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ABSTRACT

Micro Electrical Discharge Machining is currently widely used in the manufacturing in a variety

of applications, like in the production of micro parts for watches, keyhole surgery, housings for

micro surgery, and also tooling inserts for fabrication of micro filters. This study is undertaken

with the objective of analyzing various methods of Micro EDM setup and factors and parameters

which affect the end product quality and process and to also propose design parameters for

production of micro channels with bio-applications. . A brass tube electrode is selected with

multiple passes with a resetting of Z-coordinate used as wear compensation method. A R-C

generator with 75V and 0.5A with a pulse on time of 12us is selected to give the best balance

between MRR and accuracy. Lastly, de-ionized water is used as a dielectric fluid because its

chemically inert and will not pollute the micro channel which is to be used in bio-applications as

well as provide a stable MRR.
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

Electrical Discharge Machining (or EDM) is a non-conventional machining method which is

primarily used for hard metals or those that would be impossible to machine with traditional

techniques. It is a successful adaptation of EDM for micromachining from simple holes to

complex molds where the discharge energy is reduced to the order of 10 to 10 Joules in order

to minimize the unit material removal. [6]

It works by removing material via a series of rapidly reoccurring electric arcing discharges

between the electrode and thework piece in the presence of an electric field. This process is very

versatile and can be used create small or odd-shaped angles, intricate contours or cavities in

metals which otherwise impossible to machine economically like titanium, hastelloy, kovar or

inconel.[l] An evolution of this process is Micro EDM which is used to fabricate complex three

dimensional microstructures.

Micro Electrical Discharge Machining is currently widely used in the manufacturing in a variety

of applications, like in the production of micro parts for watches, keyhole surgery, housings for

micro surgery, and also tooling inserts for fabrication of micro filters [2]. It was originally

applied predominantly in the production. There are many setups available and many factors

which influence the process. Realising this, I am undertaking this project with the aim of

analyzing andcomparing thevarious setups and influencing factors in regards to Micro EDM.



1.2 OBJECTIVES

i. Analyze various methods ofMicro EDM setup

ii. Study the various factors and parameters which affect the end product quality and

process.

iii. Propose design parameters ofa micro EDM setup for production of micro channels with

bio-applications

1.3 SCOPE OF STUDY

Studies will be done to define the differences between conventional EDM and Micro EDM. Then

the various types of micro EDM setup are to be gone through as well parameters and factors that

affect the process such as dielectric fluid type, electrode wear, material removal rate(MRR),

peak current, ignition voltage and type ofelectrode. These factors are compared and the optimal

parameter for each function is chosen for the design ofa micro EDM system for the production

of microchannels with bio-applications. This study is theoretical in nature in that the optimal

parameters as well as setup is studied via the various literature available, and that the results

provided will be used by the future researchers to builda physical model.



CHAPTER 2

LITERATURE REVIEW

2.1 Conventional EDM
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Figure 2.1: Conventional EDM[4]

The principle of electrical-discharge machining (EDM) (also called electrodischarge or spark-

erosion machining) is based on the erosion of metals by spark discharges.The basic EDM system

consists of a shaped tool (electrode) and the workpiece connected to a DC power supply and

placed in a dielectric (electrically nonconducting) fluid.

Electrical-discharge machining has numerous applications, such as the production of dies for

forging, extrusion, die casting, injection molding, and large sheet-metal automotive-body

components (die-sinking machining centers with computer numerical control).[4]
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Micro EDM is an innovation of the conventional EDM system. It is primarily used in

creation of complex 3D microstructures which otherwise would be impossible to machine

accurately. It operates on the same principle as a conventional one but with lower amperage and

a more accurate machining on a micro level. There are other differences, in micro EDM

applications, the volumetric wear and the ratio between electrode and work piece is not

negligible and thus the wear needs to be compensated via replicating electrodes, this is stated by

J. Valentine et al,.[3]. The non contact nature of the micro EDM makes it ideal for machining

ductile, brittle and super hard material and with appropriate parameters, it is possible to achieve

high precision and high quality machining. Even so, according to H.S. Lim etal, micro EDM has

inherent weaknesses such as high electrode wear and low material removal rate [5]. KingFu et al

proposes two types of setup in their design paper, i.e the flexure concept and column concept [8].

The flexure concept uses a flexural bearing and PZT actuator for fine motion in the z-direction is

illustrated in Fig 3. In this figure, the flexure and actuator are integrated into the x-stage. The

flexure supports a round work tank for holding the dielectric fluid and workpiece. A circular

flexure is located near the workpiece height in the z direction to reduce Abbe errors. The centers

of the worktank, flexure, and actuator are coaxial. A PZT actuator with at least 100 urn travel

can be used or a PZT with shorter stroke can be amplified with a mechanism. The electrode tool

would be held above the workpiece and rotated with a motor driven, air bearing spindle. A



variety of work piece heights is accommodated by pre-adjusting the height of the spindle, which

is supported on a plate guided with air bushings.

The columnconcepthoweveruses a, supports the motorized air bearing spindle on precision( ±5

jam over 200 mm rail length) linear guides with recirculation ball (or roller) bearings. The

carriage is driven through a servomotor attached to a screw through a flexible coupling and

mounted on the support column. In this concept, the course and fine motions are integrated into a

single bearingsystemand actuator in the z direction. The work tank is mounted directlyon the x-

y plane. The air spindle will require larger travel range (around 200 mm) along the z-axis.

Additional Abbe error from the offset roller bearings reduces the accuracy of the machine.

