240VAC TO 110VAC VOLTAGE CONVERTER

By

IRMAN BAKTI BIN ALIAS

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme In Partial Fulfillment of the Requirements For the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

> Universiti Teknologi Petronas Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

© Copyright 2005 by Irman Bakti Bin Alias, 2005

it TK 27996 JES 2005 i) Electric current converted 2) Electric circuity i) i = e - their

CERTIFICATION OF APPROVAL

240VAC TO 110VAC VOLTAGE CONVERTER

by

IRMAN BAKTI BIN ALIAS

A project dissertation submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

Approved:

Mr. Lo Hai Hiung

Project Supervisor

Lo Flac Many Lecturar Elektrik & Elektronik Engineering Universiti Teknologi Petronas 31750 Tronoh Perak Darul Ridzuan, MALAYSIA Tel: 95-368 7842 Fak: 05-366 7843 Email: 10_habbung@petronas.com.my

December 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Irman Bakti Bin Alias

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere thanks to my supervisor Mr. Lo Hai Hiung, who has guided me in completing this project. Your supervision and leadership has been great in directing me through the correct path in completing this project. Additionally I would like to express my special thanks to Mr. Norzaihar Yahya who has guided me through the process in completing this project. I am also grateful to thanks all technicians who I worked with either directly or indirectly involve in this project. They had been kind and helpful in assisting me to carry out my work, and also in sharing their knowledge and experiences with me. I would also like to thank Universiti Teknologi PETRONAS (UTP) by providing the facilities such as internet services, information, books and also budget for this project. In addition my thanks also go to my parent who has supported me without any sign of exhaustion in doing this project. Thanks also to my friends who have help me to get information and help me throughout this period. The support and encouragement from the people above will always be a pleasant memory throughout our life.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURESix
LIST OF ABBREVIATIONSx
CHAPTER 1 INTRODUCTION I
1.1 Problem Statement 1
1.2 Project Objectives
1.3 Scope of Work
CHAPTER 2 LITERATURE REVIEW
2.1 AC-to-DC Converter (Rectifier)
2.2 DC to DC Converter (Regulator) 4
2.3 DC-to-AC Converter (Inverter)
5
2.4 Transformer
CHAPTER 3 METHODOLOGY
3.1 PCB Design
CHAPTER 4 CONCEPTUAL DESIGN
4.1 Calculation 11
4.1.1 Rectifier circuit (AC-to-DC)11
4.1.2 Boost converter (DC to DC)12
4.1.3 Half bridge inverter (DC-to-AC)
CHAPTER 5 RESULTS
5.1 Simulation
5.1.1 Electronic Workbench (EWB)14
5.1.2 CADENCE PSpice
5.2 PCB Layout
5.3 Experimentation Setup 22
5.4 Cost Analysis25
CHAPTER 6 DISCUSSION AND CONCLUSION
6.1 Discussion
6.2 Conclusion

ABSTRACT

The main task of this final year project is to design a household 240VAC to 110VAC voltage converter. This converter should be able to supply up to 400 Watts of power, enough to power up a normal household appliances such as vacuum cleaner. A voltage regulator must be included in the design to ensure the protection of any household appliances that uses this converter. This is important to ensure user safety when operating this converter and to protect the equipments that use this converter. The idea of designing this particular converter is by combining an AC-to-DC converter with a DC-to-AC inverter. Thus, the design must be reliable and efficient in term of power conversion. The cost of the design should be minimized since this type of converter is available in the market but the price is quite expensive. The main concern in this design is to minimize the cost needed to build this converter while maintaining its performance.

REFERENCES	. 28
APPENDICES	29

Table 1 Cost Analysis

22

LIST OF FIGURES

Figure 1	Bridge Rectifier	3
Figure 2	Buck Converter	4
Figure 3	Boost Converter	4
Figure 4	Buck Boost Converter	5
Figure 5	Transformer	6
Figure 6	Half Bridge Inverter	9
Figure 7	ICL8038	10
Figure 8	UC3825	10
Figure 9	Voltage Divider	11
Figure 10	Buck Boost Converter Circuit (EWB)	14
Figure 11	Buck Boost Converter Output (EWB)	15
Figure 12	Half Bridge Inverter Circuit (EWB)	15
Figure 13	Half Bridge Inverter Output (EWB)	16
Figure 14	Full Bridge Rectifier Circuit	17
Figure 15	Full Bridge Rectifier Output	17
Figure 16	Boost Converter Circuit	18
Figure 17	Boost Converter Output	18
Figure 18	Half Bridge Inverter Circuit	19
Figure 19	Half Bridge Inverter Output	19
Figure 20	Combination Circuit	20
Figure 21	Combination Circuit Output	20
Figure 22	Software PCB Layout	21
Figure 23	Actual PCB Layout	21
Figure 24	Prototype Layout	22
Figure 25	Testing the prototype	22
Figure 26	Main circuit during testing	23
Figure 27	Inverter circuit operation	24
Figure 28	Output Comparison	24

LIST OF ABBREVIATIONS

AC	-	Alternate current
BJT	-	Bipolar junction transistor
DC	-	Direct current
EWB	-	Electronic Workbench
IC	-	Integrated circuit
MOSFET	-	Metal-Oxide-Semiconductor Field-Effect-Transistor
PCB	-	Printed circuit board
PWM	-	Pulse width modulation
TNB	-	Tenaga Nasional Berhad
US	-	United States
UTP	-	Universiti Teknologi PETRONAS

CHAPTER 1 INTRODUCTION

Power processing has always been an essential feature for most electrical appliances. Differences in voltage and current requirements for different applications have led to design of dedicated power converters to meet those specific requirements. These power conversion devices are widely available in the market. There are 4 types of power conversion devices available in markets, which are AC-to-DC converter, DC-to-AC converter and DC to DC converter.

1.1 Problem Statement

Alternate current (AC) source is the most commonly used as an electrical source to power up most electrical appliances. In Malaysia, normal power source supplied by Tenaga Nasional Berhad (TNB) is a single-phase 240V 50Hz. Even though the main supply is from an AC source, some of electrical appliances have its own operating current and temperature. Therefore, the AC supply sometimes need to be manipulated to certain level or even rectify to direct current (DC) source to power up household appliances.

Normal household appliances have a different operating current and voltage. The main reason this 240VAC to 110VAC converter design is to satisfy the requirements of those appliances, which rated at 110VAC. This converter operates at lower level of current and voltage compare to normal power point available that supply 240VAC with 13 Amperes of current. Lower current produce in this particular converter is to ensure the safety of home user when operating those household appliances.

Since this type of converter is already available in the market, the main task is basically to reduce cost consumption in designing this type of voltage converter. The requirement in designing this converter is to be able to supply up to 400 Watts of power with a regulator to protect the equipments from any damage. The main usage of this converter is to power normal household appliances such as vacuum cleaner.

1.2 Project Objectives

The main objectives of this project are:

- To design a reliable 240VAC to 110VAC converter.
- To minimize cost in this converter.
- To ensure the converter able to supply up to 400W.

1.3 Scope of Work

This design involves several topics in power electronics field that need to be concerned. This design includes simulating and designing a converter, which uses a transformer as a voltage step up or step down and a combination of more than one type of voltage converter. The limitation in conducting this project is basically cost, time and knowledge. The prototype will be constructed by using fund provided by Universiti Teknologi PETRONAS.

CHAPTER 2 LITERATURE REVIEW

Block diagram below shows the combination of AC-to-DC converter with DC-to-AC converter in a power electronic circuit to form an voltage converter. [1]

2.1 AC-to-DC Converter (Rectifier)

Figure 1: Bridge Rectifier

Rectifier circuit is normally used in power supply design. There were 3 types of AC-to-DC converter, which are half wave, full wave and bridge rectifier circuit. In this particular design, bridge rectifier circuit is most widely used in AC-to-DC converter. Figure 1 above shows the bridge rectifier circuit. In this rectifier circuit, a regulator circuit needs to be used to ensure voltage stability for safety purpose.

2.2 DC to DC Converter (Regulator)

There are three types of DC-to-DC converter which are buck converter, boost converter and buck boost converter.

Figure 2: Buck Converter

Buck converter circuit is normally used to step down the dc voltage (V_{IN}) in the circuit by controlling the duty cycle, D of the switching devices. Buck converter provides control for duty cycle less than 0.5.

Figure 3: Boost Converter

Boost converter circuit is normally used to step up the dc voltage supply (V_{IN}) in the circuit by controlling the duty cycle, D of the switching devices. Boost converter provides control for duty cycle more than 0.5.

