
Design and Fabrication of a Lab Scale Thermal Energy Storage in Ice 

by 

Dee Boon Huei 

Dissertation submitted in partial fulfilment of 

the requirements for the 

Bachelor of Engineering (Hons) 

(Mechanical Engineering) 

DECEMBER 2008 

Universiti Teknologi PETRONAS 
Bandar Seri Iskandar 
31750 Tronoh 
Perak Darul Ridzuan 



CERTIFICATION OF APPROVAL 

Design and Fabrication of a Lab Scale Thermal Energy Storage in Ice 

Approved by, 

by 

Dee Boon Huei 

A project dissertation submitted to the 

Mechanical Engineering Programme 

Universiti Teknologi PETRONAS 

in partial fulfilment of the requirement for the 

BACHELOR OF ENGINEERING (Hons) 

(MECHANICAL ENGINEERING) 

ttj$~,M 
(Dr. Chalilullah Rangkuti) 

UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

December 2008 

i 



CERTIFICATION OF ORIGINALITY 

This is to certify that I am responsible for the work submitted in this project, that the 

origirtal work is my own except as specified in the references and acknowledgements, 

and that the otigihal work contained herein have not been undertaken or done by 

unspecified sources or persons. 

IJE:E Bbo:N HUEi 

11 



ABSTRACT 

Thermal energy storage (TES) is a key technology for energy conservation of great 

practical importance. TES is the best method for correcting the mismatch between 

the supply and demand of energy. Universiti Teknologi PETRONAS did not have 

any lab equipment for study of cold thermal energy storage (CTES). Additional 

equipment can be added on to the current available water chiller unit in the lab to 

demonstrate the application of CTES. This project targeted to design and fabricated a 

lab scale CTES using phase change· material (PCM), ice. This project studied the 

water chiller unit available in the lab and thermal properties of water and ice. CTES 

was designed according to the recommended cajlacity and fulfilled the design 

consideration requirement. Studies compared several types of thermal energy storage 

methods exist in the market and chosen encapsulated ice storage as the most suitable 

for lab demonstration which is also widely used in the world. Modifications were 

done on initial design to compromise and best suit with the current water chiller 

design and availability of material. Prototype fabrication was done by selecting the 

appropriate fabrication process, cost effective and ready market available material. 

testing and analysis were carried out to evaluate the prototype performance. this 

prbject produced a 3700kJ insulated encapsulated ice storage type CTES with 88% 

efficiency for students as an additional lab equipment for study of CTES. 
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CHAPTER! 

INTRODUCTION 

1.1 Problem Statement 

Cold thermal energy storage or CTES is advance energy storage for thermal 

applications such as air conditioning and room cooling. CTES is the best method for 

correcting the mismatch between the sup{>ly and demand of energy. CTES can be 

used to store cold energy via phase change material which can reduce the size of the 

storage compare to a single phase material. However, UTP is lack of CTES 

equipment for student study and experiment purpose. An appropriate CTES 

equipment will demonstrate to student how CTES been applied in the real life 

application. 

1.2 Significance of Stndy 

The study applies the knowledge and theory of thermodynamics, heat transfer, 

air conditioning and refrigeration. The properties and thermal en~rgy of a phase 

change material, which is ice in this study, will be investigated. Study will find the 

most appropriate and cost effective design and materials for thermal energy storage 

in ice. It can be used in further chiller experiment and scale up for commercial used. 

1.3 Objectives 

• To design a lab scale phase change material (ice) thermal energy storage 

• To develop and test the performance of thermal energy storage 
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1.4 Scope of Work 

• Study on thermal properties of water and ice, water chiller available iJ;lJab 

• Design the thermal energy storage 

Choose the suitable storage method, design of storage, and calculate the possible 

capacity ice storage through the capacity output from lab water chiller equipment. 

• Fabrication of the thermal energy storage equipment 

Initial design can be modified to suit the water chiller, material availability and 

cost factor. The CTES will be fabricated by using combination of several processes, 

such as cutting and drilling. Insulation is required to reduce the energy loss from 

CTES and heat gain from surrounding into CTES. 

Include sensors or probes into the system for monitoring if necessary. 

• Thermal energy storage equipment testing 

Data analysis must be carried out on the prototype to calculate its efficiency and 

performance. Costing analysis based dil predefined situation will be evaluated. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Heat and Thermal Properties of Water 

This section studies the heat and thermal properties for water and ice. As this 

project is using water to form ice as phase change material, literature review is 

important to find out the theory and background for this project. 

Heat (Q) is a thermal energy which is also the energy of a statistical system of 

particles randomly colliding with each other. It has dimensions of energy, but it is 

not a state variable. Temperature depends on the past history of the system. A system 

can be isothermally expanded by adding heat, or decrease its pressure slowly without 

addition of heat remaining the same final pressure, temperature and volume [1]. 

The heat energy of a system can be written as the product of two state 

variables which are the temperature and entropy (S) [1]. Entropy is a measure of the 

degeneracy of a system. Entropy is an intrinsic state variable. It never decreases in a 

completely isolated system. Since degeneracy is associated with randomness, it is 

true that entropy is also a measure of the disorder of a system [1]. 

Heat is most often measured in calories (cal). A calorie is 4.186 J which is the 

amount of heat required to raise one gram of water. The temperature of a substance 

changes as heat energy is added to it. The heat capacity (C) of an object is the ratio of 

change in heat to change in temperature, and the specific heat (c) of a substance is 

the heat capacity per unit mass [1]. 

Q=mc~T 

The specific heat of water is 1 cal I g K by definition. The specific heat of a. 

substance is defined at the amount of heat that must be absorbed or lost for 1 g of 
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that substance to change its temperature by 1° K [1]. The heat change per unit mass 

required for a phase transition is called the latent heat (L ). 

Q=mL 

The heat added or lost during a phase change does not affect the temperature 

during the phase change. 
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Figure 1: Phase change diagram for water [2] 

Thermal energy quantities differ in temperature. Latent heat is associated 

with the changes of state or phase change of material. Many cooling TES systems 

use chilled-water systems to transfer the cooling capacity from the storag_e to the 

building air-distribution system. Ice systems use smaller tanks and offer the potential 

for the use of low temperature air systems, but require more complex chiller systems. 

Ice CTES systems use the latent heat of fusion of water which is around 335kJ/kg to 

store cooling capacity. To store energy at the temperature of ice requires refrigeration 

equipment that provides changing fluids at temperatures below the normal operating 

range of conventional air conditioning equipment. [3, pg. 166] 
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The ice produced through CTES can be used on cold air distribution in air 

conditioning system. Advantages of cold air distribution and CTES including reduce 

the peak electrical demand and lower capital cost as CTES require lesser volume to 

meet a cooling load relative to conventional systems, the mechanical system can be 

downsize and satisfy the same cooling load as conventional system [3, pg. 203]. 

