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ABSTRACT 

The objective of this project is to study, select and analyze the engine. This report 

includes introduction, literature review, methodology, result and discussions, and 

conclusion. The scope of study includes the usage of computer aided engineering 

software for the modeling and analysis purposes of the project. Theoretical calculations 

will also be carried out to compare the results with reality. In the literature review there 

will be a simple and basic explanation on engine and controllers, the specifications for 

Honda CBR 600 F4i, Yamaha FZ6 S2 and Aprilia SXV engines, the analysis of 

turbocharging small engines. The methodology section will consists of the project 

methodology which gives an outline of the activities taking place and also the Gantt 

chart which gives the milestone period for each activity. The comparison and analysis 

of the engines will be discussed in the result and discussion section. 



1.1 Problem Statement 

1.1.1 Problem Identification 

CHAPTER I 

INTRODUCTION 

The selection of an engine of a vehicle is an extremely important issue. The 

selection and analysis the engine have been made the main focus of this project. From 

the study of previous Formula SAE engine there are still areas where improvement can 

be made. Realizing this I will be undertaking this project on the selection and analysis 

of the engine to improve the current setup. 

1.1.2 Significance of the Project 

The aim of this project is to analyze and select an engine. So with this project, 

useful knowledge and information regarding the project will be obtained and can be 

used in the future. Also, this project will bring a better and upgraded design of the 

current engine. 

1.2 Objectives 

The main objectives of this project are: 

• To perform selection and analysis of the proposed engine. 

• To improve the current design of the engine system. 
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1.3 Scope of Study 

The Formula SAE car will be designed in accordance with Formula SAE 

regulation. This project will cover the selection and analysis of the engine. For analysis 

purposes, computer software will be used. Theoretical calculations will also be done to 

ensure the reality is similar to the theoretical results. 
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2.1 Engine 

CHAPTER2 

LITERATURE REVIEW 

The engine will be selected according to the Formula SAE rules which states 

that the engine must be 4-stroke, displace less than 610 cc, and draw air through a 

circular passage of restricted diameter. Optimizing power with this restrictor makes the 

design of the intake system critical. Another important aspect of SAE rules is that 

vehicle noise levels must be less than 98 dB during any event at competition. This 

makes design of the exhaust system critical. 

The basic principle of an engine is that the combustion of fuel occurs in a 

combustion chamber inside and integral to the engine. The high temperature and 

pressure gases that are produced by the combustion will apply force to the movable 

component of the engine such as the pistons. 

Below is the basic process for a four stroke engine. 

I. Intake 

• Combustible mixtures are emplaced in the combustion chamber. 

2. Compression 

• The mixtures are placed under pressure 

3. Combustion 

• The mixture is burnt. The hot mixture is expanded, pressing on moving 

parts of the engine and performing useful work. 

4. Exhaust 

• The cooled combustion products are exhausted into the atmosphere. 

All combustion engmes depend on the exothermic chemical process of 

combustion which is the reaction of fuel, typically with oxygen from the air. The 

combustion process typically results in the production of a great quantity of heat, as 

well as the production of steam and carbon dioxide and other chemicals at very high 
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temperature. All internal combustion engines must achieve ignition in their cylinders to 

create combustion. Usually engines use either a spark ignition method or a compression 

ignition system. 

2.1.1 Honda CDR 600 F4i 

Figure 1.1: Honda CDR 600 F4i 

Table 1.1: The specifications of the Honda CDR 600 F4i 

Displacement 599.00 cc 

Engine Type In-line four 

Stoke 4 

Compression 12.0·1 

Bore x Stroke 67.0 x 42.5 mm 

Fuel system InjectJ.on Programmed Fuel Injection (PGM-FI) with automatic 

enricher circuit. 

Valve train DOIIC 

Cooling system Liquid. 

Transmission type fmal drive Chain. 
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2.1.2 Yamaha FZ6 S2 

Figure 1.2: Yamaha FZ6 S2 

Table 1.2: The specifications of the Yamaha FZ6 S2 

Displacement 600.00 cc 

Engine Type In-line four 

Stoke 4 

Power 96.55 HP (70.5 KW) 

Torque 63 .10 Nm @ 6440 RPM 

Compression 12.2:1 

Bore x Stroke 65.5 x 44.5 mm 

Fuel system Injection. 

Valvetrain DOHC 

Lubrication system Wet sump. 
-

Cooling system Liquid. 

