
CENSORSHIP AGENT: IDENTIFYING AND DETERMINING OFFENSIVE

WORDS

By

HARLINA BT MAT ALI

Dissertation submitted to the

Business Information System Programme

Universiti Teknologi PETRONAS

in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Business Information System)

DECEMBER 2005

Universiti Teknologi Petronas
Bandar Seri Iskandar

f-.. 31750 Tronoh
\O$. '!:> 1~Perak Darul Ridzuan

' V';,<U '<'tA - - ~.:::J <v-VA....,_, "-\

\:.:\ 1\ s - ~<...,

CERTIFICATION OF APPROVAL

Censorship Agent: Identifying and Determining Offensive Words

Approved:

by

HARLINABTMAT ALI

Dissertation submitted to the

Business Information System Programme

Universiti Teknologi PETRONAS

in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Business Information System)

MISS AMYFONG OJ MEAN

Project Supervisor

UNJVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2005

ll

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

HARLINA BT MAT ALI

Ill

ABSTRACT

The advancement in computing enables anyone to become information producer,

resulting in rapidly growing information in the Internet. One concern that arises from

this phenomenon is the easy access to offensive, vulgar and/or obscene page by

anyone with access to the Internet. The solution for this concern is filtering software.

Current existing filtering software required human intervention in determining the

harmfulness of page content. The fear of this trend brings out the desire to protect a

community, especially children from the harmful content available. This paper

represents a prototype of application that performs the task of identifying and

determining the harmfulness content of a document without human intervention. The

prototype is designed to extract the content of the document, stem the words into its

root, and compare each word to the list of harmful words.

IV

ACKNOWLEDGEMENT

First and foremost, the author would like to thank God, for His blessing that helps her

to complete this Final Year Project. Not forgotten to the IT/IS FYP Coordinator and

Information System Department of Universiti Teknologi Petronas for the chance and

guideline given to complete the project.

Special thanks go to the author's supervisor, Miss Amy Foong Oi Mean for

suggesting an interesting topic and choosing the author as her FYP supervisee. Miss

Amy was always there to listen and give advice to the author. She helps the author to

complete the writing of this dissertation and the challenging research that lies behind

it.

In addition, the author would like to extend her thank you to her friends that help her

during the period of completion. They helped a lot in giving ideas and opinions

regarding to this project.

The appreciation also goes to the evaluator that helps in conducting the testing for the

prototype. Finally, the author would like to thank all lecturers and her colleagues who

are involved either directly or indirectly in completing the FYP. All ideas, advices

and compassions to the author are greatly appreciated.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL .. II

CERTIFICATION OF ORIGINALITY ... lll

ABSTRACT .. IV

ACKNOWLEDGEMENT ... V

LIST OF FIGURES ... VIII

LIST OF TABLES .. IX

CHAPTER I INTRODUCTION .. I

1.1 Background Study .. I

1.2 Problem Statement ... 2

1.3 Objectives and Scope of Study .. 3

CHAPTER 2 LITERATURE REVIEW ... 4

2.1 Introduction to Software Agents .. 4

2.2 Related Work ... 5

2.2.1 Censorware .. 5

2.2.2 Autonomous Web Agent ... 6

2.2.3 Adaptive Information Retrieval.. ... 7

2.2.4 Adaptive Information Filtering .. 7

2.2.5 Stemming Algorithm ... 8

CHAPTER 3 METHODOLOGY ... 14

3.1 Planning Phase ... 14

3.2 Analysis I Research Phase .. 14

3.3 Design Phase .. 15

3.3.1 Document Preprocessing ... 15

3.3.2 List Processing .. 17

3.3.3 Document processing .. 17

3.4 Development Phase .. 19

3.5 Testing and Delivery Phase .. 20

3.5.1 Stub Testing ... 20

VI

3.5.2 Program Testing .. 20

3.6 Development Tools .. 20

3.6.1 Managerial I Documentation Tools 21

3.6.2 Development and Construction Tools 21

CHAPTER 4 RESULT AND DISCUSSION ... 22

4.1 Findings .. 22

4.2 User Evaluation .. 25

CHAPTER 5 CONCLUSION AND RECOMMENDATION 29

REFERENCES ... 31

APPENDIX 1- TIME LINE ... 34

APPENDIX II- DOCFIL TER SNAPSHOT ... 35

APPENDIX III- DOCFIL TER OUTPUT SNAPSHOT ... 3 7

Vll

LIST OF FIGURES

Figure 2.1 CiteSeer Agent Architecture .. 6

Figure 2.2 Stemming Algorithm Taxonomy .. 8

Figure 2.3 Porter Stemmer Algorithm .. 9

Figure 3.1 Architecture of Censoring Agent.. .. 15

Figure 3.2 DocFilter four blocking levels .. .18

Figure 3.3 DocFilter summary sections ... 19

Figure 4.1 Filtering Accuracy ... 24

Figure 4.2 Filtering Problems ... 25

Vlll

LIST OF TABLES

Table 2.1 Basic Characteristics of an Agent.. .. .4

Table 2.2 Porter Stemmer Algorithm Step I..I 0

Table 2.3 Porter Stemmer Algorithm Steps 2, 3 and 4 II

Table 2.4 Porter Stemmer Algorithm Step 5 .. 13

Table 3.1 Stemming Result. ... 16

Table 3.2 Stub Testing ... 20

Table 4.1 Filtering outcome ... 22

Table 4.2 Offensive words evaluation .. 26

Table 4.3 Scores comparison between human evaluators and DocFilter 27

IX

1.1 Background Study

CHAPTER 1

INTRODUCTION

In this century, we are living in the information age where information plays an

important role in our daily lives. This change can also be called as the 'Information

Revolution'. The society's economics and cultural forces are now governed by the

production and dissemination of vast amount of information. '''Nearly everything we

do, think and feel relies on the information we receive" [1]. The advances achieved in

computing enable information to be digitized and obtain their unique characteristics

of bits, namely convergence, compression, increased speed of dissemination and

intelligence in the network [2] that have come together and form a network called

Internet and the World Wide Web. These characteristics also enable anyone to

become information producer, allowing them to produce and distribute information

that can be available to the world wide audience. Internet has also become the most

essential tools for most organizations [17].

