
communications due to its deterministic nature and its sensitivity to initial values. Such
properties mean that chaos has certain potential in creating a new way of securing
information to be transmitted or stored. Methods based on chaos theory provide high
level of security and are competitive to traditional encryption techniques because they are
inexpensive to implement [4] and posses low computational complexity. Chaos and
cryptography have common features, the most prominent being sensitive to variables and
parameter changes. Shannon in his paper [C&C] wrote: “In a good mixing
transformation...functions are complicated, involving all variables in a sensitive way. A
small variation of any one variable changes the output considerably.” Chaos is the
complex behavior of a simple system and it is very difficult to reproduce or decode,

which makes it an effective means to secure communications.

' The process of changing the original data to gibberish or cipher text

1.2 LITERATURE REVIEW

Many efforts have been put into developing chaos-based cryptographic systems in recent
years as emerging chaotic systems promised a new direction for innovation in
cryptography since the development of symmetric and asymmetric cryptography. Many
of these works are published, which shows a great deal of improvement and advancement

over the years.

One of such work is the Hierarchical Data Security Protection scheme. This technique
has been proposed in [1] as solution to the drawbacks VoIP has encountered, This
scheme maintains both the voice quality which is degraded from the packet loss and
provides high data security for the voice being transmitted. This scheme proposes two
methods of data security i.e. inter-frame data interleaving and intra-frame data
encryption. These operations will be discussed in detail in Chapter 2. This scheme as
been used as the base of the author’s research. Based on this work, another scheme has

been implemented

The chaos based cryptosystem is new and has all the profound qualities for research.
There are crucial similarities between cryptography and chaos. The equivalent of rounds,
keys and diffusion in cryptographic algorithms in chaotic systems are iterations,
parameters and initial change sensitivity, respectively. Using chaos in data encryption
possesses features of low computational complexity, high security and no distortion.
Compared to traditional encryption techniques, chaotic systems are competitive because

they are inexpensive and easy to implement [5].

A foundation has thus been set to study the feasibility and applicability of an encryption-
decryption scheme for voice data based on chaos systems. It is necessary to study the

feasibility and applicability of the chaos encryption scheme with emphasis on the strength

of the cipher. The strength of the system should be compared to current cryptosystems

standards. The secrecy level should at least be equal if not greater than these standards.

1.3 PROBLEM STATEMENT

The introduction of chaotic systems into cryptography marks a very interesting area for
research into innovating novel encryption schemes. In 1998, Baptista proposed Chaotic
Encryption method which is said to be better than the traditional methods present today

due to its randomness, stochastic, and mixed-ergodic characteristic.

The drawbacks of the Voice over Internet Protocol need to be addressed so that it can
emerge {rom a specialized application to mainstream voice communications. The main
drawbacks indicated are voice quality degradation due to packet loss and vulnerability to
attacks by hackers. The current schemes used to do real-time encryption require high
computational power and high performance digital signal processors which increase the
cost [1]. Hence, the author is carrying out a research to find new schemes which can
preserve high data security. Since chaos is a new direction in the field of cryptography
with promising results such as low computational complexity, high security and no
distortion, this project proposes an implementation of a new scheme based on chaos
which can overcome the drawbacks of the Voice over Internet Protocol focusing on data

security.
14 OBJECTIVE AND SCOPE OF STUDY

i. To study and develop a new security system based on the HDSP scheme. The
HDSP scheme consist data interleaving for voice quality maintenance and intra-
frame data security based on pixel permutation using chaotic bit strings for VOIP
network.

ii. To study and propose a method on how chaotic encryption can be used to secure

voice communications over a VoIP network.

iii. To research, study and propose a chaotic encryption algorithm using other chaotic
maps i.e. logistic map

iv. Convert the chaotic encryption scheme based on two’s compliment overflow
nonlinearity encoder-decoder developed in Simulink to C.

v. To enhance the chaotic encryption scheme in (ii) by proposing an additional level
of encryption using permutation techniques in C.

vi. To encrypt voice data sent in real-time.

The development of the proposed symmetric chaotic encryption scheme will be
developed using MATLAB, Simulink and C. The end system will be a standalone C
application which can run in terminal connected to a network. The scope of study will
focused on data encryption techniques applicable to VoIP and will not cover techniques

to reduce packet loss or maintain voice quality in a VoIP system.

1.5 THESIS ORGANIZATION

The chapters are organized to provide a flow to the report and also to aid the reader in

understanding the project in a more systematic and ordered manner.

Chapter 1 highlights the overview or background on the project and literature review to
justify the basis of the project followed by the problem statement. The objectives and

scope of work are also outlined in this chapter.

Chapter 2 discusses the theories involved in the project and provides a base for the reader
to understand the operations and implementations involved in this project. This chapter

helps the reader obtain supporting information and the theories used in this project.

Chapter 3 then discusses the methodology of implementation and algorithms used in

realizing the final product.

Chapter 4 further elaborates the results and observations obtained and makes a
comparison to the theories reviewed in Chapter 2. All findings and discussions are
highlighted here.

Finally, chapter S concludes the project report by cross-checking the relevancy to the

objectives, suggested future work and recommendations.

CHAPTER 2

THEORY

2.1 DATA SECURITY IN NETWORKED ENVIRONMENT

In the recent years, there has been a tremendous upsurge in information and data
transfers over the telephone and computer networks. Connectivity has become a buzz
word in industries and the increasing sophistication of network software and controllers
is allowing the average computer users’ access to information never thought possible a
decade ago. This information ranges from very simple electronic mail to highly

complex medical imaging.

In any of these data transfers, the security of the information being transferred is a
pressing concern. However with this increase to global databases, the need to
secure/protect information from browsers, whether during transmission, reception, and
storage risen dramatically. The increasing development of broadband networks and
services, alongside the recent demand privacy, has led (o the need for systems and
algorithms to encrypt information. The most vital applications include the encryption of
video messages, voice over Internet Protocol (VoIP) and data messages transmitted over
telematic networks i.e. electronic banking and commerce. Currently the solution to the

security concern is to use expensive and inefficient private networks and leased lines.

Widely used encryption and keying schemes based upon Data Encryption Standard
(DES), a secret key cryptography, and Rivest-Shamir-Adleman (RSA) a public key
cryptography. Initial investigations [19] show that a HYBRID cryptographic approach
where public key is used for authentication or key management and the symmetric key
approach for encryption would be most appropriate for This project discusses the latter,
symmetric key encryption based on a chaos system for security that will allow voice
data to be transmitted over the IP network so that only the intended receiver can

decipher.

2.2 VOICE OVER INTERNET PROTOCOL (VoIP)

Voice over Internet protocol network application meets the challenges of combining
voice networks with packet networks by allowing both voice and signaling information
to be transported over the packet network. VoIP wants to provide the efficiency of a
packet switched network while rivaling the voice quality of a circuit switching network.
VoIP technology is progressing admirably, but certain drawbacks have been indicated
such as intolerant of lengthy delays, out of order packets, packet loss, propagation
delay, jitter, unreliable IP networks, and vuinerability to attacks by Internet hackers. All

these problems gravely degrade the quality of voice transmitted to the recipient.

The overall technology requirements of an Internet Protocol (IP) solution can be split
into four categories: signaling, encoding, transport and gateway control. The purpose of
the signaling control is to create and manage connections between endpoints, as well as
the calls themselves, Next, when the conversation commences, the analog signal
produced by the human voice, needs to be encoded for transmission across an IP
network. The IP network itself must ensure that the real-time conversation is
transported across the available media in a manner that produces acceptable voice

quality.

It is essential to perform data encryption on voice transmitted over the Internet while
preserving the quality of the voice from packet loss. There are researches on voice
encryption using scrambling techniques, some of which uses discrete Fourier transform
(DFT) to perform voice encryption and decryption in the frequency domain [1].
Although the performance has been good, but the computational power is large because
of the forward and inverse transformations. It also increases cost as it requires a high
performance digital processor to realize the transformations in real-time voice

applications.

2.2.1 Voice Quality

Many factors determine the voice quality, including the choice of codec, packet loss,
echo conirol, delay, delay variation and the design of the network. Packet loss causes
voice clippings and skips. Some codec algorithms can correct for some lost voice
packets. Techniques such as interleaving and error correction using CRC can be used to
maintain the voice quality. The concept of data interleaving is used to scramble the
voice packets in different frames to avoid continuous voice corruption due to packet

[oss.

TCP is the internet protocol that suites main transport layer protocol. It also provides
addressing (with service addresses) services at the network layer. TCP provides reliable
full-duplex, connection-oriented transport services to upper layer protocols. TCP works
in conjunction with IP to move packets through the internetworking. TCP assigns a
connection ID (port) to each virtual circuit. It also provides message fragmentation and
reassembly using sequence numbering. Error checking is enhanced through the use of

TCP acknowledgements.

UDP is a connectionless protocol that works at the transport layer. UDP also transports
datagram but does not acknowledge their receipt. UDP also uses port address to achieve
datagram delivery, but this port address is simply a pointer to a process, not a

connection identifier, as it is with TCP. Mainly, voice packet transmission uses UDP.

To make VoIP successful in real time networking interactive applications, guaranteed
QOS or quality of service networks are inevitable for minimizing the delay caused by
the packet network transmission. It is reasonable to assume that the packet network

transmission delay of a guaranteed QOS is ~25ms [1].

The proposed system in this project however does not cover the framework of packet

loss and only focuses on data security.

23 ENCRYPTION-DECRYPTION

In this project we deal with the theory of encryption and decryption, existing encryption
standards, and mainly chaotic dynamical systems and their use in solving practical

problems like implementing an efficient cryptographic system.

Encryption standards are evaluated for their suitability according to three main criteria:
e Security
e Cost

e Algorithm and implementation characteristics

“Security” of the proposed algorithm was absolutely essential and any algorithm found
not to be secured would not be considered further. “Cost” refers to the computational
efficiency i.e. speed and memory requirements of various types of implementations
including software, hardware and smart cards. “Algorithm and implementation”

characteristics include flexibility and algorithm simplicity among other factors.

From the author’s understanding, on "what makes a good encryption algorithm", though
not complete, is outlined as below:

* Iterations required per sample

» Speed of encryption and decryptions

® Error propagation (when you iterate something, i.e. current output depends on

the previous output etc, they tend to produce error propagation)
Thus, these are the criteria to look into when comparing two encryption schemes.
A need to replace DES had arisen and the replacement was to be called AES or
Advanced Encryption Standard. Rijndael was selected to be the Advanced Encryption
Standard based on its combination of security, performance, efficiency, implement

ability, and flexibility.

10

2.3.1 AES
AES algorithm is a symmetric block cipher that can process data blocks of 128 bits,
using cipher keys with lengths of 128, 192, and 256 bits. Rijndacl was designed to
handle additional block sizes and key lengths; however they are not adopted in this

standard.

AES is a key-iterated block cipher; it consists of the repeated application of a round
transformation on the state. The number of rounds denoted by Nr depends on the block
length and key length. Table 2.1 lists the value of Nr as a function of Nk and Nb. For
AES, Nb is fixed to a value of 4. Nr=10 for key length 128 bits, Nr=12 for key length
192 bits and Nr=14 for key length 256 bits. For AES, the value of Nb is set to 4 since
the block length is 128 bits.

Table 2.1. Number of rounds (Nr) as a function of Nb (Nb = block length/32) and Nk
(Nk = key length/32)

o Np A
Nu 4 E 6 7 8
4 10 11 12 13 14
5 11 T 12 13 14
6 2 12 12 13 14
7 13 13 03 13 14
8 14 14 14 14 14

The input and output of AES is considered to be one-dimensional arrays of 8-bit bytes
consisting of 128 bits (digits with values of 1 or 0). These sequences will sometimes be
referred to as blocks and the number of bits they contain will be referred to as their
length. For encryption the input is a plaintext block and a key and the output is cipher
text block. For decryption, the input is a cipher text block and a key and the output is
the plaintext block. The key for the AES algorithm is a sequence of 128, 192 or 256
bits. Other input, output and key lengths are not permitted by this standard. The bits

11

within such sequences will be numbered starting at zero and ending at one less than the
sequence length (block tength or key length). The number ; attached to a bit is known as
its index and will be in one of the ranges 0 <i < 128, 0 <i < 192 or 0 <7 < 256

depending on the block length and key length (specified above).

The round transformation is denoted by Round and is a sequence of four transformation
called steps. The structure of the AES round transformation requires that all steps be

invertible and consist of simple components rather than complex ones.

According to [21] and [22], a high-level description of the AES algorithm can be

summarized as below:

I Given a plaintext, x, initialize State to be x and perform an operation
ADD-ROUNDKEY?, which x-ors the RoundKey with State.

I For each of the first Nr-1 rounds, perform a substitution operation called
SubBytes on State using an S-Box; perform a permutation ShiftRows on
State; perform an operation MixColumns on State; and perform
AddRoundKey.

IIl. Perform SubBytes; perform ShiftRows; and perform AddRoundKey.
IV. Define the cipher text y to be the State.

These processes are required to perform an encryption operation in AES. To decrypt, it
is necessary to perform all operations in the reverse order, and use the key schedule in
the reverse order. Further, the operations ShiftRows, SubBytes, MixColumns, must be
replaced by their inverse operation including the operation AddRoundKey. It is also
possible to construct an equivalent inverse cipher which performs AES decryption by
doing a sequence of inverse operations in the same order as it is done for AES

encryption. It is suggested in [21] that this can lead to implementation efficiencies.

* Round keys are values derived from cipher key using the Key Expansion routine; they are applied to the
State in the cipher and inverse cipher

12

2.3.2 Analysis of AES
The design criteria for AES were looked upon during this analysis on why the 4 steps
are performed as such in each round. The table 2.2 below summarizes the operations,

design criteria and its importance.

Steps Design Criteria and importance

1. SubBytes 1. Non-linearity
a) Correlation. The maximum input-output correlation amplitude
must be as small as possible.
b) Difference propagation probability. The maximum difference
propagation probability must be as small as possible.
2. Algebraic Complexity. The algebraic expression of the S-box” in
GF (2%) must be complex.

3. MixColumns | 1. Dimensions, The transformation is bricklayer transformation
operating on 4-byte columns.

2. Linearity. The transformation is linear over GF(2)

3. Diffusion. The transformation has to have relevant diffusion power.

4. Performance on 8-bit processors. The performance of the

transformation has to be high.

4 Key schedule | Key Expansion

1. Efficiency .

2. Performance

3. Symmetry Elimination
4. Diffusion

5. Non-linearity

¥ Non-linear substitution table used in several byte substitution transformations and in the Key Expansion
routine to perform a one for-one substitution of a byte vatue.

13

2.3.3 Cryptanalysis

The current state-of-the-art in cryptanalysis indicates that the resistance of iterative

block ciphers against cryptanalytic attacks increases with the number of rounds.

According to [21} and [23] the AES is secure against all known attacks. This is one of
the main reasons AES is chosen to be compared against chaos encryption. Various
aspects of it design incorporate features that help provide security against specific
attacks. For example, the used of the finite field inversion operation in the construction
of the S-Box yields linear approximation and difference distribution tables in which
entries are close to uniform. This is the main factor which helps provide security against
differential and linear attacks. As well, the linear transformation, MixColumns makes it
impossible fot find differential and linear attacks that involve ‘few’ active S-boxes.
There are apparently no known attacks on AES that are faster than exhaustive search.
The “best” attacks on AES apply to variants of the cipher, which the number of rounds

is reduces and are not effective for 10-round AES.

24 CHAOS

In signal theory, chaos is classified as one of the non-periodic signal systems which are
characterized by a continuous noise-like broad power spectrum. Chaotic signals are
naturally broadband and are noise-like. Chaotic systems are characterized by sensitive
-dependence on initial conditions where a small perturbation eventually causes a large
change in the state of the system itself. The practical long-term prediction of these
signals is not possible due to the high dependence on initial conditions. Chaotic systems
also decorrelate rapidly with themselves. The autocorrelation function of a chaotic
signal has a large peak at zero and decays rapidly. They also posses deterministic
structure that makes it possible to generate noise like chaotic signals in a theoretically
reproducible manner. Chaos based algorithms offers a high degree of randomness,

stochastic and mixed-ergodic properties.

14

2.4.1 Chaos and Cryptography

Chaos describes a system that is sensitive to initial conditions, generates apparently
random behavior but at the same is completely deterministic. These properties have
much potential for any application in cryptography as it is hard to make long term

predictions on chaotic systems.

Firstly, chaotic functions are sensitive to initial conditions thus any slight change in the
initial value will yield a drastically different ciphertext. This indicates that the system
will be strong against any brute force attacks as the number of possible keys is

enormous given that the precision of initial value is high.

Secondly, being deterministic means that the same mapping function and initial value
will yield the same set of values. Conventional random number generators cannot
regenerate random numbers where as chaos allows us to repeat the same string as long
as the same mapping functions and initial value is used. The apparent randomness of the

system makes attacks such the ‘codebook’ attack impossible.

Claude Shannon had pointed out two propertics which make a good cryptographic
system hinder statistical analysis. Diffusion means that changing a character of the
plaintext would affect several characters in ciphertext and likewise changing a character
of ciphertext would affect several characters in the plaintext. Confusion is a technique
which corresponds to those parts of a cipher mechanism which change the association
between the input values and output values. This is generally accomplished by
substituting every fundamental block for another one according the rules dictated by the

algorithm. This technique confuses the output by modifying the data itself,

Analyzing an example of a cipher using chaos, given a set of plaintext which is to be
encrypted in integer form, a mapping function must be defined i.e. logistic map. Next, is
to define the initial value, n, of the mapping function. Thus, the first character in the

ciphertext will use n as the initial value and first number in the plaintext as the number

15

of iterations to yield the ciphertext character. The next ciphertext character will be
obtained using the previous ciphertext character as the initial value, while iterating the
number of times indicated by the present plaintext character. Hence, any change in
plaintext would affect the remaining part of the ciphertext. This means that diffusion is
introduced in the system. Secondly, the characters in the ciphertext will not only depend
ont the key but the plaintext itself. Thus there are elements of confusion as well in the
system. As long as the mapping function is not disclosed, the system can withstand

statistical attacks.

2.4.2 Chaotic Encryption and its Algorithm

Chaotic map is a chaotic system with the property to evolve identically if the initial
conditions are the same. The chaotic map is the main part of the encryptioﬁ system. The
more complex the map, the more difficult to force it. One way to enhance the
complexity of the maps for encryption is by mixing them. The real important part is to
be able to reproduce the maps the way it has been mixed. It will be more difficult now

to calculate all the possible situations.

The key is the only piece of information unknown to the attacker. The key could be
public knowledge and this fact should not compromise the system. One way of solving
it is by means of chaotic dynamical system. There are several methods by which the
plaintext can be combined with a chaotic sequence to produce seemly cipher text, one
that appears random and disordered by permutation or invertible substitution. The digits
or the letters of the cipher text can be calculated from the original and the key as
follows:

ci = Ck (tk) = ti + k (mod m) (1)
where ¢i is the cipher text’s i-th digit, the i-th digit of the original text and the actual

value of the chaotic sequence. m is assumed to be the alphabet size. Decoding is simply

performed by the inverse operation of (1).

16

ti= ci -k (mod m) (2)

This is possible for the recipient to decode because he knows the key and can
reconstruct the chaotic sequence appearing in (2). On the other hand, it will be difficult
for the hacker because he lacks the information of the original conditions of the system
that led to the production of k. Thus, the sender, recipient and hacker are aware of the
chaotic system being used but only the sender and recipient share the knowledge of the
exact initial condition of the system. This constitutes the key. The hacker may try to
guess the conditions but his chance of success is inversely proportional to 2n where n is
the number of effective bits used to describe the initial conditions. Even if he is able to
come up with a close guess, it would not help because of the chaotic system’s
sensitivity to initial conditions would multiply any original discrepancy in a few
iterations. It is possible to generate efficient ciphers using for example a quadratic map
exhibiting fully developed chaos. Variations on this theme are easy to come by, instead
of resorting to substitution scheme, one might use a chaotic system to generate a

permutation matrix and use this to encode a message.

The key advantages of the chaos encryption are resistance to traditional form of attacks
because it is not written like standard algorithms, ease in increasing the variety of
algorithms, difficulty in detecting spectral peaks and suitability of implementation in
analogue systems [10]. It is a simple method of encryption and can be achieved by
iteration with a high level of security. There is no short cut and the secutity depends on

the key.

But as with every system, there is always a flip side, and chaos cryptography is no
exception. Due to difficulty in cryptanalysis the security cannot be readily quantified
[10). The system is also said to be insecure to be encrypting long messages. This
weakness is attributed to the fact that chaos mappings can g0 in an orbit or repeat its
pattern for various initial conditions. It is also slow in speed and requires a high

precision of floating point calculation and large number of iteration.

17

2.4.3 Chaotic encryption using logistic map

The logistic map is given by the equation:

x(n+1)=r*x(n)*(1-x(n)) (3)

where the value of the bifurcation parameter, r should be selected as the values that can
result in chaos and 0 < x (0) < 1. The successive states from the logistic map is derived
using equation in (3) and the preceding 16 or 24 bits below the decimal point of the
binary representation of x(n) where n= 1, 2, ... are extracted to constitute the chaotic bit
string sequence b(0), b(1), b(2),.....In the chaotic systems [1], there are perfect
statistical characteristics such as (i) sensitive dependence on initial condition and (i)
there exist trajectories that are dense, bounded but neither periodic nor quasi-periodic in
the state space. Since the one dimensional logistic map has the property of easy
realization, it is adopted to generate the unpredictable sequence b(.).The logistic
equation is as the equation in (1) and is parabolic like the quadratic mapping with £ (0)
= f (1) = 0. The value of u is selected from a range of values which can cause chaos
based on the bifurcation diagram and 0 <x (0) <I. The value of x (n) is the nth value in
the sequence and then folds it back by (1-x (n)). The author carried out research on how
to determine the value of u such that it would create chaos. According to [5] and [14],
the parameter u varies in the interval [0, 4] so that u will be values that can generate
chaos and x (0) will stay in the range of 0 to 1. This can be observed from the

bifurcation diagram in Figure 2.1.

18

Figure 2.1 Bifurcation Diagram

The bifurcation parameter takes the range 0<u<4 and determines the chaotic attractor.
In the range O<u<l, x tends to zero while 1<u<4 leads to a point attractor. At ux3 the
first bifurcation occurs, the curve bifurcates again at u~3.45 and the period doubling

continues at ever closer u values to chaos. At u=4, complex chaotic behavior can be

observed.