Transmisston type fmal drive ~-C run. 
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2.1.3 Aprilia SXV 550 

Figure 1.3: Aprilia SXV 550 

Table 1.3: The specifications of the Aprilia SXV 550 

Displacement 549.00 cc 

Engine Type 77 · V twin four stroke 

Stoke 4 

Power 66HP 

Compression 12.0:1 

Bore x Stroke 80x55 mm 

Fuel system Injection. Integrated electronic engine management system 

controlling ignition and fuel mjection. 

Valvetrain SOIIC 

Weight 33 kg. 

Lubrication system Dry sump. 

Cooling system Liquid. 

Transmission type fmal drive Chain. 
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2.2 Analysis 

2.2.1 Tnrbocharging small engine performance limits. 

Below is the finding from William Attard from the Department of Mechanical 

and Manufacturing Engineering, The University of Melbourne. 

The aims included achieving near constant power over half the speed range 

together with the opportunity to increase peak power when compared to typical 0.6 L 

four cylinder reference engines. With appropriate design decisions, these aims could be 

achieved. With peak brake power limited to -60 kW due to the limited air consumption, 

peak performance gains at the choked condition were only expected to be minimal and 

due to a combination of thermal efficiency improvements together with friction loss 

reductions. The strategy to reduce friction losses involved limiting the maximum engine 

speed to 10,000 rev/min as losses increased at the square of the speed increase. 

Furthermore, if the swept capacity could be reduced whilst keeping the rotating and 

reciprocating components as small as possible and still maintaining choked operation, 

delivered power would also increase due to the reduction in frictional losses associated 

with the smaller capacity. 

The use of a suction device downstream of the restrictor allowed the maximum 

mass flow through the restrictor to be maintained over a wide speed range through 

delivering air at regulated boost, which would enable the above mentioned constant 

power performance aims to be achieved. Turbocharging was the preferred method of 

intake boosting over mechanically supercharging due to the documented T]TH 

improvements together with the high pressure ratios that were achievable. Furthermore, 

turbocharger boost limitations dictated the volume of the swept capacity while still 

maintaining choked flow operating conditions. Hence, the proposed engine design 

concept is comparable to downsized engines found in large automobile diesel and 

gasoline applications but on a reduced scale, with intake boosting used to compensate 

for the swept capacity reduction and additional mass benefits associated with the 

7 



smaller engine. Whilst the requirement to achieve these results with sufficient suction 

on the compressor intake (needed to achieve sonic flow in the restrictor) would appear 

to be an excessive condition for a non-racing application, in reality it dictates better than 

usual turbocharger specification and performance. To determine the swept capacity, a 

compressible flow model was created to calculate intake air consumption based on the 

maximum mass flow that could be achieved in the choked restrictor condition. Hence, 

the engine capacity was selected with the aid of the figure below, which shows the 

predicted volumetric efficiency (l]VOL) needed to maintain sonic flow through the 

intake restriction for varying engine capacities and operating conditions. 
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Figure 2.1: Predicted engine air consumption needed to maintain choked flow 

operating conditions for varying swept capacities and operating conditions with 

model validation from previous experimental results. 

The final results 

TC brake performance optimization was significantly influenced by CFD tools, 

with the importance of using simulation as an aid in accelerating engine development 

clearly demonstrated. These tools have enabled improved TC performance and 

understanding at reduced costs and lead times. The figure below compares the 

experimental and simulated TC performance data for the test engine. Experimental and 

simulation results show that by successfully implementing turbocharging to a flow 
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restricted engine, near constant power can be achieved over a wide speed range. This is 

due to the intake restriction, which limits airflow and thus performance when operating 

at the choked condition. The potential also exists to further improve low speed 

performance (prior to the intake restriction limiting airflow) with VTG. Experimental 

results also show that peak power occurs at the lowest flow restricted engine speed 

(6,000 rev/min) due to the reduced friction losses which increases brake power. 
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Figure 2.2: Comparison of experimental and predicted engine performance for the 

test engine operating in the TC mode. 

The importance of using a validated simulation model in setting the engine 

specifications during the initial design phase is clearly demonstrated in the figure above. 

Excellent agreement between actual and simulated performance is evident, with minor 

differences at 10,000 rev/min when the actual brake power tends to fall faster than 

simulated. This is partly explained by higher pumping losses than simulated and 

increasing friction losses associated with increasing component flexure at the high 

engine speeds. In addition to the performance comparisons of the figure above, the 

development process used to improve TC performance through intake and exhaust 

geometries together with valve events further illustrates the agreement with simulation 

results. 

