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ABSTRACT

Asphaltenes are the most polar fraction of petroleum that can precipitate due to

changes in pressure, temperature and composition which may be encountered during

petroleum production and transportation. The precipitated asphaltenes can

subsequently deposit on the surfaces of production/transportation pipelines and clog

the pipeline partially or completely. Why asphaltenes deposit on a metal surface

remains a poorly understood topic. This study is to determine the onset of asphaltene

precipitation with respect to varying pressures and temperatures. High-pressure NIR

was used to study the aggregation of asphaltenes by pressure depletion. What would

be established is data displaying optimum operating conditions in which asphaltene

deposition can be minimized or mitigated altogether. With this knowledge, operators

can then be wary of the limits in the operating conditions to prevent asphaltene

fouling in pipelines.
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CHAPTER 1

INTRODUCTION

1.1 Background

One of the major unsolved complex systems confronting the petroleum and natural

gas industries at present is the untimely deposition of heavy organic compounds

present in the oil. The production, transportation and processing of petroleum,

bitumen, and other heavy-organic-containing hydrocarbons could be significantly

affected by flocculation and deposition of asphaltene, resin, paraffin / wax ,

diamondoid, organo-metallics, etc. in the reservoir rock tubulars, oil well, pumps,

storage vessels, transfer pipelines, and refinery and upgrading equipment with

devastating economic consequences.

One question of interest in the oil industry is "when" and "how much" heavy organics

will flocculate out undercertain conditions. Since petroleum crude generally consists

of a mixture of hydrocarbons and heavy organics it has become necessary to look at

each of its constituents as a polydisperse or discrete mixture interacting with one

another.

The kind and amount of depositions of heavy organics from petroleum fluids vary

depending on thehydrocarbons present in oil and the relative amounts of each family

of heavy organics.

The heaviest and most polar fraction of the crude oil is named asphaltenes, and gives

rise to a variety of nuisances during crude oil production. It is widely recognized that

flocculation and deposition of asphaltenes may occur when the thermodynamic

equilibrium is disturbed. This may come as a result of changes in pressure and

temperature [1-3], as a result of compositional alterations when blending fluid

streams [4], or dueto injection of gasduring enhanced oil recovery (EOR) operations.

The most serious precipitation problem is the creation of a formation damage [5], i.e.



partial or complete blockage of the inflow zone around a well, and thereby loss of

productivity. Another possible problem is adsorption of asphaltenes on to the

reservoirs mineral surfaces, whereby the wettability of the reservoir is changed from

water-wet to oil-wet [6] and thereby reducing the potential oil recovery. In addition,

the asphaltenes may deposit on the steel walls in the production line, or be transported
along in the pipeline only toaccumulate in separators or other fluid processing units.

Clean up ofdeposited asphaltenes in the field may necessitate well shut-in and loss of

oil production. Hence, preventing asphaltene flocculation is preferable from both an
operational and economical viewpoint.
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1.2 Problem Statement

Asphaltenes are generally defined as the fraction that soluble in aromatic solvents

such asbenzene ortoluene and insoluble in light normal alkanes such as n-pentane or

n-heptane. Asphaltenes are typically stable in a live fluid at reservoir condition. Once

the drilling and production starts, the change in pressure, composition and

temperature, can cause asphaltenes to destabilize.

Asphaltene deposition in pipelines and risers is an ongoing challenge to operators,

and can have a significant effect on oil production efficiency. Build-up in pipelines

can cause increased pressure drops, resulting in reduced throughput and thus reduced

revenue. In more extreme cases, pipelines/processing facilities can plug, halting

production and leading topotentially huge losses in earnings.

Asphaltene deposition can present a major flow assurance challenge. Deposition can

occur in various parts of the production system including well tubing, surface flow

lines and even near the wellbore. The conditions of asphaltene deposition are

controlled by factors such as pressure, temperature, composition and flow regime.

Asphaltene deposition and fouling of flowlines/facilities can greatly reduce

productivity and increase operational costs through the requirement for frequent
chemical treatment andremoval of deposits.

1J Objectives and Scope of Study

The objective ofthis study is to determine the stability ofasphaltene in its responses
to different operating conditions. The author would like to establish the characteristics

ofasphaltene in different pressures and temperatures that may occur in the production

of petroleum. What would be established is data displaying optimum operating
conditions in which asphaltene deposition can be minimized or mitigated altogether.
With this knowledge, operators can then be wary of the limits in the operating
conditions to prevent asphaltene fouling in pipelines.
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CHAPTER 2

LITERATURE REVIEW

2.1 Crude Oil Composition

Even though crude oils are a continuum oftens of thousands of different hydrocarbon

molecules, the proportions of the elements in crude oils vary over fairly narrow

limits.

Nevertheless, a wide variation in properties is found from the lightest crude oils to the

highly asphaltenic crudes. The carbon content normally is in the range 83-87%, and

the hydrogen content varies between 10and 14%. In addition, varying small amounts

ofnitrogen, oxygen, sulfur and metals (Ni and V) are found in crude oils [1].

Due to the complex composition of crude oils, characterization by the individual

molecular types is not possible, and elemental analysis is unattractive because it gives

only limited information about the constitution of petroleum due to the constancy of

elemental composition. Instead, hydrocarbon group type analysis is commonly

employed [2-9]. Knowledge of the distribution of major structural classes of

hydrocarbons in crude oils is needed in various fields in the petroleum industry.

Examples are studies related to reservoir evaluation, migration and maturity,

degradation processes, processing, and environmental effects [10].