2.4 THE HIERARCHICAL DATA SECURITY PROTECTION (HDSP)

N interdeaime intra-frame channel
L Ol dala few] defa b i';z
nterleaving encryption | . shoode

- v

voice PoM | | speech
dala "] 1 [Mencoder

anceding path

L

channel

inben-Araene Wit lrame
dala -1 gdala

. channel
de-inferleaving] | decryption

dacode

yoice PCM " e

mir
clata WF degadar | raming

B W
E | |

decoding path
source coding | chanrel coding
e ——

Figure 2.2 Block diagram of proposed HDSP scheme applied in VoIP

19

This technique has been proposed in [1] as solution to the drawbacks VoIP has
encountered. This scheme maintains both the voice quality which is degraded from the
packet loss and provides high data security for the voice being transmitted. This scheme
propdses two methods of data security i.e. inter-frame data interleaving and intra-frame
data encryption. These operations are controlled by chaotic bit-string generated from the
chaotic bit-string generator based on the 1-D logistic map. The inter-frame data
interleaving, permutation is adopted to perform frame re-ordering. Pixel value
transformation including bit swapping and XOR or XNOR operations are adapted to
translated the original pixel value to an encrypted one. This encryption algorithm falls
in the combination form which performs both position permutation and value
transformation. The value transformation has low computational complexity and low
hardware cost. This combination normally exhibits the potential of high security. The
block diagram in Figure 2.2 below illustrates the proposed HDSP scheme to be applied
in VoIP. The main focus is the framing operation, inter-frame data interleaving and
intra-frame data encryption. The framing operation would include breaking up the voice
input to a defined number of packets. The chaotic bit string generator is based on the
chaotic system utilized (chaotic maps). To generate the binary sequence b(0), b(1),
b(2),... from x(0), x(1), x(2),..., the 8 bits before the decimal 16 point of the binary

representation of x(7) forn =0, 1, 2,... are extracted to constitute the sequence. That is,
0.6(16nH0)b(16n+])...... b(16n+14)b(16n+15) 4)

is the binary representation of x(n) forn=0, 1, 2,... N

20

2.5 Proposed Two-Level Security System for VoIP

M—»- PCMILF # SPEECH # *LEVEL] + *LEVEL2
ENCODING ENCRYPTION ENCRYPTION
k 4
CODER
W—— ENCRYPTION—————p l
MOD
IP NETWORK
DE .MOD
e DECR Y PTION e DECODER
\]':;';“ SPEECH LEVEL 1 LEVEL 2
3 4 PCMIF DECODING [* DECRYPTION [* DECRYPTION ™

Fig. 2.3 Block diagram of proposed security scheme for VoIP

Based on the scheme in Figure 2.2, a new security scheme for VoIP as depicted by the
block diagram above in Figure 2.3. The proposed level one encryption which is two’s
compliment overflow nonlinearity encoder-decoder and level two encryption which is
the bit swapping are inserted in the traditional VoIP data flow between the speech
CODEC and the channel CODEC. These operations are controlled by a chaotic bit
string generator based on the chaotic system of a one-dimensional logistic map. The
implementation of the encryption-decryption schemes will be discussed in Chapter 3 of
Methodology and Project Work while the system will be formally discussed in Chapter

4 of Results and Discussion.

21

CHAPTER 3

METHODOLOGY and PROJECT WORK

3.1 Procedures and Methodology

The project work is divided into two parts of to ensure that the time frame of two
semesters is fully utilized and organized well. For the first semester, the objectived
outlined was to get acquainted with the theory of cryptography, focusing specifically on
the Advanced Encryption Standard and Chaos Encryption and comparing results of both

encryption schemes.

The objectives of the second semester has been clearly outlined in Chapter 1. Firsly, a
thorough and intense research is carried out to gather suffiecient information and research
papers pertaining chaos, chaos in cryptography, streaming, voice over Internet Protocol
and its security issues. The research is done based on books, IEEE publications, the
Internet, and also certain individuals inclined to this area of research. The information
being gathered is important in understanding the role of chaos in cryptology, the concept
of streaming to be applied in a cryptosystem to provide real-time encryption, the security

issues in voice over Internet Protocol and encryption schemes to overcome it.

Secondly, the focus is to finalize on the chaotic encryption scheme implementation based
on research carried out. Materials relevaht to voice over Internet Protocol and its security
issues have been researched upon and the author has decided to further explore the
scheme proposed in [HDSP]. This scheme is discussed in Chapter 2 and is illustrated in
Figure 2.2. The author will focus on implementing the framing block, and intra-frame

data encryption as illustrated in Figure 3.1.

22

wite
packels

£ ot

16

{]

LS
wihere XOISE fyx 2 !

_ [ar-rame intra-frame
data dma
)
:f.c'g— e?lﬁ?ﬁi::g Lu Iniaroaving ancryplion pACKBHEEHN fumi
! (trame {pizet value
rEQitoning) Iranatormation)
angom 4
AunD %
stduence
chaotic chaolk:
it bit
slring slring
Qanratar gribidtor
Arane input in
woemal order
frama
Y permutation
ool unit (FOUY
== 1
l chaglic
frame cutgutin kel string
poramitad order generalor
{CBSG
. genarate: (GB3G}
——
chaatic bit énlnf; fandeator
{CBEG)

K= xin-13 4 [1-x{r-13]

i By.0505 byl B Al

Figure 3.1 Operations of inter-frame data interleaving and intra-frame data encryption

3.2

e LN

15

The implementation of chaotic bit string generator

chiattic bl sting geneyarar
{CBEG)

B i -1y w2 [i-x(m-13]
L .
wivera X(I1}='£§¥'Irk 1

Biribm g Dy, By g, ol 5T BF D

Figure 3.2 The chaotic bit siring generator

23

In the proposed HDSP scheme there are three main operations i.e. framing, inter-frame
data interleaving and intra-frame data encryption as illustrated in Figure 3.1. The
operating intra-frame data encryption is controlled by the chaotic bit string generated
from the chaotic bit string generator based on a one-dimensional logistic map as

illustrated in Figure 3.2.

Determine the bifurcation parameter, r and initial point x(0) of the 1-D logistic map f,(x)
= rx(1-x) where r should be selected from a range of values which would result in chaos
and 0 < x(0) <1. Evolve each successive state from the map by x(n+1) =px(n)(1-x(n)) and
the preceeding 16 bits below the decimal point of the binary representation of x(n) where
n=1, 2, ... are extracted to constitute the chaotic bit-string sequence b(0), b(1), b(2) and

S0 On.

The chaotic bit string is generated by extracting 16 bits from each evolution state of the
1-D logistic map. This bit string is important as it is manipulated in the swap bit function.
The successive states are evolved from the logistic map and the preceding 16 bits below
the decimal point for the binary representation of x(n) are extracted to constitute the
chaotic bit string sequence b(0), b(1), b(2), b(3)....... b(16). To generate the chaotic
binary sequence, the 16 bits before the decimal point of the binary representation of x(n)
where n=0,1,2,..are extracted to constitute the sequence. For example for x (0), the 16 bit-

binary representation
0.5 (16n+0)b (16n+1)b (16n+2).....b (16n+7)
where of n=0, which returns b (0), b (1)....... b (15). The chaotic bits would be passed to

an array with N number of elements which is equal to the number of iterations and used

in the bit swapping function.

24

3.3 Bit swapping algorithm

Y4qe Db

varlue trangionmation
woviral unit (VTCLIY

*

chaotic bit string
generatns {GBSG}

Figure 3.3 Intra-frame data encryption

With reference to Figure 3.3, for intra frame encryption, the pixel value transformation
which includes two operations of bit swapping and XOR operations based on the chaotic
bit string b(0),b(1).....b(n) which transforms the original pixel value to an encrypted one.
The algorithm for the bit swapping is discussed as follows. Each sample is represented by
one byte which is 8 bits. The swapping will take place locally within the sample. The
pairs to be swapped is predetermined as bit zero with bit 4 (0, 4), bit one and five (1, 5),
bit two and six (2, 6) and bit three and seven (3, 7). Each pair will be assigned to one
chaotic bit. If the bit is 1, then it will be swapped. If the bit is 0, the pair will remain.
Then, the 1%, 3", 5™ and 7" bit will be XORed to the four chaotic bits. This data
encryption approach has the features of low computational complexity. The algorithm is

as below:

g’ is the result of the data encryption Definition 2: The operation SwapBit,(dr,
ds) is defined as to swap bit dr and bit ds if w is equal to I or to preserve iheir

original values if w is equal to 0.
Step 1. Determine the bifurcation parameter, r and initial point x(0) of the 1-D

logistic map fi(x) = rx(1-x) where r should be selected from a range of values

which would result in chaos and 0 < x(0) <I. Evolve each successive state from

25

the map by using equation (3) and the preceeding 16 bits below the decimal point
of the binary representation of x(n) where n=1, 2, ... are extracted to constitute

the chaotic bit-string sequence b(0), b(1), b(2) and so on.

Step 2: For cir=0to 4 where ctr equals 4 incoming samples at one time
For bit=01t0 3
SwapBityes seir +piny (Api, Tpirra)
End
For odd bit = 1to 7 Step 2
Ao bir' = Aodd i XOR b(4 x ctr + odd_bit)
End
End

Step 3. The encryption result g’ is obtained and the algorithm terminated.”

The interframe data interleaving will be replaced by another encryption-decryption

technique as illustrated in the Figure 3.4.

26

34 TWO’s COMPLIMENT OVERFLOW NONLINEARITY

El:t:l - ' e fg
a-ﬁ:'}a- maod(.) T) i} I it
1 T
) ‘"’":E 2 #{1-1] "y
) “‘%M , ;
T T
]
et oy HEd
T V
i T T
e
::;.‘53*] I -3) l
o

Figure 3.4 Encoder-decoder using two’s compliment overflow nonlinearity

The encoder-decoder structure with two’s compliment overflow non-linearity [2], special
parameter sets and fixed-point, floating point or continuous value realization is used for

coding of speech for another level of encryption.

Basically, this system is a generalized implementation of a simplified delay-based
system. With reference to Figure 3.4, the encryptor portion of the system consists of all
the blocks to the left of the transmission line, whereas the decryptor is located to the

right.

It should be obvious that each key-pair (Gain 1 and Gain 4, Gain 2 and Gain5, Gain 3 and
Gain 6) should have the same key value to ensure that the decryption process produces

the correct recovered plaintext from a given cipher text.

The gains in the feedback loop of the system act as the encryption keys. The value for
each key is obtained from a chaotic sequence generated using the logistic map. The mod
function s recognized as the two’s complement non linearity and mathematically defined

as:

27

mod(x) = x - 2. [(x+1)/2] (1)
where x, in this case, is (k) + x (k), and |.|is a flooring operation.

A simple generalization of delay based system implementation would then be:
s(k) = mod(i(k)+ > ¢, s(k— j)) (4)
i=l
and the decoded signal would be:

i"(k) = mod(r(k)—ic;r(k— . (5)
J=1

where c¢; is the key and identical keys in need to be used in both the encoder and decoder.
The key values are achieved by using the logistic map. But instead of converting the
iterated values from the map to bits of ones and zeroes as done prior to bit swapping, the
iterated values of x(n) itself will be used as the key values. This is because the key values

need to be larger than one and never zero.

The block diagram in Figure 3.4 had been implemented in MATLAB Simulink. A C-
standalone was created and was able to execute outside of MATLAB. The author
reviewed the C-codes that were generated and it was completely using Simulink
(MATLAB) API’s and libraries linked into the program. Even audio capture (from
microphone) is done via API's in Simulink and MATLAB. The makefile also seems to

indicate the usage of Simulink's own compiler called LCC to compile the program.

From the findings, the author has discovered that Simulink has the libraries not only
needed to do the mathematical equations but also communicate with the operating system
to interface with the microphone. Unfortunately, the author could not discover a way of
interfacing Matlab / Simulink with network as well, so that the whole system in Figure
4.1 can be modelled in MATLAB and from there create a standalone. However, assuming

the worst case scenario that Matlab simulink cannot do networking or that the overhead

28

interfacing Matlab / Simulink with network as well, so that the whole system in Figure
4.1 can be modelled in MATLAB and from there create a standalone. However, assuming
the worst case scenario that Matlab simulink cannot do networking or that the overhead
of the Matlab Simulink libraries cannot cope with "real-time-ness", then author continued

to simulate the system using Visual C++.

These definitions and steps are implemented in MATLAB using m-files for initial
development. The encryption algorithm was then enhanced and further optimized using
C-coding. The end system is implemented in C and the results that was obtained from the
encryption and decryption for real-time voice data is analyzed using MATLAB. Please
refer to Appendix D to view the C-codes for the proposed two-level encryption scheme
based on chaos. MATLAB provides tools such as spectograms, histograms and power
density spectrum plots which enables one to analyze the input signal, encrypted signal
and the output or decrypted signal. Comparisons and conclusions from the analysis can

be drawn using the tools provided.

29

3.5 Flow Chart

'

Literature Research and Understanding on CHAOS

y

Download AES encryption source codes

h 4
Implementation of AES encryption in MATLAB and C

r
Performance analysis of AES

15t Semester

A

Literature Research on chaos and VoIP

v

Modify current implementation of chaotic encryption to do
real time encryption
Two-level symmetric chaotic encryption scheme

|

Implementation and performance analysis of chaotic encryption scheme

2™ Semester

y

Performance comparison of Chaos encryption with AES

4

Dissertation Report Oral Presentation

A

L Pro;ect Completes

Figure 3.5 Flow Chart of project work across two semesters

30

3.0 Tools/Software

The software’ used are MATLAB and Visual C++. The chaotic encryption scheme will
be converted to C-standalone executable program. Hence, this encryption program can be

installed in any computer as a standalone system.

31

CHAPTER 4
RESULTS AND DISCUSSION

41 PROPOSED SECURITY SCHEME FOR VOICE OVER INTERNET

PROTOCOL (VOIP)
MIC POMIF » SPEECH p| +LEVEL1 B *LEVEL2
ENCODING ENCRYPTION ENCRYPTION
b 4
CODER
4———— ENCRYPTION > 'L
MOD
[P NETWORK
DE-MOD
e DECE YPTION e DECODER
‘g““ SPEECH LEVEL | LEVEL 2
A3 Mt PCMIF # DECODING [% DECRYPTION ¥ DECRYPTION [*

Fig. 4.1 Block diagram of proposed security scheme for VolP

The scheme in the block diagram above illustrates that the proposed level one encryption
which is two’s compliment overflow nonlinearity encoder-decoder and level two
encryption which is the bit swapping are inserted in the traditional VoIP data flow
between the speech CODEC and the channel CODEC. These operations are controlied by
a chaotic bit string generator based on the chaotic system of a one-dimensional logistic
map. Using the chaotic bit string in the level one and two encryption-decryption
techniques possesses the features of low computational complexity and high security. In

the following the author describes the system formally.

32

Level one encryption is the two’s compliment encoder-decoder and the second level is
the bit swapping function which has been highlighted and discussed in Chapter 2 and its

algorithm and implementation in Chapter 3.

To summarize the operation of both, the.encoder—decoder in Figure 3.4, replaces the data
frame interleaving. The bit swapping function cannot be used as a standalone encryption-
decryption scheme and is not secufe enough. Hence the introduction of the first level of
encryption before bit swapping. The diffusion technique is used to achieve a certain level
of secrecy or privacy [2]. Diffusion is where the characteristics of the encoded signal are

independent of the information signal.

In the encoder the information signal i(t) has be encoded by the operation ¢(i, k) using
the key signal k(t) where the operation is based on a two’s compliment overflow linearity
function. The operation is realized by complex scrambling using signal transformations.

The mod function is illustrated as :
mod (x) = x-2 * floor ((x+1)/2)

which is the two’s compliment nonlinearity. To have the identical key signals, the chaotic
encryption scheme is realized based on a feed back-feed forward control of the encoder
and the decoder by the encoded signal as in Figure 3.4 also known as the self-

synchronizing structure which does not need an extra synchroniiatioh signal.

The coder states that s (t-j) based on equation (4) and (5) in Chapter 3, is simply time-
delayed versions of the encoded signals of s (t). Lets say for a 3" order encoder-decoder
pair, to encode sample 7 which is i (7) where n=3 (order), thus the equation in (1) would
be

s (7) = mod (i(t) + (k (1) s(6) + k(2) s(5) + k(3) s(4))

The range of s (t) is always limited to [-1 1] due to the modulo-property.

33

The self-synchronizing scheme leads to a dynamical system with chaotic behavior [2].
~ The sensitivity of the system to the initial condition and the key value and number of key

used, has it made it a suitable candidate to be implemented in this VoIP security system,

Replacing the interleaving block in the HDSP scheme with this encoder-decoder pair has
also another notable advantage. The interleaving techniques groups frames of perhaps 10
and swap the frames with one another. This increases processing delay as all 10 frames
need to be complete before swapping takes place. The encoder-decoder pair on the other
hand, handles samples and receives them in a continues manner, The processing delay is
dependant only on the nth order of the system. If it is of order 16, there would be a delay
of 16 samples which is within microseconds and not perceivable by the human ear. The

speech is also continuously scrambled.

However, the signal s (t), which controls the key generator, is accessible and hence can
be used for cryptanalysis. This is one of the main factors of why a second level of
encryption, the bit swapping is introduced. Thus as the samples s (t) is sent out of the
encoder, it will be further encrypted locally within the sample itself before being sent to

the network.

The intra frame encryption, the pixel value transformation which includes two operations
of bit swapping and XOR operations based on the chaotic bit string b(0),b(1).....b(n)
which transforms the original pixel value to an encrypted one. This occurs locally within
the sample. This data encryption approach has the features of low computational
complexity. A factor, which affects processing time, is the number of iterations used.
Increasing the number iteration by a factor of two will double the required processing
time. Hence, instead of iterating the map to the number of samples which is not
necessary, the logistic map is iterated every two values. Two values of x (n) and x (n+1)
will produce 32-bit chaotic bit string. Each 4 bit will be assigned to the first 8 incoming

samples. Once this is completed, the next two values are iterated.

34

If a scheme involves with pixel permutation, XOR operation will be included to enhance
the security. But based on the bit-swapping algorithm in Chapter 3, the XOR operation on
each pixel is done outside the permutation looping. In short, after the permutation process
is repeated for a said number of iterations, each pixel value is XORed with the generated

chaotic bit string.

42 IMPLEMENTATION OF PROPOSED SECURITY SYSTEM FOR VOIP
INC

To verify the performance of the two’s compliment overflow nonlinearity encoder-
decoder and bit swapping done locally within the sample in the proposed scheme, the
author performed a software simulation using the Visual C++ on test voices. Figure 4.2

illustrates the simulation environment.

Network

Audio Capture — Audio Stream Encrypt Thread P Audio Stream Send

—» Audio Stream Receive [Audio Stream Decrypt Thread [— Audio Stream Playback

Fig 4.2 Block diagram of encryption-decryption simulation environment using the proposed two-level

encryption schemes

NETWORK

Fig. 4.3 Block diagram of simulation environment

35

The proposed system will be simulated on a setup such as the one in Figure 4.3. Two
computers running the standalone application will be connected via the local area

network (LAN).

Fig. 4.4 User interface

Each application will have a dialog box as the user interface as such in Figure 4.3. The
receiver will click on the ‘Receive, Decrypt and Playback’ button and awaits the sender’s
response. The sender clicks on the ‘Record from Mic’ buiton and speaks into the
microphone. The voice input will be captured every say for every 1/25™ of a second and
stored into a global buffer. A sampling rate of 11025 KHz at 8 bits per sample is used
which means that 11025 KHz / 25 will give 441 bytes per network packet. These
parameters are user-definable in the codes audio_param.h attached in Appendix E and are

used for testing purposes.

As said earlier, every 1/25™ of a second, it will record from microphone and store the
samples byte by byte it into a global buffer. The buffer will consist of 25 packets each
containing 441 bytes. Each slot will have a flag. Thus if, slot one has captured all 441
bytes, the flag will be set to 1. The encryption thread will check the flag status. If 1,
sample by sample (8 bits per sample) will be sent to the first level of encryption which is
the two’s compliment overflow nonlinearity encoder. Once encrypted, it will store the
encrypted output in a local buffer. Then, byte by byte will be encrypted using the bit
swapping function. Once encrypted, the samples will be packetised in TCP packets to the

36

receiver side. At the receiver end, the decryption thread will receive the packet and
decrypt in reverse order, second level decryption followed by first level. Once decrypted,

it will store samples into the global buffer for playback,

Only one thread is used on both sides of encryption and decryption. To enhance the
efficiency of the system and decrease processing delay, there can be two encryption
threads for both level of encryptions so that the encryption of both levels can be done
siinultaneously and no need for intermediate buffers. This is to be applied to the

decryption side as well.

The size of frame/packet should be carefully selected so that it has lower latency and
overhead processing. The smaller the packet size, the better error recovery and will

reduce the end-to-end delay in a VoIP system.

The TCP transport protocol is not suitable for the VoIP applications because of its
complex retransmission mechanism. For this reason, all the VoIP applications at present
transmit via the UDP transport protocol. However, assuming that the delay is minimal
and less than 240ms, TCP is used in this transmission because the proposed system does
not offer a framework for packet loss. Hence, using UDP may cause the packet loss to be
critical resulting in the recovered signal or voice on the receiver end to seem as if it was
noét decrypted completely. Hence for simulation purposes and to demonstrate the
workability of the two-level encryption scheme by assuming minimal delay on the LAN,

TCP was adapted into the system.

37

43 SIMULATION AND ANALYSIS RESULTS

The AES encryption scheme is used to compare against the symmetric chaotic encryption

scheme and will be discussed in the following sections.

The MATLAB implementation of the AES encryption was obtained from

hitp://buchhloz.hs-bremen.de/aes/aes htm. This encryption scheme is used to compare

against the symmetric chaotic encryption scheme and will be discussed in the following
sections. These m-files were compared to the AES standards to ensure its validity. This
implementation of AES is fully operational but only does not optimize speed. For each of
the first Nr-1 iterations or rounds, it performs a substitution operation called Sub Bytes
on State using an S-Box; perform a permutation Shift Rows on State; perform an

operation Mix Columns on State; and perform AddRoundKey.