Reduced mechanical system lowers the operating costs, and increased usable space. 

This would indirectly increase the product marketability. 

2.2 Modular Ice Storage for Glycol System 

This section studies the current available ice storage for glycol system. Study 

focuses on the two most popular and widely used storage system, modular and 

encapsulated ice storage. 

165 
Ton-hrs 

Fewer, longer heat exchanger circuits 

• Low flow rate (GPM) 
• H1gh temp difference (eST) 

• Moderate pressure drop 

More, shorter heat exchanger circuits 

• H1gh flow rate (GPM) 
• Low temp difference (liT) 

• Low pressure drop 

Figure 2: Modular ice storage tanks [3, pg_ 186] 

Modular ice storage tanks can be constructed in many sizes or shapes. Two 

common designs are cylindrical polyethylene tank with circular polyethylene heat 

exchangers and rectangular metal tank with polypropylene heat exchanges. In both 

modular ice storage designs, the heat exchanger separates the glycol solution from 

the water in the tank. The water is frozen by circulating -6C to -4C glycol through 

the heat exchanger. 

The differences in tank geometry and heat exchanger design pose different 

problem. The shape of circular ice storage tanks allows heat exchangers with fewer 

circuits of longer length, and permits freezing or melting at lower flow rates and 

higher temperature differences. Low flow rate freeze cycles enable the designer to 

better match the capacities of the storage tanks and chiller. [4] 
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Rectangular tank incorporate high flow rate, low pressure drop heat exchangers 

that operate with a lower temperature difference during freezing [4]. These 

characteristics not only place additional design constraints on chiller selection, but 

require individual flow balancing for each storage tank. 

2.3 Encapsulated Ice Storage for Glycol System 

Encapsulated ice offers a wide degree of latitude in the design of the ice 

containment vessel. Encapsulated ice designs store the water to be frozen in a 

number of plastic containers. These containers may be thin and rectangular, spherical 

or annular. Number of containers or units required depends on their individual 

storage capacities. 

ENCAPSULATED ICE 

20 Unrts 70 Units 110 Un1ts 
per ton-hr per ton-hr per ton·hr 

Vaned construction matenals. geometries 

~ 
Easily adapted to ava,lable space, archrtectur~l desiQn 

Figure 3: Encapsulated ice storage tanks [3, pg. 186] 

The greatest advantage for encapsulated ice storage glycol system is the 

degree of application flexjbility. Storage system can be customized to the application. 

Encapsulated ice units consists of plastic containers filled with ionized water an ice 

nucleating agent [3, pg. 185]. These primary containers are placed in storage tanks. 

In tanks with spherical containers, water usually flows vertically through the tank 

and in tanks with rectangular containers, water flows horizontally. 

Glycol solution is cooled to -4 o C to -3 o C by a liquid chiller, and circulates 

through the tank and over the outside surface of the plastic containers, causing ice to 

form inside the containers. Plastic containers must be flexjble to allow for change of 

shape during ice formation, the spherical type has preformed dimples in the surface, 

and the rectangular type is designed for direct flexure of the walls. During discharge, 

coolant flows either directly to the system load or through a heat exchanger, thereby 
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removing heat from the load and melting the ice within the plastic container. As ice 

melts, the plastic containers return to their original shape. 

Cold 
glycol 

CHARGING 

Warm 
glycol ____. 

DISCHARGING 

Figure 4: Encapsulated ice balls [6] 

2.4 Ice Thermal Storage Control Strategies 

This section studies the common control strategies in applying CTES for cold 

air distribution. Different management strategy produces different result thus 

different operating cost applied. Ice thermal storage systems can be operated in a 

variety of ways, with the major control strategies are full storage, partial storage and 

demand limited storage. 

2.4.1 Full Storage 

Under a full storage control strategy the total daytime cooling load is shift to 

the nighttime, with the chillers producing an ice store during the period when off

peak electricity charges apply. During the daytime the ice store is discharged to meet 

the building or process cooling load. While being the most effective of all the control 

strategies in terms of energy costs, full storage has the major drawback that the ice 

store and chiller plant required are much larger than for the other control strategies. 

Due to its prohibitively high capital cost full storage is rarely used. [5, pg.206] 
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Figure 5: Full storage strategy [5, pg.206] 

2.4.2 Partial Storage 

• Ice production 

Store discharge 

Partial storage is the collective term gtven to those ice storage control 

strategies which require both the chiller plant and the ice store to operate together to 

satisfy the daytime cooling load. During periods in which the building or industrial 

process experiences a cooling load, the ice store and the chiller plant work 

simultaneously to satisfy the cooling load. The advantage of partial storage is that 

both the store and the chiller plant are substantially smaller than would be the case 

for a full storage installation and thus the capital cost is lower. This makes partial 

storage a very popular option. The umbrella term partial storage can be sub-divided 

into two separate and distinct sub-strategies, namely chiller priority and store priority 

[5, pg.206]. 

2.4.3 Chiller Priority Control Strategy 

Under a chiller priority control strategy the refrigeration plant runs 

continuously through both the ice production and the store discharge periods. During 

the daytime the refrigeration plant carries out the base-load cooling and the ice store 

is used to top-up the refrigeration capacity of the chiller plant, which would 

otherwise be unable to cope with the peak demand. Under a chiller priority strategy it 

is possible to achieve reductions in the region of 50 % in chiller capacity when 

compared with a conventional refrigeration installation [5, pg.207]. The capital cost 
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of installing an ice store can therefore be off-set against the capital cost saving 

arising from the reduction in chiller capacity. 
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Figure 6: Chiller priority strategy [5, pg.207] 

2.4.4 Store Priority Control Strategy 

• Ice production 

Storage discharge 

Daytime chiller 

The philosophy behind the store priority control strategy is the opposite of the 

chiller priority strategy. Under a store priority strategy the ice store is given priority 

over the chiller during the daytime. The objective of this strategy is to minimize the 

operation of the refrigeration plant during periods when electricity prices are high [5, 

pg.207]. The refrigeration chiller is only used to top-up the refrigerating energy 

released by the ice store. 
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Figure 7: Store priority strategy [5, pg.207] 
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2.4.5 Demand Limited Storage 

The object of a demand-limited control strateg} is to limit peak electrical 

demand by shifting the cooling load out of periods in which the peak demand 

naturally occurs [5, pg.207]. This greatly reduces the overall maximwn demand of 

the installation and improves the overall load factor of the building, putting the 

operators in a stronger position when it comes to negotiating electricity supply 

contracts with the utility companies. 
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Figure 8: Demand limiting strategy [5. pg.207] 

• Ice production 

Store discharge 

Daytime chiller 

From the literature review, a draft design based on the ideas reviewed was 

created. Available ice storage system was evaluated by the weight percentage to 

determine the best method for this project. Design was based on mathematical 

calculation. The design will be discussed in the discussion chapter. Costing analysis 

was evaluated based on predefined control strategy. 
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CHAPTER3 

METHODOLOGY 

In Final Year Project II, fabrication, testing and documentation were done. 