[Reference Number 9] 
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Below is the finding from William Attard, Harry C. Watson, Steven Konidaris 

and Mohammad Ali Khan from University of Melbourne. 

The experimental setup 
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The experimental results 

Brake Mean Effective Pressure (BMEP) 
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Brake Power 
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Brake Specific Fuel Consumption (BSFC) and Thermal Efficiency (l]rn) 

[Reference Number 10] 
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Conclusion 

The performance and efficiency of a downsized Formula SAE engine running in a 

variety of NA and forced induction modes on 98-RON pump gasoline has been 

described, with the limiting factors compared. Modes are defined by variations in the 

induction system and associated engine modifications, namely compression ratio 

optimization, which was needed to avoid uncontrolled end-gas knock and maximize 

llvoL· These modes included: 

(A) NA with carburetion 

(B) NA with PFI 

(C) Mildly SC with PFI 

(D) Highly TC with PFI 

The test engine used in experiments was specifically designed and configured for the 
3 

purpose, being a 430 em , twin cylinder in-line arrangement with double overhead 

camshafts and four valves per cylinder. 

A peak value of 25 bar BMEP was achieved while running in the highly TC mode, 

believed to be the highest recorded value for small engines on pump gasoline. This 

exceeds GM's highest specific output, recently reported to be 22 bar from their 2.0-L 

TC Ecotec engine. The increased performance from the WATTARD engine is due to 

the reduced bore size, which promotes increases in engine speed and end-gas volume 

reductions around the periphery of the chamber. This allows CR and/or MAP values to 

be increased before exceeding the DL. 

Knock has been highlighted as being the single most important limiting factor in 

defining the performance for downsized boosted engines. Testing demonstrated that 

spark retard and/or fuel enrichment can be used as a method of knock control for up to 

1-2 CR points depending on the knock severity. Testing also showed that knock severity 

is highest on the intake side in a pent roof combustion chamber. This is due to the knock 

onset location's dependence on the flame speed, which is severely reduced as the flame 

travels over the cooler surfaces of the intake valves. 
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Experimental results showed BSFC or Tim values in the order of 240 g/kWh or 34% 

could be achieved. Constant power could also be achieved over half the speed range in 

the highly TC mode due to the Formula SAE regulated intake restriction, which limited 

power. The engine was installed into successive MUR Motorsport vehicles in 2003 and 

2004 and became the first prototype engine to successfully compete in the competition. 

The engine and vehicle package proved to be very competitive, finishing first in the fuel 

economy event at the 2004 Australasian competition. 

Experimentation and competition results have proven that the performance of 

downsized engines can match that of their larger counterparts, with the aid of intake 

boosting. However, the extent to which swept volume can be reduced in any downsized 

application is combustion limited. If the combustion in high speed, small bore engines 

could be better understood or even enhanced to promote faster burning ,the severity of 

end-gas knock could be minimized. This would allow further increases in CR and/or 

MAP, resulting in increased performance and efficiency. 

2.2.2 Analysis of Engine Speed Effect on Temperature and Pressure of Engine 
Based on Experiment and Computational Simulation. 

Below are the analysis done by N.M.I.N. Ibrahim, Semin, Rosli A Bakar, Abdul 

R. Ismail and Ismail Ali from University Malaysia Pahang. 

The experimental results shown that the higher rpm mode produced the highest cylinder 

pressure compare other lower rpm as shown in Fig. 5. The higher speed may reach 

nearly 9.04 bar and at the speed llOO rpm and 1400 rpm showed the value of 8.43 bar 

and 8.73 bar, respectively. All data is taken at motoring condition which is for flow 

process without firing. The pressures started increase at the -1010 BTDC for all speeds 

until achieve the maximum values when exhaust port started close (EPC). From this 

experiment also shows that when pressures reach at the 880 ATDC which is exhaust 

port started open (EPO), the pressures drop to negative values cause of residual form 

exhaust port enter to cylinder called backflow. 
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Fig. 6 shows that the intake pressures at the different of speed function of crank angle 

degree. The trend of profile show different compared with cylinder pressure. At the 

lower speed of engine can achieve the maximum pressure at the II 00 rpm and reduced 

for the 1400 rpm also 1700 rpm. The profile explained of process happen at the 

crankcase area. The crankcase pressure is similar with the intake port value of pressure. 