The Science Magazine has estimated that the size of the web is roughly about 320

million pages, with the web growing by several hundred percent per year [2].

According to the Scientific American Article produced in March 1997, "the average

life span of a web page is 75 days". The massive size of information available on the

Internet produces unwanted byproduct which is the overabundance of information

that can also be called "information overload". Searching information in the Internet

becomes a challenge as it often produces an overwhelming numbers of links, in which

many points to entirely irrelevant sites. As the web grows and become the attention of

the public in 1994, the "Americans have been obsessed with the scourge of easily

accessed on-line pornography, violence and hate speech" [2]. Most companies realize

that the Internet can be a double-edged sword, as it is one of essential tools to succeed

in today's world and yet it possesses potential distraction for employees [17].

The fear of this trend brings out the desire to protect a community, especially children

from the harmful content available. As Internet becomes a part of daily life, the need

for technology solutions to help in managing Web access in education and enterprise

becomes more acute [17]. As law on harmful Internet content has been passed, the

software industry developed technological solutions, namely the content blocking

filtering software. The software perfectly enforces their rules, blocking prohibited

sites from being viewed by Internet user. Four most popular software filters currently

available are Net Nanny, Solid Oak Software's CYBERsitter, The Learning

Company's Cyber Patrol and SpyGlass Inc.'s SurfWatch.

1.2 Problem Statement

Due to the desire to protect a community from the harmful information on the

Internet, software filter is invented. The existing filter software (Net Nanny,

CYBERsitter, Cyber Patrol, and SurfWatch) employed the same procedure. They

employed the use of artificial intelligence web spider to flag potential inappropriate

content to be reviewed, categorized and added to the blocked list by the company

employees. The list ofURL's added to the company BLOCK LIST will be block and

not accessible to their respective clients. As each software call for human

intervention, a huge amount of resource (mainly labor and money) is needed in order

to keep up with the increasing number of web page in the Internet.

In addition, some filtering product yanks offending words from web pages without

providing a clue to the reader that the text has been altered [18]. The altered text that

results from filtering might change the meaning and intent of a sentence dramatically.

For instance, because "homosexual" was listed as offensive in the offensive list, the

sentence "The Catholic church is opposed to all homosexual marriages" appears to

the user as "The Catholic church is opposed to all marriages."

The effort to create a perfectly working filter is not yet achieved. There are vast

amount of reports in the Internet that pertains to the failure of filters to block the most

repulsive content while most of them successfully block the non-sexual, non-violent

content. There is no software available that is able to detect the potential harmful

document without human intervention.

2

1.3 Objectives and Scope of Stndy

The main purpose of this study is to produce a prototype of software filter to identify

obscene wordings in a document in order to determine if document is harmful. The

prototype will identify the existence of obscene word in the document or page

without the intervention of human. This lead to the second objective, which is to find

a way to reduce resources needed in order to fi Iter unwanted information. In general,

this study focuses on identifying harmful content of document to find possible

solution that could be implemented to improve the identification process and reduce

human intervention.

3

CHAPTER2

LITERATURE REVIEW

2.1 Introduction to Software Agents

Software Agent is the fastest growing area of Information Technology. Some define

agent as a persistence software that entirely dedicated to a specific purpose, while

another define it as a computer program that stimulate human relationship by doing

something that another person can do for you [3]. According to M.R.Patra, &

H.Mohanty, there are three basic characteristic expected from an agent, which are

responsiveness, pro-activeness and social ability [6]. However, agent could not

recognize all possible events in its environment unle.ss it is built in the knowledge

base. This knowledge base is the information repository for an agent as it determines

how the agent perceives and response toward its environment.

Table 2.1 Basic Characteristics of an Agent
Responsiveness Ability to perceive and respond appropriately to changes in

its environment that is triggered by the arrival of messages.

Pro-activeness Ability to take action on behalf of the user by taking a goal-

directives behavior

Social ability Ability to take part in activity that involve communication

with other agents such as cooperation, collaboration,

negotiation, etc.

4

According to Concise Oxford Dictionary (Tenth Edition), censor is an official who

examines material that is to be published and suppresses parts considered offensive or

a threat to security. The urge to censor is one of the oldest and most basic urges that

grow from the desire to protect the community from harmful ideas. Harmful ideas are

ideas that differ from the conventional community norm. Contrary to popular beliefs,

the first work of censorship focuses on censoring literature that is deemed dangerous

to religious or political authority rather than censoring those immoral and repulsive

writing because the main force behind the censorship idea is the Church [2]. When

the Church monopoly in pre-printing press comes to an end, they formalized a list of

banned book, which include the immoral and obscene works.

2.2 Related Wort{

2.2.1 Censorware

There are four most popular filters which are Net Nanny, Solid Oak Software's

CYBERsitter, The Learning Company's Cyber Patrol and SpyGlass Inc.'s SurfWatch.

All developed around 1995, which correspond to "The Great Cyber Porn Panic".

• Net Nanny claims that it will protect the children and free speech on the

internet while ensuring on-line safety for their users.

• CYBERsitter claims to provide the safest way to explore cyberspace and

guaranteed to block over 95 percent of all objectionable content on the

Internet.

• Cyber Patrol offers the best way to manage children's computer use and

safety on the Internet.

• Surf Watch states that they empower people with the information, technology

and tools needed to harness positive potential of Internet.

All filters mentioned employed the same mechanism which is categorizing, listing,

and word filtering and access or distribution control [2]. These companies follow the

same procedure of employing a web spider to flag potential harmful content that will

then be reviewed, categorized and added to the company's block sites lists by the

company employees.

5

An artificial intelligence web spider will visit sites and create a report, 25 characters

before and 25 characters after each occurrence of keywords used in the search. Once

this is done, researcher will review this report to decide the harmfulness of the site.

When necessary, researcher need to visit and review before being added to the block

1 ist.

