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ABSTRACT 

Online signature verification rests on hypothesis which any writer has similarity 

among signature samples, with scale variability and small distortion. This is a dynamic 

method in which users sign and then biometric system recognizes the signature by 

analyzing its characters such as acceleration, pressure, and orientation. The proposed 

technique for online signature verification is based on the Singular Value 

Decomposition (SVD) technique which involves four aspects: I) data acquisition and 

preprocessing 2) feature extraction 3) matching (classification), 4) decision making. 

The SVD is used to find r-singular vectors sensing the maximal energy of the signature 

data matrix A, called principle subspace thus account for most of the variation in the 

original data. Having modeled the signature through its r-th principal subspace, the 

authenticity of the tried signature can be determined by calculating the average distance 

between its principal subspace and the template signature. The input device used for 

this signature verification system is 5DT Data Glove 14 Ultra which is originally 

design for virtual reality application. The output of the data glove, which captures the 

dynamic process in the signing action, is the data matrix, A to be processed for feature 

extraction and matching. This work is divided into two parts. In part I, we investigate 

the performance of the SVD-based signature verification system using a new matching 

technique, that is, by calculating the average distance between the different subspaces. 

In part IJ, we investigate the performance of the signature verification with reduced­

sensor data glove. To select the 7-most prominent sensors of the data glove, we 

calculate the F-value for each sensor and choose 7 sensors that gives the highest F­

value. 
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CHAPTER I 

INTRODUCTION 

This chapter presents an introduction to signature verification technique 

which covers the research trend and the past work of online signature verification. 

This is mostly covered in section 1.1. The problem statement and the objective of this 

work are elaborated in section 1.2 and 1.3 respectively. 

1.1 Background Study 

Signature verification is a common and important behavioral biometric to 

recognize human beings for purpose of establishing their authority. Signature is 

commonly used to complete an automated matter, gaining physical entry to a 

protected area or gaining control of a computer. Online methods in signature 

verification improved the accuracy of the verification due to the dynamic properties 

of the signatures which are considered in these methods. 

A number of biometric techniques have been proposed for personal 

identification in the past. The technique can be categorized as vision-based and non 

vision-based. Among the vision-based ones are face recognition, fingerprint 

recognition, iris scanning and retina scanning. Voice recognition or signature 

verification are the most widely known among the non-vision based methods. 

Signature verification requires the use of electronic tablets or digitizers for online 

capturing and optical scanners for offline conversion. 

Signature verification is an important research area in the field of person 

authentication. The literature on signature verification is quite extensive and shows 

two main areas of research, offline and online systems. Offline systems deal with a 

static image of the signature, i.e. the result of the action of signing while online 

systems work on the dynamic process of generating the signature, i.e. the action of 

signing itself. 



Research on online signature verification systems is widespread while those 

on offline are not many. Offline signature verification is not a trivial pattern 

recognition problem when it comes to skilled forgeries. This is because, as opposed 

to the online case, offline signature lacks any form of dynamic information. In the 

past some authors have worked in simple forgeries while others have dealt with the 

verification of skilled forgeries. 

In 1999, in the field of dynamic signature verification, Tolba presented the 

first attempt to use a virtual reality glove as an input device to capture behavioral data 

from users performing their hand signature [ 1]. The acquisition data from the glove 

was based on the optical-fiber sensor situated at each fmger, which captured 256 

different positions. Results from Tolba showed 0% error rate with 100% confidence 

by combining 21 correlated features with a 6 X 10 matrix. 

Kamel, Sayeed and Ellis in [2] proposed glove-based approach to online 

signature verification. The proposed technique is based on the SVD to find r singular 

vectors sensing the maximal energy of the signature data matrix A, called principle 

subspace thus account for most of the variation in the original data. Having identified 

data glove signature through its r-principle subspace, the authenticity can then be 

obtained by calculating the angles between the different subspaces. This SVD-based 

signature verification technique reported an EER of 2.46% which demonstrate the 

good potential in their proposed technique. 

This research here will continue [2] which is using SVD technique for glove­

based online signature verification. The SVD is used to reduce the dimensionality of . 

the data glove output matrix, and extracting a number of unique features for signature 

classification (matching). In other words, the algorithm in [2] will be applied to a new 

data set, which is consisting of five to six sensors instead of fourteen sensors as in [2]. 

1.2 Problem Statement 

Handwriting is a personal biometric that is thought to be unique to an 

individual and hence can be used to identify a person. As a result, the use of 

handwritten signatures has been, from early history, a legally accepted means of 

authenticating various documents. In addition, in some criminal cases, analysis of 
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handwriting is often performed by forensic document examiners to determine the 

authorship of a questioned document. 

This work will investigate the glove base online signature verification 

technique by using SVD technique. The performance of SVD is being tested against 

three types of forgeries; skilled, casual and random forgeries. Skilled forgery is 

produced when the forger has unrestricted access to one or more samples of the 

writer's actual signatures. A casual forgery is produced when the forger is familiar 

with the writer's name, but does not have access to a sample of the actual signature. 

A random forgery can be any random scribble, a genuine signature or a high quality 

forgery for other writer. 

Figure I shows one genuine signature (on the right side) and its forger 

signature (on the left side) which can be categorized as the skilled forgeries. 

Figure I: Samples of a genuine signature and its skilled forgery 

1.3 Objectives and Scope of Stndy 

As mentioned earlier in [2] the data matrix A, has dimension of fourteen 

sensors and in the first part of this work, the performance of algorithm in [2] will be 

investigated on a different set of data. This work will also test a new feature 

classification technique namely average error distance. This technique has advantage 

over the one in [2] because it will be able to solve the problem when two subspaces 

are very close to each other. This scenario will occur if the forged signature is almost 

the same as the genuine signature. 

In the second part, the performance of the signature verification system will 

be evaluated with reduced-sensor data glove where the SVD method is applied to a 

new data matrix, A,. A similar approach as in the previous paragraph will be used in 



evaluating the reduced-sensor system. 

The scopes of study for this project are: 

• Dynamic/Online signature verification technique 

~ Data acquisition 

~ Feature extraction 

~ Matching 

~ Decision 

~ Performance evaluation 

• Concept oflinear algebra 

~ Matrix and linear transformation 

~ Vector spaces 

~ Eigenvalues an eigenvectors 

~ Orthogonal projection 

• Philosophy of SVD and its applications m signature verification 

technique 

~ Dimensionality reduction and feature extraction 

~ Conceptual relations between SVD and oriented energy 

• MATLAB programming 
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CHAPTER2 

LITERATURE REVIEW 

In this chapter, research areas topics related to this thesis are elaborated. This 

chapter can be divided into three main sections namely I) linear algebra concepts that 

is related to SVD, 2) biometric recognition systems and 3) data glove. Section 2.1 -

2.3 cover tbe fundamental concept of linear algebra. These include matrices and 

linear transformation, vector space and subspace, and eigenvalue and eigenvector. 

The general principle of biometric recognition system is covered in section 2.4 and 

signature verification is an example of such a system. These include tbe explanation 

on different classification error and method of assessing the biometric systems. 

2.1 Matrices and Linear Transformation 

The most common use of linear algebra 1s to solve systems of linear 

equations, which arise in applications to such diverse disciplines as physics, biology, 

economics, engineering and sociology. The systems of linear equations can be written 

compactly, using arrays called matrices and vectors. More importantly, tbe aritbmetic 

properties of these arrays called matrices and vectors. This section begins by 

developing the basic properties of matrices and vectors and will continue by linear 

transformation, which helps to understand the basic of linear algebra. Most of the 

materials covered in this section are obtained mainly from [3] and [4]. 

2.1.1 Matrices and Vectors 

Many types of numerical data are best displayed in two-dimensional arrays. 

For example the sold products of two bookstores from a same company in the same 

day can be represented by the following table: 
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store 

Newspaper 

Magazines 

Books 

1 

7 

16 

45 

This information can be easily represented as: [;6 ~~] 
45 45 

2 

10 

20 

45 

Such a rectangular array of real numbers is called a matrix. It is customary to 

refer to real numbers as scalars (originally from the word scale) when working with a 

matrix. 

A matrix (plural, matrices) is a rectangular array of scalars. If the matrix has m 

rows and n columns, the size of the matrix ism by n, written m x n. The scalar in the 

ith column is called the (i , ;}entry of the matrix. If A is a matrix, its (i , })-entry can 

be denoted by aij and two matrices can be equal if they have the same size and have 

equal corresponding entries. 

2.1.2 Matrix Sums and Scalar Multiplication 

Matrices are more than convenient devices for storing information. Their 

usefulness lies in their arithmetic [ 4]. A matrix addition is the operation of adding 

two matrices by adding the corresponding entries together. The sum of two m-by-n 

matrices A and B, denoted by A + B, is again an m x n matrix computed by adding 

corresponding elements. For example: 

lal 
a3 
aS 

a2] lbl b2] lal + bl 
a4 + b3 b4 = a3 + b3 
a6 b5 b6 aS + b5 

a2 + b2] 
a4+b4 
a6 + b6 

Subtraction of matrices is similar to their summation, and is possible as long 

as they have the same dimensions. A - B is computed by subtracting corresponding 

elements of A and B, and has the same dimensions as A and B. 