Variants on this concept could use other types of linear bearings (such as air bearings) or other

drive systems (such as friction drive).

2.4. Flushing and Debris Removal in Micro EDM

K.P. Rajukar[6] states that micro holes with a diameter of about 25 urn is routinely obtained in

the range of 15 to 18.The depth of hole drilling may be limited by the difficulties of ejecting

generated gaseous bubbles and debris from the narrow discharge gap (several micrometers)

during machining. The tool is too small for internal flushing, and external flushing causes

vibration of slim tool. The debris concentration results in abnormal discharges (arcs and/or short

circuits) leading to unstable machining and excessive tool wear. Several methods such as

vibrating the tool/work piece, pre-drilling a hole to allow bubbles and debris to escape from

workingarea, planetary movementof tool have been attempted to improve debris flow.

Also, Muralidharafl 1], state that, at a certain depth, direct flushing may not be effective as

clearance between the tool and workpiece will be ofthe order of a few micrometers. And so,

when the dielectric fluid flows on the surface of the hole, a pressure drop may occur at the

entrance of the hole which maybe sufficient to pull the debris out of the work piece tool

interfaces which maybe called indirect flushing. Further, till certain depths, the to and fro motion

of the tool will help in flushing the debris out of the hole. However, at higher depths, it is not

possibleto flush out the debris out of a blind hole while machining with a microtool. As the

depth of machining increases, the debris may settle at the tool-workpiece interface and might be



absorbing considerable amounts ofheat energy in the subsequent spark discharges. Furthermore,

they will be decomposing themselves into finer debris before being finally ejected outofthehole

bytheto and fro movement of the tool during machining. Hence, only a part of the actual heat

energy is being spent in melting the workpiece material as depth increases. Whereas, in the case

of tool material, since the tool is in motion during machining, for each spark, most of the energy

is absorbed bythe tool material which will result in melting and removal of considerable amount

of tool material. Hence, at higher depths, the amount of workpiece removal is expected to be to

reduced which results in a increase in wear ratio with increase in machining depth,

2.5. Material Removal Rate (MRR)
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Figure 2.5.1. MaterialRemoval Rate for various electrode materials[7]

The effect of the tool electrode materialsand flushing techniques on the material removal rate is

shown above as stated by Murali et al[7]



The most conspicuous revelation of the figure above is the performance of graphite as tool

electrode material. The MRR achieved using graphite is about 30 to 40 times more than mat of

the other two materials (tungsten and stainless steel). The reason for this outstanding

performance ofgraphite can beunderstood byobserving the sequence ofevents during arcing.

'a) arcing besin*

(c) Elongation of micro
needle

(b) micro needle
formation

(d) Breaking of micro
needle

Figure 2.5.2: Sequence of events duringarcing

In micro EDM using foil electrodes, during the arcing (Fig. 2.5.2.a), the foil material melts and

forms a short-circuit by establishing a semi-molten bridge (Fig. 2.5.2.b). The shape looks like a

micro needle. During this period, thespindle automatically starts moving up, stretching themicro

needle (Fig 2.5.2.c). This withdrawal ofspindle continues until the bridge is broken (Fig 2.5.2.d).

Once the circuit becomes open, the spindle starts moving down towards the job and the

machining resumes. The entire time spent on the up and down motion of the spindle is wastage

of machine hour as no machining takes place during this period. Whenusing the metal foils like

tungsten and stainless steel, due to their ductility, the needle like bridge keeps stretching itself

during the spindle withdrawal and does not break so easily. Sometimes, the stretching may

extend up to 2 mm before it severs. In the case of graphite which is brittle and shears away

easily, no such "bridge formation" is noticed during arcing. After few urn upward movement of

the spindle, the machining resumes immediately. As the non-machining time is minimum, high

MRR is achieved using graphite. [7]



2.6. Roughness

The topography of a work piece can be characterized by four distinct components: form, waviness,

roughness and micro-roughness. Form is a component of surface finish with a long wavelength on the

work piece. Waviness is a surface texture component varying slowly, depending on the horizontal

position. Roughness is a of surface texture component varying rapidly, depending on the horizontal

position. Micro-roughness is the fine variation component of surface texture. Various measurements have

been performed on work pieces machined with different energy levels. Roughness is an indication of the

type of machining used. In fact, given the same electrode diameter, the change of energy is visible in the

roughness values. For lower energy levels, the roughness is smaller (around 0.3 Ra), than for higher

energy levels. This is essentially due to the fact that the energy per pulse is higher and that the material

removal rate is a priority. This implies that the roughness depends essentially on the energy used for

erosion. Traditional surface finish analysis consists of studying surface texture roughness and waviness.

This implies that form and micro-roughness components do not need to be evaluated. A study of

roughness can give an indication on the variability of the flow measured. The friction due to the

roughness can be oneof the majorfactors for thisvariability.[8]

2.7. Volumetric Wear

The volumetric wear is defined as the ratio between the eroded volume from the workpiece Vp

and the volume

lost due to the wear occurring on the electrode, Ve . Measuring each of this volume would allow

assessing the

volumetric wear ratio, o :

G-Ve/Vp (1)

S.Bigot[10] states that a number of electrode compensation methods depend on the rate of

volumetric wear. He also proposes a simple method for volumetric wear estimation in Micro

EDM. As stated earlier, after a certain depth of erosion in micro EDM drilling the shape of the

rod electrode remains constant. If drilling further from that point down to a target depth Z

(graph), we can assume that the volume of wear Ve occurring on the electrode is equivalent to a

cylinder of diameter De (electrode diameter) and of length We (eroded length from the

electrode).