2.2.2 Autonomous Web Agent

CiteSeer is an autonomous agent for automatic retrieval and identification of

interesting publications. It is a Web based information agent that assists the user in

the process of performing a scientific literature research [7]. With a given keyword, it

uses the Web search engines and heuristics to locate and download papers. CiteSeer

was developed to reduce the potential of duplication on previously performed work,

and to keep up with current research especially in the quickly advancing fields.

CiteSeer consists of three main components, namely a subagent to automatically

locate and acquire research publication, a document parser with database creator and

a database browser interface which support searching by keyword and browsing by

citation links [7]. Figure 2.1 shows the architecture ofCiteSeer.

Database Que!)'

Web Browser Database Search and
Interface Browsing Sub-Agent

Que!)' Result (HTML)

1 w.- '"'"

SOL Que!)' l t SOL Que!)'
Result

Search and
Document
Database Download Sub-Agent (Parsed Document)

1 Postscript Files

Parsed Database t Records

Text Extractor Document Parsing
(Prescript from the NDZL group)

Text Files
Sub-Agent

Figure 2.1 CiteSeer Agent Architecture

6

During the document parsing, document is downloaded in order to enable the process

of extracting semantic features to be performed. Features of desired document is

extracted and placed into SQL database. First step in document parsing is the

extraction of raw text from the Postscript file [7]. Heuristics are used to identify the

header, abstract, introduction, citation and word frequency in the document. Word

frequencies are recorded for all stop words. The recorded words are then stemmed

using Porter's algorithm. The word frequency of each citation is also recorded in

order to apply the stop word removal and stemming.

One common semantic feature used by CiteSeer to gauge document topic similarity is

the word vector. The Term Frequency Inverse Document Frequency (TFIDF) scheme

is implemented to measure value for each word stem, in which the vector of all the

word stem values represented a document.

2.2.3 Adaptive Information Retrieval

According to Tomas Olsson [4] an adaptive information retrieval system is based on

the query and relevance feedback from the user. System retrieved document based on

queries from user and wait for feedback from user to indicate if retrieved document

match the wanted document. In the process of relevance feedback, user will identify

relevant document from the list of retrieved document to enable the system to create

new query based on the sample document [5]. Based on this concept, the new query

created based on relevant documents will return document that will also be similar to

the desired document.

2.2.4 Adaptive Information Filtering

There are two approaches for filtering information, namely cognitive filtering and

social filtering. Cognitive filtering analyses the content of a document, compares it to

the user model and wait for relevance feedback from user. This feedback is then used

to change the user model. In this approach, document will be recommended to a new

user if the content of the document is similar to previously encountered documents

[4].

7

According to Tomas Olsson, "Social filtering is based solely on what different users

are recommending". This concept relies on the opinion of other users that have the

same preferences [4]. For example, when one likes document on Ferrari (sport car),

they will probably like other document that is liked by other user who loves sport car.

Somehow, the concepts of information filtering and information retrieval are often

difficult to differentiate, but both addressed the same issue of getting wanted

information in which information retrieval is when one tries to find all relevant

document from a collection while information filtering is when one tries to remove all

irrelevant document from a collection [4].

2.2.5 Stemming Algorithm

According to the Search Engine Dictionary.com, "stemming is the use of linguistic

analysis to get the root forms of the search terms to documents in its database" [10].

For example, once user enters the query, search engine reduces the words to its root

and return document containing the root word. Stemming is used to remove prefix

and suffixes ±rom a word in order to obtain the root word thus help to improve

retrieval effectiveness while reducing the size of indexing files [II]. The taxonomy of

stemming algorithm is as shown in Figure 2.2.

Longest
Match

Manual

Affi""<
Removal

Conflation Methods

Successor
Vadety

Simple
Removal

Automatic (stemmer)

Table
Lookup

Figure 2.2 Stemming Algorithm Taxonomy

8

n-gram

There are a number of different stemming algorithms currently, which are Paice/Husk

Stemming Algorithm, Porter Stemming Algorithm, Lovins Stemming Algorithm,

Dawson Stemming Algorithm and Krovetz Stemming Algorithm.

Porter algorithm is a conflation Stemmer developed by Martin Porter at University of

Cambridge in 1980. This algorithm is a process for removing the commoner

morphological and inflexion endings from words in English [12]. Porter Algorithm

strip suffix based on the idea that the suffixes in the English language are mostly

made of combination of smaller and simpler suffixes [13]. Figure 2.3 below shows

the steps in Porter Stemmer Algorithm.

I I Word I
Step 1 ...

~·J::i ~I Mis :Hnatche d. Fail

• ~S>l Ivlatche~ Conditions not
met. Fail

...
f::iw~ Matched, Conditions met,

Fire

r<8~ ...
I

Word= Stern

+
Step 2

-t
Step 3

• Step 4

+
Step 5

-t
I

Stern
I

Figure 2.3 Porter Stemmer Algorithm

9

Porter Stemmer Algorithm has five steps. In each step, when a suffix rule matches to

the word, conditions attached to the rules are tested on the resulting stem that has it

suffix removed. Once a rule passes its condition and is accepted, the rule is applied to

word and the word's suffix is removed. Otherwise, if any of the rules in step 1 is not

accepted, word is tested with the other rules in the subsequent step [13].

This Porter Algorithm has been widely used, quoted, and adapted over the past 20

years [12].

Table 2.2 Porter Stemmer Algorithm Step I

STEPS RULES INPUT OUTPUT

STEP 1(1) SSES -> SS Caresses Caress

lES -> 1 Ponies Poni

Ties Ti

SS ->SS Caress Caress

s -> Cats cat

STEP 1(2) EED -> EE Feed Feed

ED-> Agreed Agree

Plastered Plaster

ING -> Motoring Motor

Sing Sing

STEP 1(3) AT-> ATE Conflated Conflate

BL-> BLE Troubled Trouble

IZ -> IZE Sized Size

STEP 1(4) y -> 1 Happy Hap pi

Sky Sky

Step 1 deal with plurals and past participles. In a set of rules written above in Table

2.2, only one is obeyed. The rule that is obeyed will be the one with the longest

matching suffixes for a given word [14]. When stem ends with the letter "s", the stem

is analyze against step 1(1) rule, when stem ends with "EED", "ED" or "ING", stem

will be analyze against step 1(2) rule. When step I (1) and (2) is successful, stem is

10

analyze against step I (3) rule in which the letter "E" is put back on -AT, -BL and -

IZ, so that the suffixes -ATE, -BLE, -IZE can be recognize later [14]. In step 1(4),

when the stem contains a vowel and ends with letter "Y", "Y" will be replace with

"I".