The scalar multiplication of a matrix A = ( aij) and a scalar r gives a product 

rA of the same size as A. The entries ofrA are given by: 

(rA)iJ = r. ail (1) 
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For example, if 

Then 

[
al a2] 

A= a3 a4 
aS a6 

[
7. al 7. a2] 

7A = 7.a3 7.a4 
7.a5 7.a6 

The power of linear algebra lies in the natural relations between operations of 

matrix addition and scalar multiplication. Properties of matrix addition and scalar 

multiplication [ 4): 

•A+B=A+B (2) 

• (A +B) + C = A + (B + C) (3) 

• A+O=A (4) 

• A+ (-A)= 0 (5) 

• (st)A = s(tA) (6) 

• s(A + B) = sA + sB (7) 

• (s + t)A =sA+ tA (8) 

2.1.3 Matrix Transpose 

The transpose of a matrix A is another matrix AT created by any one of the 

following equivalent actions: 

• write the rows of A as the columns of AT 

• write the columns of A as the rows of AT 

• reflect A by its main diagonal (which starts from the top left) to obtain AT 

Formally, the transpose of an m X n matrix A is then x m matrix 

when l5i5n,l5j5m 

Properties of the transpose [4): 

• (sA?= sA 

7 
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(12) 

2.1.4 Inverse of a Matrix and Determinant 

In linear algebra, an n-by-n (square) matrix A is called invertible or non­

singular if there exists an n-by-n matrix B such that 

AB = BA =In (13) 

where In denotes the n x n identity matrix and the multiplication used is ordinary 

matrix multiplication. If this is the case, then the matrix B is uniquely determined by 

A and is called the inverse of A, denoted by A-1
• It follows from the theory of 

matrices that if 

AB =I (14) 

for square matrices A and B, then also 

BA =I (15) 

Non-square matrices (m x n matrices for which m * n) do not have an 

inverse. However, in some cases such a matrix may have a left inverse or right 

inverse. If A is m x n and the rank of A is equal to n, then A has a left inverse: an 

m x n matrix B such that BA =I. If A has rank m, then it has a right inverse: an nxm 

matrix B such that AB = I. 

A square matrix that is not invertible is called singular or degenerate. A 

square matrix is singular if and only if its determinant is zero. The concept of 

determinant will be explained in the next few paragraphs. 

The determinant of a matrix A is denoted by I A 1- For example, for matrix 

A=[:! :~ :!] 
a7 a8 a9 

the determinant det(A) might be indicated by I A I or more explicitly as 

al a2 a3 
IAI = a4 aS a6 

a7 a8 a9 

The 2 x 2 matrix, A= [al 
a3 

a2] 
a4 

has determinant det(A) = ad - be (16) 
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For determinant of3 x 3 matrix, can be found in [4]. 

2.1.5 Identity Matrices 

In linear algebra, the identity matrix or unit matrix of size n is the n x n 

square matrix with ones on the main diagonal and zeros elsewhere. It is denoted by 

In, or simply by I if the size is immaterial or can be trivially determined by the 

context. 11 = (1] 

Iz = [~ ~] 

I3 = [~ 
0 

~] 1 
0 

In= ll !l 
The important property of matrix multiplication of identity matrix is that for 

m x nmatrixA 

(17) 

The ith column of an identity matrix is the unit vector e1 . The unit vectors 

are also the eigenvectors of the identity matrix, all corresponding to the eigenvalue I, 

which is therefore the only eigenvalue and has multiplicity n. It follows that the 

determinant of the identity matrix is I and the trace is n. 

Using the notation that is sometimes used to concisely describe diagonal 

matrices, which can be written as: 

In = diag(1, 1, ... , 1) (18) 

2.1.6 Linear Transformation 

In linear algebra, linear transformations can be represented by matrices. If Tis 

a linear transformation mapping Rn to Rm, and x is a column vector with n entries, 

then T(x) =Ax (19) 

for some m x n matrix A, called the transformation matrix ofT. 
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When S 1and S 2be subsets of Rn and Rm, respectively. A functionffrom 

S 1and S 2 , written f : 51 __. 52 , is a rule that assigns to each vector v in 51 a unique 

vector f ( v) in S 2 . The vector f ( v) is called the image of v (under fl. The set S 1 is 

called domain of a function f, and the set S 2 is called the codomain of f. The range 

off is defined to be the set of images j{v) for all v inS 1 [ 4]. As shown in Figure 2, 

both u and v have w as their image. 

J 
Sl S2 

domain 

codomain 

Figure 2: The domain, codomain and range of a function 

Besides rotation and projections, some special cased of linear transformations 

are the geometric transformations, namely, reflections, contractions and dilations. 

There are two linear transformations that deserve special attention. The first 

one is identity transformation I : Rn .__. Rn, which is defined by I (x) = x for all x in 

Rn when I is linear and its range is all of Rn. The second transformation is the zero 

transformation T0 : Rn .__. Rm, which is defined by T(x) = 0 for all x in Rn. Like 

the identity transformation, T0 is linear and its range consists precisely of the zero 

vector. Properties of the linear transformation [4]: 



• TA (u + v) = TA (u) + TA (v) 

• TA (cu) = c TA (u) for every scalar c 

• T(O) = 0 

• T( -u) = - T(u)for all vectors u in Rm 

• T(u- v) = T(u) - T(v) for all vectors u and v in Rn 

(20) 

(21) 

(22) 

(23) 

(24) 

• T(au + bv) = aT(u) + bT(v) for all vectors u and v in Rn and all 

scalars a and b (25) 

2.2 Vector Space and Subspaces 

Many concepts concerning vectors m Rn can be extended to other 

mathematical systems. A vector space in general, can be considered as a collection of 

objects that behave as vectors do in Rn The objects of such a set are called vectors. A 

vector space is a nonempty set V of objects, called vectors, on which are defined two 

operations, called addition and multiplication by scalars (real numbers). 

This material covered from section 2.2 until2.3 are obtained from [6]. Some 

of the proofing required for theorems presented here is not being reproduced in this 

report. For clarification, readers are encouraged to refer to [6] for details on the 

related theorems and their examples. 

A. Subspaces 

Vector spaces may be formed from subsets of other vectors spaces. These are 

called subspaces. A subspace of a vector space V is a subset H of V that has three 

properties: 

• The zero vector of Vis in H 

• For each u and v are in H, u +vis in H (In this case His closed under vector 

addition) 

• For each u in Hand each scalar c, cu is in H (In this case His closed under 

scalar multiplication) 

If the subset H satisfies these three properties, then H itself is a vector space. 
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Theorem 1: lfv1, ... , Vp are in a vector space V, then Span(vv ... , vp} is a subspace 

ofV. 

Span( Vv ... , Vp} is called the subspace spanned (or generated) by( Vv ... , Vp}. Given 

any subspace H of V, a spanning (or generating) set for His a set ( vv ... , vP }in H such 

that H = Span (vv ... , vp}· 

2.1. 7 Null Spaces, Column Spaces, and Linear Transformations 

The null space of an m x n matrix A, written as Nul A, is the set of all 

solutions to the homogeneous equation Ax ~ 0. In set notation, 

Nul A = ( x : xis in Rn and Ax = 0} (26) 

A more dynamic description of Nul A is the set of all x in Rn that are mapped 

into the zero vector of Rm via a linear transformation H Ax . As illustrated in 

Figure3: 

0 

Figure 3: Null space 

The term null space is appropriate because the null space of a matrix is a 

vector space as mentioned in the next theorem. 

Theorem 2: The null space of an m x n matrix A is a subspace of Rn. Equivalently, 

the set of all solutions to a system Ax = 0 of m homogeneous linear equations inn 

unknowns is a subspace of Rn. 

12 



A. The Column Space of a Matn'x 

Another important subspace associated with a matrix is its column space. 

Unlike the null space, the column space is defined explicitly via linear combination. 

The column space of an m x n matrix A (Col A) is the set of all linear combinations 

ofthecolumnsofA.IfA=[aJ ... a,], then ColA =Span {a1, .... , an}. Since Span {a1, 

.... , an}is a subspace by Theorem I, the next theorem follows from the definition of 

Col A and the fact that the columns of A are in Rm. 

Theorem 3: The column space of an m X n matrix A is a subspace of Rm. 

Recall that if Ax = b, then b is a linear combination of the columns of A. Therefore, 

ColA= (b: b =AxforsomexinRn} (27) 

B. Kernel and Range of a Linear Transformation 

Subspaces of vector spaces other than Rn are often described in terms of a 

linear transformation instead of a matrix. A linear transformation T from a vector 

space V into a vector space W is a rule that assigns to each vector x in V a unique 

vector T(x) in W, such that: 

1. T(u + v) = T(u) + T(v) 

u. T(cu) = cT(u) 

for all u, v in V (28) 

for all u in tin V and all scalars c (29) 

The kernel (or null space) of Tis the set of all vectors u in V such that T ( u) = 0. The 

range of Tis the set of all vectors in W of the form T ( u) where u is in V. 

So if T (x) = Ax, Col A =Range ofT (30) 

2.1. 8 Linearly Independent Sets; Bases 

A set of vectors {Vt,V2, .... ,vp} in a vector space Vis said to be linearly 

independent if the vector equation 

0 (31) 

has only the trivial solution c1 = 0, ... , Cp = 0. 

13 



The set { Vt,Vz, .... ,Vp} is said to be linearly dependent if there exists weights 

c1, ..... ,cp, not ali zero, such that (31) holds. In such a case, (31) is called a linear 

dependence relation among v~,v2, •••• ,vp. 

Just as in Rn, a set of two vectors is linearly dependent if and only if v * 0. 

Also, a set of two vectors is linearly dependent if and only if one of the vectors is a 

multiple of the other. And any set containing the zero vector is linearly dependent. 

Theorem 4: An indexed set {v~,v2, ...• ,vp}of two or more vectors, with v1* Q, is 

linearly dependent if and only if some vector v1 (with j > 1) is a linear combination 

of the preceding vectors v1, ... , vi_1 .The main difference between linear dependence 

in Rn and in general vector space is that when the vectors are not n-tuples, the 

homogeneous equation (30) usually cannot be written as a system of n linear 

equations. That is, the vectors cannot be made into the columns of a matrix A in order 

to study the equation Ax = 0. 