The difficulties in Final Year Project II are to obtain material from available market 

and fabricate it into a working prototype. Testing and cost analysing also were 

carried out upon completion of the project. 

3.1 Designing 

The design of the project was drafted on papers initially. Design was based on 

theoretical engineering calculation. Capacity of water chiller, time constraint for 

freezing determined the volume or size of the lab scale TES. Design then transferred 

into technical engineering drawings and got approved by supervisor prior proceed to 

the next step. Study on material selection was carried out to choose the most suitable 

and cost reasonable material. 

3.2 Fabrication 

Once materials were collected from supplier, fabrication was started in the lab. 

Prototype was fabricated according to the technical drawing. Sockets were installed 

to ensure convenience in connecting the prototype to the lab water chiller unit. 

Temperature probes, pumps, valves and piping were installed on the prototype. 

3.3 Testing 

Prototype was tested by connecting the prototype to the water chiller available 

in the lab. Data measured were recorded for analysis and discussion purpose. Testing 

procedures were documented for references. As this project tailored for student lab 
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experiment used, series of recommended experiments, procedures and tables were 

prepared for this purpose. 

3.4 Analysis and Discussion 

Data recorded were analyzed for its efficiency. Costing analysis was carried 

out to determine the saving and cost effectiveness based on operation. Discussion 

was done to look for any possibilities which may improve the current prototype 

performance. 

3.5 Documentation 

Researches and results were documented for references. Reports are fully 

documented and hard bounded as requirement. 
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Figure 9: Flow chart for methodology 
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CHAPTER4 

RESULTS AND DISCUSSIONS 

4.1 Laboratory Water Chiller 

The water chiller unit available in UTP laboratory is the Water Chiller 

Trainer 812 manufactured by P. A. Hilton Ltd. from England. The chiller is using R-

134a as the refrigerant. The function of a water chiller is to remove heat from glycol 

solution to the refrigerant, then to the condensate water. 

Figure 10: Laboratory water chiller 

Specification 

• Compressor: Hermetic- 732W 

• Condenser: Coaxial type 

• Evaporator: Coaxial type 
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• Refrigerant: R 134a 

• Safety devices: Thermostats, pressure control, emergency stop and earth 

leakage circuit breaker 

• Measuring equipment: Flow meters, pressure gauges and thermo-couples 

• Voltage: 380V 3-Phase 59Hz + Earth 

Figure 11: Chiller storage and pump 

Figure 12: Evaporator system 

The coolant storage contains water mix with anti freeze coolant which is 

ethylene glycol. Ethylene glycol prevents water from frozen which may cause the 
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pump to malfunction. In this project, we are going to utilize the chilled glycol 

solution from the chiller storage to produce ice as thermal energy storage. 

Initially, refrigerant (R-134a) will enter the compressor at superheated state. 

The refrigerant is being compressed by compressor to raise its temperature and 

pressure. Refrigerant then enter the condenser, where the condensing water (tap 

water) will also entering the condenser and remove heat from refrigerant. Refrigerant 

exits from the condenser as a compressed liquid. Refrigerant will enter the expansion 

valve to a lower temperature and become a mixture of liq_uid and gas. This mixture 

will enter the evaporator. Glycol solution from the chiller storage tank will be 

pumped into the evaporator. In evaporator, glycol solution lose heat to the refrigerant,. 

in other words, the refrigerant absorb heat from the water and exit the evaporator as 

superheated state. Chill glycol solution exit the evaporator and return to the storage 

tank at lower temperature. 

4.2 Water Chiller Experiment 

4.2.1 Objectives 

• Determine the cooling capacity and efficiency of water chiller 

• Determine the lowest temperature of chill glycol solution produced and time 

required 

• Record all parameters during the running of water chiller 

4.2.2 Procedure 

1. Water chiller was started according to the operating procedure 

2. No additional equipment or application attached, heaters were switched off 

Note that if no heat load as applied for a long period the water temperature can 

reach a low values and even with a 30% glycol mixture it is possible for the 

evaporator to freeze. If this occurs it will be necessary to turn off the unit and 

allow the evaporator to defrost. 

3. Condenser water flow was set to 300g/s 

4. Condenser pressure was set to 500kN/m2 

5. Calculate the refrigerating effect from the data collected 
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4.2.3 Results 

Table I: Water Chiller Refrigeration Data 

Parameter 

Compressor suction temperature 

Compressor discharge temperature 

Condensed liquid temperature 

Evaporator inlet (refrigerant) 

Evaporator outlet (refrigerant) 

Evaporator pressure regulator outlet 

Condenser cooling water inlet 

Condenser cooling water outlet 

Evaporator water inlet 

Evaporator water outlet 

Condenser pressure 

Evaporator pressure 

Refrigerant flow rate 

Condenser water flow 

Evaporator water flow 

Initial temperature of chill glycol solution: 21.0°C 

Final temperature of chill glycol solution: -8.0°C 

Units 

oc 
oc 
oc 
oc 
oc 
oc 
oc 
oc 
oc 
oc 

kN/m 2 

kN/m 2 

g/s 

g/s 

g/s 

Lowest temperature of chill glycol solution achieved: -8.0°C 

8.4 

59.0 

20.3 

-5.0 

6.4 

6.5 

15.9 

18.1 

7.6 

5.4 

460 

120 

12 

295 

199 

Time taken to achieve lowest temperature of chill glycol solution: 28mins 

Volume of chill glycol solution: 0.37m x 0.27m x 0.18m = 0.018m3 = 18litres 
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4.2.4 Calculations 

T ('c.) 