10
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A similar assumptioncan be made when using a tubularelectrodebytaking into account the internal diameter:
n this case:

Ve = • We

4 !3)
Assuming that the spark gap g is constant, r'-B being the eroded depth and D-'! the diameter of the eroded h

on the workpiece, we can consider that:
Wv = 1- ffV

(J

••>

r> = — ^

4 (5)
Therefore,, in the case of a rod electrode, the volumetric wear ratio can be defined as:

Ve De~ We De~ 1

"p Dp" ^'P Di? ~ _£_ .

We ' (6)
And in the case of a tubular electrode:

Dc~ - se~ 1

Dp-
-1

We

Thus, it is assumed that the volumetric wear ratio is proportional to the ratio Rw:

i

We \b)

11



For a given Z, We canbe measured on the machine using a datum plane. After each drilling the

electrode tip is brought to the datum plane, to establish electrical contact. The position in Z axis

before and after machining determines the loss of length of the electrode,^ . The drawback

with such method is that the electrical contact produces small erosions which would introduce an

error into the measurements of We. The deviation in Z position after 100 measurements on the

same spot of the same datum plane was measured with an 017Oum electrode (Figure 2.7).

According to the measurements, the error in Z detection brought from 60 electrical contacts

(used in next section) should not exceed l.Sujn. In EDM milling, such estimation of the wear

ratio is more difficult. The flushing is more stable but the eroding conditions and the electric

field intensity are changing regularly due to changes in depths of cut and in passes overlapping.
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Figure 2.7.1 : Datum Plane erosionafter 100 measurements [10]
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Figure 2.7.2 : Resulting Profile in Aluminum
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2.9. Dielectric Fluid

Dielectric fluids serve several important purposes such as[4]:

i. Act as an insulator until the potential is sufficiently high,

ii. Provide a cooling medium.

iii. Act as a flushing medium and carry away the debris in the gap.

Properties ofDielectric Fluid:

i. Flash Point

To some extent, flash point is a measurement of the fluids' volatility, and is the

minimum temperature at which a fluid will support momentary combustion (a

"flash") when in the presence of an ignition source; but before it will bam

continuously (its "fire point").

ii. Viscosity

Viscosity is the measure of a fluid's resistance to flow. In general, the lower the

viscosity rating the easier the fluid is to pump and the better its flushing

characteristics, particularly in deep cavities or pockets, fine detail work, etc.

(although slightly higher viscosities can perform well in some types of roughing

operations).

Hi. Pour Point

Pour point is an indicator of the ability of the fluid to flow freely at cold

temperatures, and the temperature given is the lowest at which the fluid will flow.

Many dielectric fluids typically become cloudy and more viscous as the

temperature approaches their pour point. Pour point can be an important factor in

colder climates if the shop is unheated over the weekends or fluid is stored

outdoors or in unheated areas; resulting in the operator having to wait until the

fluid warms up before it can be used. Most fluids suffer no lasting effects from

being cooled to or below their pour point.

13



iv. Dielectric Strength

Dielectric strength is a measure of the insulating capacity of a given fluid in an

EDM environment. Higher dielectric strength helps minimize DC arcing and is

frequently touted as an indicator of overall EDM performance.

However, its value in the selection process is negligible since, as soon as the fluid

is used, it becomes contaminated with solids from the EDM process itself,

significantly altering its dielectric strength and insulating properties. Since

typical high-quality dielectric oils have acceptable dielectric strength ratings, and

most manufacturers don't publish this information, we don't consider dielectric

strength to be a high priority issue.

v. Odor

Although the presence of an odor can sometimes indicate excessive evaporation,

it is primarily an issue of having an "operator friendly" workplace environment.

Most high quality dielectric fluids are either odorless or have a slight but

negligible odor.

vi. Oxidation Stability

Oxidation occurs when oxygen attacks and degrades EDM fluids. The process is

accelerated by heat, light, and metal catalysts; and the presence of water, acids

and solid contaminants. The higher oxidation stability your EDM fluid has, the

longer it will last in your system. In a practical sense, how the user handles the

fluid has more to do with its life expectancy. Keeping the system as clean as

possible, using better filtration, and maintaining lower operating temperatures are

all operational factors which can prolong the life of the fluid.

14



Table 2.1.Key Specifications ofPopular Dielectric Fluids

Key Specification* of Popul .ar Dielectri*- Fluids

Brands
Flash Point Viscosity

(SUS@100:F)
Pour Point

f'F)

1 C>
1 -hi.

Bectro 225 225 32-35 -5

&P 130 ISO 32-35 -48

5P 200 195 32-35 -50

SP 200T 223 32-35 +27

Grade 1025* 260 41-44 +45

Cc*rinionwealth 244 244 32—35 +45

ionoFlur 243 37-40 +5

Lector 45 275 43-4*3 +45

IVineral Sea' Or' 210-270 35-45 Varies

Norpcr 15; 244 32-35 +45

Ru5tiick Eor-/ 2o 175 31-34 -76

Rustiick EOf-Z 30 200 31-34 -76

US ? 2^4 '',2—3C +45

* - S-.xth i.^ized hvwccai'bo: i-.-: net "iv* chemical v XtliSTlCs.

