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ABSTRACT

The objective of this report is to discuss the preliminary research done and basic understanding

of the chosen topic, which is Design of Input Sequence to Capture Adequate Non Linearity. The

ultimate aim of the project is to find the best input sequence that can capture adequate non

linearity and give the best predictive empirical model of Continuous Stir Tank Reactor. The

challenge in this project is to find the available input sequence, which has been available in other

people research project, applied them in MATLAB Simulink and further tested in various types

of Neural Network. Simulation model will be design to test for the best input sequence that will

give the best result for prediction of output. Once the result from the simulation has been get, the

best input sequence will be test on the real system to prove that the result obtain in the real cases

is similar with simulation that had been carried out.
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CHAPTER 1

INTRODUCTION

1.1 Background ofStudy

Detailed mathematical modeling is increasingly being used by companies to gain competitive

advantage through such applications as model-based process design, control and optimization.

Thus, building various types of high quality models to represent the real systems has become the

main concern to most of industries. This activity involves the use of several methods and

techniques including model solution techniques, nonlinear systems identification, model

verification and validation, optimal designof experiments and etc (S.P. Asprey).

Thispaperwill discuss aboutnonlinear system identification and focus mainly on design of input

sequence. Nonlinear system identification involves the following tasks (Ramesh et al, 2007):

• Structure selection - Selection of suitable nonlinear model structure and number ofmodel

parameters

• Input sequence design - Determination of the input sequence u(t) which is injected into the

plant to generate the output sequence y(t).

• Noise modeling - Determination ofthe dynamic model which generates noise input e(t).

• Parameter estimation - Estimation of the remaining model parameters from the dynamic

plant data u(t) and y(t) and the noise input e(t).

• Model validation - Comparison of plant data and model predictions for data not used in

model development.
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Figure 1: Schematic of the System Identification Problem

Dynamic modeling is used in this paper to describe the behavior of a distributed parameter

system in terms of how one qualitative state can turn into another. It can also describe as a

medium to express and model the behavior of the system over time. The term dynamics is

referringto unsteady state or transientbehavior(Ramasamy M, 2007).

Modeling is very essential, in order to fulfill two main objectives; maintain a process at the

desired operating conditions, safely and efficiently and satisfy product quality andenvironmental

requirements (Ramasamy M, 2007). There are basically three types of modeling approach

(Ramasamy M, 2007); white box (fundamental/physical approach), grey box (semi empirical

approach) and black box (empirical approach). For this study, the author employ empirical

model approach to model the non linear dynamic behavior of Continuous Stir Tank Reactor and

design the optimum input sequence to generate the best output of prediction. Empirical model is

intensively used due to the fact that empirical model can give solution to the problem

formulation within smaller range of time compare to the first principle modeling. As empirical

approach is alsoknown as blackbox, therefore there's no need of lengthy mathematical equation

to describe the real system.
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1.2 Problem Statement

Many of process system nowadays exhibit nonlinear behavior. However, most of the widely

used, existing empirical model structures are linear. In some cases this basic model formulation

may not be able to adequately capture the nonlinear process dynamics. In addition, the input

sequence available nowadays has only small operating region. The empirical model may work

well to predict only certain non linear behavior by using certain type of input sequence. But if

other type of non linear behavior is existed in the process, the modeling will nothave an ability

to caterandpredictthe future behavior of the process. Evenif the model can givesome outputof

prediction, the output actually doesn't represent the actual behavior of the process. Or the worst

thing that would happen is the system can become haywire. Therefore, this project is conduct to

design inputsequence that will capture adequate non linearity in the process behavior.

1.3 Significance of Project

The best input sequence from this researchcan be applied in the real systemin industries, so that

thecontrol of process behavior will be more efficient. Byhaving thebest control system, people

will easier to know and predict future behavior of the process and do the correction actions

before the disturbance upset the process. This will not just saving the money but also time

friendly.

1.4 Objective and Scope ofStudy

The main objectives of this research are:

• To test various input sequence in Continuous Stir Tank Reactor (CSTR) modeling by

using MATLAB.

• To select the best input sequence that will generate the best predicted output that

represent the actual output behavior of the process.

• To applythe best input sequence to the real system to test the performance of modeling,

and checkwhetherthe result for simulation test is acceptable or not.

12



The primary focus of the project is to develop a model by using MATLAB software to get the

best input sequence that will give the best predictive model. In order to achieve the objectives, a

few tasks and research need to be carried out by collecting all technical details regarding the

existing input sequence and by studying the fundamental and application of MATLAB software.

The author has also undergone some discussion with expert throughout meeting, training and

seminar. The project is assigned to be completed within two semester's time

13



CHAPTER 2

LITERATURE REVIEW

2.1 Input Sequence

2.1.1 Definition

Input can be defined as a "things that cause" or "stimuli", while output are "things that are

affected" or "responses". Thewordinputrefers to anyvariable that influences the process output

(Ramasamy, 2007).

There are several common ways to define the word input:

1: The input used to generate the dataset, and it can be tailored to facilitate estimation

2: A state, or a sequence of states, of a point that accepts data.

3: A signal or interference that enters a functional unit, such as a telecommunications system, a

computer, or a computer program.

4: Data that is ready for entry into the computer model.

Since the input is implemented in the plant, it should satisfy certain characteristics. First, the

input signal must have sufficient energy to excite the full range of nonlinear process dynamics.

Second, the input should be plant-friendly. Since this input signal is implemented by an actuator

in the plant, such as a control valve, the input sequence should not have frequent transitions

which cause actuator wear. In addition, the magnitude ofthe input sequence must not be large so

that valve saturation is avoided. At the same time the magnitude of the input should be high

enough to ensure that the output response lies outside the noise-band for process operation. In

addition, a sequence with a length as short as possible is desirable so that system identification

does not interfere with normal plant operation. However, these practical requirements are often

in conflict with theoretical identification results. It has been shown that the coefficient error

variancecan be reduced by using a sequence as long as possible. In fact, asymptotic convergence

is achieved as the sequence length approaches infinity.

14



2.1.2 Types

i) Step Input (1st order)

A sudden and sustained of input change (Seborg et al, 2004). It can be describes in

Figure 2. This type of input is simpleto applyat practice (Tsai et al, 1986).

*• Time

Figure 2: Step Input

fc'sOH
f0 r < o

&r t>Q

ii) Ramp Input

Input that is gradually changes in upward or downward direction (Seborg et al,

2004). It can be describes in Figure 3.

Figure 3: Ramp Input
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iii) Sine Wave Input

A waveform that resembles as a sine curve (Figure 4). Theoretically, this is a simple

methodby whichto obtain a wide range of the frequency responses by applyinga

wide range of input frequencies. However, in practice, this is not really applicable

because the testing period can be extremely long during normal plant operation (Tsai

et al, 1986).

siriewve

&*.<*> =
0 t < 0

™n <m
'Asinm r > 0

Figure 4: Sine Wave InpuT

iv) Pulse Input

A step change that limited to certain period of time (Seborg et al, 2004) (Figure 5).

The pulse type input is any input which has a closed wave form with respect to the

steady state reference level. This type of wave form is a popular practical method to

obtain dynamic information of the process (Tsai et al, 1986).

puts?