59 .o. - - - - - - ·- - - - - - - - - - - - - 2. 

s; (b/~) 

Figure 13: T-s diagram for water chiller 

Assuming compression of the refrigerant is isentropic, 

hti = 244.3lkJ/kg 14 = hs = 77.26kJ/kg hJ = 258.36kJ/kg 

h1 = ht,+cpv(TJ-T6) = 244.31+0.851(6.4-(-5.0)) = 254kJ/kg 

hz = hJ+Cpv(Tz-T3)= 258.36+0.851(59.0-20.3) = 291.2937kJ/kg 

Refrigerating effect (R-l34a) 

The calculation below is the refrigerating effect done by the R-l34a refrigerant 

Qin = m(hJ-hs) 

Qin = (0.012kg/s)(60s/lmin)(254-77.26)kJ/kg(l ton/21 OkJ/min) 

Qin = 0.846ton = 177.6528kJ/min 

The above calculation is the refrigerating effect done by the R-l34a refrigerant 

Refrigerating effect (Glycol solution) 

The calculation below is the actual refrigerating_ effect received by 18kg of glycol 

solution from 21.0°C to -8.0°C within 28 minutes. 

m = 18kg of glycol solution 

c = 0.902Btullb. op (Taken Ethylene Glycol solution 30% at 26.rC from table 5) 

c = 0.902 X 4186.8 J/kg.K = 3776.49 J/kg.K (I Btu!lb'F = 4,186.8 J/kg.K) 
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ll T = 294K ~ 265K = 29K 

Q=mcllT 

Q = 18kg x 3.77649 kJ/kg.K x 29K 

Q = 1971.328kJ 

Q = 1971.328kJ/28minutes = 70.405kJ/min 

Water chiller efficiency 

output Refrigerant effect (glycol) 
11 = input =refrigerating effect (R- 134a) 

Chiller efficiency, rJ = 70.405/177.6528 = 0.396 or 39.6% 

As water chiller is not insulated, only 39.6% of refrigerating effect was received by 

the glycol solution, the remaining was loss to the surrounding. 

In this project, water is filled into encapsulated storage (bottle) and allows it 

to be frozen, storing the cold energy from the water chiller. Calculate the maximum 

mass and volume of water given an hour time frame. 

Qin= 70.405kJ/min 

Q removed in an hour= 70.405kJ/min x 60min= 4224.30kJ 

4224.30kJ= m( ell T +latent heat) 

m=4224.30kJ/ ( 4.184kJ/kg.K * 25K + 334kJ/kg) 

m= 9.631kg= 9.631litres 

Therefore, the total volume of water can be frozen in an hour by water chiller 

is 9.63litres. However, this calculation does not include losses in the piping, thermal 

conductivity, storage and efficiency. 
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4.3 CTES in Chill Glycol Solution 

The water in the storage tank is re-circulated and mixed with 30% ethylene 

glycol. Ethylene glycol is an odourless, hygroscopic liquid. Ethylene glycol based 

water solutions are common in heat-transfer systems where the temperature in the 

heat transfer fluid can be below 0°C especially cooling systems where the fluid 

operates with temperatures below the water freezing point. Therefore, it is the most 

common anti freeze solution for standard cooling applications. 

The low volatility and the high water solubility of ethylene glycol have led to 

its widespread use in antifreeze solutions, de-icing fluids, refrigerants and heat 

transfer agents. Ethylene glycol has low volatility and low molecular weight. It is 

therefore widely used in automobile antifreeze and coolants. 

The viscosity, specific heat capacity, and specific weight of water and 

ethylene glycol mixture solution vary significantly with the percentage of ethylene 

glycol and the temperature of the fluid. The properties are different from clean water. 

Heat transfer systems with ethylene glycol should be calculated thoroughly for the 

actual temperatures and solutions. 

In this project, the chill glycol solution is to be used as refrigerant in the 

designed cold thermal energy storage for ice. Chill glycol solution will be circulated 

into the thermal energy storage, cooling down water into ice. The cooling capacity 

can be stored in the ice. Ice act as a reservoir of cool material which is tapped when 

necessary to provide cooling capacity. 

Table 2: Freezing point of ethylene glycol [7] 

Freezing Point 
Ethylene Glycol 

Solution 
(% by volume) 0 10 20 30 40 50 60 

Temperature I ("C) 0 -3 -8 -16 -25 -37 -55 
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Table 3: Boiling point of ethylene glycol solution [7] 

Boiling Point 
Ethylene Glycol 

Solution 

(% by volwne) 0 10 20 30 40 50 60 

Temperature ("C) 100 101.1 102.2 104.4 104.4 107.2 111.1 

Table 4: Specific gravity of ethylene glycol [7] 

Specific Gravity- SG -

Temperature Ethylene Glycol Solution (% by volwne) 

(OC) 25 30 40 50 60 65 100 

-40 I) l) I) I) 1.12 1.13 I) 

-17.8 I) I) 1.08 1.1 1.11 1.12 1.16 

4.4 1.048 1.057 1.07 1.088 1.1 1.11 1.145 

26.7 1.04 1.048 1.06 1.077 1.09 1.095 1.13 

48.9 1.03 1.038 1.05 1.064 1.077 1.082 1.115 

71.1 1.018 1.025 1.038 1.05 1.062 1.068 1.049 

93.3 1.005 1.013 1.026 1.038 1.049 1.054 1.084 

115.6 2) 2) 2) 2) 2) 2) 1.067 

137.8 2) 2) 2) 2) 2) 2) 1.05 
I) Below freezmg pomt L) .. 

Above bmlmg pomt 

Table 5: Specific heat capacity of ethylene glycol [7] 

Specific Heat Capacity- cp- (Btu/lb. °F) 

Temperature Ethylene Glycol Solution (% by volwne) 

(OC) 25 30 40 50 60 65 100 

-40 l) I) l) I) 0,68 0.703 I) 

-17.8 I) I) 0.83 0.78 0.723 0.7 0.54 
4.4 0.913 0.89 0.845 0.795 0.748 0.721 0.562 

26.7 0.921 0.902 0.86 0.815 0.768 0.743 0.59 
48.9 0.933 0.915 0.875 0.832 0.788 0.765 0.612 
71.1 0.94 0.925 0.89 0.85 0.81 0.786 0.64 
93.3 0.953 0.936 0.905 0.865 0.83 0.807 0.66 

115.6 2) 2) 2) 2) 2) 0.828 0.689 

137.8 2) 2) 2) 2) 2) 2) 0.71 
I) Below freezmg pomt L) .. 

Above boiling pomt 

1 Btu/ (lbm°F) = 4,186.8 J/ (kg K) = 1 kcal/ (kg0C) 
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4.4 Designs 

4.4.1 Initial Design 

In the initial design stage, the most suitable ice storage method was determined. 

Based on the selected method, a schematic diagram was drawn, as shown in 

appendix 1. Appendix 1 shows the schematic diagram of how the connection 

between the water chiller and thermal energy storage. Components in CTES such as 

storage tank size, piping connection and circulation flow rate were determined based 

on mathematical calculation. 

Ice storage method 

To determine the suitable storage method for lab scale CTES, comparison is 

made between modular ice storage and encapsulated ice storage. Each factor was 

evaluated based on its weight percentage. Factors evaluated are flexibility, simplicity, 

cost, and piping installation. 

