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ABSTRACT

The objective of this report is to discuss the preliminary research done and basic understanding
of the chosen topic, which is Design of Input Sequence to Capture Adequate Non Linearity. The
ultimate aim of the project is to find the best input sequence that can capture adequate non
linearity and give the best predictive empirical model of Continuous Stir Tank Reactor. The
challenge in this project is to find the available input sequence, which has been available in other
people research project, applied them in MATLAB Simulink and further tested in various types
of Neural Network. Simulation model will be design to test for the best input sequence that will
give the best result for prediction of output. Once the result from the simulation has been get, the
best input sequence will be test on the real system to prove that the result obtain in the real cases

is similar with simulation that had been carried out.
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1.1

CHAPTER 1

INTRODUCTION

Background of Study

Detailed mathematical modeling is increasingly being used by companies to gain competitive

advantage through such applications as model-based process design, control and optimization.

Thus, building various types of high quality models to represent the real systems has become the

main concern to most of industries. This activity involves the use of several methods and

techniques including model solution techniques, nonlinear systems identification, model

verification and validation, optimal design of experiments and etc (S.P. Asprey).

This paper will discuss about nonlinear system identification and focus mainly on design of input

sequence. Nonlinear system identification involves the following tasks (Ramesh et al, 2007):

]

Structure selection — Selection of suitable nonlinear model structure and number of model
parameters

Input sequence design — Determination of the input sequence u(t) which is injected into the
plant to generate the output sequence y(t).

Noise modeling — Determination of the dynamic model which generates noise input e(t).
Parameter estimation — Estimation of the remaining model parameters from the dynamic
plant data u(t) and y(t) and the noise input e(t).

Model validation — Comparison of plant data and model predictions for data not used in

model development.

10
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Figure 1: Schematic of the System Identification Problem

Dynamic modeling is used in this paper to describe the behavior of a distributed parameter
system in terms of how one qualitative state can turn into another. It can also describe as a
medium to express and model the behavior of the system over time. The term dynamics is

referring to unsteady state or transient behavior (Ramasamy M, 2007).

Modeling is very essential, in order to fulfill two main objectives; maintain a process at the
desired operating conditions, safely and efficiently and satisfy product quality and environmental
requirements (Ramasamy M, 2007). There are basically three types of modeling approach
(Ramasamy M, 2007); white box (fundamental/physical approach), grey box (semi empirical
approach) and black box (empirical approach). For this study, the author employ empirical
model approach to model the non linear dynamic behavior of Continuous Stir Tank Reactor and
design the optimum input sequence to generate the best output of prediction. Empirical model is
intensively used due to the fact that empirical model can give solution to the problem
formulation within smaller range of time compare to the first principle modeling. As empirical
approach is also known as black box, therefore there’s no need of lengthy mathematical equation

to describe the real system.
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1.2 Problem Statement

Many of process system nowadays exhibit nonlinear behavior. However, most of the widely
used, existing empirical model structures are linear. In some cases this basic model formulation
may not be able to adequately capture the nonlinear process dynamics. In addition, the input
sequence available nowadays has only small operating region. The empirical model may work
well to predict only certain non linear behavior by using certain type of input sequence. But if
other type of non linear behavior is existed in the process, the modeling will not have an ability
to cater and predict the future behavior of the process. Even if the model can give some output of
prediction, the output actually doesn’t represent the actual behavior of the process. Or the worst
thing that would happen is the system can become haywire. Therefore, this project is conduct to

design input sequence that will capture adequate non linearity in the process behavior.

1.3 Significance of Project

The best input sequence from this research can be applied in the real system in industries, so that
the control of process behavior will be more efficient. By having the best control system, people
will easier to know and predict future behavior of the process and do the correction actions
before the disturbance upset the process. This will not just saving the money but also time
friendly.

1.4 Objective and Scope of Study

The main objectives of this research are:

e To test various input sequence in Continuous Stir Tank Reactor (CSTR) modeling by
using MATLAB. '

» To select the best input sequence that will generate the best predicted output that
represent the actual output behavior of the process.