A. A Basis Set 

When H is a subspace of a vector space V. An indexed set of vectors 

f3 = {b b } in Vis a basis for Hif 
11 ... , p 

1. f3 is a linearly independent set, and 

n. H = Span {bv ... , bp}. 

A basis set is an "efficient" spanning set containing no unnecessary vectors. 

In Figure 4, the linearly independent sets {v1 , v2 } and{vv v3} to both be examples of 

basis sets or bases (plural for basis) for H, when His the plane. 

Figure 4: A basic set of plane H 



B. The Spanning Set Theorem 

A basis can be constructed from a spanning set of vectors by discarding 

vectors which are linear combinations of preceding vectors in the indexed set. 

Theorem 5 (The Spanning Set Theorem): LetS = (v1, ... , Vp} be a set in V and let 

H = Span(v1, ... , vp}· 

1. If one of the vectors in S, say vk , is a linear combination of the remaining 

vectors inS, then the set formed from S by removing vk still spans H. 

ii. If H ct ( 0}, some subset of S is a basis for H. 

2.1.9 The Dimension of a Vector Space 

A vector space V with a basis f3 containing n vectors is isomorphic to Rn 

This section shows that this number n is an intrinsic property (called the dimension) 

of the space Vthat does not depend on the particular choice of basis. 

Theorem 6: If a vector space V has a basis f3 = {b b }' then any set in V 
11 ... j p 

containing more than n vectors must be linearly dependent. 

Suppose ( u 1, •.. , Up} is a set of vectors in V where p > n. Then the 

coordinate vectors ([u1]p .... , [uP]p} are in Rn. Since p > n, {[u1]p, ... , [uPJp}are 

linearly dependent and therefore {u,. ... , up} are linearly dependent. 

Theorem 7: If a vector space V has a basis of n vectors, then every basis of V must 

consist of n vectors. 

Suppose {31 is a basis for V consisting of exactly n vectors. Now suppose f3 2 

is any other basis for V. By the definition of a basis, we know that /31 and f3 2 are 

both linearly independent sets. 
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If a nonzero vector space Vis spanned by a finite set S, then the subset of Sis 

a basis for V, by the Spanning Set Theorem. In this case, Theorem 6 ensures that the 

following definition makes sense. 

If Vis spanned by a finite set, then Vis said to be finite-dimensional, and the 

dimension of V, written as dim V, is the number of vectors in a basis for V. The 

dimension of the zero vector space {0} is defined to be 0. If Vis not spanned by a 

finite set, then Vis said to be infinite-dimensional. 

The next theorem is a natural counterpart to the Spanning Set Theorem. 

Theorem 8: Let H be a subspace of a finite-dimensional vector space V. Any linearly 

independent set in H can be expanded, if necessary, to a basis for H. Also, His [mite-

dimensional and dim H < dim V 

When the dimension of a vector space or subspace is known, the search for a 

basis is simplified by the next theorem. It says that if a set has the right number of 

elements, then one has only to show either that the set is linearly independent or that 

it spans the space. The theorem is of critical importance in numerous applied 

problems where linear independence is much easier to verifY than spanning. 

Theorem 9 (The Basis Theorem): Let V be a p - dimensional vector space, p 2 1. 

Any linearly independent set of exactly p vectors in Vis automatically a basis for V 

Any set of exactly p vectors that spans Vis automatically a basis for V. 

2.1.10 Rank 

With the aid of vector space concepts, this section takes a look inside a matrix 

and reveals several interesting and useful relationship hidden in its rows and columns. 

For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and 

then determining both the maximum number of linearly independent columns in A 

and the maximum number of linearly independent columns in AT (rows in A). 

Remarkably, the two numbers are the same. As we'll soon see, their common value is 

the rank of the matrix. To explain why, we need to examine the subspace spanned by 

the rows of A. 
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The set of all linear combinations of the row vectors of a matrix A is called the 

row space of A and is denoted by Row A. For example: 

[

-1 

A= i 
2 

-5 
-3 

3 6 ] -6 -12 
-3 -6 

and 

Row A = Span {rv r2, r3} (a subspace of R4
) 

r1 = (1, 2, 3, 6), 

r2 = (2, -5, -6, -12), 

r3 = (1, -3, -3, -6) 

While it is natural to express row vectors horizontally, they can also be 

written as column vectors if it is more convenient. Therefore Col AT = Row A. 

When the row operation is used to reduce matrix A to matrix B, linear combinations 

of the rows of A to come up with B should be taken. This process can be reduced and 

used row operations on B to get back to A. Because of this, the row space of A equals 

the row space of B. 

Theorem 10: If two matrices A and B are row equivalent, then their row spaces are 

the same. If B is in echelon form, the nonzero rows of B form a basis for the row 

space of A as well as B. 

The rank of A is the dimension of the column space of A. 

rank A = dim Col A =number of pivot columns of A = dim Row A 

rank A + dim Nul A = n (32) 

Theorem ll(The Rank Theorem): The dimensions of the column space and the row 

space of an m x n matrix A are equal. This common dimension, the rank of A, also 

equals the number of pivot positions in A and satisfies the equation rank A + dim Nul 

A= n. 

Theorem 12 (The Invertible Matrix Theorem): When A is a square n x n matrix. 

Then the following statements are equivalent to the statement that A is an invertible 

matrix: 

• The columns of A form a basis for Rn 

17 



• Col A = Rn 

• dim Col A = n 

• rankA = n 

• Nul A = {0} 

• dim Nul A = 0 

2.2 Eigenvectors and Eigenvalues 

The basic concepts presented here on eigenvectors and eigenvalues are useful 

throughout pure and applied mathematics. Eigenvalues are also used to study 

difference equations and continuous dynamical systems. They provide critical 

information in engineering design, and they arise naturally in such fields as physics 

and chemistry. For example: 

[ 0 -2] 
A= -4 2' u= GJ and 

the images of u and v under multiplication by A: 

Au= [_~ -~] [~] = [J = -2 [~] = -2u 

Av = [_~ -m-;J =[-;]*;tv 
u is called an eigenvector of A but v is not an eigenvector of A, because Av is not a 

multiple ofv. 

An eigenvector of an n x n matrix A is a nonzero vector x such that Ax = Ax 

for some scalar A. A scalar A is called an eigenvalue of A if there is a nontrivial 

solution x of = AX ; such an x is called an eigenvector corresponding to A. The set of 

all solutions to(A - ;\/)x = 0 is called the eigenspace of A corresponding to-!. 

2.2.1 Inner Product, Length & Orthogonality 

Geometric concepts of length, distance, and perpendicularity, which are well 

known for R2 and R3are defmed here for Rn. All the three notions are defmed in 

terms of the inner product of two vectors. These concepts provide powerful geometric 

tools for solving many applied problems. 
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A. The Inner Product 

The illner product or dot product of u = l~:l md v = ln· 
u·v=uT·v=[U1 Uz ... Un]l~:J=u1v1 +u2v2 + .. ·+UnVn (33) 

Theorem 1: Let u, v and w be vectors in Rn, and let c be any scalar. Then 

• u·v=v·u 

• (u+v)·w=u·w+v·w 

• (cu)·v=c(u·v) =u·(cv) 

• u·u~O,andu·u=Oifmdonlyifu=O 

Combining equations (35) and (36), one can show 

(c1u1 + ... + cpup) · w = c1 (u1 • w) + ... +cp(up · w) 

B. Length of a Vector 

For v = l~:l the length or norm ofv is the nonnegative scalar II vii defined by 

(34) 

(35) 

(36) 

(37) 

(38) 

llvll = ,fV-V = .jv~ + v~ + ... + vJ md llvll' = v · v (39) 

C. Distance in R" 

The distmce between u and v in Rn: dist (u, v) = llu- vii 

This agrees with the usual formulas for R2 and R3
. Let 

u = (u1 +u2 ) and v = (v1 + v2 ) 

Then 

u-v= (u1 -v1 ,u2 -v2 ) 

md 

dist (u, v) = llu- vii = ll(u1 - v1 , u2 - v2 )11 = .j (u1 - v1) 2 + (u2 - v2 ) 2 (40) 
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D. Orthogonal Vectors 

The concept of perpendicular lines in ordinary Euclidean geometry can also 

be extended in R". Consider R2 or R3 and two lines through the origin determined by 

vector u and v. The two lines shown below are geometrically perpendicular if and 

only if the distance from u and v is the same as the distance from u to -v. This is the 

same as requiring the squares of the distance to be the same. Now 

Similarly, 

[dist (u, v)] 2 = llu- ( -v)ll 2 = llu + vll 2 

= (u+v).(u+v) 
= u. (u + v) + v. (u + v) 

= u.u + u. v + v.u + v. v 
= llull 2 + llvll 2 + 2. u. v 

[dist (u, -v)] 2 = llull 2 + llvll 2 + 2. u. v 

(41) 

(42) 

Since [dist (u, -v)]2 = [dist (u, v)] 2, u. v = 0. Two vectors u and v are said to be 

orthogonal (to each other) if u. v = 0. Also note that if u and v are orthogonal, then 

llu + vll 2 = llull 2 + llvll 2
. 

Theorem 2 (The Pythagorean Theorem): Two vectors u and v are orthogonal if and 

only if llu + vll 2 = llull 2 + llvll 2
. 

E. Orthogonal Complements 

If a vector z is orthogonal to every vector in a subspace W of R", then z is said 

to be orthogonal to W (Figure 5). The set of vectors z that are orthogonal to W is 

called the orthogonal complement ofW and is denoted by W-"- (read as "W perp"). 