IC r > t

Tunfe„:f

Figure 5: Rectangular Pulse Input
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v) Sawtooth Wave

The sawtooth wave (or saw wave) (Figure 6) is a kind ofnon-sinusoidal waveform. It

is named a sawtooth based on its resemblance to the teeth on the blade of a saw. The

sawtooth wave, called the"castle rim function" by(Trott, 2004), is theperiodic

function given by

Siv}-^foit{- +$),

where ti^ tOis the fractional part tiracU)sj-UJ, Ais the amplitude, 'Hs the period
ofthe wave, and ^is its phase. It therefore consists ofan infinite sequence of

truncated ramp functions concatenated together.

a«e am

Tloe (s)

0)

Figure 6: Sawtooth Wave

vi) Pseudorandom Binary Sequence

Pseudo-random Binary Sequence (Figure 7) isbased on binary sequences oflength N,

where N is odd (K R Godfrey, 1992). If the sequence has logic level 1 and 0 andthe

corresponding signal hasvoltage level ±V, then thetransformation from logic level to

voltage level is either 1-^+V and 0->-V or 1->-V and 0->+V.

There are several classes of pseudo random binary sequences but one class, called

maximum length sequence or m-sequence is very popular because the corresponding

signal can easily begenerated using shift register circuitry with appropriate feedback.

17



The advantage of the PRBS input (Braun et al, 1999) include ease of implementation

and an autocorrelation function. Since the PRBS is periodic and deterministic, it can

be designed to process excitation in a control relevant frequency range over a single

data cycle. Because the PRBS can be applied to a process multiple times, it provides

the user with a convenient means for discarding corrupted segments of data and

retaining the most informative data for model estimation and validation.

The PRBS input, however, is not always well suited for nonlinear problems (Braun

et al, 1999). Since the PRBS consists of only two levels, the resulting data may not

provide sufficient information to identify nonlinear behavior (e.g. y(k) = u2(k)).

Additionally, a PRBS signal of too large a magnitude may bias the estimation of the

linear kernel. Multi-level pseudo-random sequences (m-level PRS), in contrast, allow

the user to highlight nonlinear system behavior while manipulating the harmonic

content of the signal to enable unbiased estimation of the linear dynamics in the

presence ofnonlinearities.

According to (Heaven et al, 1993), in their paper "Application of System

Identification to Paper Machine Model Development and Controller Design", the

widely used input sequence in industry nowadays is Pseudo-random Binary

Sequence. This sequence can be used to determine process dynamics, isolate

multivariable process interaction, and develop advanced computer models to evaluate

existing and new control strategies.

Figure 7: PRBS Signal
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vii) Gaussian Random Noise (Figure 8)

White noise that has a probability density graphed as a normal distribution. Gaussian

white noise is not a popular input sequence in practice because it results in constant

changes in the input especially for unacceptably large input value. However, it is

quite popular in the parameter estimation because it provides much information about

process dynamics(Parker et al).

Figure 8: Gaussian Random Noise

viii) Repeating Sequence Stair

Repeat discrete time sequence.

Figure 9: Repeating Sequence Stair

ix) Continuous switching-pace symmetric random sequence(Soni and Parker, 2004)

A 4M +4 length deterministic input sequence used to estimate the bias, linear, and

diagonal parameters are:

19
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This sequence ensures that the contributions due to the nonlinear sub-diagonal and

off-diagonal terms are zero identically, (u(k - i)u(k - j) = 0 Vi ^ j (i, j < M)). The

parameters yi and j2 are selected such that j2 > Yi- This is done in order to facilitate

sufficient excitation of the model nonlinearities. In addition, the placement of the

smaller pulse before the larger pulse guarantees that any residual error from the large

pulse response does not corrupt the small pulse output data.

x) Input Design to Estimate Sub-Diagonal Parameter (Soni and Parker, 2004).

For this sequence the ratio given by

Cm©

is 13102 which ensures selective excitation of the third-order sub-diagonal terms.

In order to derive the sub-diagonal estimator equations, an approach similar to that

used for the derivation of the bias, linear, and the diagonal estimators is used.

The only difference is that in subsequent sub-units of the input sequence there is a

gap between the two pulses. This gap length increases by one with increasing sub-

units, and it is employed to ensure the tailored excitation ofall of the sub-diagonal

parameters. The first sub-unit of the input sequence is given as:

ilfl $<&<M + i

-1,1 *=Jfcf+2
-i'l A»itf+3

Applying this to the system of interest and removing the bias, linear, and nonlinear

diagonal contributions, recovers the residual z(k). The estimates for the third-order

« =
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sub-diagonal coefficients can he obtained by minimizing the following sum-squared
prediction error:

**-£ few-a*)}*

xi) Input Sequence for Constant, linear, and diagonal parameters (2M+ 2-point input
sequence) (Parker et al, 2001)

u(k) =

V k = 0;
0 1< k <M;
-V k = M+l;
0 M+2<k<2M+l

where

y>0

M=20

xii) Signal ofsum of sinusoids with different frequencies (Baruch et al).
u(k)-

sin(irk/25) 0<k<26;
10 25<k<51;
"L0 50 <k<76;
0.3 sin(nk/25) +0.1 sm(nk/32) +0.6 sin(jrk/10), 75 <k <101

xiii) Sequence ofpulses with random amplitude and width (Baruch et al).

u(k) =

sin(nk/25), 0<k<251;
1.0

-1.0

250 < k < 501;

500 < k < 751;

0.3 sin(nk/25) +0.1 sin(jrk/32) +0.6 sin(rck/10), k < 1001

xiv) Signal ofrandom sequence (Liu etal, 1997).
u(k) =

sin(2nk/250), k<500;

0.8sin(2nk/250) + 0.2 sin(27rk/25) k >500

21



2.1.3 Type of Model Function

1) Radial Basis Function (RBF)

A radial basis function is a function which acts as an activation functions. They are used in

function approximation, time series prediction, and control. An RBF is a weighted sum of

translations of a radially symmetric basic function augmented by a polynomial term. The basic

function O of a positive real ¥, where f is the distance(radius) from the origin. Popular choices

for ^include

• The thin-plate spline (for fitting smooth functions of two variable

$\r) = r*tagfr)

• The Gaussian (mainly for neural networks)

#(r) = ercp(-*ra)

• Themultiquadric (forvarious applications, in particular fitting to topographical data)

For fitting functions of three variables, good choices include

• The biharmonic spline + linear polynomial

• The triharmomc spline + quadratic polynomial

22



The primary advantage of RBFs over binary features is that they produce approximate functions

that vary smoothly and are differentiable. In addition, some learning methods for RBF networks

change the centers and widths of the features as well Such nonlinearmethodsmay be able to fit

the target function much more precisely. The disadvantage of RBF network especially, is greater

computational complexity and, often, more manual tuning before learning is robust and efficient.

2) Polynomial Function

A polynomial function is one that has the form

y = a_{n}xA{n} + a_{n-l }xA{n-l} +... + a_{2}xA{2} + a_{1}x + aJO}

with n denoting a non-negative integer that defines the degree of the polynomial. A polynomial

with a degree of 0 is simply a constant, with a degree of 1 is a line, with a degree of 2 is a

quadratic, and with a degree of 3 is a cubic, and so on.

