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ABSTRACT

Multivariate statistical process control methods have been proven in the process

industries to be an effective tool for process monitoring, modelling and fault

detection.This paper describes the approach used by the writer in the development of a

Multivariate Statistical Process Monitoring (MSPM) tools using Microsoft Excel. This

developed MSPM tools will act as a process monitoring tools in order to monitor the

performance of any equipment or process. In addition, this project will be testing on

actual plant data to see the performance of the project. The tool will be developed in

Microsoft Excel and Matlab. Microsoft Excel is chosen because of it is easy to use and

user-friendly. Furthermore, it has macro function and easier to use when the user wants

to develop many tools to the Microsoft Excel. In multivariate statistical process

monitoring, a process monitoring model must be developed firstly. The model must be

free from any abnormality, fault or outliers. Then the model will be tested on the future

data to detect any abnormality in the process by applying the appropriate Hmits. As a

conclusion, the MSPM method can be develop in Microsoft Excel. This tool can help to

detect the problem or abnormality of the process and help in diagnoss assignable cause

for the process
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

1.1.1 Background

In today's competitive oil and gas industry, the pressure to improve the

performance of processing facilities is intense. The advent of modern process

measurement, automation, and information systems has resulted in a significant in

amount of process data available. Unfortunately, it is oftenverydifficult to monitor such

a large amount of data. Multivariate Statistical Process Control (MSPC) methods, and

Principal Component Analysis (PCA), have been demonstrated to provide a powerful

approach fordetection and isolation of abnormal conditions.

Multivariate Statistical Process Control (MSPC) concept and method has become

significant in manufacturing and process industrial to control the process. Of these

techniques, MSPC methods have been demonstrated to provide a powerful approach for

detection and isolation of abnormal conditions. To perform this method, it's required an

expensive commercial software or research computing software (e.g Matlab) to process

the data. In this project, MSPC will be develop in Microsoft Excel in such the software

can be widely used and shared with Microsoft Excel platform.



1.2 Objective and Scope of Study

1.2.1 Objective

The objectives ofthis study are stated below:-

1. To developthe multivariate statisticalprocess monitoring tool by using
Microsoft Excel.

2. To monitor and analysis the performance using the developed

Multivariate Statistical Process Control method.

3. To test the developed software using actual plant data

1.2.2 Scope of Study

The project would concentrate on development ofmonitoring tools based
on multivariate statistical method.

1. To study about the fundamental concept of Multivariate Statistical
Process Monitoring.

2. To learn more about the software uses in develop the monitoring tools.



CHAPTER 2

LITERATURE REVIEW

2.1 Theory

2.1.1 Statistical Process Control Chart

Statistical process control (SPC) involves using statistical techniques to measure and

analyze the variation in processes. Most often used for manufacturing processes and

process industries, the intent of SPC is to monitor product quality and maintain

processes to fixed targets. Statistical quality control refers to usingstatistical techniques

for measuring and improving the quality of processes. Their objective is to monitoring

the performance of a process over time in orderto verify that the process is remaining in

a "state of statistical control". Such a state of control is said to exist if certain process or

product variables remain close to their desired values and only source of variation is

"common-cause" variation, that is, variation which affect the all process the time and is

essentially unavoidable within the currentprocess. (J.F MacGregor and T. Kourti, 1995).

Shewhart, CUSUM and EWMA charts which SPC chart used to monitor key product

variables in order to detect the occurrence of any event having a "special" or

"assignable" cause. SPC monitoring methods should be applied on top of the process

and its automatic control system in order to detect process behavior that indicates and

occurrence of a special event. By diagnosing cause for the event and removing, the

process is improved.



Unfortunately, most SPC methods are based oncharting only small number of variables,

usually the final product quality variables(Y). Many industrial processes involve a setof

input variables and quality variables, which are highly correlated. If one of the variable

changes, it will affect the other correlated variables. Thus, ignoring the cross-correlation

between the variables can lead to misinterpretation of the process behavior. (M.W. Yee

and Kamarul A.I.). Therefore, it is very difficult to diagnosis and makes interpretation,

as though the variables were independent. Such methods only look at the magnitude of

the deviation in each variable independently to each others.