This subsequent step is much more straightforward. The following rules will be

applied to get the root words.

Table 2.3 Porter Stemmer Algorithm Steps 2, 3 and 4

STEPS RULES INPUT OUTPUT

STEP2 ATIONAL -> ATE Relational Relate

TIONAL -> TION Conditional Condition

ENCI -> ENCE Valenci Valence

ANCI -> ANCE Hesitanci Hesitance

IZER -> IZE Digitizer Digitize

ABLI ->ABLE Conformabli Conformable

ALL! -> AL Radicalli Radical

ENTLI -> ENT Differentli Different

ELI -> E Vileli Vile

OUSLI -> ous Analogousli Analogous

IZA TION -> IZE Vietnamization Vietnamize

AT! ON ->ATE Predication predicate

ATOR ->ATE Operator operate

ALISM -> AL Feudalism Feudal

!VENESS -> IVE Decisiveness Decisive

FULNESS -> FUL Hopefu !ness Hopeful

OUSNESS -> OUS Callousness Callous

ALIT! -> AL Fonnaliti Formal

!VITI -> IVE Sensitiviti Sensitive

BILITI -> BLE Sensibility Sensible

STEP3 ICATE-> IC Triplicate Triplic

ATIVE -> Formative Form

ALIZE -> AL Formalize Formal

II

!CIT!-> IC Electriciti Electric

!CAL -> IC Electrical Electric

FUL -> Hopeful Hope

NESS -> Goodness Good

STEP4 AL -> Revival Reviv

ANCE -> Allowance Allow

ENCE -> Inference Infer

ER -> Airliner Air lin

IC -> Gyroscopic Gyroscop

ABLE -> Adjustable Adjust

IBLE -> Defensible Defens

ANT -> Irritant lrrit

EMENT-> Replacement Rep lac

MENT -> Adjustment Adjust

ENT -> Dependent Depend

JON-> Adoption Adopt

ou -> Homologou Homolog

ISM -> Communism Commun

ATE -> Activate activ

ITI -> Angulariti Angular

ous -> Homologous Homolog

IVE -> Effective Effect

IZE -> Bowdlerize bawdier

Step 2 and 3 are applied when the measure of stem analyzed is more than 0, while

step 4 is applied when the measure of stem being analyze is more than I. The suffixes

are all removed when step 4 is completed. Step 5 is a step to tidy up each stem.

12

Table 2.4 Porter Stemmer Algorithm Step 5

STEPS RULES INPUT OUTPUT

STEP 5 E -> Probate Pro bat

Rate Rate

Cease Ceas

Although the algorithm is widely used, there are still several drawbacks. One

drawback that affects the retrieval performance of an Information Retrieval system is

the over-stemming errors. In over-stemming, stemmers operating on natural words

unavoidably make mistakes as natural languages are not completely regular

constructs [15]. For instance, words which are distinct may be wrongly conflated to

give similar stems.

On the other hand, there is the under-stemming error in which words that ought to be

merged together may remain distinct after stemming takes place [15]. This error

however does not affect the retrieval performance of an Information Retrieval. An

example of this error is the word characterizes and characteristic. After stemming

occur on both words, characterizes is stemmed into character and characteristic is

stemmed into characterist.

13

CHAPTER3

METHODOLOGY

Methodology used as the guide and framework throughout the development of this

project is the System Development Life Cycle (SDLC), which consists of Planning,

Analysis, Design, and Testing.

3.1 Planning Phase

The first phase for the project development is the planning phase in which the

project's problem statement, objectives, scope of study, tools to be used and schedule

are established. To accomplish this, research has been conducted to identify problem

faced in the real world regarding to the Internet. Intensive discussion with the

supervisor is carried out to identify scope feasible for further research and

improvement. The activities conducted during the planning phase can be referred to

Appendix I.

3.2 Analysis I Research Phase

In the analysis phase, intensive research is conducted to gather information related to

the scope of study. Vast amount of journals, articles and report is used as reference to

learn on previous work conducted by other researchers. Information regarding

existing filtering software is gathered in order to understand the process and problems

in identifying and filtering. Information gathered is then analyze to find solution that

could improve the performance of current technology.

14

3.3 Design Phase

Once the analysis phase ends, the design of selected solution from the research is

establish. The workflow of the project is determined to guide the implementation later

in the implementation phase. Figure 3.1 shows the proposed architecture of the

censorship agent that consists of three main components which are document

preprocessing, list processing and document processing.

ITokeruzei'B
List Processing

• ------
r c~···-:'- U Denylists.trt 1~1 ll Document ~\ c./fi<' ::· . C-> Preprocessing \!)\~~~'~ .7

1r ~ <tiiii
Denylist

Retrieval

L'
Docmnent Processing

\\
\>Vord Keyword C:J a(::.:J UploadDenylist

;J)
I<== ' / Frequency Matching \I-

•

I
Word Detection D Filtering Result I

Summ'"Y

Figure 3.1 Architecture of Censorship Agent

Given a specified directory, DocFilter will browse through the specified directory for

input All text documents in the folder are read by DocFilter, offensive word in the

text document is identified and the status is determined.

3.3.1 Document Preprocessing

The first step done by the application is document preprocessing, where the DocFilter

read the text document contained in the specified directory and extract each string

using a method called tokenizing. String tokenizing involved the used of existing

function in Java to extract the substring from the string into individual word. This

word is called token. This process is required in order to enable the system to analyze

each word contains in the document word by word rather that painstakingly analyzing

character by character [8].