' 
L 

Figure 5: A plane and line through 0 as orthogonal complements 
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F. Row, Null and Columns Spaces 

Theorem 3: Let A be an m x n matrix. Then the orthogonal complement of 

the row space of A is the nullspace of A, and the orthogonal complement of the 

column space is the nullspace of AT (Figure 6): 

(Row A)" = Nul A, (Col A) " = Nul AT (43) 

A 

Nul A 

.Row A 

Figure 6: The fundamental subspace determined by an m x n matrix A 

2.2.2 Orthogonal Sets 

A set of vectors { u1 , u2, ••• , up} in R" is called an orthogonal set if ui. u1 * 0 

whenever i i' j. For example, for a set of vector {uv u2, u3}, where 

U1 = [ YJ, Uz = [ T j and u3 = [ ~~fj 
Then u1. u2 = 0, u1. u3 = 0, and u2 . u3 = 0. So each pair of distinct vectors 1s 

orthogonal as shown in Figure 7, and so {uv u2 , u3} is an orthogonal set. 

x, 

u, 

u, 
x, 

x, 

Figure 7: Orthogonal sets 



Theorem 4: Suppose S = { u1, u2 , ... , up} is an orthogonal set of nonzero vectors in 

R"and W, span = {u1, u2 , ... ,up} . Then Sis a linearly independent set and is 

therefore a basis for W 

If 0 = c1 u1 + c2u2 + ··· + CpUp for some scalars c1, ... , Cp , then 

0 = 0. u1 = ( c1 u1 + c2 u2 + ·· · + cpup)· u1 

= (c1u1). u1 + (c2 u2 ). u1 + ··· + (cpup). u1 

= c1 (u1 . u1) + c2 (u2 . u1) + ··· + cp(up. u1) 

= c1(u1.u1) (44) 

Since u1 * 0, u1. u1 > 0 which means c1=0. In a similar manner, c1, •.. , Cp can be 

shown to by all 0. So S is a linearly independent set. 

An orthogonal basis for a subspace W of R" is a basis for W that is also an 

orthogonal set. The next theorem suggests why an orthogonal basis is much nicer 

than other bases. 

Theorem 5: Let { u1, u2, ••• , Up} be an orthogonal basis for a subspace W of R" Then 

each y in W has a unique representation as a linear combination of u, Uz, ... , Up. In 

fact, if 

then 

A. Orthogonal Projections 

j = 1, ... ,p 

(45) 

(46) 

For a nonzero vector u in R", when y wanted to be written in R"as the the 

following 

y (multiple of u) + (multiple a vector .l to u) y+z 

' z=y-y 
y 

0 y=a< u 

Figure 8: Finding o. to make y- yorthogonal to u 
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The vector y is called the orthogonal projection of y onto u and the vector z is 

called the component of y orthogonal to u as illustrated in Figure 8. The vector y can 

be calculated using 

B. Orthonormal Sets 

~ y.u 
y=-u 

u.u 
(47) 

A set of vectors {uv u2, ... , Up} in Rn is called an orthonormal set if it is an 

orthogonal set of unit vectors. 

IfW = span{u1, u2, ... ,up}, then {u1, u2, ... , up} is an orthonormal basis for W 

Theorem 6: An m x n matrix U has orthonormal colunms if and only if ur U = I. 

Theorem 7: Let U be an m x n matrix with orthonormal colunms, and let x and y be 

in Rn. Then 

a.IIUxll = llxll 

b. (Ux) · (Uy) =X .y 

c. CUxl · (Uy) = 0 if and only if x.y = 0. 

(48) 

(49) 

(50) 

Properties (a) and (c) say that the linear mapping x,.... Ux preserves lengths and 

orthogonality. These properties are crucial for many computer algorithms. 

2.2.3 The Singular Value Decomposition 

The singular-value decomposition (SVD) of a matrix is one of the most 

elegant algorithms in numerical algebra for providing qualitative information about 

the structure of linear equations [7]. In image processing applications SVD provides a 

robust method of storing large images into a smaller and more manageable size. This 

is accomplished by reproducing the original image with each succeeding nonzero 

singular value. Furthermore, to reduce storage size even further, one may 

approximate a "good enough" image by using even fewer singular values. 

The singular value decomposition of an m x n matrix A is given by 

A= w:vr (51) 
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where U is an m x m orthogonal matrix; V an n x n orthogonal matrix, and :E an 

m x n matrix containing the singular values of A, o-1 ~ o-2 ~ , · ~ O"n ~ 0 along its 

main diagonal. 

A similar technique, known as the eigenvalue decomposition, also 

diagonalizes matrix A, but with this case, A must be a square matrix. The EVD 

diagonalizes A as 

A= UDV- 1 (52) 

where D is a diagonal matrix comprised of the eigenvalues, and Vis a matrix whose 

columns contain the corresponding eigenvectors. However, the EVD can only be 

applied to square matrixes so for non-square matrixes, we will have to use the SVD. 

The next paragraphs will show why the SVD work on m x n matrix A. 

Let assume that the SVD of A is always possible, unlike that of the EVD. The 

matrix AT A is symmetric and can be diagonalized. Working with the symmetric 

matrix AT A, then two conditions must be true; 

1. The eigenvalues of AT A will be real and nonnegative. 

2. The eigenvectors will be orthogonal. 

Now, for finding the orthogonal matrices U and V that diagonalize a m x n matrix A. 

First, if the intent is to factor A as A = m V r then the following must be true. 

(53) 

This inlplies that 1:2 contains the eigenvalues of AT A and V contains the 

corresponding eigenvectors. 

Next, is rearranging the eigenvalues of ATA in order of decreasing magnitude noting 

that some eigenvalues are equal to zero: 

Then the singular values of A is defmed as the square root of the corresponding 

eigenvalues of the matrixArA; that is, 
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a1 = ~,wherej = 1,2, ... ,n .. (54) 

After that, the eigenvectors of AT A are rearranged in the same order as their respective 

eigenvalues to produce the matrix: 

When V1 = [ Vv v2, ... , Vr] is the set of eigenvectors associated with non-zero 

eigenvalues and V2 = [vn Vr+l> Vr+Z• ... , Vnl is the set of eigenvectors associated with 

zero eigenvalues. It follows that 

(55) 

To fmd the matrix:E, let denote £ 1 as a square r x r matrix containing the 

nonzero singular values {av a2 , ... , <Ir} of A along its main diagonal. Therefore matrix 

1: may be represented by 

I:= [~1 ~] (56) 

where the singular values along the diagonal are arranged in decreasing magnitude, 

and the zero singular values are placed at the end of the diagonal. This new matrix:E, 

with the correct dimension m x n, is padded with (m - r) rows and (n- r) 

columns of zeros. 

To obtain the orthogonal matrix U, we re-write equation (51) asAV =UL. 

Expanding the left and the right side of this equation gives 

<T, 

0 

0 

Therefore, 

Av1 = qu;, wherej = 1, 2, ... , n. (57) 
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In equation (54), a1 is a scalar, v;, and u; are column vectors and matrix-vector 

multiplication results in another vector. Therefore, the vector resulting from the 

multiplication of Av1 is equal to the vector u1 multiplied by the scalar a1 . In other 

word, Av1 is a vector lying in the direction of the unit vector u1 with absolute length 

a1 . Vector Av1 can be calculated from previously found matrix V. Therefore, the unit 

vector u1, is a result of dividing the vector Av1 by its magnitude, a1 . 

Av 
u.=--; 
; a. 

J 

(58) 

Equation (54) is restricted to the first r nonzero singular values. The explanation for 

the zero singular values will be discussed later. This method will determine only part 

of matrix U. To find the other part where the singular values of A are equal to zero, 

let defined the matrix U as 

Let 

Then 

U=[U1 U,] 

A)\= A[v"· .. ,v,] 
= [Av" .. ·,Av,] 
::;: [0"1u1,. .. ,o-,u,] fromequation(57) 

(59) 

(60) 

Before proceeding to fmd the matrix U2, let consider four fundamental subspaces as 

illustrated in Figure 9. The null space of matrix A, N (A) denotes the set of all 

nontrivial (non-zero) solutions to equation Ax= 0. Using equation (54) AV2 = 0, it 

follows that V 2 forms a basis for the N(A). Also because 

Av 
1 

= Ou 1 where j = r +I, r + 2, · .. ,n 

Av. =0 
J 

v
1 

E N(A) 
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A 

R(Ar) R(A) 

r 

R" 
Rm 

m-r 

N(A} 
N(AT) 

n-r 

Figure 9: The four fundamental subspaces 

As mentioned earlier the orthogonal complement to the N(A) is the R(Ar). 

Since the columns in the matrix V are orthogonal, the remaining vectors VJ, ... , v, must 

lie in the subspace corresponding to the R(A\ From equation (58), uj = :
1 

vj, this 

equation holds the valuable information that the column vectors of U, [up"·,u,] are 

in the columnspace of A. This is because the column vectors of U are linear 

combinations of the columns of A or, in matrix notation 

uj E R(A) where j = r+ 1, r + 2, .. ·,n (62) 

It now follows that R(A) and N(Ar) are orthogonal complements. Since the matrix U 

is an orthogonal matrix and the first r column vectors of U have been assigned to lie 

in theR(A), then [u"
1

, .. ·,um] must lie in theN(Ar) which form the matrix U2. Now 

the matrix V, the matrix L, and the matrix U, the singular value decomposition has 

been found for any matrix A. 

2.4 Biometric Recognition Systems 

This section explains some general principles of biometric recognition 

systems, describes different classification errors and explains how the quality of two 

systems can be compared objectively. 
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2.4.1 Identification versus Verification 

The process of trying to fmd out a person's identity by examining a biometric 

pattern calculated from the person's biometric features is called identification. 

Identification or verification are two different modes for biometric recognition 

system. The material in this chapter is obtained from [I]. 

The real difference between Identification or verification is that, for 

identification case, the system is trained with the patterns of several persons. A 

biometric template is calculated for each of the persons, in this training stage. The 

identified pattern should be matched against every known template and be checked 

for similarity with the template. The system assigns the pattern to the person with the 

most similar biometric template. In this case a threshold value should be introduced 

to the system to prevent the error. If this level is not reached, the pattern is rejected 

but in verification case, the pattern is only compared with the person's individual 

template. It is checked whether the similarity between pattern and template is 

sufficient to provide access to the secured system or area. 