The SARA-separation is an example of such group type analysis, separating the crude

oils in four main chemical classes based on differences in solubility and polarity. The

four SARA fractions are the saturates (S), aromatics (A), resins (R), and the

asphaltenes (A). Instead of molecules or atoms, certain structures are here considered

the components of the crude oil, and the SARA-separation can be seen to give

information somewhat between that obtained by elemental analysis and analysis for

individual molecules [1].
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Figure 1 SARA Separation scheme

Saturates: The saturates (aliphatics) are non-polar hydrocarbons, without double

bonds, but including straight-chain and branched alkanes, as well as cycloalkanes

(naphtenes). Cycloalkanes contain one or more rings, which may have several alky!

side chains. The proportion of saturates in a crude oil normally decreases with

increasing molecular weight fractions, thus the saturates generally are the lightest

fraction of the crude oil. Wax is a sub-class of the saturates, consisting primarily of

straight-chain alkanes, mainly ranging from C20 to C30. Wax precipitates as a

particulate solid at low temperatures, andis known to effect emulsion stability

properties of crude oil systems [12-14].

Aromatics: The term aromatics refer to benzene and its structural derivates.

Aromatics are common to all petroleum, and by far the majority of the aromatics

contain alkyl chains and cycloalkane rings, along with additional aromatic rings.

Aromatics are often classified as mono-, di-, and tri-aromatics depending on the

number of aromatic rings present in the molecule. Polar, higher molecular weight

aromatics may fall in the resin or asphaltene fraction.

13



Resins: This fraction is comprised of polar molecules often containing heteroatoms

such as nitrogen, oxygen or sulphur. The resin fraction is operationally defined, and

one common definition of resins is as the fraction soluble in light alkanes such as

pentane and heptane, but insoluble in liquid propane [1, 15, 16]. Since the resins are

defined as a solubility class, overlap both to the aromatic and the asphaltene fraction

is expected.

Despite the fact that the resin fraction is very important with regard to crude oil

properties, little work has been reported on the characteristics of the resins, compared

to for instance the asphaltenes. However, some general characteristics may be

identified.

Resins have a higher H/C ratio than asphaltenes, 1.2-1.7 compared to 0.9-1.2 for the

asphaltenes [16]. Resins are structural similar to asphaltenes, but smaller in molecular

weight (< 1000 g/mole). Naphthenic acids are commonly regarded as a part of the

resin fraction.

Asphaltenes: The asphaltene fraction, like the resins, is defined as a solubility class,

namely the fraction of the crude oil precipitating in light alkanes like pentane, hexane

or heptane. This precipitate is soluble in aromatic solvents like toluene and benzene.

The asphaltene fraction contains the largest percentage of heteroatoms (O, S, N) and

organometallic constituents (Ni, V, Fe) in the crude oil. The structure of the

asphaltenes has been the subject of several investigations, but is now believed to

consist of polycyciic aromatic clusters, substituted with varying alkyl side chains

[15]. Figure 2 shows a hypothetical asphaltene monomer molecule. The molecular

weight of asphaltene molecules has been difficult to measure due to the asphaltenes

tendency to selfaggregate, but molecular weights in the range 500-2000 g/mole are

believed to be reasonable [17-21]. Asphaltene monomer molecular size is in the range

12-24 A [1,18].
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Figure 2 Hypothetical Asphaltene Molecule [22]

It is important to keep in mind that knowledge about the chemical composition of

crude oils, gained from for instance a SARA-analysis, cannot fully explain the crude

oil behaviour with regard to emulsion stability, asphaltene deposition etc. Equally

important is information of the structure of the crude oil, which is a result of

interactions between the continuum of chemical constituents in the oil. The

interactions between the heavy end molecules, the asphaltenes and resins, play the

most significant role in this sense.

2.2 Asphaltene Chemistry

The word asphaltene was coined in France by Boussingault [20] in 1837.

Boussingault described the constituents of some bitumens found at that time in

eastern France and in Peru. He named the fraction of distillation residue, which was

insoluble in alcohol and soluble in essence of turpentine, "asphaltene", since it

resembled the original asphalt. The strong interest in developing a better

understanding of the solution behaviour of asphaltenes, has been motivated by their

impact on production, transportation, refining and utilization of petroleum. The

asphaltene fraction is composed of the heaviest and components in crude oils.

Separated solid asphaltenes usually appears brown to black in colour and has no
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definite melting point but decomposes when the temperature exceeds 300-400 °C. It

has been shown that changes in temperature [21, 22], pressure [1, 23-25] and oil

composition [26] can cause asphaltene precipitation.

Asphaltenes are operationally defined as the non-volatile and polar fraction of

petroleum that is insoluble in /j-alkanes (i.e. pentane or heptane). As a result,

asphaltenes constitute a solubility class of crude oil components, rather than a

chemical class. The molecular weight, polarity and aromaticity of precipitated

asphaltenes generally increase with increasing carbon number of H-alkane precipitant.

A schematic diagram representing the range of heavy compounds precipitated by

mixing crude oil with n-pentaneand n-heptane is shown in Figure 3.

n-C7 asphaltenes

01

3
U

i

^ u>

Polarity ft aromaticity

Figure 3 Hypothetical diagram representing the molecular characteristics of
the asphaltenes precipitated from petroleum by H-alkaneaddition.

A number of investigators have constructed model structures for asphaltenes, resins,

and other heavy fractions based on physical and chemical methods. Physical methods

include IR, NMR, ESR, mass spectrometry, X-ray, ultra-centrifugation, electron

microscopy, smallangle neutron scattering, small angle X-ray scattering, quasi-elastic
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light scattering spectroscopy, VPO, GPC, etc. Chemical methods involve oxidation,

hydrogenation, etc.

