
Support Vector Machines (SVM) in Test Extraction

By

Nadirah Binti Ghazali

Dissertation in partial fulfillment of
the requirement for the

Bachelor of Technology (Hons)
(Information Communication Technology)

NOV 2006

Universiti Teknologi PETRONAS
Bandar Sri Iskandar

31750 Tronoh

Perak Darul Ridzuan

est

Support Vector Machines (SVM) in Text Extractor

By

Nadirah Binti Ghazali

A project dissertation submitted to the

Information Technology Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION AND COMMUNICATION TECHNOLOGY)

Approved b;

(Ms. Vivien Yong Suet Peng)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

November 2006

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

BINTIGHAZALI

11

ABSTRACT

Text categorization is the process of grouping documents or words into predefined

categories. Each category consists of documents or words having similar attributes.

There exist numerous algorithms to address the need of text categorization including

Naive Bayes, k-nearest-neighbor classifier, and decision trees. In this project, Support

Vector Machines (SVM) is studied and experimented by the implementation ofa textual

extractor. This algorithm is used to extract important points from a lengthy document,

by which it classifies each word in the document under its relevant category and

constructs the structure of the summary with reference to the categorized words. The

performance of the extractor is evaluated using a similar corpus against an existing

summarizer, which uses a different kind of approach. Summarization is part of text

categorization whereby it is considered an essential part of today's information-led

society, and it has been a growing area of research for over 40 years. This project's

objective is to create a summarizer, or extractor, based on machine learning algorithms,

which are namely SVM and K-Means. Each word in the particular document is

processed by both algorithms to determine its actual occurrence in the document by

which it will first be clustered or grouped into categories based on parts of speech (verb,

noun, adjective) which is done by K-Means, then later processed by SVM to determine

the actual occurrence of each word in each of the cluster, taking into account whether

the words have similar meanings with otherwords in the subsequent cluster. The corpus

chosen to evaluate the application is the Reuters-21578 dataset comprising of

newspaper articles. Evaluation of the applications are carried out against another

accompanying system-generated extract which is already in the market, as a means to

observe the amount of sentences overlap with the tested applications, in this case, the

Text Extractor and also Microsoft Word AutoSummarizer. Results show that the Text

Extractor has optimal results at compression rates of 10 - 20% and 35 - 45%

m

First of all I would like to pay my respects to Allah the Almighty for making me

capable of undergoing this project and for showering His blessings upon me throughout

the execution ofthe project and especially at times of need.

The cooperation, help and support provided by Ms. Vivien was a great asset to have

during moments of confusion and I truly acknowledge that. She has been a reliable

source ofguidance throughout the course of this project, and a great supervisor. I would

like to thank my close friend Zakiah Anuar, also for her help and guidance in

understanding the different aspects of data mining, which I truly needed in the

beginning, without her help, I might not have gone half way through this project. I

would also like to thank my family for their support and whose love and care enabled

me to ease my mind and soul.

IV

CERTIFICATION

ABSTRACT

ACKNOWLEDGEMENT

LIST OF FIGURES

LIST OF TABLES

ABBREVIATIONS

CHAPTER 1:

CHAPTER 2:

INTRODUCTION

1.1 Background

1.1.1 Why choose SVM for Text Extraction

1.2 Problem Statement

1.3 Objectives

1.4 Scope of Study

1.4.1 Abstract vs. Extract

1.4.2 User-focused vs. Generic

1.4.3 Compression Rate

LITERATURE REVIEW OR THEORY

2.1 Summarization Approaches

2.1.1 Surface-Level Approach

2.1.2 Entity-Level Approach

2.2 Support Vector Machines

2.2.1 Linearly Separable SVM

111

IV

IX

x

XI

1

1

2

2

4

4

5

5

6

8

9

9

10

2.2.2 Linearly Non-Separable SVM 12

2.3 Minimal Support Vector Machines (MSVM) 13

2.4 Weighted Margin Support Vector Machines 14

2.4.1 Weighted Hard Margin Support Vector Machines 15

2.4.2 Weighted Soft Margin Support Vector Machines 15

2.5 Applying Cascaded Feature Selection (CFS) to SVM text

categorization 15

2.6 Sequential bootstrapped support vector machines (SeqSVM)

- a SVM accelerator 16

2.7 On Feature Distributional Clustering for Text Categorization 17

2.7.1 Information bottleneck and distributional clustering 18

2.7.2 Distributional clustering via determimstic annealing 19

2.8 Boosting SVM for Text Classification through parameter-

free Threshold Relaxation 19

2.8.1 Utility Models 19

2.8.2 Beta-gammaThresholdAdjusting Algorithmfor 20

SVM

2.9 K-Means 22

2.10 Multi-document Biography Summarization using SVM 23

2.11 SVM-KM: Speeding SVMs learning with a priori cluster

selection and k-means 23

CHAPTER 3: METHODOLOGY 25

3.1 Introduction 25

3.2 Planning 25

3.2.1 Aims of Text Extractor 26

3.2.2 Requirements 26

3.3 Analysis 27

3.4 Design 28

3.4.1 Design ofthe Text Extractor program 28

3.4.2 Database 30

VI

CHAPTER 4:

CHAPTERS:

3.4.3 Stop word list

3.4.4 Graphical User Interface

3.4.5 Structure of the Text Extractor program

3.5 Implementation

3.5.1 Preprocessing Algorithm

3.5.2 K-Means Algorithm

' 3.5.3 SVM Algorithm

3.5.4 Assembling Algorithm

3.6 Tools

3.6.1 Software

3.6.2 Hardware

30

30

32

32

32

33

34

35

36

36

37

RESULTS AND DISCUSSION 38

4.1 Evaluation 38

4.1.1 Performance Measures 39

4.1.2 Using different compression rates 40

4.1.3 Evaluating against another text summarizer 40

4.1.4 Copernic Text Summarizer 40

4.1.5 Using a standardized dataset: Reuters-21578 41

4.1.6 ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) 41

4.2 Results 41

4.2.1 Tabular Data 42

4.2.2 ROC Curve 43

4.3 Discussion 45

4.3.1 Evaluation ofresults 46

4.3.2 Evaluation of Reuters-21578 47

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

vn

48

48

49

REFERENCES 50

APPENDICES 56

vin

LIST OF FIGURES

Figure 2.1 Linear Separating Hyperplanes for the Separable Case

Figure 2.2 LinearSeparating Hyperplanes for the Non-separable Case

Figure 2.3 Weighted Margin Support Vector Machines

Figure 2.4 Process of K-Means Algorithm

Figure 3.1 System Architecture of the Text Extractor System

Figure 4.1 The average precision graph for Text Extractor and AutoSummarizer

using Reuters-21578 articles

Figure 4.2 The average recall graph for Text Extractor and AutoSummarizer

using Reuters-21578 articles

Figure 4.3 The average F-Score graph for Text Extractor and AutoSummarizer

using Reuters-21578 articles

Figure 4.4 The average precision vs. recall graph for Text Extractor and

AutoSummarizer using Reuters-21578 articles

Figure 4.5 The precision graph for Text Extractor and AutoSummarizer for

Article 0009757

Figure 4.6 The recall graph for Text Extractor and AutoSummarizer for Article

0009757

Figure 4.7 The F-Score graph for Text Extractor and AutoSummarizer for

Article 0009757

Figure 4.8 The precision graph for Text Extractor and AutoSummarizer for

Article 0012249

Figure 4.9 The recall graph for Text Extractor and AutoSummarizer for Article

0012249

Figure 4.10 The f-score graph for Text Extractor and AutoSummarizer for Article

0012249

Figure 4.11 The precision graph for Text Extractor and AutoSummarizer for

Article 0011164

IX

Figure4.12 The recall graph for Text Extractor and AutoSummarizer for Article

0011164

Figure 4.13 The f-score graph for Text Extractor and AutoSummarizer for Article

0011164

Figure 4.14 The precision graph for Text Extractor and AutoSummarizer using

Article 0012866

Figure 4.15 The recall graph for Text Extractor and AutoSummarizer using

Article 0012866

Figure 4.16 The F-Score graph for Text Extractor and AutoSummarizer using

Article 0012866

LIST OF TABLES

Table 4.1 The average precision, recall, and F-score for Text Extraction and

AutoSummarizer using Reuters-21578 articles

Table 4.2 The precision, recall, and F-score for Text Extraction and MS Word

Summarizer using article 0009757

Table 4.3 The precision, recall, and F-score for Text Extraction and

AutoSummarizer using article 0012249

Table 4.4 The precision, recall, and F-score for Text Extraction and

AutoSummarizer using article 0011164

Table 4.5 The precision, recall, and F-score for Text Extraction and

AutoSummarizer using article 0012866

x

ABBREVIATIONS

AI Artificial Intelligence

CFS Cascaded Feature Selection

GUI Graphical User Interface

IB Information Bottleneck

IR Information Retrieval

MS Microsoft

MSVM Minimal Support Vector Machines

QP Quadratic Optimization

ROUGE Recall-Oriented Understudy for Gisting Evaluation

SeqSVM Sequential bootstrapped support vector machines

SLA Successive Linear Approximation

SMO Sequential Minimization Optimization

SRM Structural Risk Minimization

SVM Support Vector Machines

SVM-KM Support Vector Machines-KMeans

VC Vapnik-Chervonenkis

WMSVM Weighted Margin Support Vector Machines

XML Extensible Markup Language

XI

CHAPTER 1

INTRODUCTION

1.1 Background

Vital assets of a company is its in-house knowledge that is contained in enormous

amounts of documentation, such as reports, process descriptions, drawings, minutes of

meetings, and so forth, ail of which needs to be organized and archived. As the

paperwork grows, problems such as maintaining a clear overview of all the knowledge

manually without losing any will gradually occur and can- cause serious strategic, legal

and profitability issues. To encounter these issues, summarization has been existed to

take an information source, extract content from it, and present the most important

content to the user in a condensed form and in a manner sensitive to the user's or

application's needs, while retaining some ofthe essential qualities of the original [41] .

In the past, these summaries would have all had to have been produced manually, i.e. by

humans. However, with advances in technology and research, especially within the area

of Artificial Intelligence, machines have been built and programs have been written

which have enabled summaries of varying effectiveness to be created automatically.

Numerous methods have been used to implement text categorization which represents a

different machine learning approach: density estimation using a nai've Bayes classifier

[18], the Rocchio algorithm [22], a distance weighted k-nearest neighbour classifier

[23] [24], and the C4.5 decision tree learner [25]. A method introduced by Bosner,

Gayon and Vapnik in 1992, has been widely used for object recognition [26], speaker

identification [28], and face detection in images [27], is known as Support Vector

Machines (SVM) and will be used to implement text categorization [18] for this project.

1.1.1 Why choose SVM for Text Extraction?

Support Vector Machines is chosen as the algorithm for this project, based on certain

features that are stated by Joachims [18] and is listed below:

1. High dimensional input space

Learning text classifiers deal with huge amounts of features. Although so,

SVM is able to handle this situation since it uses overfitting protection that is

independent on the number of features.