1- "Mii:er:il -i$L-.r i; s generic oil 3i:d coa;&i la maiiy difKisiit Type* withwidely vaiyuis
•:.-;-5<:iacauo:iv. Tii-sv *e:i-?uiUY teve i-;w-:v:i-da::cu ua'bil;t%- vcish tenant ;;oor life expectancy.
T:reircH-:* em reiiss iotn odf-^hit-e re* ;r>«eyeibvr. ai:d tlieyseaeialh" A"*.*e a vrtcaiz odor

2 - "Xeipax ".:• hd:-: ancrddacMni iniuoiror. te-iultiag ir. lo-v crdebden .^ability and -;hcite;- life.
Aithcr.21: frequeatly uwd-v;- aivxDM dielKtac fluid, i: was uor ;^i§:ied fa that apphenucr.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Electrode Wear

Aluminium and brass have much lower melting points than tool steel and the grain

structure consists of much larger grains. With the same spark energy, when work pieces made

from aluminium and brass are machined, more material will be melted and, therefore, larger

pieces of material will float in the gaps as debris than for steel. When using a rod electrode to

erode a hole in soft materials like aluminium and brass, the flushing conditions deteriorates

rapidly after reaching a certain depth and the larger the debris, the more difficult it will be to

flush them out of the sparking area. From that point onwards, the debris starts causing sparking

on the side of the electrode. This breaks the debris into smaller pieces and, finally, they are

flushed out of the sparking area. This explains the sudden change in electrode wear behaviour,

high rate of electrode wear and distortion of the holes, as shown in Figure 4.1.2. If a tubular

electrode is employed, the flushing conditions do not change much for the whole depth. In spite

of the size of the debris, they are forced out of the working area by the constant dielectric flow

through the tube and the amounts of electrode wear and variations in wear behaviour are much

smaller.

Figure 4.1.1 : Variation in electrode wear

Figure 4.1.1 shows an investigation of tube and rod electrode wear in micro EDM drilling. The

figure shows the values of Mzdif , where Nf&f is the largest difference between the largest and

smallest wear present, for the six holes at each targeted depth for each workpiece material and

17



electrode type. M^tf is used to indicate the variation in electrode wear in the same sparking

conditions.[17]

When using a rod electrode with brass and aluminium work pieces (Fig. 4.1. l.b), the differences

in wear measurements start increasing dramatically from a certain depth. This is mainly because

of the deteriorated flushing conditions and due to the strong stochastic character shown the

measurements for brass and aluminium does not lead to useful conclusions regarding variations

in the amount of wear and the wear ratio. In the case of the steel workpiece, the flushing

conditions do not have such a dramatic effect as explained above, but in comparison to the

tubular electrode, the rod electrodeshows an increased variation in the wear ratio with the depth

of the hole (Fig. 4.1.1.a). With the tubular electrode used on the three workpiece materials, the

variation in the wear ratio after a certain depth shows a tendencyto stabilise(Fig. 4.1.1 .a).

From this several results can be drawn where firstly it must be stated that in Micro EDM

unlike conventional EDM the variations in wear ratio are not negligible. Therefore, usual

compensation methods for electrode wear cannot be used as the usual methods use the

assumption that the ratio is fixed. Therefore, any compensation method that is to be used must

allowfor machining tolerance which is based on the variation of the volumetric wear ratio.

Different electrodes exhibit different types of wear accordingly. Referring to the figure 4.1.2,

showing the electrode wear ratio and its effects onprocess modelling and process capability [17]:

Co1 1 -
* «#,

Titauui:i 'TV

C OM^er :;CiO ob.il: ;Coi

Figure 4.1.2. : image of eroded electrodes(anode) post process[12]
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Before the above images were taken, they were cleaned in an ultrasonic bath to remove existing

debris from the process. Figure 4.1.2 highlights qualitative topographic differences, if any,

induced by the different materials. The shape, so the size of craters is different for the different

materials. Craters on the Cobalt and Titanium electrodes are easily visible. However the size of

the craters on the Silver, Tungsten and Copper electrodes seems to be smaller. There are also

small craters at the surface of the Gold electrode. These images confirm that the energy

distribution for different materials will be different and the conclusion is that even with the same

machining conditions, materials are working differently, contingent on their own physical

characteristics. Therefore, differenttypes of electrode material exhibit different rates of electrode

wear and knowing these rates is crucial in determining machinability within the specified

tolerances. Also from this it is clear that, when using any new combination of

electrode/workpiece materials, tests should be done on the machine to measure the wear ratio

and assess its repeatability. The results should be used to justify the chosen compensation

method and enable the production of more accurate micro parts.

Due to the fact that electrode wear plays a huge role in Micro EDM, there are severalmethods to

manage the varying electrode wear. K.P Rajukar[6] states that Tool wear in EDM occurs due to

the fact that every spark produced in EDM removes material from both work piece and tool as

well. This results in unpredictable tool life and inconsistent component dimensions.

Understanding the electrode wear process and influencing factors is the key to more accurate and

more reliable micro EDM process. The tool wear in micro EDM is mainly influenced by polarity

and thermal properties of electrode materials. He also investigated the effect of thermal

properties on electrode wear anddiscovered thattheboiling point in addition to the melting point

plays a role in the wear ratio. He also states that factors like poor flushing in a deep hole are

difficult to control and assess. This could result in a wrong estimation of wear ratio and produced

depth. Anotherfactorwhich affects tool wear is the current wavelength.

Also according to K,P.Rajukar[6], there are two methods to compensate for tool wear, i.e linear

compensation and uniform wear method. The linear compensation method is where the tool is

fed towards the workpiece and to compensate for the tool wear after it has moved a certain
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distance. Uniform wear method however, includes both tool path design rules and tool wear

compensation. Thismethod can ensure uniform tool wear at the tool tip ofthe electrode.