15

Since Java is case sensitive, token is then change to lowercase to reduce the size of

the deny list database. By doing this, the size of deny list database can be reduce as

there is no need to specify each offensive words in different ways in which it can be

written. For example, there is no need to replicate the same word stored in the

database such as "Stem", "stem" or "STEM".

After each character is change to lowercase, the process of stemming each word take

place. Stemming is the use of linguistic to get the root of a word. Existing Porter

stemmer algorithm is used in DocFilter. During stemming, each token will be stem to

its root by removing the Prefixes and Suffixes.

The first step in stemming is removing the Prefixes and Suffixes. According Robert

Harris [9], there are two types of prefixes, the root and number prefixes. General Root

prefixes are word like "mega", "mis" and "multi", while the number prefixes are

word like "kilo", "giga" and "micro". According to the Concise Oxford Dictionary

Tenth Edition, suffix is a morpheme added at the end if a word to form derivative.

Example of word containing suffixes are "homeless", "brotherhood" and "hopeful".

When words containing prefix and suffix are stemmed, the result will be as the

following. Table 3.1 below shows some example of prefixes and suffixes in a word.

Table 3.1 Stemming result

Mismatch Match

Multimillionaire Millionaire

Microeconomic Economic

Homeless Home

Brotherhood Brother

Hopeful Hope

Once the prefixes and suffixes are completely removed, the resulting stem is used for

further processing to detect the offensive word occurrence and determine the text

document status.

16

3.3.2 List Processing

There is a list of offensive words stored in a text file named "denylist.txt", which acts

as the database for DocFilter. Once all the strings have been tokenized, the list

processing phase takes place. The offensive words contained in the deny list database

are retrieved and uploaded into a hash set in order to enable DocFilter to perform

keyword matching.

Hash set is a collection that contains unique elements, stored in a hash table and is

actually a HashMap instance. It is typically made up of an array where items are

accessed by integer index [21]. Features of a hash set are more efficient since access

time in an array is bounded by a constant regardless of the number of items in the

container. This class offers a constant time performance for the basic operation such

as add, remove, contain and size, assuming the hash function distributes the elements

properly among the buckets [22].

3.3.3 Document processing

In document processing, two functions take place, which are word detection and word

frequency calculation.

In word detection, DocFilter used the keyword matching method in order to detect

and filter the occurrence of offensive word in the text document. Keyword matching

is a flexible filtering technique. Each token in the text document is analyzed by

comparing the token with the list of offensive word in the hash table to find all the

unacceptable words listed in the deny list database.

If the token analyzed matches with the word specified in the offensive list, the word is

recorded and the number of offensive word occurrence is calculated. In addition, each

offensive word that is detected in the document is replaced with a tag "<censored>"

to inform user that the document is being filtered by DocFilter.

Once offensive word is detected, DocFilter calculate the frequency of offensive word

occurrence. To calculate the percentage of total word occurrence of the document, the

number of sentence in the document is recorded. Using the number of offensive word

occurrence calculated in word detection, the percentage of offensive word occurrence

I7

for the whole text document is calculated with the following formula [16], as done by

the Textalyser page:

Percentage of offensive word occurrence= Number of offensive word occurrence
Total number of word in the document

Textalyser is an online text analysis tool, which detailed the statistics of your text.

The site also calculated each text input frequency occurrence.

Based on this percentage of offensive word occurrence calculation, the status of text

document can be determined according to the level of blocking chosen by the user.

Figure 3.2 shows the snap shot ofDocFilter four blocking levels provided.

@ Medium Level

() High Level

0 strict level

Original Content

Figure 3.2 DocFilter four blocking levels

DocFilter provide four different blocking levels, namely "Low Level", "Medium

Level", "High Level" and "Strict Level". The percentage of offensiveness of each

blocking level is as the following:

• Low blocking level - Document 1s offensive when the percentage of

occurrence is more than 15%

• Medium blocking level - Document is offensive when the percentage of

occurrence is more than 10%

18

• High blocking level - Document IS offensive when the percentage of

occurrence is more than 5%

• Strict blocking level - Document is offensive when the text document

contains any offensive word.

Using this technique, the filter can be customized to allow some flexibility to support

different level of access of different types of users.

Once offensive words are detected and the status of text document is determined,

DocFilter provide user with the summary of the filtering done. Figure 3.3 shows the

summary section of DocFilter.

ut parents
lve the

on the
order:

lr8,

1edical

~urn mary

ne word occurance : 27
er of word in the document is 551

li'oiiPercerrtaae (%) of offensive word occurance is
81488203267

l':ciluu,;ulllent Status: Non-Offensive

Figure 3.3 DocFilter summary sections

3.4 Development Phase

Based on the architecture of DocFilter designed in the design phase, DocFilter is

developed using SUN ONE Studio 4 (Forte for Java).

19

3.5 Testing and Delivery Phase

Series of testing will be conducted to test the functionality of the produce product,

namely stub testing, and program testing. This testing will be conducted through the

entire of the development process. For testing purpose, a prototype interface is

created in order to see the output of each method coded.

3.5.1 Stub Testing

Stub testing is done throughout the application development life cycle. In stub testing,

testing is done on each individual event of the application. There are a number of

individual event that needs to be tested.

Table 3.2 Stub Testing

Scanning function Scan specified folder and upload document content

in the folder

Stemming function Stem each token to get the root word.

Keyword matching function Match each token with the deny list in hash set to

detect offensive word

Word occurrence calculation Calculate the percentage of offensive word

occurrence

3.5.2 Program Testing

Once stub testing has been done on all four functions, all function is tested as an

integrated unit. This testing is done after all functions listed in Figure 1.6 are

integrated as one application. The application is tested as a whole to ensure that it

works well as one.

3.6 Development Tools

For the development and construction of the project, a few sets of hardware and

software are used.

20

3.6.1 Managerial I Documentation Tools

o Microsoji Word

Used in the preparation of log books, project's documentation and final

dissertation of the study.

o Microsoft PowerPoint

Used in the presentation presented to the internal and external examiners.