Figure 4: Buck Boost Converter

Buck Boost converter can perform either buck or boost operation with inverted polarity at the output voltage. The performance of the circuit can be change by controlling the switching devices duty cycle, D by using PWM controller.

2.3 DC-to-AC Converter (Inverter)

Inverter circuits have 3 types of configurations, which are biphase, half bridge and full bridge. This kind of circuit use fixed source of DC to produce symmetrical AC output voltages at fixed or variable frequency and magnitude. The frequency of the AC output can be controlled by the switching speed of the inverter circuit. [2]

2.4 Transformer

Transformer is used normally to step up or step down the voltage or current from an AC source.

Figure 5: Transformer

Figure 2 shows the basic schematic symbol for the transformer. Note that it has two windings, the primary and the secondary. The input voltage is applied to the primary winding and the output voltage is taken from the secondary winding. The vertical lines between the windings represent an iron core transformer. Since the flux is constant for primary and secondary windings, the induced voltages will be proportional to the number of turns. Therefore,

 $\frac{V2}{V1} = \frac{N2}{N1}$ [1]

Wł	nere;
	VI = Primary voltage
	V2 = Secondary voltage
	N1 = Primary turns
	N2 = Secondary turns

Note that transformer chosen must fulfill the rated VA (apparent power). [4]

CHAPTER 3 METHODOLOGY

Procedure

3.1 PCB Design

MicroSim PCBoards was used to design a PCB layout. Then, the layout was transferred to Gerber file before submitted to the lab technician for PCB fabrication.

CHAPTER 4 CONCEPTUAL DESIGN

For AC-to-DC side, bridge rectifier (as shown in Figure 1) was selected as the suitable converter to be used in this project. For protection purposes, a fuse is added to separate a direct contact between the AC source and the transformer.

Boost regulator circuit (as shown in Figure 3) was selected to be the most suitable regulator in this project since this circuit can sustain high current. Previously, buck boost regulator was chosen but due to difficulty to find inductor for the circuit, boost converter was chosen in this project. The maximum and minimum current difference between those two regulators made the boost converter more relevant to be used in this project.

* •	,		
•	- 1 v v	•	
•			

Figure 6: Half Bridge Inverter

A half bridge inverter circuit was chosen in this design. It was because this type of inverter is suitable for low power design, which is categorized below 800W. [3]

PWM using IC was chosen to be use in this project. One of the suitable IC's for this method was ICL8038. Below is one of the IC's that can be used as PWM.

Figure 7: ICL8038

Set R_A equal to R_B for a regular triangle wave (equal rising and falling edges). The frequency of the triangle wave is $f = \frac{0.33}{R \times C}$

The capacitor value should be chosen at the upper end of its possible range. The waveform generator can be operated either from a single power supply (10V to 30V) or a dual power supply (+/-5V to +/-15V). The triangle wave swings from 1/3 of the supply voltage up to 2/3 of the supply voltage, so on a +12V single supply it would swing from 4V to 8V. [6]

As for the PWM controller, UC3825 was used in the boost converter circuit.

Figure 8: UC3825

The UC3825 provided closed loop operation through a proportional integral negative feedback from the output bus voltage to provide output voltage regulation. Figure 9

outlines how the voltage divider feedback functions in the boost circuit except in a simple form. R_1 and R_2 were chosen such that V_{out} would be 5.1V. The PWM will control the MOSFET by referring to the feedback in voltage mode. The value of Rt

and Ct will be chosen as frequency, $f = \frac{1}{Rt \times Ct}$

Figure 9: Voltage Divider

4.1 Calculation

4.1.1 Rectifier circuit (AC-to-DC)

*1.1V voltage drop across bridge rectifier

$$V_{L} = V_{O} \times 1.414 - 1.1V$$
$$= 60 \times 1.414 - 1.1V$$
$$= 83.75 V [5]$$

$$D = 1 - \frac{Vin}{Vout}$$

$$= 1 - \frac{83.75}{100}$$

$$= 0.1625$$

$$L_{CRI} = \frac{R(1-D)^2 D}{2f}$$

$$= \frac{22 \times (1-0.1625)^2 \times 0.1625}{2 \times 100k}$$

$$= 12.54uH$$

$$L = 100^* L_{CRIT} \sim 1.254mH$$

$$= 1mH$$

$$IL_{MAX} = Vin \times \left(\frac{1}{R(1-D)^2} + \frac{D}{2fL}\right)$$

$$= 83.75 \times \left(\frac{1}{22 \times (1-0.1625)^2} + \frac{0.1625}{2 \times 100k \times 1m}\right)$$

$$= 5.495A$$

$$IL_{MIN} = Vin \times \left(\frac{1}{R(1-D)^2} - \frac{D}{2fL}\right)$$

$$= 83.75 \times \left(\frac{1}{22 \times (1-0.1625)^2} - \frac{0.1625}{2 \times 100k \times 1m}\right)$$

$$= 5.359A$$

$$\Delta V_o / V_O = \frac{D}{RCf}$$

$$= \frac{0.1625}{22 \times 220u \times 100k}$$

$$= 0.00034$$

CHAPTER 5 RESULTS

5.1 Simulation

Simulation was done in both *Electronic Workbench* (EWB) and *CADENCE PSpice*. Each circuit was simulated separately before combining all the circuits involve in the design. Simulation in EWB was using a buck boost converter while the simulation in *CADENCE PSpice* was using boost converter. The actual project design was using a boost converter circuit as simulation with *CADENCE PSpice*.

5.1.1 Electronic Workbench (EWB)

Based on data obtain in calculation, a simulation was done by using EWB to ensure the waveform of the output. Transformer was not used in this simulation since the suitable transformer was not found in the components directory.

Figure 10: Buck Boost Converter Circuit (EWB)

Figure 11: Buck Boost Converter Output (EWB)

Figure 10 shows the simulation done by using EWB. This simulation was done by combining the rectifier circuit with the switching regulator circuit. From the simulation, the output of the circuit was monitored using voltmeter and oscilloscope (as shown in Figure 11).

Figure 12: Half Bridge Inverter Circuit (EWB)

Figure 13: Half Bridge Inverter Output (EWB)

Figure 12 shows the simulation of a half bridge inverter circuit. The output of the simulation was observed by using oscilloscope and multimeter as shown in Figure 13.

5.1.2 CADENCE PSpice

Simulation was also done by using CADENCE PSpice to obtain accurate value of output for each circuit and combination of all circuit. Figure 14 - 21 shows the simulation done by using CADENCE PSpice.

FIGURE 14: Full Bridge Rectifier Circuit

Figure 15: Full Bridge Rectifier Output

FIGURE 16: Boost Converter Circuit

(2) Second	_m (i	, citye	0						1	- 1		2. J. J.	i -													>
158	1	:		• - •				:		:							•				· · ·			-		
	<u> </u>			•••••		4.		: 		· · ·	1			-									÷.	4	ting Ting tu	
		- po	τÇ.	••••		-	÷			• ••			.								• • • •			.:		
188	. 	4 9 1	1		~	σ		-0-		:			Ì		:				· · ·	1		÷			• • • • •	······
100	l	[:		·			-0					-+	-0	;	-0C					:		0			0
i	1		. 1			. <u>.</u>		-							į		ł			:						
	* 1.1			:	:	<u>.</u>	i 	1											-			Ì		÷		
50	ļļ	÷	:	;	· · ·			Ē		÷	;		-		:		÷					ļ		-	r -	
		÷	:		•					•	•				÷				:			ĺ				
	1		•••						• • • •	:			} 		•		•			•		}.	•	•••••	-	Ĩ
	Į.	· · · ·		,			÷.		• • • •	:	÷	. ••	÷				• .		· • • • •		•••••	1			·	
6	4 85	:					∔ 5nas	. 1				. 1	.∔ I0mas					:* Ins				∔ 20m		.		: 25m-s
	00((H2 : 2	23	· 13	(R2)										Ti											

FIGURE 17: Boost Converter Output

FIGURE 19: Half Bridge Inverter Output

FIGURE 20: Combination Circuit

FIGURE 21: Combination Circuit Output

5.2 PCB Layout

Figure below shows the layout of the Printed Circuit Board (PCB) as design by using *MicroSim PCBoards* (as shown in Figure 22) and the actual PCB after fabrication (as shown in Figure 23).