¢ To apply the best input sequence to the real system to test the performance of modeling,

and check whether the result for simulation test is acceptable or not.

12



The primary focus of the project is to develop a model by using MATLAB software to get the
best input sequence that will give the best predictive model. In order to achieve the objectives, a
few tasks and research need to be carried out by collecting all technical details regarding the
existing input sequence and by studying the fundamental and application of MATLAB software.
The author has also undergone some discussion with expert throughout meeting, training and

seminar. The project is assigned to be completed within two semester’s time

13



CHAPTER 2

LITERATURE REVIEW

2.1 Input Sequence

2.1.1 Definition

Input can be defined as a “things that cause” or “stimuli”, while output are “things that are
affected” or “responses”. The word input refers to any variable that influences the process output

(Ramasamy, 2007).

There are several common ways to define the word input:

1: The input used to generate the dataset, and it can be tailored to facilitate estimation
2: A state, or a sequence of states, of a point that accepts data.

3: A signal or interference that enters a functional unit, such as a telecommunications system, a

computer, or a computer program.
4: Data that is ready for entry into the computer model.

Since the input is implemented in the plant, it should satisfy certain characteristics. First, the

input signal must have sufficient energy to excite the full range of nonlinear process dynamics.

Second, the input should be plant-friendly. Since this input signal is implemented by an actuator
in the plant, such as a control valve, the input sequence should not have frequent transitions
which cause actuator wear. In addition, the magnitude of the input sequence must not be large so
that valve saturation is avoided. At the same time the magnitude of the input should be high
enough to ensure that the output response lies outside the noise-band for process operation. In
addition, a sequence with a length as short as possible is desirable so that system identification
does not interfere with normal plant operation. However, these practical requirements are often
in conflict with theoretical identification results. It has been shown that the coefficient error
variance can be reduced by using a sequence as long as possible. In fact, asymptotic convergence

is achieved as the sequence length approaches infinity.

14



2.1.2 Types
i) Step Input (1% order)

A sudden and sustained of input change (Seborg et al, 2004). It can be describes in
Figure 2. This type of input is simple to apply at practice (Tsai et al, 1986).

&
M
>  Time
Figure 2: Step Input
) o r=0
Tig{d) =4
g ra0

ii) Ramp Input

Input that is gradually changes in upward or downward direction (Seborg et al,
2004). It can be describes in Figure 3.

0 ek Pespons
N e
i
; a
Figure 3: Ramp Input
[ oy
L =‘}

jar r>b
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iii)  Sine Wave Input

A waveform that resembles as a sine curve (Figure 4). Theoretically, this is a simple
method by which to obtain a wide range of the frequency responses by applying a
wide range of input frequencies. HoWever, in practice, this is not really applicable
because the testing period can be extremely long during normal plant operation (Tsai

et al, 1986).

BIFHE WA
&

m L o
! f ! i sy (3 )= ;
Umi“ o ’ Aspgy oz 0

Figure 4: Sine Wave InpuT

iv})  Pulse Input

A step change that limited to certain period of time (Seborg et al, 2004) (Figure 5).
The pulse type input is any input which has a closed wave form with respect to the
steady state reference level. This type of wave form is a popular practical method to

obtain dynamic information of the process (Tsai et al, 1986).

5
Ruttonguinr
b .
o | j . [L f B
2 U =36 0Dxtxr
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. :
Timg, ¥

Figure 5: Rectangular Pulse Input
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vi)

Sawtooth Wave

The sawtooth wave (or saw wave) (Figure 6) is a kind of non-sinusoidal waveform. It
is named a sawtooth based on its resemblance to the teeth on the blade of a saw. The
sawtooth wave, called the "castle rim function” by (Trott , 2004), is the periodic
function given by

Siak= a4 t'mti% +$).} M

where t€ ia}is the fractional part ttac s3=a - L4l, Ais the amplitude, ¥is the period
of the wave, and #is its phase. It therefore consists of an infinite sequence of

truncated ramp functions concatenated together.