Form the overall figure, concluded that the minimum pressure occur when the fresh 

charge enter to crankcase through the transfer port and shown that at -450 BTDC the 

pressures was dropped. When the intake port started open (IPO) at 1400 ATDC, the 

pressure of intake port was increased and can reach maximum values. At this time the 

fresh charge enter to cylinder at the high velocity and reduced when piston reaches at 

BDC. Form this pressure profile can be concluded that the higher speed can produce 

minimum pressure compared the lower speed of engine. These data will used as 

boundary condition for simulation approach. Cylinder pressure data was measured in 

experimental, and introduce in simulation stages to study the characteristics of in

cylinder behavior. The cylinder pressure data provided a more than satisfactory result 

thus increasing the confident level to explore more details on the next stage of this study 

which is scavenging analysis studies. Fig. 7 and Fig. 9 were shows the cylinder pressure 

results as a function of crank angle degree for the different speed. Fig. 7 and Fig.8 

clearly shows that the simulation higher than the experimental and opposite for Fig. 9. 

The experimental results show the values for 1100 rpm, 1400 rpm and 1700 rpm gave 

8.43 bar, 8.73 bar and 9.04 bar, respectively. On other side, the simulation results gave 

8.59 bar, 8.75 bar and 8.95 bar for the same speed as above. As theoretically explained 

that, the simulation results must always give higher than measured values because refer 

to ideal cycle and not consider factor such as heat losses. Fig. 7 given relative error is 

1.86 %and followed by Fig. 8 with 0.22 %. Comparatively, results for the Fig. 9 shows 

that the experimental higher than simulation at 1 % of relative error compared based the 

experimental. The trends of Fig. 9 show that when the speed increased, the simulation 

results will be decrease at the small of discrepancy. When the exhaust port started open 

(EPO) at 880 and 1010 give at negative value for measured and simulation, 

respectively. The values seen that small for simulation and show clearly at high value 

for experimental. It explained that influenced of this modeling process. The simulation 
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stage is complexity of geometries which is modeled based on approximation values 

especially at the angle port geometries. Due to the same reason, the engine port timing 

was also change, since two-stroke engine timing is port controlled. The approximation 

of geometries is measured using the Coordinate Measurement Machine (CMM) 

measurement and manual measurement. But CMM measurement gives an accurate 

measurement on plane only. The difficulty of getting accurate geometry profile occurs 

since the actual geometry is three dimensional. Complex geometries at the intake, 

exhaust ports angles, dome and volume clearance high of the engine are approximated. 

Manual measurement of actual geometries slightly reduced the actual compression ratio 

(CR) which influences the increasing of pressure in cylinder. Fig. I 0 shows the cylinder 

temperature profiles are compared at different of speed. This figure illustrated the 

prediction of cylinder temperature. The profiles show similar trend with cylinder 

pressure figure. The higher values at the middle of process caused by the compression 

process started when piston at bottom dead centre (BDC). The values of cylinder 

temperature will decrease while piston start leaves the top dead centre (TDC). As 

theoretically, from the relationships between pressure P, temperature T and volume V If 

the cylinder pressure increase, the temperature also increase when the volume of 

cylinder decrease while the piston motion move upward. At the TDC position, the 

maximum at llOO rpm, 1400 rpm and 1700 rpm gave 543.9 K, 544.5 K and 544.2 K, 

respectively. It concluded that the speed of engine increase the temperature also 

increase except the last speed at 1700 rpm. In this case, the investigation of flow in 

cylinder not considered the combustion process and the temperature values also not 

show the higher compared the combustion process. 

Conclusion 

The experimental results showed that the higher rpm mode produced the highest 

cylinder pressure compare other lower rpm. The simulation result shows that the 

cylinder pressure results as a function of crank angle degree for the different speed. The 

simulation of cylinder pressure is higher than the experimental. In this temperature case, 
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the investigation of flow in cylinder not considered the combustion process and the 

temperature values also not show the higher compared the combustion process. 

[Reference Number 11] 

2.2.3 Compression Ratio Effects on Performance, Efficiency, Emissions and 
Combustion in a Carbureted and PFI Small Engine 

Below are the analysis done by William P. Attard, Steven Konidaris, Ferenc 

Hamori, Elisa Toulson and Harry C. Watson from the University ofMelboume. 

The original intent of this development program was to achieve success in 

Formula SAE competition. However, from the research and development process, more 

significant findings concerning small engines have been discovered. This paper 

provides some insight into the CR effects, giving direction for future development of 

small scale engines for passenger vehicles. Specifically, the objectives are to: 

• Experimentally explore the effects of CR variations on performance, efficiency 

and emissions for a small engine across engine speed and MAP domains. 