3.6.2 Development and Construction Tools

o SUN ONE Studio 4 (Forte for Java)

The main development for the project and construction is using the Forte SUN

ONE Studio 4.

o Microsoft Notepad version 5.1

Stored the list of stop words and wordings that is categorized as offensive.

o Aglets version 2. 0.2

Platform to run the agent.

o Development and Construction Hardware

Hardware that is used for the development and construction of the project is a

personal computer. Specification of the personal computer is as the following:

System:

Microsoft Windows XP

Professional

Version 2002

Service Pack 2

Computer:

Intel®

Celeron® CPU !.700Hz

1.70 GHz, 480MB of RAM

21

CHAPTER4

RESULT AND DISCUSSION

There are three modules developed for the application, namely document

preprocessing, list processing and document processing. Each module was developed

with an objective in mind. The first module is document preprocessing which

involves tokenizing word into individual tokens and stemming each token into the

roots. List processing module involves loading the list of offensive word from the text

file (denylists.txt) into a hash set, while document processing module involve

keyword matching and word occurrence calculation. Document preprocessing and list

processing work in the background which is not transparent to the user. In the

meantime, the document processing module will produce output that is readable to

the user. Each of this module functions as expected.

4.1 Findings

Most of the offensive words tested using this application is correctly filtered, but

there are still some inaccuracies in the process of filtering. There is a need to specify

a number of word repeatedly in order for the application to correctly filter all

offensive word as the application still faces problem in stemming each word. For

instance both "erotica" and "erotically" need to be added into the database in order to

enable the application to filter correctly. Table 4.1 shows the outcome of filtering

result.

Table 4.1 Filtering outcome

Denylists.txt Input Result
anal anal <censored>

an ally anally

anarchy anarchy <censored>

ass ass <censored>

asshole asshole <censored>

beastiality beastiality <censored>

22

bestiality bestiality <censored>
blowjob blowjob <censored>

blowjobs <censored>
blow job blow job

bomb bomb <censored>
bombs <censored>

bondage bondage <censored>
bandages <censored>

boob boob <censored>
boobs <censored>
booby booby

buttfuck buttfuck <censored>
buttfucking <censored>
buttfucker buttfucker

clit clit <censored>
clits <censored>

cock cock <censored>
cocks <censored>

coitus coitus coitu
copulate copulate <censored>

copulation <censored>
copulatory copulatory

cunnilingus cunnilingus cunnilingu
cunt cunt <censored>
dick dick <censored>

dicks <censored>
dildo dildo <censored>

dildos <censored>
dildoes dildoe

drug drug <censored>
drugs <censored>

drugged <censored>
drugging <censored>

ejaculate ejaculate <censored>
ejaculation <censored>

ejaculator <censored>
ejaculatory ejaculatory

erection erection <censored>
erect erect

erectable erectable

erotic erotic <censored>
erotics <censored>

erotically erotically
erotica erotica <censored>
fuck fuck <censored>

23

fucks <censored>
fucker <censored>
fucking <censored>
fucked <censored>

horny horny <censored>
hornier hornier
horniest horniest

horniness horni
masturbate masturbate <censored>

masturbation <censored>
masturbator <censored>

nude nude <censored>
nudes <censored>
nudity nudity

As seen on Table 4.1, some of the offensive word is not filtered. In table 4.1, a total

number of 65 words are tested using DocFilter. From 65 of the words tested, 16

words are not filtered by DocFilter. In order to determine the percentage of filtering

accuracy done by DocFilter, the number of words that is not filtered is divided by

total of words tested. Based on this formula, the accuracy of DocFilter in filtering a

document can be derived. The result of testing done for Doc Filter filtering accuracy is

75% as shown in Figure 4.1.

DocFilter's Filtering Accuracy

Cl Filtered

B Not Filtered

Figure 4.1 Filtering Accuracy

The inaccuracy in DocFilter arises due to the inaccuracy in the Porter Stemmer

Algorithm. Some words are over-stemmed while some are under-stemmed. For

instance the word coitus is over-stemmed to coitu. Due to over-stemmed and under-

24

stemmed, some offensive words that occur in text document analyzed cannot be

detected.

When a word is stemmed inaccurately, the application is unable to match the word

analyzed with the list of offensive word in the hash set. Figure 4.2 shows the problem

faced by DocFilter. There are three problems in the DocFilter's filtering which are

over-stemming, under-stemming and others. Others in Figure 4.2 refer to words that

are made up of multi-word or word that is not stemmed correctly.

DocFilter's filtering problems

5%

3%

Figure 4.2 Filtering problems

D Correctly filtered

• Over-stemming

Ell Under-stemming

EJ Other

From 65 words tested, a total of 11 words are under-stemmed that made up 17%, 2

words are over-stemmed that made up 3% and others are 5%.

4.2 User Evaluation

There are a total of six different types of document tested using DocFilter. These

documents are business news, sport news, entertainment news, product description,

song lyrics and personal blog.

A total of 25 users consist of 16 parents and 9 English linguists are involved in the

evaluation process, each evaluator is given six different types of text documents. Step

involved in this evaluation is as the following:

• First each user will read the original document.

25

• Next each user will highlight the occurrence of offensive word encounter.

• The same document is then processed using DocFilter to extract all offensive

word in the document.

• Marks is given to each word that is highlighted both in the original document

and extracted by DocFilter.

• For each report, average for the highlighted word by human evaluators and

offensive word extracted by DocFilter is calculated.

• Then, total average for all documents is derived by comparing the scores of

word highlighted by human evaluators against scores of DocFilter's word

occurrence.

• Finally, the text document status determined by DocFilter is compared against

text document status determined by human evaluators.

The evaluation of offensive word of both offensive words highlighted by evaluators

and offensive words detected by DocFilter is shown in Table 4.2.

Table 4.2 Offensive words evaluation

Document Total Offensive Result from Result from Document
Type number of word human DocFilter status

words occurrence evaluator (D)
(based on (E)

deny list. txt)

Song lyrics 264 24 27.68 21 Offensive

Sport news 795 0 0 0 Not
article offensive

Business 226 0 0 0 Not
news article offensive

Entertainment 551 27 27.2 22 Not
news article offensive

Product 192 0 0 0 Not
description offensive

Personal blog 363 16 19.52 12 Offensive

From the evaluation conducted, the result can be summarized as the following:

I. There is no offensive word detected on 3 text document, sport news article,

business news article and product description.