The key for the chaotic encoder-decoder had been synchronized and obtained by iterating
the logistic map for n times where n is equivalent to the number of keys used. For
comparison with AES, the keys for the chaotic encryption have been set to 128 bits as
equivalent to the AES key length.

4.3.1 Spectrogram Analysis

The spectrogram function in MATLAB divides a long signal into windows and performs
a Fourier Transform on each window. It basically shows the reader what is the frequency
content of the signal at any point of time. It produces a pseudo color display of spectral
energy with frequency on the vertical axis and time on the horizontal axis. The colors
represent the most important acoustic peaks for a given time frame, with red representing
the highest energies, then in decreasing order of importance, orange, yellow, green, cyan,
blue, and magenta, with gray areas having even less energy and white areas below a

threshoid decibel level. For a given spectrogram, § the strength of a frequency component

38

JSat a given time of ¢ is represented by the darkness or the color of the corresponding point

S(1.

The spectrogram in Figure 4.5 in the following page illustrates the voice signal “Hello.
Testing 1, 2, 3. An experienced spectrogram reader would be able to identify the words
from the patterns in the image above. The vertical line patterns in red and blue could
depict the sounds of the certain alphabet at the end of a word or syllable. The other
speech sounds or phonemes are equally distinctive in their shapes. It is not possible to
obtain or read the phonemes from a normal speech waveform. However, when analyzing
the frequency content of the waveform, a spectrogram is produced as above which can be
deciphered. Nevertheless, the distinctive shapes, patterns and colors need to be present in

order to be able to identify the words.

The spectrogram in Figure 4.5(b) shows that the signal has been distorted and also
displays only no significant frequency or energy content. Hereby, no distinctive shapes or
patterns are seen and the rows of frequency content are not at all visiiale for a code
cracker to make out the speech that is being said. It is impossible to distinguish or deduce
the original signal from it since there are no distinctive significance between the original

signal and the encrypted one.

39

(©)

Figure 4.5 Spectrogram of (a) original voice signal, (b) encrypted signal and
{c} decrypted signal using chaotic encryption scheme

The decrypted signal as in Figure 4.5(c) is not 100% similar to the original signal though
theoretically it should be the same. The author suggests that the blue line in the original
signal and the yellow line in the decrypted occurs at the same instance for any recording,
and may be caused by internal hardware. However, when the decrypted signal is played

back, it sounds exactly as the original signal with no distortion or noise corrupting it.

40

4.3.2 Comparison between Advanced Encryption Standard (AES) and
Symmetric Chaotic Encryption

To compare AES and chaos, a speech signal “Hello.wav” was used and the results are

shown in the figures below and both encryption schemes using 128-bit key.

Figure 4.6 illustrates the speech signal that was fed into both the AES and chaos
encryption scheme. The signal that was sent it is identical and thus only the method of
encryption will hence produce different results in the encrypted as illustrated in Figure

4.7 (a) and (b).

Faure to. L

Figure 4.6 Spectrogram of original voice signal

41

Viguee a3

(b)

Figure 4.7 The encrypted signal displayed using a spectrogram for (a) 128-bit AES
and (b} Chaos

42

(b
Figure 4.8 Spectrogram of decrypted voice signal using (a) AES and (b) Chaos

The encrypted signal for AES in Figure 4.7 (a) shows all kinds of frequency content and
is clearly distorted if compared to the original one. As mentioned earlier, for any speech
signal to be read from the spectrogram, it has to have distinctive shapes and patterns,
which is clearly not the case for this image of the spectrogram. Even Chaos in Figure
4.7(b) displays the same kind of characteristics; randomly distorted with no distinctive
patterns and the rows of frequencies is not visible as the original image. Only the energy
content in both this these spectrograms differ. If the key values were changed, the cipher
text obtained was totally different from one another though resulting in the same

decrypted spectrogram. Since this is the portion to be viewed by the code cracker, it

43

would be hard to pick out any kind of frequency variation and read out the phonemes, as

there is no significant resemblance to the original spectrogram.

For AES, since the decryption process is just an inverse of encryption, thus the original
signal is hence recovered with not the slightest changes to it. For chaos however, there is
a slight shift to the right in the decrypted signal. Based on the Figure 3.4, for any given
signal encrypted by chaos, the decrypted portion of the signal experiences a slight shift to
the right or in other words a delay due to the delay system used in the encryption-

decryption block. But the delay is not obvious nor is it perceivable to human ears.

Using another wav file produced the results as illustrated in Figure 4.9 and Figure 4.10(a)
and (b) and Figure 4.11(a) and (b).

Figure 4.9 The original file being fed to the AES and Chaos

44

(b)

Figure 4.10 The encrypted signal displayed using a spectrogram for 128-bit (a) AES
and (b} Chaos

45

Figure 4.11 The decrypted signal for (a) AES and (b} Chaos

46

4.3.3 Power Spectral Density and Histogram Analysis

The power spectral density is to describe the distribution of the power contained in the
signal over frequency. According [32], the estimation of this power spectral density is

useful in detecting signals buried in wide-band noise.

47

(c)
Figure 4.12 Power spectral density plot of (a) original voice signal, (b) encrypted signal

and (c) decrypted signal using chaotic encryption scheme

The noise like signal in Figure 4.6(b) is close to that of white noise. This is because, it
portrays the characteristics of white noise in terms of being uncorrelated, completed
random and has a relatively flat spectrum. The closer it is to white noise, the better.
This is because white noise is uncorrelated meaning there is no implication of the
relationship between the original signal and the noise produced. Also, detecting the
significant frequencies from a relatively uniformed signal as in Figure 4.6(b) is a
highly difficult task. Hence recovering the original signal would take more time and
effort for the code cracker. The case of uniformity can be further illustrated with a
histogram analysis. The histogram block computes the frequency distribution of the
clements in each column of the input, or tracks the frequency distribution in a
sequence of inputs over a period of time. The histogram values represent the

frequency of occurrence of the input values

48

(b)

(c)

Figure 4.13 Histogram plots of (a) original (b} encrypted and (c) decrypted voice signal using

chaotic encryption scheme.

49

The original signal in Figure 4.13(a) is seen to have significantly high and low
frequencies unlike the encrypted one in (b) for which the frequencies occur more closely

to one another and there are no significantly high and low levels of frequencies.

From the figure in 4.13(b), the histogram plot is seen to be relatively uniform. It is harder
to detect the original frequencies from uniformity as depicted in (b) and less information

is perceived from a poor intensity distribution.

50.

4.3.4 Comparison between Advanced Encryption Standard (AES) and
Symmetric Chaotic Encryption

(b)

Figure 4.14 Power spectral density plot of voice signal using (a) AES and (b) Chaos

51

(b)

52

(c)

Figure 4.15 Power spectral density plot of encrypted voice signal using (a) AES,
(b) and (c) Chaos using different key values

Based on the power spectral density plots gathered on both the encrypted signal and
original signal using chaotic encryption, the noise signal or encrypted one, there is no
significant similarity in pattern between the original signal and the encrypted one. The
original signal depicts a typical voice signal, which decays at the end as the voice gets cut
off.

Both encrypted signals using AES and Chaos are randomly distorted using different
methods, producing almost similar power spectral density plots. However, the encrypted
data has been spread quite uniformly over the frequency range for AES using 128 bits
and for Chaos in Figure 4.14(b) and (c) which uses different key values. The noise like
signal is close to that of white noise. This is because, it is uncorrelated, completed
random and has a relatively flat spectrum. Spreading the data uniformly is a good thing as
it makes it harder for code cracker. He or she has to have a device to listen to all
frequency range. Listening to all freq range is also difficult as there will be other
frequency signal like TV, Radio, and mobile phone. Having said that, comparing AES in
(2} and Chaotic in (c), the magnitude of Chaotic (10°-2 to 1072) is higher than the

53

magnitude of AES (10#-1 to 1071). This means the chaotic signal carried more power

that represents its content over the same band of frequency.

Figuare 4.16 Power spectral density plot of decrypted voice signal using (a) AES and (b) Chaos

Once again the case of uniformity can be further explained using the histogram plots.

54

(a) (b)

Figure 4.18 Histogram plot of encrypted signal using (a) AES and (b) Chaos

As observed, the histogram plots from the output of encryption in Figure 4.17 are almost
similar and uniformly distributed for both AES and Chaos encryption scheme. Thus this
is also indicates a certain potential possessed by a chaos system to produce encryption

results as similar to that of the existing standards such as AES.

55

Figure 4.19 Histogram plots of decrypted signal using (a) AES and (b) Chaos

4.3.5 Time-Waveform Analysis

Using a wave file “Hello.wav”, the illustrations in Figure 4.20 and 4.21 shows that the
time waveforms of the encrypted signal from both the AES and chaotic encryption
scheme were noise like broadband power spectrum. The output was completely erratic

and when played back, was completely unintelligible.

‘The author observed a DC shift in the decrypted signal obtained from the chaotic
encryption when compared to the original signal. Since this a trivial issue and was
identified only later in the testing stage, the aﬁthor is currently debugging the codes to

rectify the error.

56

(©)

Figure 4.20 Plot of (a) Original signal, (b) encrypted and(c) decrypted signal using AES
encryption scheme

57

- w&’“‘-‘- AR A AR AT AR A

(c)

Figure 4.21 Plot of (a) Original signal, (b) encrypted and(c) decrypted signal using Chaos
encryption scheme

58

44 CONCLUSION OF ANALYSIS

From the observation and results, it can be deduced that chaotic encryption schemes have
a good future and have produced atiractive results, which can be further researched and

enhanced.

Though both the AES and Chaos based encryption schemes deploy random
characteristics to encrypt the incoming data be it voice, text or video, but the outcome of

the encryption still differs due to the operation or method used to encrypt the data.

From the author’s understanding, on "what makes a good encryption algorithm", though
not complete, is outlined as below:

= Iterations required per sample

= Speed of encryption and decryptions

= Error propagation (when you iterate something, i.e. current output depends on the

previous output etc, they tend to produce error propagation)

Thus, these are the criteria to ook into when comparing two encryption schemes.

Encryption strength would relate to the time it would take to decrypt not having the right
key. In this case, the algorithm is unknown and attempts are being made to detect an
encrypted signal disguised as noise. Having detected the presence of a signal, an attempt
to decrypt it will depend on whether the code cracker has access to the encryption
algorithm and has to figure out the key, or on whether the encryption method has to be
worked out as well. Looking at AES and Chaos based encryption and the corresponding
results, the noise signal obtained is completely random, and thus with a power density
spectral which is relatively uniformly distributed, it does not indicate any similarity m

pattern corresponding to original signal which could provide any possibility to decrypt it.

59

Be it for audio, text, video or image, based on [1] and {10], there are no known
cryptanalysis attacks to have worked on AES and due to its operations especially the key
expansion operation which fulfills the design criteria to reduce the symmetric
characteristics of the encryption scheme and round transformations; it is highly resistive

against attacks especially as the number of rounds (iterations) increases.

Chaos on the other hand, possessing characteristics of randomness, stochastic and mixed-
ergodic, enhances the security of the encryption process by the means of a chaotic
dynamical map. With reference to the results obtained, it can be said that the chaotic
encryption scheme is quite attractive to be used as replacement for currently existing
standards. The cipher text is seen to be a very erratic plot compared to the plaintext. it
was observed that for audio encryption, the system shows great sensitivity to initial
conditions, changes in number of keys and changes in key values, Using a single channel

voice data as input, the cipher text obtained was a noise-like sound.

1t was observed that, with the key value zeroes; the encryption did not have any effect on
the signal. But when the key values were greater than zero, the cipher text was
successfully obtained. This has to be looked into, as sometimes, the key values are picked
at random and may give an all zero value. To avoid this, the logistic map 1S used to obtain

chaotic values between 0 and 1.

Based on the author in [1], the fractal dimensions of the original and encrypted voice
should range from 1.7 to 1.9. Since the maximal fractal dimension for a one-dimensional

curve is 2.0000, all the encryption results is said to be in a state of chaos.

In [4], it is mentioned that statistical analysis needs to be conducted on the publicly
available encrypted signal at the encoder-decoder. The principle behind this is to create
statistical measure based on the encoded signal and key parameters and then try to
estimate the keys. This is much similar to the exhaustive scheme used in cryptanalysis
although the former is supported by statistical data. Althongh it is easy to break an
encryption using this type of analysis, it was pointed out by the author that choosing a

larger key set from a larger set would increase the time taken to estimate the keys. The

60

table below illustrates the mumber of days taken to estimate the key with an accuracy of

0.1 in coefficients.

Table 4.1. Time taken to estimate key based on order deployed in encoder-decoder
structure in Figure 3.4,

253
3 8.3 min
4 42 hr
3 3.5 days

The issue of security for this scheme still needs to be resolved since this implementation

has not dealt with the level of secrecy of the encryptior scheme.

The secrecy level of this chaotic encryption though not greater should be equally as good
as the existing standards such as the Advanced Encryption Standard (AES). Though, the
level as of encryption for chaos is greéter with increasing number of keys, however, a
better solution is to have a smaller number of keys but able to produce the same level of
security and secrecy. The AES encryption provides this ability being able to only use one
key to encrypt and decrypt but with the choice of 128, 192 and 256 bits. For this analysis,
only the 128 bit key was used. The encoder-decoder had to have an order of 8 delays to
produce a set of 128-bit key. With the bit swapping algorithm aiding the encoder-
decoder, the encrypted signal produced by chaos is almost similar to the one produced by
the AES encryption scheme as observed in the illustrations above.

Pertaining to the issue on the security of the symmetric key, an alternative would be to

integrate the chaos encryption with Public-Key Infrastructure based encryption such as
the RSA.

61

To enhance the secunity of symmetric chaotic encryption, the integration between a
symmetric encryption and PKI based encryption also using chaos would prove to be a
work around to reduce the probability of the key being known to a code cracker. The
symmetric key or keys used to encrypt the plaintext is encrypted using the public key
before sending it over the transmission line to the receiver. Only the receiver is aware of
his or her private key and hence will be able to decrypt the symmetric key, obtain it and
use it to decrypt the cipher text. In this case, even the receiver need not know of the

symmetric key to be used before hand.

If this concept is successfully applied to chaotic encryption, hence the securnity will be
further heightened.

62

CHAPTER 5

CONCLUSION and RECOMMENDATION

Cryptography provides a solution to the problem of information security and privacy.
Encryption is the correct method to implement confidentiality for Internet traffic. VoIP
technology is progressing admirably, but certain drawbacks have been indicated such as
packet loss, propagation delay, jitter, unreliable IP networks, and vulnerability to attacks
by Internet hackers. Thus, it is essential to perform data encryption on voice transmitted
over the Internet while preserving the quality of the voice from packet loss.

Chaos, a relatively new science is open for exploitation in broad ranging fields. Chaos
has attracted much attention in the field of cryptography for private and secure
communications due to its deterministic nature and its sensitivity to initial values. Such
properties mean that chaos has certain potential in creating a new way of securing
mformation. to be transmitted or stored. It is a simple method of encryption and can be
achieved by iteration with a high level of security.

This project allowed the author study, develop and implement a chaotic encryption
scheme. The project proposes a chaotic encryption scheme based on a chaotic system
which will preserve data security for real-time voice data encryption. This project work is
based on the scheme in [1] and proposes a two-level encryption decryption scheme based
on the two’s compliment overflow nonlinearity encoder-decoder and bit swapping. This

scheme will apply (o a VoIP network.

With regards to the objectives outlined in Chapter 1, which is to implement a two-level
encryption-decryption scheme for voice data, this project is considered successful. The
author has successfully drawn up a new scheme and tested it across the local area
network. The results and observations has been laid and discussed in Chapter 4 as well as
compared to the AES encryption scheme. From observations, the encrypted signal of the

chaotic encryption scheme is almost similar to that of the AES encryption.

63

Due fo time constraint however, the author, had not dealt with the analysis of the security
level of the scheme, However since the scheme was based on the [1] and [2], this issue
has been solved by referring to arguments presented in the two, which has also been
discussed 1 Chapter 4. However, it is to be noted that these arguments cannot be one
hundred percent be used to validate the algorithms strength and level of security. It is
hence recommended that future work will deal with this issue and proper cryptanalysis
measures be taken to test and validate the algorithms implemented. To warrant an
algorithm as secure, it has to be proven to resist aftacks. Mathematical functions such
autocorrelation that for a highly random signal produces a delta function and zero

elsewhere and fractal dumensions calculations as in [1] should also be included.

Based on the discussion in Chapter 4, the codes provided in the appendices can be further
optimized by increasing the number of threads to encrypt and decrypt as to decrease the
processing delay. Also, the packetization using TCP should be replaced by UDP before
implementing in a WAN or MAN based environment. However, the scheme should be

enhanced and a framework for packet loss must be considered.

Since the codes have been written as a stand-alone C program, it can be further used for
FPGA implementation and for the use of smart card based solution. From the author’s
own understanding and reading, chaotic encryption can be realized to be a powerful tool
m cryptography if exploited and researched further. This chaotic encryption scheme can
be further analyzed, fully realized and implemented on hardware or other areas, which

can be explored further.
In short, the author has managed to implement a two-level encryption-decryption scheme

for voice data. However, the strength of this scheme needs to be further analyzed, tested
and validated.

64

10

11.

REFERENCES

L1 Guo, J.C. Yen and HLF Pai. “New voice over Internet Protocol technique
with hierarchical data security protection,” IEEE Proc. Visual Image
Processing, vol. 149, No.4, August, 2002.

Goltz, M. Kelber, K Schwarz, W. “Discrete Time Chaotic Encryption
Systems,” IEEE Trans. Circuit Sys. I, Fundamental Theory and Applications,
vol.44, No 10, October. 1997.

Dachselt, F. Kelber, K Schwarz, W. “Discrete Time Chaotic Encryption
Systems-Part III: Cryptographical Analysis,” IEEE Trans. Circuit Sys. 1,
Fundamental Theory and Applications, vol.45, No 9, September.1998.
F.Bertel:, E. Di Cola, L.Fortuna and F.Italia, “Multilayer Chaotic
Encryption for Secure Communications in Packet Switching Networks,”
IEEE.2000

Princy Mehta and Sanjay Udani. Voice over Internet Protocol: Sounding good
on the Internet,

Bur, Goode. “Voice over Internet Protocol,” IEEE, vol 90, No. 9, September.
2002.

Hun-Chen Chen, Jui-Cheng Yen, Jiun-In Guo. “A new hierarchical chaotic

- Image encryption and its VLSI realization”, [EEE Proc. Vis. Image Signal

Process, 147,(2), pp 167-175, 2000.

WU, C.W, and Rulkov, N.F, “Studying Chaos via 1-D maps-a tutorial,” JEEE
Trans. Circuit Sys. 1, Fundamental Theory and Applications, 40, (10}, pp 707-
72, 2000.

Mieczyslaw, Jessa, “Data Encryption Algorithms using One-Dimensional
Chaotic Map,” ISCAS 2000. IEEE International Symposium on Circuits and
Systems, pp 1711-714, May, 2000.

Goce Jamoski and Ljupco Kocarev, “Chaos and Cryptography: Block
encryption ciphers based on chaos maps,” IEEE Trans. Circuit Sys. I,
Fundamental Theory and Applications, vol. 48, No.2, February. 2001

Ljupco Kocarev, “Chaos based cryptography: A brief overview,” IEEE. 2001

65

12.

13.

14.

15.

16.
17.

18.

19.
20.

21

22.

23.

24.
25.

26.

27.
28.
29.
30.

Christopher P. Silva and Albert M. Young. 2000. Introduction to chaos based
communications and signal processing

Gonzalez Alvarez and Shujun Li. 2003. Cryptographic requirements for
chaotic secure communications

He Kangwei and Tan Chaur Lih, Chaos and cryptography: Applications and
Analysis

Terry Rowlands and David Rowlands, 4 more resilient approach to Chaotic
Encryption.

Ramiro Pablo Costa, Numerical Investigation of the Logistic Map

Kennedy, M.P., Rovatti, R., Setti, G. 2000. Chaotic Electronics in
Telecommunications, CRC Press LLC.

Brian W Kemnighan and Dennis M Ritchie, The C Programming Language,
Prentice Hall

J. Cordova Zecena, Chaotic Dynamical Systems and Their Applications

Nick Whitehead, Michael Overton, Zach Labry, Franklin Hamilton, Brian
Leising, Encrypting Chaos: Fractal Encryption

Douglas R. Stinson 2000, CRYPTOGRAPHY Theory and Practice, Chapman
& Hall/CRC. _

Joan Daeman and Vincent Rijmen 2002, The Design of Rijndael: AES- The
Advanced Encryption Standard, Springer.

Elizabeth Oswald, Joan Daeman, and Vincent Rijmen 2002, AES- The State of
the Art Rijndael’s Security

Baptista, 1998 , Chaotic Encryption Technigues

J.Cordova Zecena, University of Arkansas, Chaotic Dynamical Systems and
Their Applications

Irma B.Fernandez, Wunnava V. Subbarao, “Encryption based Security for
ISDN Communication: Technique and Applications,” IEEE. pp70-72. 1994.
Michael Welschenbach ,Cryptography in C and C++, Apress'

Mike Mcgrath, C Programming, Computer Step.
http://www.altavista.com/archive/cryptography/chaos_encryption. txt

http://www.mathworks.com

66

3L
32.
33.
34,

hitp://www mathworks.com/access/he Ipdesk/toolbox/signal/spectras _shtml
h@p://www.mathworks.comfaccess/helpdesldtoolbox/ signal/psd.shtml
hitp.//www. chipcenter.com/dsp/DSPO005S31F1 Jhiml

hitp://www.nwiusion.com/columnists/2003/11 10taylor/voipstillamaj orissue.ht

ml

67

APPENDICES

APPENDIX A

$$9001g

SUo)Sa|I pa1sagsng

uoday Wi JO UOISSIUQnS

uoneuesaL] (810

Hei(§ WL JO HOTSSIWGHS |

S0 im vostedwiod pue sisAjeuy -
SHY Jo uoneuemad] ¢y LLVIN-

ANUIIUOD J10M 1058(01]

N =]

poday ssaIS014 JO UOISSTRIqNS

SHV PUB 50D UO [2ILIsY I -

Fom 1walorg

(tesodoig) podoy Areurmijaid Jo UOISSIUKING

£

Suruueid 10001 g-

QIMIBIS]/SIOUDIDIOT JO 1SI'T-

2An0elqQ-

QOﬁoﬂ-ﬁcbﬂl

10, UISo(]/0I8aseYy ATRUTUINRL]

uondAIous SNoRd JLIIUIIAS

© Jo uonejuswe[duy :otdo], esodorg-|

aido], 10001 Jo uoTIOR[Rg

—

Fl

€1

1}

11

01

9

s

L

£

T

I

MOIM /eI

“ON

.-ndp—dpﬂ T -.-.m-.ou: TEPAT IPIIT.F AT T FAICATITAM A0 1T .7 ATIA TAT ATrnacarrriy sescosS e~

$59201
suolss{iu pa1sadsng

Uo1e)I3ssI(] 193[01 Jo uoisspuqng

o0

UoNeIIasaLd (eI

PRI(] [BUL] UOIBMIASSI(] JO UOISSIGNG

AV Yim uosureduro))-

HVILVIA W SInsa1 Jo sIsA[euy

Sunsa uonessxu pue Sunsa) N -

O w owayos pesodosd Jo voryuatrayduy-

anUIueD yrom 10aforg

¢

T Moday ssarfoid Jo uolsstuqng

APPENDIX B

D ul swayas uondArous
1east-om) pasodoad ay) Jo uoneymanrapdury -

anumuoY) YoM 109f01g

[Hodeyf ssoiFold Jo woIssIuagng

[4

14}

€l

(4!