2.4.2 Thresholding (False Acceptance I False Rejection) 

In any bioidentification system, the level of similarity between patterns can be 

expressed in scores. Access to the system is granted only, if the score for a trained 

person (identification) or the person that the pattern is verified against (verification) is 

higher than a certain threshold. The sores of patterns from persons known by the 

system should be always higher than the impostors' scores, but in some systems it is 

not true in all cases. It is because however the classification threshold is chosen, some 

classification errors occur. These kinds of errors or mistakes can cause false 

acceptance or false rejection. 

For example as shown in the following figure, the belonging scores would be 

somehow distributed around a certain mean score. This is depicted in the first image 

on the left side. A gaussian normal distribution is chosen in this example. Depending 

on the choice of the classification threshold, between all and none of the impostor 

patterns are falsely accepted by the system. The threshold depending fraction of the 

falsely accepted patterns divided by the number of all impostor patterns is called 

False Acceptance Rate (FAR). 
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impo~tor 

scores 

mea1 

Figure I 0: FAR value for varying threshold and score distribution[!] 

Similar to the impostor scores, the client pattern's scores can vary· around a 

certain mean value. The mean score of the client patterns is higher than the mean 

value of the impostor patterns, as shown in the left of the following two images. If a 

classification threshold that is too high is applied to the classification scores, some of 

the client patterns are falsely rejected. Depending on the value of the threshold, 

between none and all of the client patterns will be falsely rejected. The fraction of the 

number of rejected client patterns divided by the total number of client patterns is 

called False Rejection Rate (FRR). According to the FAR, its value lies in between 

zero and one. The image on the right shows the FAR for a varying threshold for the 

score distribution shown in the image on the left. 

freq client 
scores 

I 0 
/ 

L ., 
1 • False 

/ Rejection>: 
/ .)~l'lh'\ ,: 

1 IFRR) 
0·0''-----,.,th"'res"-/h'"'o"'ld,....-=---.J-+ 

Figure II: FRR value for varying threshold and score distribution [I] 

The choice of the threshold value becomes a problem if the distributions of 

the client and the impostor scores overlap, as shown in the next image on the left. The 

value of the FAR and the FRR at overlap point is of course the same for both of them, 



is called the Equal Error Rate (EER). The lower the EER is, the better is the system's 

performance, as the total error rate which is the sum of the FAR and the FRR at the 

point of the EER decreases. In theory this works fme, if the EER of the system is 

calculated using an infinite and representative test set, which of course is not possible 

under real world conditions. To get comparable results it is therefore necessary that 

the EERs that are compared are calculated on the same test data using the same test 

protocol. 

·req. :lient 
imposbr scores 

Figure 12: EER value for varying threshold and score distribution [1] 
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CHAPTER3 

METHODOLOGY 

This chapter presents methodology of online signature verification technique. 

An overview of the signature verification system is described in section 3.1. Next, in 

section 3.2, the motivation of selecting SVD for signature verification is being 

highlighted. In section 3.3, the link between the SVD and the concept of oriented 

energy distribution is being explained. Then, in section 3.4, a method to determine 

the r-most prominent sensors (out of 14 sensors) is presented. Finally, the procedure 

of the experiment is covered in section 3.4 

3.1 Signature Verification System 

Online signature verification system involves 4 main steps; l) data acquisition 

and preprocessing (input device), 2) feature extraction, 3) matching (classification), 

and 4) decision making. Figure 11 shows the general on-line signatme verification 

process. Here, step 2-4 is implemented on MA TLAB software. The subsequent 

paragraphs explain the details on each step. 

Input device: 

Decision 
Threshold 

Figure 13: Online signature verification system [2] 

Accept 
Reject 

The input device used is data glove with 14 sensors. The data glove is a new 

measurement in the field of virtual reality environments, initially designed to satisfy 

the stringent requirements of modem motion capture and animation professionals. It 

provides ease of use, a small form factor, and multiple application drivers. The 

dynamic features of the data glove provide information on: 
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• Patterns distinctive to an individuals' signature and hand size 

• Time elapsed during the signature process 

• Hand trajectory dependent rolling 

Thus, while most input devices offer few degrees of freedom, the data glove is 

unique in offering multiple degrees of freedom in that it provides data on both the 

dynamics of the pen motion during the signature and the individual's hand shape. 

Figure 12 and Table I; show the 5DT Data Glove 14 Ultra with the location of the 

sensors. The description of data glove is given in Appendix A. 

Sensor Description 

0 
Thumb Flexure (lower joint) or (fhumb Near) 

Thumb Flexure (second joint) or (Thumb Far) 

2 
Thumb-index finger abduction or (Thumb/Index) 

3 
Index finger flexure (at knuckle) or (Index Near) 

4 
Index finger flexure (second joint) or (Index Far) 

5 
Index-middle finger abduction or (Index/Middle) 

6 
Middle finger flexure (at knuckle) or (Middle Near) 

7 
Middle finger flexure (second joint) or (Middle Far) 

8 
Middle-ring finger abduction or (Middle/Ring) 

9 Ring finger flexure (at knuckle) or (Ring Near) 

10 
Ring fmger flexure (second joint) or (Ring Far) 

]] 
Ring-little finger abduction or (Ring/Little) 

12 
Little finger flexure (at knuckle) or (Little Near) 

13 
Little finger flexure (second joint) or (Little Far) 

Figure 14: Sensor mapping for 5DT Data Glove Ultra 14 [2] 

Feature extraction: 

The features extracted from the data glove are considered as dynamic features 

as explained in the last paragraph. 

Matching: 
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Matching technique is use to measure the similarity between the claimed 

identity model and the input features. The matching technique used for this project is 

by calculating the average distance between tried signature principal subspace and the 

authentic one. This is known as structural matching. 

Decision: 

Once a similarity measure is obtained, the decision implies the computation of 

a decision threshold. If the similarity is grater than a threshold, the decision is 

ACCEPT, otherwise it is REJECT. 

3.1.1 Tools and Equipment required 

A. MATLAB Software 

MATLAB is a numerical computing environment and programming language. 

Created by The Math Works, MATLAB allows easy matrix manipulation, plotting of 

functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs in other languages. Although it is numeric only, an 

optional toolbox interfaces with the Maple symbolic engine, allowing access to 

computer algebra capabilities. The MATLAB codes used for this project are given in 

Appendix B. 

B. 5DT 14 Ultra Data Glove 

The glove used in this project is a wired glove use for virtual reality 

environments. Various sensor technologies are used to capture physical data such as 

bending of fingers. Often a motion tracker, such as a magnetic tracking device or 

inertial tracking device, is attached to capture the global position I rotation of the 

glove. These movements are then interpreted by the software that accompanies the 

glove, so any movement can be represented as numerical data. Gestures can then be 

categorized into useful information, such as to recognize sign language or other 

symbolic functions. The full description of data glove is given in Appendix A. 
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More generally, the energy EQ measured in a subspace Q c Rm is defined as 

(65) 

where PQ = (ak) denotes the orthogonal projection of {ak) into the subspace Q and 

11.11 denotes the Euclidean norm. In other words, the oriented energy of a vector 

sequence { ak}, measured in the direction q (subspace Q) is the energy of the signal, 

projected orthogonally on to the vector q(subspace Q). 

3.2.2 The Singular Value Decomposition (SVD) 

The SVD for real matrices is based upon the following theorem [4],[5]: 

Theorem 1. For any realm x n matrix A, there exists a real factorization 

A= Umxm · Smxn · V~xn (66) 

in which the matrices U and V are real orthonormal, and matrix S is real pseudo­

diagonal with nonnegative diagonal elements. 

The diagonal entries o; of S are called the singular values of the matrix A. It 

is assumed that they are sorted in non-increasing order of magnitude. The set of 

singular values { o;) is called the singular spectrum of matrix A. The columns u, and 

v, of U and V are called the left and right singular vectors of matrix A respectively. 

The space 

S~ = span[u, u2, ... , Ur] is called the r-th left principal subspace. In a similar way, 

the r-th right singular subspace is defined. Proofs of the above classical existence and 

uniqueness theorems are found in [ 13]. 

Lemma 1. The number of non zero singular values, equals the algebraic rank of the 

matrix A. 

Lemma 2. Via the SVD, any matrix A can be written as the sum of three rank-one 

matrices 

(67) 

where (u,, Oi., v,) is the i-th singular triplet of matrix A. 
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Lemma 3. Frobenius norm ofm x n matrix A of rank r 

(68) 

where Ok are the singular values of A. 

The total energy in a vector sequence { ak} associated with matrix A as defined 

in definition I, is equal to the energy in the singular spectrum. 

The smallest non-zero singular value corresponds to the distance in Frobenius 

norm, of the matrix to the closest matrix of lower rank. This property makes SVD 

attractive for approximation and data reduction purposes. 

3.2.3 Conceptual Relations between SVD and Oriented Energy) 

We are now in the position to establish the link between the singular value 

decomposition and the concept of oriented energy distribution. Define the unit ball 

UB in Rm as UB = {q = Rmlll qllz = 1}. 

Theorem 2. Consider a sequence ofm-vectors {ak}, k =I, 2, ... , nand the associated 

m x n matrix A with SVD as defined in Eq. (4) with n ,?m. Then, 

Vq E UB: if q = Lf;1 Yi· uio then 

Eq[A] = Lr.'-1 y{. a/ 

Proof. Trivial from Theorem I. 