The multivariate method is the only way to treat all the data simultaneously and also

extract information on the directionality of the process variations. In addition, when

important events occur in progress they are often difficult to detect due to the signal to

noise ratio is very low in each variable. But, the multivariate method can extract the

information from observations on manyvariables and can reduce the noise level through

averaging.

2.1.2 Multivariate method for monitoring product quality

In most cases, the traditional SPC charts ( Shewhart, CUSUM and EWMA) are used to

separately monitor key measurement onthe final product which define the quality ofthe

product. On this approach, the difficulty is to determine which one of the variables

defines the product quality. The product quality only can be defined by correct

simultaneousvalues of all the measured properties, that is, it is a multivariate property.

2.1.3 Multivariate method for process monitoring

The main approach of statistical quality control (SQC) method are only monitor the

product quality data (Y) and all of the data on process variables (X) are being ignored.



To perform the SPC, all the data must be look and analyst. The process variables are

much more frequently measured than the product quality data. Furthermore, any special

event whichoccur will also have their fingerprints in these process data (J.F MacGregor

and T. Kourti, 1995). It will use useful to know if the product is good before using it.

Monitoring theprocess would help early in detection of poor-quality product.

The most practical approaches to multivariate SPC appear to be those based on

multivariate statistical projection method such as PCA and PLS. the methods are ideal

for handling the large number of highly correlated and noisy process variable

measurement that being collected by process computer.

2.2 Principal Component Analysis (PCA)

Although there may be hundreds of plant variables that measured in any given process,

there tend to be only a small number of underlying characteristics that actually drive the

process. The purpose of PCA is to identify a new set of variables that reflect these

characteristics. These new variables, termed scores or latent variables are linear

combinations of the original process variables. The expectation is that there will be

fewer scores than plant variables and therefore the plant can be monitored with much

greater ease by simply analyzing these new variables.( A. AlGhazzawi and B. Lennox,

2007).

Principal component analysis (PCA) was first introduced by Karl Pearson in the early

1900's. The other main advantage of PCA is that once have found these patterns in the

data, and compress the data, i.e. by reducing the number of dimensions, without much

loss of information.



In mathematical term, PCA decomposes the data matrix X of size [m,n]. Consider an m-

dimensional data set

X=[xi,x2, --,xm] (1)

The principalcomponentdecomposition of X can be definedas

X=TPT +E=£ t.pj +E (i <min(m, n)) (2)
(=1

Where n is number of samples,

T = [t,,t2,....,ti] (3)

Is the matrix of the principal component scores,

P = [Pl,P2,-»,Pi] (4)

Is the matrixof principal component loading and E is the residual matrix in the senseof

minimum Eucliean norm and / is the number of significant component retained.

To monitor the process using a PCA model, a data set of representative normal process

operation is used to identify a reference model. When the new data are available, it is

projectedonto this referencemodel according to

Anew ~~ Xnew " ~*~ C \y)

Where P is the loading matrix, and two complementary control charts are typically used

to assess if the new data are consistent with that from the normal process condition: the

Hotteling's T2 and the Squared Prediction Error (SPE). The hoteliing's T2 statistic will

detect deviations within then model, where as the SPE statistic will detect deviations

from the model. These two statistics will be proceeding for the next semester.



2.2.1 Using Standardized variables

Investigators frequently prefer to standardize the x variables prior to performing the

principal component analysis. Standardization is achieved by dividing each variable by

its sample standard deviation. This analysis is then equivalent to analyzing the

correlation matrix instead of the covariance matrix.