While asphaltenes are recognised to be remarkably polydisperse in heteroatomic

functionality, molecular weight, and carbon backbone structure, some common

features have been established. Asphaltenes are characterized by fused ring

aromaticity, small aliphatic side chains, and other elements including sulphur,

oxygen, nitrogen, and metals such as vanadium and nickel. The heteroatoms accounts

for a variety of polar groups such as aldehyde, carbonyl, carboxylic acid and amide,

which are found in the asphaltene molecules. The aromatic carbon content of

asphaltenes is typically in the range of 40 to 60 %, with a corresponding H/C atomic

ratio of 1.0-1.2. A large percentage of these aromatic carbon rings are interconnected

in the molecular structure and, consequently, the asphaltene molecule appears flat or

planar. Figure 4 shows a suggested asphaltene structure. Yen and co-workers [29, 30]

proposed a macrostructure model, where the asphaltenes was depicted as stacks of

flat sheets of condensed aromatic systems, which was interconnected by sulphide,

ether, of aliphatic chains. Espinat et al. [31] suggested the asphaltene molecules to be

disc-like with polyaromatic fused ring cores containing polar functional groups. It is

currently accepted that asphaltenes consist of aromatic compounds with n-n

interactions, which undergo acid-base interactions and self associate through

hydrogen bonding [32, 33].

Figure 4 Hypothetical molecular structure of the asphaltenes. (Downhole
Asphaltene Remediation Technology)
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Several major problems associated with the recovery and refining of petroleum [34-

39], are related to the aggregation and precipitation of asphaltenes. Investigations

have shown that asphaltene particles may self-associate, and form aggregates in the

presence of aromatic hydrocarbons [26]. The degree of association is largely

dependent upon the aliphatic/aromatic ratio of the solvent. Due to the aggregation

phenomena, measurements of the true molecular weight and the aggregate size are

inherently difficult and have resulted in numerous research efforts. The size of the

aggregate structure has been suggested to lie between 2 and 25 nm in diameter [40-

42]. The molecular weight obtained have ranged from a few hundred to several
•i

million gmol , however, the most recent values from several different types of

asphaltenes tend to suggest values from 600-1500 gmol [43-49].

The aggregation is thought to occur through hydrogen bonding, however there is

some inconsistency in the description of asphaltene self-association [30, 50-52], and

both micelles and colloids are used in reference to asphaltenes. An asphaltene colloid

is defined as a submicron particle consisting of several asphaltene molecules bound

by Tt-bond interactions between polyaromatic clusters. Asphaltene micelles are

considered analogous to a surfactant micelle, where the association of molecules is

driven by hydrophobic-hydrophilic interactions. The terms "aggregate" and "micelle"

are often used interchangeably in the literature. It has been shown that resins are

essential in dissolving the asphaltenes in the crude oil. They are thought to attach to

the asphaltene micelles/aggregates with their polar groups, and stretch their aliphatic

groups outward to form a steric-stabilisation layer around asphaltenes [53, 54].

However, there still remains the debate about whether the micelle in petroleum is

homogeneous insofar as it is composed only from asphaltenes, or if both asphaltene

and resin molecules constitute a mixed micelle [30, 54].

Resins are defined as the non-volatile and polar fraction of crude oil that is soluble in

w-alkanes (i.e., pentane) and aromatic solvents (i.e., toluene) and insoluble in liquid

propane. Theyare structurally similarto asphaltenes, on the other hand, molarmass is

lower, hydrogen/carbon ratio higher, and the heteroatom content lower. Long et al.

18



[28] showed that once resins were removed from the crude by adsorption

chromatography, the remaining oil phase could no longer stabilise the asphaltenes.

Asphaltenes are also known to self-associate due to pressure depletion [1-3, 55]. At

high pressures in the reservoir, the asphaltenes are dissolved in the monophasic crude

oil. When the pressure is reduced the molar volume and the solubility parameter

difference between asphaltenes and the crude oil increases towards a maximum at the

bubble point of the crude oil. As a result of the reduced solvating power, the

asphaltenes may start to precipitate at some onset pressure higher than the bubble

point. Prior to the precipitation a stepwise association of the asphaltene molecules

will take place. The final precipitation is due to a strong attraction between the

colloidal particles and the formation of agglomerates. Once gas evolves, the light

alkane fraction of the liquid phase is reduced, and thereby the solvating power for

asphaltene molecules increases. The relative change in asphaltene solubility has been

shown to be highest for light crude oils that are undersaturated with gas, and which

usually contain only a small amount of asphaltenes. This gives the surprising result

that light reservoir oils, which are low in asphaltenes are considered to be more likely

to experience asphaltene related field problems than heavier, less undersaturated,

asphaltenic oils.

A possible way of avoiding asphaltene precipitation is by adding chemicals that act in

a way similar to resins by dispersing the asphaltenes in solution. Gonzales et al. [56]

investigated the peptization of asphaltenes in aliphatic solvent by various oil-soluble

amphiphiles including long-chain alkylbenzene, alkyl alcohol, alkylamine and p-

alkylphenol. They found that the head group of the amphiphile influenced the

effectiveness of the amphiphiles. Chang and Fogler [32, 33], using a series of

alkylbenzene-derived amphiphiles as the asphaltene stabilisers, investigated the

influence of the chemical structure on the asphaltene solubilisation and the strength of

the amphiphile-asphaltene interactions. The results showed that the polarity of the

amphiphile head group and the length of the alkyl tail controlled the amphiphile

effectiveness. Increasing the acidity of the amphiphile head group could promote the

amphiphile ability to stabilise asphaltenes, probably through acid - base interactions

between the asphaltene and the amphiphiles. Le6n et al. [57] showed results from
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adsorption studies on asphaltene particles, where the adsorption isotherms of two

amphiphiles (nonylphenol and nonylphenolic resin) were compared to a native resin.