2. Few irrelevant features

Irrelevant features can be determined and removed by feature selection. In

the case of text categorization, there are only a few irrelevant features which

may result in loss of information if aggressive feature selection is used. This

is supported by an experiment by [18] indicating that even features ranked

the lowest still contain considerable and relevant information.

3. Most text categorization problems are linearly separable

SVM behave robustly over a variety of different learning tasks and

eliminates the need for manual parameter tuning which makes SVM fully

automatic.

1.2 Problem Statement

Nowadays, the growth of online technology has made text categorization one of the

most important techniques to handle and organize textual information [8]. Text

categorization techniques are used for many situations for example correctly

categorizing an article from a collection of documents, finding important nuggets of

information in voluminous texts, web search implementation, and email categorization.

There have been various methods to employ text categorization such as neural networks

[36], regression models [37] and decision trees [38]. However, these methods have their

own setbacks that will result in poor development of classifiers due to performance

variation using different types of data collections,^]. For example, the Naive Bayes

algorithm has been said, to be unsuitable for applications that require smoother class

posteriors [39], like text categorization applications. Therefore, numerous researches

have been done to further enhance these methods in order to better suit and increase the

performance of text categorization.

Sending unsolicited information has become easier with such developments as email

and easily-generated mailing lists. Therefore, with the same amount of time, but with

more information we have been seeking methods to digest the same amount of

information, but at a reduced effort. This is where summarization.comes into its realm.

There are various reasons why summarization of documents has increased in popularity:

1. The user knows whether to read the document or not and whether it will provide

the information they need

2. It allows the user to revise quickly what they have already read

3. The user can seek someone else's opinion on the document or source (e.g.

review).

As mentioned above, the greater the increase in information, the greater the need to

reduce this information into smaller manageable chunks to see if the full information is

relevant to our needs- or not. These are the advantages of producing summaries

automatically:

1. It might be virtually impossible, due to the medium of the material, to manually

summarize all the potentially necessary information, for example, when

searching the Internet using a search engine.

2. There is no time to produce an abstract or summary manually

3. No expertise exists at the time to produce a manual summary

4. The material might be of a sensitive or confidential nature

5. The material might all need to be produced to a certain standard or in a certain

consistent format

6. A summarization system can tailor-make a summary to a user's exact

requirements, for„exampIe, to answer a query

1.3 Objectives

The aim of this project is to look at the current situation in the area of summarization

research, study the evolvement of SVM, then create a summarization tool which takes

into account the existing research. The research technique to be used will be discussed

further in the next section, but it is likely that the technique used will be of the feature-

identification type, and a sentence-extraction summarizer will- be built using this

practice. The objectives are to use Support Vector Machines to summarize the test

corpus, by classifying each word in the test document with the relevant values for

whether it should or should not appear in the summary.

The evaluation method employed within the study will be of an intrinsic nature, with

the auto-generated summaries being compared with human-generated extracts.

However, due to time and resource constraints, it is likely that comparisons will be

made between the Text Extractor with another auto-generated summarizer that has been

available in the market.

1.4 Scope of Study

Extraction is considered summarizing a full document into a condensed version.

However, there are various types of summaries that can be developed, often depending

on the user needs and requirements. Below are some of the types of summaries that can

be produced:

1.4.1 Abstract vs. extract

According to Mani [41], the distinction between abstracts and extracts is, "an abstract is

a summary at least some of whose material is not present in the input", whereas, "an

extract is a summary consisting entirely of material copied from the input."

There is a fundamental limitation to the capabilities of extraction, in that only sentences

or phrases in the original document are included, and often there is less semantic or

syntactical analysis of the information than with an abstract, whereas abstraction

requires knowledge of the meaning of the information, and some ability to make

inferences at semantic level.

It has been said that all summaries can created from simple extracts; "A useful first step

in the automatic or semi-automatic generation of abstracts from source texts is the

selection of a small number of meaningful sentences from the source text and to achieve

this, each sentence in the source text is scored according to some measure of

importance, and the best-rated sentences are selected [42]."

1.4.2 User-focused vs. Generic

Taking into account of the user's needs is an important consideration for the summary

to be generated. A user-focused summary is a tailor-made summary for a particular

user, often in response to a query which the user has. Firmin et al [43] discussed the

concept of creating the summaries with regard to intent, focus and coverage for a

particular user, sometimes in response to a particular question, sometimes for a

specialized group. On the other hand, generic summaries have a broader user-base.

They are said to be author-focused, as they concentrate on the author's views, as

opposed to any particular user.

Another fundamental concept essential to text summarization, is that summaries that are

generated should be rational. A lot of research has found that the problem of extracts is

due to semantic meaning that is not being sought and since the use of anaphors in

language is so productive, yet very unpredictable, the exclusion or manipulation of them

has not yet been achieved. Creating a user-focused summary could eliminate some of

these difficulties with rationality, as the important details might be more obvious, due to

knowing what the user wants.

1.4.3 Compression Rates

The compression rate of a summary is normally calculated as a percentage of the full

source's length. Standard compression rates are a summary between 10-30% of the

original document, but obviously using any rate between 1% and 99% would be

considered a summary, though some of the benefits to summarization might be lost

because the summary at 10% compression rate was found to be better than the one at

20% [44].

To provide some guide as to what the compression rate should be, two questions are

needed to be considered when creating a summarization technique:

1. How long will a human user be willing to read the summary for?

2. How long does the summary need to be in order to capture all the relevant

information?

Three major condensation operations which summarizers can carry out in their

summarization process have been identified as follows [45]:

1. Selection-the filtering of elements,

2. Aggregation - the merging of elements,

3. Generalization - a substitution of certain specific elements with more general

ones.

These condensation operators will invariably alter%the target summary size to a greater

or lesser extent. For this particular project, the text extraction application using SVM

text categorization methods will beable to accommodate documents in English, analyze

text files, and perform qualitative measures on the text documents. The type of material

which will be summarized within this study will be written documentation or text

without any multi-media material. The materials analyzed and summarized will not

include any tables, graphs or pictorial information.

CHAPTER 2

LITERATURE REVIEW OR THEORY

2.1 Summarization Approaches

2.1.1 Surface-Level Approach

Surface-Level is an approach which can be statistically calculated by the system in

order to determine the important information to be extracted and become the summary.

It has been said to be the basis for a lot of summarization research [42]. Examples of

features that can be statistically calculated are listed below:

1. Location - this refers to the location of terms or sentences in a sentence,

paragraph or the whole document,

2. Keywords - the frequency of terms which can often lead to the thematic

meaning of the document [41]. This theory assumes that a word's importance is

relative to the frequency of the term in the document, but inversely relative to

the total number of documents in the corpus that contain the term. However, this

method does not work well with documents of the same type or even with some

articles all taken from the same period, as they have terms occurring too

frequently for the salience to be considered worthwhile

3. Headings - this includes making use of words in headings and in the title to

assist in providing the theme or more information on the salient topics

4. Cue words and phrases - determining certain phrases used in language can

advise on the pertinence or redundancy of surrounding words and phrases

2.1.2 Entity-Level Approach

This level of processing involves building an internal representation for the text, by

modeling the text entities and the relationships between the entities. The researchers of

this approach towards summarization, tried to represent patterns of connectivity

between terms in the text in order to show what is important. Such features include:

1. Similarity between terms

2. Words which are related, due to their occurring in common contexts

3. Proximity between text units

4. Logical relations, such as agreements and contradictions

5. Thesaural relationships between words

2.2 Support Vector Machines

Support Vector Machines are learning machines that plots the training data in high-

dimensional features space and labels each data by its class. Currently, Support Vector

Machines (SVM) is labeled the best approach to the classification of datasets [18]. It

was first introduced by Bosner, Gayon and Vapnik in 1992. SVM has been proven to be

successful in applications such as bioinformatics, text, handwriting recognition, and

image processing [4],

Support vector machines are based on the Structural Risk Minimization principle [20]

which finds a hypothesis h for which the lowest true error is guaranteed. The true error

ofh means the probability that hwill make an error on an unseen and randomly selected

test example. An upper bound can be used to connect the true error of a hypothesis h

with the error of h on the training set and the complexity of H (the hypothesis space

containing h) measured by VC-dimension [20]. To control the VC-dimension of H,

SVM must find the hypothesis hwhich minimizes the bound ofthe true error [17].

The learning ability of SVM is independent of the dimensionality of the feature space,

meaning that it is able to generalize despite the size of the feature provided that the data

is separable with a wide margin using functions from the hypothesis space. Parameter

setting for SVM is crucial in producing a hypothesis with the lowest VC-dimension and

allowing automatic parameter tuning without expensive cross-validation.

By choosing different kernel functions we can implicitly project the training data from

input space X into feature space F for which hyper-planes in F correspond to more

complex decision than boundaries in the input space X There are many types of kernels

which two of them are: Polynomial and Radial Basis Function. The computations of

two given classes of SVM are Linearly Separable SVM^ and Linearly Non-separable

SVM [14].

2.2.1 Linearly Separable SVM

The Linearly Separable SVM by Gorelick and Friedman [4] learns from training sets to

find a classifier in a vector space which best separates the data points into two classes.

These are represented in Figure 2.1. The two parallel dashed lines are boundaries in

which the solid line can move between them without causing any misclassification. The

data points are indicated by both the circles and squares, where the ones lying on the

dashed lines are the 'support vectors'.

10

Figure 2.1: Linear Separating Hyperplanes for the Separable Case [4]

Below are the description of Figure 2.1 and the equations used to obtain a linear

separable Support Vector Machine (SVM) with all the variables used, which are as

follows:

1. The equation to separate hyper-plane //in figure 1 is: w •x + 6 = 0

• w is normal to hyper-plane H

• x is an arbitrary feature vector

• w and b are learned from a training set of linearly separable data

2. |b| / ||w|| is the perpendicular distance from hyper-plane //to the origin

3. (d+) + (d-) is the margin or shortest distance from hyper-plane H to the

closest positive (negative) point.

4. If H is a separating hyper-plane, then

xj • w + b > d+ for yi = +1

Xi-w + b < d- for yt = —1

• Xj and yi are points on the feature space where:

x, GRn,i= 1,...,/

ViG {-1,1}

5. No training points should fall between hyper-plane Hi and hyper-plane H2

6. A simpler derivation of all the variable from above results in the equation

below:

11

yi(xi-w + b)~l >0 Vz

2.2.2 Linearly Non-separable SVM

The Linearly Separable SVM algorithm which was explained in section 2.1.1 as above

cannot handle non-separable data [4]. Therefore, an addition to the previous algorithm

is made for this situation which relaxes the constraints that is by introducing positive

slack variables to aid for the occurrence of training errors.

Figure 2.2: Linear Separating Hyperplanes for the Non-separable Case [4]

Figure 2.2 is the graphical depiction of the Linearly Non-separable Support Vector

Machines. The equations and variables that are necessary for this case are as follow:

1. Positive slack variables (^) are introduced to relax constraints. These

variables are not present in the equation for the linear separable case

explained previously. The equation is as follow:

j/,:(x.(•w + b) > 1 - £,;, & > 0, Vi

|W|
+ c(£&k

2. The equation z i needs to be minimized

• C is a penalty parameter chosen by the user

12

• ||w|| is the Euclidean norm of w, while i is an upper bound on the

number of errors

2.3 Minimal Support Vector Machines (MSVM)

The Minimal Support Vector Machines uses smaller sets of data points compared to a 1-

norm or 1-type SVM classifier. It is suitable as'an incremental algorithm that maintains

a small portion of a large dataset before merging and processing it with new incoming

data which allows.the maintenance of a small fraction of a large dataset.