• Compare CR effects and combustion operating limits between the small engine 

and larger cylinder bore engines found in passenger vehicles. 

• Compare carburetion and PFI fuel delivery systems in a small engine. 

• Determine combustion parameters for a small high speed engine, comparing the 

effects of CR and fuel delivery variations across the speed range. 

It should be noted that all brake data presented in this paper corresponds to the 

performance at the gearbox output shaft and not at the crankshaft. This is due to the 

engine design featuring an integral clutch and transmission within the crankcase. 

Performance at the crankshaft is expected to be marginally higher, due to the reduction 

in parasitic losses associated with driving the transmission components. Testing for 

each mode commenced at the highest CR, which was limited to 13. This was the highest 

achievable with a flat top piston in the pent roof combustion chamber. The decision to 
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use a flat top piston was based on manufacturability, with simple machining processes 

allowing reductions in CR. Hence, variations ranging from 9-13 were possible through 

piston crown modifications to a set of custom forged pistons. It is noted that squish 

areas around the periphery of the chamber were maintained to minimize the differing 

effects of turbulence and resulting combustion effects for varying CRs. 

Results 

Contour plots are used to display the large quantities of performance, efficiency 

and emissions experimental results. Results are presented in brake format with varying 

engine speed, MAP and CR parameters. The contour plot data is presented across two 

domains as follows: 

• Engine speed versus MAP at the highest 

achievable CR 

• CR versus engine speed at the highest 

achievable MAP 

This allows trends to be established and visualized to quantify parameter 

variation effects. Moreover, plots also allow comparison to larger bore engines to 

quantify any performance, efficiency or emission effects attributed to the reduced 

cylinder capacity. These effects are summarized in Table 4, which compares the test 

engine's experimental results to published data for modern, larger bore engines found in 

passenger vehicles. 

BRAKE MEAN EFFECTIVE PRESSURE (BMEP) 

Figure 2.3 displays BMEP contours for both carbureted and PFI modes. When 

compared to larger bore engines, trends show matching BMEP effects for varying MAP 

and CR. Increases in BMEP are shown to be directly proportional to increases in MAP 

for all speeds, primarily due to increases in air consumption and l]TH. Increases in CR 

are shown to directly correlate to increases in BMEP for all speeds. The increases in 

BMEP are attributed to a combination of both increased air consumption and improved 

combustion. As the CR is increased, the residual gas fraction within the cylinder 
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decreases. Reducing the hot products within the cylinder minimizes the warm up of the 

incoming charge during the induction process, improving charge density and air 

consumption. A bulk increase in charge density also enhances the combustion process 

with improved burning rates. A BMEP improvement in the order of 10-13% was 

recorded across both carburetion and PFI with a CR increase from 10 to 13. These 

values closely correspond to experimental results recorded in larger bore engines 

together with fuel-air cycle analysis. However, further performance improvements 

associated with CR increases are primarily limited by knock together with piston crown 

geometry constraints as previously outlined. At the highest test CR of 13, peak BMEP 

values in the region of 1200-1300 kPa were recorded at mid range speeds. These small 

engine values are compared to larger bore OEM engines fitted to passenger vehicles as 

outlined, which achieve in the order of 1000-1100 kPa BMEP. The BMEP performance 

discrepancies are largely associated with the CR differences associated with the 

differing bore sizes and engine speeds, further highlighting the performance potential 

for small cylinder engines. 

(A) NA · CARBS 
BMEP(IIP3), CR = 13 

40C.O 5000 6000 7000 BOCO 90CO 10000 
Sp€ed {revimln) 

5 8DCO 
f .• 
~ 701}0 
~ 
J} eoco '-·· 

(B) NA • PFI 
BI'.1EP {KPa} CR = 13 

4000 5{]\)() 6000 70(}) 8000 9000 10000 
~ed (~vlmln) 

BMEP (kPai. tMP: 100kP.:1 

···---

.BMEP lkPJl MAP "- 1DOKPJ 

13 

Figure 2.3: BMEP trends versus engine speed, MAP and CR. (Left): CR = 13, 
(Right): MAP= 100 kPa. PL is the performance limit line defined at WOT for a 
given CR. 
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PERFORMANCE, EFFICIENCY AND EMISSION COMPARISONS 

Figure 12 displays CR and mode comparisons at WOT (100 kPa MAP) to 

evaluate the performance, efficiency and emission effects. Only three data sets are 

presented in graphs across the test range. However, results provide the reader with clear 

findings from the experiments presented in this paper. The performance comparisons 

(Figure 12-Upper) for equal CRs suggest similar BMEP potential between PFI and 

carburetion when accounting for the airflow discrepancies, which could be eliminated 

with intake system optimization [4,5,17]. The reduced air consumption of the PFI 

system is associated with fitting the mandatory Formula SAE intake restriction. 