(69) 

(70) 

The oriented energy measured in the direction of the i-th left singular vector 

of the matrix A, is equal to the i-th singular value squared. The energy in an arbitrary 

directionq is the linear combination of 'orthogonal' oriented energies associated with 

the left singular vectors. If the matrix A is rank deficient, then there exist directions in · 

Rm that contain no energy at all. 

With the aid of theorem 2, one can easily obtain, using the SVD, the 

directions and spaces of extremal energy, as follows: 
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Corollary 1. Under the assumptions of Theorem 2: 

(71) 

(72) 

(73) 

(74) 

where 'max' and 'min' denote operators, maXImlZlng or minimizing overall r­

dimensional subspaces Qr of the space Rm. Sij is the r-dimensional principal 

subspace of matrix A while (Sl]'-r/ denotes the r-dimensional orthogonal 

complement of sw-r. 
Property (71), (72), (73), and (74) follow immediately from the SVD theorem 

and from Theorem 2. In words, properties (71) and (72) relate the SVD to the 

minima and maxima of the oriented energy distribution. In fact, it can be shown that 

extrema occur at each left singular direction. 

The r-th principal subspace Sij is, among all r-dimensional subspaces of Rm 

the one that senses a maximal oriented energy (property 73). Properties (73) and (74) 

show that the orthogonal decomposition of the energy via the singular value 

decomposition is canonical in the sense that it allows subspaces of dimension r to be 

found where the sequence has minimal and maximal energy. This decomposition of 

the ambient space, as direct sum of a space of maximal and minimal energy for a 

given vector sequence, leads to very interesting rank consideration. 

By establishing this link between the oriented energy and SVD, we proved 

that the first r-left singular vectors sensing the maximal energy of glove data matrix 

A, and thus account for most of the variation in the original data. This means that 

with an m x n data matrix that is usually overdetermined with much more samples 

(columns) than channels (rows), n >> m, the singular value decomposition allows 

most of signature characteristics to be compressed into r vectors. 
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3.3 Reference Signature 

During the enrollment stage, 200 sample signatures from each writer to be 

enrolled are collected and the average distance between the principle vectors are 

computed. Based on these distance, a reference signature is selected as the one that 

presents minimal distance to the others. 

3.4 Matching 

Having modeled the signature through its principal subspaces~ in Section A, 

the authenticity of the tried signature can be determined by calculating average 

distance between the principal subspace and the reference or template signature. This 

angle is referred to as similarity factor (SF) and given in percent. A complete 

description of the singular value decomposition (SVD)-based algorithm for 

computing cosines of principal angles between two subspaccs can be found in [9], 

[10]. 

3.5 The r-most Prominent Sensors 

The previous section described a method of compressing the storage space 

required for the signature by representing the signature with r largest singular vectors. 

Using this technique, the redundancy in the data matrix, A has been reduced. In the 

next section, the q-most significant sensors (out of 14 sensors) will be used for 

feature extraction and matching. The selection of the q sensors can be obtained by 

calculation ofF value which will be explained in the succeeding paragraph. 

If the reference pattern of the j sensor of the signer p, s~J) (nT), given by 

(P)( 1 'C'N (P) ) srj nT) = iijL..i=lsij (nT (75) 

where s~) (nT) is the ;th signal of sensor j of the signer p and N is the number of 

signatures [12]. T is sampling period and n is the time index. With 14 sensor data 

glove, a 14 reference patterns are collected for each signature. 

The intra writer variance V,,~,j and the inter writer variance V;m,j of the 

signals of sensor j, are calculated as follows, 

38 



_ 'C'N '<' ( (P)( ) (P)( ))z 
VintraJ - L.i=l L.n Sii nT -Sri nT 

where s rJ ( nT) is the average reference pattern of P signers of sensor j, given as 

( ) 
1 'C'P (P) ( 

Sr1 nT = P L.P=l siJ nT) 

Next, the F value, defmed as 

p. = V inter,j 

1 V intra,j 

(76) 

(77) 

(78) 

(79) 

is used to indicate the amount of individuality provided by each sensor. The higher 

the F value is, the higher the amount of individuality provided by the sensor, and vice 

versa. 

3.6 Experiment Procedure 

In order to develop the online signature verification system a senes of 

experiments was performed on the signature database and the result of each 

experiment is analyzed. The database contained 20 genuine signature from 3 signers 

and 200 forgery signature for each signer. From here on, the genuine signature 

samples set will be referred as Genuine I, 2 and 3 while forgery signature sample set 

will be referred as Forgery I, 2 & 3. The 5-steps experiments are: 

• Step I: To calculate the energy of all 14 sensors on every genuine sample. 

The result of this experiment will be used to reduce the redundancy in the data 

matrix, A which in tum save the storage space and computational time. 

• Step 2: To calculate the average distance between singular vectors of different 

genuine signatures. This calculation is required in order to select a reference 

signature to be stored in signature verification system. 

• Step 3: To calculate the similarity factor between the reference signature 

(obtained in step 2) with all forgery signatures. Based on this calculation, the 

threshold value for the signature verification system can be determined. 

• Step 4: To determine the 7-most prominent sensors by calculating the F value. 

• Step 5: To repeat step 2 and 3 to the new database formed from step 4. 
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CHAPTER4 

RESULT AND DISCUSSION 

In this chapter, the results of the experiment for signature verification system 

are presented in two different sections. In section 4.1, the experimental results on 14-

sensor data matrix, A are presented on the calculation of oriented energy, reference 

signature and decision threshold. Next, in section 4.2, the results on reduced-sensors 

case are presented covering the calculation of reference signature and decision 

threshold. 

4.1 14- Sensors Signature Verification System 

In the first set of experiment, the technique for signature verification system 

for 14-sensor matrix is presented. It involves plotting the energy content in data 

matrix, A as a function of the number of singular vector. This will be used to reduce 

the redundancy on A which in turn reduce the storage and computational requirement 

in the signature verification system. In the second experiment, with A being 

represented with less singular vectors, the reference/template signature is being 

determined. Finally, the decision threshold for the signature verification system is 

decided based on the evaluation of similarity factor between the template signature 

and all the respective forgeries samples. 

4.1.1 Oriented Energy 

The plot of the energy content in the first 14 singular vectors of the data glove 

output matrix A is shown in Figure 15 . The graph shows that most of the signature 

energy is compressed in the first 5 singular vectors of data matrix A. In other word, it 

is sufficient to store only the first 5 singular vectors of the signature instead of storing 

all. This property is useful because it allows for a substantial reduction in the amount 

of storage space for enrollment as well as the computational time for matching. At the 
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same time, this will help reducing the differences between different attempts of the 

same signature due to the emotional state of the signing person. 

99.999 

Figure 15: Amount of energy as a function of the first 14 singular vectors 

4. I. 2 Reference Signature 
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F1gure 16: Average sumlanty factor among all genume signatures for s1gner no. 1 

Having model the signature through its 5-left-singular vectors of its data 

matrix A, the selection of reference signature from the database was done by 

calculating the average distance between singular vectors of different trials. This 

calculation result for genuine l is shown in Figure 16. From the figure, we can see 

that signature no7 can be selected as the reference because it has the highest average 

similarity factor of 77.78%. 
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4.1. 3 Decision Threshold 
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Figure 17.: Similarity factor plots for (a) Genuine I, (b) Genuine 2 

Threshold value for signers is selected based on the calculation of similarity 

factor between the reference signatures obtained in section 4.1.2 with all forgery 

signatures. Figure 17 (a-b) shows the plot of similarity factor value between the 

reference and 200 forgeries signatures for 3 signers. It is clear from the graph that if 

the decision threshold for forgery is set at any value above 70%, the proposed 

technique would recognize forgery signature with very low false acceptance rate 

(FAR) and false rejection rate (FRR). 

4.2 Reduced Sensors Signature Verification System 

In the second set of the experiment, the 7 -most prominent sensors in the data 

matrix are to be determined as a method to reduce the amount of sensor required for 

signature verification. Once the value of 7 -most prominent sensors is known the SVD 

42 

0 

'" "' '" ~ m 
lD 

,.._ 
0 s: 
lD 

,.._ 
0 
N 
~ 
m 
lD 



technique is applied to determine the reference signature and decision threshold 

value. 

4.2.1 7-most Prominent Sensors 
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Figure 18: Fvalues for 14 sensors of the data glove 

For 20 samples of genuine signature, the reference patterns are calculated for 

each sensor. Next, the intra variance and inter variance for each sensor are calculated 

and the F values for the 14 sensors are obtained as shown in Figure 18. A set of 7-

most prominent sensors (5, I, 8, 12, 10, 0, 9) arranged in decreasing F-value are 

given in Table I. The new set of data matrix A, with only 7 sensors will be used in 

the next experiment which is on selecting reference signature and threshold value. 

Table I: 7 reduced sensors of data glove 

Sensor Description F value 

5 Index-middle finger abduction I 

I Thumb flexure (second joint) 0.778428 

8 Middle-ring finger abduction 0.679025 

12 Little fmger flexure (at knuckle) 0.50505 

10 Ring finger flexure (second joint) 0.4713 

0 Thumb flexure (lower joint) 0.412622 

9 Ring finger flexure (at knuckle) 0.334443 
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4.2.2 Reference Signature 
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Figure 19.:Figure 16. Average similarity factor among all genuine signatures for 

signer no. 1 

By reducing the sensors, the size of the reduced data matrix, A, is equal to m X 7. 

The selection of reference signature from the database was done as in section 4.1.2, 

that is, by calculating the average distance between singular vectors of different trials. 

This calculation result for genuine 2 is shown in Figure 19 which shows that 

signature 12 can be selected as the reference because it has the highest average 

similarity factor of 88.89%. The lower value of similarity factor is expected because 

as we physically reduced the data matrix by removing 7 sensors, we are at the same 

time throwing away some information content of A. 