Figure 22: Software PCB Layout

Figure 23: Actual PCB Layout

Figure 24: Prototype Layout

5.3 Experimentation Setup

Figure 25: Testing the prototype

All those equipments as shown in Figure 25 were used to test the prototype. AC power supply to represent AC output from main socket, function generator and dc power supply to control the switching frequency and duty ratio for both power MOSFET and BJT while oscilloscope was used to capture the output during the test.

Figure 26: Main circuit during testing

One function generator was used to trigger SW1 and the other one was used to trigger SW2 and SW3. As SW2 and SW3 turn on alternately, an inverter was added to make sure SW2 and SW3 did not turn ON and OFF at the same time.

Figure 27: Inverter circuit operation

A power BJT was used in the external circuit to invert the output from function generator so that it can be used to trigger SW3. Output at resistor was captured and compared with simulation output (as shown in Figure 28). Since the prototype does not work perfectly, the circuit only produces output for a while before the inverter circuit is damaged.

Figure 28: Output Comparison

5.4 Cost Analysis

	Components	Model	Unit	Price per unit			
1	Trongformer	D4060	1	RM203.55			
l	Fransformer	D4064	1	RM203.55			
2	Power MOSFET	IRFB23N15D	1	RM8.93			
3	Power BJT	TIP3055	2	RM2.50			
4	Bridge Rectifier	MB256	1	RM5.00			
		10 000uF, 80V	2	RM27.00			
5	Capacitor	10 000uF, 100V	1	RM45.00			
		220uF, 160V	1	RM4.60			
6	Power Diode	D411	1	RM29.19			
7	Choke Inductor	1mH, 15A	1	RM55.11			
8	PWM Controller	UC3825	1	RM14.99			
9	IC Waveform Generator	ICL8038CCPD	2	RM27.86			
10	Fuse	2A	1	RM0.35			
	Total	Price		RM657.13			
L							

Table 1: Cost Analysis

Comparing the price analysis with the product available in market, we can see the difference. Normally product available in market cost more than RM1000 per unit. Even though this cost analysis only include the main components without the finishing works cost. The price is still considered cheaper since the voltage converter circuit itself cost much lower than available product in market. This ensures that this voltage converter can be made cheaper than market prices.

CHAPTER 6 DISCUSSION AND CONCLUSION

6.1 Discussion

This project consists of three main circuits, which are rectifier circuit (AC-to-DC conversion), regulator circuit (DC to DC conversion) and inverter circuit (DC-to-AC conversion). Some of the components used in this power electronics circuit emit heat during operation. Heat sink is needed for such components to reduce losses and ensure safety of circuit operation. From literature review, these are a few components that may produce heat during operation:

- 1) Transformer
- 2) Power transistor / MOSFET
- 3) Capacitor

This components should not be place next to each other to prevent extreme heat transferred especially transformer and capacitor. It may damage the equipment or even worse can cause explode the equipment. So the PCB needs to be checked before soldering the components and before turning ON the circuit. The selections of components were made by going through datasheet and by using the results of simulation. From simulation the circuit should be working well. Since most of the components needed to complete this project need to be ordered from overseas such as UK and Singapore and the price for each component were quite expensive, some of the components were not bought to complete this project. It was because of the cost for this project has already exceeded the amount provided by UTP.
6.2 Conclusion

As a conclusion, it is possible to design a voltage converter that has the ability to supply up to 400W based on calculation and simulation. Main objectives have not been achieved successfully. Although it is possible to achieve in simulation, the prototype built for this project was still not fully functional. This problem occurs due to late components arrival and expensive cost for almost every component. The prototype does not function as simulation because of some components that need to be added in the actual circuit. The main challenge faced is the selection of suitable components in terms of cost and performance. Cost of the product can also be reduced by eliminating several components that is not critical in the circuit design. This voltage converter has proven to be safer as compared to direct AC source as it is isolated from the main source and the load. This will ensure that user will operate electrical appliances safely as compared to direct AC source. Besides that, user can directly used electrical appliances especially from United States by using the 240VAC to 110VAC converter without any modification to the equipment since United States uses 110VAC as their main AC source.

REFERENCES

- Issa Batarseh, 2004, *Power Electronic Circuits*, United States of America, John Wiley & Son.
- K. Kit Sum, 1984, Switch Mode Power Conversion, United States of America, Marcel Dekker.
- Muhammad H.Rashid, 2004, *Power Electronics*, 3rd Edition, United States Of America, Prentice Hall.
- The Basic Power Supply, <u>http://www.technology.niagaraac.on,ca/courses/etec1120/Files/Unit12basic</u> <u>psu.pdf</u>, Niagara College, Canada.
- 5. Electronics Tutorial, <u>http://www.electronics-tutorials.com/basics/basic-</u> electronics.htm
- 6. PWM Signal Generators,

http://homepages.which.net/~paul.hills/Circuits/Circuits.html

- Electronic circuit 'Beans' collection, <u>http://www.interq.or.jp/japan/se-inoue/e_ckt.htm</u>.
- 8. Datasheet Archive, http://www.datasheetarchive.com/
- 9. RS Electronic Malaysia Catalogue, http://www.rsmalaysia.com
- 10. Farnell Components, http://www.farnell.com

APPENDICES

APPENDIX A GANTT CHART

Gantt Chart for Final Year Project 2 January Semester 2005

Name: Irman Bakti Bin Alias 2550

								1		Į						No
	80	 7 S		•	6 P		ر د		+-		3	ļ	3 1.	 2 P)	 1 R	 D
	al Pres	ıbmissi		CB Fa	oject v		011133		ist and		binissi		apoog(ototype	source	etail/ V
	sentati	ion of		abricat	vork c				verify	-	ion of		(Wee	e Con	Gath	Veek
	ion	Disse		tion	ontinu		301	P	prote		Progr		:kly R	structi	ering	
		rtation			ic		100 11	0	otý pe o		ess Ro		eport)	on		
		i Fina					- inde		lesign		port					
		l Drati														
						1										
-		 					 					! 		 		
									-					 £.,	 1 1 1	 -
						 								 N.S.		2
													×			3
t 	1		-						1		×		×		 	
		 							- 							 4
								-	-							 5
		 							- -			-			 	 6
																7
							;	,								
 															 	 8
																.9
 		 							-						 	 10
_																11
		×														12
	×															_
<u> </u>	┼╌┥													 	 	3
																14

(50 (4) (4) (4) (4)

Milestone Process

APPENDIX B LIST OF COMPONENTS

List of Components [8, 9 & 10]

No	Components	QTY	Description
1	Transformer	2	D4060 x 1
1	Tansformer		D4064 x1
		4	10000uF(100V) x 1
2	Capacitor		220uF(160V) x 1
			10000uF(80V) x 2
3	PWM	1	UC3825 x 1
4	IC Waveform Generator	1	ICL8038
5	Inductor	1	1mH, 15A
4	Cruitab	3	IRFB23N15D x 1
0	Switch		TIP3055 x 2
6	Power diode	1	D411 x 1
7	Fuse	1	2.0A