Table 6: Design decision weight table 

Factor Weight Modular Ice Storage Encapsulated Ice Storage 
Application flexibility 0.3 2 4 

Simplicity 0.25 3 5 
Cost 0.25 2 3 
Piping 0.2 I 4 

Total Weight 2.05 4 

The design decision weight table concluded the best design for this project, 

which is the encapsulated ice storage system. This system has advantages of 

flexibility and simplicity compare to the modular ice storage system. 

Encapsulated ice storage size 

Encapsulated ice storage or bottles determine the capacity of the CTES. As 

this project aims to produce a lab scale prototype for student experiment purpose, the 

capacity was fixed in such way it can be fully charged in an hour time. From section 

4.2.4, it was calculated that the water chiller able to freeze 9.63kg of water in an hour 

time frame. For larger surface area, more bottles are recommended. Recommended 
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volume for each bottle is 1 OOml, therefore required 90 bottles for a total of 9 litres 

water. If a sphere shape bottle is used, the cost can be minimized as sphere encloses 

the largest volume among all closed surfaces with a given surface area. I 0% extra 

volume was added for ice expansion allowance during freezing. 

Volume for sphere: ~rrr 3 = l!Ocm3 

3 

R = ~110/~rr = 2.97cm = 29.7mm 

D = 29.7mm x 2 = 59.4mm 

The sphere bottle diameter should be at least 60mm for ice expansion allowance. 

Storage tanks size 

The storage tank should be able to store all the bottles and provide allowance 

for gaps between bottles, as well as overflow protection. 

Volume occupied for bottles: 91itres or 9000cm3 

Additional 30% space for allowance: 9000 x 130/100 = 11700cm3 

Circulation flow rate 

A pump is required for circulate the glycol solution from chiller storage tank 

to CTES tank. The recommended flow rate is 200g/s or equal to 121/rnin. This flow 

rate is identical as the flow rate of glycol solution into the chiller evaporator. Glycol 

solution circulation is important to transfer heat load from CTES to water chiller 

during charging and heat load from chiller storage to CTES during discharging. 

Current flow rate via chiller storage drain valve: 1.90 Vmin or 3.17x!0-5 m3/s 

Q=AV 

Chiller storage drain valve inner diameter: !Omm or O.Olm 

A= 7td2/4 = 1t x 0.01 2/4 = 7.85x!0-5 m2 

V = Q/A = 3.17x!0-5 m3/s /7.85x!0-5 m2 = 0.404rn/s 

Recommended flow rate = 200g/s or 2xl 04 m3/s 

A= QN = 2xl04 m3/s I 0.404rnls = 4.95xl04 m2 

d = {4A = 4(4.95 x1o-•) = 0.025m = 25mm 
~"";; rr 

The chiller storage outlet (drain valve) and the CTES inlet should have a diameter of 

25mm. 

23 



4.4.2 Final Design 

Installation schematic is shown in appendix 2. In appendix 1, CTES tank is 

connected to the chiller storage. Chiller unit will remove heat from glycol solution 

which stored in the chiller storage. Glycol from chiller storage will be delivered to 

the CTES tank, cooling and freezing bottles inside CTES tank then return to the 

chiller storage by the assistance of a circulation pump. The initial design was 

modified to compromise the equipments limitation, cost and market availability. 

Figure 14: Connection from chiller storage to CTES 

In appendix 2, the CTES tank inlet is located at the bottom of tank. Glycol 

solution is drawn out from the chiller storage tank via drain valve which is located at 

the bottom of the tank. There are 60mm height different between the drain valve of 

chiller storage tank and CTES tank inlet valve. The beauty of this design is to utilize 

the concept of gravity feed. Connecting both systems in this way will ensure the 

glycol level in both systems will remain the same. Therefore precise flow control is 

not necessary, thus reduce the project cost. 

Circulation pump used is a submerged type pump. Pump was installed as 

closed as possible to the glycol water surface level, at the opposite side from the inlet 

to encourage better water circulation in the CTES tank. This configuration is proven 

the best after temperature was found mostly even in every comer. Venturi function 

from the pump is utilized to enhance the circulation of glycol solution inside the 
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CTES tank, especially at the surface area. The circulation flow rate however is 

throttled at 1. 90Limin, due to the output diameter of drain valve at chiller storage 

tank. 

4.5 Material Selection and Fabrication 

4.5.1 Cold Thermal Energy Storage Tank 

Polystyrene cooler box was selected as the CTES tank. The cooler box is 

available in very low cost, yet provides a basic insulation and storage for chilled 

glycol solution. In this project. two cooler boxes are used. 

Cooler box A 

• Outside dimension: 620mm (L) x 495mm (W) x 330mm (H) 

• Inner dimension: 556mm (L) x 435mm (W) x 300rnm (H) 

• Cover: 35mm (T) 

Cooler box B 

• Outside dimension: 489mm (L) x 365mm (W) x 31 Omm (H) 

• Inner dimension: 437mm (L) x 313rnm (W) x 280mm (H) 

• Cover: 30rnm (T) 

Figure 15: Polystyrene cooler box 

The current setup utilizes both different in size polystyrene cooler box. The 

smaller box will be the main tank and placed inside the larger box. This can greatly 
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increase insulation and prevent heat gain from surrounding into glycol solution and 

encapsulated ice storage. Rock wool insulation between the boxes will be introduced 

to further enhance insulation. Appendix 3 is the technical drawing for CTES tank. 

4.5.2 Encapsulated Ice Storage Container 

Encapsulated ice storage system has advantages of flexibility and simplicity 

compare to the modular ice storage system. Water as phase change material (PCM) is 

filled inside the plastic containers which can be placed in any shape tank to enable 

the chill glycol solution to pass around them in order to provide heat exchange 

capability. 

The primary encapsulated ice storage is the PET ball type bottle manufactured 

in 200cm3 volume. It can be stacked on the top of each other within the tank or 

randomly placed in order to provide centralized thermal energy storage concept. 

Figure 16: Encapsulated storage container in (em) 

The sphere has the smallest surface area among all surfaces enclosing a given 

volwne and it encloses the largest volume among all closed surfaces with a given 

surface area. Sphere shape provides maximum linkage between the containers and 

maintains a uniform gap between the containers for an equal flow passages across the 

tank. The bottle is coming with a cap which able to store water or ice inside the 

bottle. PET material is suitable for slightly expansion during ice forming as it is 

flexible. 
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Each bottle is filled with 180ml of distilled water. Space allowance is given for 

expansion during formation of ice. A total number of 50 bottles will be filled and 

keeps 9 litres of water. Bottles will be placed inside the CTES tank surrounding with 

glycol solution. 