4.2.3 Decision Threshold 
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Figure 20: Similarity factor plots for (a) Genuine 1, (b) Genuine 2 

The value of decision threshold for the reduced sensors experiment is equal to 75% as 

shown in Figure 20. The threshold is expected to be higher than in section 4.1.3 for 

the same reason mentioned in the last section, that is, the reduced sensors data, A, 

carry less information than the original A. 
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CHAPTERS 

CONCLUSION AND RECOMMENDATION 

This chapter summarized the finding of this work and give reconunendation 

on further work in this area. 

5.1 Conclusion 

An approach to signature verification problem with data glove as input device 

to online signature verification system is presented. The technique is based on the 

singular value decomposition in finding a set of singular vectors sensing the 

maximum energy of the signature. This limited set of vectors is referred to as the 

principal subspace of data glove output matrix A and used to model the signature. The 

average distance between the different principal subspaces is used for signature 

classification. In the first experiment, the optimal value of r as a compromise between 

the reduced dimensionality and truncated energy of matrix A was found. Next, the 

decision threshold is sought and the value of 70% for the similarity factor was found 

to give sufficiently low FRR and FAR. In the second experiment, we attempted to test 

the performance of the signature verification system by reducing the number of 

sensors in the data glove by half. The selection of 7 most prominent sensors was done 

based on the calculation ofF- value for each sensor. Next the decision threshold is 

sought and the value of 1.8% EER was found to give sufficiently low FRR and FAR. 

This work has demonstrated the effectiveness of data glove as an input device 

for the system. The system has the potential to offer a high level of security for 

special applications, including banking and electronic conunerce. Off course, to 

reduce the cost of the glove, the number of sensors on the data glove can be reduced 

without affecting its performance in signature verification. This will result in lower 

cost of the system and make it available for the average consumer. 

5.2 Recommendation 

In this work, we tested the performance of the signature verification system 

with the data glove sensors being reduced to half. The performance of the system can 

be further experimented by evaluating it at difference number of reduced sensors. 
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From this test, the optimum number of sensors required for signature verification 

system can be determined which will reduce the cost of the system without affecting 

its performance. 
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APPENDIX A 

DATA GLOVE 

Expensive high-end wired gloves can also provide haptic feedback, which is a 

simulation of the sense of touch. This allows a wired glove to also be used as an 

output device. Traditionally, wired gloves have only been available at a huge cost, 

with the finger bend sensors and the tracking device having to be bought separately. 

Concerned about the high cost of the most complete commercial solutions, 

Pamplona et al. propose a new input device: an image-based data glove (IBDG). By 

attaching a camera to the hand of the user and a visual marker to each fmger tip, they 

use computer vision techniques to estimate the relative position of the finger tips. 

Once they have information about the tips, they apply inverse kinematics techniques 

{ GirardMaciejewski 1985} in order to estimate the position of each fmger joint and 

recreate the movements of the fingers of the user in a virtual world. Adding a motion 

tracker device, one can also map pitch, yaw, roll and XYZ-translations of the hand of 

the user, (almost) recreating all the gesture and posture performed by the hand of the 

user in a low cost device. 

One of the first wired gloves available to home users was the Nintendo Power 

Glove. This was designed as a gaming glove for the Nintendo Entertainment System. 

It had a crude tracker and finger bend sensors, plus buttons on the back. In 200 I, 

Essential Reality made a similar attempt at a cheap gaming glove, this time for the 

PC: the P5 Glove. However, this peripheral never really became popular among 

garners. Ironically, even specialized stores are now selling the older and less 

performant Power Glove for a higher price than the more sophisticated P5 Glove. 

Wired gloves are often called "datagloves" or "cybergloves", but these two 

terms are trademarks, belonging to Sun Microsystems (which acquired the patent 

portfolio ofVPL Research Inc. in February 1998) and Immersion Corporation (which 

acquired Virtual Technologies, Inc. and its patent portfolio in September 2000) 

respectively. 

An alternative to wired gloves is to use a camera and computer vision to track 

the 3D pose and trajectory of the hand, at the cost of tactile feedback. 
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5DT Data Glove 

The 5DT Data Glove Ultra has been designed to satisfy the stringent 

requirements of modern Motion Capture and Animation Professionals. It offers 

comfort, ease of use, a small form factor and multiple application drivers. The high 

data quality, low cross-correlation and high data rate make it ideal for realistic real 

time animation. 

Features: 

• Advanced Sensor 

This new range of data gloves from 5DT features a completely redesigned sensor 

technology. The new sensors make these gloves more comfortable and give more 

consistent data across a large range of hand sizes. Cross-correlation has been reduced 

significantly. 

• Bluetooth Wireless Option 

A wireless option is available, based on the latest Bluetooth technology for high 

bandwidth, wireless connectivity up to a range of 20m. The wireless kit can run for 8 

hours off a single battery pack. The battery pack can be exchanged in seconds when 

necessary. 

• 5 and 14 Sensor Gloves Available 

The 5DT Data Glove Ultra range is available in a 5 sensor and 14 sensor 

configuration with a host of options such as right- and left-handed versions. 

• Cross-Platform SDK 

The glove SDK is available for Windows as well as Linux and UNIX. It is also 

possible to interface the glove without the SDK since it has an open-source 

communications protocol. 

• Interface Options protocol 

The Ultra range of data gloves now comes standard with a USB interface, eliminating 

the need for an external power supply. An open-source, open-platform serial interface 

is available for workstation or embedded applications. 

• Wide Application Support 

The 5DT Data Glove is now supported in most of the 

leading 3D modeling and animation packages. 
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APPENDIXB 

MATLAB CODING 

The MA TLAB software was the most important software which used in this 

work, for calculating SVD. The data from data glove is a matrix in n x 14 dimension, 

n is the sampling time which differs from signature by signature, for example one 

signature's data is shown in the Table 5 which has dimension as 61 x 14. 

Table 2: Data generated by data glove 

Glove 1 Glove 1 Glove 1 Glove 1 Glove 1 Glove 1 Glove 1 Glove 1 Glove 1 Glove 1 
lndex/Midt Middle Ne< Middle Far Middle/Rin Ring Near 

Glove 1 Glove 1 Glove 1 Glove 1 
Thumb N•" Thumb Far Thumb/lnd Index Near Index Far 

566 1511 1845 1222 2124 

566 

567 
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568 

568 

567 

568 

569 

570 
570 

57> 

57> 

57> 

57> 

572 

573 
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57> 
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57> 

57> 

57> 

57> 

57> 
57> 
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1846 
1847 
1848 

1849 

1851 

1851 
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1249 
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1230 
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1219 
1218 
1218 
1218 
1218 
1217 
1217 
1219 
1219 
1218 
1217 
1216 
1213 
1213 
1212 
1211 
1211 
1211 
1211 
1212 

2124 
2123 
2124 
2123 
2123 
2122 
2122 
2122 
2122 
2122 
2123 
2123 
2125 
2126 
2128 
2135 
2137 
2140 
2143 
2145 
2149 
2151 
2152 
2153 
2154 
2154 
2154 
2154 
2153 
2151 
2145 
2141 
2138 
2136 
2135 
2134 
2133 
2133 
2133 
2133 
2133 
2133 
2133 
2133 
2134 
2135 
2135 
2136 
2137 
2138 
2138 
2138 
2139 
2140 
2140 
2140 
2140 
2140 
2140 
2140 

2734 1465 1679 2736 1917 
2736 
2736 
2736 
2736 
2736 
2736 
2736 
2736 
2737 
2737 
2737 
2737 
2737 
2741 
2743 
2750 
2751 
2752 
2752 
2752 
2753 
2754 
2755 
2757 
2757 
2758 
2758 
2758 
2757 
2755 
2755 
2755 
2757 
2758 
2754 
2753 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2752 
2753 
2753 
2753 
2753 
2753 
2753 
2753 
2753 
2753 

1464 
1463 
1461 
1459 
1457 
1456 
1455 
1453 
1451 
1449 
1448 
1447 
1446 
1443 
1443 
1444 
1445 
1445 
1446 
1446 
1447 
1448 
1449 
1449 
1449 
1449 
1449 
1449 
1449 
1447 
1446 
1447 
1447 
1446 
1444 
1443 
1442 
1440 
1439 
1439 
1437 
1437 
1435 
1434 
1433 
1432 
1431 
1431 
1431 
1432 
1433 
1433 
1434 
1434 
1435 
1435 
1435 
1434 
1434 
1435 
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1678 
1677 
1676 
1676 
1675 
1674 
1673 
1672 
1672 
1672 
1672 
1671 
1672 
1672 
1674 
1678 
1680 
1682 
1684 
1686 
1689 
1691 
1693 
1694 
1696 
1696 
1697 
1697 
1696 
1695 
1692 
1688 
1684 
1683 
1681 
1680 
1679 
1679 
1678 
1677 
1677 
1676 
1676 
1675 
1676 
1677 
1678 
1679 
1681 
1682 
1683 
1683 
1685 
1685 
1685 
1685 
1686 
1686 
1686 
1686 

2736 
2736 
2736 
2736 
2737 
2737 
2738 
2739 
2740 
2742 
2744 
2745 
2745 
2742 
2740 
2737 
2736 
2736 
2736 
2736 
2736 
2735 
2731 
2731 
2729 
2728 
2729 
2729 
2731 
2735 
2736 
2736 
2737 
2739 
2744 
2746 
2746 
2748 
2749 
2750 
2750 
2751 
2751 
2751 
2752 
2751 
2749 
2741 
2737 
2737 
2736 
2736 
2732 
2728 
2728 
2727 
2726 
2725 
2726 
2726 