The adsorption isotherm for the natural resins was characterised by the continuous

increase in the amount of adsorbed resins, and there was no indication of a plateau

similar to the ones shown by the amphiphiles. This type of isotherm was explained by

the penetration of substrate micropores by resin molecules, which lead to the partial

breakdown of the asphaltene macrostructure.

In addition to the resins, other molecules in the petroleum mixture have also shown a

tendency to stabilise the asphaltene particles/aggregates. Auflem et al. [58] showed

that natural and synthetic naphthenic acids have a tendency to disperse the

asphaltenes, and reduce the asphaltene particle size. This was proposed to occur

through acid-base interactions between the naphthenic acids and asphaltenes,

whereby the naphthenic acid would disperse the asphaltenes in solution in a similar

way as the resins.

Naphthenic acids are classified as monobasic carboxylic acids of the general formula

RCOOH, where R represents a cycloaliphatic structure. The classification contains a

wide variety of structures with carbon number from Ci0 to C50, and from 0 to 6

saturated rings [59]. In crude oil production, the problems related to naphthenic acids

arise from the processing conditions. As the pressure drops during production and

carbon dioxide is lost from solution, the pH ofthe brine increases, which in turn leads
+

to dissociation of the naphthenic acid (RCOOH -> RCOO + H ). As a result, the

following may occur: i) deposition of naphthenates [60] in oil/water separators, de-

salters, tubing or pipelines following complexation of naphthenic acids with metal

cations present in the aqueous phase and, ii) formation of stabilised emulsions due to

naphthenic acids and naphthenates accumulating at the w/o interface [61] and thereby

stabilising colloidal structures.

23 Emulsions and Emulsion Stability

Emulsions have long been of great practical interest due to their widespread

occurrence in everyday life. They may be found in important areas such as food,
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cosmetics, pulp & paper, pharmaceutical and agricultural industry. Emulsions are also

found in the petroleum industry, where they are typically undesirable and can result in

high pumping costs, reduced throughput and special handling equipment. An

emulsion is usually defined as a system consisting of a liquid dispersed in another

immiscible liquid, as droplets of colloidal sizes (- 0.1-10 um) or larger. If the oil is

the dispersed phase, the emulsion is termed oil-in-water (o/w) emulsion, conversely,

if the aqueous medium is the dispersed phase, it is termed a water-in-oil (w/o)

emulsion. This classification is not always appropriate and other types as, for

instance, multiple emulsions of the type o/w/o, may also be found. In the emulsified

state, the interfacial area between the dispersed droplets and the bulk phase represents

an increase in the systems free energy. Consequently, the emulsions are not

thermodynamically stable, and will seek to minimise the surface area by separating

into the different phases. For an emulsion to separate, the droplets must merge with

each other, or with the homophase continuum that gradually forms.

Processes that facilitate the separation are sedimentation/creaming, flocculation and

coalescence [62-64], as shown in Figure 5. Creaming and sedimentation create a

droplet concentration gradient due to a density difference between the two liquid

phases, which result in a close packing of the droplets. Aggregation of droplets may

be said to occur when they stay very close to one another for a far longer time than if

there were no attractive forces acting between them. The size and shape of the

individual droplets are for the most part retained. The mechanism of coalescence

occurs in two stages; film drainage and film rupture. In order to have film drainage

there must be a flow of fluid in the film, and a pressure gradient present. However,

when the interfacial film between the droplets has thinned to below some critical

thickness, it ruptures, and the capillary pressure difference causes the droplets to

rapidly fuse into one droplet. Hence, the properties of the thin film are of uttermost

importance for the separation. If the droplets deform, the area of the interface

increases and consequently the drainage path in the film also increases, resulting in

lower drainage rates.

Electrical double layer repulsion, or steric stabilisation by polymers and surfactants

with protruding molecular chains, may prevent the droplets to come into contact with
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each other. Also, polymers, surfactants or adsorbed particles can create a

mechanically strong and elastic interfacial film that act as a barrier against

aggregation and coalescence. A film of closed packed particles has considerable

mechanical strength, and the most stable emulsions occur when the contact angle is

close to 90°, so that the particleswill collect at the interface. Particles, which are oil-

wet, tend to stabilise w/o emulsions while those that are water-wet tend to stabilise

o/w emulsions. In order to stabilise the emulsions the particles should be least one

order of magnitude smaller in size than the emulsion droplets and in sufficiently high

concentration.

Other factors that usually favour emulsion stability are low interfacial tension, high

viscosity of the bulk phaseand relatively small volumes of dispersed phase. A narrow

droplet distribution of droplets with small sizes is also advantageous, since

polydisperse dispersions will result in a growth of large droplets on the expense of

smaller ones, an effect termed Ostwald ripening [65]. Special features of surfactant

association into liquid crystalline phases with lamellar geometries that facilitates the

stabilisation may also occur [66].
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Figure 5 Processes taking place in an emulsion leading to emulsion breakdown
and separation.
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2.4 Stabilization ofWater-In-Crude Oil Emulsions

The oil industry has an interest in crude oil emulsions for two main reasons: i) Water-
in-crude oil emulsions can form in the processing of fluids from hydrocarbon
reservoirs to the refinery or in production facilities during extraction and cleaning.
The emulsified water adds significant volume to the crude oil, causes corrosion in the

pipelines and increases the cost oftransportation and refining, ii) Water-in-crude oil
emulsions can form in oceanic spills. These emulsions are very stable and the oil
phase is difficult to recover, leading to great environmental damage. Due to their
colour and semisolid consistency, they are often named chocolate mousse.