11

01

awayds gSAH Aprg-

gV ILVIA pue) ul Sureang-

WIZISAS SORUD B U0 Paseq JIOA

J0J SalLaYDs wondAIous Mo U0 [DIeassy-

RUNUOY) oM 190l01g

oM /1ERA

“ON

193l01J uSisa(Ava A [BUI] 9} JO 1IISOUWIE PUOIIS I} 0§ JUOISIIA] PAsodEng

APPENDIX C

Table 1 A short catalog of chaotic discrete maps.

By(k)-A (k>0

Map Definition C-hantig Regi_me
Logisic (0 1) = ot ()4, B) = () - 4 e tdd]
Quadratc Kk +1) = KN B) = B - () R
Bponent | (k) =oglsBh) = sesp(Bd o(hy) | € 0 B
. Ak +1) =L RRYA,B) = 6k) + A - Bsin(8(4))) < [0,27]
Sine Circle 0<4 <25 B>0
Bi(h)+ 4 a0 y
Bemoull x(m_):{ Al iA) N
. Ba(h) - 4 820
[e) = A48) = - By Al
| BT (oA HRe[-CC]
" Congruent XRED= Y faodX(RRABY=Bx(E) x(ked l<B<2
Ba(k+C x{k)< -4 C=24
k) e [-C.C
DO-ANC x(BoA B,-D>1
Hopping ALy < Thogla(k);4.B,D) =Bx(k) (k)] <4 C=B4
D(x(kyHA-C x{l<-A Fg-0) € (0,0)
e I8 fhon(c) € (-C,O)
o *(E), y(kYB < [-214,2/4
Henon A L=Chye)-Axlhy’ x zf-g('(l-)B)z/jé, B<1 !
S L=Ba(k) el
A =G0 AR), &E) < [0,27]
Siundard Q1= Q)-Bsin(o(k) B>0
0<B<]
, (k1) = Crplly-Ap (k)| _
Loz i) = Bl o ‘;CA;; o
B HEH) = fond s RAL) h € 1G]
Aooid | 1) = o 14,1 P
e X(}ﬁ“ 1= fuo4(k):A,B) Xk} e [-C.(]
Bk By(kyed x(8)<0 i) € 14
i E y(k'i'l): . 1<B<2

C=24

APPENDIX D

The C codes attached run the encryption-decryption program on the user’s terminal. The
audio capture and playback files are gensrated based on the sample codes provided in the
Internet and the MSDN library-April 2003.

Aud _StreamlDlg.cpp- the behavior of your application's main dialog.

Aud Strm DSnd Cap.cpp - to create the capture sound buffer

Aud Strm DSnd Play.cpp- to create the playback sound buffer

Aud Strm Encrypt.cpp -contains the two’s compliment overflow nonlinearity encoder-decoder

and hit swapping.

Aud_Strm Net Send.cpp and Aud Strm Net Recv.cpp - to create the socket and send/receive
TCP voice packets.

Aud param.h - contains the user definable parameters i.e. sampling Freguency, bits per
sample and mono or stereo channel.

//Bud Streaml.cpp

// Bud_Streaml.cpp : Defines the class behaviors feor the application.
/7

#include "stdafx.h"
#include "Aud Streaml.h"
finclude "Aud_StreamlDlg.h"

#ifdef DEBUG

#define new DEBUG NEW

ffundef THIS_FILE

static char THEIS_FILE[] = FILE ;
#endif

FHLEELEITEEE TP P TR T I P LTI i LT 7E TR TE i i il iit i titifiiriitiiiiig
// CAud_StreamlApp

BEGIN_MESSAGE_MAP (Chud StreamlApp, CWinApp)
//{{BFX_MSG MAP (CAud StreamlApp)
// NOTE - the ClassWizard will add and remove mapping macros here.
/ DO NOT EDIT what ycu see in these blocks of generated code!
//Y)AFX_MSG
ON_COMMAND (ID_HELP, CWinApp::OnHelp)
END_MESSAGE MAP ()

FELLFRLTELT LTI L P LI E TP T T T i 7 i i diiiiiiidfiiiiiiiiely
// CAud_streamlApp construction

CAud_StreamlApp: :CAud StreamlApp()

{
// TCDO: add construction code here,

// Place all significant initialization in InitInstance
}

FETELETELSPE LR L7000 707 0T E 8880000000770 007 70080071701 70010707
// The one and only CAud_StreamlApp object

CAud_Streamlapp thelpp;

PEPILLTELEETET L7077 7770077070070 7 0 7070000707007 0087070700170 0707707
// Chud StreamlApp initialization

BOOL CAud_StreamlApp::InitInstance()
{
// Standard initialization
// If you are not using these features and wish to reduce the size

// of your final executable, you should remove from the fbllowing
// the specific initialization routines you do not need.

Chud_StreamlDlg dlg;
m_pMainWnd = &dlg;

int nResponse = dlg.DoModal () ;
if (nResponse == IDOK)

{

// TODC: Place code here to handle when the dialog is

// dismissed with OK
}
else if (nResponse == IDCANCEL)
{

// TODO: Place code here to handle when the dialog is

// dismissed with Cancel

}

// 8ince the dialog has been closed, return FALSE so that we exit the
// applicatiocn, rather than start the application's message pump.

return FALSE;

// Aud StreamlDlg.cpp

#include "stdafx.h"

#include <process.h>

#include "Aud_ Streaml.h"

#include "Aud_Streamiblg.h"

#include "Aud Strm DSnd_Cap.h"

#include "Aud Strm_DSnd Play.h”

#include "Aud_Strm_Net Send.h"

#include "Aud Strm _Net Recv.h"

#include "Aud_Strm Encrypt.h" i

#include "windowsx,h"

#ifdef DERUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS FILE[] = __ FILE_ ;
#endif

Aud_Enc_Buff Aud _Enc_Buff Fifo[NUM_PACKETS]:
Aud D5 Cap Params Aud Params;

Aud Enc_Params Enc_Params;

static started from main;

PELLTETERE LT TIE I T T E R PERET LI FITET LTI ITT I8 777 idl 7707000077101

// ChboutDlg dialog used for &App About

class ChAboutDlg : public CDialog
{
public:

CaboutDlg();

// Dialcg Data
/7 { {RFX_DATA (CAboutblg)
enum { IDD = IDD_ABOUTBOX };
/7Y }AFX_DATA

// ClassWizard generated virtual function overrides

- //{{AFX_VIRTUAL {CAboutDlg)
protected:

virtual wveid DoDataExchange (CDataExchange* pDX):

//) }AFX VIRTUAL

// Implementation
protected:

// DDX/DDV support

//{{AFX_MSG(CAboutllg)

// Y IAFY MSG

DECLARE_MESSAGE_MAP ()
Vi

CAboutDlg::CAboutDlg(} : CDialog{CAboutDlg::IDD}
{
//{{AFX_DATA INIT(CAboutDlg)
//)}AFX_DATA INIT
}

void CAboutDlg::DoDataExchange (CDatafixchange* pDX)

{
Chialog: :DoDataExchange {pDX) ;
//{{AFX_DATA MAP (CRboutDlg)
//}}AFX_DATA MAP

}

BEGIN_ MESSAGE_MAP (CRboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDlg)
// N¢ message handlers
//})AFX_MSG MAP
END MESSAGE_MAP ()

FIPELTELFETELERL LTI ET P IITEE T IR 8T8 FAI7 707 0T Ei7 871 TE780080000010
// ChAud_StreamlDlg dialog

Chud_StreamlDlg::CAud_StreamlDlg{CWnd* pParent /*=NULL*/)
Chialog(CAud StreamlDlg::IDD, pParent)
{
//{{AFX_DATA_INIT (CAud_StreamlDlg)
_// NOTE: the ClassWizard will add member initlalization here
//}}BFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIlcon in Win32
m _hIcon = AfxGetApp ()->LoadIlcon (IDR_MAINFRAME) ;
}

void CAud_StreamlDlyg::DoDataExchange (CDataExchange* pDX)
{
CDhialog: :DoDataExchange (pDX) ;
//{{RFX_DATA MAP{CAud StreamlDlg)
// WOTE: the ClassWizard will add DDX and DDV calls here
//Y}AFX_DATA_ MAP
}

BEGIN _MESSAGE MAP (CAud_StreamlDlg, CDialog)
//{[AFXhMSG_MAP(CAud_StreamlDlg)
ON_WM SYSCOMMAND()
ON_WM_PAINT ()
ON_WM_QUERYDRAGICON ()
ON_BN_CLICKED(ID{ REC_MIC, OnRecMic)
ON_BN CLICKED(IDC_ PLAY, CnPlay)
ON_BN CLICKED(IDC STOP, OnStop)
//YIAFX_MSG MAP

END_MESSAGE MAP ()

LILEEEEEIIIEEITET T EETI0 7002700000078 0 8T i i I i i i iiiiiiiiiiiiziiiiii
// CRud_StreamlDlg message handlers

BOCL CAud StreamlDlg::0OnInitDialog{)

{
Chialog::0nInitDialog();

// Add "RAbout..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT ((IDM_ABOUTBOX & OxFFFQ) == IDM ABOUTBOX);
ASSERT (IDM ABOUTBOX < 0OxF000);

CMenu* pSysMenu = GetSystemMenu (FALSE);
if (pSysMenu != NULL)

CString strAboutMenu;
straboutMenu.LoadString (IDS_ABOUTBOX) ;
if (!strAbcutMenu.IsEmpty())
{
pSysMenu->AppendMenu (MF_SEPARATOR) ;
pSysMenu->AppendMenu (MF_STRING, IDM_ABOUTBCX, strAboutMenu);

}

// Set the icon for this dialog. The framewerk does this automatically
// when the application's main window is not a dialog

SetIcon{m_hIcon, TRUE); // 8et big icon
SetIcon{m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here
started_from main= Q;

return TRUE; // return TRUE unless you set the focus to a control
H

vold CAud_StreamlDlg::0nSysCommand (UINT nID, LPARAM lParam)
{
if {((nID & OxFFF0) == IDM ABOUTBOX)
{
CAboutDlg dlgabout;
dlgAbout.DoModal () ;

Chialog::OnSysCommand (nID, lParam);

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applicaticns using the document/view model,
// this is automatically done for you by the framework.

void CAud_StreamlDlg::0OnPaint(}
{
if (IsIconic{))

{
CPaintDC dcithis); // device context for painting

SendMessage (WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHde (), 0);
// Center icon in client rectangle

int cxIcon = GetSystemMetrics (SM_CXICON);

int cyIcon = GetSystemMetrics(SM_CYICON};

CRect rect;

GetClientRect (&rect);

int x = (rect.Width({) - cxIcon + 1) / 2;

int y = (rect.Height() - cyIcon + 1} / 2;

// Draw the icon
dc.DrawIcen(x, y, m_hIcon};

Chialog: :OnPaint () ;

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CAud_StreamlDlg::OnQueryDraglcoon{)

{
return (HCURSOR) m_hlcon;

y

void CAud StreamlDlg::OnRecMic ()

// TODO: BRdd your control notification handler code here

int loop:;

for (loop=0; locp < NUM_PACKETS; ++loop}
{

memset (&Aud_Enc Buff Fifo[loop).sample_bits, 0,PACKET_SIZE);

Aud_Enc Buff Fifolleop].filled = 0;
}

Aud_Params.frequency = WAV_FREQ;
Aud_Params.bits_sample = WAV BPS;

Aud Params.channel = WAV_CHNL;
Aud_Params.fifo ptr = Aud Enc_Buff Fifo;
Aud Params.g hDlg = GetSafeBwnd();
Aud_Params.done = 0;

Enc_Params.global fifo = Aud Enc_Buff Fifo;
Enc_Params.max_element_in_fifo = NUM_PACKETS;
Enc_Farams.size_of_element = PACKET_SIZE;
Enc_Params.done = 0;

Key Gen Encrypt Decrypt():
//Rud_Strm Bit Swap Encrypt Init(};

_beginthread ((void{ cdecl¥*) (void*}}Rud Strm_Encrypt Fifo Thread, 0, (void *)

4Enc_Params);

_beginthread((void(m_cdecl*)(void*))Aud_StrmADsicapture, g,

started from main = 1;

GetDlgItem(IDCgRECVMIC)—>EnableWind0w(FALSE);
GetDlgltem(IDC PLAY)->EnableWindow (FALSE);
GetDlgIltem(IDC STOP)->EnableWindow (TRUE) ;

}

void CAud StreamlDlg::OnPlay()
{

// TODO: Add your control notification handler code here

int loop;

for{loop=0; loop < NUM_PACKETS; ++loop)
{

{void *) &Aud_Params);

memset (&Aud_Enc_Buff Fifo[loop].sample_bits, 0,PACKET SIZE);

Aud _Enc Buff Fifc[loop].filled = 0y
}

Aud_Params.frequency = WAV_FREQ;
Aud _Params.bits_sample = WAV_BPS;
Aud_Params.channel = WAV _CHNL;

Aud Params.fifo ptr Aud_Enc_Buff Fifo;
Aud_Params.g_hDlg GetSafeHwnd () ;
Aud_Params.dcne = 0;

Enc_Params.global fifo = Aud Enc_Buff Fifo;
Enc_Params.max_element_in fifo = NUM_PACKETS;
Enc_Params.size_ of_element = PACKET SIZE;
Enc_Params.done = 0;

//Key_Gen_Encrypt Decrypt();
Bud_Strm Bit_Swap_Decrypt Init();

_beginthread(({void{__cdecl*) (void*))Aud Strm Decrypt_Fifoc Thread, 0, (void *)

&Enc_Params) ;

_beginthread((void(__cdecl*)(void*))Aud_Strm*DSﬁPlay, 0,

started from main = 1;

GetDigItem{IDC_REC_MIC)->EnableWindow{FALSE) ;
GetDlgItem(IDC_PLAY)->EnableWind0w(FAL5E);
GetDlgItem(IDC_STOP)—>Enablewindow(TRUE);

(void *)}

&Aud Params);

GetDlgTtem{IDC_REC_MIC}->EnableWindow [FALSE) ;
GetDlgItem{IDC_PLAY)->EnableWindow (FALSE);
GetDlgItem{IDC_STOP)->EnableWindow (TRUE) ;

H

vold CAud StreamlDlg::OnStop|()
{

Aud Params.done = 1;
Enc _Params.done = 1;

// TODO: Add your control notification handler code here
GetDlgltem{TDC_REC_MIC)->EnableWindow (TRUE} ;
GetDlgItem(IDC_PLAY)->EnableWindow (TRUE) ;
GetDlgltem!{IDC_STOP) ->EnableWindow (FALSE) ;

}

void CRAud StreamiDlg: :OnOFR ()
{
// TODO: Add extra validation here

if(started_from main)

{
while (Aud_Params.done!=3 && Enc Params.done !=3}
{
}

}

Chialog::0n0K({);

// Name: DspMsg|NULL, NULL, X,v,...}
// Desc: Displayes debug messages on the main screen

int _cdecl DspMsg(HWND hWnd, HDC hDe, int x, int y, LPSTR msgfmt, ... }
{

int igdcy

LPSTR pcl, txbf;

char msgbf[768];

void FAR *VarArghist = (LPSTR *)&msgfmt + 1;

HEONT hfnt,ofnt, hobj;

wvsprintf{ msgbf,msgfmt, {char *)VarArglList };
if (hbec)
igde = 0;
else
{
hbDe = GetDC(hWnd)
hfnt = (HFONT)SendMessage{ hWnd, WM _GETFONT,0,0L);
ofnt = (HFONT)SelectCbject(hDc,hfnt);
igde = 1;
}
txbf = msgbf;
heobij = (struct HFONT__ *}SelectObject(hDC,GEtStOCkObject(SYSTEM_FIXEDﬁFONT)
while (*txbf) :
{
pcl = _fstrchr(txbf, "\n" };
if { pcl) *pcltt = 0;
TextOut { hDc,x,y,tzkf, lstrlen(txbf) };

if {(pcl)} tubf = pcl;
elsa break;
y += 17;
}
SelectObject(hDc,hobj)
if (igde)

{

SelectObject{ hDc,ofnt };
ReleaseDC({ hWnd, hDc };

}

return { y };

// Bud Strm DSnd Cap.cpp

#include "stdafx.h"

#include "Aud Strm DSnd_Cap.h"

#include <windows.h>

#include <mmsystem.h> // used for multimedia wave format structure - audic mixer in this
case

#include <cbjbase.h> // used for direct sound - because it's COM
#include <mmreq.h> // needed for Windows Multimedia API
#include <dsound.h> // direct sound header file

#include <process.h> // needed for multithreading

//#include "windowsx.h"

static LPDIRECTSOUNDCAPTURE g_pDsCapture = NULL;

static LPDIRECTSOUNDCAPTUREBUFFER g_pDSBCapture = NULL;

static LPDIRECTSOUNDNOTIFY g_pDsNotify = NULL;

static DSBEOSITIONNOTIFY g_aCapPosNotify! NUM PACEETS + 1];
static HANDLE g_hCaptureNotificationEvents[NUM_PACKETS + 1];

static WAVEFORMATEX wfcapcap;

int _cdecl DspMsg(HWND hWnd, HDC hDc, int x, int y, LPSTR msgfmt, ...);

// Neme: InitDirectSoundCapture{)
// Desc: Initilizes DirectSound for capture

HRESULT InitDirectSoundCapture(HWND hDlg)
(
HRESULT hr;

// Free the memory for DirectSound notificaticn structure
ZeroMemory({ &g aCapPosNetify, sizeof (DSBPOSITIONNOTIFY) *
(NUM_PACKETS + 1));

// Initialize COM
hr = CoInitialize(NULL);

if (FAILED(hr))
return hr ;

//create the DirectSoundCapture object
if{ FAILED{ hr = DirectSoundCaptureCreate{ NULL, &g_pDSCapture, NULL)))
return hr;

return S_OK;

// Name: InitCaptureNotifications(}
// Desc: Sets the notifications on the capture buffer which are handled
/7 in WinMainl(). Sets two notifications - at the beginning and at the end.

HRESULT InitCaptureNotificaticnst)
{
HRESULT hr;

if({ NULL == g pDSBCapture)
return E_FAIL;

// Create the notification interface
if({ FAILED{ hr = g_pDSBCapture->QueryInterface(IID_ IDirectSoundNotify,
(VOID**) &g _pDSNotify)}))
return hr;

// Setup the notification positions
for{ int 1 = 0; i < NUM PACKETS; i++)
{
g_aCapPosNotify[i].dwOffset = ((PACKET_SIZE * 1) + PACKET SIZE) % (NUM;PACKETS'*
PACKET SIZE); :
g_aCapPosNotify[i].hEventNotify = g_hCaptureNotificationkvents([i];
)

if({ FAILED{ hr = gkaSNotify—>SetNotificationPositions(NUM_PACKETS,
g_aCapPosNotify)})
return hr;

return 3_OK;

// Name: CreateCaptureBuffer()
// Desc: Sets the format, creates a capture buffer, set notifications for
// DirectSound Capture and initialize the network for multicasting.