1916 
1915 
1914 
1913 
1911 
1910 
1910 
1909 
1907 
1905 
.1904 
1903 
190.1 
1900 
1899 
1899 
1899 
1900 
.1900 
1901 
1903 
1905 
1905 
1906 
1906 
1907 
1907 
1908 
1908 
1909 
1909 
1909 
1909 
1909 
1909 
1908 
1907 
1906 
1905 
1905 
1904 
1903 
1901 
1901 
1900 
1899 
1898 
1898 
1899 
1899 
1900 
1900 
1900 
1901 
1902 
1902 
1902 
1902 
1902 
1903 

Ring Far 
2138 
2138 
2138 
2139 
2139 
2139 
2138 
2138 
2138 
2138 
2138 
2138 
2137 
2137 
2137 
2138 
2140 
2141 
2142 
2144 
2145 
2147 
2148 
2150 
2151 
2152 
2152 
2152 
2152 
2152 
2152 
2151 
2149 
2147 
2145 
2:144 
2143 
2143 
2143 
2142 
2142 
2141 
2140 
2140 
2140 
2140 
2140 
2140 
2141 
2142 
2142 
2143 
2144 
2144 
2145 
2145 
2146 
2146 
2146 
2146 
2147 

Ring/Little 
3141 
3140 
3138 
3136 
3135 
3135 
3135 
3:135 
3134 
3132 
3129 
3128 
3128 
3126 
3124 
3122 
3122 
3124 
3126 
3127 
3129 
3130 
3133 
3133 
3134 
3134 
3134 
3135 
3135 
3135 
3135 
3135 
3135 
3133 
3133 
3:130 
3128 
3124 
3120 
3120 
3120 
3120 
3119 
3112 
3108 
3105 
3103 
3103 
3103 
3103 
3106 
3109 
3112 
3120 
3120 
3121 
3128 
3130 
3131 
3133 
3133 

Little Near Little Far 
1698 1900 
1698 1900 
1698 1901 
1698 1902 
1697 
1696 
1696 
1696 
1696 
1695 
1694 
1694 
1694 
1694 
1694 
1695 
1696 
1696 
1697 
1697 
1698 
1699 
1699 
1700 
1700 
1700 
1700 
1700 
1700 
1699 
1698 
1695 
1692 
1689 
1688 
1687 
1687 
1687 
1687 
1687 
1688 
1688 
1688 
1688 
1688 
1689 
.1689 
1689 
1690 
1691 
1692 
1694 
1695 
1697 
1699 
1701 
1702 
1704 
1705 
1705 
1706 

1903 
1902 
1901 
1901 
1902 
1901 
1900 
1901 
1903 
1904 
1905 
1905 
1909 
1911 
1914 
1915 
1918 
1923 
1925 
1927 
1927 
1928 
1929 
1929 
1929 
1929 
1927 
1922 
1912 
1906 
1903 
1903 
1903 
1903 
1903 
1903 
1903 
1902 
1902 
1901 
1901 
1900 
1899 
1900 
1902 
1905 
1908 
1910 
1910 
1912 
1913 
1915 
1917 
1919 
1921 
1923 
1.924 



In SVD matrices, the right singular vector was the matrix that is used for 

signature verification. The right singular vector can be calculated by inserting the 

signature data as a matrix to MA TLAB command window, such as a=[the data], next 

for finding SVD, the following codes shall be written command window: 

» [al,a2,a3]=svd(a); 

>>a3 

a3 = 

-0.0756 0.0099 -0.0993 -0.0371 0.5495 0.0857 0.2169 -0.3239 -0.1243 0.0129 -0.3657 0.5576 -0.1794 0.1707 

-0.2021 0.3110 -0.1795 -0.1879 -0.0258 0.3870 0.2618 0.2783 -0.5837 -0.1825 0.3372 0.0731 0.0707 -0.0222 

-0.2470 0.7353 0.2132 0.3076 0.3188 -0.0577 -0.3132 0.1146 0.0859 0.1019 -0.0689 -0.1257 -0.0275 -0.0542 

-0.1630 0.3088 0.1912 0.181! -0.5704 -0.1993 0.4768 -0.3991 -0.0596 0.0265 -0.0889 0.0453 -0.2037 0.0354 

-0.2838 0,0781 -0.3465 -0.0056 -0.1633 amos -0.1939 -0-0297 0.3296 -0.4810 0.0146 -0.0048 -0.0513 0.6167 

-0.3653 -0.1411 -0.3993 0.1514 -0.1205 -0.0635 -0.4501 -0.3889 -0.2221 0.3173 0,2776 0.1333 -0.0744 -0.2037 

-0.1918 -0.0680 0.5351 -0.0645 -0.0636 0.4038 -0.1093 -0.2870 0.1874 -0.0160 0.2038 0.2701 0.5055 0.0359 

-0.2235 0.0451 -0.1863 -0.1519 -0.1774 0.2795 -0.0345 0.0516 0.2678 -0.2764 -0.4434 0.0629 -0.0412 -0.6530 

-0.3638 -0.3772 0.040 0.6847 0.1618 -0.0771 0.2904 0.2529 0.0202 -0.2151 0.0877 0.0250 0.0879 -0.1083 

-0.2531 -0.1862 0.2078 -0.0496 -0.0731 0.4521 0.0215 0.2519 0.1533 0.4248 -0.0006 -0.0738 -0.5859 0.1715 

-0.2848 -0.0814 -0.077 -0.0353 -0.0577 0.0598 0.0766 0.0254 -0.2179 0.3477 -0.5381 -0.3600 0.4821 0.2424 

-0.4154 -0.1805 0.4055 -0.3955 -0.0113 -0.4730 -0.2225 0.1639 -0.2848 -0.2331 -0.1145 0.0784 -0.1383 0.0072 

-0.2252 -0.0540 0.0062 -0.2520 0.3956 0.0147 0.2588 -0.4323 0.1261 -0.1333 0.2358 -0.5983 -0.1007 -0.1221 

-0.2538 0.1239 -0.2169 -0.3054 0.0462 -0.3345 0.3138 0.2572 0.4469 0.3565 0.2420 0.2672 0.2063 -0.0429 

After finding right singular vectors for the specific signatures that we 

want to measure their similarity factor, we shall save their right singular vectors in an 

M-file and then apply the cosine value between them, such as following M-file: 

echo off 
clear all 
close all 

a=[-0.1194 -0.5598 -0.6836 0.1954 0.2068 -0.3289 0.1258 
-0.2831 0.3363 -0.3510 -0.7952 0.1088 -0.1778 0.0883 
-0.3497 0.3652 -0.3732 0.3102 -0.6881 0.0949 0.1623 
-0.5077 -0.0962 -0.0179 0.0101 0.3800 0. 72 54 0.2491 
-0.5002 0.3604 0.2232 0.4085 0.4067 -0.4596 0.1628 
-0.4084 -0.4454 0.1541 -0.0897 -0.3108 0.0663 0.7086 
-0.3295 -0.3204 0.4430 -0.2414 -0.2558 -0.33070.5995]; 

b=[-0.1184 -0.2679 -0.7534 0.2602 0.3833 -0.3120 0.1860 
-0.2784 0.4783 -0.2557 -0.7547 0.1907 -0.1285 0.0766 
-0.3510 0.4366 -0.3740 0.3479 -0.6310 0.1634 0.0217 
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-0.5094 -0.1530 
-0.4994 0.3053 
-0.4099 -0.4933 
-0.3292 -0.3858 

C=[-0.1198 -0.3981 
-0.2827 0.4397 
-0.3448 0.4096 
-0.5080 -0.0557 
-0.5037 0.2670 
-0.4080 -0.5786 
-0.3296 -0.2668 

d= [-0.1213 -0.3046 
-0.2845 0. 5073 
-0.3455 0.4272 
-0.5095 -0.1350 
-0.4981 0.2612 
-0.4093 -0.5562 
-0.3314 -0.2676 

s = 5; % nuwber of 
singular matrix 

U1 
U2 

for u 

a; 
b; 

% 
9,s 

l:s 

U1 can be 
U2 can be 

0.0770 
0.4387 

-0.0490 
0.1622 

-0.5601 
-0.7255 

0.1321 
0.0299 
0.3581 
0.1083 

-0.0399 

0.1772 
0.7817 

-0.2374 
-0.0408 
-0.5025 

0 .1213 
0.1797 

subspaces, 

ass:i.gr1.ed t:.o 
assigned to 

-0.0186 0. 2 902 0.7001 0.3695 
0. 3 962 0.3379 -0.4332 0.0783 

-0.1014 -0.1049 0. 03 64 0.7507 
-0.2723 -0.4574 -0.42470.5028]; 

0.6669 -0.0899 0.2350 0.0734 
-0.3054 0.1956 -0.1128 0.2369 

0.2111 -0.7929 -0.0227 0.1491 
0.0061 0.0806 -0.4879 0.7024 
0.3292 0.5250 0.3677 0.1660 

-0.1425 -0.0211 -0.3509 0.5857 
-0.5373 -0.2061 0.65960.2287]; 

-0.8248 0.1509 -0.3913 0.0708 
0. 0377 0.1767 0. 0119 0.1333 

-0.3287 -0.7236 0.0676 0.0748 
-0.0557 0.1894 0.5468 0.6185 

0.1039 0.5010 -0.3433 0.2269 
0.0867 -0.1205 0.2688 0.6435 
0.4345 -0.3479 -0.59410.3514]; 

the first 5 singular vectors in each 

any of the vect.o_rs a.bove 
any of the vectors above 

d Ul (: , u) . 1 *U2 (: , u) ; 9.> d is the inner pr:oduct of Ul a.nd U2 
Dl sqrt (sum(Ul (: ,u). "2)); % D:1. is the No·rm of Ul 
D2 sqrt(sum(U2(:,u) ."2));% D2 is the Norm of U2 
dis(u) = d/( Dl*D2); % dis(u)measures the cosine value between 

two singular matrix 
end 
x = mean(abs(dis) )*100 % x equals to the mean value of dis(u)by 100 
times 
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