APPENDIX C COMPONENTS DATASHEET

· A P	A A A	m A B L		السهد الم	·····						
		KANI		1-636581			Escondary	Secondary	Dimensione	Weight	
i i Ma			v¶ Loon − <u>t</u> j. † † 4	a transmission and a	•	Load	RHG	RMS	Dia. Ht.	Kg .	
UL 5	06. CANJ	ADIÁN NATION	AL STANDARD /	PEROVED	11	·	Volts	- Current	ុ៣៣ ៣៣	Туріса	Mounting
	<u> </u>			AN E EELE LALAN				A		······	
GENE	RAL SPEC	SIFICATION				30	6+6	2.50	70 31	0.42	
Input!	ine voltage	t see table.	•		_¦[D4001	30	\$+9	1.67	70 31	0.42	-
Freque	ency: 50/60	Hz. Operating Ran	ge 47 to 400Hz	•	0.000	: 30	12+12	1.25	70 31	0.42	-
- Secon Flach	dary voltag	e tolerance: Within	3% at normal input a	nd fell load.	Deana		15 15	1.20	70 51	0.42	- Dished
Ambie	nt plus tem	invinio. Inerature rise should	not exceed 105%		04000		10+10	1.00	70 31	0.42	Fixing
Leads	150 mm lo	na ±5mm PVC iasu	lated		D4004	30	18+18	0.83	70 31	0.42	M5 Screw
Allow	4mm over f	ixing klt			D4005	30	22+22	0.68	70 31	0.42	
		-			L FILODA	30	25.25	0.60	70 21	0.12	-1
-		X • • • • • • •			04000		20+20	0.00	70 31	0.42	
Single	LINE VUL	IAGE TABLE	41		04007	30	30+30	0.50	70 31	0.42	
Single	primary 11 primary 22	W part number pre	BIX /A afiv.#B"		D4010	60	9+9	3.33	88 34	0.85	
Single	primary 24	0V Part number pre	afix "C"		D4011	0.0	12+12	2.50	88 34	0.85	-1
Dual p	rimary 120	+120V Part number	prefix "D"		04010	0	15 15	0.00	00 04	0.00	
Dual p	rimary 110-	+110V Part number	prefix "E"		04012	00	15+15	2.00	88 34	0.85	
Single	primary 23	0V Part number pre	efix "F"		D4013	60	18+18	1.67	88 34	0.85	
A rang	entsinale	nimaries 220V 23	xeux n ov 240V is availabte	fully IEC 740	D4014	60	22+22	1.36	88 34	0.85	- Disnea
EN60/7	742, BS 35	35 approved, see 5	000 range data shee		D4015	60	25+25	1 20	88 24	0.95	Plate
		17	J		Dinic		20120	1.20	00 04	0.00	M6 Screw
ORDE	RING COD	EEXAMPLE			04010	60	30+30	1.00	88 34	0.85	_
					D4017	60	110	0.55	88 34	0.85	
,		• ں لــــــــــــــــــــــــــــــــــــ	• UT2		D4018	60	220	0.27	88 34	0.85	1
Primar	Y.	Appr	oval	VA/Secondary	D4019	0.0	240	0.25	1 88 24	0.05	~1
120+12	0	UĹ.	506	60 10+15	D 4020	100	10 10	0.2.5	00 04	0.00	
					04020	1 100	12+12	4.17	91 43	1.20	_
TRANS	FORMER	CONNECTIONS			D4021	100	15+15	3.33	91 43	1.20	1
Windin	gs may be	connected in paralle	el or series. If they ar	e isolated from	D4022	100	18+18	2.78	91 43	1.20	7
each of	ther, the ap	plied potential betw	een them must not e	xceed 250V DC.	D4023	100	22+22	227	91 43	1 20	Dished
					D4024	100	05.05	0.00		1.20	Fixing
٩	inmaries & Se Parallal Con	condaries	Primaries & Se	condanes	D4024	100	20+20	2.00	91 43	1.20	Plate
		2+1	Bue	Recterci Recta	04025	100	30+30	1.67	91 43	1.20	Mo Screw
» €	•		●	0	D4026	100	110	0.91	91 43	1.20	
			السوم	¥#d	D4027	100	220	0.45	91 43	1 20	1
1201 8-0-		•	Violet	Xange CT2⊭V	04028	100	240	0.40	01 42	1.20	-
	•	[•	•••••••••••••••••••••••••••••••••••••••		04020	100	240	0.42	3 43	1.20	
			240V Brown	etc	104030	1 160	18+18	4.44	113 44	1.90	1
				•	D4031	160	22+22	3.64	113 44	1.90	
		Phmanes Se Secondarie	ries Connected		D4032	160	25+25	3.20	113 44	1.90	
			1		D4033	160	30+30	2.67	113 44	1 90	- Dished
		ov 🔴 👘 👘	1		D4024	160	25.25	0.00	110 44	1.00	Plate
		•i			04004	100	33+35	2.29	113 44	1.90	M6 Screw
		1	1		04035	160	110	1.46	113 43	1.90	
			•		_ <u>D4036</u>	160	220	0.73	113 44	1.90	
		240V			D4037	160	240	0.67	113 44	1 90	1
			-		D4040	230	25+25	1 60	120 51	267	+
					DADAL	000	20,00	9.00	120 51	2.07	-
					D4041	230	30+30	3.83	120 51	2.67	1
PERFO	RMANCE (DETAILS			D4042	230	35+35	3.29	120 51	2.67	Dished
VA cotio	ature rise a	bove ambient at ma	aximum recommende	d continuous	D4043	230	40+40	2.88	120 51	2.67	Fixing Plate
	y.				D4044	230	110	2.09	120 51	2.67	M8 Screw
Load	1	Temp. Iron	Loss Conner Loss		D4045	220	220	1 05	100 54		4
VA	Regulatio	n % Rise °C	WW]	04040	200	22U	CU.)	120 51	2.0/	4.
20	10			1	U4046	230	240	0.96	120 51	2.67	L(
60	13	50 0	1.40 4.8 10 7.8		D4050	330	25+25	6.60	133 51	3.30	
100	10	50 1	2 10		D4051	330	30+30	5.50	133 52	3.30]
160	9	56 2	.0 14.4		D4052	330	35+35	4 71	133 52	3 30	1
230	8	56 2	75 18.4		D4052	330	40.40	A 12	122 50	2.00	Dished
520	1		.4 23		D4054	000	40740	4.13	133 52	3.30	Fixing Plate
L	<u>530 6 60 5.0 32</u>			04054	330	45+45	3.67	133 52	3.30	M8 Screw	
Should it	he prefere	his to operate the t	nonformar et laura t		D4055	330	110	3.00	133 52	3.30	
rise with	improved r	eoulation the follow	iansionner at lower to	emperature	D4056	330	220	1.50	133 52	3.30	
rise whic	h can be e	xpected under conti	nuous conditions at 1	OWer	D4057	330	240	1.38	133 52	3 20	
VA rating	1s				DADED	E20	20.00		150 5:	0.00	├.
					L/4000	530	30+30	6.83	150 61	5.00	
Dera	ted VA	Benulation 0(Temperature		D4061	530	35+35	7.57	150 61	5.00	
-iom	10	regulation %	Hise °C		D4062	530	40+40	6.63	150 61	5.00	
30	20	11	25		D4063	530	45-45	5.80	150 61	5.00	Dished
60	50	10	35		DADEA	5 20	50.50	5.03	100 01	5.00	Fixing
100	75	8	35	İ	04004	-530	00+00	5.30	150 61	5.00	M8 Screw
100	120	6	35	[U4065	530	110	4.82	150 61	5.00	
330	250	D K	35		D4066	530	220	2.41	150 61 T	5.00	
530	400	4	40		D4067	530	240	2.21	150 61	5.00	
			· -								

ALL DIMENSIONS ± 2mm

AVEL-TRANSFORMERS LTD

PD - 93894A

 I_D

23A

International

SMPS MOSFET

V_{DSS}

150V

IRFB23N15D IRFS23N15D IRFSL23N15D

HEXFET[®] Power MOSFET

R_{DS(on)} max

0.090Ω

Applications

• High frequency DC-DC converters

Benefits

- Low Gate-to-Drain Charge to Reduce
 Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

TO-220AB	D ² Pak	TO-262
IRFB23N15D	IRFS23N15D	IRFSL23N15D

Absolute Maximum Ratings

·····			
	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	23	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	17	A
I _{DM}	Pulsed Drain Current ①	92	
P _D @T _A = 25°C	Power Dissipation ⑦	3.8	W
P _D @T _C = 25°C	Power Dissipation	136	:
	Linear Derating Factor	0.9	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	4.1	V/ns
Tj	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torge, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Typical SMPS Topologies

Telecom 48V input DC-DC Active Clamp Reset Forward Converter

Notes ① through ⑦ are on page 11 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

International IOR Rectifier

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150			V	V _{GS} = 0V, I _D = 250µA
ΔV _{(BR)DSS} /ΔTj	Breakdown Voltage Temp. Coefficient		0.18		- V/ª	C Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.090	Ω	V _{GS} = 10V, 1 _D = 14A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	V _{DS} = V _{GS} , I _D = 250μA
loce	Drain-to-Source Leakage Current			25		V _{DS} = 150V, V _{GS} = 0V
-055	Prairie Course Econoge Ourrent			250	μ.	V _{DS} = 120V, V _{GS} = 0V, T _J = 150°C
1	Gate-to-Source Forward Leakage			100	- 4	V _{GS} = 30V
'655	Gate-to-Source Reverse Leakage			-100	пА	V _{GS} = -30V

Dynamic @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{1s}	Forward Transconductance	11			S	V _{DS} = 25V, I _D = 14A
Qg	Total Gate Charge		37	56		l _D = 14A
Q _{gs}	Gate-to-Source Charge		9.6	14	nC	V _{DS} = 120V
Q _{gd}	Gate-to-Drain ("Miller") Charge		19	29	İ	V _{GS} = 10V, ા⊛
t _{d(on)}	Turn-On Delay Time		10			V _{DD} = 75V
t _r	Rise Time		32		ns	I ₁₂ = 14A
t _{d(off)}	Tum-Off Delay Time		18			R _G = 5.1Ω
t _f	Fall Time		8.4			V _{GS} = 10V ④
C _{iss}	Input Capacitance		1200			V _{GS} = 0V
Coss	Output Capacitance		260			V _{DS} = 25V
Crss	Reverse Transfer Capacitance	—	65	—	рF	f = 1.0MHz®
Coss	Output Capacitance		1520			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		120			$V_{GS} = 0V, V_{DS} = 120V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		210			$V_{\rm GS}$ = 0V, $V_{\rm DS}$ = 0V to 120V (§