In order to devise optimum treatment for water-in-oil emulsions, it is vital to
understand how they are stabilized. The predominant mechanism whereby petroleum
emulsions are stabilized is through the formation of a film with elastic or viscous

properties. This film is thought to consist of a physical, cross-linked network of
asphaltenic molecules, which aggregate through lateral intermolecular forces to form
primary aggregates or micelles at the oil-water interface [8, 9, 67-73]. In addition,
adsorption of solid particles from wax, clays, inorganic material or naphthenates may
contribute to the film strength. Hence, the emulsion stability arises from a physical
barrier that hinders the film to break when insufficient energies are involved in
collisions between droplets.

Asphaltenes are thought to be peptized in the oil phase by the resinous components,
and are hence prevented from precipitation. However, when water is introduced to the
crude oil, the asphaltenic aggregates in the oil phase adsorbs to the new oil-water
interface. The resins are likely shed and do not participate in the stabilizing film [74],
Figure 6. Eley et al. [75] showed that the stability ofwater-in-crude oil emulsions was
related to the asphaltene precipitation point. The most stable emulsions occurred
when the asphaltenes were on the verge ofprecipitation or above.

Kilpatrick et. al [74] have shown that the resins are unnecessary in the stabilization of
the asphaltenic film. The exact conformation in which asphaltenes organize at oil-
water interfaces and the corresponding intermolecular interactions have yet to be
agreed upon. The often suggested explanations are either H-bonding between acidic
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functional groups (such as carboxyl, pyrrolic and sulfoxide), electron donor-acceptor

bonding between transition metal atoms and electron-rich polar functional groups, or

some other type of force such as 7t-bonding between delocalised n electrons in fused

aromatic rings. The relative strength and importance of each in forming the

viscoelastic film and their consequent roles in stabilising water-in-oil emulsions have

still not been fully explained.
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^£^ I"*"* - -^ Primary asphaltene resin
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Asphaltene aggregates
adsorb to oil-water interface
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Figure 6 Proposed stabilising mechanisms for asphaltenes in petroleum by
resin molecules.
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2.5 Destabilisation of Crude Oil Emulsions

The destabilisation of crude oil emulsions forms an integral part of crude oil

production. Stable emulsions aretypically broken using gravity orcentrifugal settling,

application of high electric fields and addition of destabilising chemicals

(demulsifiers). Other methods such as pH adjustment, filtration, membrane separation

and heat treatment techniques, mayalso be used.

Gravity settling tanks, cyclones, centrifugal separators and other kinds of mechanical

separation tools are typical equipment used in the destabilisation of crude oil

emulsions. However, this hardware isof considerable volume as well asexpensive to

install on offshore platforms typical for North Sea conditions. It is therefore ofgreat

economical benefit whenever the installations can be kept at a minimum in size and

number. Chemical destabilisation is therefore a very common method for

destabilising emulsions. Also, the capital cost of implementing or changing a

chemical emulsion-breaking program is relatively small and can be accomplished

without a shutdown. The separation rate of a w/o emulsion depends upon the

matching of the demuisifier withthe process residence time, theconcentration and the

stability of the emulsion, the temperature, the process vessel, the mixing energy and

the type of stabilising mechanisms. Through building up more fundamental

knowledge concerning the processes involved in stabilising and breaking the

emulsions, the development and use of environmentally friendlier chemicals is

facilitated. Also, the optimisation of type and amount of chemicals employed,

contributes to reducing the oil content in the produced wateroffshore.

Commercial demulsifiers are typically mixtures of several components, which have

various chemical structures and cover a wide molecular weight distribution. Some

typical chemical structures used as demulsifiers are listed by Jones et al. [77] and

Djuve et al. [78]. Each component of the demuisifier typically possesses a different

partitioning ability and a different interfacial activity, and thus should provide a range

of properties such as: i) Strong attraction to the oil/water interface, with the ability to

destabilise the protective film around the droplet, ii) The ability to function as a

wetting agent, changing the contact angel of solids, iii) The ability to act as

flocculants and, iv) promotion of film drainage and thinning of the interdroplet
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lamella by inducing changes to the interfacial rheological properties such as

decreased interfacial viscosity and increased compressibility [73, 79, 80]. Krawczyk

[81] showed that demulsifiers with equal partitioning between the aqueous and oil

phase, gave the best destabilising efficiency. This balance would lead to a maximum

in the surface adsorption of demuisifier and a minimum in interfacial tension.

However, partitioning would not be a dominant factor when other effects such as

dissolution of the interfacial material or their flocculation bythe demuisifier occur.

When two water droplets approach each other, thecapillary pressure acting normal to

the interface causes liquid to be squeezed out of the film into the bulk. This liquid

flow results in a viscous drag on the surfactants in the sublayer, and the adsorbed

emulsifier arecarried away towards the film periphery, thereby creating a nonuniform

concentration distribution. Demuisifier molecules may then occupy the empty spaces

available for adsorption, and due to the high interfacial activity of thedemuisifier, the

interfacial tension gradient is reduced. This leads to a strong increase in the rate of

film thinning, and ultimately, when the film thickness decreases below some critical

value, the film ruptures and the droplets coalesce.