Historically, polynomial models are among the most frequently used empirical models for fitting

functions. These models are popular for the following reasons.

1. Simple form.

2. Well known and understood properties.

3. Moderate flexibility of shapes.

4. A closed family. Changes of location and scale in the raw data result in a polynomial

model being mapped to a polynomial model. That is, polynomial models are not

dependent on the underlying metric.

5. Computationally easy to use

However, polynomial models also have the following limitations.

1. Poor interpolatory properties. High degree polynomials are notorious for oscillations

between exact-fit values.

2. Poor extrapolatory properties. Polynomials may provide good fits within the range of

data,but they will frequently deteriorate rapidly outsidethe range of the data.

23



3. Poor asymptotic properties. By their nature, polynomials have a finite response for finite

rvalues and have an infinite response if and only if the lvalue is infinite. Thus

polynomials may not model asymptotic phenomena very well.

4. Have a shape or degree tradeoff. In order to model data with a complicated structure, the

degree of the model must be high, indicating and the associated number of parameters to

be estimated will also be high. This can result in highly unstable models.

3) Rational Function

A rational function is simply the ratio of two polynomial functions

_ fl„ra -f a?l_:iz^_i -f-..... 4- a^r 4- &ix + «&
&~ fr^r™ + b^x**-'1 +...... 4- ^' + f>xx + h

with n denoting a non-negative integer that defines the degree of the numerator and m denoting a

non-negative integer that defines the degree of the denominator.

When fitting rational function models, the constant term in the denominator is usually set to 1.

A rational function model is a generalization of the polynomial model. It contains polynomial

models as a subset in the case when the denominator is a constant.

If modeling using polynomial models is inadequate due to any of the limitations, a rational

function model should be considered. The fitting rational function models are also referred to as

the Pade approximation.

Rational function models have the following advantages.

1. Moderately simple form.

2. A closed family. As with polynomial models, this means that rational function models are

not dependent on the underlying metric.

3. Can take on an extremely wide range of shapes, accommodating a much wider range of

shapes than does the polynomial family.

4. Better interpolatory properties than polynomial models. Rational functions are typically

smoother and less oscillatory than polynomial models.

24



5. Excellent extrapolatory powers. Rational functions can typically be tailored to model the

function not only within the domain of the data, but also so as to be in agreement with

theoretical/asymptoticbehavior outside the domain of interest.

6. Excellent asymptotic properties. Rational functions can be either finite or infinite for

finite values, or finite or infinite for infinite x values. Thus, rational functions can easily

be incorporated into a rational function model.

7. Can often be used to model complicated structure with a fairly low degree in both the

numerator and denominator. This in turn means that fewer coefficients will be required

compared to the polynomial model.

8. Moderately easy to handle computationally. Although they are nonlinear models, rational

function modelsare a particularly easy nonlinearmodels to fit.

However, rational function models have the following disadvantages.

1. The properties of the rational function family are not as well known to engineers and

scientists as are those of the polynomial family. The literature on the rational function

family is also more limited.

2. Unconstrained rational function fitting can, at times, result in undesired nusiance

asymptotes (vertically) due to roots in the denominator polynomial.

4) Piecewise Function

In mathematics, a piecewise linear function is describe by

/ : ft ~» F

where;

V= vector space

Q = subset ofa vector space
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A special case is when/is a real-valued function on an interval [xip&J. Then/is piecewise linear

if and only if [x\jC2] can be partitioned into finitely many sub-intervals, such that on each such

sub-interval 7,/is equal to a linear function

fix) - aix + bj.

The absolute value function^*)= Ix | is a good example of a piecewise linear function. Other

examples include the square wave, the sawtooth function, and the floor function.

Important sub-classes of piecewise linear functions include the continuous piecewise linear

functions and the convex piecewise linear functions. Splines generalize piecewise linear

functions to higher-order polynomials.

A piecewise function is a function that is defined on a sequence of intervals. A common example

is the absolute value,

H

-.*• for j < 0

0 for.*«0

x fxx > 0.

Many nonlinearities that appear frequently in engineering systems are either piecewise-affine

with a saturated linear actuator characteristic or can be approximated as piecewise-affine

functions. Piecewise-affine systems are also a class of hybrid systems with a continuous-time

state and a discrete-event state. For piecewise-affine systems the discrete-event state is

associated with discrete modes of operation.

The continuous-time state is associated with the affine dynamics valid within each discrete

mode. Piecewise-affine systems pose challenging problems because of its switched structure.

26



2.2 Nonlinearity

Nonlinearity by (Nikolaou and Misra) definition referring to the absence of linearity can

manifest itself in various ways, such as nonlinear dynamics, constraints and changing modes of

operation. There are two basic properties that characterize the behavior of a linear system

according to (Hangos and Cameron, 2001). The first one is the principle of Superposition. In

general, this principle states that the response of a linear system to a sum of N input is the same

as the sum of individual input. The second properties for linear system is independence of

dynamic response character and process condition. However, if the system does not exhibit any

of these properties, it is known as non linear system. The nonisothermal reactor is the popular

example ofnon linear chemical process.

In many real world applications there are nonlinearities and unmodelled dynamics which poses

problems when implement practical control strategies. Modern control such as adaptive and

optimal control techniques and classical control theories has been commonly applied to deal with

these difficulties. Nonlinear model process is dealing with issues like stability, efficient

computation, optimization, constraints and others (Kocijan and Smith). Interest in nonlinear

feedback control of chemical processes has been steadily increasing over the last several years

because both pronounced nonlinear nature of several chemical and increased sensing and

computational capabilities afforded by modern sensors, computers, algorithms, and software.

Suchcapabilities have been claimed and at times proven to offerbenefits in betteroperation and

control of chemical processes.

Below is example of industrially cases for which nonlinearity is usually present (Nikolaou and

Misra):

• Biochemical production of chemicals.

Non-routine operation situations (e.g., start-ups, shut-downs, change-overs, flares, relief

valve emissions). Because a process moves far from a steady state during non-routine

operation, nonlinear behavioris usuallypronounced.

•

27



• Nonlinear distributed process systems

Example:

• Control of spatial profiles: etching, crystal growth, packed-bed reactors

• Control of size distributions: aerosol production and particulate processes.

• Crystallization, emulsion, polymerization.

• Cell cultures control of fluid flows: mixing, wave suppression, drag reduction,

separation delay,

• Control of material microstructure: thin-film growth and nano-structured coatings

processing.

• Batch processes: fine chemicals and pharmaceuticals

Figure below show the example ofcontrol loop with nonlinearity.

fwipoitti, i\ ,rA £
•* Q

stnpxfl.;a
N
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IH&l^. ME

Contaoller
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Figure 10: Control Loop with Nonlinearity

2.3 Empirical Model

As in many nonlinear systems it is not an easy task to come up with an accurate enoughphysical

model of the plant, its finally turn to black-box model to describe the systems nonlinear

dynamics.

Below are some descriptions ofempirical models that have been study by researcher.