Avg| Ituds
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Figure 6: Sawtooth Wave

Pseudorandom Binary Sequence

Pseudo-random Binary Sequence (Figure 7) is based on binaty sequences of length N,
where N is odd (K R Godfrey, 1992). If the sequence has logic level 1 and 0 and the
corresponding signal has voltage level £V, then the transformation from logic level to
voltage level is either 1>+V and 0->-V or 1>-V and 0>+V,

There are several classes of pseudo random binary sequences but one class, called
maximum length sequence or m-sequence is very popular because the corresponding

signal can easily be generated using shift register circuitry with appropriate feedback.

17



The advantage of the PRBS input (Braun et al, 1999) include ease of implementation
and an autocorrelation function. Since the PRBS is periodic and deterministic, it can
be designed to process excitation in a control relevant frequency range over a single
data cycle. Because the PRBS can be applied to a process multiple times, it provides
the user with a convenient means for discarding corrupted segments of data and
retaining the most informative data for model estimation and validation.

The PRBS input, however, is not always well suited for nonlinear problems (Braun
et al, 1999). Since the PRBS consists of only two levels, the resulting data may not
provide sufficient information to identify nonlinear behavior (e.g. y(k) = u2(k)).
Additionally, a PRBS signal of too large a magnitude may bias the estimation of the
linear kernel. Multi-level pseudo-random sequences (m-level PRS), in contrast, allow
the user to highlight nonlinear system behavior while manipulating the harmonic
content of the signal to enable unbiased estimation of the lincar dynamics in the
presence of nonlinearities.

According to (Heaven et al, 1993), in their paper “Application of System
Identification to Paper Machine Model Development and Controller Design”, the
widely used input sequence in industry nowadays is Pseudo-random Binary
Sequence. This sequence can be used to determine process dynamics, isolate
multivariable process interaction, and develop advanced computer models to evaluate

existing and new control strategies.

Figure 7: PRBS Signal

18



vii)  Gaussian Random Noise (Figure 8)
White noise that has a probability density graphed as a normal distribution. Gaussian
white noise is not a popular input sequence in practice because it results in constant
changes in the input especially for unacceptably large input value. However, it is
quite popular in the parameter estimation because it provides much information about

process dynamics(Parker et al).

3
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Figure 8: Gapssian Random Noise

viii)  Repeating Sequence Stair

Repeat discrete time sequence.

Tirag Sample

Figure 9: Repeating Sequence Stair

ix) Continuous switching—pace symmetric random sequence(Soni and Parker, 2004)

A 4M +4 length deterministic input sequence used to estimate the bias, linear, and

diagonal parameters are :

19
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This sequence ensures that the contributions due to the nonlinear sub-diagonal and
off-diagonal terms are zero identically, (u(k - DHu(k - j ) =0 Vi#j (1, j < M)). The
parameters y; and vy, are selected such that y, > v;. This is done in order to facilitate
sufficient excitation of the model nonlinearities. In addition, the placement of the
smaller pulse before the larger pulse guarantees that any residual error from the large

pulse response does not corrupt the small pulse output data.
Input Design to Estimate Sub-Diagonal Parameter (Soni and Parker, 2004).

For this sequence the ratio given by

EL*Q =4.5%+ Diwe
Thop ‘

is 13102 which ensures selective excitation of the third-order sub-diagonal terms.
In order to derive the sub-diagonal estimator equations, an approach similar to that
used for the derivation of the bias, linear, and the diagonal estimators is used.