Figure 17: TES filled with encapsulated ice storage 

Table 7: Thermal properties of PET [9] 

Coefficient of thermal expansion ( xI 0-() K- 1 
) 60 

Heat-deflection temperature - 0.45MPa (°C ) 115 

Heat-deflection temperature- 1.8MPa (°C) 80 

Lower working temperature (°C ) -40 to -60 

Specific heat ( J K-1 kg·• ) 1200 

Thermal conductivity ( W m·• K"1 
) 0.20 @ 23°C 
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4.5.3 Pump 

Figure 18 is the pump installed on water chiller, functions as a circulation 

pump, circulating glycol solution from chiller storage to evaporator. Glycol solution 

from chiller storage reject heat to evaporator and back to the chiller storage again. 

Figure 18: Lab water chiller pump 

The specification for the current used pump in water chiller system is 

• V: 23()- PH: 1Hz: 50 ENCL: IP44 

• W INPUT: 265 RPM: 2800 A: 1.1 

• RTG: CONT (Sl) INS. CL: F 

• Motor to BS5000 part 11. AMB 40C MAX 

• Motor fired with auto resetting thermo trip 

• Duty Head: 15.5m @ 21/min 

• Duty Head: 2m @ 251/min 

• Head Max: 16.5m 

• Maximum working pressure: 600k.Pa 

In this project require a circulating pump which circulate glycol solution from 

chiller storage to cold thermal energy storage then back to chiller storage again. The 

flow rate was adjusted to 1.90Umin which is identical with the chilled glycol 

solution feed in rate to ensure constant volume of glycol solution in the both storage. 

Failure to do so may cause overflow or pump trip and stop the entire system. 
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Figure 19: Pump for new TES system 

The recommended flow rate for the system is 200g/s or equal to 12L/min 

which is identical to the evaporator flow rate. The pump selected for this project is an 

aquarium pump which can provide flow rate up to 1200L/hour or 20L/min with 

maximum head of 1 OOcm. Pump comes with venturi function or air feed function. 

This pump is suitable for pumping clean water without abrasive particles and liquids 

that are chemically non-aggressive to the materials from which the pump is made. 

Glycol solution is categorized as non-aggressive chemical. 

4.5.4 Insulation 

Insulation is placed in the gaps between the two different sizes of polystyrene 

cooler boxes. Insulation increases the thermal resistance between walls, thus reduces 

thermal conductivity and reduces heat gain from surrounding into CTES. CTES 

receives heat via conduction through wall, convection through inflation and radiation. 

An effective insulation maintains the low temperature in CTES, hence prevent ice 

inside encapsulated storage from melting. 
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Figure 20: Rock wool insulation at gaps 

Insulation specification of insulation as below: 

32mm and 26mm thickness of polystyrene cooler box 

35mm thickness rock wool with thermal conductivity, A. : 0.034 W/mK 

Thermal Resistance, R =Thickness (mm)/(1 000 x A. (W/mK)) 

= 35/1000 X 0.034 

= 1.19 x 103 m2KIW 

4.5.5 Movable Tray 

Figure 21 : Movable tray 

A movable tray is designed and fabricated to support the CTES tank. It gives 

storage tank the convenience of moving and easy for storage when not in used. The 
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tray also jacks up CTES tank to a certain height to maintain the glycol level in both 

storage tanks. Movable tray is designed to support at least 40kg of weight. Two 

layers of 5.5mm plywood is placed on the movable tray, evenly distribute the CTES 

tank weight to the tray structure. Appendix 4 is the technical drawing for the 

movable tray. 

4.6 CTES Experimental Results 

Once fabrication of CTES prototype was completed, it was installed and 

connected to the water chiller for test run and evaluation. 

Figure 22: CTES and water chiller 

4.6.1 CTES Charging 

Procedure 

1. CTES tank was connected to the water chiller 

2. 50 bottles with 180m! distill water each was placed into CTES tank 

3. Inlet valve was closed and circulation pump was turned on to pump water 

from CTES tank to chiller storage until the maximum level 

4. Pump was shut off once chiller storage reached the maximum level 

5. Water chiller was started according to the operating procedure 

6. Condenser water flow rate was set to 300g/s 
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7. Condenser pressure was set to SOOkN/m2 

8. Temperature for chiller storage was monitored 

9. Once temperature for chiller storage reached approximately -S°C, inlet valve 

was opened and circulating pump was switched on 

10. Glycol circulation flow was throttled until glycol level in both tanks remain 

constant (approximately 1.90Limin) 

11. Continue monitoring of CTES inlet and outlet temperature 

Table in appendix S is the measurable parameters available in the water 

chiller and the temperature inlet and outlet of CTES at IS minutes interval. This 

experiment aims to evaluate the feasibility of the prototype and approximate time 

required for the CTES to be fully charged. Experiment was carried out for two hours. 

Figure 24 shows that when CTES is charged to -S°C, only a portion 

encapsulated ice storages were frozen, mainly located at the bottom of CTES tank. 

Further study is required to look for the possibilities of frozen the entire encapsulated 

ice storage. Modification on the current CTES and chiller maybe is necessary. 

Figure 23: Frozen encapsulated ice storage 
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Figure 24: CTES at -S°C 

Experiment was repeated and simplified to focus on the temperature inlet, 

outlet and the difference. CTES is considered fully charged when water inside bottles 

was frozen, temperature difference is low and remains constant. Water chiller had 

achieved its maximum capacity or lowest achievable temperature, constant 

difference in temperature inlet and outlet indicating that the thermal equilibrium was 

achieved between both systems. In this experiment, data is collected in an interval of 

five minutes to present the temperature trend versus time. 