28



2.3.1 Neural Network Model

A neural network is a powerful data modeling tool that is able to capture and represent complex

input/output relationships. The motivation for the development of neural network technology

stemmed from the desire to develop an artificial system that could perform "intelligent" tasks

similar to those performed by the human brain. Among available structures, neural network have

proved to work quite well in the identification of non linear systems on the basis input-output

data. Despiteneural networks are well known universal approximators, they are quite dependent

on the quality of the data set. This feature together with a bounded number of iterations within

the trainingphase leads inexorably to a model mismatch, which in turn is responsible for a static

error, in worst case giving rise to instability of the feedback system.

The true power and advantage of neural networks lies in their ability to represent both linear and

non-linear relationships and in their ability to learn the relationships directly from the data being

modeled. Traditional linear models are simply inadequate when it comes to modeling data that

contains non-linear characteristics. The advantages and disadvantages of neural network can be

simplified as below:

Advantages:

• Can perform tasks that a linear program cannot.

When an element of the neural network fails, it can continue without any problem by
their parallel nature.

A neural network learns and does not need to be reprogrammed.

• Can be implemented in any application.

• Can be implemented without any problem.

Disadvantages:

• Needs training to operate.

• The architecture of a neural network is different from the architecture of microprocessors
therefore needs to be emulated.

• Requires high processing time for large neural networks.
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The most common neural network model is the multilayer perceptron (MLP). This type ofneural

network is known as a supervised network because it requires a desired output in order to learn.

The goal of this type of network is to create a model that correctly maps the input to the output

using historical data so that the model can then be used to produce the output when the desired

output is unknown.

Applied to control field, NN are essentially nonlinear models that can be useful to solve non

linear control problems. Basically, NN can be classified as static (feedforward) and dynamic

(recurrent) (Smith and Shorten, 2005).

• Static: Feedforward Backpropragation Network, Cascade Forward Backpropragation

Network

• Dynamic: Recurrent Network - Non linear Autoregressive Network with Exogeneous

Inputs (NARX), Bidirectional Recurrent Neural Network, Recurrent Cascade Correlation,

Layered Recurrent Neural Network etc.

In this paper, the author used two types of NN which are Feedforward Backpropragation

Network and Non linear Autoregressive Network with Exogeneous Inputs Series Parallel

(NARXSP)

a) Feedforward BackpropragationNetwork

Feedforward backpropagation neural networks (FF networks) are the most popular and most

widely used models in many practical applications (Hagan et al, 1996). Figure 11 illustrates a

FF networks network with three layers:

<4rf. i

^4.'*:. i /

J

rf->tnq#i>VMi>) *J -*imis(LW -B)

Figure 11: Feedforward NN Architecture
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b) Non linear AutoregressiveNetwork with Exogeneous Inputs Series Parallel (NARXSP)

Standard NARXSP architecture is as shown in Figure 12. The true output which is

available during the training of the network is used instead of feeding back the estimated

output. The advantage of this architecture is that the input to the feedforward network is

more accurate. Besides, the resulting network has a purely feedforward architecture, and

static back propagation can be used for training (Zabiri and Mazuki, 2009).

LayflTl Lajfii£

jj'Si> rt^ir

\-J V J V J

Figure 12: NARXSP NN Architecture

2.3.2 Gaussian Model

Each member of the family may be defined by two parameters, location and scale: the mean

("average", u) and variance (standard deviation squared) a2, respectively. Gaussian process

models provide a probabilistic non-parametricmodeling approach for black-box identification of

nonlinear dynamic systems. The Gaussian processes can highlight areas of the input space where

prediction quality is poor, due to the lack of data or its complexity, by indicating the higher

variance around the predicted mean. It contains noticeably less coefficients to be optimized

(Kocijan and Smith).

A Gaussian process is an example of the use of a flexible, probabilistic, nonparametric model

which directly provides us with uncertainty predictions. A Gaussian process is a collection of

random variables which have a join multivariate Gaussian distribution. A common choiceis
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C{:^Xq) = ?>;|EKp •+*o

T

Where O^ [wi... .wd v0 vi] are the 'hyperparameters' of the covariance function and D the input

dimension.

Consider a set ofN D-dimensional input vector X=[xi,x2.. .xN] and a vector ofoutput data Y=[yl,

y2---yN]T- The advantage ofusing this model is we can use the same model to predict the output

y* with input x*. Unlike other model, there is no model parameter determination as such within a

fixed model structure. With this model, most of the effort consists in tuning the parameter with

the covariance function. This is done by maximizing the log-likelihood of the parameter, which

is computationally relatively demanding since the inverse of the data covariance matrix have to

be calculated at every iteration.

For multistep ahead prediction, the uncertainty of future predictions provides the

inputs for estimating further means and uncertainties. Gaussian process can, like neural

networks, be used to model static nonlinearities and can therefore be used for modeling dynamic

systems ifdelayed input and output signals are used as regressors (Kocijan and Smith).

The Gaussian process model not only can describe the dynamic characteristics of the non-linear

system, but at the same time provides information about the confidence in the prediction. The

Gaussian process can highlight areas of the input space where prediction quality is poor, due to

the lack of data, by indicating the higher variance around the predicted mean.

2.3.3 Wiener Model

(Cervantes et al, 2003) in their research paper describes Wiener Nonlinear Model Predictive to

control a CSTR with multiple steady states. This model can represent a process with linear

dynamic but a nonlinear gain and can represent many of the memoryless nonlinear systems

encountered in industrial processes. Due to the static nature of the nonlinearities, they can be
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removed from the control problem. However, some computational difficulty is potentially

present and due to that an implicit inversion of the non linear static gain is needed. More

specifically, the Wiener structure consists of a linear dynamic element followed in series by

Static nonlinear element. The lineardynamic element uses a discrete state space model while the

nonlinear element uses the Piecewise Linear approximation.

Assuming the system to be controlled canbe described by the following discrete-time, nonlinear,

state-space model:

Where;

x(k)=vector of state variable

Au(k)= vector of control movements

d(k)= vector of additive disturbance variables

y(k)^ vector ofprocess output

In general, a wiener model consists of a dynamic linear block in cascade with a static non-

linearity at the output. For the static non linear element, Continuous Piecewise Linear (PWL)

function y=f (v) is use in this paper (Cervantes et al,2003). The PWL functions have proved to

be a very powerful tool in the modeling and analysisof nonlinear systems.

2.3.4 Hammerstein Model

The Hammerstein model (Ramesh et al, 2007) consists of a nonlinear static element followed in

series by a linear dynamic element. Hammerstein model has been considered as alternatives to

linear models in a number of chemical process applications such as distillation column, CSTR,

pH Process etc. The structure of the Hammerstein model is shown in figure below.
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y(t)

Where

u(t) = input of the nonlinear static block.

x(t) = output of the nonlinear static block.

Simultaneously;

x(t) = input of the linear dynamic block

y(t) = output of the linear dynamic block.

In (Ramesh et al, 2007) research study, they use a new wavenet based nonlinear function to

describe the nonlinear static block and Output Error (OE) model is used to describe the linear

dynamic block.

The linear block is the Output Error (OE) model, given by the following equation.

where:

nb is the number of coefficients in B(q-1)

na is the number of coefficients in A(q~l)

nk is the delay from input to output

bi bi,..., bn are the coefficients ofpolynomial B

ai ,a7, ...,a„ are the coefficients ofpolynomial A

-wa
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It also consist of Wavenet structure based nonlinear functionx = F(u) to represent the static

nonlinearity of the Hammerstein model.