Wu and Srihari [3] says that MSVM is a method for selecting a small set of support

vectors (also termed as minimal, which are data points corresponding to constraints with

positive multipliers) which completely determines a separating plane classifier, and has

never been done before in previous projects. It has improved testing set accuracy over

one that is chosen by a standard SVM, as well as faster execution in terms of computing

time since redundant data are removed in early stages.

Classifications of datasets are achieved by either a linear or a non-linear separating

surface in the input space of the dataset using Successive Linear Approximation (SLA)

that leads to an improved generalization classifier.

The linear SVM works as a separating plane classifier midway between and parallel to

two bounding planes, with maximum distance (or margin) between them. The bounding

planes attempt to place the two classes of a given dataset on opposite sides. To produce

the separating plane, a quadratic program or a linear program is solved, depending on

the standard used in measuring the distance between bounding planes. There are two

cases in linear SVM, that is, the linearly separable case and the linearly non-separable

case. As the name implies, the latter produces some errors between the distances of the

two bounding planes.

13

2.4 Weighted Margin Support Vector Machines

Based on Wu and Srihari [3], the Weighted Margin Support Vector Machines

compensates for lack of information in existing datasets. It permits the incorporation of

prior knowledge with the right kernel function chosen. To train the data, a Sequential

Minimization Optimization (SMO) is used to generalize on imperfectly labeled training

dataset because each pattern in the dataset associates not only with a category dataset

but also a confidence value that varies from 0.0 and 1.0.

Like always, a set of vectors are given along with their corresponding labels where the

SVM defines a hyper-plane in kernel mapped feature space that separates the training

data by a maximal margin.

Figure 2.3: Weighted Margin Support Vector Machines [3]

In Figure 2.3, the positive class or data are depicted as circles and negative as squares.

The size of the squares/circles represents their associated confidence value. The dashed

line in the middle is the hyper-plane derived based on the standard SVM training, and

the solid line is the solution to the transductive SVM learning.

There are two types of WMSVM which are: Weighted Hard Margin Support Vector

Machines and Weighted Soft Margin Support Vector Machines.

14

2.4.1 Weighted Hard Margin Support Vector Machines

According to Wu and Srihari [3], the simplest mode! and the easiest atgorithm of

support vector machine is the maximal weighted hard margin classifier. It only works

on a data set that is linearly separable in feature space. Thus, it cannot be used in many

real-world situations.

When each label is associated with a confidence value, intuitively one wants support

vectors that are labeled with higher confidence to assert more force on the decision

plane. So, to train a maximal weighted hard margin classifier, the effective weighted

functional margin is fixed instead of the functional margin of support vectors. Then the

norm of weight vector is minimized.

2.4.2 Weighted Soft Margin Support Vector Machines

To solve problems for linearly non-separable datasets, the weighted soft margin SVM

was introduced by Wu and Srihari [3]. The soft margin classifier is typically the

solution that generalizes or simplifies the soft margin classifier to a weighted soft

margin classifier by a weighted version of slack variable. Here the effective weighted

margin slack variable is used so that the final decision plane will be more tolerant on

these margin violating samples with low confidence than others. Therefore producing

samples with high confidence label to contribute more to the final decision plane.

2.5 Applying Cascaded Feature Selection (CFS) to SVM text categorization

Text categorization has the increased need for a high-precision system instead of a high

recall but with low-precision system [15]. A high-precision system means that the

system has the capability to categorize documents according to the actual category

based on the contents of the document.

15

Problems exist in text categorization where the input feature for the document dataset

has high dimensionality. This indicates that the occurrence of words in documents is

very high which results in malfunction of categorization techniques and in order to

encounter this, the use pf a cascaded feature selection (CFS) using Support Vector

Machines (SVM) [10] is needed.

According to Masuyama and Nakagawa [10], the two steps of CFS are: first, classifying

test documents either into a positive or negative set, and secondly, further classifying

the positive sets from the first step into a positive or negative set By doing this, the

characteristics of each feature can be used and negatively categorized documents in the

first step can be removed resulting in the expectations pf a higher precision of this

method.

2.6 Sequential bootstrapped support vector machines (SeqSVM) - a SVM

accelerator

Since SVM is required to solve a quadratic optimization (QP) problem which needs

resources that are at least quadratic on the number of training samples, training time and

memory increase dramatically with the increase of the training set. In order to solve this

problem, a method which uses a SVM accelerator called sequential bootstrapped SVM

(SeqSVM) is proposed by Li et al. [4].

The key principle in this method is to help the SVM pick the convex hull sample that is

wrongly classified by the current SVM and furthest from the current SVM solution [4].

The convex hull sample, which disagrees most with the SVM solution, will lie on the

convex hull of each class distribution and all support vectors lie on the convex hull in

the case of linearly separable classes. Two difficulties that needs to be overcome is the

SeqSVM's iterations will take too many if there are too many support vectors, and when

the class distributions are not separable, it is not easy to pick convex hull samples.

These difficulties were overcome using artificial database and benchmark databases,

demonstrating the effectiveness of the proposed algorithm to reduce the learning time of

SVM on the whole training set [6].

The principle of SeqSVM is simple and is not straight forward. Hence, it is necessary to

refine it to take care of computational efficiencies and non-separable cases. This

algorithm runs on top of any techniques, such as Chunking, decomposition and SMO, to

handle large scale problems. The algorithm can be described as follows:

1. Separate the large training set randomly into two disjoint subsets:

TrainAciual and TrainPool

2. Train a SVM classifier on the current TrainActual set

3. With the derived SVM, select the convex hull sample in the TrainPool set

that is furthest away from and on the wrong side of the current SVM

hyperplane

4. Transfer the convex hull sample to the TrainActual set

5. Retrain the SVM again

Support vectors determine the final decision boundary of SVM. Consequently, if a

SVM classifier could be trained with only the support vectors in the large training set,

less training samples can be used to obtain the same generalization performance as

using all the training samples and therefore decrease training time greatly. Therefore, in

the SeqSVM, training is focused on the samples which have more probability to be

support vectors and pay less attention to the samples which have less probability in the

large training set.

2.7 On Feature Distributional Clustering for Text Categorization

This approach is one that was introduced by Bekkerman et al. [16], which combines

feature distributional clusters with a Support Vector Machine (SVM) classifier. A more

17

efficient word-cluster representation of documents is produced by employing

distributional-clustering of words using the information bottleneck method. Moreover, it

further yields high performance text categorization that can generate categorization

accuracy and representation efficiency.

The combination of the Information Bottleneck (IB) clustering framework with SVM

has produced a high performance categorization of the well known 20 Newsgroups

(20NG) dataset [31]. IB clustering is actually used to represent documents in a feature

cluster space instead of a feature space, where each cluster is a distribution over

document classes.

Bekkerman et al. [16] states the three advantages of using distributional word clusters

which are as follows: A dimensionality reduction is performed which implicitly

considers correlations between the various features rather than considering each feature

individually. The clustering achieved by the IB method provides a good solution to the

statistical sparseness problem that is important to the straightforward word-based

document representation. Finally, the clustering of words allows extremely compact

representations that allow the use of strong but computationally intensive classifiers.

The scheme of this method is based on IB distributional clustering whereby the words

of the documents are clustered into k clusters using the deterministic annealing

implementation of the information bottleneck method, and then the articles are

projected onto pseudowords and later trained by the SVM classifier. Below is a brief

explanation of information bottleneck and distributional clustering and distributional

clustering via deterministic annealing.

2.7.1 Information bottleneck and distributional clustering

Relevant encoding ofthe random variable Xrelies on partitioning ofX into domains that

preserve the mutual information between X and another given variable, Y[16]. The

resulting partition or clusters of X constitute an approximate sufficient partition that

enables the construction of an optimal code overX that pr-ovides all the information that

X has on Y. The problem has a simple variational formulation which finds the optimal

trade-off between the minimal partition of X and the maximum preserved information

on Y.

2.7.2 Distributional clustering via deterministic annealing

Deterministic annealing is a top-down hierarchical clustering procedure introduced by

Salton and McGill [32] that requires the use of an appropriate annealing rate in order to

identify "phase transitions" which corresponds to cluster splits.

2.8 Boosting SVM for Text Classification through parameter-free Threshold

Relaxation

There have been many algorithms proposed to address the need to improve the recall of

an information retrieval system without affecting its precision using Support Vector

Machines since it has been discovered that the performance of SVM for text

classification is not competitive from a recall perspective [30]. Text classifications have

unevenly distributed and poorly represented classes that Can lead to an over fitting of

more frequent classes which eventually leads to the reduction of recall [29]. One ofthe

proposed algorithms includes a parameter-free threshold relaxation which relies on a

process of retrofitting and cross validation to set algorithm parameters (beta and

gamma) empirically.

2.8.1 Utility Models

Utility models are used to measure the degree of satisfaction ofa user's expectations on

how well the text classification system makes independent decisions, whether a

document belongs to a given class or not. According to [29], incorporating utility

19

models into SVMs can be accomplished heuristically through embedded learning

strategies such as beta-gamma threshold adjusting algorithm to determine how far the

threshold satisfies the utility measures.

2.8.2 Beta-gamma Threshold Adjusting Algorithm for SVM

The core beta-gamma threshold relaxation strategy consists of two procedures:

TrainSVMand SetThresholdUsingBetaGamma [29]. Both procedures use the following

as input:

C: a category label

T: a labeled dataset of documents consisting of both positive and negative examples of

C

UtilityMeasure: a utility measure that models the user

n: the number of folds that will be used in parameter selection

M: a model that models the category C

/?and y: the threshold adjustment parameters

p : denotes the number of positive documents in the thresholding dataset, T

Procedure 1: SetThresholdUsingBetaGamma (C, T, M, ft, UtilityMeasure)

1. Rank the thresholding dataset, T, using the SVM, M, as a scoring function,

thereby yielding a ranked document list R consisting of tuples <Documenti,

Scorei>

2. Generate the cumulative utility curve for R, i.e., for each document in the

ranked list R compute the cumulative utility using the utility measure

UtilityMeasure.

3. Determine the rank or index of the maximum utility point on the cumulative

curve and of the first zero utility point following the maximum utility point.

Denote these as i^ax, and izem respectively. Assign the variables 6W and dzero

20

with the output scores of the model, M, for the documents associated with

the maximum and zero utility points respectively.

4. Return the threshold, 6, which is calculated as follows:

6 = &<9Zero+(l -a)0max

v.-p + {\ -J3)epr

Procedure 2: TrainSVM (C, T, UtilityMeasure, n)

1. Train an SVM, M, using Tand an SVM training algorithm.

2. Partition the data T into n non-overlapping subsets of the data ensuring that

both positive and negative documents are present in each fold or subset. In

particular, if P denotes the number of positive documents in T, then each

fold is forced to have approximately P/n positive documents.