The only difference is that in subsequent sub-units of the input sequence there is a
gap between the two pulses. This gap length increases by one with increasing sub-
units, and it is employed to ensure the tailored excitation of all of the sub-diagonal

parameters. The first sub-unit of the input sequence is given as:

A k=1

By Fac2
O IC R M+
k= —33 R=M42

~ihy k=M+3
b M+ aak <M

Applying this to the system of interest and removing the bias, linear, and nonlinear

diagonal contributions, recovers the residual z(k). The estimates for the third-order

20



Xi)

Xii)

Xiii)

Xiv)

sub-diagonal coefficients can he obtained by minimizing the following sum-squared

prediction error:

W42

Ja= 3 el — He)p
|

Input Sequence for Constant, linear, and diagonal parameters (2M+ 2-point input

sequence) (Parker et al, 2001)

u(k) =

Y k= 0;

0 1<k<M;

-y k=M+1;

0 M+2 <k <2M+1
where

y>0

M=20

Signal of sum of sinusoids with different frequencies (Baruch et al).

(k) =

sin(nk/25) ¢ <k <26;
10 25<k<5l;
-1.0 50 <k <78;
0.3 sin(nk/25) + 0.1 sin(zk/32) +0.6 sin(nk/10), 78<k<101

Sequence of puises with random amplitude and width (Baruch et al).

u(k) =

sin(nk/25), 0 <k <251;
1.0 250 <k < 501;
-1.0 500 <k <751;
0.3 sin(ark/25) + 0.1 sin(xk/32) + 0.6 sin(rk/10), k<1001

Signal of random sequence (Liu et al, 1997).

u(k) =
sin(2nk/250), K < 500;
0.8 sin(2nk/250) + 0.2 sin(2k/25) k >500

21



2.1.3 Type of Model Function

1) Radial Basis Function (RBF)

A radial basis function is a function which acts as an activation functions. They are used in
function approximation, time series prediction, and control. An RBF is a weighted sum of

translations of a radially symmetric basic function augmented by a polynomial term. The basic

function @ of a positive real ¥, where ¥ is the distance(radius) from the origin. Popular choices

for ®include

o The thin-plate spline (for fitting smooth functions of two variable
pirt = v*logl)

o The Gaussian (mainly for neural networks)

« The multiquadric (for various applications, in particular fitting to topographical data)

Hlr} = vrit et

For fitting functions of three variables, good choices include

¢ The biharmonic spline + linear polynomial
pr) =

» The triharmonic spline + quadratic polynomial
pir} =+

22



The primary advantage of RBFs over binary features is that they produce approximate functions
that vary smoothly and are differentiable. In addition, some learning methods for RBF networks
change the centers and widths of the features as well. Such nonlinear methods may be able to fit
the target function much more precisely.‘ The disadvantage of RBF network especially, is greater

computational complexity and, often, more manual tuning before learning is robust and efficient.

2) Polynomial Function

A polynomial function is one that has the form
y=a {njxMn} +a {n-1}x"{n-1} +...+a {2}x {2} +a {1}x+a {0}

with » denoting a non-negative integer that defines the degree of the polynomial. A polynomial
with a degree of 0 is simply a constant, with a degree of 1 is a line, with a degree of 2 is a

quadratic, and with a degree of 3 is a cubic, and so on.

Historically, polynomial models are among the most frequently used empirical models for fitting

functions. These models are popular for the following reasons.

Simple form.
Well known and understood properties.
Moderate flexibility of shapes.

BN

A closed family. Changes of location and scale in the raw data result in a polynomial
model being mapped to a polynomial model. That is, polynomial models are not
dependent on the underlying metric.

5. Computationally easy to use
However, polynomial models also have the following limitations.

1. Poor interpolatory properties. High degree polynomials are notorious for oscillations
between exact-fit values.

2. Poor exfrapolatory properties. Polynomials may provide good fits within the range of
data, but they will frequently deteriorate rapidly outside the range of the data.
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3. Poor asymptotic properties. By their nature, polynomials have a finite response for finite
yvalves and have an infinite response if and only if the ivalue is infinite. Thus
polynomials may not model asymptotic phenomena very well.

4. Have a shape or degree tradeoff. In order to model data with a complicated structure, the
degree of the model must be high, indicating and the associated number of parameters to

be estimated will also be high. This can result in highly unstable models.