2. The average scores of offensive words detected by human evaluators differs

26

from the number of offensive words detected by DocFilter for the other 3 text

document which are song lyrics, entertainment news articles and personal

blog. Based on the list of offensive word stored in the deny list database, the

actual occurrence in the song lyrics are 24, entertainment news articles

contains 27 and personal blog contains 16 offensive words. The average

scores by human evaluators are 26.76 for the song lyrics, 27.2 for the

entertainment news and 19.52 for the personal blog. In the meantime,

DocFilter manages to detect 21 offensive words for the song lyrics, 22

offensive words for entertainment news article and 12 offensive words for

personal blog.

3. Based on the default blocking level (High Level), both song lyrics and

personal blog is identified as offensive by DocFilter while the entertainment

news article is not considers as offensive. The result produces is similar for

both human evaluators and DocFilter.

Table 4.3 shows the scores comparison made between human evaluators and

DocFilter. Using the following formula, the average score for DocFilter accuracy in

determining the text document status is Result from DocFilter (D) divided by Result

from human evaluator (E).

Table 4.3 Scores comparison between human evaluators and DocFilter

Document Result from human Result from (D/E)xlOO%
type evaluator I English DocFilter (D)

expert(E)
Song lyrics 27.68 21 75.86

Sport news 0 0 0
article

Business news 0 0 0
article

Entertainment 27.2 22 80.88
news article

Product 0 0 0
description

Personal blog 19.52 12 61.47

27

Based on "High" blocking level, the performance of DocFilter in determining the

status of text document is 75.86% for song lyrics, 80.88% for entertainment news

article and 61.47% for the personal blog. Based on these evaluations, the total average

scores for DocFilter' s filtering accuracy is 86.36%.

After the document is processed, any offensive word encounter is then replaced with

"<censored>". This tag is used so that the reader will be aware that the document has

been filtered. The significance of this approach is that it will preserve the meaning

and intent of a sentence. Refer to appendix lii for further understanding.

28

CHAPTERS

CONCLUSION AND RECOMMENDATION

From the study of Internet and its impact, one concern is discovered about Internet's

content. As the amount of information is growing rapidly, it is difficult for filtering

companies to keep up their task in identifying, filtering and blocking those harmful

pages. This project aims to find possible method or solution that could identify

offensive word in text document and determine the text document status without

human intervention. This could lead to reduction of resource required to track

harmful pages.

The proposed architecture of DocFilter has been carefully design to provide result

efficiently and accurately. Overall results on DocFilter evaluation are satisfactory.

Based on the user evaluation conducted, DocFilter have produced a fairly good result

as it has succeeded in identifying offensive words in the text document up to 86.36%

for 6 different text documents (song lyrics, sport news articles, business news article,

entertainment news article, product description and personal blog).

DocFilter has also managed to determine the status of text document being filtered

based on the level of blocking chosen by the user.

There are number of recommendation suggested for the application. Recommendation

is as the following:

• Improvement to stemming algorithm

The accuracy of filtering can be achieved if the stemming algorithm can

be improved to stem each word into their root word accurately. Currently,

DocFilter faces some inaccuracy in the filtering process due to the

problems of under-stemmed and over-stemmed.

29

• Automate list of offensive word

An automate Jist of offensive word is a good approach to be apply to

DocFilter. It will enable the user to add and delete word from the offensive

word database as they see fit since there is a possibilities that new

offensive words will appear.

• Recognition for medical document

Some medical documents and articles that does contain some of the

offensive word listed in the deny list database such as the word "breast"

although the document is not offensive. A function should be embedded in

DocFilter so that it can recognize these documents and thus, the document

will not be filter in similar way.

30

REFERENCES

[I] Web Skills and Evaluation. The Importance of information. Retrieved August,

18, 2005, from the World Wide Web:

<http: I I edtec h. tennessee. ed ul -set81i ntro2 .html>

[2] Christopher D. Hunter (1999). Filtering the Future?: Software Filters, Porn,

PICS and the Internet Content Conundrum. Unpublished thesis. University of

Pennsylvania: Faculty of the Annen berg School.

[3] Nick Jennings., & Michael Wooldridge (1996, January). Software Agent. lEE

REVIEW, 17-20.

[4] Department of Computer and System Sciences. (1998) Information Filtering with

Collaborative Interface Agent. (Report).Stockholm, Sweden.

[5] Liren Chen., & Katia Sycara. (1997). Web Mate :A Personal Agent for Browsing

and Searching. 12

[6] M. R.Patra., & H.Mohanty (2001). A Formal Framework to Build Software

Agents. IEEE. 119-126.

[7] Bollacker, K., Lawrence, S. & Giles L. (1998). CiteSeer: An autonomous Web

Agent for Automatic Retrieval and Identification of Interesting Publications. In

the 2nd International ACM Conference on Autonomous Agent.

[8] String Tokenizing and File Handling. Retrieved September 3 2005 from the

World Wide Web:

<http:llwww.csc.liv .ac.ukl-fransiCOMP I 0 I I AdditionalStufti'tokenizing l.html>

3 I

[9] Word Roots and Prefixes. Retrieved August 7 2005 from the World Wide Web:

<http://www. virtualsalt.com/roots.htm>

[10] Search Engine Dictionary.com. Retrieved August October 11 2005 from the

World Wide Web:

<http://www .searcheng ined i cti onary .com/terms-stem min g.sht m I>

[11] Stemming Algorithms. Retrieved on 11 August 2005 from the World Wide Web:

<http://www.mis.nsysu.edu.tw/-syhwang/Courses/IR/StemmingAlgorithms.ppt>

[12] The Porter Stemming Algorithm. Retrieved August 15 from the World Wide

Web:

<http://www.tarlarus.org/-martin/PorterStemmer>

[13] The Lancaster Stemming Algorithm. Retrieved August 15 from the World Wide

Web:

<http :1 /www. com p .Ian cs.ac. uk/ computing/ research/ stcmm in g/ genera//>

[14] An algorithm for suffix stripping. Retrieved August 20 from the World Wide

Web:

<http://tartarus.org/-marlin/PorterStemmer/def.txt>

[15] Faculty of Computer Sciences. Further Enhancement to the Porter's Stemming

Algorithm. (Report). Beirut, Lebanon.