S.Bigot[10] states that EDM drilling the electrode tends to follow a constant shape generation

during machining. Also, it was observed thatthe constant shape isobtained after drilling down to

a depth of around 180 urn as per the figure below. This specific shape can be explained by the

fact that at the beginning of the erosion theelectric field intensity is not uniform. It is stronger at

the corners resulting in more erosion. We assume that the obtained shape represents a uniform

electric field intensity distribution. In EDM milling, due to electrode wear, the depth of cut

constantly changes, therefore the electrode shape evolution is even more difficult to predict.

Also referring to, D.T.Pham et al, [2004], Micro EDM - recent developments and research

issues, another method for managing electrode wear is proposed. One solution is to repeat the

process a number of times with new or reground micro-electrodes until the required profile is

obtained. This is called the multiple electrode strategy. The main drawback is that it can be time

consuming and difficult to predict the number of needed electrodes. The problems created by

electrode wear become more complicated when machining complex 3D micro-cavities. Either

wear is too severe to allow the use of complex-shaped electrodes in a classical die-sinking

process or electrode geometry is impossible. Thus, for the production of micro-3D cavities, the

use of micro-EDM milling with simple shape-electrodes might be the preferred strategy. A basic

method is to use a layer-by-layer machining strategy that compensates for wear during the

machining of each layer by constant electrode feeding in the Z-axis, based on estimation of the

wear ratio. It is assumed that eroding of sufficiently thin layers would ensure that wear only

occurs on the face of the electrode but not on the sides. Very accurate estimation of the amount

of wear is required, because an error in the estimation would have a cumulative effect through

the layers. However, even when using a very small layer thickness, side wear is not negligible

and introduces errors in the machined profile.

The methods proposed above however, have an issue in that the main problem is that they rely

highly on the accuracy of the wear estimation models they employ. Thus, with these methods

under-estimation of the amount of wear could easily result in overcutting of the cavity.

20



Therefore, D.T.Pham et al[27], have proposed a new method in which the main idea of the

proposed method is to machine a cavity using a number of different milling paths, eachcovering

the complete volume of the cavity, and, before starting each path, to reset the Z co-ordinate

Zcontaot at which the tip of the electrode first establishes electrical contact with the workpiece. If

electrode dressing is performed at the beginning of a path, the remaining length of dressed

electrode should be long enough, at least equal to the depth of the cavity, to avoid erosion with

the undressed part of the electrode. By resetting Zcontact before each path, the amount of wear

from the previous path can be estimated, which gives an indication of the need for further

machining or electrode dressing. The machining process can continue until no more wear is

registered on the electrode.
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Figure 4.1.3: proposed strategy for wear compensation [17]

After the first machining pass (Path 1 in Fig 4.1.3. ), due to wear appearing on the side and the

face of the electrode,the cavity is only partially eroded. Zcontact is reset and a path is selected for

the next machining pass. Once there is no more wear on the electrode (for example afterPath 4

in Fig. 4.1.3.), one or more finishing passes with a newly dressed electrode might need to be
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performed in order to complete the machining (finishing path in Fig. 4.1.3).The main drawback

of this method is the time wasted when an electrode follows a path already eroded. Considering

thespeed ofmovement when no erosion occurs incomparison with thespeed of movement when

eroding, this time loss is relatively small. However, to reduce the number of electrodes that

might be needed to complete a cavity; each path should be specially designed to optimize the

removal ofmaterial.

42. Electrical Pulse Condition

According to K.Liu et al, micro-scale EDM machining, conventionally used transistor

type pulse generators are no longer suitable because of the long delay time for the discharge

current to diminish to zero after detectingthe occurrence of a discharge. Thus, it is very difficult

to obtain discharge duration of a few ns and the energy input for each discharge is not optimal.

Generally, resistance-capacitance (RC)-based generators are widely employed for the pulse

generation in micro-machining. It can easily generate pulses with high peak current values and

short duration, allowing efficient and accurate material removal, and meanwhile achieving the

required surface quality. For the RC-based generator, when the dielectric within the gap breaks

down, the energy stored in the RC circuit releases over the electrodes and makes the current

flow. In the case of micro-machining, this energy should be small enough to obtain less

discharge current[28].

The source energy of electro discharge between the tool electrode and the workpiece is an

electric one of which power is determined by supplied current and voltage. So the electro

discharge energy is expressed as Eq. (1).

E-VIT (1)

V= voltage, 1= current. T^ temperature

In the pulse type current, if it is substituted time T to an intermittent one with frequency, Eq. (1)

is changed into the following expression:
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E = V I t —— (2)

Vp: voltage ofa single pulse, Ip: current ofa single pulse, tw

pulse on-time, toff: pulse off-time.

Eq. (2) can be transformed into the expression for material removal rate by multiplication of

machining property. Hence, the expression can be written as:

MRR = aVyIvt^ \ (3)
•on • Lo//

where a is the removal constant of a material. The constant means removal volume of a material

per unit electric power. It is certain from Eq. (3) that the parameters of voltage, current, and

pulse On-time are proportional to the material removal rate. The frequency of pulse is also

proportional to that, but the parameter is not perfectly independent of the pulse On-time. The

reason is that the pulseOff-time is needed sufficiently depending on the powerof a singlepulse.