HRESULT CreateCaptureBuffer{int freg, int bits_per_sample, int channels)
{
HRESULT hr; // keep error message if any
DSCBUFFERDESC dschd;// Create a DirectSound buffer description structure
WAVEFCRMATEX wfcap; // Create a wave format structure

// Release and free the memory for the wave format structure
ZeroMemory (&wfcap, sizeof (WAVEFORMATEX));

// Release and free the memory for the DirectSound capture and notify structure
SAFE FREE{ g pDSNotify);: :
SAFE_FREE{ g pDSBCapturs };

// Sets the wave format
wicap.wFormatTag
wicap.nChannels channels;
wifcap.nSanplesPerSec freq; //11025;
wfcap.wBitsPerSample = bits per sample;//16

WAVE_FORMAT PCM;

wifcap.nBiockAlign = wfcap.nChannels * wfcap.wBitsPerSample / 8;
wicap.nAvgBytesPerSec = wfcap.nBlockRlign * wfcap.nSamplesPerSec; :

SAFE FREE(g pDSNotify);
SAFE FREE(g_pDSBCapture);

// 8ets the capture buffer description

ZeroMemory(&dschbd, sizeof (dschd));

dschbd.dwSize = sizeof (dschd);

dschd.dwFlags = DSCBCAPS_WAVEMAPPED ;

dschd.dwBufferBytes 1 * wfcap.nhvgBytesPerSec;//CAP BUFFER SIZE ; //5512 ; //1 *
wicap.nAvgBytesPerSec;

dscbd.lpwfxFormat = (LPWAVEFORMATEX) swfcap; // Set the format during creation

// Create the DirectSound capture buffer
if{ FAILED{ hr = g_pD3Capture~>CreateCaptureBuffer(&dschd,
&g_pDSBCapture, NULL)))
return hr;

// Bst notifications for DirectScund Capture
if { FAILED(InitCaptureNotifications(}))

return hr;

return S_OK;

// Wame: FreeDirectSoundCapture ()
// Desc: Releases DirectSound

HRESULT FreeDirectSoundCapture()

{

// Release DirectSoundCapture interfaces for capturing

SAFE_FREE({ g_pDSNotify };
SAFE_FREE(g_pDSBCapture };
SAFE_FREE(g_pDSCapture };

// Release COM
CoUninitialize{);

return 3_0K;

// ¥ame: Aud Strm DS_Capture()
// Desc: threaded function that captures wave data from mic via DirectScund

vold _ cdecl Aud_Strm DS_Capture(void * params}

{

int loopl:

void * ptr_to ds data;

int ds_data_size;

int index;

HRESULT hr;

int max_element in. fifo = O;

Aud D3_Cap_Params_ptr aud params;
unsigned int frequency;

unsigned char bits_sample;
unsigned char channel;
Rhud_Fnc_Buff ptr gleobal fifo;
unsigned int % deone;

HWND g_hDlg;

unsigned int fifo_index;

if{!params)

{
AfxMessageBox ("DS CAPT NO PARBMS!", MB_OK, NULL):
_endthread(};

}

aud_params = (Aud D3_Cap_Params ptr) params;
frequency = aud params->freqguency;

bits _sample = aud_params->bits semple;
channel = aud params->channel;

global_fifo = aud params->fifo ptr;

done = &{aud params->done);

g_hDlg = aud_params->g_hDlg;

max element_in fifo = NUM_PACKETS;

SetThreadPriority(GetCurrentThread(), THREAD_ PRIORITY ABOVE NORMAL);

NULL) ;

//Get the handle to the foreground window
if (g hDlg == NULL)
{
g_hDlg = GetDesktopWindow{);
}

//create some event handles used later for DS capture notifcations
for (loopl = 0; loopl<NUM_PACKETS ; ++loopl)
{
g_hCaptureNotificationEvents[loopl] = CreateEvent (NULL, FALSE, FALSE,

if (NULL == g hCaptureNotificationEvents|[loocpl])
{

MessageBox (NULL, "Failed on CresateEvent for audio capture®,

"Aud_Cap" , MB_OK);

*done = 3;
_endthread{);

}

// Initialize DirectS8ound

if({ FAILED{ InitDirectScundCapture! g_hDig) })

i ;

MessageBox (NULL, "Error Initializing DirectSound Capture™, "Aud_Cap", MB_OK |
MB_TCCNERROR) ;

FreeDirectSoundCapture();
*done = 3;
_endthread () ;

// Create the sound capture buffer
1£(FAILED(CreateCaptureBuffer (freguency, bits sample, channel}))
{
MessageBox (NULL, "Error Creating DirectSoundCapture Buffer.”, "Aud_Cap™, MB_CK |
MB_ICONERROR) ;
FreeDirectSoundCapture();
*done = 3;
_endthread{);
H

// Start recording sound from mic
// Tell the capture buffer to start recording

if{ FAILED(hr = g_pDSBCapture->Start(DSCBSTART LOCPING) })

{

MessageBox (NULL, "Error Starting DirectSoundCapture.", "Aud_Cap", MB_CK |
MB_ICONERRCR };

FreeDirectSoundCapture();
*done = 3;
_endthread(}:

}

fifo index = 0;
// This is the loop for processing the event which is capturing audio.
while(!*done)
{
index = MsgWaitForMultipleObjects({ NUM PACKETS, g _hCapturelNotificationEvents,
FALSE, 1000, QS_ALLEVENTS);:

// This means that DirectSound just finished filling
// a section of the buffer, 3o we need to fill the
// global Aud Enc_Buff buffer with new raw wav data

index -= WALT_OBJECT_0;
if {index<NUM_PACKETS && index>=0)

if (IFAILED(hr = g_pDSBCapture->Lock (PACKET STZE * index,
PACKET STZE,

(LPVCID *) &ptr_to_ds data,

{unsigned long*)&ds_data_size,

NGLL, 0, 01)))
{
if (fifo_index == max_element_in fifo)
fifo_index = 0

while(global_fifo[fifo_index].filled)
Sleep(2);
}

{
memcpy ({unsigned char *)globalﬁfifo[index].sample_bits,
ptr_to_ds_data, ds_data_size);

DspMsg (0,0,100,100,"copied from mic index = 2d size =
%d", index,ds_data size});

// Unlock the capture buffer
g_pDSBCapture->Unlock(ptr_to_ds_data, ds_data_size, NULL,

global_fifo(index].filled = 1;

}
else break;

// 8top the recording
g_pDSBCapture->Stop({);

// Clean up everything
SAFE_FREE(g pDSNotify };
SAFT_FREE(g_pD&BCapture);
SAFE FREE(g pDSCapture };

// Release COM
CoUninitialize():

for {(locpl = 0; loopl< NUM PACKETS; ++loopl)
{

CloseHandle(g_hCaptureNotificationEvents[loopl]);
}

*done = 3;

_endthread()

//aud Strm DSnd_Play.cpp

finclude "stdafx.h"

#include "Aud Strm DSnd_Play.h"

finclude "Aud Strm DSnd_Cap.h"

#include <windows.h>

#include <mmsystem.h>// used for multimedia wave format structure - audioc mixer in this
case

#include <objbase.h>// used for direct sound - because it's COM
#include <mmreg.h> // needed for Windows Multimedia API
#include <dsound.h> // direct sound header file

#include <process.h> // needed for multithreading

//#include "windowsx.h"

LEDIRECTSOUND g pDS

= NULL;
LPDIRECTSQUNDBUFFER pDSBPrimary = NULL;
LPDIRECTSOUNDBUFFER g pRkSPlayBuffer = NULL;
LPDIRECTSOUNDNOTIEY g_pbSPlayNotify = NULL;
DSBPOSITIONNOTIFY g_aPlayPosNotify[NUM PACKETS + 1];
HANDLE g_hPlayNotificationEvents [NUM_PACKETS + 1]:
static WAVEFQRMATEX wiplay;

int _cdecl DspMsg(HWND hWnd, HDC hDg, int x, int y, LPSTR msgfmt, ...):

// Wame: InitDirectSoundPlayback()
// Desc: Tnitilizes DirectSound for playback

HRESULT InitDirectSoundPlayback{ HWND hDlg, int freq, int bits per sample, int channels)

{
HRESULT hx;

// Initialize COM
hr = CoInitialize(NULL);

if (FAILED(hr})
return hr ;

// Create IDirectSound using the primary sound device
if(FAILED(hr = DirectSoundCreate(NULL,'&g_pDS, NULL }))
return hr;

// Set coop level to DSSCL PRIORITY so that wave volume can be set
if(FAILED{ hr = g pDS->SetCooperativelevel (hDlg, DSSCL_PRIORITY)))
return hr;

// Get the primary buffer

DSBUFFERDESC dsbd;

ZeroMemory(&dsbd, sizeof (DSBUFFERDESC));

dsbd.dwSize = sizeof (DSBUFFERDESC) ;

dsbd.dwFlags = DSBCAPS_PRIMARYBUFFER | DSBCAPS CTRLVOLUME;
dsbd.dwBufferBytes = 0;

dsbd. lpwifxFormat = MNULL;

// Create a primary audio playback buffer
if£(FAILED{ hr = g pD8->CreateScundBuffer(&dshd, &pDSBPrimary, NULL) } }
return hr;

// Set primary buffer format to 44kHz, 8-bit and mono output.
ZeroMemory{ &wfplay, sizeof (WAVEFQRMATEX));
wfplay.wFormatTag = WAVE_FORMAT_ PCM;
wfplay.nChannels = channels;
wiplay.nSamplesPerSec freq;
wiplay.wBitsPerSample = bits per sample;
wifplay.nBlockAlign = wfplay,wBitsPerSample / 8 * wfplay.nChannels;
wfplay.nAvgBytesPerSec = wfplay.nSamplesPerSec * wfplay.nBlockAlign;

if{ FAILED(hr = pDSBPrimary->SetFormat {&wfplay) })
return hr;

// Free up the primary audio buffer
SAFE_FREE{ pDSBPrimary):

return S_OK;

HRESULT PFreeDirectSoundPlay(void)

{
// Release DirectSoundCapture interfaces for listening

SAFE_FREE (g pDSPlayNotify);

if (g_pDSPlayBuffer != NULL)
SAFE_FREE(g_pDSPlayBuffer);

SAFE_FREE(g_pD3);

// Release COM
CoUninitialize();

return 5 OK;

// Name: CreateStreamingPlaybackBuffer ()
// Desc: Creates a streaming buffer, and the notification events to handle
/7 filling it as sound is played

HRESULT CreateStreamingPlaybackBuffer(void)
{
HRESULT hr;
DEBUFFERDESC dshbd;
char* pbBuffer;
DWORD dwBufferLength;

"// Release and free the memory for the notification structure
ZeroMemory(&g _aPlayPosNotify, sizeof (DSBPOSITIONNQTIFY) *
(NUM_PACKETS +1));//start to comment here

// Sets the playback buffer description
// Set up the direct sound buffer, and only request the flags nesaded
// since each requires some overhead and limits if the buffer can
//{ be hardware accelerated
ZeroMemory(&dsbd, sizeof (DSBUFFERDESC));
dshd.dwSize = sizeof (DSBUFFERDESC) ;
dsbd.dwFlags = DSBCAPS_CTRLPOSITIONNOTIFY [// Needed for notification
DSBCAPS GETCURRENTPOSITIONZ |
DSBCAPS_GLOBALFOCUS;

dsbd.dwBufferBytes = 1 * wfplay.nAvgBytesPerSec;
dsbd. ipwizFormat = (LPWAVEFCRMATEX) &wfplay;

// Create a DirectSound buffer
if { FAILED(hr = g_pDS->CreateSoundBuffer(&dshd, &g _pDSPlayBuffer, NULL }))
return hr;

if(FRILED(hr = g _pDSPlayBuffer->Lock(a,
NULL,
(LPVOLD *)& pbBuffer,
sdwBufferLength,
NULL,
0,
DSBLOCK_ENTIREBUFFER)))

MessageBox (NULL, "Lock EntireBuffer failed", “"Failed", MB_OK);

// Fill with silence
memset (_pbBuffer, 0x7f, dwBufferLength);

// Unlock the playback buffer
g_pDsPlayBuffer->Unlock(_pbBuffer, dwBufferLength, NULL, 0);

return S_OK;

// Name: InitPlaybackNotifications()
// Desc: sets up the direct sound notification by setting
/7 the offset frigger and passing the event handle

HRESULT InitPlaybackNotifications(void)
{

int loopl:;

HRESULT hr;

for {loopl = 0; loopl<NUM_PACKETS ; ++loopl)
{
g _aPlayPosNotify[loopl].dwOffset = PACKET_SIZE * loopl;
g_aPlayPosNotify[loopl] .hEventNotify = g hPlayNotificationEvents[lcopl];

if(FAILED(g_pDSPlayBuffer-
>QueryInterface (IID_IDirectSoundNotify, (vold**}&y pDSPlayNotify)))

{
MessageBox (NULL, "Failed on IDirectSoundCaptureBuffer QueryInterface",
"Debug" , MB OK);
return -1;
}

hr = g pDSPlayNotify->SetNotificationPositions|NUM PACKETS, g_aPlayPosNotify);
1if{FATLED (hr)) :
{
switch (hr)
{
case DSERR _TNVALIDPARAM:
break;
case DSERR_OUTOFMEMORY:
break;
default
break;
}

return hr;

return 8_O0K;

// Wame: Aud_Strm DS Play()
// Desc: threaded function that plays
/7 back wave data from global buffer via DirectSound

void _ cdecl Aud_Strm DS_Flay(veid * params)

{

int loopl;

//vold * ptr_to_ds data;
//int ds_data_size;

int play index;

int fifo_index;

HRESULT hr;

Aud DS_Cap_Params_ptr aud_params;
unsigned int freguency;
unsigned char bits sample;
unsigned char channel;

Aud Enc_Buff ptr global fifo;
unsigned int * done:

HWND g_hDlg;

void * pbInputl NULL;

vold * pbInput2 NULL;
unsigned long szInputl:
unsigned long szInput2;
unsigned long status;

if (Iparams)

{
AfxMessageBox ("DS PLAY NC PARAMS!", MB OK, NULL);
_endthread();

}

aud_params = (Aud_DS Cap Params_ptr) params;
frequency = aud params->frequency;
blts_sample = aud_params->bits_sample;
channel = aud_params->channel;

global_ fifo = aud params->fifo ptr;

done = &{aud params->done);

g_hDlg = aud_params->g_hDlg;

SetThreadPriority{GetCurrentThread(), THREAD PRICRITY_ABOVE NORMAL)

//Get the handle to the foreground window
if {g_hDlg == NULL)

g_hblg = GetDesktopWindOW(j;

//create some event handles used later for DS piayback notifcations
for (loopl = 0; loopl< NUM_PACEETS; ++loopl)

g_hPlayNotificationEvents[loopl] = CreateEvent (NULL, FALSE, FALSE, NULL);
if (NULL == g hPlayNotificationEvents[lcopl])
{
MessageBox (NULL, "Failed on CreateEvent", "Debug” , MB_OK);
*done = 3;
_endthread(};

// Init DirectSound

if(FAILED(InitDirectSoundPlayback(g_hDlg, frequency, bits sample, channel) })

{
MessageBex (NULL, "Error Initializing DirectSound Playback”, "aAud_Play" ,

MB_OK);

// Clean up everything
FreeDirect8cundPlay(};
*done = 3;
_endthread();

// Create the sound buffer object from the data
if(FAILED(CreateStreamingPlaybackBuffer()))
{
MessageBox(¢g_hDlg, "Error Creating DirectScund Playback Buffer.™,
"Aud_Play", MB_OK);
// Clean up everything
FreeDirectSoundPlay();
*done = 3;
_endthread();
}

// Init Notifications

if{ FAILED(InitPlaybackNetifications ()))}

{
MessageBox (NULL, "Error Setting-up Playback Notifications", "Aud_Play" ,

MB_OK) ;

// Clean up everything
FreeDirectSoundPlayi);
*done = 3;
_endthread(}:

g_pDSPlayBuffer->Play (0, 0, DSBPLAY_ LOQPING);
DspMsg (0,0,200,250, "playback start ")

play index = 0;
fifo index = 0;
while{ !*done)

DspMsg (0,0,200,250,"playback start 1"};

if (fife index == NUM_PACKETS)
fifo_index = 0;

DspMsg (0,0,200,250, "playback start 2");

if(!(global_fifo[fifo index].filled))
{

Sleep(l);

continue;

DspMsg {(0,0,200,250, "playback start 3"});

g_pDsPlayBuffer->GetStatus (¢status);
if{ status & DSBSTATUS BUFFERLOST)
{

g_pDSkPlayBuffer->Restore!();
g_pDsPlayBuffer->pPlay(0, 0, DSBPLAY LOOPING);
}
DspMsg (0,0,200,250,"playback start 4™);

play_index = MsgWaltForMultipleObjects (NUM_PACKETS, // How many
possible events

g_hPlayNetificationEvents,// Location of handles

FALSE, // Wait for allz
1300, // Bow long to wait
Q5_ALLEVENTS) ; // Any message is an event

DspMsg (0,0,200,250, "playback start 5");

play_index -= WAIT OBJECT 0:

if{play_index < NUM_PACKETS)
{
play_index+=6;

if (play_index > (NUM PACKETS - 1))
play_index -= NUM_PACKETS;

hr= g_pDhSPlayBuffer->Lock(PACKET_SIZE * play_index,
PACKET_SIZE,
&pbInputl,
&szInputl,
&pbInput2,
&szInputz,
0}

1f (FATLED (hr))
{
MessageBox (NULL, "Playback Buffer Lock failed", "Aud Play",

MB_OK) ;
global fifo[fifo_index].filled=0;
++fifo_index;
DspMsg (0,0,200,280,"playback start F");
continue;
}
else
{
memcpy (pbInputl, global_ fifo(fifo index].sample bits,
szInputl};
g_pDSPlayBuffer->Unlock (pbInputl, szInputl, pbInput2,
szInput2});

global_fifc[fifo_index].filled = U;
DspMsg {0,Q,300,400,"play to direct sound = %d size =
%a", fifo_index,szInputl);
++fifo_index;
DspMsg (0,0,200,250, "playback start 6");
}
}//while !*done
DspMsg (0,0,200,250, "playback stopped"):

//Stop audio playback
g_pDSElayBuffer->5top();

for (loopl = 0; loopl<NUM PACKETS; ++loopl)

{
CloseHandle(g_hPlayNotificationEvents[lcopl]):;
}

// Clean up everything
FreeDirectSoundPlay () ;

*done = 3;

_endthread();
}
//Bud Strm Encrypt.cpp

#include "stdafx.h"

#include "Aud Strm_Encrypt.h"
#include "Aud_Strm DSnd Cap.h"
$include "Aud_Strm Net Recv,h"
finclude "Aud Strm Net Send.h"”
#include "process.h"

#include "math.h”

#include "string.h"

#define DELAY 3
BOOLERN b[32];

int ctr = 0;

long double x[3};

long double log vall(4l;

double key[DELAY];

double max norm=0.0; //change values here
double max s _val new=0.0;

double min=1.0;

double mod{double x}:

int _cdecl DspMsg(HWND hWnd, HDC hDc, int x, dint y, LPSTR msgfmt, ...):
//TWO'S COMPLIMENT OVERFLOW NONLINEARITY

void Rey Gen Encrypt_Decrypt (veid)
{

log_val{Q]=INIT CONDITION;

for (int n=0;n<3;n++)
{
log_val[n+1]=3.6 * log_val[n] * (1-log_val[nj);
//generating chaotic wvalue x[i+1]
key[nl=log val[n+i];
1

double mod {double x)
{

return (x - 2 * floor((x + 1) / 2));
i

vold Aud Strm_Encrypt_Sample (unsigned char *input val, unsigned char *output wval)
{

double temp_wval [PACERT SIZE], intermediate_val [PACKET_SIZE];

double enc_sig_buffer [PACKET SIZE];

double sum val;

double encoded_sig;

int i, J;

int k=0;

for (i=0; i<PACRET_SIZE; i++)
{

if ((double)input_val[i]>max_norm)
{
max norm={double}input valflil:
}
)

for (i=0; i<PACKET_SIZE; i4+)
{

intermediate_val[i]=((double)input_val[i})/255.0;
)

for {i=0; i<PACKET_SIZE; i++)
{

enc_sig buffer[i] = 0.0;
}

for (i=0; 1<PACKET_SIZE; i++)
{

sum_val = 0.0;

for (j=1; j<=DELAY; J++)
{
sum val = sum_val + enc_sig_buffer[j-1]*key[3-1];:

}

temp_val[il=mod(intermediate vall[il-+sum val};

 for (k=DELAY; k>0; k--)
{
encoded slg = enc_sig buffer[k-1];
enc_sig_buffer[k) = encoded_sig;

}

enc_sig buffer[0] = temp wall[i];

for (i=0; i<PACKET_SIZE; i++)
{
intermediate wval[i] = temp valli];
if (intermediate val[il<min}
{
min = intermediate valli];
}
)

for (i=0; i<PACKET SIZE; i++)
{

intermediate_val([i]l=intermediate val[i]-min;
}

for (1=0; i<PACEKET_SIZE; i++)
{
if {intermediate_vallil>max s val_new)
{
max_s_val new=intermediate vall[i];

}

for (i=0; i<PACKET_SIZE; i++)
{

cutput_val[i]={unsigned char) {{{intermediate_val(i])/max_s_val new)*255};

void Aud Strm Decrypt_Sample(unsigned char *input_val, unsigned char *output val)
{ .

double temp_val[PACKET SIZE],
intermediate val [PRCKET SIZE]:;//,intermediate_temp(PACKET SIZE];;

double enc_sig _buffer[PACKET SIZE];

double encoded_signal;

double sum val;

int i, j;

int k=0;

for (i=0; i<PACKET_SIZE; i+4)
{
intermediate_valli]l={((((double)input val[i])}*2.0)/255);

for (i=0; i<PACKET_ SIZE; i++)

intermediate val[i]=intermediate val{il]+(-1.0);

for (i=0; i<PACKET SIZE; i++)

enc_sig buffer(i] = 0.0;
for (i=0; i<PACKET_SIZE; 14

sum val = 0.0;

for (j=1; Jj<=DELAY; J++)
{

sum_val = sum_val + key[j-1]l*enc_sig buffer[j-1];
}

temp_val{i]l=mod({intermediate_vali{i]-sum val);

if (temp val[i] < 0}
{

temp val[i] = temp val(i] * (-1.0};
}

for (k=DELAY; k>0; k--)

{
encoded_signal = enc sig buffer[k-1];
enc_sig_buffer[k] = encoded_signal;

}

enc_sig buffer[0] = intermediate val{il;

}
for (i1=0; i<PACKET_SIZE; i++)
{ intermediate wvall[i] = temp_wvall[i];
output val[i]=(unsigned char) {{intermediate val[i]*255.0) +0.5);
}
//BIT SWAPPING

vold Aud_Strm Bit_Swap Encrypt_Init{void}
{

x[0]
x{l1]

INIT_CONDITION;
0; /* dont matter coz will be derived later from map*/

]

x[2) = 0; /* dont matter coz will be derived later from map*/
ctr = 0;

// next sample will be the first.

void Aud_Strm Bit_Swap_Decrypt_Init (void)

{

x[0] INIT CONDITION;

x{1] = 0; /* dont matter coz will be derived later from map*/
x{2] 0; /* dont matter coz will be derived later from map*/
ctr = 0;

// next sample will be the first.
}

unsigned char Aud_Strm Bit Swap_ Encrypt_Sample (unsigned char sample byte)
{

int i, Jj:

double remainder;

BCOLEAN temp_bool, sample bit[81;

unsigned char sample new;

if {ctr % 4 == 0) //checking for
every 4 in-coming samples

{

x[1]=3.9 * x[0] * (1-x[0]); //generating chaotic
value x[i+1]

x[21=3.2 *= x[1] * (l-x[1]): //generating chaotic
value x[i+2]

for (3=0;3<2;++7)
{
remainder=x[j+1};

for (1=0;1i<1l6;i++)
{
if ((remainder == Q) || (remainder - pow{2, (~1*{i+l1))} <

{
bl (J*16)+1]=0;

remainder=remainder - pow{2, (-1*(i+1))):
bl (j*1l6)+i]=1;

}

2[0]=x[2];
x[1]=0;
x[2]1=0;