2.3 The Control Chart

The control chart was invented by Walter A. Shewhart in the 1920s. The control chart,

(also known as the 'Shewhart chart' or 'process-behaviour chart') is a tool used to

determine whether a manufacturing process is in a state of statistical control or not. The

figure 1shows the example ofcontrol chart. There are many type of control chart such

as X- chart, R-chart and S-chart. But for this, it uses the X-chart to detect the statistical

in control or not.

A control chart consists of the following:

• Points representing measurements ofa quality characteristic in samples taken

from the process at different times [thedata]

• A centre line, drawn at the process characteristic meanwhich is calculated from

the data

• Upper andlower control limits that indicate the threshold at which theprocess

output is considered statistically 'unlikely'
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Figure 1: The Shewhart Chart or Process-Behaviour Chart or Control Chart

2.4 Limit

Natural extensions of the Shewhart chart to situations where one observes a vector of k

variables y„ 1at each time period are the multivariate x2 and f* charts. Given a (k x 1)

vector of measurements y on k normally distributed variables with an in-control

covariancc matrix 2 one can test whether the mean ••. of these variables is at its desired

target t by computing the statistic.

X =(j-OrZ ~l{y-T) (6)

This statistic will be distributed as a central x2 distribution with k degrees of freedom if

\v =t. Amultivariate x2 control chart can be constructed by plotting x 2vs. time with an

upper control limit (UCL) given by % (k) where (Y is an appropriate level of

significance for performing the test (e.g. a = 0.01).

Mote that this multivariate test overcomes the difficulty .The x2 statistic in Eq. (6)

the target t. Allpoints lying on the ellipse would have the same value ofx2. (The ellipse

detect as a special event any point lying outside of the ellipse. When the in-control



covariance matrix £ is not known, it must be estimated from a sample of n past

multivariate observations as

s = (n - i)-'X (y, - 7x y - 7)T (?)

When new multivariate observations (y) are obtained, then Hotelling's T2 statistics given

by

T 2 = (y ~ T)T S ~l(y - T) (8)

can be plotted against time. An upper control limit (UCL) on this chart is given by:

7 «i = , TT^ Ea (g >n - q ) (9)

where Ea(q,n-q) is the upper 100a%critical point of the F distribution with k and

n-q degreesof freedom (T. Kourti and J F. MacGregor,1994).

2.5 Biplots

The biplot is based on the idea that any data matrix, Y ( n x p ), can be represented

approximately in d dimensions (d is usually 2 or 3) as the product of a two matrices, A (

n x d ), and B ( p x d ).

The rows of A represent the observations in a two- (or three-) dimensional space, and

the columns of B prime represent the variables in the same space. The prefix "bi" in the

name biplot stems from the fact that both the observations and variables are represented

in the same plot, rather than to the fact that a two-dimensional representation is usually

used.



For the principal component analysis, the axes in the biplot represent the principal

components or latent factors and the observed variables are represented as vectors.

Below, the figure 2 shows the sample ofbiplots

ta
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Figure 2 : The Biplots
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CHAPTER 3

METHODOLOGY

In this section, it will be explain about the work will be done for this project. For this

project, it uses Microsoft Excel 2007 and also Matlab 7.1.

3.1 Steps in Multivariate Statistical Process Control (MSPC)

3.1.1 Data Loading

The data-load process reads a source data file, converts the data to a different

format, and inserts the converted data into a database table. The source data can

come from one or more of the following sources. During conversion, the source

data is often manipulated so that the converted data displays different

characteristics.

3.1.2 Data processing/normalization

Normalization is the process of removing statistical error in repeated measured

data. This normalization data will be doing before and after the outlier detection.

There two goals of the normalization:-

1. Eliminating the redundant data

2. ensuring data dependencies make sense

11



3.1.3 Outlier detection

Before sending the data to PCA, the outlier must be removing because the PCA

is very sensitive to the present of outlier. These outliers are based on the control

chart. The data which exceed the limit will be removing.