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		260	mJ
I _{AR}	Avalanche Current®		14	A
E _{AR}	Repetitive Avalanche Energy®		13.6	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
Rejc	Junction-to-Case		1.1	
R _{ecs}	Case-to-Sink, Flat, Greased Surface 6	0.50		°c/w
R _{0JA}	Junction-to-Ambient®		62	4
R _{eja}	Junction-to-Ambient®		40	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current			23		MOSFET symbol
	(Body Diode)		ļ		A	showing the
ISM	Pulsed Source Current			92		integral reverse
	(Body Diode) ①					p-n junction diode. s
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 14A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		150	220	ns	T _J = 25°C, I _F = 14A
Qn	Reverse RecoveryCharge		0.8	1.2	μC	di/dt = 100A/µs ⊛
t _{оп}	Forward Turn-On Time	Intr	ínsic tu	im-on ti	me is ne	egligible (turn-on is dominated by Ls+LD)
2						www.irf.com

International

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International **TOR** Rectifier

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International **TOR** Rectifier

IRFB/IRFS/IRFSL23N15D

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **TOR** Rectifier

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

www.irf.com

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFET® Power MOSFETs

International **Tor** Rectifier

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

D²Pak Package Outline

D²Pak Part Marking Information

International **TOR** Rectifier

TO-262 Package Outline

NOTES

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.

TO-262 Part Marking Information

D²Pak Tape & Reel Information

International

IR TAIWAN: 16 FI. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936

Data and specifications subject to change without notice. 6/00

www.irf.com

ligh Speed PWM Controller

EATURES

Compatible with Voltage or Current Mode Topologies

Practical Operation Switching Frequencies to 1MHz

50ns Propagation Delay to Output

High Current Dual Totem Pole Outputs (1.5A Peak)

Wide Bandwidth Error Amplifier

Fully Latched Logic with Double Pulse Suppression

Pulse-by-Pulse Current Limiting

Soft Start / Max. Duty Cycle Control

Under-Voltage Lockout with Hysteresis

Low Start Up Current (1.1mA)

Trimmed Bandgap Reference (5.1V ±1%)

LOCK DIAGRAM

DESCRIPTION

The UC1825 family of PWM control ICs is optimized for high frequency switched mode power supply applications. Particular care was given to minimizing propagation delays through the comparators and logic circuitry while maximizing bandwidth and slew rate of the error amplifier. This controller is designed for use in either currentmode or voltage mode systems with the capability for input voltage feed-forward.

Protection circuitry includes a current limit comparator with a 1V threshold, a TTL compatible shutdown port, and a soft start pin which will double as a maximum duty cycle clamp. The logic is fully latched to provide jitter free operation and prohibit multiple pulses at an output. An under-voltage lockout section with 800mV of hysteresis assures low start up current. During under-voltage lockout, the outputs are high impedance.

These devices feature totem pole outputs designed to source and sink high peak currents from capacitive loads, such as the gate of a power MOSFET. The on state is designed as a high level.

3SOLUTE MAXIMUM RATINGS (Note 1)

Ipply Voltage (Pins 13, 15) 30V - 0 - L / Dim - 44

Input Current, Source or Sink (Pins 11, 14)
)
llse (0.5μs)
alog Inputs
ins 1, 2, 7)0.3V to 7V
in 8, 9)
ock Output Current (Pin 4)5mA
ror Amplifier Output Current (Pin 3) 5mA
oft Start Sink Current (Pin 8) 20mA
scillator Charging Current (Pin 5)5mA
wer Dissipation 1W
prage Temperature Range65°C to +150°C
ad Temperature (Soldering, 10 seconds) 300°C
ote 1: All voltages are with respect to GND (Pin 10); all cur-
nts are positive into, negative out of part; pin numbers refer to
L-16 package.

ote 3: Consult Unitrode Integrated Circuit Databook for theral limitations and considerations of package.

OIC-16 (Top View) W Package

CONNECTION DIAGRAMS DIL-16 (Top View) J Or N Package 16 VREF 5.1V INV 1 15 Vcc NI 2 14 Out B E/A Out 3 Clock 4 13 VC 12 Pwr Gnd RT 5 11 Out A CT 6 10 Gnd Ramp 7 9 ILIM/SD Soft Start 8 PACKAGE PIN FUNCTION FUNCTION PIN PLCC-20 & LCC-20 N/C 1 (Top View) INV 2 Q & L Packages NE 3 E/A Out 4 5 Clock N/C 6 7 Rт 2 1 20 19 3 Ст 8 18 9 4 Ramp P Soft Start 10 65 171 N/C 11 6 16 ILIM/SD 12 ģ 7 15 13 Gnđ Out A 14 ľ 8 14 9 10 11 12 13 15 Pwr Gnd N/Ç 16 Vc 17 Out B 18

_ECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for , RT = 3.65k, CT = 1nF, Vcc = 15V, -55°C<Ta<125°C for the UC1825, -40°C<Ta<85°C for the UC2825, and 0°C<Ta<70°C for the UC3825, Ta=TJ.

Vcc

VREF 5.1V

19

PARAMETERS	TEST CONDITIONS							
		MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
eference Section								
Output Voltage	TJ = 25°C, IO = 1mA	5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	10V < Vcc < 30V		2	20		2	20	mV
Load Regulation	1mA < Io < 10mA		5	20		5	20	mV
Temperature Stability*	TMIN < TA < TMAX		0.2	0.4		0.2	0.4	mV/°C
Total Output Variation*	Line, Load, Temperature	5.00		5.20	4.95		5.25	V
Output Noise Voltage*	10Hz < f < 10kHz		50			50		μV
Long Term Stability*	TJ = 125°C, 1000hrs.		5	25		5	25	mV
Short Circuit Current	VREF = 0V	-15	-50	-100	-15	-50	-100	mA
scillator Section								
Initial Accuracy*	TJ = 25°C	360	400	440	360	400	440	kHz
Voltage Stability*	10V < Vcc < 30V		0.2	2		0.2	2	%
Temperature Stability*	TMIN < TA < TMAX		5			5		%
Total Variation*	Line, Temperature	340		460	340		460	kHz

.ECTRICAL CHARACTERISTICS ont.)

Unless otherwise stated, these specifications apply for , RT = 3.65k, CT = 1nF, Vcc = 15V, $-55^{\circ}C<Ta<125^{\circ}C$ for the UC1825, $-40^{\circ}C<Ta<85^{\circ}C$ for the UC2825, and $0^{\circ}C<Ta<70^{\circ}C$ for the UC3825, TA=TJ.