3. fisum=0

4. Foreach fold n

i. Set Tn to the remaining n-1 folds.

ii. Call SetThresholdUsingBetaGamma (C, Tn, M,. void, void,

UtilityMeasure) and assign the variables Omax and 6zem the

corresponding values in Step 3 of the

SetThresholdUsingBetaGamma routine.

/;/. Rank the documents in the held-out fold n using model M and

generate the cumulative utility curve for this ranked list R, i.e.,

for each document in the ranked list R, compute the cumulative

utility using the utility measure UtilityMeasure.

iv. Determine the rank or index of the maximum utility point on the

cumulative curve, denoted as iMax. Assign the variable 6„ the

output score of the SVM, M, for the document associated with

the maximum utility point i^ax.

v. Retrofit/?nas follows:

&Zero " &Max

21

Vi- Aum^sum+A

5. End Foreach

6. Set fi to the average over the ps determined for each fold as follows: ft ~psum

/n

7. Calculate the,optimal threshold, 0Opt, using fi (that was determined using the

previous steps) as follows: SetThresholdUsingBetaGamma (C, T, M, ft, y,

UtilityMeasure)

8. Alter the SVM classification rule slightly as follows to accommodate the

adjusted threshold:

Class (X) - Sign{(W, X) + b + e0pt)

An advantage of this approach is that it does not require' the user to provide a list of

possible values for beta and gamma given that the value of ft is determined using

retrofitting, thereby, alleviating the need for a cross validation exploration of alternative

Rvalues.

2.9 K-Means

K-Means algorithm groups objects based on its attributes. into K. number of groups,

where K is a positive number. These groupings are based on the measurements of the

minimum distance between the objects and the cluster's centra id [35]. Two procedures

are available to search for the optimum set of clusters. The first assigns each object to a

cluster and the second sets initial positions for the cluster centroids.

In the first procedure, the objects are randomly assigned to one of the K clusters. Once

this is done, the positions of the K centroids are determined, as is the value of the metric

to minimize. A global optimization method is then used to reassign some of the objects

to different clusters. New centroids are determined, as is the metric to minimize. This

procedure is continued until the optimum assignment of objects to clusters is found.

22

Figures that show the graphical process of K-Means are included in Appendix A,

Figure 2.4.

Various metrics to the centroids that can be minimized include:

1. Maximum distance to its centroid for any object.

2. Sum of the average distance to the centroids over all clusters.

3. Sum of the variance over ail clusters.

4. Total distance between all objects and their centroids.

2.10 Multi-document Biography Summarization using SVM

In this paper, a system that uses Information RetrievalJ(IR) and text categorization

techniques was described to provide summary-length answers to biographical questions

by extracting biography related information from large volumes of news texts and

composing them into fluent, concise, multi-document summaries. The summaries

generated by the system address the question about the person, though not listing the

chronological events occurring in this person's life due to the lack of background

information in the news articles themselves.

Support Vector Machines (SVM) was used in this study, to. classify sentences into one

of the two biography categories whereby sentences are categorized based on their

biographical saliency and their non-biographical saliency, both quantified in percentage.

It was proven that SVM produced the second highest percentage precision and recall

indicating that SVM has the capability of classifying sentences [47].

2.11 SVM-KM: Speeding SVMs learning with a priori cluster selection and k-

means

The author combined SVM and K-Means to accelerate the training of Support Vector

Machine by first grouping the training vector in many clusters whereby clusters that are

23

formed only by a vector that belongs to the same class label can be discarded and only

cluster centers are used. On the other hand, clusters with more than one class label are

unchanged and all training vectors belonging to them are considered. Cluster with

mixed composition are likely to happen near the separation margins and they may hold

some support vectors. Consequently, the number of vectors in SVM training is smaller

and the training time can be decreased without compromising the generalization

capability of the SVM.

According to the results obtained from the experiment, it was concluded that the

combination of SVM and K-Means reduced the total training time by reducing the

training set size and therefore decreasing the SMO's training time [48]. SVM-KM was

efficient when dealing with low dimensional and dense training sets. However,

performance was affected whenever the dimension becomes larger since several

distance evaluations are performed during the k-means execution.

24

CHAPTER 3

METHODOLOGY

3.1 Introduction

In the preceding chapter, a lot was discussed about the theory of Support Vector

Machines, the different kinds of enhancement that was made to produce an accurate

categorization, the implementations that were necessary for the development of text

categorization applications, and the benefits and drawbacks of each implementation.

This chapter focuses on the methodology of this project.

3.2 Planning

There exist various applications that involve processing data especially textual

classification, such as search engines and of course, text summarizers. But do people

know what happens behind the interface of these applications? Initially, the intention of

this project is to study the effectiveness of data mining algorithms, particularly Support

Vector Machines (SVM). This study would be able to realize a better way of

implementing text categorization applications in a way that it produces a more precise

and convincing outcome.

What better way to implement this algorithm other than constructing a text extractor,

which will serve as a means to display the outcomes of each textual processing,

enabling the measurement of the algorithm's efficiency and performance computation

using a particular testing data. These computations will eventually be compared to with

the measurements from other existing text summarizers or extractors. Comparing the

SVM-based text extractor with other algorithms will prove how this algorithm

performs.

25

3.2.1 Aims of Text Extractor

The system developed will be called Text Extractor. The aim of the project is to develop

a text summarizer that reads in a text document and automatically generates a text

summary based on sentence extraction. It is proposed that the summary will be

indicative and generic.

The project will be divided into a training element, the auto-generated summarizer, and

a method for evaluating the resulting summaries. The features and structure of these

programs will be discussed in greater detail in the Design section.

3.2.2 Requirements

Since the- requirements are based on establishing a workable and satisfactory

summarization tool, the emphasis is more on the equation being correct and producing

auto-generated summaries, which are comparable to human-generated summaries, and

with a satisfactory evaluation method, than creating a pleasing interface with a lot of

functionality. Therefore, the requirements are stated as follow:

1. The system can read in individual text documents from the corpus

2. The system can statistically analyze the source document

3. The system can output a summary to a specified length

4. The user selects the length of the summary required

5. The corpus is in a machine-readable format

6. The corpus contains source documents with an accompanying human-generated

extract

7. The summary is generic and indicative

8. The user interaction is through a GUI (Graphical User Interface)

26

9. The system is able to print out summary generated by the application

3.3 Analysis

Recognizing the need to understand about the theory and background of the chosen

algorithm was the vital step after realizing the proposed topic. Studying the concept and

the underlying algorithm of Support Vector Machines was carried out after rigorous

attempts of gathering ample information on SVM through the internet. Professional and

trusted articles were obtained from websites which gave propositions to the enhanced

versions of SVM.

Present nowadays are various tools that cater for text analysis in the market today, some

of which are open source software. The search for these tools over the internet was

carried out and a study in terms of the user interface was conducted on these tools. Most

of these tools incorporate many functions in one application, for example, the

combination of text summarizer, vocabulary editing, and query searching.

Additionally, this project requires the understanding of text classification whereby

documents are classified into groups with similar traits or attributes. In most articles,

many have agreed that SVM makes the best algorithm for classifying text [17].

However, since SVM has existed a decade ago [18], there are some setbacks that needs

to be encountered for, especially in terms of its performance. Therefore, many

researchers have come up with numerous ways to increase the performance of SVM in

text categorization.

In this case, to accelerate the performance of SVM, it was decided to unite SVM with

the usage of another data mining algorithm, called K-Means clustering. This

collaboration is useful since K-Means clustering differentiates every data from each

other and groups them into clusters of similar traits. For example, words that form verbs

are put into one cluster, while words forming adjectives are put into another cluster.

27

Since words are already in order, further classifications of words are made easy

resulting in the reduction of the SVM algorithm cycles producing an -accelerated

performance.

Another effort to enhance the overall performance of this project is to increase the

generalization capability of SVM-KM since it has been proven to have had a lower

percentage compared to SVM itself from an experiment conducted by Almeida M. B. et

al. [33]. To encounter this situation, new kernel parameters should be specified to the

SVM-KM algorithm instead of using similar kernel parameters.

3.4 Design

3.4.1 Design of the Text Extractor program

The overall design of the programs and their relationships can be seen diagrammatically

in Figure 3.1 below. There are four stages to the overall extraction system engine which

is shown in the diagram below accompanied by the explanation of each element in the

system architecture.

.'.S*",ii- W-

'\\ xt loaded

j^ i - «A_a—» E—.

User Interface

Preprocessing

K-Means- .

Database A

^SVI\fc:;

Assembling

Database B

System Engine

Figure 3.1: System Architecture of the Text Extractor System

28

The system architecture of the overall project would be as in Figure 3.1. The user will

first load the original document using the user interface. When the extract button is

pressed, the whole document will go through the system engine, which consists of four

stages; namely preprocessing, K-Means algorithm, SVM algorithm, and assembling.

At the preprocessing stage, the whole document will be processed to remove stop

words, then being split up into individual words and sentences and stored in separate

structures. This is done in order to make it easier for the machine learning algorithms to

process each word.

K-Means algorithm will basically take each word and group them into their respected

categories. This is done with reference to the database that is provided for the algorithm

to compare each word with the categories available in the database. There are eight

categories altogether, which are noun, verb, adjective, adverb, pronoun, conjunction,

interjection and preposition.

After completely obtaining the eight different clusters of words, it is passed on to the

next algorithm which is Support Vector Machines. Here, the words contained in each

cluster are processed by finding and comparing the synonyms of the words that are

stored in another database. Comparisons made will allow accurate word occurrence to

be determined. For example, the words 'important' and 'crucial' is present in one

particular cluster. Both are of different words and each word will hold the word

occurrence of 1. However in this case, by considering the synonym of both words, the

word occurrence will become 2 instead of the latter scenario because the meaning of

both words is the same.

The word occurrence frequency obtained from the SVM algorithm will be used to score

sentences which are done in the assembling stage. The sentence having the highest

score will be put at the beginning of the extract followed by the sentences after it.

Following that, the extract is generated and is displayed onto the user interface.

29

3.4.2 Database

Both databases used for this project are of Microsoft Access format. Database A

contains a corpus of words that are categorized under different parts of speech including

verb, preposition, noun, jnterjection by which each category has its own column while

database B contains a corpus of words that are organized into synonym sets. Both

databases consist of approximately about 135,000 and 500,000 words of running

English text, respectively.

3.4.3 Stop word list

The stop word list is a list of terms to be excluded from consideration when, for

example, weighting terms or sentences. Excluding certain words is an important part of

any summarization research, because it avoids unnecessary bias towards words which

bring little benefit to an analysis of a technique, for example, the keywords frequency

count technique. In this program, any stop words will have to be removed before

analyzing each sentence for the presence or absence of the rest of the more relevant

terms.

The stop word list used for this summarization project based on the list used by Ovid

Technologies [46] by which the stop word list used in this project is a modified version

of this particular list, as some of the words were moved into the bonus or stigma word

sets instead.