3) Rational Function

A rational function is simply the ratio of two polynomial functions

Qu ™ e G 2™+ e’ F s o
B = : - :
BnZ™ F b 2™ L F Ot B+ By

with n denoting a non-negative integer that defines the degree of the numerator and m denoting a

non-negative integer that defines the degree of the denominator.
When fitting rational function models, the constant term in the denominator is usually set to 1.
A rational function model is a generalization of the polynomial model. It contains polynomial

models as a subset in the case when the denominator is a constant.

If modeling using polynomial models is inadequate due to any of the limitations, a rational
function model should be considered. The fitting rational function models are also referred to as

the Pade approximation.
Rational function models have the following advantages.

1. Moderately simple form.

2. A closed family. As with polynomial models, this means that rational function models are
not dependent on the underlying metric.

3. Can take on an extremely wide range of shapes, accommodating a much wider range of
shapes than does the polynomial family.

4. Better interpolatory properties than polynomial models. Rational functions are typically

smoother and less oscillatory than polynomial models.
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Excellent extrapolatory powers. Rational functions can typically be tailored to model the
function not only within the domain of the data, but also so as to be in agreement with
theoretical/asymptotic behavior outside the domain of interest.

Excellent asymptotic properties. Rational functions can be cither finite or infinite for
finite values, or finite or infinite for infinite x values. Thus, rational functions can easily
be incorporated into a rational function model.

Can often be used to model complicated structure with a fairly low degree in both the
numerator and denominator. This_ in turn means that fewer coefficients will be required
compared to the polynomial model.

Moderately easy to handle computationally. Although they are nonlinear models, rational

function models are a particularly easy nonlinear models to fit.

However, rational function models have the following disadvantages.

1.

4)

The properties of the rational function family are not as well known to engineers and
scientists as are those of the polynomial family. The literature on the rational function
family is also more limited.

Unconstrained rational function fitting can, at times, result in undesired nusiance

asymptotes (vertically) due to roots in the denominator polynomial.

Piecewise Function

In mathematics, a piecewise linear function is describe by

where ;

FiR-Y

¥ = vector space

Q) = subset of a vector space
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A special case is when fis a real-valued function on an interval [x),x»]. Then fis piecewise linear
if and only if [x1,x2] can be partitioned into finitely many sub-intervals, such that on each such

sub-interval /, fis equal to a linear function
fixy=ap+ by

The absolute value function f{x) =| x | is a good example of a piecewise linear function. Other

examples include the square wave, the sawtooth function, and the floor function.

Important sub-classes of piecewise linear functions include the continuous piecewise linear
functions and the convex piecewise linear functions. Splines generalize piecewise linear

functions to higher-order polynomials,

A piecewise function is a function that is defined on a sequence of intervals. A common example

is the absolute value,

—x flwwsr=0Q
I-d =) ﬂ ﬁ’!'.'i‘ e U
& fors > 0.

Many nonlinearities that appear frequently in engineering systems are cither piecewise-affine
with a saturated linear actuator characteristic or can be approximated as piccewise-affine
functions. Piecewise-affine systems are also a class of hybrid systems with a continuous-time
state and a discrete-event state. For piecewisec-affine systems the discrete-event state is

associated with discrete modes of operation.

The continuous-time state is associated with the affine dynamics valid within each discrete

mode. Piecewise-affine systems pose challenging problems because of its switched structure.
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2.2 Nonlinearity

Nonlinearity by (Nikolaou and Misra) definition referring to the absence of linearity can
manifest itself in various ways, such as nonlinear dynamics, constraints and changing modes of
operation. There are two basic properties that characterize the behavior of a linear system
according to (Hangos and Cameron, 2001). The first one is the principle of Superposition. In
general, this principle states that the response of a linear system to a sum of N input is the same
as the sum of individual input. The second properties for linear system is independence of
dynamic response character and process condition. However, if the system does not exhibit any
of these properties, it is known as non linear system. The nonisothermal reactor is the popular

example of non linear chemical process.