F(u) = (u~ r)PL + ^/(bs&u- r)QcsJ)
+... + askf(bsk ((u - OQcsJ)

2.3.5 Volterra Model

One of the commonly used nonlinear dynamic empirical model structures is the Volterra model,

and this work develops a systematic approach to the identification of third-order Volterra and

Volterra-Laguerre models from process input-output data[10]. Volterra series analysis is an

extension of small-signal analysis into the field of weakly nonlinear behavior (Schetzen M,

1980).

The general form of the Volterra model is given as,

Where;

N=model order

M = model memory, the duration over which the past inputs have an effect on the current output,

y(k)

ho^ihe bias term,

The Volterra model kernels are given by h i ( ji,..., Jn), and the identification problem involves

determining the values of these kernels. The Volterra model structure is capable of capturing a

variety of nonlinear systems behavior. It has the ability to capture asymmetric output responses

to symmetric changes in the input in many chemical engineering systems including reactors and

distillation columns.
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The Volterra model structure can be considered as a nonlinear extension of the FIR model

thereby facilitating its use in on-line applications. One disadvantage of this structure is the

number of parameters that must be estimated as the model order increases. This factor has

limited the widespread use of higher-order Volterra models for practical applications.

In this work, (Schetzen M, 1980) shows that by judiciously exploiting the model structure, input

sequences can be tailored so that simplify the task of and minimize the data requirements for

identifying the parameters for a third-order Volterra model.

The third-order Volterra model is first decomposed in the following manner (Soni and Parker,

2004),

39
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Where;

L-Linear

D= nonlinear diagonal

S= third-order sub-diagonal

0=nonlinear off-diagonal term
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CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

Process Identification ofnon linear process can beconduct as follow;

Start

Build CSTR Model

Generate input output data from
various input sequence

Simulate input output data with neural network

Data Analysis

Figure 13: Schematic Project Work Flow

NO
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3.2 Development of CSTR Model

To build CSTR model, the author use Simulink based simulation (Figure 12). Simulink is a tool

in MATLAB for modeling, simulating and analyzing multidomain dynamic systems, including

linear and nonlinear dynamics system. Its primary interface is a graphical block diagramming

tool and a customizable set of block libraries. The coding for CSTR model and its S-function is

attached in APPENDIX.

Simulink based model is very useful and user friendly as the author just need to change the input

without changing the overall programming source code of the model.

3.2.1 Continuous Stir Tank Reactor Model

For this research, simulation s done based on continuous stirred-tank reactor (CSTR) process

model. Assuming that the process is irreversible, exothermic reaction, A—»B, constant volume,

and reactor cooled by a single coolant stream. This can be modeled by the following equations:

CA{f) =?y- [CAOit) - CA(t) - k0CA(t)exp [—j ]

pcp

+ l~exp
hA

qMPcCpc/ j

The objective is to control the output Temperature of the model, by manipulating the coolant

temperature Tc (Cervantes et al, 2002).

Inputs
States

Cooling Jacket

Reaction

A—B

Figure 14: CSTR

(Tc0(t)-T(t))
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Below are the nominal operating condition used in this simulation based on Cervantes et al,

2003 research.

Nominal CSTR perameter values

Product Concentration CA 0.1 mol/1

Reactor Temperature T 438.54 K

Coolant Flow Rate Qc 103.411/min

Process Flow Rate Q 100m3/sec

Feed Concentration CAf lmol/1

Feed Temperature Tf 350 K

Inlet Coolant Temperature Tco 350 K

CSTR Volume V 100m3

Heat Transer Term HA 7X105caI/minK

Reaction rate constant Ko 7.2 xlO101/min

Activation Energy Term E/R 8750 K

Heat of Reaction AH 5xl04J/mol

Liquid Densities P» Pc 1000kg/m3

Specific heats *^p> *^pc 0.239 J/kg K

3.3 Input Sequence Generation

Input sequence is generated either from existing simulink library source block or from importing

data from excel file or workspace. Input sequence such as PRBS and Gaussian is generated from

signal builder while the source block for input such as ramp, sine wave, sawtooth and pulse

already exists in the system. For input that is obtained from journals, they are imported from

Microsoft Excel before being used in CSTR Simulink Based Model. Figure 15 shows some

source block that had been used in modeling.
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untitled.mat *

:rom File

M *

Pulse

Senerator

y >

Ramp

Signal 1 *

Signal Guilder

h
Sine Wave

Step

Figure 15: Simulink Library Source Block

3.4 Neural Network Prediction

Input and output from the validated model is taken for further development in Neural Network.

This is to determine which input sequence will provide the best input-output data to get the best

model in predicting output. Network optimization consists ofdeterminingthe

• Network architecture

• Compare Feed forward architecture and NARXSP architecture

• Number of neurons in each layer (input, hidden and output layer)

• For this study, number of neurons in input layer is fixed to 2 while in output layer,

the number ofneuron is fixed to 1

• The number of neurons in hidden layer is varied from 1 to 60 to evaluate the

performance of the model prediction fitness

• The appropriate transfer function for each layer

• 27 combination of transfer function configuration, consists ofpure linear (p), log

sigmoid(l) and tan sigmoid (t) is utilize in the NN to get the best model. Trial and

error method is used in order to determine the optimal combination of the three

elements above that gives the least error prediction.
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Between those empirical models that mentioned earlier in literature review (Wiener,

Hammerstein, Volterra, Gaussian and NN), Neural Network (NN) is selected for prediction of

the behavior of process. NN is selected compare to others as it requires less information to run

(input and output data only) and require less cost for implementation to the real system. Number

of neurons in the hidden layer, the corresponding transfer function for each layer and the network

types is varied for the optimization.

Project Gantt Chart:
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Problem

Identification

Literature Review

CSTR Model

Development

Input sequence

generation

Neural Network

Optimization

Submission and

Presentation
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CHAPTER4

RESULT& DISCUSSION

4.1 CSTR Model Development

The author hasdone a simulation to build CSTR model based on Cervantes et al,2002. Figure

16 shows the simulink based CSTR model.

dC

To Worfcspacel

t

^ I |

b reactor_sfcn , l-l Ca

I"!,! ^ln
y Ml

i

> dT

1 1
1fo Workspace

W

i 1
I> Tc

Ic L>

T o Workspace 2

Figure 16: Simulink Based CSTR Mode!

This Simulink based CSTR model is used with different input sequence blockto generate input-

output data for further use in neural network model.

42



4.2 Input-Output Data Generation

Below are the results ofrunning simulink based CSTR model on different input sequence.

Generally, when the concentration profile increases, the temperature profile decreases. The

following figures show the cooling jacket temperature profile and its corresponding process

concentration and temperature profile.

l)Step

0 200 400

Figure 17: Cooling Jacket

Temperature Profile

2) Ramp

0 10 20 3D

Figure 20: Cooling Jacket

Temperature Profile

o a 40 100 120

Figure 18: Concentration Profile

100 120 140 160 160 20

Figure 21: Concentration Profile

0 20 40 60 100 120

Figure 19: Temperature Profile

0 50 100 ISO 250 300 350 400

Figure 22: Temperature Profile
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3) Pulse
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Figure 23: Cooling Jacket

Temperature Profile
Figure 24: Concentration Profile Figure 25: Temperature Profile

4) Sine wave
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5) Gaussian Random Noise
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Figure 29: Cooling Jacket

Temperature Profile

6) PRBS
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Figure 32: Cooling Jacket

Temperature Profile
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Figure 33: Concentration Profile Figure 34: Temperature Profile
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7) Repeating Sequence Stair

fflfMNIiilllllJIi!!!;

I

i in•::iM;:iM:!|.;::iMi!||- ;: ||j I.