[16] Textalyser. Retrieved August 27 from the World Wide Web 6:

<http:/ /textal vser .net/index. ph p ?Ian g=en#anal ysi s>

[17] Packet Dynamics Ltd. studying Bloxx Filtering Technologies Version 2. (1999-

2005). Bloxx No Nonsense, 1-6.

[18] Censorware: How well does Internet filtering software protect student. Retrieved

September 2 from the World Wide Web:

<http://www.electronic-school.com/O 198fl.html>

32

[19] H.M & P.J Deital (2002). Java: How to Program 41
h Edition. New Jersey:

Prentice Hall.

[20] Y. Daniel Liang (2003). Rapid Java Application Development using Sun ONE

Studio 4. New Jersey: Prentice Hall.

[21] Sets. Retrieved October 10,2005 from the World Wide Web:

<http :1 I www. go boson. com/ e itTe II gobo/ structure/ set.htm I>

[22] Class Hashset. Retrieved October 10, 2005 from the World Wide Web:

<http:/ /j ava.sun.com/j2se/ 1 .5 .0/docs/api/java/uti 1/HashSet.htm I>

33

APPENDIX I -TIME LINE

Planning
Research Title for Initial Proposal
Identify problem statement
FYP Briefing
Identify project objectives and
project scope
Analysis
Research (Journals and articles)
Research on other related work
Research and feasible study on
development tool
Analyze research materials
Literature Review
Design
System Architecture
Learning Pro~ramming Language
Development
Implement design into coding
Testing
Stub testing
Program testing
Revision of System
Preparation on Final Report/
Dissertation

34

APPENDIX II- DOCFILTER SNAPSHOT

summary

Original Content

I
I

I
' I I

I
Content

DocFilter interface

35

Original Content

Filtered Content

Filter

DocFilter's summary options. The two options are Brief summary and Detailed

summary.

o Medium Level

•iJ HiJJh Level

c:. Strict Level

Original Content

Filtered Content

SummafY

--_ ~ __ "--__:·_-- - ----···············---- ---·-··--.c.:JI
Reset .J

DocFilter's blocking level options. Four different blocking level provided are low

level, medium level, high level and strict level.

36

APPENDIX III- DOCFILTER OUTPUT SNAPSHOT

Summary Blocking level
!FIL·cE=-enct-e~rtaci-nm-e-nt~.txt7 ·-----------

!study says there is more sex on tr Summary
rednesday november 9 8:13am et

[DETAILED SUMMARY
releVISIOn these days IS loaded Wllh sex sex, seX '!FILE enlertainmeni.M
double the number of sex scenes a1red seven years I

lago says a study out wednesday and the number of :obscene word detected!
:shows t_hat Include "safer seX'' messages has leveled I ,
loff, 11 sa1d. J' Level of blocking: high
' · Obscene word occurance: 27
~here were nearly 3,800 scenes with sexual content

Original Content

Filtered Content

! __ november g 8:13am ettelevislon these day is load _Y:-t sexual sex oral sex sexua. I Intercourse
Mrith «censored:. .:censored" <censored:. double the

1

. Number ofwora m the document 1s 552
: . Percentage(%) of offensive word occurance is
1
number of <censored> scene a1r seven year ago, say

4 891304347826087 !a study out wednesday and the number of show that · . .
!include "Safer <censored::- message has level off, II I jDocumentStatus Non-Offensive

lsa1d. there were nearly 3,800 scene With «censored>- .

~
ontent spot m more than 1,1 00 show researcher I

s.tudied, up from ab.out1 ,900 such scene in 1998, the :1·

rst year of the kaiser family found ate survey. vicky !I
';ndeout, a vice president at kaiser, say the number of ·;.1
···'·······-···•~--~· ~-""-·-·- ····-··• ···'·· ·····"·"············' ···'···---•- •I _____ _

DocFilter's result with detailed summary.

37

I ,

ld

SummafY Blo~c:'"~·:'":-";.:'"""::.:::::.' --------------------eel
he examples of sexual content cited in the study

Original content

Filtered Content

ranged from discussions of sex on the wb's "gilmore
girls" and "jack & bobby'' to depictions of oral sex on
nbc's "law and order: special victims unit' and sexual
intercourse on fox's "the o.c."

BRIEF SUMMARY
FILE entertainment.txt

Obscene word detected 1

I

he henry i. kaiser family foundation is a philanthropic
gm_ up that s-tudies he a- llh- care, including reproductive
and aids-related 1ssues. ills not affiliated with the Level of blocking: high
•kaiser mect1cal organization. buttfucker !- Obscene word occurance 27

l !:?~,·: Number of word in the document is 552 ... J!' Percentage(%) of offensive word occurance is
f""'Oi Jilii"'u"'jT\"~"9:.;;".o'U'iiii<O'Oi'f"<<iOi'On:;rli""Wu<'-'' ri'2'&i7,.-Y'Co',<;·i'i'F 4 891 30434 7826087
lan average oflhree hour of tv a day, accord to kaiser ,. D.ocument Status· Non-Offensive
~he example of <censored:- content crte rn the study
irang from discussion of <censored> on the wb'
f•gilmore girls" and "jack & bobby'' to depiction of
!<censored> <censored> on nbc"'law and order:
ispecial victim unit' and <censored> <censored:- on
~ox' "the o.c." the henry j. kaiser family foundate is a
IPhllanthroprc group that studi health care, rnclud
!reproductive and aids-relate issues. it is not affiliate
rwith the karser medic organization. buttfucker

'

DocFilter's result with brief summary.

38

- --·

~·