PARAMETERS	TEST CONDITIONS		UC1825 UC2825					
		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
scillator Section (cont.)								
Clock Out High		3.9	4.5		3.9	4.5		V
Clock Out Low			2.3	2.9		2.3	2.9	V
Ramp Peak*		2.6	2.8	3.0	2.6	2.8	3.0	V
Ramp Valley*		0.7	1.0	1.25	0.7	1.0	1.25	V
Ramp Valley to Peak*		1.6	1.8	2.0	1.6	1.8	2.0	V
rror Amplifier Section								
Input Offset Voltage		I		10			15	m∨
Input Bias Current			0.6	3		0.6	3	μΑ
Input Offset Current			0.1	1		0.1	1	μΑ
Open Loop Gain	1V < Vo < 4V	60	95		60	95		dB
CMRR	1.5V < Vсм < 5.5V	75	95		75	95		dB
PSRR	10V < Vcc < 30V	85	110		85	110		dB
Output Sink Current	VPIN 3 = 1V	1	2.5		1	2.5		mA
Output Source Current	VPIN 3 = 4V	-0.5	-1.3		-0.5	-1.3		mA
Output High Voltage	IPIN 3 = -0.5mA	4.0	4.7	5.0	4.0	4.7	5.0	V
Output Low Voltage	IPIN 3 = 1mA	0	0.5	1.0	0	0.5	1.0	V
Unity Gain Bandwidth*		3	5.5		3	5.5		MHz
Slew Rate*		6	12		6	12		V/µs
WM Comparator Section		J	1	4			•••••	
Pin 7 Bias Current	VPIN 7 = 0V	}	-1	-5		-1	-5	μА
Duty Cycle Range		0		80	0		85	%
Pin 3 Zero DC Threshold	VPIN 7 = 0V	1.1	1.25		1.1	1.25	1	V
Delay to Output*	······································	+	50	80		50	80	ns
off-Start Section	······································		•	L	·			
Charge Current	VPIN 8 = 0.5V	3	9	20	3	9	20	μA
Discharge Current		1	· · · · ·		1			mA
urrent Limit / Shutdown S	ection		1	4	L	I		·
Pin 9 Bias Current	0 < VPIN 9 < 4V			15		-	10	μA
Current Limit Threshold		0.9	1.0	1.1	0.9	1.0	1.1	V
Shutdown Threshold		1.25	1.40	1.55	1.25	1.40	1.55	V
Delay to Output	· · · · · · · · · · · · · · · · · · ·		50	80		50	80	ns
utput Section			J	1	.		••••	
Output Low Level	10UT = 20mA	1	0.25	0.40	T .	0.25	0.40	V
output com coros	lout = 200 mA		1.2	2.2		1.2	2.2	V
Output High Level	lout = -20mA	13.0	13.5		13.0	13.5		V
oaparing, zoro	lout = -200mA	12.0	13.0		12.0	13.0		V
Collector Leakage	$V_{\rm C} = 30V$	1	100	500	-	10	500	μA
Rise/Fall Time*	CL = 1nF	1	30	60	<u> </u>	30	60	ns
inder-Voltage Lockout Sec	tion	I		I	• • • • •	J	1	.
Start Threshold		8.8	9.2	9.6	8.8	9.2	9.6	V
LIVI O Hysteresis		0.4	0.8	1.2	0.4	0.8	1.2	V
upply Current Section	-, d	_1	1		L	ł		
Start Up Current	Vcc = 8V	η	1.1	2.5	-	1.1	2.5	mA
ICC	VPIN 1, VPIN 7, VPIN 9 = 0V: VPIN 2 = 1V		22	33	·	22	33	mA
-		4			• • • •			

This parameter not 100% tested in production but guaranteed by design.

inted Circuit Board Layout Considerations

the UC1825 follow these rules: 1) Use a ground plane. Damp or clamp parasitic inductive kick energy from the te of driven MOSFETs. Do not allow the output pins to g below ground. A series gate resistor or a shunt 1 Amp Schottky diode at the output pin will serve this purpose. 3) Bypass Vcc, Vc, and VREF. Use 0.1μ F monolithic ceramic capacitors with low equivalent series inductance. Allow less than 1 cm of total lead length for each capacitor between the bypassed pin and the ground plane. 4) Treat the timing capacitor, CT, like a bypass capacitor.

ror Amplifier Circuit

NM Applications

scillator Circuit

UC1825 UC2825 UC3825

nchronized Operation

prward Technique for Off-Line Voltage Mode Application

onstant Volt-Second Clamp Circuit

The circuit shown here will achieve a constant volt-second product clamp over varying input voltages. The ramp generator components, RT and CR are chosen so that the ramp at Pin 9 crosses the 1V threshold at the same time the desired maximum volt-second product is reached. The delay through the functional nor block must be such that the ramp capacitor can be completely discharged during the minimum deadtime.

utput Section

UC1825 UC2825 UC3825

ben Loop Laboratory Test Fixture

JC1825's functions and measuring their specifications.

This test fixture is useful for exercising many of the As with any wideband circuit, careful grounding and bypass procedures should be followed. The use of a ground plane is highly recommended.

TRODE CORPORATION ONTINENTAL BLVD. • MERRIMACK, NH 03054

... (603) 424-2410 • FAX (603) 424-3460

2864.3

Data Sheet File Number 1998 File Number

recision Waveform Generator/Voltage ontrolled Oscillator

e ICL8038 waveform generator is a monolithic integrated cuit capable of producing high accuracy sine, square, ingular, sawtooth and pulse waveforms with a minimum of cernal components. The frequency (or repetition rate) can selected externally from 0.001Hz to more than 300kHz ng either resistors or capacitors, and frequency idulation and sweeping can be accomplished with an cernal voltage. The ICL8038 is fabricated with advanced inolithic technology, using Schottky barrier diodes and thin resistors, and the output is stable over a wide range of nperature and supply variations. These devices may be erfaced with phase locked loop circuitry to reduce nperature drift to less than 250ppm/^OC.

Features

•	Low Frequency Drift with Temperature250 ppm/ ^{o}C
•	Low Distortion
•	High Linearity
•	Wide Frequency Range 0.001Hz to 300kHz
•	Variable Duty Cycle
•	High Level Outputs
•	Simultaneous Sine, Square, and Triangle Wave Outputs

 Easy to Use - Just a Handful of External Components Required

rdering Information

PART NUMBER	STABILITY	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
L8038CCPD	250ppm/ ^o C (Typ)	0 to 70	14 Ld PDIP	E14.3
L8038CCJD	250ppm/ ^o C (Typ)	0 to 70	14 Ld CERDIP	F14.3
L8038BCJD	180ppm/ ^o C (Typ)	0 to 70	14 Ld CERDIP	F14.3
L8038ACJD	120ppm/ ^o C (Typ)	0 to 70	14 Ld CERDIP	F14.3

nout

Functional Diagram

solute Maximum Ratings

pply Voltage (V- to V+)	
ut Voltage (Any Pin)	V- to V+
ut Current (Pins 4 and 5)	
tput Sink Current (Pins 3 and 9))

perating Conditions

nperature Range CL8038AC, ICL8038BC, ICL8038CC0°C to 70°C

Thermal Information

Thermal Resistance (Typical, Note 1)	θ _{JA} (^o CM	v) θ _{JC} (°C/W)
CERDIP Package	75	20
PDIP Package	115	N/A
Maximum Junction Temperature (Ceramic F	Package) .	175°C
Maximum Junction Temperature (Plastic P	ackage) .	150°C
Maximum Storage Temperature Range		-65°C to 150°C
Maximum Lead Temperature (Soldering 10	0s)	300°C

Die Characteristics

Back Side Potential V-

UTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the rice at these or any other conditions above those indicated in the operational sections of this specification is not implied.

)TE:

. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

		$10V \text{ or } + 20V, I_A = 2$	5°С, К 1		.12, ies	it Circu T				specini		
		TEST	IC	1.80380	сс	ICL8038BC			ICL8038AC			
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	MIN	ΤΥΡ	MAX	MIN	ТҮР	МАХ	UNITS
upply Voltage Operating Range	VSUPPLY			-					(,			
	V+	Single Supply	+10	-	+30	+10		+30	+10	-	+30	V
	V+, V-	Dual Supplies	±5	-	±15	±5		±15	±5	i _	±15	V
upply Current	ISUPPLY	V _{SUPPLY} = ±10V (Note 2)	;	12	20	-	12	20	-	12	20	mA
REQUENCY CHARACTERISTICS	(All Wavefo	orms)	· · · · · · · · · · · · · · · · · · ·	4 #"					*			
ax. Frequency of Oscillation	f _{MAX}		100	-	-	100	-	-	100	-	-	kHz
weep Frequency of FM Input	fSWEEP		-	10	-		10	-	-	10	-	kHz
weep FM Range	;	(Note 3)	-	35:1	- 	-	35:1	•	-	35:1	-	
M Linearity	•	10:1 Ratio	-	0.5	-	-	0.2	-	-	0.2	-	%
requency Drift with emperature (Note 5)	Δf/ΔT	0°C to 70°C	-	250	-	-	180	-	-	120		ppm/ ^o C
requency Drift with Supply Voltage	∆f/∆V	Over Supply Voltage Range	-	0.05	-	-	0.05	r 	-	0.05	-	%∕∨
UTPUT CHARACTERISTICS	<i>i</i>	• • • • • • • • • • • • • • • • • • •	4		<u>.</u>		4		*			
quare Wave										ſ		
Leakage Current	IOLK	V9 = 30V	-	-	1	-	-	1	-	-	1	μΑ
Saturation Voltage	VSAT	I _{SINK} = 2mA	-	0.2	0.5	-	0.2	0.4	-	0.2	0.4	V
Rise Time	^t R	R _L = 4.7kΩ	-	180	-	-	180	-	-	180	-	ns
Fall Time	tF	$R_{\rm L} = 4.7 k\Omega$	-	40	-	-	40	-	-	40	-	ns
Typical Duty Cycle Adjust (Note 6)	۸D		2		98	2	-	98	2	-	98	%
iangle/Sawtooth/Ramp												-
Amplitude	V _{TRIAN-} GLE	R _{TRI} = 100kΩ	0.30	0.33	-	0.30	0.33	-	0.30	0.33	-	XV _{SUPPLY}
Linearity			-	0.1	-	-	0.05	-	-	0.05	-	%
Output Impedance	ZOUT	I _{OUT} = 5mA	-	200	-	-	200	-	-	200	-	Ω