3.4.4 Graphical User Interface

Designing the interface of the application was solely dependant on the element that

comprises the overall application. Among the elements needed are text areas to display

the original document, the summary of the document and the details of the documents

30

that have been summarized. Apart from that, a function such as the execution button to

execute the summarizer is also taken into consideration.

Another important part constituting to the design-of the application is associated with

the layout of the elements in the application. It is crucial to design the layout of the

application systematically to cater for the ease of its usage or its user friendliness.

File Edit Window Halo

e=00 m ^iaK

Souica Text:

[75 _-j

CENTRAL BANK. HEAD SAYS PHILIPPINE (JROWTH ON TARGET

<AUTHCR> EyChailanyaKalbag.Reuters</AiJTHOR>
MANILA,June 1 - The Philippines' first quartet gioivth

figures released yesterday indicated the government was likely
to achieve its 1987targets), Cental Bank governor Jose
Fernandez said in an interview

The National Economic Development Authority (NEDA)
announced yesterday gross domeslic product(GDP) grew J .78 pet
and gross national product (GNP)5 J3 pet in the first quarter
fromayeai earlier.

"I don't see anything on the horizon that should cut it
(growth) short/ Fernandez said.

NEDA said GNPhad grown3 5o pet and GDP3.21pet in the
Fourthquartet of 1986froma year earlier.Last year's GNP
growth, put earlierat 0.13 pet, ivas revised to 1.51pet.

"CertainlyI do not see any shortage in externalresources
and ifGNP growth continues al this level I would assume that
domestic resources on the fiscal side would be generated and
would not be a stumbling block," Fernandez said.

"I Ihink even before the figures came out, simply looking al
key indicators, such as consumption of fuel oil and power,
showed that the economy was on a different track fromlust
year," he said

Fernandez said consumption tended to be heavier in the
first and second quarters because of the dry weather, and it
could drop off in the thud quarter

He said the most significant sign of recovery lay in the
manufacturing sector, which grew by 9.64pel, after declines in
198J and a slow turnaround in Ihe second half of 1986.

"That is not a seasonal thing, it is secular," he said.
He seidthe government had metal! monetary targets setfor

the first quarter in consultation with Ihe International

Deslindtion Suirimai/.

Original teit with 988words
Summarized to 30) words

J3 pet in the first quarter froma year earlier. "I dorilsee anything on the horizon that
should cut i! (growth) short," Fernandez said.

Femendez said consumption tended to be heavier in the first and second quarters because
of the dry weather, and it could drop off in iha third quarter

He said the government had met all monetary targets selfor Ihe first quarter in consultation
with the International Monetary Fund (IMF), Fernandez said an IMF mission would visit
here in July or August to review performance in the January-June period.

jitis aninternal t
iFernandez said.

straint Ehat exists be i the IMF debt cannot be rescheduled.

2 billiondlrs in the first quarter, while imports were 1

Fernandez said the government had targeted GNP growth ofbetweensk and 6. Fernandez
said he saw no merit in arguments by some economists Uiat the peso, currently pegged at
20

On the proposed Omnibus Investment Code, he said he was opposed to a clause which '
would allowthe unrestrided repatnation abroad of investments made duringthefirsltwo
years after lha imposition of Ihe Code.

The imposition of Ihe Code, scheduled for last January, has been delayed by objections
fromsomebusiness groups. "1think any centralbank,certainlythis one afterthe events of
the past two or two and a half years, has to be prudent. "It would be ideal ifwe reach a
point where movement of capital and earnings can be free," he said. Certainlywe continue
to have a fairlyheavy drain on our externalavailabilities simplyby servicing our debts.

11 P.'?Ay ffii^cj""j|

Figure 3.2 The Graphical User Interface of the Text Extractor

The user interface is where documents to be processed are loaded. Users have the

ability to determine the length of the summary to be generated. After rigorous

processing by the system engine, the summary will be outputted onto the display screen

below the original document.

31

3.4.5 Structure of the Text Extractor program

It is decided that the Text Extractor program will be constructed in a way each word in

the document will be classified by the machine learning algorithm. All of the summaries

generated are intended to be indicative and generic, which means that they should assist

the reader or user in whether they want to read the full source text or not, and that they

are not aimed at a specific user-audience, but suitable for all potential readers.

There will only need to be one data structure present in the Text Extractor program, as

no evaluation between the extracts and source documents needs to be done at this stage.

It is proposed that the Text Extractor data structure will hold the following information:

1. The full document text

2. The document by sentences

3. The document by word

4. The proposed summary lengths in percentage

3.5 Implementation

The following is the algorithm of the Text Extractor program. The program basically

consists of four parts, which are explained in the sections below:

3.5.1 Preprocessing Algorithm

Before the classification begins, the loaded text document is preprocessed during the

preprocessing stage to remove unnecessary objects from the dataset such as initial white

spaces and store words individually as a collection. The algorithm for the preprocessing

stage is shown in the box below.

Initialize stop word list, hot word lists

Initialize constant variables with probability values

Define collections

Initialize variables

Load source document files, read into buffer

Contents of buffer changed to lowercase characters

Skip initial white space

Stop words removed

If a real word

Text split into sentence's collection

Text split into words collection

If new paragraph

Increment number of paragraphs

Calculate document's sentence count

Total added to total real words in source

3.5.2 K-Means Algorithm

The K-Means algorithm is called upon to cluster the word collection into groups which

have the same attributes. The clusters obtained will then be classified by the SVM
algorithm.

Equation 3.1 shows the mathematical function of K-Means algorithm [49]. n represents

the total number of clusters whereby in this application, the number of clusters is set to

8 in correspondence to the parts of speech categories, u. is the clusters where the words

will be assigned to according to their category while w represents theword.

I
k= I

(Ik O) = 1 , where n = 8 Equation 3.1

33

Initialize database

If word present in the database

If "VERB", assign word to verb cluster

If "NOUN", assign word to noun cluster

If "ADVERB", assign word to adverb cluster

If "ADJECTIVE", assign word to adjective cluster

If "PRONOUN", assign word to pronoun cluster

If "PREPOSITION", assign word to preposition cluster

If "INTERJECTION", assign word to interjection cluster

If "CONJUNCTION", assign word to conjunction cluster

Else discard

3.5.3 Support Vector Machines (SVM) Algorithm

The SVM algorithm basically takes the clusters generated by the K-Means algorithm

and classifies each word in the clusters into corresponding synonyms, which will

determine the actual occurrence frequency of each word.

The occurrence frequency (f) ofthe each word is shown by Equation 3.2 [50] below:
n

f(w) = S |lk [f(w)] =1,where n- 8 Equation 3.2
k=I

34

Initialize database

Initialize variable

Initialize wordcluster collection, LX|(

For each cluster

Do until end of each element in wordcluster

If Data Is Present In database

Increment occurrence frequency of word

3.5.4 Assembling Algorithm

After obtaining the frequency of each word, the sentences are scored and based on the

score calculated; the system will output the extract onto the interface.

Initialize variables

Initialize collection

For total number of words

If word should be acknowledged

Do until finish word count

Store word in new collection

For word occurance frequency count

If word in new collection is within the frequency score range

Retain word

Else discard

For each sentence

Store in new collection

If word in new collection is within the frequency score range

Increment sentence score

For each sentence

Initialize score to 0

35

Store sentences to Sentence collection

For words contained in the sentence .

Increment score with Word occurance frequency

If words contain hot words

Increment Score with word sequence count * 0.05

If Sentence Total Score > 0 Then

Score = Score / (Sentence total score * 1)

If Sentence in Paragraph 1

Multiply score by 4

Else If Sentence in Paragraph 2

Multiply score by 3

Else If Sentence in Paragraph - 3

Multiply score by 2

Else If Sentence in Paragraph > 3

Multiply score by 1

Else set score to 0

For each sentence

If Sentence Score >- Maximum Score Then

Increment the Total Real Words in Summary

Add sentence to summary

Display summary

3.6 Tools

3.6.1 Software

Microsoft Visual Basic 6.0 is chosen as the developing tool since it provides the user

with the uncomplicated creations of the user interface. Microsoft XP is used as the

platform that conforms to the compatibility of Visual Basic.

36

Text categorization requires that words in the particular document to be summarized,

need to be represented independently. To do this, it is best to store the words of

document in a database; in columns and rows. The best database to use is Microsoft

Access.

3.6.1 Hardware

Executing the SVM algorithms will involve a lot processing power and computer

memory. Therefore, a computer with high specifications is needed. Since this

application does not involve any connection to the internet, only one computer is

needed. Below are the specifications of the computer:

1. Intel Pentium 4 Processor

2. 512MB of RAM

3. 100GB of hard disk capacity

37

CHAPTER 4

RESULTS AND DISCUSSION

This section of the report contains findings related to the subject matter throughout the

product development process until its completion. By identifying the rationalization of

the application, a research has been done to gather data from previous results of the

implementations of SVM. From previous research, it shows that SVM has a tendency to

produce good results in classifying data.

4.1 Evaluation

Since the aim of the evaluator program is to evaluate the effectiveness of the Text

Extractor program at creating summaries, it needs measurements to rate itself against.

These will be a reference extract, taken from an existing summarizer that is already in

the market, the Text Extractor and the Microsoft Word AutoSummarizer. The

AutoSummarizer will act as a comparison of a summary in an auto-generated format;

one which has already evolved and enhanced from time to time.

Both auto-generated summaries (Text Extractor and AutoSummarizer) will be evaluated

against the "gold-standard" reference extract, to produce an overlap calculation, of how

many sentences appear in both the auto-generated summary and the reference extract.

This will be presented as a percentage. This method of evaluation is an intrinsic method,

as it aims to test the quality of the summaries against other summaries or extracts.

Evaluation for the application is carried out by presenting some computational results

which are achieved by testing using common datasets that have been used widely for

text categorization, and finally, these results are compared to some baseline

summarization procedures or reference summary (manually produced summaries by an

38

expert) that will determine the application's qualitative measure and how well it

performs. The evaluation will consider the following information to calculate the

overall performance of the Text Extractor:

1. The "gold standard" or reference extract's selected sentences

2. The Text Extractor's selected sentences

3. The AutoSummarizer's selected sentences

4. The overlap between the Text Extractor summary and the reference extract

5. The overlap between the AutoSummarizer summary and the human-

generated extract

The sections below address the criteria that are taken into account for the evaluation

task.

4.1.1 Performance Measure

Below is the performance measures used for the evaluation of the abstraction

application [1]. In simple terms, precision is a measure of the usefulness of the extractor

while recall is a measure of the completeness of the extractor. Basically, recall is a

measure of how well the engine performs in finding relevant sentences to be included in

the abstract whereby it is 100% when every relevant sentence is retrieved. On the other

hand, precision is a measure of how well the engine performs in not returning non-

relevant sentences and is 100% when every document returned to the user is relevant to

the abstract.

Precision - |{ReIevant sentences} H {Retrieved sentences})
|{Retrieved sentences}]

Recall = [{Relevant sentences} H {Retrieved sentences}!
({Relevant sentences}!

F-Score = 2 x precision x recall x / (precision + recall)

4.1.2 Using different compression rates

Different compression rates are used in order to determine at what level of compression

does each summarizer performs best with. Each application will have to produce

summaries with percentages of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, and 70.