Although engine air consumption rates were not high enough to cause restrictor 

choking, the intermittent pulsing attributed to the uneven firing order limited 

instantaneous peak airflow through the nozzle, resulting in reduced performance. 

The fuel efficiency comparisons (Figure 12-Middle) indicate clear gains when 

implementing PFI over carburetion. The improved fuel break-up and atomization of the 

PFI system aids in vaporization, resulting in improved mixing together with minimal 

wall wetting and pooling. These effects improve efficiency and magnify in affect at low 

engine speed and load conditions. It is also reiterated that these results are attained from 

steady state testing, with transient testing yielding significantly different results due to 

fuel control and pooling issues associated with the high fuel entry position of 

carburetion. Hence, efficient TWC operation for emission control is difficult to achieve 

with this system. When comparing emissions between carburetion and PFI (Figure 12-

Lower), HC emissions standout as being the major difference between the two modes of 

fuel delivery. Reductions in the order of 20% are shown at WOT when implementing 

PFI during steady state testing, with HC differences between both modes expected to 

increase during transient operation. The differing fuel efficiencies between carburetion 

and PFI are shown to have insignificant affects on combustion, consistent with the 

similar performance potential findings discussed. However, the poorer TJTH of the 

carbureted system has resulted in increased levels of engine out unbumt HC emissions. 

These performance, efficiency and emission results confirm previous findings from 
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larger bore engines, with PFI generally adopted over carburetion due to improved fuel 

and emission control. 
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Conclusion 

This paper compares the performance, efficiency, emissions and combustion parameters 

of a prototype two cylinder 430 cm3 SI engine. Experiments were completed over a 

range of CRs ranging from 9-13 for both carburetion and PFI fuel delivery systems. 

Results showed the potential for engine operation at a CR exceeding 13. The high CR 

achieved for this particular small engine is attributed to the physical size reduction, 

particularly the reduced bore diameter and fast bum combustion chamber. This resulted 

in engine speed increases together with end-gas volume reductions around the periphery 

of the chamber, allowing CR and/or MAP values to be increased before exceeding the 

DL. This enabled the engine to achieve 37% T]TH and 13 bar BMEP. When altering the 

CR, experimental results showed similar order effects on performance, efficiency and 

emissions when compared to larger bore engines. The test engine's BMEP, T]TH and 

02 benefits were also found to have the potential to exceed typical larger bore engines 

found in passenger vehicles. However, this was only possible after CR optimization, 

which compensated for the higher levels of dissociation, friction and heat losses 

associated with the smaller cylinder capacity. When comparing carburetion to PFI, 

results show equal performance potential between both modes of fuel delivery. 

However, a 3% relative improvement in peak 11TH was observed with PFI due to the 

improved mixture homogeneity, as confirmed by the HC emissions. This improvement 

in 11TH increased with decreasing engine speed and load. In addition, reductions in PFI 

C02 emissions showed similar trends to T]TH findings. However, HC emissions were 

shown to be the most significant difference between both modes of fuel delivery, with a 

reduction in the order of 20% at WOT when implementing PFI. These performance, 

efficiency and emission results confirm previous findings and are factors contributing to 

PFI' s universal adoption over carburetion. Combustion results indicate that the fuel 

delivery system has little effect on bum rates. However, CR increases result in faster 

initial bum rates, which produce higher IMEP. Additionally, increases in engine speed 

do not linearly correlate with combustion duration, with increasing turbulence levels 

promoting faster flame speeds and hence faster burning rates. Peak flame speeds 

exceeding 40 m/s were recorded at 10500 rev/min. The future development of smaller 
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engines for passenger vehicles is addressed in this paper, as engine downsizing grows in 

popularity due to rising oil prices and recent greenhouse concerns. The results presented 

have significant relevance to manufacturers who continue to strive for performance and 

efficiency benefits while meeting legislative pollutant emission standards. 