0 50 100 150 200250300350400

Figure 35: Cooling Jacket

Temperature Profile

8) Sawtooth Wave
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Figure 38: Cooling Jacket

Temperature Profile
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Figure 39: Concentration Profile Figure 40: Temperature Profile
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9) Baruch 1
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4.3 Neural Network Prediction

The two types of NN for modeling CSTR outlet temperature are applied to simulate data

generated using the validated and proven CSTR model from the different input sequences. The

thirteen cases ofdifferent input sequences are investigated.

Figures in Table 1 show the results for outlet CSTR temperature behaviorfor NARXSP model in

comparison to the actual behavior of the CSTR model.

Neural Network is considered giving the best performance if;

• Has low root mean squared error (RMSE)

• Has high correct directional change (CDC)

• Follow well the behavior of the signal

RMSE is the mean, standard deviation, and correlation coefficient that show whether the NN

network architecture are highly correlated or not with the input-output data of CSTR model.

The CDC meanwhile is the correct direction of change in a variable that measure the capability

of the model to follow the trend of data given.

Table 1 shows the NARXSP neural network prediction depending on their input. Also, the best

configuration of transfer function and its RMSE and CDC calculated is put into Table 1.

Table 1: NARXSP NN Prediction According to Inputs

Type
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TTT

RMSE =
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CDC =

54.315
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data very well.
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The optimal number of

neuron for this type of input
sequence is 2. Purelin,

tansig, tansig is the best

combination of its transfer

function. It has low RMSE

and average CDC. Most of

the time NARXSP NN

cannot follow well the trend

of data.

The optimal number of
neuron for this type of input
sequence is 25. Tansig,
ansig, tansig is the best
combination of its transfer

function. It has low RMSE

and very high CDC.
However, the NARXSP NN
cannot follow the behavior

and unable to capture the
sharp edges.

The optimal number of

neuron for this type of input

sequence is 6. Purelin,

tansig, purelin is the best

combination of its transfer

function. It has low RMSE

and very high CDC.

However, considerable

deviation occurs at sudden

peaks.

The optimal number of

neuron for this type of input

sequence is 35. Purelin,

tansig, logsig is the best

combination of its transfer

function. It has low RMSE

and high CDC. The

NARXSP can also follow

well the behavior with only

slight deviation
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Baruch2

PTL

RMSE =

0.0174

CDC =

91.371

Parker

PPL

RMSE =

0.0136

CDC =

89.848

Liu

LPP

RMSE =

0.0030

CDC =

80.203
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The optimal number of

neuron for this type of input

sequence is 35. Purelin,

tansig, logsig is the best

combination of its transfer

function. It has low RMSE

and very high CDC. The

NARXSP can merely follow

the trend of the data driven

model with this type of input

sequence.

The optimal number of
neuron for this type of
input sequence is 50.
Purelin, purelin,logsig is
the best combination of its

transfer function. It has

low RMSE and high
CDC. Normally, neural
network with higher
number of neuron will

require longer simulation
time.

The optimal number of
neuron for this type of input
sequence is 1. Logsig,
Purelin, Purelin is the best
combination of its transfer

function. It has very low
RMSE and high CDC.There
is also a slight deviation
when the signal changes
direction but NARXSP NN

considerably follow the
behavior well.

Comparable CorrectDirectional Change(CDC)values are obtained for all networks as indicated

by the satisfactory directional change tracking. Almost all data present low RMSE value. The

NARXSP NN follows well the process behavior with acceptional deviation.
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Comparison then made with Feed Forward (FF) Back Propagation(BP). Table 2 shows the Feed

Forward neural network prediction depending on their input. Also, the best configuration of

transfer function and its RMSE and CDC calculated is put into Table 2.

Type

Pulse

LLT

rmse =

0.1923

CDC =

1.0050

Sine

PTP

rmse =

0.0805

CDC =

49.748

7

Gaussian

PPL

Rmse=

0.1628

CDC =

55.276

Table 2: Feed Forward BP Prediction According to Inputs
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Analysis

The optimal number of
neuron for this type of input
sequence is 35. Logsig,
logsig, tansig is the best
combination of its transfer

function. It has low RMSE

and very low CDC. FF BP
cannot follow the shape of
process change. It was
overshoot at some point.

The optimal number of
neuron for this type of input
sequence is 2. Purelin,
tansig, purelin is the best
combination of its transfer

function. It has low RMSE

and average CDC. The FF
BP predict smaller
sinusoidal pattern and very
far from the real data plot.

The optimal number of
neuron for this type of input
sequence is 2. Purelin,
purelin, logsig is the best
combination of its transfer

function. It has low RMSE

and average CDC. Also, the
FF BP prediction is very far
from the real temperature.
Moreover, the shape is not
following well the shape of
the CSTR temperature.
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PRBS

PTP

rmse =

0.0510

CDC =

18.091

Sawtooth

PTP

rmse =

0.0782

CDC =

65.829

Sonil

PPL

Rmse=

0.1217

CDC =

2.5126

Soni2

PTP

rmse =

0.1952

CDC =

3.5176
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The optimal number of
neuron for this type of input
sequence is 8. Purelin,
tansig, purelin is the best
combination of its transfer

function. It has low RMSE

and low CDC. The shape
predicted not follows well
the actual process and very
far with CSTR model output.

The optimal number of
neuron for this type of input
sequence is 50. Purelin,
tansig, purelin is the best
combination of its transfer

function. It has low RMSE

and above average CDC. FF
BP predict quite well but it
is very far from CSTR
model output.

The optimal number of
neuron for this type of input
sequence is 30. Purelin,
logsig, purelin is the best
combination of its transfer

function. It has low RMSE

and very low CDC. There is
imprecise matching between
the Feed Forward BP with

the CSTR model output.

The optimal number of
neuron for this type of input
sequence is 35.
Purelin,logsig,purelin is the
best combination of its

transfer function. It has low

RMSE and very low CDC.
There is inaccurate matching
between the Feed Forward

BP with the CSTR model

output.
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Baruchl

PTP

rmse =

0.0523

CDC =

48.241

Baruch2

PTT

rmse =

0.0523

CDC =

21.608

Parker

PTP

rmse =

0.0656

CDC =

4.5226

Liu

PTP

rmse =

0.0520

CDC =

69.849
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The optimal number of
neuron for this type of input
sequence is 20.
Purelin, logsig,purelin is the
best combination of its

transfer function. It has low

RMSE and average CDC.
The FF BP prediction is not
closely match the CSTR
temperature. Large deviation
occurs.

The optimal number of
neuron for this type of input
sequence is 35. Purelin,
logsig, purelin is the best
combination of its transfer

function. It has low RMSE

and high CDC. The same
observation can be seen

when Baruch 2 input is
applied. The FF BP also
cannot correctly match the
CSTR model.