3.1.4 Principal Component Analysis

Principal Component Analysis (PCA) is to identify patterns in data, and

expressing the data in such a way as to highlight their similarities and differences

without losing the original information.

3.1.5 Limit Determination

For conventional Shewchart Control Chart, the Upper Control Limit (UCL) and Lower

Control Limit (LCL) for mean-centered and variance-scaled variables are +3 and -3

respectively (McNeese and Klein,1991). By using the equations from section 2.4 limit of

chart are calculated.

3.2 Concept of idea in Microsoft Excel

Before start doing the coding and interface, it must have concept of idea what will be

happening for wholeof the program from startuntil end of the program.

Before doing any calculation or construct a graph, it required a bunch of data at least 2

set of range data. The user will be uploading the data into input interface or windows.

The user also must rename their variable to make sure their do not confuse. After the

data are uploading into windows, the user will click the button to proceed. There will

some instruction on the first interface.

12



Data from first interface will be paste on second interface. In this interface, the data will

be normalizing. Before that, it must find the mean and standard deviations for each

range of data which will be use for normalization. The data will be arrange that the data

user it will be on left hand site while the normalize data on the right hand side. The mean

and standard deviation will be calculated by using this formula:

Mean

- AVERAGE (Numberl; number2 :...) (10)

Standard Deviation (SD)

= STDEV (Numberl;Number2 ;...) (11)

and, to calculate for normalization data, it will be use this formula

data - mean
nomal =

SD

After data being normalize, the normalize data will be use to construct the control chart

on other interface. Before construct, it must calculate the mean and standard deviation

for normalize data. By using Upper Limit Control and Lower Limit Control formula, the

control chart will be constructing to see the behavior of the data. Make sure all range of

data must do the control chart.

If, in the control chart shows there are possible outlier, the outliers must be eliminate

first before enter next interface which for Principal Component Analysis. After being

remove the outliers, the data have to go back for normalization data because the mean

and standard deviation have been change and construct back the control chart.

13



After there are no outliers, the user cans proceed to next interface for Principal

Component Analysis. In this interface, the data will be sent to Matlab for Principal

Component Analysis calculation.

After doing the calculation for PCA, the data and figure which generate by the

calculation, will be sending back to Microsoft Excel to show the result to the user. Then,

for next step, the user will insert the future data. Future data is used to see whether the

limits that had been calculated before is fixed or not to it. The future data will be

normalizing by using mean and standarddeviation from previousnormalization.

Then, the normalize future data will be send to Matlab for the calculation and matlab

will send back the result to Excel.

14



CHAPTER 4

RESULT AND DISCUSSION

4.1 Interface
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Figure 3: Input interface

Figure 3 above shows the first interface that will be seen by the user. In this interface,

the data inside the selected area will be copied and sent to the Normalization sheet. The

user must put their data inside the selected area. Then, click the "Input Data" button
15



which the button is at the top left corner. The user must make sure that the ranges of data

are equal. At the left hand side, there are procedures on how to use this.

On the bottom, there is "Reset" button to reset or remove all data inside this worksheet.
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Figure 4: Normalization interface

As illustrated in Figure 4, this is the second interface. The function of this interface is to

normalize the data before constructing the control chart. The "Normalization" button is

to run the calculation for normalization. First, it will calculate the mean and standard

deviation.

16
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Figure 5: Control Chart Interface

Figure 5 shows the interface for control chart graph. The data will be inserted under the

measurement column. The 'Control Chart' button is to create the control chart for each

variable. Below the control chart button, there is 'Remove Outlier' button which use to

remove outlier from the data. At the top right corner, there are legends for the control

chart.
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Figure 6: Data Interface

Figure 6 shows the interface for data. On this interface, datawhich have been removed

the outliers will show on this interface. The 'PCA' button on this interface is used to

send the data to Matlab for PCA calculation and generate figure. This figure will be sent

back to Excel by using 'Result' button. The figure will be shown in result interface.
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Figure 7: Future Data interface

Figure 7 shows the future data interface. For this interface, the user will place the future

data at G7. Future data is used to see whether or not the limits that had been calculated

before is fixed to it. On the left hand side, there are mean and standard deviation

columns which are taken from previous data normalization. This mean and standard

deviation will be used to normalize the future data. On the top left hand side, there is the

'Normalization' button. This button will function to normalize the future data.
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Figure 8: Normalization ofFuture Data Interface

On this figure8, the normalized data from future data will be displayed on this interface.