Strong attraction to the oil/water interface is often dependent on diffusibility and

interfacial activity of the demuisifier. Forfast diffusion to the interface, the molecular

weight of the demuisifier becomes important. The demulsifiers relative solubility in

oil is also important for mass transport to the interface, and where this is inadequate,

carrier solvents (e.g. alcohols or benzene derivatives) are often used. At the interface,

the demuisifier may influence the droplet interfacial film material by displacement,

complexation, changing the solubility in the continuous phase, changing the viscosity

of the interfacial film, or through quick diffusivity and adsorption, thus inhibiting the

Gibbs-Marangoni effect, which counteracts film drainage.

In residual emulsions, the droplets are finely dispersed andwidely distributed, and the

flocculating ability of the demuisifier is required to gather up the droplets. Then, high

molecular weights highly branched demulsifiers, with an affinity for the water

droplet, are necessary. For emulsions with particle-stabilised films, demulsifiers,
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which act as wetting agents, may prove effective. The demuisifier may adsorb on to

the solids, causing them to be more oil or water wettable, and thereby more easily

transported into the continuous phase away from the interface. In some situations the

demulsifiers have been used as inhibitors, i.e. injected before the emulsification

process has taken place. This gives the demuisifier the chance to compete with the

emulsifying agent in the process of covering the interface as the emulsifying process

occurs, and thereby hinder the formation of a stabilising film. One should however,

not forget to clarify the effect of concentration of the injected chemicals on the

emulsion stability, as too much chemicals injected may result in an overtreat where

the emulsion is actually stabilised, or a new emulsion type is created. Also, the

injected demulsifiers should be checked to be compatible with other chemicals

(corrosion inhibitors, scale inhibitors and flow enhancers) used in the stream as well

as the components in the produced stream itself.

The effect of increased temperature is the sum of changes in several parameters. For

instance, changes in the solubility of the crude oil surfactants or injected treating

chemicals may occur as a result of increasing temperature. The density of the oil is

reduced faster than the density of wateras temperature increases, thereby accelerating

the settling. Bulk viscosity of the crude oil decreases with increasing temperature,

hence facilitating an increased collision frequency between water droplets, in addition

to increasing the settling rate. Essential for the coalescence, especially in flocculated

systems, is the influence of the interfacial viscosity. Depending on the type of

interface the interfacial viscosity may decrease, increase or remain unchanged with

increased temperature [77]. With highly paraffinic crudes found in the North Sea,

waxesare strongly correlatedto the stabilityofemulsions. The wax may contribute to

the stability through particle stabilisation, or from increasing the viscosity of the

crude oil. Therefore, melting and crystallisation sequence of wax is of importance for

the stabilising properties of these compounds [82], High operational temperatures

may however result in high losses of light end molecules, and consequently an

increased potential for asphaltene deposition.
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Electrical resolution of crude oil emulsions is possible sincethe systems are relatively

non-conducting. In 1965 Waterman [83] summarised the main behaviours of a drop,

or a pair ofdrops under an electric field. The mechanism promoting separation are the

result of either forces between particles resulting from induced dipoles charges

(dipole coalescence), or forces that result from interactions between unidirectional

field and particles having a net charge (electrofining). The principle behind the

electrically induced coalescence is often divided into: i) non interacting droplets

approaching each other, ii) deformation of droplets and formation of plane-parallel

films, and Hi) thinning of the films to a critical thickness at which the film becomes

unstable, ruptures and the two drops unify and form a single largedroplet. Important

features of a typical electrocoalescer are: The electric field (AC or DC), frequency,

and set up for electrodes. The electrocoalescers in the oil and petroleum industry uses

both AC and DC electric fields for the separation of water-in-oil emulsions [84]. One

problem is that most of the equipment in the marked today is big and bulky, and it

would therefore be of interest to develop small portable devices, incorporating

features such as an optimum applied field strength combined with centrifugal force,

to further enhance the separation.
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CHAPTER 3

METHODOLOGY

3.1 Characterization of Crude Oil

Oil used in this study is Angsi !35

Table 1 Characterization of Angsi !35

CHARACTERISTIC UNIT VALUE

Density kg/I 0.8238

API Degree 40.17

Basic Sediment and water Vol % <0.025

Water content Vol % < 0.025

Total Acid Number mgKOH/g 0.478

Flash Point °C <25

Pour Point °C +30

ASTM Color - >8.0

Total Sulphur Wt% 0.0392

Salt Lb/lOOObbls 11.5

Nitrogen Ppm wt 170

Ash Wt% 0.002

Wax Wt% 14.1

Kinematic viscosity @40UC cSt 4.313
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Kinematic Viscosity @70°C cSt 2.376

Characterisation factor 12.5

Gross Calorific Value MJ/kg 45.85

Mercury Ppbwt 8

Asphaltenes Wt% <50

Sodium (Na) Ppm wt <l

Potassium (K) Ppm wt <I

Copper (Cu) Ppm wt <1

Lead(Pb) Ppm wt <1

Iron (Fe) Ppm wt <1

Nickel (Ni) Ppm wt 2

Vanadium (V) Ppm wt <1

Arsenic (As) Ppm wt <1

3.2 Standard Procedure for Separating Asphaltenes from Crude Oil

The ASTM recommended procedure for separating asphaltenes from crude oil
(ASTM D2007-80) is a widely-recognized standard. The author has chosen follow
this procedure, with some modifications, in order to ensure that the results are
comparable to those obtained in other laboratories. The ASTM procedure specifies
adding a volume of n-pentane that is 40 times the volume of the aliquot of oil. The
principal modification is to use n-heptane instead of n-pentane as the standard
precipitant. Step-by-step instructions for asphaltene separation are provided in this
standard procedure.