The optimal number of
neuron for this type of input
sequence is 2. Purelin,
tansig, purelin is the best
combination of its transfer

function. It has low RMSE

and low CDC.The FF BP

slightly follow the
temperature pattern but the
difference are quite wide.

The optimal number of
neuron for this type of input
sequence is 35. Purelin,
tansig, purelin is the best
combination of its transfer

function. It has low RMSE

and above average CDC.
There is an apparent
deviation at the early
seconds when the signal
changes direction.
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FeedNeuralNetwork cannot predict the behavior of the output very well. Low correct directional

change (CDC) value shows that Neural Network cannot trend the behaviorof the signal when it

is changing direction. Feed forward BP failed to track the temperature behavior dexterously

when it is unable to follow the shape of the data driven CSTR model.

Results clearly indicate that good sequence of input, proper selection of the NN type, together

with optimum configuration of the corresponding network architectures, can efficiently and

accurately model the process temperature behavior. Only NARXSP NN with real output fed to

the network feature tracks the process behavior as efficient and as accurate as the CSTR model.

Generally, it is obvious that NARXSP-based stiction model gives the best performance compare

to Feed Forward Neural Network. Narxsp Neural Network gives the best performance, due to

low root mean squared error (RMSE) and it follow well the behavior of the signal. It is widely

accepted that NARXSP structure always results in excellentperformance since the actual output

available during training is fed back to the network as part of the inputs for prediction (Gomm et

al, 1996).In most cases, test using high number of neurons gives long computational time

compare to test using low number ofneurons.

Consequently, a significant disadvantage of this mode ofoperation, termed the predictor mode, is

the inability of the model to be used independently from the plant (Zabiri and Mazuki, 2009).

An alternative as proposedby (Gomm et al, 1996)which is to use the trainedNARXSPnetwork

in the parallel (feedback) architecture, where the predicted output from the network is being

delayed and fed back along with the input to the network. This alternative mode of operation is

called model mode.

The best input sequence selected, which are Baruchl input, Sine Wave input and Liu Input. As

an initiative, from the best inputs, combinations are made between any two best inputs. Then, the

effect ofNARXSP NN prediction for the process behavior is observed.
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Type

Baruchl

Liu

PTT

RMSE =

0.0174

CDC =

55.166

Table 3: Baruchl and Liu Combination Input Prediction
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Analysis

Purelin, tansig, tansig is the

best combination of its

transfer function. It has low

RMSE and average CDC.

There is an apparent

deviation especially at the

peak of sinusoidal pattern of
behavior. Clear deviation at

time of 350 sec to 600 sec

reaction.

Subsequently, combination between one best input and one input with poor performance is made

and fiirther tested in NARXSP NN model. For this purposes, Baruch 1 and Soni 1 input is

combined and produce new pattern of input sequences.

Table 4: Baruchl and Soni 1 Combination Input Prediction

Type

Sonil

Baruchl

TTP

RMSE =

0.0100

CDC =

82.648
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Analysis

Purelin, tansig, purelin is the

best combination of its

transfer fimction. It has low

RMSE and above average

CDC. There is an apparent

deviation at the early

seconds when the signal

changes direction.
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From the graphs obtained combination of the best input (Baruch 1) and input with poor

performance (Soni 1) give better performance compare to the combination of two best input

(Baruch 1 and Liu). This shows that, it is not necessary that the combination of both good inputs

will lead to a better prediction of model.

59



CHAPTERS

CONCLUSION & RECOMMENDATION

5.1 Conclusion

The author is successful in building the CSTR model with various input sequence. The

CSTR model created is able to generate input output data structure for NN purpose. The

input-output data that generated from simulink-based model can be run in neural network

to determine the best input sequence. In this study, a black box Neural Network-based

modeling approach is proposed in modeling the temperature behavior of process. For

different types of input sequences, the NARXSP-based model is practically good in

predicting the actualprocess temperature profile. Numerical evaluations showedthat with

optimized model structures, NARXSP model is able to predict temperature behavior in

CSTR to sufficient accuracy. It is also found that parallel (feedback) network trained

using the series-parallel form (NARXSP) is able to provide multi-steps ahead prediction

with sufficient accuracy. The best input sequences that can represent the best empirical

model are Baruch 1, Sine and Liu inputs. The NN model ability in predicting the actual

behavior of the process condition depends on its type. Generally, NARXSP neural

network give the best prediction compare to feed forward neural network.

The project is successful within the time limit.
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5.2 Recommendation

For area of improvement, study on more variety of input sequence from journals should

be made to get a better input sequence. Besides that, research can be improve by using

other types of neural network with different architecture such as Elman NN, Layered NN,

NARX NN and Cascade NN, instead of using only NARXSP and Feed forward neural

network. Additionally, for better analysis, study can alternatively be conduct with

different types of empirical model such as Volterra Model, Gaussian Model,

Hammerstein Model, and Wiener Model to replace the functions of Neural Network

empirical model.
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APPENDIX

Coding of MATLAB for CSTR Model:

function dx = reactor(t,x,Tj)

?:modei for reactor

% Concentration of A in CSTR (lbmol/ft'\3)

Ca = x(1) ;

% Temperature in CSTR (F)

T = x{2);

% Parameters:

o Volumetric Flowrate (mA3/sec)

q - 100;

% Volume of CSTR (mA3)

V = 100;

% Density of A-B Mixture (kg/mA3)

rho = 1000;

§, Heat capacity of A-B Mixture (J/kg-K)

Cp = .239;

% Heat of reaction for A->B (J/mol)

mdelH = 5e4;

% E - Activation energy in the Arrhenius Equation (J/mol)

% R - Universal Gas Constant = 8.31451 J/raol-K

EoverR = 8750;

% Pre-exponential factor {1/sec)

kO = 7.2el0;

% U - Overall Heat Transfer Coefficient (W/mA2-K)

% A - Area - this value is specific for the u calculation {mA2)

UA = 5e4;

% Feed Concentration (mol/mA3)

Caf = 1;

% Feed Temperature (K)

Tf = 350;

'i Compute x:

dCa= (q/V*(Caf - Ca) - k0*exp(-EoverR/T)*Ca);

dT = (q/V*(Tf - T) + mdelH/(rho*Cp)*kO*exp (-EoverR/T) *Ca + UA/V/rho/Cp*(Tj'

T)};

dx=[dCa;dT];
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Coding for S-Function in Simulink :

function [sys,xO,str,ts]=reactor_sfcn(t,x,u,flag,Cinit,Tinit)

switch flag

case 0

% [sys,xO,str,ts] = radlInitial! zeSizes (Cinit, Tinit) ; •?;initialize

str=[];

ts=[0 0];

s=simsizes;

s. NuitiContStates=2;

s. NuraDiscStates^O;

s.NumOutputs=2;

s.Numlnputs=l;

s.DirFeedthrough=0;

s.NumSam.pleTimes=l;

sys=simsizes(s) ;

xO=[Cinit,Tinit] ;

case 1 ederivatives

Tj=u;

sys-reactor(t,x,Tj) ;

case 3 ooutput

sys=x;

case {2 4 9} %2:discrete,4:caicTimeHit,9:termination

sys-[];

otherwise error(['unhandled flag=',num2str(flag)]);

end
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Sample ofNARXSP Neural Network Coding:

clear;clc;
% Extract data from M-file

A = xlsreadCsinenormalize');