Theequation also shows that a shorter duration is more advantageous than a longer one to make

accurate machining under the same condition. Since the removal rate is the same but the removal

volume per pulse is smaller in the shorter pulse, if the ratio of pulse On-time to Off-time is the

same.

Referring to, influences of pulsed power conditioning on the machining properties in Micro

EDM [23], the following figures are extracted:
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Figure 4.2.1: Material removal and tool removal rate vs. EDM pulse voltage[23]

As can be seen from the figure, the material removal rate doubles as the input voltage is grown.

The result agrees quite well with the theoretical expression. In the case of the tool wear rate, a

decrease ofthe input voltage causes the machining time tobe increase due to the decrease ofthe

removal rate, and it increases the tool wear rate as well.
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Figure4.2.2 : Material removal and tool removal rate vs. EDM pulse current

On the otherhand, the removal rate is increased as a square valueto an increase of the input

current as shown inthe Fig . Thereason can be found from the transformation ofEq. (3). The

parameter ofVI can be changed into I2R and the Ris the resistance ofa tool-workpiece. The tool

wear rate is also increased with an increase of the input current.
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Figure 4.2.3 : Gap distance between a tool and machined surface : (a) Gap distance between tool

and a machinedsurface, (b) Result for the voltage parameter, (c) Result for the currentparameter

Thegapbetween the tool andthe machined surface was measured to investigate form accuracy

as shownFig. (a). Fig. (b)and (c) showgaps between the tool and the workpiece under various

experimental conditions of voltage and current. It can be seen that the gap is widened with an

increase of voltage and current. The value ofgap variation almost coincides with the value ratio

of the input parameter.

Seong Monsen et al, conducted experiments to determine to define the connection between the

material removal rate and pulse duration.
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Figure 4.2.4 : Material removal rate vs. On-Off conditions ofEDM pulse

In their experiment, the pulse is fixed at 10A the value ofW to* is in the range of 0.5-3 and the

duration varies from 6us to 48us at the respective ratio. Fig. shows the material removal rates

depending on each condition. According to Eq. (3), the removal rate should be theoretically

equivalent under the same ratio of Off-time to On-time, but the value appears definitely

difference with the duration of On-time. The shorter pulse-on duration is, the more quickly

material is removed. Moreover the removal rate has a trend of increase with decrease of the

Wt<m ratio, but it is not dominant in the overall experimental conditions.
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Figure 4.2.5 : Tool wear rate vs. On-Off conditions of EDM pulse

It clearly appears that the tool wear is decreased with reduction ofpulse On-time. In the case ofa

shorter duration, oversupply of electrical input compared to removal volume per pulse. In other

words, the relatively shorter EDM pulse is more efficient in energy consumption the material

removal rate is greater than the case ofa relatively longer one. Nevertheless, the tool wear is

smaller than the latter. It may indicate the efficiency of energy consumption. In the material

removal rate, though the supply electrical power is increased twice, the removed volume per unit
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time does not become double but goes up only about 20%. It means there is an oversupply of

electrical inputcomparedto removalvolume per pulse. In other words, the relatively shorter

EDM pulse is more efficient in energy consumption.
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Figure4.2.6: Gapdistance between a tool and a machined surface for the various pulse On-Off

condition.

The gap between the tool and the machined surfacewas measuredto investigate the relation with

form accuracy and the ratio ofa pulse On-Off time. It can be seen from Fig. 4.2.6 that the

accuracy is higher in the case of shorter pulse duration over all ranges of these experimental

conditions. In the comparison of a mutualdifferentWton ratio, the gap showsa trend of decrease

with increase of pulse Off-time. It can be supposed that the appearance is due to the difference of

cooling time ofmaterial depending on the pulse Off-time duration

43. Dielectric fluids.

Generally, kerosene is used as the dielectric fluid in most of the die-sinking EDM systems; but,

the dielectric properties of kerosene are degraded when machining is done for long time. Also,

owing to hydrocarbon oil, kerosene decomposes at very high temperature of discharge energy

and pollutes the air around the machining setup. The adliesion of carbon particles on the work
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surface also restricts the efficient and stable discharge and further reduces the material removal

rate (MRR). Due to these drawbacks and for the sake of industrial safety and ensuring non

polluted environment, investigations are going on using other types of dielectric fluids to

overcome the above-mentioned problems. Deionized water is one of the supplementary

dielectrics that can be used efficiently in micro-EDM. Not only that, investigations have been

performed by many researchers with powder-mixed dielectrics composed of different size of

powder particles with different concentration to explore their effects on the micro-EDM

performances and machined surface integrity [19].

Referring to the figures taken from, G.Kibria et al,[2009], comparative study of different

dielectrics for micro EDMperformance during microhole machining of Ti-6A1-4V alloy.
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Figure 4.3.1 : Variation of material removalrate(MRR) with pulse duration(Ton) at IP=0.5A[19]

This figure reveals that MRR is high with deionized water than kerosene for at IP^0.5A during

experimentation. As kerosene dielectric is a chemical compound of carbon and hydrogen, it

decomposes during sparking dueto pulsed discharge energy and produces titanium carbide (TiC)

layer on the workpiece surface. Similarly, deionized water produces titanium oxide (Ti02) layer.