Determine sample size

Most crude oils contain from 1 to 10 grams of n-heptane asphaltenes per 100 ml of
oil. To ensure accurate determination of asphaltene content, as much oil should be
used as possible. In most cases, 20 ml ofoil should be adequate.
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Mix crude oil with precipitant

1. Accurately measure a volume of oil intoa glass flask.
2. Add 40 times that volume of n-heptane (or other asphaltene precipitant, as

needed) to the flask. Seal the flask with a stopper and shake the mixture
thoroughly. If a rubber stopper is used, wrap it with aluminum foil to avoid
directcontactof stopperwith the solventor its vapor.

3. Equilibrate the mixture for two days at ambient conditions. Shake the flask at
least twice duringthis aging period.

Filter to separatesolid asphaltenes from oil/precipitant mixture

After aging for two days, a funnel filter assembly can be used to separate precipitated
asphaltenes from the oil/precipitant mixture:

4. Select and pre-weigh a weighing vessel and filter paper. Start with an0.22 I'm
filter. Seeadditional instructions below (Steps 11-16) if mixture does not pass
through the 0.22 I'm filter.

5. Install filter paper into the funnel filter assembly. Use a prefilter immediately
beneath it to prevent direct contact of thefilter paper with metal supporting
net. Direct contact can leads to development of cracks in the brittle membrane
filter and thuscauseleakage. Use a strong spring clamp to tightly hold the
assembly together.

6. Pour about 100 mlofthe oil/precipitant mixture intothe funnel cup and seal
the cup with aluminum foil to reduce evaporation during filtration.

7. As long as the mixture passes through the filter rapidly, continue add mixture
to the funnel cup. Repeat until the filtration ratebecomes very slow. It will be
easier to recover asphaltenes if you allow them to accumulate on a single
filter. (If thedeposited layer is toothin, theasphaltenes may be difficult to
remove from the filter after drying due to adhesion or from theweighing boat
due to electrostatic forces.)

8. Before removing thefiltered asphaltenes, rinse the funnel cup with several
aliquots of the n-alkane precipitant. Rinsing should be done just as the last of
themixture passes through thefilter, before thedeposited asphaltene layer
begins to dryandcrack. Afterthe final rinse, continue to pull a vacuum until
the deposited asphaltene dries enough to form cracks.

9. Turn offthe vacuum pump. Loosen the clamp with one hand while holding
the funnel assembly together with the other hand. Carefully peel off theentire
filter paper and asphaltenes, placing them in theweighing boat. Ifany
asphaltene remains on the bottom rim of funnel cup, use a spatula to transfer
them to the weighing boat.

10. Pre-weigh another pieceof filter paperand repeat Steps 5 through 10 until all
of the mixture has been filtered. Upon successful filtration ofthe whole
mixture through an 0.22 I'm filter, proceed toStep 18 for routine
determinations or Step 15 for more precise measurements.
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Dry and weigh the asphaltenes

11. Dry the filtered asphaltenes and filter papers in the hood for several days.
Check the total weight of the weighing boat, filter papers, and asphaltenes
every few hours. If the weight change is less than O.OOOlg over a 12 hour
period, the asphaltenes are dry.

Determine the amount of asphaltene in the oil

12. The weight ofthe asphaltenes can be determined by subtracting the weight of
the weighing boat and all filter papers from total weight. The asphaltene
content is calculated by:

asphaltene content (g/100ml) = weight ofdried asphaltene (g) x 100

100crude oil volume (ml)

13. Use a spatula totransfer the dried asphaltenes toa glass vial and seal itwith a
Teflon-lined cap. In most eases, only about 80-90% ofthe separated
asphaltene can be collected in the vial. The powdery remainder often cannot
beremoved from the filters and weighing vessel.

3J Near Infra-red Spectroscopy

William Herschel is credited as the father ofnear-IR techniques, for his discovery of
the near infrared region as early as 1800. The molar absorptivity of NIR bands
permits operations in the reflectance mode, and hence the measurements can be made
directly on the material itself. The measurements are thus rapid and non-invasive
[93], and there is usually no need for extensive sample preparation. Also, the NIR
spectra contain information on both chemical composition and physical properties of
the sample [94]. This permits not only the identification ofcompounds, but also total
characterization ofsamples and determination ofnon-chemical parameters.

The near infrared region is found between the visible and middle infrared regions
(MIR) of the electromagnetic spectrum. According to the American Society for
Testing and Materials (ASTM), it is defined as the spectral region spanning 780 -
2526 nm (12820 - 3959 cm ). Light absorption in this region is primarily due to
overtones and combinations of fundamental vibration bands occurring in the NIR
region. This makes NIR an excellent choice for hydrocarbon analysis, where
functional groups such as methylenic, olefinic and aromatic C-H give rise to various
C-H stretching vibrations that are mainly independent of the rest of the molecule. The
intensity of the overtone and combination bands is marked lower than for the
fundamental bands. When dealing with organic compounds, as for crude oils, the
most prominent NIR bands are those related to O-H, C-H and N-H groups. Main
absorption bands of NIR spectra aregiven in Table 2.
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Table 2 Near Infrared Spectroscopy Adsorption Bands

Absorption band

'.) - H F'rst overtone

) - H Combinatory

'. - H Second overtone

". - H Comb'nations first overtone

'. - H First overtone

' - H Comb'nations

Wavelength region [nm]

1400 - 1450

1900 - 1975

1125 - 1225

1350 - 1450

1625 - 1775

1950 - 2450

In addition to molecular absorption, the NIR spectra are dependent upon several
physical parameters, where the most prominent is scattering from particles. As the
particle size changes it causes a change in the amount of radiation scattered by the
sample [95], and this is reflected in the NIR spectra as a shift of the baseline. A
typical representation ofthe baseline shift in a system as a consequence ofchange in
particle sizes are shown in Figure 7.
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Wavelength Inm]

Figure 7 Optical density, a sum of scattering and absorption of transmitted
light, plotted against wavelength forseveral NIR spectra..