In many real world applications there are nonlinearities and unmodelled dynamics which poses
problems when implement practical control strategies. Modern control such as adaptive and
optimal control techniques and classical control theories has been commonly applied to deal with
these difficulties. Nonlinear model process is dealing with issues like stability, efficient
computation, optimization, constraints and others (Kocijan and Smith). Interest in nonlinear
feedback control of chemical processes has been steadily increasing over the last several years
because both pronounced nonlinear nature of several chemical and increased sensing and
computational capabilities afforded by modern sensors, computers, algorithms, and software.
Such capabilities have been claimed and at times proven to offer benefits in better operation and

control of chemical processes.

Below is example of industrially cases for which nonlinearity is usually present (Nikolaou and
Misra):
» Biochemical production of chemicals.
¢ Non-routine operation situations (e.g., start-ups, shut-downs, change-overs, flares, relief
valve emissions). Because a process moves far from a steady state during non-routine

operation, nonlinear behavior is usually pronounced.
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e Nonlinear distributed process systems

Example:

Control of spatial profiles: etching, crystal growth, packed-bed reactors

Control of size distributions: aerosol production and particulate processes.
Crystallization, emulsion, polymertzation.

Cell cultures control of fluid flows: mixing, wave suppression, drag reduction,
separation delay,

Control of material microstructure: thin-film growth and nano-structured coatings
processing.

Batch processes: fine chemicals and pharmaceuticals

Figure below show the example of control loop with nonlinearity.

o ; disturbance | d st
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tpon ;* € ‘Q AN ':"a‘* N . »

s, M

............
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Figure 10: Control Loop with Nonlinearity

2.3 Empirical Model

As in many nonlinear systems it is not an easy task to come up with an accurate enough physical

model of the plant, its finally turn to black-box model to describe the systems nonlinear

dynamics.

Below are some descriptions of empirical models that have been study by researcher.
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2.3.1 Neural Network Model

A neural network is a powerful data modeling tool that is able to capture and represent complex
input/output relationships. The motivation for the development of neural network technology
stemmed from the desire to develop an artificial system that could perform "intelligent" tasks
similar to those performed by the human brain. Among available structures, neural network have
proved to work quite well in the identification of non linear systems on the basis input-output
data. Despite neural networks are well known universal approximators, they are quite dependent
on the quality of the data set. This feature together with a bounded number of iterations within
the training phase leads inexorably to a model mismatch, which in turn is responsible for a static

error, in worst case giving rise to instability of the feedback system.

The true power and advantage of neural networks lies in their ability to represent both linear and
non-linear relationships and in their ability to learn the relationships directly from the data being
modeled. Traditional linear models are simply inadequate when it comes to modeling data that
contains non-linear characteristics. The advantages and disadvantages of neural network can be

simplified as below:

Advantages:

. Can perform tasks that a linear progfam cannot.

. When an element of the neural network fails, it can continue without any problem by
their parallel nature.

. A neural network learns and does not need to be reprogrammed.

. Can be implemented in any application.

. Can be implemented without any problem.

Disadvantages:

. Needs training to operate.

. The architecture of a neural network is different from the architecture of microprocessors
therefore needs to be emulated.

. Requires high processing time for large neural networks.
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The most common neural network model is the multilayer perceptron (MLP). This type of neural
network is known as a supervised network because it requires a desired output in order to learn.
The goal of this type of network is to create a model that correctly maps the input to the output
using historical data so that the model can then be used to produce the output when the desired

output is unknown.

Applied to control field, NN are essentially nonlinear models that can be useful to solve non-
linear control problems. Basically, NN can be classified as static (feedforward) and dynamic
(recurrent) (Smith and Shorten, 2005).
e Static: Feedforward Backpropragation Network, Cascade Forward Backpropragation
Network
e Dynamic: Recurrent Network - Non linear Autoregressive Network with Exogeneous
Inputs (NARX), Bidirectional Recurrent Neural Network, Recurrent Cascade Correlation,

Layered Recurrent Neural Network ete.