}

for (i=0;i<8;i++)
{

sample bit[l]=(sample byte>>i)sl;
}

for (i=0;i<d;i++)
{
if (b ({ctr¥d)*4)+i])}
{
temp_bool = sample bit[il;
sample bit[i] = sample bit[i+4];
sample bit[i+4] = temp_bool;

}

for ti=l;i<=7;i+=2)
§
samplerpitii] = sample_bit{i] ~ b[((ctr%é)*4)+i];
)
sampieﬂpew=0;
for (i=0;i<8;i++}
{
sample NeEWs qample new y (sample_bit[i]<<i);
i
crrtti
reiurl sample#new;
}
unsigned char Aud_ﬁtxwLﬁit_swap_Decryptvﬁample(unsiqned chal sampleﬂpyte)
{
int r i
double remainder;
ROOLEAN Lemp_Dook: sample piti8li
unsigned char sample_old;
if (etx g 4 == 0} //checkinq for
every 4 in-comind samples
{
x[l]zB.B « xi0l * (1—xi0]); //generating chaotic
value w(i+l]
%(21=3.2 * =31 ¥ (1-x{dil? !/generating chaotic
value w(i+2}
for (j=0;j<2:++j)
{
remainder=x(j+1];
for (ieO;i<16;i++)
{
if L (remainder == 0y (remainder - pow(Z, (—1*(i+1)))
)
{
bi(j*16)+i]=0;
}
else
£
remainder:remainder - powLZ, (—1*(i+1}));
h[(j*16)+i]ﬂ1;
3
)
}
zi01=x(2l
x[11=07
x[2]=O,
}
for {1#0,148;i++)
{
sample bit[11=(sample_byte>>i)&1,
)
for (ia1,1<=7;i+ﬂ2)
{
sample pitiil = sample pitii] ”~ b[(lctr%@)*4)+i];
}
for (i=0;i<4;i++)
x4y +i1)

§
if (b[((ctr %4)

<

temp _bocl = sample bit[i];
sample bit[i] = sample bit[i+4];
sample bit[i+4] = temp_ bool;

}
sample_old=0;

for (i=0:1i<8:it+t)
{
sample old= sample old | (sample_ bit[i]<<i};

}
ctrt+t;

return sample_old;
}

void _ cdecl Aud_Strm Encrypt_Fifo_Thread(veid * param)
{
int index, loop, y=0;
Aud_Enc_Buff ptr global fifo;
int max_element_in fifo;
int size_of element;
unsigned int * dene;
Aud_Enc_Params_ptr aud_enc param = {Aud_Enc Params_ptr) param;
unsigned char local encrypted data[PACKET_SIZE];
unsigned char output_Aud Strm Encrypt Sample[PACKET SIZE];

FILE * file;
FILE * filel;

global fifo = aud enc param->global fifo;
max_element in £ifo = aud enc_param->max element in fifo;
size of element = aud enc param->size of element;

done = &{aud enc param->done);

SetThreadPriority (GetCurrentThread(), THREAD PRIORITY ABOVE NORMAL) ;

index = Q;

Key_Gen Encrypt Decrypt(); //iniate key for first level
encryption

Aud Strm Bit Swap Encrypt Init(); //iniate key for second level encryption

//CreateSocket for sending
if (Aud_Strm Net_Send Init())
{
*done = 3;
_endthread();
return;
}

file = fopen({"c:\\encrypted.wav","wb");
filel = fopen{"c:\\raw.wav", "wb"};

while (! *done}
{
if (index == max_element_in fifo)
index = 0

if (! (global_fifelindex].filled))
(

Sleep(l);

continue;

Aud_Strm Encrypt Sample(gleobal fifofindex].sample bits,cutput_Rud_ Strm Encrypt Sam

ple);
glcobal_fifolindex].filled = 0;
for (loop=0;loop<PACKET_SIZE;locp++)
{
local_encrypted datalloop]
=Aud_Strm Blt_Swap_Encrypt_Sample (output Aud Strm_Encrypt Sample[lo
opll)i
}
fwrite((const veoid *)local_encrypted data, PACKET_SIZE, 1, file);
fwrite({ (const void *)global_fifco[index].sample bits, PACKET SIZE, I,
filel);

DspMsg (0,0,100,120,"encrypt to index = %d size = %d", index, PACKET_SIZE};

Aud Strm Net Send{local_encrypted data);

++index;

fclose(file);
fclose(filel);

*done = 3;

//closesocket
Aud Strm Net Send Clean(};

_endthread();

void _ cdecl Aud_Strm Decrypt Fifo Thread(veid * param)
{

int index, loop;

Aud Enc_Buff ptr global fifo;

int max_element_in fifo;

int size_of element;

unsigned int * done;

unsigned char local to decrypt[PACEET_SIZE];

/i unsigned char local_done [PACEET_SIEE];
unsigned char local to. be_decrypted[PACKET SIZE]:
Aud_Enc_Params_ptr aud_enc_param = (Aud Enc_Params_ptr) param;

//FILE *file;
FILE *filel;

global fifo = gqud_enc_param->global fifo:

max_element_in fifo = aud_enc_param->max_element in fifo:

size_of element = aud_enc param->»size of element;

done = &{aud_enc_param->done);

SetThreadPriority(GetCurrentThread (), THREAD_PRIORITY_ ABOVE NORMAL) ;
index = 0;

Aud Strm Bit Swap Decrypt Init():

Key Gen Encrypt Decrypt():

//create socket recv
if (Aud Strm Net Recv Init())

*done = 3;
_endthread();
return;

¥

//file = fopen("c:\\encrypted.wav","rb");
filel = fopen("c:\\decrypted.wav", "wb");

DspMsg (0,0,200,420, "reading start "

while (! *done)
{

DspMsg (0,0,200,420,"reading start 1"};

if (index == max_element in fifo)
index = 07

DspMsg (0,0,200,420, "reading start 2");
if ({global_ fifolindex].filled})
{

Sleep(l);

continue;
}

DspMsg (0,0,200,420,"reading start 3 ");
//recv socket directly into local toc_be_decrypted_data[index]

if {Aud Strm Net Recv{{unsigned char *)local_to_be decrypted))
{

DspMsg (0,0,200,420, "reading start 3a");

break;
}

/1T (feof(file))
/ break;

//fread(({void *)local_tc be decrypted,PACKET_SIZE, 1, file);

DspMsg (0,0,200,420, "reading start 4 "):
DgpMsg (0,0,300,520, "decrypt to index = %d size = %d", index, PACKET SIZE);

for(loop=0;loop<PACKET SIZE;lcop++)
{
local_to_decrypt[loopl= _
Bud_Strm Bit_Swap Decrypt_Sample(local to be decrypted[lcopl):
¥

Aud_Strm_Decrypt_Sample{lecal_to_decrypt,global_ fifel[index].sample bits);

//hud_strm Decrypt_Sample{local_to_hke_decrypted,global_fifo[index].sample bits);

global fifo[index].filled = 1;
DspMsg (0,0,200,420,"reading start G&§");
fwrite((volid *)global fifo[index].sample bits, PACKET STZE, l; filel);

++index;

DspMsg {0,0,200, 420, "reading ending "):

folose(filel);
Aud_Strm Net Recv_Clean();
*done = 3;

_endthread() ;

//&ud Strm Net Send.cpp

#include "stdafx.h”

#include "Aud Strm Net Send.h"
#include "winsock.h"

#include "Aud params.h"

static WORD wVersionRequested;

static WSADATA wsaData;

static SOCEET sendsock;

static SOCEKET sessionsock;

static char chlLocalAddress[16];

static struct sockaddr_in sock_addr;// new_sock_addr;
static struct sockaddr _in send addr;// target sock_addr;
static DWORD Err;

static u_short usPort;

static int true int;

static int iRet;

int _ecdecl DspMsg(HWND hWnd, HDC hDe, dint x, int y, ILPSTR msgfmt, ... }:
vold Aud Strm Net Err Translatelint error val):

int Aud_Strm_Net Send Init{void)
{

int error;

wVersionRequested = MAKEWORD(2,0);
iRet = WSAStartup(wVersionRequested, &wsaData);//reguest winsock version + service
if (iRet != ()
{
MessageBox (NULL, "Failed Net Send WS8AStartup", "Debug" , MB_OE};
return -1;

}

/{ Creating UDP Socket

if ({sendsock = sccket (AF _INET, SOCK STREAM, 0)) == INVALID SOCKET)

{
MessageBox (NULL, "Failed Net Send socket creation®, "Debug" , MB OK):
return -1;

}

true int = 1;
if (setsockopt (sendsock, SOL_SOCKET, S0_REUSEADDR, (char *)&true_int,
sizecf{int))==80CKET_ERROR}
{
closesocket {sendsock) ;
MessageBox (NULL, "Failed Net Send set socket option 1", "Debug" , MB OK);
return -1;

}

usPort = PORT_NUMBER;

sock addr.sin_ family = AF_INET;

sock addr.sin_addr.s_addr = htonl (INADDR ANY);
sock_addr.sin_port = htons(usPort);

send addr.sin family = AF_INET;
send_addr.sin_addr.s_addr = inet_addr (DESTINATION_ ADDRESS):
send_addr.sin port = htons(usPort);

if (bind{sendsock, (LPSOCKADDR) &sock_addr,
sizeof (sock_addr))==S0CKET_EREOR)
{
closesocket (sendsock) ;
MessageBox (NULL, "Failed Net Send socket binding", "Debug" , MB_OK);
return -1;

1

if {connect (sendsock, (LPSOCKADDR) &send_addr,
sizeof (send addr))==SOCKET ERROR)
{

true_int = 1;
if(setsockopt(sendsock,SOL_SOCKET,SOiREUSEADDR, (char *)&true int,
sizeof(int))==SOCKET_ERROR)
{

closesocket (sendsock) ;

MessageBox (NULL, "Failed Net Send set socket cption 2", “Debug" ,
MB_OK):
return -1;
H
if {connsct (sendsock, (LPSOCKADDR} &send_addr,
sizeof (send addr))==S0CKET_ERROR)
{
closesocket (sendsock) ;
erroxr = WSAGetLastError{);
Aud_Strm_Net Err_ Translate(errcr);
MessageBox (NULL, "Failed Net Send at connect", "Debug" , MBE_OK);
return -1;
1
)
return 0;

}

void Aud_Strm Net_Send(unsigned char * buffer)
{

int tot_sent = 0;

int ret = 0;

while (tot_sent!=PACKET SIZE)
{
. ret = send(sendsock, {const char *) tbuffer(tot sent], PACKET SIZE -
tot_sent, 0);:
if(ret==SOCKET_ERROR)
{
MessageBox (NULL, "Failed Net Send at send”, "Debug" , MB_OK);
break;
}
else tot_sent += ret;

}

void Aud_Strm Net_ Send Clean{void)
{

closesocket (sendsock);
WSACleanup () ;

return;
}

void Aud_Strm Net_ Err Translate(int error)
{

switch{error)

{

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

WSAEINTR:
MessageBox (NULL,
break:

WSAEACCES:
MessageBox {NULL,
break;

WSAEFAULT:
MessageBox (NULL,
break;

WSAEINVAL:
MessageBox (NULL,
break;

WSAEMFILE:
MessageBox (NULL,
break;

WSAEWOULDBLOCK:
MessageBox (NULL,
break;

WSAEINPROGRESS :
MessageBox (NULL,
break;

WSAEALREADY:
MessageBox (NULL,
break;

WSAENOTSOCK::
MessageBox (NULL,
break:;

WSAEDESTADDRREQ:
MessageBox (NULL,
break;

WSAEMSGSIZE:
MessageBox (NULIL,
break;

WSAEPROTOTYPE:
MessageBox (NULL,
break;

WSAENCPROTOQOPT :
MessageBox [NULL,
break;

WSAEPROTONOSUPPORT
MessageBox (NULL,
break;

WSAESQOCKTNCSUPPORT :
MessageBox (NULL,
break;

WSAEQPNOTSUPEP:
MessageBox (NULL,
break:;

WSAEPFNOSUPPCRT:
MessageBox (NULL,
break:;

WSAEAFNOSUPPORT:
MessageBox (NULL,
break;

case WSAEINTR", "NET_ERR", MB_OK);

case WSAEACCES™, "NET_ERR", MB OK);
case ﬁSAEFAULT", "NET_ERR", MB OK);
case WSAEINVAL", "NET_ERR", MB CK);
case WSAEMFILE", "NET_ERR", MB OK);

"WSAEWOULDBLOCK", "NET_ERR", MB OK};

"WSAEINPROGRESS", "NET ERR", MB OK);

"WSAEALRERDY",

"NET ERR", MB_OK) ;

"WSAENOTSOCK",

"NET_ERR", MB OK};

"WSAEDESTADDRREQ", "NET_ERR", MB OQK);

"WSAEMSGSIZE", "NET ERR", MB_CK);

"WSAREPROTOTYPE", "NET ERR", MB_OK);

"WSAENOPROTOOPT", "NET ERR", MB OK);

"WSAEPROTONQSUPPORT™, "NET_ERR”, MB_OK);

"WSAESOCKTNOSUPPORT", "NET ERR", MB OK);

"WSAEOPNOTSUPP", "NET ERR", MB CK);

"WSAEFFNOSUPPCRT", "NET ERR", MB_OK);

"WSAEAFNCGSUPPORT", "NET_ERR", MB OK);

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

WSAEADDRINUSE:
MessageBox (NULL,
break;

WSAEADDRNOTAVAIL:
MessageBox (NULL,
break;

WSAENETDOWN :
MessageBox (NULL,
break;

WSAENETUNREACH:
MessageBox (NULL,
break;

WSAENETRESET:
MessageBox (NULL,
break;

WSAECONNABORTED:
MessageBox (NULL,
break;

WSAECONNRESET:
MessageBox (NULIL,
break;

WSAENOBUFS;
MessageBox (NULL,
break;

WSAEISCONN:
MessageBox (NULL,
break;

WSAENOTCONN:
MessageBox (NULL,
break;

WSAESHUTDOWN :
MessageBox (NULL,
break;

WSAETTMEDOUT :
MessageBox (NULL,
break;

WSAECONNREFUSED:
MessageBox (NULL,
brealk;

WSARHOSTDOWN ;
MessageBox (NULL,
break;

WSAEHOSTUNREACH :
MessageBox (NULL,
break:;

WSAEFROCLIM;
MessageBox (NULL,
break;

WSASYSNOTREADY :
MessageBox (NULL,
break;

WSAVERNOTSUPPORTED:
MessageBox (NULL,

"WSAEADDRINUSE", “NET_ERR", MB_OK);

"WSAEADDRNOTAVAIL", "NET:ERR", MB_OK};

"WSAENETDOWN", "NET_ERR", MB_OK) s

"WSAENETUNREACH", "NET ERR", MB OK};

"WSAENETRESET", "NET_ERR", MB OR};

"WSAECONNABCRTED™, "NET_ERR", MB_OCK) ;

"WSARCONNRESET", "NET_ERR", MB_OK);

"WSAENOBUFS", "NET_ERR", MB_OK};

"WSAEISCONN", "NET ERR", MB_OK);

"WSAENOTCONN", "NET_ ERR", MB _OK};

"WSAESHUTDOWN", "NET ERR", MB_OK);

"WSAETIMEDCUT", "NET ERR", MB_OK);

"WSAECONNREFUSED", "NET_ ERR", MB_OK);

"WSAEHOSTDOWN",

"NET_ERR", MB_OR);

"WSAEHOSTUNREACH", "NET_ERR", MB CK):

"WSAEPROCLIM", "NET_ERR", MB OK);

"WSASYSNOTREADY", "NET_ERR", MB_OK);

"WSAVERNOTSUFPCRTED", "NET_ERR", MB_OK});

/‘*

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

break;

WSANCTINITIALISED:
MessageBox (NULL, "WSANOTINITIALISED", "NET_ERR", MB_OFK);
break;

WSAEDISCON:
MessageBox (NULL, "WSAEDISCON™, "NET ERR", MB OK);
break; .

WSATYPE_NOT FOUND:
MessageBox (NULL, "WSATYPE_NOT FQUND", "NET_ERR", MB OK);
break;

WSAHOST_NOT FOUND:
MessageBox (NULL, "WSAHOST NOT_FOUND™, "NET_ERR", MR OK);
break;

WSATRY AGAIN:
MessageBox (NULL, "WSATRY_AGAIN", "NET ERR", MB_CK);
break:;

WSANO RECOVERY:
MessageBox (NULL, "WSANO_RECOVERY", "NET_ERR", MB_OK);
break;

WSANQ_DATA:
MessageBox (NULL, "WSANO_DATA", "NET ERR", MB OK);
break;

WSA_INVALID HANDLE:
MessageBox (NULL, "WSA_TINVALID HANDLE", "NET ERR", ME OK);
break;

WSA TNVALID PARAMETER:
MessageBox (NULL, "WSA INVALID_PARAMETER", "NET ERR", MB OK);
break;

WSA_ IO INCOMPLETE:
MessageBox (NULL, "WSA_ IO INCOMPLETE", "NET_ERR“, MB_CK};
break;

WS8A_IO PENDING:
MessageBox {NULL, "WSA_IO_PENDING", "NETﬁERR", MB_OK};
break;

WSA_NOT ENOUGH_MEMORY:
MessageBox (NULL, "WSA_NOT_ENOUGH_ MEMORY", "NET_ERR", MB OK);
break;

WSA OPERATION ABORTED:
MessageBox (NULL, "WSA_OPERATION ABORTED", "NET_ERR", MB_OK);
break;

WSAINVALIDPROCTABLE:
MessageBox (NULL, "WSAINVALIDPROCTARLE", "NET_ERR", MB_OK);
break;

WSAINVALIDPROVIDER:
MessageBox (NULL, “"WSAINVALIDPROVIDER", "NET_ERR", MB_OK):
break;

WSAPROVIDERFAILEDINIT:
MessageBox (NULL, "WSAPROVIDERFAILEDINIT", "NET_ERR", MB_OK);
break;

WSASYSCALLFAILURE:
MessageBox (NULL, "WSASYSCALLFAILURE", "NET_ERR", MB_OK) ;
break;*/

default:

MessageBox (NULL, "???", "NETERR", MB CK) ;
break;

// Aud strm Net Recv.cpp

finclude "stdafx.h"

#include <winsock.h>

#include "Aud Strm Net Recv.h”
#include "Aud params.h"

static WORD wVersionRequested;

static WSADATA wsaData;

static SOCKET recvsock;

static SOCKET sessionsock;

static char chLogcalpaddress[16];

static struct sockaddr_in sock_addr;// new_sock_addr
static DWORD Err;

static u_short usPort;

static int true int;

static int iRet;

int _cdecl DspMsg(HWND hWnd, HDC hDc, int x, int ¥, LPSTR msgfmt, ...);

int Aud_Strm_Net Recv_Init (void)
{
wVersionRegquested = MAKEWORD(2,0);
iRet = WSAStartup{wVersionRequested, &wsaData);//request winsock version + service
if (iRet != 0}
{
MessageBox (NULL, "Failed Nel Recv WSAStartup”, "Debug" , MB OK);
return -1;

}

if {((recvsock = socket (AF_INET, SOCK_STREAM, Q)) == INVALID SOCKET)

{
MessageBox (NULL, "Failed Net Recv socket creation™, "Debug" , MB_OK};
return -1;

}

true_int = 1;
if(setsockopt(recvsock,SOL_SOCKET,SOVREUSEADDR, (char *)&true_int,
sizeof {int))==SOCKET_ERROR)
{
closesocket (recvsock) ;
MessageBox (NULL, "Failed Net Recv set socket option", "Debug" , MB_ OK);
return -1;

}

usPort = PORT NUMBER;

sock_addr.sin_family = AF_INET;

sock addr.sin_addr.s_addr = htonl (INADDR ANY);
sock addr.sin _port = htens(usPort);

if (pbind(recvsock, (LPSQCKADDR} &sock_addr,
sizeof (sock_addr))==SOCKET_ ERROR)
{
closesocket (recvsock) ;
MessageBox (NULL, "Failed Net Recv socket binding”, "Debug" , MB_OK) ;
return -~1;

1

if (listen(recvsock, 1)==SO0CKET_ERROR}

{
MessageBox (NULL, "Failed Net Recv at listen", "Debug" , MB_CK) ;
return -1;

}

sessionsock = accept{recvsock, NULL, NULL):

if (sessionsock == INVALID SOCKET)

{
MessageBox (NULL, "Failed Net Recv at accept”, "Debug" , MB 0K}
return -1;

return 0;
}

void Aud Strm Net Recv_Clean(void)
{
closesocket (sessionsock);
closesocket (recvsock) ;
WSACleanup) ;7

return;

'

int Rud_Strm Net Recv(unsigned char * buffer)
(

int tot_recv = 0;

int ret = 0;

while{tot_recv!=PACKET SIZE)
{
ret = recvi{sessionsock, {(char *) &buffer(tot_recv], PACKET SIZE -
tot_recv, 0);
if {ret==S0CKET ERROR}
{
MessageBox (NULL, "Failed Net Send at send", "Debug" , MB_OK);
break:
t
else tot_recv += ret;
}

return 0;

// Bud_Streaml.h : main header file for the AUD_STREAMI application
7/

$if !defined(AFX_AUD STREAMI H_S567CYB98_D4FF 42C1_950% BO6AS1B91DDC_ INCLUDED)
fdefine AFX _AUD STREAMI_H_ 56€7C9BS8 DAFF 42C1 5503 BO6AILBILDDC_ INCLUDED

#if _MSC_VER > 1000
ffpragma once
#endif // MSC_VER > 1000

#ifndef AFXWIN H_
$error include 'stdafx.h' before including this file for PCH
#endlf

#include "rescurce.h" // main symbols

FPLLPEELEIT LT P I T i T i T i il ii i i iiriiiiriddriiiiiisfiiiriiiiiiitiliis
// CRud_StreamlApp:
// See Aud_Streaml.cpp for the implementation of this class

/

class Chud StreamilApp : public CWinApp
{
public:

CAud_StreamlApp(};

// Cverrides
// ClassWizard generated virtual function overrides

// {{AFX_VIRTUAL (CAud Streamlapp)
public:

virtual BOOL InitInstance();
//}]AFX_VIRTUAL

// Implementation

//{{AFX_MSG{CAud_StreamlApp)
// MOTE - the ClassWizard will add and remove member functions here.
/7 BO NOT EDIT what you see in these blocks of generated code !
//}YYATX_MSG
DECLARE_MESSAGE_MAP()
bi

LIELELLFETE LI R I T T ETER LT E I 00T F 8L 170010018777 1078070007007707007
//{{AFX_INSERT LOCATION)}
// Microsoft Visual C++ will insert additional declarations immediately before the

previous line.