- · · · · · · · · · · · · · · · · · · ·		TEST	łC	ICL8038CC ICL8038BC		3C	łC	L8038				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
ine Wave							1					
Amplitude	VSINE	$R_{SINE} = 100 k\Omega$	0.2	0.22	-	0.2	0.22	-	0.2	0.22	-	xV _{SUPPLY}
ТНО	THD	R _S = 1MΩ (Note 4)	-	2.0	5	-	1.5	3	-	1.0	1.5	%
THD Adjusted	THD	Use Figure 4	1 -	1.5	-	•	1.0	-	-	8.0	-	%

lectrical Specifications $V_{SUPPLY} = \pm 10V$ or $\pm 20V$, $T_A = 25^{\circ}C$, $R_L = 10k\Omega$, Test Circuit Unless Otherwise Specified (Continued)

DTES:

. RA and RB currents not included.

 \sim V_{SUPPLY} = 20V; R_A and R_B = 10kΩ, f \cong 10kHz nominal; can be extended 1000 to 1. See Figures 5A and 5B.

 \sim 82k\Omega connected between pins 11 and 12, Triangle Duty Cycle set at 50%. (Use R_A and R_B .)

 \odot Figure 1, pins 7 and 8 connected, V_{SUPPLY} = ±10V. See Typical Curves for T.C. vs V_{SUPPLY}

3. Not tested, typical value for design purposes only.

est Conditions

PARAMETER	R _A	R _B	RL	с	sw ₁	MEASURE
upply Current	10kΩ	10kΩ	10k Ω	3.3nF	Closed	Current Into Pin 6
weep FM Range (Note 7)	10kΩ	10k()	10kΩ	3.3nF	Open	Frequency at Pin 9
requency Drift with Temperature	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Frequency at Pin 3
requency Drift with Supply Voltage (Note 8)	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Frequency at Pin 9
utput Amplitude (Note 10)						
Sine	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Pk-Pk Output at Pin 2
Triangle	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Pk-Pk Output at Pin 3
закаде Current (Off) (Note 9)	10kΩ	10kΩ		3.3nF	Closed	Current into Pin 9
aturation Voltage (On) (Note 9)	10kΩ	10kΩ		3.3nF	Closed	Output (Low) at Pin 9
ise and Fall Times (Note 11)	10kΩ	10kΩ	4.7kΩ	3.3nF	Closed	Waveform at Pin 9
uty Cycle Adjust (Note 11)						
Мах	50kΩ	~1.6kΩ	10kΩ	3.3nF	Closed	Waveform at Pin 9
Min	~25kΩ	50kΩ	10kΩ	3.3nF	Closed	Waveform at Pin 9
riangle Waveform Linearity	10kΩ	10kΩ	10kΩ	3.3nF	Closed	Waveform at Pin 3
otal Harmonic Distortion	10kΩ	10kΩ	10kΩ	3 .3nF	Closed	Waveform at Pin 2

DTES:

. The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 (f_{HI}) and then connecting pin 8 to pin 6 (f_{LO}). Otherwise apply Sweep Voltage at pin 8 ($^{2}/_{3}$ V_{SUPPLY} +2V) \leq V_{SWEEP} \leq V_{SUPPLY} where V_{SUPPLY} is the total supply voltage. In Figure 5B, pin 8 should vary between 5.3V and 10V with respect to ground.

. 10V \leq V+ \leq 30V, or $\pm 5V \leq$ V_{SUPPLY} $\leq \pm 15V.$

. Oscillation can be halted by forcing pin 10 to +5V or -5V.

3

. Output Amplitude is tested under static conditions by forcing pin 10 to 5V then to -5V.

. Not tested; for design purposes only.

est Circuit

FIGURE 1. TEST CIRCUIT

pplication Information (See Functional Diagram)

external capacitor C is charged and discharged by two rrent sources. Current source #2 is switched on and off by a -flop, while current source #1 is on continuously. Assuming it the flip-flop is in a state such that current source #2 is off, d the capacitor is charged with a current I, the voltage ross the capacitor rises linearly with time. When this voltage iches the level of comparator #1 (set at 2/3 of the supply tage), the flip-flop is triggered, changes states, and eases current source #2. This current source normally ries a current 2I, thus the capacitor is discharged with a net-current I and the voltage across it drops linearly with time. When it has reached the level of comparator #2 (set at 1/3 of the supply voltage), the flip-flop is triggered into its original state and the cycle starts again.

Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at 1 and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9. e levels of the current sources can, however, be selected er a wide range with two external resistors. Therefore, with two currents set at values different from 1 and 21, an ymmetrical sawtooth appears at Terminal 3 and pulses h a duty cycle from less than 1% to greater than 99% are ailable at Terminal 9.

e sine wave is created by feeding the triangle wave into a nlinear network (sine converter). This network provides a creasing shunt impedance as the potential of the triangle wes toward the two extremes.

aveform Timing

e symmetry of all waveforms can be adjusted with the ternal timing resistors. Two possible ways to accomplish s are shown in Figure 3. Best results are obtained by eping the timing resistors R_A and R_B separate (A). R_A ntrols the rising portion of the triangle and sine wave and ± 1 state of the square wave.

e magnitude of the triangle waveform is set at $^{1}/_{3}$ UPPLY; therefore the rising portion of the triangle is,

$$t_1 = \frac{C \times V}{I} = \frac{C \times \frac{1}{3} \times V_{\text{SUPPLY}} \times R_A}{0.22 \times V_{\text{SUPPLY}}} = \frac{R_A \times C}{0.66}$$

The falling portion of the triangle and sine wave and the 0 state of the square wave is:

$$t_{2} = \frac{C \times V}{1} = \frac{C \times 1/3V_{SUPPLY}}{2(0.22) \frac{V_{SUPPLY}}{R_{B}} - 0.22 \frac{V_{SUPPLY}}{R_{A}}} = \frac{R_{A}R_{B}C}{0.66(2R_{A} - R_{B})}$$

Thus a 50% duty cycle is achieved when $R_A = R_B$.

If the duty cycle is to be varied over a small range about 50% only, the connection shown in Figure 3B is slightly more convenient. A $1k\Omega$ potentiometer may not allow the duty cycle to be adjusted through 50% on all devices. If a 50% duty cycle is required, a $2k\Omega$ or $5k\Omega$ potentiometer should be used.

With two separate timing resistors, the frequency is given by:

$$f = \frac{1}{t_1 + t_2} = \frac{1}{\frac{R_A C}{0.66} \left(1 + \frac{R_B}{2R_A - R_B}\right)}$$

or, if
$$R_A = R_B = R$$

f = $\frac{0.33}{RC}$ (for Figure 3A)

FIGURE 2B. SQUARE WAVE DUTY CYCLE - 80%

FIGURE 2. PHASE RELATIONSHIP OF WAVEFORMS

intersil

ither time nor frequency are dependent on supply voltage, en though none of the voltages are regulated inside the egrated circuit. This is due to the fact that both currents d thresholds are direct, linear functions of the supply tage and thus their effects cancel.

educing Distortion

minimize sine wave distortion the $82k\Omega$ resistor between s 11 and 12 is best made variable. With this arrangement tortion of less than 1% is achievable. To reduce this even ther, two potentiometers can be connected as shown in jure 4; this configuration allows a typical reduction of sine ve distortion close to 0.5%.

IGURE 4. CONNECTION TO ACHIEVE MINIMUM SINE WAVE DISTORTION

electing R_A, R_B and C

r any given output frequency, there is a wide range of RC mbinations that will work, however certain constraints are iced upon the magnitude of the charging current for timum performance. At the low end, currents of less than A are undesirable because circuit leakages will contribute inificant errors at high temperatures. At higher currents > 5mA), transistor betas and saturation voltages will ntribute increasingly larger errors. Optimum performance I, therefore, be obtained with charging currents of 10µA to iA. If pins 7 and 8 are shorted together, the magnitude of > charging current due to R_A can be calculated from:

$$=\frac{R_1 \times (V^+ - V^-)}{(R_1 + R_2)} \times \frac{1}{R_A} = \frac{0.22(V^+ - V^-)}{R_A}$$

 R_1 and R_2 are shown in the Detailed Schematic.