[Reference Number 12] 
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3.1 Project Methodology 
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CHAPTER3 

METHODOLOGY 

Research 

Analysis 

Comparison 

Selection 

Report Writing 
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I 

The first step of this project is to choose a title. The title of this project was 

proposed by Ir. Dr. Masri Baharom which is the selection and analysis of engine of 

Formula Sae. Once the title has been approved literature review is done. With the 

information gathered from the literature review the analysis and selection of the engine 

can be done. This will then lead to the report writing. 

3.2 Gantt Chart 

Please refer to appendix A 
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CHAPTER4 

RESULT AND DISCUSSION 

4.1 General comparison between the three engines. 

The Honda and Yamaha engines weight about 50 kg while the Aprilia engine 

only weights about 33 kg. This is mainly due to the smaller displacement of the Aprilia 

engine. The Aprilia is supposed to have the better power to weight ratio. 

The Honda and Yamaha engines uses a wet sump while the Aprilia engine uses 

a dry sump. A wet sump is not recommended for racing purposes. This is because when 

the vehicle is turning around sharp comers, this causes the oil in the pan to slosh. This 

will then starve the system of oil for small periods of time. This can cause damage to 

the engine. A dry sump has its advantages, namely increased oil capacity and a lower 

center of gravity for the engine. Also, dry sump designs are not susceptible to the oil 

starvation problems if the oil sloshes in the oil pan. 

The aprilia's has a lot of issues with the starting system. In order for the italians 

to meet their weight goal for the motor, they used a starter off a SOcc scooter. Because 

that starter lack huevous, they out fitted the engine with a decompressor system that 

opens the exhaust valve slightly to bleed off some of the compression built up by the 

cylinder. Aprilia has made a lot of revisions to the starter gearing and the ecu, even 

putting a 6 second limit on cranking to keep the motor from burning up. The sprags are 

pretty beefy but get damaged when the engine backfires, which happens with a poor 

tune or bad starter. 
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4.2 FSAE noise test engine speed. 

To calculate the noise test engine speed we first have to find the piston speed for 

each of the engine. To calculate the piston speed the following formula will be used: 

Up=2Ns 

Where, N = engine speed 

S =stoke 

For the Honda CBRF4i, 

N = 12,500 rpm 

s =0.04255 m 

Up=2Ns 

= 2 (12,500) 0.04255 

= 1,063.75 m/min 

For the Yamaha FZ6 S2, 

N = 13,000 rpm 

s =0.0445 m 

Up=2Ns 

= 2 (13,000) 0.0445 

= 1,157 m/min 

For the Aprilia SXV 5 50, 

N = 11,000 rpm 

s =0.055 m 

Up=2Ns 

= 2 (11,000) 0.055 

= 1,210 m/min 
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Of the Formula SAE Rules, the noise test speed for a given engine will be the 

engine speed that corresponds to an average piston speed of914.4 m/min (3,000 ftlmin) 

for automotive or motorcycle engines, and 731.5 m/min (2,400 ftlmin) for industrial 

engines, rounded to the nearest 500 rpm. 

For automotive or motorcycle engines 

The equation is: Calculated Test Speed= 914.4 X 1000 rpm 

2 x Stroke (mm) 

Table 4.1: FSAE noise test engine speed 

Borex Test rpm 
Model Dis pl. 

Stroke Calculated Rounded 

HondaCBR 67.0x42.5 
599 cc 10 758 11 000 

F4i mm 

YamahaZ6 
65.5 X 44.5 

S2 600 cc 10 274 10 500 
mm 

Aprilia SXV 
80x55 mm 549 cc 8 312 8 500 

550 

The sound of the engine is important. If it is realistic enough this sound will help 

you determine when it is time to change gears. Since the frequency and volume of the 

sound should vary continuously it is almost impossible to use recorded sound samples. 

The sound has to be generated online. The signal that will be sent to the sound card 

should be some sort of wave form. The basic frequency of this wave should be the same 

as the engine speed. To realize this, the engine speed is integrated and sent through a 

sine function. This generates a sine wave having amplitude one and the same frequency 

as the engine. Since engine noise consists of more than one frequency also a signal of 

double, half and quarter frequency is made. These signals are added up using different 
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gains. Real engine sound is not made up of just sine functions. To make up for this, the 

sound is made noisier using clipping of the signal. This makes the sound more realistic. 