Table 8: Chiller storage temperature during pre-cooling to -6°C 

Charging- Pre-cooling 

Time (min) Storage temperature (°C) 

0 22 

s 12.8 

10 S.2 

1S -0.2 

20 -3.6 

25 -6 
Initial bottle temperature: 1S.6°C 

From table 8, it shows that pre-cooling of 18 litres of glycol solution from 

22°C to -6°C required approximately 2S minutes. Circulation of glycol solution from 

CTES to chiller storage will begin after glycol solution in chiller storage achieved 

temperature of -S°C. 
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Table 9: Inlet and outlet temperature of CTES 

Char~ ing - Cooling 
Time (min) T ln (°C)_ TOut (°C) DiffCOC) 

5 -3.0 13.5 16.5 
10 -1.6 9.6 11.2 
15 -2.0 6.8 8.8 
20 -3.1 4.3 7.4 
25 -3.7 3.1 6.8 
30 -4.5 1.6 6.1 
35 -5.3 0.1 5.4 
40 -6.1 -1.2 4.9 
45 -6.8 -2.4 4.4 
50 -7.5 -3.2 4.3 
55 -7.9 -4.1 3.8 
60 -8.0 -4.6 3.4 
65 -7.8 -4.7 3.1 
70 -7.9 -5.0 2.9 

Final bottle temperature: -3.2°C 

Temperature vs time at charging 
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Figure 25: Graph of temperature vs. time at charging 

In figure 25, the temperature difference is almost constant after 60 minutes 

(2.9°C-3.4°C). Say that the entire encapsulated ice storage was fully frozen or 

charged after 60 minutes of water chiller operation. 
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C1ES performance 

. output CTES capacity 
Performance efficiency, TJ = -- = =:.:..,::=.:c.:..:..::... 

input cooling work 

CTES Capacity 

50 bottles filled with 180ml distill water 

Total volume= 50 x 180m!= 9000ml 

Q = m( ell T +latent heat) 

ll T = 288.6K- 269.8K = 18.8K 

Q = 9000ml X lkg/lOOOml X (4.184kJ/kg.K X (18.8K)+334kJ/kg) 

Q = 3713.93kJ 

It takes 60 minutes to cool the water from 15.6°C to -3.2°C 

Refrigeration capacity= 70.405kJ/min 

Cooling work = 70.405kJ/min x 60 min= 4224.30kJ 

Performance efficiency, TJ = 3713.93/4224.30 = 0.879 or 87.9% 

Several factors affect the CTES efficiency. The main factor is due to the 

insufficient of glycol solution circulation flow rate. The higher the circulation flow 

rate, the larger of heat load able to transfer from CTES to chiller storage, then 

remove by the chiller at evaporator. This would reduce the charging time required 

significantly, thus increase the performance efficiency. The prototype has huge room 

for improvements, there were discussed in the recommendation section. 
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4.6.2 CTES Discharging 

In the CTES discharging experiment, a 1000 watts heater is used to 

demonstrate the application for CTES, discharging cold thermal energy from storage. 

The experiment objectives are: 

• To evaluate the actual cold thermal energy stored 

• To investigate time required for CTES to be fully discharged 

Procedure 

1. Water chiller unit is not operate in this testing 

2. Charged CTES was connected to the water chiller storage tank as in charging 

testing 

3. CTES circulation pump was switched on 

4. A I 000 watts electric heater was inserted to the water chiller storage tank and 

switched on 

5. Temperature for CTES inlet and outlet was monitored 

Table 10: Inlet and outlet temperature for CTES 

Time 
(min) 

0 

5 

10 

15 

20 
25 

30 
35 

40 
45 

50 
Initial bottle temperature: -3.0°C 

Final bottle temperature: 13.7°C 

Discharging 

Tin TOut Diff 
("C) ("C) ("C) 

-6 -5.0 1.0 

-5 -4.1 0.9 
3 -2.1 0.9 
7 0.3 6.7 

9 2.8 6.2 
12 5.2 6.8 
14 7.6 6.4 
17 10.1 6.9 
19 12.1 6.9 
21 14.1 6.9 
23 16.2 6.8 
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Temperature vs time at discharging 
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Figure 26: Graph of temperature vs. time at discharging 

In commercial cold air distribution system, chilled water is supply at soc to 

7°C. CTES is considered fully discharged when the outlet glycol temperature 

reached 6°C. In table 1 0, the temperature outlet from the CTES reached 7°C 

approximately after 30 minutes. CTES was fully discharged after 27 minutes. 

Load = I OOOwatts = 1 kJ/s 

Total load applied = lkJ/s x 27mins x 60s= 1620kJ 

Total load applied = actual usable cold thermal energy stored= 1620kJ 

4.6.3 CTES Insulation Testing 

In this experiment, CTES was fully charged and leave it unattended for a day. 

Initial temperature inside CTES tank is -S°C. After 24 hours, the temperature 

measured is 3°C or increase by 8°C. It still meets the requirement for cold air 

distribution system, which is chill water supply must within S°C to 7°C. Most of the 

CTES does not required very long storage time, usually less than 12 hours. Chiller 

charges the CTES at off peak hour, usually during the night, and CTES discharges 

cold thermal energy from the storage tank during the peak hour, usually the next day. 

Improvement can be made by study alternative materials and designs for storage tank 

to reduce heat gain through infiltration and from the surrounding. 
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4.7 Comparison between CTES Using PCM and Non PCM 

In this project, phase change material, ice is used to stored cold thermal energy 

supplied from the chiller. This section study the difference between using phase 

change material CTES and without phase change material CTES. 

CTES tank store 9 litres of demonized distill water. Assuming in standard 

operation, chiller cool CTES from 21 oc to -5°C during night, CTES supply chilled 

water at 6°C during daytime. 

Storage capacity for cold thermal energy storage with PCM 

Total volume~ 50 x 180m!~ 9000ml 

Q ~ m( cL'. T +latent heat) 

L'. T = 294K - 268K = 26K 

Q = 9000ml x lkg/lOOOml x(4.184kJ/kg.K x (26K) +334kJ/kg) 

Q = 3985.056kJ 

Storage capacity for cold thermal energy storage without PCM 

Q = m (cL'.T) 

L'. T = 294K- 268K = 26K 

Q = 9000ml x lkg/1 OOOml x ( 4.184kJ/kg.K x 26K) 

Q = 979.056kJ 

Capacity difference= (3985.056kJ- 979.056kJ) I 3985.056kJ x 100% = 75.43% 

CTES using phase change material will give an extra 75% of cold thermal 

energy storage in our case, with the same storage tank size. Cooling system 

incorporating ice storage has a distinct size advantage over equivalent capacity 

chilled water units because oflarge amount of energy to be stored as latent heat. 
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4.8 Costing Analysis 

CTES have the potential to provide substantial operating cost effective in 

situations where cold air distribution is desirable. Chiller operate at off peak hour 

(usually at night) having the advantages oflower electricity tariff rate. The ambient 

temperature during night is also much lower than the day, thus reduce cooling work 

for chiller. 