The system consists of asphaltene particles in model oil (heptane/toluene 70/30 vol.
%) and is measure at defined time intervals after injection of a chemical. The
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lowering of the baseline is a measure of decreased scattering as the chemical
disperses the particles

For slightly lossy dielectric spheres in the Rayleigh limit (rA, < 0.05), the scattering
and absorption processes contribute separately to the extinction coefficient [96]. That
is

where otot, osc and o^ are the total, scattering and absorption cross-sections,
3

respectively. The ratio of scattering to absorption scales with r , indicating the
importance of particle size on the total light extinction. The relation between optical
density (OD), light intensity (I), particle diameter (N) and particle cross section (otot)
is given as

OD = lost1 ±1' = 0 434JV7r

where I0 and I are the intensities of incident and transmitted light, respectively. The
effect of multiple scattering is not accounted for in this equation. Details on light
scattering inthe near infrared region can be found inthe literature [98-100].

H'll.jlt'l

Figure 8 The near infrared spectrometer setup.
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CHAPTER 4

RESULTS AND DISCUSSION

The asphaltene aggregation behaviour was studied by use of a high-pressure NIR

system shown in Figure 8. The figure below shows a scanned picture of the NIR

spectra for one of the experimental runs.

Figure 9 Example ofNIR spectra from experiment

Both a recombined crude oil and model systems of pentane, toluene and asphaltene

were studied. The model systems were constructed such as to be at the verge of

asphaltene precipitation. Two systems of 1.2 wt% asphaltene in 35 wt% and 40 wt%

pentane-intoluene solvents were made. The crude oil contained 0.8 wt% asphaltenes

and had a reservoir bubble point pressure of 155 bar. The systems were pressurized to

300 bar and charged to the high pressure rig at temperatures of IO0°C and 150°C. The

systems were then depressurized in steps, and the resulting NIR spectra at each

pressure level were analyzed. The system was allowed about 20 minutes to
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equilibrate at each pressure level. It was found that at the asphaltene aggregation

onset pressure a distinct shift in the baseline of the spectrum was seen. Lowering the

pressure even further, the bubble point was detected by NIR spectra displaying low

absorbance due to gas evolution.

J6-

i -
2

300 bar
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Wrakngii(im]

Figure 10 Overlain spectra for pressure from 300 bar -160 bar

Starting from 300 bar, first a decrease in optical density with pressure depletion due

to the compressibility of the crude oil was seen. As soon as aggregates started to

grow, the optical density increased due to increased light scattering. Although this

was difficult to see directly from the spectra, the pressure depletion path is indicated

alongwith the detected asphaltene aggregation onset pressure at 180bar.

Performing the same type of experiments on the model systems (containing only

asphaltenes in addition to solvents) produced the same type of results, thus

confirming that the shift in the score plot indeed was caused by asphaltene

aggregation.

Depressurisation of a model system without asphaltenes showed no shift in the score

plot. Table 3 summarises the experimental conditions, detected onset pressures and

bubble points for the systems studied. The bubble point pressures for the low

temperature model systems were too low to be detected. As expected, the onset
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pressure for the 40 wt% pentane solvent was higher than for the 35 wt% pentane

system. In addition, the onset pressure at 150°C was found to be higher than that at
inn°r100°C.

Table 3 Bubblepoint andasphaltene aggregation onset pressures

System Temperature

(°C)

Bubblepoint

(bar)

Onset pressure

(bar)

Crude oil 100 155 180

35 wt% pentane 100 <2.5 20

35 wt% pentane 150 10 30

40 wt% pentane 100 <2.5 40

40wt% pentane, no

asphaltene

150 14

Table 4 Ashpaltene deposition with respect to depleting pressures for
crude oil system

Pressure 300 275 250 225 200 175 150 125 100

wt% 0 0.05 0.2 0.4 0.8 0.7 0.6 0.5 0.4

0.9

c
o 0.8
4J

O 0./
a
41

a 0.6

c (IS
<u

O.J
a

< 0.H

0
0?

S 0.1

0

so 100 ISO ?00

Pressure, bar

.'SO 300 3 SO

Figure 11 Pressure effect on amount of asphaltene deposition in thecrude oil.
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CHAPTER 5

CONCLUSION

The asphaltene precipitation behavior in the pressure depletion process has been

examined for the Angsi !35 crude oil. Two systems of 1.2 wt% asphaltene in 35 wt%

and 40 wt% pentane-intoluene solvents were made. Samples were analyzed using the

NIR spectroscopy method to determine the onset of asphaltene precipitation over a

pressure depletion from 300 barto 100 barand temperatures of 100°C and 150°C.

The crude oil contained 0.8 wt% asphaltenes and had a reservoir bubble point

pressure of 155 bar. The systems were then depressurized in steps, and the resulting
NIRspectra at eachpressure level were analyzed.

The pressure depletion path is indicated along with the detected asphaltene

aggregation onset pressure at 180 bar. As expected, the onset pressure for the 40 wt%

pentane solvent was higher than for the 35 wt% pentane system. In addition, the onset

pressure at 150°C wasfound to be higher than thatat 100°C.
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