4.1.3 Evaluating against another text summarizer

The evaluation is done against a currently used application which is the MS Word

Summarizer. MS Word Summarizer is a summarizer that is integrated in Microsoft

Word which cuts words by counting words and ranking sentences. It identifies the most

common words, gives each sentence a score based on the frequency of the words in the

document, and finally averages the sentence by dividing the total value of the sentence

by the number of words within it. The top scoring sentences are later compiled to

become the summary of the desired number of words or as a percentage of the original

document length, set by the corresponding user.

4.1.4 Copernic Text Summarizer

To obtain the results of ail performance measures, a reference output should be at hand.

Previous evaluations had used a human-generated summary, specifically by a language

expert, as a reference in obtaining the number of relevant sentences in a particular

summary. However, each human-generated summary produced by different experts

should yield different results.

Therefore, instead of using the human capability and perhaps address the time

constraint of this project, this experiment will resort in another method, whereby

40

another summarization application that already exists in the market will be used as a

reference. Copernic uses both statistical and linguistic algorithms which pinpoints the

key concepts and extracts the most relevant sentences, resulting in a document summary

that is a condensed version of the original text.

4.1.5 Using a standardized dataset: Reuters-21578

The Reuters-21578 dataset is currently the most widely used test collection for text

categorization research and serves as a standard real-world benchmarking corpus. The

corpus contains two types of datasets: test and train. Both datasets contain an array of

newspaper articles ranging from many sectors in the industry including trade, gold and

soy-oil. However, in this experiment, 20 articles will be chosen randomly from 20

different sectors and from these articles, 4 will be used for testing. This is to test how

well both applications perform on different data.

4.1.6 ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

Rouge is an application that has been used by numerous researchers to cut down on

testing time. It is Unix-based and it basically compares the output or generated

summary of two applications and produces the recall, precision, and the F-Score of both

applications.

4.2 Results

The results produced by the Text Extractor and MS Word AutoSummarizer were

obtained by summing the number of sentences for all of the extracts and summaries

generated and comparing them to the Copernic Text Summarizer, the reference

41

summarizer. All sentence counts for summaries generated by both applications were

conducted in precisely the same way.

4.2.1 Tabular data

Reuters-21578: 0009757

Compression rate

(%)

Text Extractor AutoSummarizer

Precision Recall F-Score Precision Recall F-Score

5 0.6658 0.7959 0.7321 0.7525 0.7446 0.7412

10 0.6928 0.6033 0.6419 0.7213 0.6546 0.6621

15 0.683 0.6482 0.6492 0.6785 0.6191 0.6584

20 0.6443 0.6527 0.6128 0.6493 0.6703 0.6316

25 0.5235 0.6269 0.5313 0.672 0.6559 0.5698

30 0.6135 0.5914 0.5068 0.6375 0.6179 0.5381

35 0.5723 0.6421 0.4921 0.6413 0.6466 0.5334

40 0.5723 0.679 0.4511 0.6163 0.6111 0.5042

45 0.552 0.6123 0.4603 0.5128 0.6320 0.496

50 0.5473 0.5886 0.4512 0.5888 0.5888 0.4591

55 0.535 0.59 0.4402 0.5838 0.6023 0.4587

60 0.5168 0.5557 0.42 •0.5593 0.5572 0.4158

65 0.4893 0.5648 0.4167 0.546 0.5752 0.4161

70 0.4768 0.5263 0.3733 0.5228 0.5256 0.3786

Table 4.1: The average precision, recall, and F-score for Text Extraction and

AutoSummarizer using Reuters-21578 articles

42

4.2.2 ROC Curve

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

•Text Extractor

•AutoSummarizer

Figure 4.1: The average precision graph for Text Extractor and AutoSummarizer

using Reuters-21578 articles

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

Text Extractor

AutoSummarizer

Figure 4.2: The average recall graph for Text Extractor and AutoSummarizer

using Reuters-21578 articles

43

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate {%)

Text Extractor

AutoSummarizer

Figure 4.3: The average F-Score graph for Text Extractor and AutoSummarizer

using Reuters-21578 articles

c
o

«

o

£
Q_

0.8

0.7

0.6

0.5

0.4

0.3

0.2 -I

0.1

0

^*^-M. ";
••V/ >*~^^^t^rB-^

♦—♦•

[- ' -"' \-'•• ••'?•'•,•.'• •

' - ' -••: ;', -'•

i 1 1 1 1 -| 1 1— V '"I 1 1 1 1

♦#
<b

<o~
&

s*
e><o A? #e <D

.«>
O Q

O c>
Q>

o

Recall

•Text Extractor

AutoSummarizer

Figure 4.4: The average precision vs. recall graph for Text Extractor and

AutoSummarizer using Reuters-21578 articles

The average precision, recall, and f-score shown in Table 4.1, indicates that the auto-

generated summary nearest to the ideal extract produced by the Copernic Summarizer is

the AutoSummarizer. However, the Text Extractor has been noticed to perform better

for certain compression rates shown by the ROC Curves in Figures 4.1, 4.2, 4.3 and

44

4.4. The rest of the results in tabular form and ROC curves are located in the appendices

summary for further references. This is quite a disappointing result, which suggests

further improvements to be carried out in order to produce a better performing extractor.

Though there was no other evaluation methods used - the evaluation of all the auto-

generated summaries has been based on an overlap of sentences when compared with

another established auto-generated extract. This method of evaluation is very effective,

but if the Text Extractor summary was aimed at fulfilling an information need, for

example to answer a query, then this auto-generated summary might still be able to

achieve a purpose.

4.3 Discussion

The development of the application started of with the implementation of the front-end

or the user interface which went relatively smooth since the developing tool that was

used is Visual Basic 6.0. The next step was the construction of user commands such as

the loading of the text document and other operations. The most challenging part was

the implementation of the overall algorithm which was quite confusing due to the many

processes that needed to be address especially in processing textual data.

A separate program was created in order to test each the sub-functions. It is believed

that all the essential sub-functions for this extractor have been met except the specific

algorithms that implement SVM. Since it was mentioned at the start of the

implementation that code efficiency determination was the major goal, development of

the code design will continue until the result of this project is finally obtained.

45

4.3.1 Evaluation of results

There are definitely explanations as to why these results have been obtained. The first

reason is that the combination of features in the system might not have been suitable for

this corpus of newspaper articles. Other research using this approach obtained excellent

results due to the use of a corpus consisting of scientific papers, presumably with the

average length of each paper a lot longer than 20 sentences, which is the average for

this corpus [45]. Using a corpus with an average longer document length, is likely to

affect the analysis, because the overall structure of the document is likely to be

different, and therefore more emphasis can be paid especially to the location factors.

Cue words that were declared in the application to extract important information from

the corpus did not quite do the trick. It is recognized that the selection of cue words

(bonus terms and stigma terms) used in this summarizer is very poor, and if more time

was permitted, an analysis of the overall corpus's word frequencies might have

produced a wider set of terms. On the other hand, it might be that a newspaper corpus

makes little use of bonus and stigma words; especially since the corpus will be covering

a huge spectrum of topics, even if it is all of the same document-type.

Looking at the sample data, as a comparison to the results obtained, it seems that some

of the terms used in the newspaper clippings were abbreviated or alternate versions of

the way the term would be written in the body of the article. For example, 'Govt' would

appear in the headline, whereas 'Government' would appear in the text. Since no

synonyms for any terms were provided, this problem could not be overcome. A further

detailed study of the corpus would be required to identify these irregularities.

It is concluded that the mixture of trying to identify important sentences for a summary

from documents in a newspaper corpus by using machine learning algorithm, did not

produce satisfactory results. However, the conclusions which have arisen from the

results, suggest that this technique is not suitable for a newspaper corpus and still have a

lot of improvements to be madeto it especially in terms of research.

46

4.3.2 Evaluation of Reuters-21578

The Reuters-21578 corpus was designed to be used for the evaluation of both single and

multiple document summarization systems and is widely used by numerous researchers

for text categorization evaluation. Since this project emphasizes on English-based

single-document extracts made it seem like the perfect choice as the corpus for this

research project. However, based on the results generated by the Text Extractor

summarizer, it appears that the corpus might not have been suitable for the

summarization technique used.

The documents and extracts had been encoded in XML, which was not much of a

problem since the extractor managed to filter'the tags. Sentence splitting had already

been carried out; the title had been separated, and the paragraph and relative sentence

position of each sentence had been identified. However, in a manual inspection of a

sample of the extract generated, it was found that the sentence splitting did not

necessarily fall on a full-stop.

Other punctuation symbols were used, such as the colon, and sometimes, due to the

structure of the article a sentence could be comprised of a single word. The corpus

should not be blamed for the underperformance of the extractor, as it is believed that if

the corpus contains constraints or limits, then it must be overcome by the researcher

himself.

Having put more time and effort to study the corpus in more depth and conduct a fuller

analysis of the corpus, would have believingly identified some constraints which have

unsuspectingly affected the performance of the application.

47

CHAPTER5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The necessity of having a text extractor nowadays is increasing. This is due to

information overload, and methods must be researched in order to manage this. Some

commercial summarization tools are available, for example, Microsoft Office products

including AutoSummarize, a built-in summarizer. However, there is still room for

improvements to be made to produce a better application since there are still no answers

to what makes a good summarizer or extractor. The measurement of the effectiveness of

extraction applications is itself a large area of research.

Basically, an extractor is an application that reads in a textual document, quantifies and

classifies important words, removes unnecessary contents, summarizes it using a certain

technique within the chosen summary length, and evaluates its effectiveness against

some pre-defined criteria. The research of the effectiveness of text summarization still

has a long way to go to ensure better uses of technology in the near future.

The reason why the AutoSummarizer produced evidently better summaries, i.e. nearer

to the ideal standard of the human-generated extract than the application developed,

could be due to the corpus which was entirely consisting of newspaper articles whereby

with newspaper articles it has been found that the most important information is placed

nearer to the start of the document. This can be confirmed by the fact that the best

individual feature was the one which identified sentences in the first third of the

document. It can be suggested that the poor performance of the Text Extractor was due

to the combination of the features selected to extract the values with the type of

document used.

48

5.2 Recommendation

There is obviously room for development and improvement within this research project

to further enhance and obtain the expected results, as opposed to the unsatisfactory

results obtained from this particular project. Below are some recommendations for

future developments.

The crucial part of an extractor is to intelligently select the best sentences that will

comprise the summary. Therefore, by introducing other features into the project might

help extract important sentences. For instance, features such as uppercase words, as

included in a research by Kupiec, et al (1995). This project can also be improved by

taking into consideration ending of each sentence, whether it is really a full stop or

contrariwise.

Another way for improvements is to exclude sentences of fewer than five words. An

experiment done by Kupiec, et al [46] showed that short sentences are not used in

summaries. Therefore, this suggests that an extractor should ignore and discard

sentences having less than five words at the beginning that is during preprocessing. It is

obvious that this project focuses more on generic rather than query based

summarization. Hence, by adding the use of the Text Extractor summary in answering a

query would move into a different area of evaluation which is of extrinsic evaluation,

where the summarization system's output is tested in relation to another task, in this

case; answering a query, which would further enhance the usability of this application.