A similar calculation holds for R_B.

The capacitor value should be chosen at the upper end of its possible range.

Waveform Out Level Control and Power Supplies

The waveform generator can be operated either from a single power supply (10V to 30V) or a dual power supply (\pm 5V to \pm 15V). With a single power supply the average levels of the triangle and sine wave are at exactly one-half of the supply voltage, while the square wave alternates between V+ and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.

The square wave output is not committed. A load resistor can be connected to a different power supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30V). In this way, the square wave output can be made TTL compatible (load resistor connected to +5V) while the waveform generator itself is powered from a much higher voltage.

Frequency Modulation and Sweeping

The frequency of the waveform generator is a direct function of the DC voltage at Terminal 8 (measured from V+). By altering this voltage, frequency modulation is performed. For small deviations (e.g. $\pm 10\%$) the modulating signal can be applied directly to pin 8, merely providing DC decoupling with a capacitor as shown in Figure 5A. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance from about $8k\Omega$ (pins 7 and 8 connected together), to about (R + $8k\Omega$).

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 5B). In this way the entire bias for the current sources is created by the modulating signal, and a very large (e.g. 1000:1) sweep range is created (f = 0 at $V_{SWEEP} = 0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from V+ by (1/3 V_{SUPPLY} - 2V).

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

rsil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time withnotice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and able. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result n its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

GURE 5A. CONNECTIONS FOR FREQUENCY MODULATION

FIGURE 5B. CONNECTIONS FOR FREQUENCY SWEEP FIGURE 5.

/pical Applications

The sine wave output has a relatively high output impedance $\kappa\Omega$ Typ). The circuit of Figure 6 provides buffering, gain d amplitude adjustment. A simple op amp follower could so be used.

FIGURE 6. SINE WAVE OUTPUT BUFFER AMPLIFIERS

7

With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the ICL8038 oscillation. Figure 7 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.

FIGURE 7. STROBE TONE BURST GENERATOR

To obtain a 1000:1 Sweep Range on the ICL8038 the voltage across external resistors R_A and R_B must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of R_A and R_B by a few hundred mV. The Circuit of Figure 8 achieves this by using a diode to lower the effective supply voltage on the ICL8038. The large resistor on pin 5 helps reduce duty cycle variations with sweep.

The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 10.

FIGURE 8. VARIABLE AUDIO OSCILLATOR, 20Hz TO 20kHzY

FIGURE 9. WAVEFORM GENERATOR USED AS STABLE VCO IN A PHASE-LOCKED LOOP

se in Phase Locked Loops

high frequency stability makes the ICL8038 an ideal ilding block for a phase locked loop as shown in Figure 9. this application the remaining functional blocks, the phase tector and the amplifier, can be formed by a number of ailable ICs (e.g., MC4344, NE562).

order to match these building blocks to each other, two ips must be taken. First, two different supply voltages are ed and the square wave output is returned to the supply of e phase detector. This assures that the VCO input voltage I not exceed the capabilities of the phase detector. If a ialler VCO signal is required, a simple resistive voltage ider is connected between pin 9 of the waveform nerator and the VCO input of the phase detector. Second, the DC output level of the amplifier must be made compatible to the DC level required at the FM input of the waveform generator (pin 8, 0.8V+). The simplest solution here is to provide a voltage divider to V+ (R_1 , R_2 as shown) if the amplifier has a lower output level, or to ground if its level is higher. The divider can be made part of the low-pass filter.

This application not only provides for a free-running frequency with very low temperature drift, but is also has the unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.

For further information, see Intersil Application Note AN013, "Everything You Always Wanted to Know About the ICL8038".

efinition of Terms

pply Voltage (V_{SUPPLY}). The total supply voltage from to V-.

pply Current. The supply current required from the wer supply to operate the device, excluding load currents d the currents through R_A and R_B .

Equency Range. The frequency range at the square wave through which circuit operation is guaranteed.

reep FM Range. The ratio of maximum frequency to nimum frequency which can be obtained by applying a eep voltage to pin 8. For correct operation, the sweep tage should be within the range:

3 VSUPPLY + 2V) < VSWEEP < VSUPPLY

pical Performance Curves

5

10

FM Linearity. The percentage deviation from the best fit straight line on the control voltage versus output frequency curve.

Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs.

Saturation Voltage. The output voltage at the collector of Q_{23} when this transistor is turned on. It is measured for a sink current of 2mA.

Rise and Fall Times. The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.

Triangle Waveform Linearity. The percentage deviation from the best fit straight line on the rising and falling triangle waveform.

Total Harmonic Distortion. The total harmonic distortion at the sine wave output.

FIGURE 12. FREQUENCY vs SUPPLY VOLTAGE

FIGURE 14. SQUARE WAVE OUTPUT RISE/FALL TIME vs LOAD RESISTANCE

SUPPLY VOLTAGE (V)

20

25

30

15

FIGURE 11. SUPPLY CURRENT vs SUPPLY VOLTAGE

9

intersil
/pical Performance Curves (Continued)

3URE 15. SQUARE WAVE SATURATION VOLTAGE vs LOAD CURRENT

URE 19. SINE WAVE OUTPUT VOLTAGE vs FREQUENCY

FIGURE 16. TRIANGLE WAVE OUTPUT VOLTAGE vs LOAD CURRENT

FIGURE 18. TRIANGLE WAVE LINEARITY vs FREQUENCY

FIGURE 20. SINE WAVE DISTORTION VS FREQUENCY

10 intersil

COMPLEMENTARY SILICON POWER TRANSISTORS

- STMicroelectronics PREFERRED SALESTYPES
- COMPLEMENTARY PNP NPN DEVICES

DESCRIPTION

The TIP3055 is a silicon Epitaxial-Base Planar NPN transistor mountend in TO-218 plastic package. It is intented for power switching circuits, series and shunt regulators, output stages and hi-fi amplifiers.

The complementary PNP type is the TIP2955.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit	
		PNP	TIP2955		
		NPN	TIP3055		
V _{CBO}	Collector-Base Voltage (I _E = 0)		100	V	
VCEO	Collector-Emitter Voltage (I _B = 0)		60	V	
lc	Collector Current	-	15	A	
IB	Base Current		7	A	
P _{tot}	Total Dissipation at $T_c \leq 25$ °C		90	W	
Tstg	Storage Temperature		-65 to 150	°C	
Tj	Max. Operating Junction Temperature		150	°C	

For PNP types voltage and current are negative.

TIP2955/TIP3055

THERMAL DATA

R _{thj-case} Thermal Resistance Junction-case Max 1.4 °C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
ICEX	Collector Cut-off Current (V _{BE} = -1.5V)	$V_{CE} = 100 V$ $V_{CE} = 100 V$ $T_{J} = 150 °C$			1 5	mA mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 30 V			0.7	mA
I _{EBO}	Emitter Cut-off Current $(I_{C} = 0)$	V _{E8} = 7 V			5	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 30 mA	60			V
VCE(sat)*	Collector-emitter Saturation Voltage				1 3	V V
V _{BE} *	Base-emitter Voltage	I _C = 4 A V _{CE} = 4 V			1.8	v
h _{FE} *	DC Current Gain		20 5		70	
h _{fe}	Small Signal Current Gain	I _C = 1 A V _{CE} = 10 V f = 1 KHz	15			
fT	Transition-Frequency	I _C = 0.5 A V _{CE} = 10 V f = 1 MHz	3			MHz
t _{on} t _{off}	RESISTIVE LOAD Turn-on Time Turn-off Time			0.5 0.9		μs μs

A77

* Pulsed: Pulse duration = $300 \ \mu s$, duty cycle 1.5 % For PNP type, voltage and current value are negative.

2/4

DIM.		mm	.		inch	-
	MIN.	TYP.	MAX.	MIN.	TYP.	МАХ
A	4.7		4.9	0.185		0.193
С	1.17		1.37	0.046		0.054
D		2.5			0.098	
E	0.5		0.78	0.019		0.030
F	1.1		1.3	0.043		0.051
G	10.8		11.1	0.425		0.437
н	14.7		15.2	0.578		0.598
L2	-		16.2			0.637
L3		18			0.708	
L5	3.95		4.15	0.155		0.163
L6		31			1.220	
R	-		12.2	-		0.480
ø	4		4,1	0.157		0.161

TO-218 (SOT-93) MECHANICAL DATA

A77