There are two buttons; 'Future Data' and 'Result'. 'Future Data' button is used to send

the normalized future data to Matlab. The 'Result' will be used after the calculation in

Matlab. Function for 'Result' is to display the result from the Matlab. The result will be

shown in result interface.
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Figure 9: Input interface with sample data

From figure 9, the user has to paste their data into the selected area. The user can also

put the variable name on the top of the data. After the date has been pasted, click the

button 'input data' to proceed. The data will be selected, and then the user can move to

the next sheet.
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Figure 10:Normalization interface with sample data

In figure 10, the data from the "Input" sheet have been pasted at C7. By clicking the

"Normalization" button, Microsoft Excel calculates the mean and standard deviation

value from each variable. The normalized data will be under normalization column. The

normalized data shows that the mean for each data will be close to zero while for

standard deviation it will be close to 1.
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Figure 11: Control Chart interface with sample data

On this figure 9, the interface shows the control chart graph which most all data value

inside range which the process remain close to their desired values. For this example,

there .are 4 variables and 4 control charts for each variable. The small red squares

indicate that, there are two potential of the outliers existed in the process. The outliers

have to be excluded from the graph. Therefore, the button 'Remove Outliers' will be

used to remove the outliers from the data.
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Figure 12: Remove Outlier interface with sample data

On this figure 12, the normalized data has been removed from the outlier. After this, the

user must go back to "Normalization" sheet to repeat the step back until no outliers in

control chart or appear message box says "No Outlier(s)".

Then, this data will be sent to Matlab for calculation of Principal Component Analysis

(PCA) by clicking the "PCA" button. The calculation will take a few minutes. Then, to

see the result, the user must click the 'Result' button which will refer to the result sheet.
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Figure 13: FutureData Interface with sampledata

On figure 13, the interface shows the future data in blue box. The sequence for each

columnmust be the same with the sequence in previous data which data modeling. This

is to make sure the mean and standard deviation are related to each data. On left side,

there are two columns representing the mean and standard deviation. By clicking the

'Normalization' button the 1st column will be normalized by 1st row in mean and

standard deviation columns. The normalized data will appear in Normalize FD sheet.
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Figure 14:Normalization of Future Data interface with sample data

In figure 14, the future data have been normalized by using mean and standard deviation

from previousdata. From this, the user can see that the data are mostly ranged between -

3 until 3. But, if the values exceed the range, there are possibilities of equipment

malfunction. For the next step, the user must click the 'Future data' button. After a few

minutes, the calculation is done. Then, the user should click the 'Result' button to show

the result from Matlab.
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Figure 15: Result Interface with sample data

For figure 15, the interface shows the result which came from the Matlab. On left hand

side, the figure shows the T2 chart for modeling data and right hand side shows the T2

chart for future data. T2 chart for future data used the limit identical for the modeling

data. From this, the user can see that the future data are beyond the limit. It is understood

that something happened in the process which leads the process technologist to find the

causes.
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CHAPTER 5

CONCLUSION

This project has presented the tool which develop by using Microsoft Excel and matlab.

The overall aim of the study was to develop a process monitoring tool using multivariate

method that would enable process operators to quickly and easily identify any sources of

abnormality in the process. This paper also provided an overview ofthe concepts behind

multivariate statistical process control. The multivariate method can easily detect the

abnormality of the process and diagnostics assignable cause. This tools also can share

widely with other Microsoft Excel platform.
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