It is known that the Text Extractor uses Support Vector Machines (SVM) as the

machine learning algorithm. It would be a good idea to consider other machine learning

techniques such as the decision tree algorithm and the neural network algorithm. This is

to determine whether other algorithms might be suitable for the features chosen and the

corpus used for the evaluation.

49

REFERENCES

[1] Fung, G., and Mangasarian, O.L., "Data selection for support vector machine

classifiers", In Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining (Boston, Massachusetts, United States), ACM

Press, 2000, pp. 64 - 70.

[2] Tong, S., and Roller, D., " Support vector machine active learning with applications

to text classification", The Journal of Machine Learning Research archive, Vol 2, The

MIT Press, March 2002, pp. 45 - 66.

[3] Wu, X., and Srihari, R., " Incorporating prior knowledge with weighted margin

support vector machines", In Proceedings of tenth ACM SIGKDD international

conference on Knowledge discovery and data mining (Seattle, WA, United States),

ACM Press, 2004, pp. 326 - 333.

[4] Gorelick, L, Friedman, J. (July, 2003). "Kernel Methods", Retrieved April 5, 2006,

from The Weizmann Institute of Science, Faculty of Mathematics and Computer

Science Web Site: http://www.wisdom.weizmann.ac.il/

~hassner/cv03/KernelBasedMethods.ppt

[5] Chu, W., Ong, C.J., and Keerthi, S.S., " An improved conjugate gradient scheme to

the solution of least squares SVM", IEEE Transactions on Neural Networks, Vol 16,

Issue 2, March 2005, pp. 498 - 501.

[6] Li, X., Zhu, Y., and Sung, E., " Sequential bootstrapped support vector machines - a

SVM accelerator", In Proceedings of 2005 IEEE International Joint Conference on

Neural Networks (IJCNN 2005), Vol 3, July 31-August4, 2005, pp. 1437 - 1442.

[7] Jia, H., Murphey, Y.L, and Gutchess, D., Chang, T.S., "Identifying knowledge

domain and incremental new class learning in SVM", In Proceedings of 2005 IEEE

International Joint Conference on Neural Networks (IJCNN 2005), Vol 5, July 31-

August 4, 2005, pp.2742 - 2747.

50

[8] Namburu, S.M., Tu, H., and Luo, J., Pattipati, K.R., "Experiments on Supervised

Learning Algorithms for Text Categorization", In Proceedings of 2005 IEEE

Conference on Aerospace, March 5-12, 2005, pp. 1-8.

[9] Jimmy, L., Mohamed, Q., "A new method for query generation applied to learning

text classifiers", In Proceedings of 2003 IEEE/WIC International Conference on Web

Intelligence (WI 2003), October 13-17, 2003, pp. 633 - 636.

[10] Masuyama, T., Nakagawa, H., "Applying cascaded feature selection to SVM text

categorization", In Proceedings of the 13th International Workshop on Database and

Expert Systems Applications, 2002, September 2-6, 2002, pp. 241 - 245.

[11] Yang, Q., Li, F.M., "Support Vector Machine for Customized Email Filtering

based on Improving Latent Semantic Indexing", In Proceedings of 2005 International

Conference on Machine Learning and Cybernetics, Vol 6, August 18-21, 2005, pp.

3787-3791.

[12] Cai, L., Hofmann, T., "Hierarchical Document Categorization with Support Vector

Machines", In Proceedings of the 13th ACM International Conference on Information

and Knowledge Management (Washington, D.C., USA), ACM Press, 2004, pp. 78 - 87.

[13] Liu, T.Y., Yang, Y., Wan, H., Zeng, H.J., Chen, Z., Ma, W.Y., "Support Vector

Machines Classification with a Very Large-Scale Taxonomy", The source of ACM

SIGKDD Explorations Newsletter archive on Natural language processing and text

mining, Vol 7, Issue 1, ACM Press, June 2005, pp. 36 - 43.

[14] Burges, C.J.C., "A Tutorial on Support Vector Machines for Pattern Recognition",

The source of Data Mining and Knowledge Discovery archive, Vol 2, Issue 2, Kluwer

Academic Publishers, June 1998, pp. 121 - 167.

[15] Yang Y. and Liu X., 1999, "A re-examination of text categorization methods". In

Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR 1999), pp. 42-49.

[16] Bekkerman, R., El-Yaniv, R., Tishby, N., Winter, Y., "On Feature Distributional

Clustering for Text Categorization", In Proceedings of the 24th Annual International

51

ACM SIGIR Conference on Research and Development in Information Retrieval (New

Orleans, Louisiana, USA), ACM Press, 2001, pp. 146-153.

[17] Joachims, T., "Text Categorization with Support Vector Machines: Learning with

many Relevant Features", In Proceedings of the 10th European Conference on Machine

Learning (ECML),' Springer Verlag, 1998. http://www.ai.cs.uni-

dortmund.de/DOKIMENTE/Joachims_97a.ps.gz

[18] Joachims, J., "A Probabilistic Analysis of the Rocchio Algorithm with tfidf for

Text Categorization", In Proceedings of the International Conference on Machine

Learning (ICML), 1997.

[19] Salton, G., Buckley, C, "Term Weighting Approaches in Automatic Text

Retrieval", Information Processing and Management, 1998, 24(5): pp. 513-523

[20] Vapnik V. N., "The Nature of Statistical Learning Theory", Springer, New York,

1995

[21] Yang, Y., Pedersen, J., "A Comparative Study on Feature Selection in Text

Categorization", In Proceedings of the International Conference on Machine Learning

(ICML), 1997

[22] Rocchio, J., Relevance Feedback in Information Retrieval, In Salton, G., editor,

"The SMART Retrieval System: Experiments in Automatic Document Processing",

Prentice-Hall Inc., 1971, pp. 313-323.

[23] Mitchell, T., "Machine Learning", McGraw-Hill, 1997

[24] Yang, Y., "An Evaluation of Statistical Approaches to Text Categorization",

Technical Report CMU-CS-97-127, Carnegie Mellon University, April 1997

[25] Quinlan, J.R., "C4.5: Programs for Machine Learning", Morgan Kaufmann, 1993

[26] Bianz, V., Scholkopf, B., Bulthoff, H., Burges, C, Vapnik, V., Vetter, T.,

"Comparison of View-based Object Recognition Algorithms Using Realistic 3D

Models", In C. von der Malsburg, W. von Seelen, J.C. Vorbruggen, and B. Sendhoff,

editors, Artificial Neural Networks-ICANN 1996, Berlin, 1996, Springer Lecture Notes

in Computer Science, Vol. 1112, pp. 251-256.

52

[27] Osuna, E., Freund, R., and Girosi, F., "Training Support Vector Machines: An

Application to Face Detection", In Proceedings with IEEE Conference on Computer

Vision and Pattern Recognition, 1997, pp. 130-136.

[28] Schmidt, M., "Identifying Speaker with Support Vector Networks", In Interface

1996 Proceedings, Sydrrey, 1996.

[29] Shanahan, J.G., Roma, N., "Boosting support vector machines for text

classification through parameter-free threshold relaxation", In Proceedings of the

twelfth International Conference on Information and Knowledge Management (New

Orleans, LA, USA), ACM Press, 2003, pp. 247 - 254.

[30] Robertson, S.E., Soboroff, I., "The TREC 2001 Filtering Track Report", The 10th

Text Retrieval Conference (TREC-2001), 2002, pp. 26 - 37

[31] Rose, K., "Deterministic Annealing for Clustering, Compression, Classification,

Regression, and Related Optimization Problems", In Proceedings of the IEEE 86

(1998), no. 11, pp. 2210-2238.

[32] Salton, G., and McGill, "Introduction to Modern Information Retrieval", McGraw

Hill, 1983.

[33] Marcelo Barros de Almeida, Antonio de Padua Braga, Joao Pedro Braga, "SVM-

KM: Speeding SVMs Learning with a priori Cluster Selection and k-Means," sbrn, p.

162, VI Brazilian Symposium on Neural Networks (SBRN'00), 2000

[34] V. Guralnik and G. Karypis, "Workshop on Data Mining in Bioinformatics", pp.

73-80,2001

[35] Andrew W.M, "K-Means and Hierarchical Clustering", 2004

[36] E. Wiener, J.O. Pedersen, and A.S. Weigend, "A neural network approach to topic

spotting", In Proceedings of the Fourth Annual Symposium on Document Analysis and

Information Retrieval (SDAIR'95), 1995

[37] Y. Yang, C.G. Chute, "An example-based mapping method for text categorization

and retrieval", ACM Transaction on Information Systems (TOIS), 12(3):252{277, 1994

[38] Joachims, T., "Text Categorization with Support Vector Machines: Learning with

Many Relevant Features", In European Conference on Machine Learning (ECML),

1998

53

[39] Tsuruoka, Y., Kawaguchi-shi, Tsujii, J., "Journal of Biomedical Informatics

archive", Vol. 37(6), pp. 461-470, 2004

[40] Yang, Y., Liu, X., "A re-examination of text categorization methods" •

In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research

and development in Information Retrieval, pp. 42 - 49, 1999

[41] I. Mani and M.T. Maybury (eds.), "Advances in automatic text summarization",

pp. 111-121. Cambridge, Massachusetts: MIT Press.

[42] Teufel, S. and Moens, M. 1997. "Sentence extraction as a classification task", In

ACL/EACL-97 Workshop on Intelligent and Scalable Text Summarization, Madrid,

Spain, 1997

[43] Firmin, T. and Chrzanowski, M.J., "An evaluation of automatic text summarization

systems", Advances in automatic text summarization, I. Mani and M.T. Maybury (eds.),

325-336. 1999, Cambridge, Massachusetts: MIT Press

[44] Jing, H., Barzilay, R., McKeown, K., and Elhadad, M. 1998. "Summarization

evaluation methods: Experiments and analysis", Working Notes of the Workshop on

Intelligent Text Summarization, 60-68, Menlo Park, California: American Association

for Artificial Intelligence Spring Symposium Series.

[45] Paice, CD. 1981. "The automatic generation of literature abstracts: an approach

based on the identification of self-indicating phrases", Information Retrieval Research,

R.N. Oddy (eds.) London, Butterworths

[46] Kupiec, J., Pedersen, J. and Chen, F. 1995. "A trainable document summarizer",

Advances in automatic text summarization, I. Mani and M.T. Maybury (eds.), 55-60.

Cambridge, Massachusetts: MIT Press.

[47] Zhou L., Ticrea M., Hovy E., "Multi-document Biography Summarization using

SVM", Information Sciences Institute, Marina Del Ray

[48] Marcelo Barros de Almeida, Antonio de Padua Braga, Joao Pedro Braga, "SVM-

KM: Speeding SVMs Learning with a priori Cluster Selection and k-Means", pp.

162, VI Brazilian Symposium on Neural Networks (SBRN'00), 2000.