Since, TiC has a higher melting temperature (3,150°C) than that of Ti02 (1,750°C), larger

discharge energy is required for improving the material removal rate using kerosene than that of
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deionized water. Additionally, when machining is done by mixing B4C powder additives in

kerosene dielectric, it is clearly seen that MRR increases with the increase of pulse duration at

constant peak currentof 0.5 A. Also the MRR with powder-mixed dielectrics is larger compared

to machining with pure kerosene and deionized water at higher pulse

duration discharge settings. The increase of MRR with the increase of pulse duration using B4C

mixed kerosene is due

to increase of spark discharge time, i.e., longer effective machining time per pulse. The presence

of boron carbide additive in kerosene further helps in uniform distribution of discharge energy

and better conduction of discharge current, thereby enabling better machining condition.. So, it is

concluded that the addition of carbide powder particles in dielectrics prevails better machining

efficiency than the pure dielectrics due to uniform distribution of discharge energy in the

machining zone.[19]
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Figure 4.3.2: Variation of tool wear rate (TWR) with pulse duration(Ton) at Ip^0.5A[l 9]

This figure reveals that TWR is high using deionized water compared to machining with

kerosene dielectric. Kerosene decomposes at elevated temperature and produces carbon particles

that adhere and form a protective layer over tool electrode surface. These carbon particles restrict

the rapid wear of the tool. But deionized water does not produce any carbon during machining

and formation of protective carbon layer on the tool surface does not arise. Moreover, more

burning occurs in the discharge zone, enablingmore tool wear with deionized waterdielectric.
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Furthermore, it is revealed from the same figure that tool wear rate associated with B4C-

mixed kerosene is less compared to machining with pure kerosene at peak current of 0.5A. When

machining is done with boron carbide abrasive mixed kerosene dielectric, the tool wear is less

due to the presence of more number of carbon particles evolving from the decomposition of

kerosene dielectric as well as boron carbide abrasive in the machining zone.

It is also found that machining combined with boron carbide powder-mixed deionized water

results in less tool wear compared to pure deionized water due to adhesion of carbon particles

from boron carbide powder on the tool surface, which restricts tool wear to certain extent [19]
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Figure 4.3.3 : Variation of machining time(MT) with pulse duration(Ton) at IP=0.5A[19]

Referring to the figure above, G.Kibria et al, performed machining time tests, by studying the

time required to machine a workpiece of 1mm thickness at various pulse times. From the figure,

it can be seen that pure deionized water results in low time compared to other dielectrics, i.e.,

kerosene and B+Cmixed dielectrics to fabricate microholes in Ti-6A1-4V plate. As boron carbide

mixed kerosene supplies more carbide particles at the machining zone, so there is more chances

of formation of TiC layer on the workpiece surface which is why it takes longer time for

machining. Further, as B4C-mixed dielectrics increases the gap size, the distance traveled by the

30



tool will also increase and this results in longer machining time although additive particles

encourage the uniform distribution of discharge energy which enables better machining

efficiency.

4.4 Partial Design of a Micro EDM system for the production of micro channels with

bio-applications

Biocompatibility is the ability to exist along living tissue without harming them.

Therefore titanium alloy (Ti6Al4V) is used as a workpiece because of its high bio-

compatibility[30]

4.4.1.Electrode Wear

In order to increase accuracy of the micro channel dimensions, the electrode wear should

be stable to prevent inconsistencies in the dimensions. Therefore, brass tube electrodes

should be used in this setup so that the wear rate does not fluctuate too much so that the

variations are within tolerance levels.

For electrode wear compensation, D.T.Pham et al[27]'s method of compensation can be

used where the micro channel is machined using a number of different milling paths,

each covering the complete volume of the cavity, and, before starting each path, to reset

the Z co-ordinate Zcontact at which the tip of the electrode first establishes electrical

contact with the workpiece. If electrode dressing is performed at the beginning of a path,

the remaining length of dressed electrode should be long enough, at least equal to the

depth of the cavity, to avoid erosion with the undressed part of the electrode. By resetting

Zcontact before each path, the amount of wear from the previous path can be estimated,

which gives an indication of the need for further machining or electrode dressing. The

machining process can continue until no more wear is registered on the electrode. The

usage of this method can ensure that the electrode wear rate is well compensated for and

can prevent irregularities in the micro channel dimensions.
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Figure 4.4.1 : Brass tube electrode of diameter 20um is fabricated from the standard

300um diameter brass electrode[30]

4.4.1 Electrical Pulse Condition

A resistance-capacitance based generator is to be used for the pulse generation in micro-

machining. It can easily generate pulses with high peak current values and short duration,

allowing efficient and accurate material removal, and meanwhile achieving the required

surface quality. For the RC-based generator, when the dielectric within the gap breaks

down, the energy stored in the RC circuit releases over the electrodes and makes the

current flow. In the case of micro-machining, this energy should be small enough to

obtain less discharge current.

A voltage of 75V is used as a too high voltage will result in a higher material removal

rate and where it would cause increased roughness in the micro channels. Also a

comparatively shorter pulse on duration is profitable to make accurate machining with a

higher removal rate and a lower tool wear rate. Therefore, a pulse time of 12us is chosen

it gives the best balance with a WW ratio of 3 as a short pulse time saves more energy as

less energy is required to. Also a current of 0.5A is chosen. Thus,

electro discharge energy, E can be calculated as:
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4.4.2 Dielectric Fluid

To improve accuracy, the MRR should not be too high and therefore ionized water with

B4C abrasives added is used. Even though kerosene has a similar MRR, due to the

application of this project in the bio field it is not allowable. Also, owing to hydrocarbon

oil, kerosene decomposes at very high temperature of discharge energy and pollutes the

air around the machining setup. The adhesion of carbon particles on the work surface also

restricts the efficient and stable discharge and further reduces the material removal rate

(MRR). Due to these drawbacks and for the sake of industrial safety and ensuring a non

polluted environment kerosene is not applicable in this situation.