P_tr = A(l:500,1)';
T_tr = A(l:500,2)';
P_v - A(501:800,l) ';
T_v = A(501:800,2)';
P__te - A(801:1000,l) ';
T_te = A(801:1000,2)';

% converting vector to cell

P_tr = con2seq(P_tr); T_tr = con2seq(T_tr);
P_v = con2seq(P_v); T_v = con2seq(T_v);
P_te = con2seq(P_te); T_te = con2seq(T_te);

% create the training matrix

boy = 3;

pt = [P_tr(boy:end);T_tr(boy:end)]; tt = T_tr(boy:end);

ptv = [P_v(boy:end);T_v(boy:end)]; ttv = T__v(boy:end) ;
pte = [P_te(boy:end);T_te(boy:end)]; tte = T_te(boy:end)

de = 2;

dl - [l:de];

d2 = [l:de];
% naming TF

p = 'purelin'; t = 'tansig'; 1 = 'logsig';
narx_net = newnarxsp(minmax(pt),dl,d2,[2 2 l],{t,t,p});
narx_net.trainFcn = 'trainrp';
narx_net.trainParam.show = 10;
narx_net.trainParam.epochs = 600;

for k=l:de,

Pi{l,k}=P_tr{k};
end

for k=l:de,

Pi{2,k}=T_tr{k};
end

val.P=ptv; val.T=ttv;

test.P=pte; test.T=tte;
% [net tr] = train(net,P tr,T_tr,[],[],val,test);
narx__net = train(narx_net,pt,tt,Pi,[],val,test);

a = sim(narx_net, pte, Pi) ;
a = cell2mat(a);

tte = cell2mat(tte);

% Actual min max of the data set

T_temax = 1; T_temin = 0.0000;

T te = tte;
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% Onnormalized data set

[rowl,coll] = size(T__te);
unnormJTte = zeros (1,l:coll);
for j = 1:coll;

unnorm_Tte(j) = T_te(j)*(T_temax~T_temin)+T_temin;
j = j+1;

end

unnorm_a = zeros(1,1:coll);
for jj = l:coll;

unnorm_a(jj) = a(jj)*(T_temax-T_temin)+T_temin;

jj = jj+i;
end

figure(4)

time = 1:length(T_te);
plot(time, unnoriujrte, '-', time, unnorm_a, '-r' ),...
xlabel('Time (min)'), ylabel('Output'),...

axis([0 1000 0.4 0.5]),...

legend('Model','NARXSP')

grid on;

% rinse calculation

[rowl,coll] = size(T__te);
error_col = zeros (1, l:coll) ;
for i = l:coll;

error_col(i) = (unnorm_a(i) - unnormJTte(i))A2;
i = i+1;

end

sum_error = sum(error_col);
raise = sqrt(sum_error/coll)

-6%co CDC calculation

dl=zeros(1, coll-1);

ii=2;

for iii=l:coll-1

ai~unnorm_Tte(:,ii) - unnormJTte(:,ii-1);
bi=unnorm_a(:,ii) - unnorm^a(:,ii-1);
ci=ai*bi;

dl(:,ii-l)=ci;

ii=ii+l;

iii=iii+l;

end

Dtl=zeros(1,coll-1);

jjj=i;
for jjjj=l:coll-l

if dl(:,jjj)>0

Dtl(:,jjj)=l;

else

Dtl(:,jjj)=0;
end

jjj=jjj+i;
jjjj=jjjj+l;

end

[row2,col2] - size(Dtl);

CDC = (sum(Dtl))*(100/{col2))
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Sampleof Feed Forward Neural Network Coding:

clear

% Extract data from M-file

A - xlsread('sinenormalize');

% Determine size of XY matrix

[row,col] = size(A) ;

% Allocating input and target columns for T, V, and TS

P_tr = A(l:500,l)';
T_tr = A(l:500,2)';
P_v = A(501:800,l)';
T_v = A(501:800,2)';
P_te = A(801:1000,l)';
T_te = A(801:1000,2) ';
P_te = B(1:1000,1)* ;
T_te = B(l:1000,2)';

% naming TF

p = 'purelin'; t = 'tansig'; 1 = 'logsig';
%%%%%'i%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Setup network %%Vl%%%%%%%%%v%%%%%%ra%%'i
% net=newcf(minmax(P_tr), [37 20
1],{'logsig' ,!logsig', 'logsig '}, 'trainrp' ,'leamgdm', 'rase');

net=newff(minmax(P_tr), [2 2 l],{p,t,p},'trainrp','learngdm','mse');
%%i%%'£%%%%Yb%%i%%?:%%%l%^%%^'r%%%%%%% Setup network ,\^^u%%%'h%%%%?Si%%%^%%%%%%

net.trainParam.show=100;

net.trainParam.epochs=500;

net.trainparam.goal=le-4;

% Train network with early stopping

randf'seed',419877);

net = init(net);

%% Set up the validation and testing sets in a structure form

val.P-P_v; val.T=T_v;
test.P=P_te; test.T=T_te;
% [net tr] = train(net,P_tr,T_tr,[],[],val,test);
%[net tr] = train(net,P_tr,T_tr,[],[],[],[]);

% Simulate network

a = simfnet, P te);

% figure(1)

% [slope,intercept,R] = postreg(a,T_te);

% Actual min max of the data set

T temax = 1; T temin = 0;
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% Unnormalized data set

[rowl,coll] = size(T_te);
unnorm_Tte = zeros(1,1: coll) ;
for j = l:coll;

unnorm_Tte (j ) = T_te (j )*(TJremax-T_temin) +T_temin;
j = j+1;

end

unnorm_a = zeros(1,l:coll);
for jj = l:coll;

unnorm_a(jj) = a(jj)*(T_temax-T_temin)+T_temin;
jj = jj+1;

end

figure(2)

time = 1:length(T_te);
plot(time,unnorm_Tte,'-', time,unnorm_a,'-r'),...
xlabel('Time (min)'), ylabel('Output'),...

axis([0 1000 -0.3 2.5]),...

legend('model','Feed forward')

grid on;

% rmse calculation

[rowl,coll] = size(T_te);
error__col = zeros (1,1: coll) ;
for i = l:coll;

error_col(i) = (unnorm_a(i) - unnorm_Tte(i))A2;
i - i+1;

end

sum_error = sum(error_col);
rmse = sqrt(sum_error/coll)

%%% CDC calculation

dl=zeros(1, coll-1) ;

ii=2;

for iii=l:coll-1

ai=unnorm_Tte(:, ii) - unnorinjrte (:, ii-1) ;
bi=unnorm_a(:,ii) - unnorm_a(:,ii-1);
ci=ai*bi;

dl (:,ii-l)=ci;

ii=ii+l;

iii=iii+l;

end

Dtl=zeros(1,coll-1) ;

jjj=i;
for jjjj=l:coll-1

if dl(:,jjj)>0

Dtl(:,jjj)=l;
else

Dtl(:,jjj)-0;
end

jjj=jjj+i;
jjjj=jjjj+i;

end

[row2,col2] =size(Dtl);

CDC = (sum(Dtl))*(100/(col2) )

67
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