#endif // ldefined (AFX_AUD STREAM1_H_ 567C9B98 DAFF_42C1_9509_BOGASIBIIDDC_ INCLUDED }

// Bud StreamlDlg.h : header file

#if !defined (AFX AUD_STREAMIDLG_H_ 08731E50 _B968_46F6_8FB7_BE79DA234B89 ___INCLUDED)
fidefine AFX_AUD | STREAM1DLG H 08731E50 8968 46F6 8F87 BE79DA234589 __ INCLUDED_

Bif MSC_VER > 1000
fpragma once
#endif // _MSC_VER > 1000

LLELEELFTTE IR T E T FTFE LT fETEE TR T E 8170 1 F2 08710700 7077087700070707
// CBud_StreamlDlg dialogy

class CAud_StreamiDlg : public CDialog
{
// Constructicn
public:
CAud StyeamlDlg (CWnd* pParent = NULL); // standard constructor

// Dialog Data
//[{AFX_DATA(CAud StreamiDlg)
enum { IDD = IDD _AUD_STREAM1_DIALCG };
// NOTE: the ClassWizard will add data members here
//Y}YAFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAud_StresamlDly)

protected:

virtual void DoDataBxchange (CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:
HICON m_hIcon;

// Generated message map functions
/7 {{AFX_MSG(Chud_StreamlDlg}
virtual BOOL OnInitDialog(};
afx_msg void OnSysCommand (UINT nID, LPARAM lParam);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDragIcon();
afx_msg void OnRecMic();

afx msg void OnPlay();

afx_msg void OnStop();:

virtual void OnOK(};

/7)Y IAFX MSG

DECLARE_MESSAGE_MAP ()

//{{AFX_INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif // idefined(AFX_AUD_STREAMIDLG_H_ 08731E50 8968 4 6F6_8F87_BE79DA234B89_ INCLUDED)

//Auq_strm_DSnd_Cap.h

#ifndef AUD_STREAM CAP
#define AUD STREAM CAP

#include "Aud params.h"

//Release the pointer
#define SAFE FREE(p} [if(p) { (p)~>Release(); (p)}=NULL; } }

typedef struct Aud_Enc_Buff

{
unsigned char sample bits[PACKET SIzE];
unsigned char filled;

JAud_Enc_Buff t, * Aund_Enc_Buff ptr;

typedef struct Aud DS Cap_ Params
{
unsigned int frequency;
unsigned char bits_sample:
unsigned char channel;
Aud Enc_Buff ptr fifo ptr;
unsigned int done;
HWND g hDlg:
}Aud_DS_Cap_ Params t, * Aud_DS Cap_Params ptr;

veid _ cdecl Aud Strm DS_Capture{void #);
HRESULT InitDirectSoundCapture(HWND hDlg);
HRESULT CreateCaptureBuffer (void);

HRESULT InitCaptureNotifications(void);
HRESULT FreeDirectSoundCapture (void):

#endlif

//2ud Strm DSnd_Play.h

#ifndef AUD_STREAM PLAY
#define AUD_STREAM PLAY

vold _ cdecl Aud_Strm DS Play(void * params);

HRESULT InitDirectSoundPlayback(HWND hDlg, int freq, int bits_per sample, int channels);
HRESULT CreateStreamingPlaybackBuffer(void);

HRESULT InitPlaybackNotifications (void);

HRESULT FreeDirectSoundPlay(void);

#endif

//aud_Strm Encrypt.h

#ifndef AUD STREAM ENCRYPT
fidefine AUD_STREAM ENCRYPT

#include "Aud_strm DSnd Cap.h"
typedef struct Aud_Enc Params

{
Aud EZnc_Buff ptr global fifo;

int max_element_in_fifo;

int size of_ element;

unsigned int done;
}Aud_Enc_Params t, * Aud_Enc_Params ptr;

#define INIT CONDITION (.876786

void Aud_Strm Bit Swap_Encrypt Init(veid};

void Aud Strm Bit Swap_Decrypt Init{wvoid};

void Key Gen Encrypt Decrypt(void);

void Aud Strm Bit Swap Encrypt_Sample (unsigned char * sample byte);

void Aud Strm_Bit_ Swap Decrypt Sample (unsigned char * sample _byte);

void Aud S$trm_Encrypt_ Sample (unsigned char *input_wval, unsigned char *output _wvalj;
void Aud Strm Decrypt Sample{unsigned char *input_val, unsigned char *output val);
void cdecl Aud_Strm Encrypt_Fifo Thread(void * param);

vold __cdecl Aud_strm_Decrypt_FlfomThread(v01d * param);

#endif

//Aud_strm;yet_xecv.h

#ifndef AUD_STREAM NET_ RECV
#define AUD_STREAM NET RECV

#define NET_RECV TEST 0
int Aud Strm Net Recv_Init(void);
int Aud_Strm Net_Recv{unsigned char * buffer);

vold Aud Strm_Net_Recv Clean(veid):

#endif

//Bud strm Net Send.h

#ifndef AUD STRERM NET SEND
#idefine AUD_STREAM NET SEND
#define NET SEND TEST 0

int Aud Strm Net_Send | Init(void);
void Aud_ Strm Met _Send(unsigned char * buffer);
void Aud Strm Net Send Clean(void);

#endif

//Bud param.h

#ifndef AUD PARAMS

#define AUD PARAMS

#define PORT_NUMBER 15150

$define DESTINATION ADDRESS "160.0.108.41"

/* currently system only validated cn 11Khz, Bbps, mono*/

#define NUM_PACKETS 25 // 25 notifications per second

#define PACKET SIZE 441 // 441 per Aud_enc buff (and network packets)
// which equates to about 1/25th of sec
// should match num of notifications above

/* with 11Xhz Sampling rate at 8 bits per sample in mono, we have 11Rilobytes per second,

11025/25= 441lbytes */

#define WAV_FREQ 11025 //sampling frequency
#define WAV BPS 8 //pits per sample
#define WAV CHNL 1 //1 = mono, 2 = stereo

#endif

APPENDIX E

The M-files attached run the Advanced Encryption Standard (AES} encryption-decryption
proegram on the user’s terminal in the MATLAB software. The codes were obtained from
http://buchhloz.hs-bremen.de/aes/aes.htm

%aes_encrypt.m

a=1;

b=1%6;

fid=fopen('C:\Misc_2\hello.wav', 'r'}; %insert filename accordingly
sound file=fread(fid);

gtextl='1l must do this properly and i will do it'
$textl=double {textl);

ttlength=length (textl);

tnum=ceil {tlength/16);
sound_length=length(sound_file}:;

num=ceil (sound_length/16);

[s_box, inv_s_box, w, poly mat, inv_poly mat] = aes_init;

for i=1:num;
sy=textl{a:b);
y=sound_file(a:b):
%3a = a + hex2dec(10);
b = b + hex2dec(l0);

n=length({y);
z=zeros{l6,1);
for m=1:n;

z (m)=z (m) +y (m} ;
end

plaintext=z;
ciphertext = cipher (plaintext, w, s box, poly mat, 1);
re _plaintext = inv_cipher (ciphertext, w, inv_s box, inv_poly mat, 1});

if i==
matl=plaintext;
mat2=re_plaintext;
mat3=ciphertext;

else
matid=plaintext;
matS=re plaintext;
mat&=ciphertext;

criginal=cat(l,matl,mat4)
decrypted=cat(2,mat2,math)
encrypted=cat (2, mat3,maté)

matl=criginal;
matZ=decrypted;
mat3=encrypted;

end
a =a + l6;

b =5b + 16;

if b>sound_length
b=sound length;

end

end

% aes_init.m

function [s_box, inv s box, w, pely mat, inv_poly mat] = aes_init

AES_INIT Initialisation of AES-components.

%
%
& [5_BOX, INV_S_BOX, W, POLY MAT, INV_POLY MAT] = AES INIT

% initializes ARS-components to be used by subsequent functions.

% In the initialization step the S-boxes (S_BOX and INV_S BOX) and the polynomial

% matrice (POLY_MAT and INV_POLY MAT} are created and an example cipher key is expanded
% into the round key schedule (W).

% Copyright 2001-2005, J. J. Buchhelz, Eochschule Bremen, buchholz@hs-bremen.ds
% Version 1.0 30.05.2001

% Clear the command window
clc

% Create the S-box and the inverse S-box
[s_box, inv_s_box] = s_box_gen (1);

% Create the round constant array
rcon = rcon_gen (1);

tglobal key
key=randint{1l,16, [0 255])

% Create the expanded key (schedule)
w = key_expansion(key, s_box, rcon, 1);

% Create the polynomial transformation matrix and the inverse polynomial matrix
% Lo be used in MIX COLUMNS
[pely_mat, inv poly matl = poly mat_gen (1);

$aff_trans.m

function b_out = aff trans (b_in)

3AFF _TRANS Apply an affine transformation over GF{(2°8).

%

B_OUT = AFF _TRANS (B_IN)

applies an affine transformation to the input byte B 1IN,

The transformation consists of
1. a polynomial modulc multiplication

by a predefined multiplication polynomial

using a predefined modulc polynomial over GF(2+8) and
Z. the addition (XOR} of a predefined addition polynomial

P GO o of of P of of o

&P

B_IN has to be a byte (0 <= B_IN <= 255).

&0

Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Define the mecdulo polynomial
% to be used In the medulo operation in pely mult
mod_pol = binZdec ('100000001'");

% Define the multiplication polynomial

% In the Rijndael AES Proposal

% they say they use the pclynomial '11110001',
% which is wrong.

muit_pel = bin2dec ('00011111'};

% Define the addition polyncmial
add_pol = binZdec {'01100011'};

% Modular polyncmial multiplication
% of the input byte and the fixed multiplication polyncmial
temp = poly mult {b_in, mult pcl, mod_pol};

% Add (XOR) the constant (addition polynomial)
b out = bitxeor (temp, add pol);

%cipher.m

function ciphertext = cipher (plaintext, w, $_box, poly mat, wvargin)
SCIPHER Convert 16 bytes of plaintext to 16 bytes of ciphertext.

CIPHERTEXT = CIPHER (PLAINTEXT, W, S_BOX, POLY MAT)
converts PLAINTEXT to CIPHERTEXT,

using the expanded cipher key W,

the byte substitution takle S BOX, and

the transformation matrix POLY MAT.

CIPHERTEXT = CIPHER (PLAINTEXT, W, S_BOX, POLY_MAT, 1)
switches verbose mode on, which displays intermediate results.

PLAINTEXT has to be a wvector of 16 bytes (0 <= PLAINTEXT(i) <= 255).
W has to be a [44 x 4]-matrix of bytes (0 <= W(i,j) <= 255).

40 df o P G a0 P O dP oR o op

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% If there is an optional "verbeose mode™ argument
if nargin > 4

$ Switch the verbose mode flag on
verbose_mode = 1;

% If there is nc optional "verbose mode" argument
else

% Switch the verbose mode flag off
verbose mode = 0;

end

% If the input vector is & cell array or does not have 16 elements
if iscell (plaintext) | prod (size (plaintext)) ~= 1§

% Inform user and abort
error ('Plaintext has to be a vector (not a cell array) with 16 elements.')

end

%If any element of the input vector cannot be represented by 8 bits
if any (plaintext < 0 | plaintext > 255)

% Inform user and abort
error ('Elements of plaintext vector have to be bytes (0 <= plaintext({i) <= 255).7")

end

% If the expanded key array is a cell arrray or does not have the correct size
if iscell (w) | any (size (w} ~= [44, 4]}

% Inform user and abort
error ('w has to be an array (not a cell array) with [44 x 4] elements.')

end

% If any element of the expanded key array can nct be represented by 8 bits
if any (w < 0 | w > 255)

% Inform user and abort
error ('Elements of key array w have to be bytes {0 <= wi{il,j) <= 2558).")

end

% Display headline if requested
if verbose mode

disp (' ')
disp (|************‘k********************‘k*****‘k****I)
disp ('* *1)
disp ("% CIPHER *1)
disp ('* *1)
disp (f*************‘k**‘k*********‘k*‘k************ﬁ**‘)
disp (' "}
end

% Copy the 16 elements of the input vector
% column-wise inte the 4 x 4 state matrix
state = reshape (plaintext, 4, 4);

% Display intermediate result if reguested
if verbose mode

disp_hex ('Initial state : ', state)
end

% Copy the first 4 rows (4 x 4 elements) of the expanded key
% into the current round key.

% Transpose to make this column-wise
round key = (w(l:4, :})';

% Display intermediate result 1f requested
if verbose mode

disp_hex {'Initial round key : ', round_key)
end

% Add (xor) the current round key (matrix) to the state (matrix)
state = add round key (state, round key}:

% Locp over 9 rounds
fer i_round = 1 : 9
% Display intermediate result if requested
if verbose_mode -
disp_hex {['State at start of round ', num2str(i round),’ :) '], state)
end

% Substitute all 16 elements of the state matrix
% by shoving them through the S-kox
state = sub_bytes (state, s_box}:

% Display intermediate result if requested
if verbose_mode

disp_hex ('After sub bytes : ', state)
end

% Cyclically shift the last three rows of the state matrix
state = shift _rows (state);

% Display intermediate result if requested
if verbose_mode

disp_hex ('After shift_rows : ', state)
end

% Transform the columns of the state matrix via a four-term polynomial
state = mix_columns (state, poly mat};

% Display intermediate result if requested
if verbose_mode

disp_hex ('After mix columns : ', state}
end

% Extract the current round key (4 x 4 matrix) from the expanded key
round_key = (w({l:4) + 4*i_ round, :}}';

% Display intermediate result if requested
if verbose_ mode

disp_hex ('Round key : 'y round_key)
end

%2 Add (XOR} the current round key (matrix) teo the state (matrix)
state = add_round key (state, round key):

end

% Display intermediate result if requested
if verbose_mode

disp hex ('State at start of final round : ', state)
end

% Substitute all 16 elements of the state matrix
% by shoving them through the S-box
state = sub_bytes (state, s_box);

% Display intermediate result if requested
if verbose_mode

disp_hex ('After sub_bytes : ', state)
end

% Cyclically shift the last three rows of the state matrix
state = shift rows (state);

% Display intermediate result if requested
if verbose_mode

disp_hex ('After shift rows : ', state)
end

% Extract the last round key (4 % 4 matrix) from the expanded key
round_key = (w(41l:44, :)}';

% Display intermediate result if requested
if verbose_mode

disp_hex ('Round key : 'y round key)
end

% Add (xor) the current round key {(matrix} to the state (matrix)
state = add_round key (state, round key);

% Display intermediate result if reguested
1f verbose_mode

disp hex ('Final state : ', state)
end

% reshape the 4 x 4 state matrix into a 16 element row vector
ciphertext = reshape (state, 1, 16);

%inv cipher.m

function plaintext = inv_cipher (ciphertext, wl, inv_s hox, inv_poly mat, vargin)
$INV_CIPHER Conwvert 16 bytes of ciphertext to 16 bytes of plaintext.
%

% PLATNTEXT = INV_CIPHER (CIPHERTEXT, W, INV S BOX, INV_POLY MAT)

% converts CIPRERTEXT {back} to the plaintext PLAINTEXT,

% using the expanded cipher key W,

% the inverse byte substitution table INV_S BOX, and

% the inverse transformation matrix INV_POLY MAT.

%

% PLAINTEXT = INV_CIPHER (CIPHERTEXT, W, INV_5_BOX, INV_POLY MAT, 1)

% switches verbose mode on, that displays intermediate results.

% CIPHERTEXT has to be a vector of 16 bytes (0 <= CIPHERTEXT{i) <= 255}.
% W has to be a [44 x 4]-matrix of bytes (0 <= W(i,]J} <= 255).

% Copyright 2001-2005, J., J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

H Version 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 4

% Switch the verbose mode flag on
verbose _mode = 1;

% If there is nc opticnal "verbose mede” argument
else

% Switch the verbose mode flay off
verbose mode = 0;

end

% If the input vector is a cell array or does not have 16 elements
if iscell {ciphertext) | prod (size (ciphertext)) ~= 16

$ Inform user and abort
error ('Ciphertext has to be a vector (not a cell array) with 16 elements, '}

end

% If any element of the input vectoer cannot be represented by 8 bits
if any (ciphertext < 0 | ciphertext > 255}

% Inform user and abort
error ('Elements of ciphertext vector have to be bytes (0 <= ciphertext(i) <= 255).")

end

% If the expanded key array is a cell arrray or does not have the correct size
if iscell (wl) | any (size (wl) ~= [44, 41}

% Inform user and abort
error ('w has to be an array (not a cell array) with [44 x 4] elements.')

end

$ If any element of the expanded key array can not be represented by 8 bits
if any (wl < 0 | wl > 255)

% Inform user and abort
error ('Elements of key array wl have to be bytes (0 <= wl(i,j) <= 255).'")

end

% Display headline if requested
if verbose_mode

disp (' ")

digp (THEFFAIF IR A AR RAIRRARA AR R ARGk kdhkhdkhhhrd® 1)
disp ('* * 1y
disp ('* I NVERSE CIPHER *1)
disp {r* *1)
disp [V RIRA KK KRR KK A I KA A ISR IR KA KRNI NREARE LR AR LIk x)
disp (')

end

% Copy the 16 elements of the input vector column-wlise into the 4 x 4 state matrix
state = reshape (ciphertext, 4, 4};:

% Display intermediate result if requested
if verbose_mode

disp hex ('Initial state : ', state)
end

% Copy the last 4 rowls (4 x 4 elements} of the expanded key
% into the current round key.

% Transpose to make this column-wlise

round key = (wl(41:44, :})';

% Display intermediate result if requested

if verbose_mode
disp_hex ('Initial round key : ', round key)
end

% Add (xor) the current round key (matrix} to the state (matrix)
state = add_round_key (state, round key);

% Loop over 9 rounds backwlards
for i_round = 9 : -1 : 1

% Display intermediate result if requested
if verbose_mode

disp_hex {['State at start of round ', num2str({i_round},' : '], state)
end

% Cyclically shift the last three rowls of the state matrix
state = inv_shift_rows (state);

% Display intermediate result if regquested
if verbose_mode

disp_hex ('After inv_shift rowls : ', state)
end

$ Substitute all 16 elements of the state matrix
% by shoving them through the S-box
state = sub_bytes (state, inv_s_box);

% Display intermediate result if requested
if verbose_mocde

disp_hex ('After inv_sub bytes : ', state)}
end

$ Bxtract the current round key {4 x 4 matrix) from the expanded key
round key = (wl((l:4) + 4*i_round, :}})';

% Display intermediate result if reguested
if verbose_mode

disp_hex ('Round key : ', round_key)
end

% Bdd {¥OR) the current round key {matrix) to the state (matrix)
state = add_roundmkey {state, roundwkey);
% Display intermediate result if requested
if verbose_mode
disp_hex ('After add_round_key : ', state)
end

% Transform the columns of the state matrix via a four-term polynomial.
% Use the same function (mix_ceclumns) as in cipher,

% but wlith the inverse polynomial matrix

state = mix_columns (state, inv_poly mat};

end

% Display intermediate result if reguested
if verbose_mode

disp hex ('State at start of final round : ', state)
end

§ Cyclically shift the last three rowls of the state matrix
state = inv_shift_rows ([state);

% Display intermediate result if requested
if verbose_mode

disp hex ('After inv_shift_rows : ', state)
end

% Substitute all 16 elements of the state matrix
% by shoving them through the inverse S-box
state = sub bytes (state, inv_s_box);

% Display intermediate result if reguested
if verbose_mode

disp_hex ('After inv_sub_bytes : ', state)
end

% Extract the "first" (final) round key (4 x 4 matrix) from the expanded key
round key = (wl{(l:4, :}}';

% Display intermediate result if requested
i1f verbose_mode

disp hex ('Round key : ', round_ key)
end

% Add (xor) the current round key (matrix) to the state (matrix)
state = add_round_key (state, round key);

% Display intermediate result if requested
if verbose mode

disp_hex ('Final state : ', state)
end

% reshape the 4 x 4 state matrix into a 16 element row vector
plaintext = reshape (state, 1, 16};

%cycle.m

function matrix_cut = cycle (matrix_in, direction)
$SHIFT ROWS Cyclically shift the rows of the state matrix,

%

% MATRIX OUT = CYCLE (MATRIX_IN, 'left')

% cyclically shifts the last three rows of the input matrix to the left.
% The first row is not shifted: [12 3 4)

% The second row is cyclically shifted once to the left: [2 3 4 1]

% The third row is cyclically shifted twice to the left: [3 41 2]

% The fourth row i1s cyclically shifted thrice to the left: [4 1 2 3]

% MATRIX OQUT = CYCLE (MATRIX IN, 'right')

% cyclically shifts the last three rows of the input matrix to the right.
% The first row is not shifted: [1 2 3 4]

% The second row is cyclically shifted once to the right: [4 1 2 3]

% The third row is cyclically shifted twice to the right: [3 41 2]

% The fourth row is cyclically shifted thrice to the right: [2 3 4 1]

% Copyright 2001-200%, J. J. Buchhelz, Hochschule Bremen, buchholzBhs-bremen.de
% Version 1.0 30.05.2001

% If the matrix has to be shifted to the left,
if stremp (direction, 'left')

% generate the column vector [0 5 10 151!
col = (0 : 5 ¢ 15)7';

% If the matrix has to be shifted to the right,
else

% generate the column vector {16 13 10 7]°
col = (16 : -3 : 7)';

end

% Generate the row vector [0 4 8 12]

row =0 : 4 : 12;

Repeat the column to create the matrix 0 0 0] t{left shift)
5 5 5]

19 19 10]

%
%
%
% 15 15 15]

[0
[5
[10
[15

cols = repmat (col, 1, 4};

% Repeat the row to create the matrix [0 4 8 12]
% [0 4 8 12]
% [0 2 8 12]

[0 4 8 12]

rows = repmat {row, 4, 1};:

% Add both matrices,

% fold back inteo the 0 ... 15 domain,

% and add 1, because Matlab indices do start with 1
T [1 5 9 13]

¥ [6 10 14 2]

% [11 1% 3 7]

% [16 4 B 12]

ind mat = mod (rows + cols, 16) + 1;

% Apply the just created index matrix to the input matrix.
% Elements of the index matrix are linear {column-wise) indices.
matrix out = matrix in (ind mat);

%find inverse.m

function b_inv = find inverse (b_in, mod_pcl)
SFIND INVERSE Find the multiplicative inverse in GF{2°8).