Table 11: Electricity tariff 

Tariff category Unit Rates 

Medium voltage commercial 

Maximum demand per month during peak period RM/kW 36.6 

kWh during peak period sen/kWh 29.6 

kWh during off peak period sen/kWh 18.2 

Medium voltage industrial 

Maximum demand per month during peak period RM/kW 30.8 

kWh during peak period sen/kWh 29.6 

kWh during off peak period sen/kWh 18.2 

High voltage industrial 

Maximum demand per month during peak period RM/kW 29.6 

kWh during peak period sen/kWh 28 

kWh during off peak period sen/kWh 16.8 

Table 11 shows the electricity tariff for several categories, adapted from Tenaga 

Nasional Berhad, Malaysia and effective since I'' July 2008. Assuming U1P 

demands 4000RT during weekdays for buildings in the campus, chiller to be operates 

for 10 hours in peak periods, from 7am to Spm and consider U1P as a medium 

voltage commercial building. If CTES is used and chiller operation time move to 10 

hours in off peak periods for charging CTES, 

Power rating for water chiller compressor: 732W 

During peak period 

Tariff= 29.6senlkWh 

Operating cost= 0.732kW x 29.6senlkWh = RM0.2167!h 
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During off peak period 

Tariff= 18.2sen/kWh 

Operating cost= 0.732kW x 18.2sen/kWh = RM0.1332/h 

Saving per hour= RM0.2167/h- RM0.1332/h = RM0.0835/h 

Assume laboratory water chiller was used 

Chiller capacity: 0.846RT 

Cost saving per RT = RM0.0835/h I 0.846RT = RM0.0987/RT.h 

Estimated cost saving per day= RM0.0987/RT.h x 4000RT x lOh = RM3948 

Consider demand only on weekdays, 20 weekdays in a month 

Estimated cost saving per month= RM3948/day x 20days = RM78,960 

Estimated cost saving per year= RM78,960/month x 12months = RM947,520 

Installing a CTES system and moving the operation time for chiller from peak 

period to off peak period could save an electricity bill of RM94 7,520 per year. This 

is a significant saving of operating cost. 
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CHAPTERS 

CONCLUSION & RECOMMENDATIONS 

5.1 Conclusion 

Thermal energy storage systems can play an important role as they provide great 

potential for facilitating energy savings and reducing enviromnental impact. Cold 

thermal energy storage reduce demand in peak season, lower capital and operating 

costs, increase usable space and minimum disruption. 

The objectives of this project were achieved. It gives students additional 

equipment for study on CTES using ice as phase change material with the current 

available water chiller in laboratory. This project was completed with the use of 

appropriate and cost effective design and materials. CTES has a capacity to store 

cold energy of 3700kJ. 

Prototype was tested and found has an efficiency of 88%. CTES required 60 

minutes to be fully charged. CTES discharges cold energy at 6°C for 27 minutes with 

an application of I OOOw heater. Temperature raises only 8°C after 24 hours in room 

temperature. Saving of RM94 7,520 per year for UTP is possible with the installation 

of CTES. This prototype successfully demonstrates CTES in real life application. 

Further study and modification can be made based on recommendation to increase 

the CTES performance and efficiency. 
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5.2 Recommendations 

As this project was designed as an additional plug-in for the water chiller, 

many limitations must be taken care of. This project does not modifY the current 

water chiller, but design a CTES which able to adapt to the chiller condition. These 

limitations reduce CTES performance and efficiency. 

5.2.1 Glycol Circulation Flow Rate 

From table 9 and table I 0, it was noticed that the temperature difference 

between CTES inlet and outlet is large. Glycol circulation flow rate was limited to 

1.901/min, due to the restriction of chiller storage tank drain valve. The current 

installed drain valve had very small inner diameter, throttle glycol feeding into CTES. 

The higher the circulation flow rate, the faster the heat load from CTES transfer to 

chiller storage, then removes by the chiller at evaporator. Replacing the current drain 

valve with a larger inner diameter drain valve require modification on the current 

chiller. Further study can be made to find out other glycol feed in methods. 

5.2.2 Fabrication of encapsulated ice storage 

The current PET bottle for storing water to be frozen into ice as encapsulated 

ice storage was not vacuum, sealed and air tight. Observation from experiment found 

that a portion of encapsulated ice storage was not frozen. Sign of frozen only shown 

once bottle cap was opened and exposed to the atmosphere pressure. The reason may 

due to pressure build inside bottle during freezing process, volume expansion of ice. 

Glycol solution may seep into bottle through cap and mix with water in the bottle, 

thus reduce the water freezing point to a lower temperature. Thermal conductivity for 

PET bottle is low, as shown in table 7. The effect was observed in results from table 

9 and I 0. Temperature difference between water inside bottle and glycol solution is 

large. Further temperature reduce is needed to achieve water freezing point in bottle 

but the current water chiller in the lab only capable produces chilled glycol solution 

as low as -7°C. Further study can be made to select alternative bottle material and 

resolve technical issue such as sealing and vacuum. 

Further study can be carried out to investigate any other possibility to 

increase CTES performance. 
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Appendix 5: Water chiller refrigeration and CTES data 

Parameter Units Minutes 

0 15 30 45 60 75 90 105 120 

Tl Compressor suction temperature oc 21.5 8.4 5.0 1.9 0.8 -1.6 -1.8 -2.0 -2.2 

T2 Compressor discharge oc 21.9 59.0 
temperature 62.2 66.4 69.4 71.6 74.9 77.0 80.2 

T3 Condensed liquid temperature oc 22.1 20.3 14.4 13.4 13.5 13.8 13.5 13.1 13.6 
T4 Evaporator inlet (refrigerant) oc 21.8 -5.0 -9.6 -13.2 -15.4 -20.9 -22.0 -22.9 -23.3 
T5 Evaporator outlet (refrigerant) oc 21.8 6.4 1.9 -2.5 -4.9 -10.9 -11.6 -12.1 -12.4 

T6 Evaporator pressure regulator oc 21.7 6.5 
outlet 1.9 -1.2 -3.4 -7.3 -9.0 -9.8 -10.0 

T7 Condenser cooling water inlet oc 23.5 15.9 11.8 11.5 12.0 12.2 12.4 11.9 12.0 
T8 Condenser cooling water outlet oc 23.4 18.1 14.1 12.9 13.3 12.6 12.5 12.3 12.5 
T9 Evaporator water inlet oc 21.6 7.6 2.6 -2.0 -4.5 -4.8 -5.2 -4.9 -4.8 
Tl0/0 Evaporator water outlet oc 21.5 5.4 0.0 -3.5 -6.4 -6.3 -6.6 -6.4 -6.8 

Condenser pressure kN/m"2 500 460 400 360 360 360 360 360 360 
Evaporator pressure kN/m"2 500 120 80 so 45 10 5 0 0 
Refrigerant flow rate g/s 0 12 10 8 6 4 3 4 3 
Condenser water flow g/s 299 295 290 295 291 293 293 292 293 
Evaporator water flow g/s 0 199 193 193 192 169 147 124 115 

CTES inlet oc 23 9 1 -2 -6 -7 -7 -7 -7 

CTES outlet oc 23 12 5 0 -4 -5 -6 -5 -5 
----------