33



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Comparing the proposed methods of electrode wear above, it can be seen that the choice of

method will depend on the tolerances required. If the tolerances are high, a simple method as

proposed such the linear compensation method will be sufficient to ensure the tolerances are

met. However, where low tolerances are required using a number of different milling paths, each

covering the complete volume of the cavity, and, before starting each path, to reset the Z co

ordinate Zcontaot at which the tip of the electrode first establishes electrical contact with the

workpiece. Usage of this method is certainly complicated, and therefore the practical application

of this method should be in situations where very low tolerances are needed.

Referring to the data compiled earlier regarding pulse conditions, it can be seen that voltage,

current, and pulse on/off time of the EDM power are important in deciding the material removal

rate. Voltage and current are proportional to the material rate whereas only current is

proportional to the tool wear ratio. The gap between the machined surface and tool, increases

with the increase in the voltage and current but it is inversely proportional to the length of pulse

on time. Also, it is clear that the duration of the pulse on/off time clearly affects the machining

properties such as material removal rate, tool wear rate, and machining accuracy. A

comparatively shorter pulse duration time, is advantageous in order to make accurate machining

with a higher removal rate and lower tool wear ratio.

From the data above, several assertions can be made, where it can be seen that material removal

rate is high with deionized water dielectric compared to pure kerosene. This is due to the

formation of oxide (Ti02) layer on workpiece surface when deionized water is used, which melts

in lower discharge energy compared to melting of carbide (TiC) formed in case of kerosene. This

TiC layer restricts the workpiece material to melt and vaporize during machining. Although B4C

additive mixed kerosene has not shown remarkable improvement in MRR, but the mixing of B4C

with deionized water shows an excellent increase in MRR due to the efficient distribution of

discharge and increase in machining efficiency.
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The kerosene decomposes at higher temperature due to larger discharge energy and produces

carbon particles that adhere to the microtool electrode surface and this phenomenon restricts

rapid tool wear during machining using kerosene; but when deionized water is used, no such

adhesion occurs. Hence, tool wear is higher with deionized water compared to kerosene. Also,

TWR is more when B4C-mixed deionized water is used compared to pure kerosene. Also it

should be noted that pure deionized water results in excellent machining efficiency in

comparison to kerosene as well as B4C mixed dielectrics. Also, the addition of B4C abrasive in

dielectrics results in more machining time compared to pure dielectrics.

To design the parameters studied above for the application of production ofmicro channels with

bio-applications, only the parameters studied in the results and discussion are analyzed i.e :

electrode type and wear compensation method, electrical pulse condition and dielectric fluid. A

brass tube electrode is selected with multiple passes with a resetting ofZ-coordinate used as

wear compensation method. A R-C generator with 75V and 0.5A with a pulse on time of12us is

selected to give the best balance between MRR and accuracy. Lastly, de-ionized water with B4C

abrasives is added and is used as a dielectric fluid because its chemically inert and will not

pollute the micro channel which is to be used in bio-applications as well as provide a stable

MRR.

From all this data collected certainly in the future someone else can further pursue this title and

make a physical model which embodies all the best parameters as per discussed in this final

report and perhaps be able to solve other problems that plague Micro EDM as they are expensive

and heavy. Due to this, their application in Malaysia is quite limited even though there is

potential. Therefore anyone able to solve these problems would contribute highly to the

manufacturing industry in Malaysia with regard to micro applications.
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APPENDIX

EXPERIMENTAL MODEL

Original Circuit[l 3](for conventional EDM)

M.UOAC IWJ.E
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Explanation:

A variac (variable autotransformer) is used to adjust output voltage. A 200 Watt variac (1-2

Amps at 110 V) is quite adequate. A step-down transformer, which provides isolation, is the next

component. The one I used was center-tapped, allowing the use of 2 rectifiers. If your choice of

transformer does not have the center tap, or the voltage is too low when using it, you could use a

bridge rectifier on the two outer connections of the secondary to get higher voltage. A filter

capacitor provides smoothing of the DC voltage produced. A resistor allows the electrode to

short to the work without blowing fuses, and also moderates the flow of current from the raw DC

supply to the EDM capacitor and electrode. Choose a resistance that will cause a short circuit

current at least twice the desired EDM current at the selected voltage. Then, make sure the

wattage is sufficient to prevent the resistor burning up during a few seconds of short circuit. With

the DC supply set to 30 Volts, a short would draw approximately 1 Amp, and since P=IAA2 * R,

that is about 30 W, using a 30 Ohm Resistor. The ammeter shows current into the EDM

capacitor. The EDM capacitor delivers short bursts of very high current whenever the insulating

film of the EDM fluid gets very thin betweenthe electrode and workpiece.
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Modified Circuit (For Micro EDM and using a DC power source)

Resistor To Workpiece

/\/V

To Electrode

The power source required for Micro EDM is many times smaller than Conventional EDM,

therefore only a 9V battery is used. Furthermore, battery is a DC(Direct Current) source.

Therefore, rectifying diodes are not needed as well as the two capacitors as their function to

smooth out the current is not needed.
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%

The whole experimental setup for Micro EDM

The circuit assembly on the breadboard
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The workpiece attached to the electrodes

Theoretical Values

Resistance(Ohm) Voltage(Volt) Amperage(Ampere)
10 9 0.90

33 9 0.27

47 9 0.19
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