%

% B INV = FIND INVERSE (B_IN, MOD_POL)

% finds the multiplicative inverse of B_IN

% in the finite Galois field GF({2"8)

% with respect to the predefined (irreducible modulc polynomial.

%

$ B _IN has to be a byte (0 <= B_IN <= 255}.

%

% This implementation is extremely simple, uneconomic, and slow;

% but it works and clearly demonstrates the definition of the inverse.
% Smarter implementations e.g. use the "extended Euclidean algorithm".
% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Locop over all possible "test" bytes.
% The inverse of zero is defined as zero
fer i =1 : 255

% "Test-wise" compute the polynomial multiplication
% of the input byte and the current "test byte"
prod = poly mult (b_in, i, mod pol):

% If the polynomial modulo multiplication leaves a remainder of "1"
% we have found the inverse
if prod ==

% Declare (save and return) the current test byte as inverse,
b inv = i;

% and abort the search
break
end
end

$key expansion.m

function w = key expansion (key, s_box, rcon, vargin)
(KEY EXPANSION Expand the 16-byte cipher key.

%

H W = KEY EXPANSION (KEY, 8 BOX, RCON}

3 creates the 44x4-byte expanded key W,

% Repeat the row to create the matrix 4 8 12]
% ’ 4 8 12]
% 4 8§ 12)
% 4 8 127

rows = repmat (row, 4, 1);

% Add both matrices,
% fold back into the ¢ ... 15 domain,
% and add 1, because Matlab indices do start with 1

g1 5 9 13]
& [610 14 2]
% [11 15 3 7]
$ (16 4 8 12]

ind_mat = mod {rows + cols, 16) + 1;
% Apply the just created index matrix to the input matrix.

% Elements of the index matrix are linear (column-wise) indices.
matrix_out = matrix in (ind mat});

%find_inverse.m

function b_inv = find_inverse (b_in, mod_pol)

$FIND_INVERSE Find the multiplicative inverse in GF({2"8).
%

% B_INV = FIND TNVERSE (B_IN, MOD _POL)

% finds the multiplicative inverse of B IN

& in the finite Galois field GF{2°8)

3 with respect to the predefined (irreducible modulo polynomial.

%

G B_IN has to be a byte (0 <= B_IN <= 255}.

%

$ This implementation is extremely simple, uneconomic, and slow;

% but it works and clearly demonstrates the definition of the inverse.
% Smarter implementations e.g. use the "extended Fuclidean algorithm”.
% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Loop over all possible "test"™ bytes.
% The inverse of zerc is defined as zero
for i =1 : 255

% "Test-wise" compute the pelynomial multiplication
% of the input byte and the current "test byte"
prod = poly mult (b_in, i, mod_pol);

% ILf the polynomial modulo multiplication leaves a remainder of "1°
% we have found the inverse

if prod ==

% Declare (save and return) the current test byte as inverse,
b inv = iy

% and abort the search
break
end
end

3key expansion.m

function w = key_expansion (key, s_kox, rcon, vargin)
SKEY EXPANSION Expand the 16-byte cipher key.

%

% W = KEY EXPANSION (KEY, S_BOX, RCON)

% creates the 44x4-byte expanded key W,

% Repeat the row to create the matrix [0 4 8 12]
% [0 48 12]
% [0 4 8 12]
3 [0 4 8 12]
rows = repmat (row, 4, 1); :
% Add both matrices,

% fold back into the 0 ... 15 domain,

% and add 1, because Matlab indices do start with 1
[1 5 913

¥ [610 14 2]

% [11 15 3 7]

% [16 4 8 127

ind mat = mod {rows + cols, 16) + 1;

% Apply the just created index matrix to the input matrix.
% BElements of the index matrix are linear {column~wise) indices,
matrixz out = matrix in {(ind mat);

%find inverse.m

function b_inv = find inverse (b in, mod pol)
$FIND INVERSE Find the multiplicative inverse in GF(2"8) .

%

% B_INV = FIND INVERSE (B_IN, MOD_POL)

% finds the multiplicative inverse of B IN

g in the finite Galois field GF(2+8)

% with respect to the predefined (irreducible medulo polynomial,

%

% E_IN has to ke a byte (0 <= B_IN <= 255).

%

% This implementation is extremely simple, unecononmic, and slow;

% but it works and clearly demonstrates the definition of the inverse.
% Smarter implementations e.g. use the "extended Euclidean algorithm"”.
% Copyright 2001-2005, J, J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Loop over all possible "test" bytes.
% The inverse of zero is defined as zerc
for 1 =1 : 255

% "Test-wise" compute the polyncmial multiplication
% of the input byte and the current "test byte"
prod = poly mult (b_in, i, mod pol);

% If the polynomial modulo multiplication leaves a remainder of "1
% we have found the inverse
if prod ==

% Declare (save and return) the current test byte as inverse,
b_inv = i;

% and abort the search
break
end
end

%key expansicn.m

function w = key_expansion (key, 5_box, rcon, vargin}
SKEY_EXPANSION Expand the 16-byte cipher key.

%

% W = EEY EXPANSION (KEY, S BOX, RCON)

% creates the 44x4-byte expanded key W,

using the initial 16-byte cipher EEY,
the predefined byte substitution table S_BOX, and
the round constant RCON to be added to every fourth 16-byte sub-key.

W = EKEY EXPANSION (KEY, 5 _BOX, RCON, 1)
switches verbose mode on, that displays intermediate results.

REY has tc be a vector of 16 bytes (0 <= KEY (i) <= 2557.

o o oF of of dP of of df &P

KEY_EXPANSION has to be called prior to CIPHER and INV_CIPHER.

e

Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Versicn 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 3

% Switch the verbocse mode flag on
verbose_mode = 1;

% If there is no cptional "verbose mode" argument
else

% Switch the verbose mode flag off
verbose_mode = 0;

end

% If the key vector is a cell array or does not have 16 elements
if iscell (key} | prod (size {key)) ~= 16

a

% Inform user and abort
error ('Key has to be a vector (not a cell array) with 16 elements.')

end

% If any element of the key vector cannot be represented by 8 bits
if any (key < 0 | key > 255}

% Inform user and abort
error ('Elements of key vector have to be bytes (0 <= key(i) <= 255).'}

end

% Display headline if requested
if verbose_mode

disp (' ")

disp (r*-k********-k********-k-k***********************r)
disp ('* ®1)
disp ('* KEE Y EXPANSION *1)
disp {'* *1)
disp (l*********-k***************tk***********-k****wv)
disp (' ')

end

% Copy the 16 elements of the key vector row-wise
% intc the first four rows of the expanded key
w = (reshape (key, 4, 4))';

% Display intermediate result if requested
if verbese_mode

disp _hex ('w(l:4, :) : ,ow)
end

% Loop over the rest of the 44 rows of the expanded key
for i = 5 1 44

% Copy the previous row of the expanded key into a buffer
temp = wii - 1, 1);

% Every fourth row is treated differently:
1f med (i, 4) ==

% Perform a cyclic (byte-wise) permutation to the buffer
temp = rot word (temp):

% Display intermediate result if requested
if verbose_mede

disp_hex (['After rot word : '], temp)
end

% Substitute all 4 elements of the buffer
%t by shoving them through the S-box
temp = sub_bytes (temp, s_box);

% Display intermediate result if requested
1f verbose mode

disp_hex (['After sub bytes : '], temp)
end

% Compute the current round constant
r = rcon ({i - 1)/4, :);:

% Display intermediate result if requested
if verbose_mode

disp hex (['rcon{', num2str(i,'302d'), ', :} : ‘1,)
end

% Add (XCR) the current rount constant
% to every element of the buffer
temp = bitxor (temp, r);
% Display intermediate result if requested
if verbose_mcde

disp_hex (['After rcon xor : '], temp)
end

end

% The new row of the expanded key
% is the sum (XOR} of the row four rows before
% and the buffer
w(i, :) = bitxor (w{i - 4, :), temp);
% Display intermediate result if regquested
if verbose_mode
disp_hex ({'w(', numZstr(i,'%02d'}, ',) : T, wi{i, 3}
end

end

%add_round_key.m

function state_out = add_round_key (state_in, round_key}
$ADD_ROUND KEY Add (XOR) the round key to the state.

]

o

STATE OUT = ADD_ROUND KEY {(STATE IN, ROUND KEY)
adds the current round key matrix ROUND_KEY

to the current state matrix STATE_IN.

Adding in GF(278) is performed via bitwise XCR.

o oP o7 of

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchhclz@hs-bremen.de
% Version 1.0 30.05.2001

% Add state (matrix) and round key (matrix) via bitwise XOR
state_out = bitxcr (state_in, round key);

$mix_columns.m

function state_out = mix columns (state in, poly mat)
EML¥X_COLUMNS Transform each column of the state matrix.

%

cf of df of oo

e o

STATE_OUT = MIX COLUMNS (STATE IN, POLY MAT)
operates on the state matrix STATE IN column-by-column
using POLY_MAT as the transformation matrix.

MIX COLUMMNS can also directly compute
the inverse column transformation INV_MIX COLUMNS
by utilizising the inverse transformation matrix INV_POLY MAT.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de

% Version 1.0 30.05.2001

% Define the irreducible polynomial
% to be used in the modulo operation in poly mult
mod_pol = binZdec ('100011011'};

% Loop over all columns of the state matrix
for i_col_state = 1 : 4

% Loop over all rows of the state matrix
for 1 row_state =1 : 4

end
end

% Initialize the scalar product accumulator
temp_state = 0;

For the {innner) matrix vector product we want to do

a

scalar preoduct

of the current row vector of poly mat
and the current column vector of the state matrix.

all elements of the current row vector of pely mat and
all elements of the current column vector of the state matrix

or

end

%
%
]
]
% Therefore we need a counter over
%
%
£

i inner =1 : 4

% Multiply (GF{2"8) polynomial multiplication)
% the current element of the current row vector of poly mat with
% the current element of the current column vector of the state matrix
temp_prod = poly mult (...
poly _mat(i_row_state, i_inner),
state_in(i_inner, i col state),
mod pol);

% Add (XOR) the recently calculated product
% to the scalar product accumulator
temp_state = bitxor (temp_state, temp prod);

% Declare (save and return) the final scalar product accumulator
% as the current state matrix element
state_ocut(i_row_state, i_col_state) = temp_state;

shift rows.m

function state_out = shift rows ({state in)
%SHIFT_ ROWS

Cyclically shift the rows of the state matrix.

%

% STATE_OUT = SHIFT_ROWS (8TATE_TN)

% cyclically shifts the last three rows of the state matrix to the left.
% The first row 1s not shifted: [1 2 3 4]

% The second row is cyclically shifted once te the left: [2 3 4 13

2 The third row is cyclically shifted twice to the left: [3 41 2]}

% The fourth row is cyclically shifted thrice to the left: [4 1 2 3]
% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholzBhs-bremen.de
% Version 1.0 30.05.2001

% Call the function cycle to do the actual left shifting
state_out = cycle (state_in, 'left');

%inv_shit rows.m
function state cut=inv_shift_rows (state_in)

SINV_SHIFT_ROWS Cyclically shift (back) the rows of the state matrix.

S

% STATE_QUT = INV_SHIFT_ROWS (S8TATE_IN)

% cyclically shifts the last three rows fo the state matrix to the right.

3 The first row is not shifted: [1 23 4)

% The second row is cyclically shifted once to the right: [4 12 3)

% The third row is cyclically shifted twice to the right: [2 41 2]

% The fourth row is cyclically shifted thrice to the right: [2 3 4 1]

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Call the function cycle to do the actual right shifting
state_out = cycle (state in, 'right');

tpoly mat gen.m

function {poly_mat, inv_pcly mat] = poly mat_gen (vargin)
$POLY_MAT <Create polynomial coefficlent matrices.

%

% [POLY MAT, INV POLY MAT] = BOLY MAT GEN

% creates the polynomial coefficient matrices

% to be used by the function MIX_COLUMNS,

%

% [POLY MAT, INV_POLY MAT] = POLY MAT GEN (1)

% switches verbose mode on, that displays intermediate results.
]

% POLY MAT GEN has to be called prior to CIPHER and INV_CIPHER.

% Copyright 2001-2005, J. J. Buchholz, Hochszchule Bremen, buchholz@hs-bremen.de
% Version 1,0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 0

% Switch the verbose mode flag on
verbese mode = 1;

% If there is no optional "werbose mode" argument
else

% Switch the verbose mode flag off
verbose mode = @Q;

end

%2 Display headline if requested
if verbose_mode

disp ("
AASP (P HA AR kR kA AR R kKR AR A AR I RA KRR F TR IR AAAHN)
disp ('* *1)
disp ('* POLY MAT CREATION *1)
® 1Y

disp ('*

dlSp (! ********'k**'k******9(**********‘k********‘k**‘k**l)
disp (" ')
end

% Define the first row of the polynomial coefficient matrix
% to be used in MIX_COLUMNS in hexadecimal representation.
% Small values are chosen for computational speed reasons
row_hex = {'02' '03' '0l' 'Q1'};

% Convert the polynomial coefficients to decimal "numbers"
g row = [2 31 1)
row = hex2dec {row_hex)';

% Construct a matrix with identical rows
% rows = [2 3 1 1]

% [2 31 1]
% [2 31 1]
5 (231 1]

rows = repmat (row, 4, 1);

% Construct the polynomial matrix
% by cyclically permuting the rows to the right
% pely mat = [2 3 1 1]

% [1231]
% [1 12 3]
% [3112]

poly_mat = cycle (rows, 'right');

% Define the first row of the inverse polynomial ccefficient matrix
% to be used in INV MIX COLUMNS in hexadecimal representation.
inv_row hex = {'0e' '0b' r0d' '09');

% Convert the polynomial coefficients to decimal "numbers"®
inv_row = hexZdec (inv row hex)';

% Construct a matrix with identical rows
inv_rows = repmat (inv row, 4, 1);

% Construct the polynomial matrix
inv_poly mat = cycle (inv rows, 'right'});

% Display intermediate result if requested
if verbose_mode
disp_hex (' pely mat : ', poly mat)
disp_hex ('inv_poly mat : ', inv_poly mat)
end

%poly mult.m
function ab = poly mult (a, b, mod pol}
3POLY MULT Polyncmial modulo multiplication in GF{2"8).

%

% AB = POLY_MULT (A, B, MOD POL}

% performs a polynomial multiplication of A and B

% in the finite Galois field GF{2"8),

% using MOD POL as the irreducible modulo polynomial.
k]

% 2 and B have to be bytes (0 <= A, B <= 255},

% MOD_POL is of degree 8,

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Initialize the product term
% to be used on the right-hand side of the XOR-iteration
ab = 0;

% Loop over every bit of the first factor {"a")
% starting with the least significant bit.
% This loop multiplies "a™ and "b" modulo 2

for i_bit =1 : 8

% If the current bit is set,

% the second factor ("b") has to be multiplied
% by the corresponding power of 2

if bitget (a, i_bit)

% The power-Z-multiplication is carried out
% by the corresponding left shift of the second factor {("b"),
b_shift = bitshift (b, i_bit - 1};

% and the moduloc 2 {XOR) "addition" of the shifted factor
ab = bitxor (ab, b_shift};

end
end

% Loop over the 8 most significant bits of the "ab"-product.
% This loop reduces the 16-bit-product back to the 8 bits

% of a GF(2”B) element by the use of

% the irreducible mcdulo polynomial of degree §.

for i_bit =16 : -1 : 9

% If the current bit is set,

% "ab" (or the reduced "ab" respectively) has to be "divided"
% by the modulc polynomial

if bitget (ab, i hit}

The "division" is carried ocut
by the corresponding left shift of the medulo poiynomial,
mod _pol_shift = bitshift (med pol, i bit - 9);

%
%

% and the "subtraction" of the shifted modulec pelynomial.
% Since both "addition” and "subtraction" are

% operations medulo 2 in this context,

% both can be achieved via XOR

ab = bitxor (ab, mod_pol shift);

end
end

$rcon_gen.m

function rceon = rcon gen (vargin)
%RCON_GEN Create round constants.

%

3 RCCN = RCON GEN

% c¢reates the round constants vector RCON

% to be used by the function KEY EXPANSION.

%

% RCON = RCON_GEN (1)

% switches wverbose mode on, that displays intermediate results.
%

% RCON_GEN has to be called prior to KEY EXPANSION.

% Copyright 2001-200%, J. J. Buchholz, Hochschule Bremen, buchholzRhs-bremen.de
3 Version 1.0 30.05.2001

% If there is an optional "verbose mode" argument
if nargin > 0

% Switch the verbose mode flag on
verpose_mode = 1;

% If there is no optional "verbose mode" argument
else :

% Switch the verbose mode flag off

verbose_mode = 07
end

% Display headline if requested
if verbose_mode

disp (" ")

digp (' FExEERAA IR E IR IR R IR AR Ak H R KRR AR AR I RR)
disp [*1y
disp ('* RCON CREATION 1)
diSp fr* *1y
disp (ThRIAFAXFTFII R I KL AR LA A AR AT A A bk bk Rk rrFhhrkhox k|)
disp (' ")

end

% Define the irreducible polyncmial
% to be used in the modulo operation in poly_mult
mod_pol = bin2dec ('100011011%);

% The (first byte of the) first round constant is a "1"
rcon({ly = 1;

% Loop over the rest of the elements of the round constant vector
for 1 =2 : 10

% The next round constant is twice the previous cne; mocdulo
rcon{i) = poly mult (rcon{i-1}, 2, med_pol};

end

% The other (LSB) three bytes of all round constants are zeros
rcon = [rcoen(:), zeros{l0, 3)];

% Display intermediate result 1f requested
if verbose mode

disp _hex ('rcon : ', rcon)
end

trot_word.m

function w_ocut = rot word (w_in)}
$ROT_WORD Rotate the elements of a four element vector.

%

& W _OUT = ROT_WORD (W_IN)

% performs a cyclic shift of the elements
% of the four element vector W_IN.

% lal, a2, a3, a4l --> [a2, a3, a4, al]

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Do the shift...
w_out = w_din([2 3 4 1]1);:

$s_box_gen.m

function [s_box, inv_s box] = s_box gen (vargin}

%8 _BOX _GEN Create S-box and inverse S-box.

-

[S_BOX, INV_S_BOX] = 5 _BOX GEN

creates the S-box and the inverse S-box

to be used by the function SUB_BYTES.

The S-box is created in two steps:

1. Take the multiplicative inverse of the finite field GF(2°8).
2. Rpply an affine transformation.

O of of of of o of od

[5_BOX, INV_S_BOX] = S_BOX_GEN (1)

switches verbose mode on, that displays intermediate results.

3_BOX_GEN has to be called prior to
KEY_ EXPAN3ION, CIPHER, and INV_CIPHER.

In the AES Specification Standard the S-boxes are depicted
as arrays. For the sake of indexing-simplicity they are internally
stored as vectors in this implementation,

df df af o o o of oGP

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% If there is an opticnal "verbose mode" argument
if nargin > 0

% Switch the verbese mode flag on
verbose_mode = 1;

% If there is no optional "verbose mode" argument
else

% Switch the verbose mode flag off
verbose mode = 0;

end

$ Display headline if reguested
if verbose_mode

disp (" ')

disp (l****‘k**‘k*‘k‘k*‘k‘k***************************‘k‘k*l)
diSp '+ k1)
disp ('* S-BOX CREATICN *1y
disp ('* *1)
disp ('* {this might take a few seconds ;-)) *1)
disp {'* *1)
dlsp (1***************'k**‘k**‘k*****‘k****************‘)
disp (' '}

end

% Define the irreducible polynomial

% to be used in the modulo operation in poly mult,
% called by find_inverse

mod _pol = bin2dec ('100011011');

% The polynomial multiplicative inverse of zero is defined here as zero.
% Matlab vectors start with an index of "1™
inverse(l) = 0;

% Loop over all remaining byte wvalues
for 1 =1 : 255

% Compute the multiplicative inverse of the current byte value

)

% with respect to the specified modulo polynemial
inverse(i + 1) = find inverse (i, med_pol});

end

% Loop over all byte values
for 1 = 1 : 256

% Apply the affine transformaticn
s_box (i) = aff_trans (inverse(i));

end
% Create the inverse S~box by taking the wvalues
% of the elements of the $-Box as indices:

inv_s_box = s_box_inversicn (s_box);

% Display intermediate result if requested

if verbose_mode

% Display the s_box and the inverse s box in 16x16 matrix format.
% Notice the transpose character for row-wise matrix representation
s_box_mat = reshape (s_box, 16, 16)';

disp hex (" s_box : ', s_box mat)
inv_s_box mat = reshape (inv_s box, 16, 16)';
disp_hex ('inv_s_box : ', inv_s_box mat)

end

%s_box_inversion.m

function inv_s_box = s_box inversion (s_box)
%3 _ROX_TINVERSION Invert S-box.

%

% [INV_S_BOX] = S_BOX INVERSION (S BOX)

% creates the inverse S-box

% from the previously created S-box.

% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001

% Loop over zll byte values

for 1 = 1 : 256

% Create the inverse S-box by taking the values
% of the elements of the S-Box as indices:

% @.g.: s_box(00hex} = 63hex == inv_s_box (€3hex) = 00hex
% (except the fact, that Matlab vectors start at I1...)
inv_s_box(s_box(i) + 1} = i - 1;

end

$sub_bytes.m

function bytes_out = sub_bytes (bytes_in, s_box)

%¥3UB_BYTES Nonlinear byte substituticn using a substitution table.
% -

BYTES_OUT = ZUB_BYTES (BYTES IN, S BOX)

transforms the input array BYTES_IN

into the output array BYTES_OUT

using the substitution table S_BOX.

R O o oOf oP o

BYTES_IN has to be an array of bytes (0 <= BYTES_IN(i) <= 255},
% Copyright 2001-2003, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Versicn 1.0 30.05.2001

% Thanks to Matlab's marvellous matrix manipulation mastery,
% the substitution of a whole array can be formulated

% in just one statement
bytes out = s_box (bytes_in + 1);