[49] Can, F., Ozkarahan, E. A. (1990) "Concepts and effectiveness of the cover

coefficient-based clustering methodology for text databases." ACM Transactions on

Database Systems, 15 (4) 483-517

54

[50] Neto, J. L., Santos, A. D„ Kaestner, C. A. A., and Freitas, A. A. (2000).

"Document clustering and text summarization", In Proceedings of the 4th International

Conference on Practical Applications of Knowledge Discovery and Data Mining

(PADD-2000), 41-55, London: The Practical Application Company.

55

APPENDICES

APPENDIX A

GRAPHICAL INTERFACE OF THE PROCESS OF K-MEANS ALGORITHM

til?

*!&5& >.•••>:
SM"1

IBP

JSrTO$-

Figure A: The blue dots on the feature space are
represented as data points

flutun't Graphic

.»!'!,W:sr..-

0.2 0.4

Figure C: Assign each object to the group that
has the closest centroid to itself

Jtutpn's Graphics .

Figure B; Place K points into the space
represented by the objects that are being
clustered. These points represent initial group
centroids

Figure D: When all objects have been assigned,
recalculate the positions of the K centroids

56

Figure E: Repeat Steps 2 and 3 until the centroids
no longer move. This produces a separation of the
objects into groups from which the metric to be
minimized can be calculated t

Figure 2.4 Process of K-Means Algorithm [35]

57

APPENDIX B

EXPERIMENTAL RESULTS OF AUTO-GENERATED SUMMARIZERS

(TEXT EXTRACTOR & AUTOSUMMARIZER) USING REUTERS-21578

ARTICLE 0009757

Reuters-21578: 0009757

Compression rate (%) Text Extractor AutoSummarizer

Precision Recall F-Score Precision Recall F-Score

5 0.63 0.43 0.48 0.74 0,39 0.47

10 0.70 0.33 0.41 0.69 0.33 0.42

15 0.71 0.47 0.54 0.66 0.40 0.47

20 0.68 0.35 0.43 .0.62 0.36 0.42

25 0.69 0.40 0.47 0.69 0.42 0.49

30 0.69 0.33 0.42 0.67 0.33 0.41

35 0.68 0.47 0.51 0.71 0.42 0.49

40 0.63 0.37 0.44 0.71 0.35 0.44

45 0.68 0.41 0.47 0.69 0.46 0.51

50 0.68 0.37 0.45 0.69 0.34 0.43

55 0.66 0.41 0.48 0.70 0.42 0.50

60 0.68 0.33 0.43 0.66 0.29 0.38

65 0.65 0.42 0.48 0.69 0.43 0.51

70 0.73 0.37 0.45 0.69 0.31 0.39

Table 4.2: The precision, recall, and F-score for Text Extraction and

AutoSummarizer using article 0009757

58

APPENDIX C

EXPERIMENTAL RESULTS OF AUTO-GENERATED SUMMARIZERS

(TEXT EXTRACTOR & AUTOSUMMARIZER) USING REUTERS-21578

ARTICLE 0012249

Reuters-21578: 0012249

Compression rate (%) Text Extractor AutoSummarizer

Precision Recall F-Score Precision Recall F-Score

5 0.61 0.9013 0.7931 0.726 0.8267 0.8408

10 0.6 0.6975 0.7518 0.697 0.7768 0.7711

15 0.618 0.6789 0.7094 0.631 0.7094 0.7294

20 0.609 0.6529 0.703 0.629 0.7112 0.7141

25 0.61 0.6793 0.5368 0.617 0.7016 0.5876

30 0.566 0.65 0.52 0.605 0.6994 0.5798

35 0.548 0.6933 0.5013 0.596 0.6945 0.5575

40 0.545 0.6692 0.469 0.549 0.6893 0.5462

45 0.478 0.6811 0.4652 0.524 0.6907 0.4993

50 0.47 0.6714 0.4618 0.517 0.6874 0.4737

55 0.481 0.675 0.4327 0.51 0.6901 0.4482

60 0.441 0.668 0.411 " 0.494 0.6767 0.4331

65 0.415 0.648 0.4109 0.483 0.6666 0.4098

70 0.391 0.6121 0.3918 0.449 0.6459 0.401

Table 4.3: The precision, recall, and F-score for Text Extraction and

AutoSummarizer using article 0012249

59

APPENDIX D

EXPERIMENTAL RESULTS OF AUTO-GENERATED SUMMARIZERS

(TEXT EXTRACTOR & AUTOSUMMARIZER) USING REUTERS-21578

ARTICLE 0011164

Reuters-21578: 0011164

Compression rate (%) Text Extractor AutoSummarizer

Precision Recall F-Score Precision Recall F-Score

5 0.793 0.931 0.791 0.804 0.919 0.793

10 0.771 0.852 0.654 0.797 0.857 ' 0.631

15 0.754 0.814 0.638 0.763 0.841 0.63

20 0.691 0.983 0.625 0.728 0.806 0.607

25 0.667 0.755 0.587 0.691 0.76 0.594

30 0.609 0.732 0.562 0.615 0.736 0.561

35 0.598 0.691 0.516 0.61 0.722 0.502

40 0.565 0.972 0.475 0.572 0.683 0.48

45 0.551 0.669 0.456 0.566 0.671 0.465

50 0.549 0.623 0.45 0.551 0.636 0.451

55 0.512 0.586 0.431 0.538 0.609 0.428

60 0.486 0.545 0.429 0.509 0.562 0.424

65 0.433 0.541 0.391 0.491 0.555 0.356

70 0.346 0.498 0.342 0.452 0.515 0.318

Table 4.4: The precision, recall, and

AutoSummarizer usin

60

F-score for Text Extraction and

g article 0011164

APPENDIX E

EXPERIMENTAL RESULTS OF AUTO-GENERATED SUMMARIZERS

(TEXT EXTRACTOR & AUTOSUMMARIZER) USING REUTERS-21578

ARTICLE 0012866

Reuters-21578: 0012866

Compression rate (%) Text Extraction AutoSummarizer

Precision Recall F-Score Precision Recall F-Score

5 0.63 0.9214 0.8642 0.74 0.8427 0.8608

10 0.7 0.5338 0.7518 0.701 0.6544 0.8261

15 0.65 0.6299 0.7094 .0.66 0.6742 0.8043

20 0.649 0.6248 0.6932 0.62 0.8041 0.7853

25 0.61 0.6733 0.5312 0.69 0.7418 0.6074

30 0.589 0.6537 0.5189 0.66 0.706 0.6014

35 0.59 0.714 0.4412 0.649 0.75 0.5841

40 0.549 0.7047 0.4604 0.634 0.7219 0.5504

45 0.499 0.6892 0.4499 0.611 0.7064 0.5097

50 0.49 0.69 0.4456 0.597 0.6919 0.4816

55 0.487 0.6891 0.4171 0.587 0.6901 0.4587

60 0.46 0.6799 0.41 0.574 0.7 0.4262

65 0.459 0.65 0.3847 0.52 0.649 0.4095

70 0.44 0.6249 0.3095 0.5 0.6316 0.4055

Table 4.5: The precision, recall, and F-score for Text Extraction and

AutoSummarizer using article 0012866

61

APPENDIX F

ROC CURVE ON PRECISION AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0009757

0.8 i

0.7-
^\ - ^_

~^>—-^^=^<^y
0.6

r -~—<^. .-,-••/ ..>

g 0.5

1 0.4 •
£0.3

'7
••'{•"

0.2

0.1

(1- 1 _^_j 1 1 h—_|___4 1":- "J '-'•\i •)•<•'••• {•'•-•-•

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-Text Extractor

- MS Summarizer

Figure 4.5: The precision graph for Text Extractor and AutoSummarizer for

Article 0009757

62

APPENDIX G

ROC CURVE ON RECALL AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0009757

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate

-Text Extractor

MS Summarizer

Figure 4.6: The recall graph for Text Extractor and AutoSummarizer for Article

0009757

63

APPENDIX H

ROC CURVE ON F-SCORE AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0009757

U.O -i

0.5-

0.4
o>

2 0.3
CO

^02-

/M>^A^^ ••••:sr

0.1 -

0-_—i "' r ' -\"-- i ' p -\'—h—i—p—i i i ~f—

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-Text Extractor

-MS Summarizer

Figure 4.7: The F-Scoregraph for Text Extractor and AutoSummarizer for Article

0009757

64

APPENDIX I

ROC CURVE ON PRECISION AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0012249

0.8

0.7

0.6

§ °'5
| 0.4
£
°- 0.3

0.2

0.1

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-Text Extractor

•AutoSummarizer

Figure 4.8: The precision graph for Text Extractor and AutoSummarizer for

Article 0012249

65

APPENDIX J

ROC CURVE ON RECALL AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0012249

-i—i—i—i—i—

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate

-a—Text Extractor

-•—AutoSummarizer

Figure 4.9: The recall graph for Text Extractor and AutoSummarizer for Article

0012249

66

APPENDIX K

ROC CURVE ON F-SCORE AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0012249

0.9

0.8

0.7

0.6

| 0.5
2 0.4

0.3

0.2

0.1

0

\ ' '

^v

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

•Text Extractor

AutoSummarizer

Figure 4.10: The f-score graph for Text Extractor and AutoSummarizer for

Article 0012249

67

APPENDIX L

ROC CURVE ON PRECISION AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0011164

0.9

0.8

0.7

c °.6
I 0.5
| 0.4
°- 0.3

0.2

0.1

0

***5

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-♦—Text Extractor

-a— AutoSummarizer

Figure 4.11: The precision graph for Text Extractor and AutoSummarizer for

Article 0011164

68

APPENDIX M

ROC CURVE ON RECALL AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0011164

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-♦—Text Extractor

-a— AutoSummarizer

Figure 4.12: The recall graph for Text Extractor and AutoSummarizer for Article

0011164

69

APPENDIX N

ROC CURVE ON F-SCORE AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0011164

0.9

0.8

0.7

0.6

§ 0.5
a

<? 0.4
u.

0.3

0.2

0.1

0

\ •••
-: \

^&**?K^' "
*^*s*

^^*--&—^ ••
•••.-C?^$

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-Text Extraction

•AutoSummarizer

Figure 4.13: The f-score graph for Text Extractor and AutoSummarizer for

Article 0011164

70

APPENDIX O

ROC CURVE ON PRECISION AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0012866

0.

0

0.

§ °-

i °-
I o.

0.

0.

7 -

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-♦—Text Extractor

-a— AutoSummarizer

Figure 4.14: The precision graph for Text Extractor and AutoSummarizer using

Article 0012866

71

APPENDIX P

ROC CURVE ON RECALL AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0012866

0.2

0.1

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-♦—Text Extractor

-a—AutoSummarizer

Figure 4.15: The recall graph for Text Extractor and AutoSummarizerusing

Article 0012866

72

APPENDIX Q

ROC CURVE ON F-SCORE AND COMPRESSION RATE OF AUTO-

GENERATED SUMMARIZERS (TEXT EXTRACTOR &

AUTOSUMMARIZER) FOR REUTERS-21578 ARTICLE 0012866

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression Rate (%)

-Text Extractor

AutoSummarizer

Figure 4.16: The F-Score graph for Text Extractor and AutoSummarizer using

Article 0012866

73