In figure 4.2 the implementation of this can be seen. The volume of the sound should 

depend on the position of the accelerator. This is done in a simple linear way. When the 

accelerator is completely floored, the sound is loudest. When the accelerator is not 

pushed at all, the volume of the sound is set to 30% of the maximum value. 

cranks~aft 
positi~n 

Gain1 Trigonom~t~c 

FunctiCJn3 

Gain Tri~;~onomi!tric Gairl5 

Galn4 Trigeonom~t:le 

Funclion2 

Figure 4.1: Implementation of the Sound Generator 

4.3 Engine Dyno Charts 

4.3.1 Honda CBR 600 F4i 

w 100 
~ 

~ 80 
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c 

~ 20 
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Figure 4.2: Honda CBR 600 F4 i Dyno Chart 

32 



4.3.2 Yamaha FZ6 82 
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Figure 4.3: Yamaha FZ6 82 Dyno Chart 

4.3.3 Aprilia 8XV 550 

Figure 4.4: Aprilia 8XV 550 Dyno Chart 

" 
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4.4 Calculating Brake Mean Effective Pressure (bmep) 

4.4.4 bmep for Honda CBR 600 F4i 

Based on torque, the bmep is, 

bmep = 4n< 

vd 
Where, torque, 1: = 42.6 

Vd= 599 

Thus, bmep = 4n ( 42.6) 

599 

=0.89kPa 

Based on power, the bmep is, 

bmep=2W!2 

VdN 

Where, wb = 2n TN 

= 2n (42.6) 12,500 

= 3,345,796 

Thus, bmep = 2 (3 .345 ,796) 

599 (12,500) 

=0.89 kPa 

4.4.5 bmep for Yamaha FZ6 S2 

Based on torque, the bmep is, 

bmep = 4n< 

vd 
Where, torque, 1: = 45.1 

vd =6oo 
Thus, bmep = 4n (45.1) 

600 

=0.94 kPa 
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Based on power, the brnep is, 

brnep =2W0 

VdN 

Where, Wb = 21t •N 

=27t(45.1) 13,000 

= 3,683,831 

Thus, brnep = 2 (3.683.831) 

600 (13,000) 

= 0.94kPa 

4.4.6 bmep for Aprilia SXV 550 

Based on torque, the brnep is, 

brnep = 47t't 

vd 
Where, torque, 't = 34.8 

vd = 549 

Thus, brnep = 47t (34.8) 

549 

=0.79kPa 

Based on power, the brnep is, 

brnep=2Wb 

VdN 

Where, Wb = 2 1t 1:N 

= 21t (34.8) 11,000 

= 2,405,203 

Thus, brnep = 2 (2.405.203) 

549 (11,000) 

=0.79kPa 

35 



4.5 Calculating Brake Specific Fuel Consumption (BSFC) 

The brake specific fuel consumption is calculated using MATLAB. The 

following data is needed for the calculation. 

, 4i.. MATLAB 

Honda 

Fuel rate= 12,600 cc/hr 

Power= 95.5 hp 

Yamaha 

Fuel rate= 13800 cc/hr 

Power= 110.9 hp 

Aprilia 

Fuel rate = 10,800 cc/hr 

Power= 61.28 hp 
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I ,_,, 
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Figure 4.5: Brake Specific Fuel Consumption (BSFC) 

Thus from the BSFC for the engines are: 

Table 4.2: BSFC for the three engines 

Engine BSFC (cc!HP*Hr) 

Honda CBR 600 F4i 131.937 

Yamaha FZ6 82 124.436 

Aprilia SXV 550 176.240 
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CHAPTERS 

CONCLUSION 

An analysis of three different engines has been done. From the dyno charts, we 

are able to see that the Yamaha engine tops the Aprilia and Honda engines in terms of 

power. While the Honda has produces more power compared to the Aprilia. But, the 

difference in power between the Honda and Yamaha is not too great. Also these 2 

engines weight about 50 kg while the Aprilia only weights around 33 kg. Hence the 

Aprilia has the better power to weight ratio. 

For FSAE purposes the Honda CBR 600 F4i will be the engine that is 

recommended. It has decent power aspects. There are also a variety of tuning kits for 

this engine. This is because there are a lot of these engines around thus making it quite 

common. Also a lot of other FSAE teams use this engine. Thus, if something were to go 

wrong during the competition it would not be too difficult to find spare parts. Worst 

case scenario, we could purchase a spare engine from another team. 
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APPENDIX A 

Table: FYP 1 Gantt Chart 

No. Detail I Week 3 4 5 6 7 8 9 10 11 12 13 14 

1 Selection ect Title 

2 

3 

4 

5 

6 Submission 

7 Seminar 

8 Submission of Interim 

9 Oral Presentation 

Table: FYP 2 Gantt Chart 
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