In this paper, the author used two types of NN which are Feedforward Backpropragation
Network and Non linear Autoregressive Network with Exogeneous Inputs Series Paraliel
(NARXSP)

a) Feedforward Backpropragation Network

Feedforward backpropagation neural networks (FF networks) are the most popular and most
widely used models in many practical applications (Hagan et al, 1996). Figure 11 illustrates a
FF networks network with three layers:

ol = bl e bY) o - ecig(LRE N -B)

Figure 11: Feedforward NN Architecture
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b) Non linear Autoregressive Network with Exogeneous Inputs Series Parallel (NARXSP)

Standard NARXSP architecture is as shown in Figure 12. The true output which is
available during the training of the network is used instead of feeding back the estimated
output. The advantage of this architecture is that the input to the feedforward network is
more accurate. Besides, the resulting network has a purely feedforward architecture, and

static back propagation can be used for training (Zabiri and Mazuki, 2009).

i Lawar 1 Lagyer &

~
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Figure 12;: NARXSP NN Architecture

2.3.2 Gaussian Model

Each member of the family may be defined by two parameters, location and scale: the mean
("average”, ) and variance (standard deviation squared) o2, respectively. Gaussian process
models provide a probabilistic non-parametric modeling approach for black-box identification of
nonlinear dynamic systems. The Gaussian processes can highlight areas of the input space where
prediction quality is poor, due to the lack of data or its complexity, by indicating the higher
variance around the predicted mean. It contains noticeably less coefficients to be optimized

(Kocijan and Smith).
A Gaussian process is an example of the use of a flexible, probabilistic, nonparametric model

which directly provides us with uncertainty predictions. A Gaussian process is a collection of

random variables which have a join multivariatec Gaussian distribution. A common choice is
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Where 0= [w....Wp Vo vi]" are the ‘hyperparameters’ of the covariance function and D the input

dimension.

Consider a set of N D-dimensional input vector X=[x,,x,...xy] and a vector of output data Y=[y',
v2...y"". The advantage of using this model is we can use the same model to predict the output
y* with input x*. Unlike other model, there is no model parameter determination as such within a
fixed model structure. With this model, most of the effort consists in tuning the parameter with
the covariance function. This is done by maximizing the log-likelihood of the parameter, which
is computationally relatively demanding since the inverse of the data covariance matrix have to

be calculated at every iteration.

For multistep ahead prediction, the uncertainty of future predictions provides the
inputs for estimating further means and uncertainties. Gaussian process can, like neural
networks, be used to model static nonlinearities and can therefore be used for modeling dynamic

systems if delayed input and output signals are used as regressors (Kocijan and Smith).

The Gaussian process model not only can describe the dynamic characteristics of the non-linear
system, but at the same time provides information about the confidence in the prediction. The
Gaussian process can highlight areas of the input space where prediction quality is poor, due to

the lack of data, by indicating the higher variance around the predicted mean.

2.3.3 Wiener Model

(Cervantes et al, 2003) in their research paper describes Wiener Nonlinear Model Predictive to
control a CSTR with multiple steady states. This model can represent a process with linear
dynamic but a nonlinear gain and can represent many of the memoryless nonlinear systems

encountered in industrial processes. Due to the static nature of the nonlinearities, they can be
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removed from the conirol problem. However, some computational difficulty is potentially
present and due to that an implicit inversion of the non linear static gain is needed. More
specifically, the Wiener structure consists of a linear dynamic element followed in series by
Static nonlinear element. The linear dynamic element uses a discrete state space model while the

nonlinear element uses the Piecewise Linear approximation.

Assuming the system to be controlled can be described by the following discrete-time, nonlinear,

state-space model:

xfk+1} = gl ) Aufi
g )= Made R gt}
Where;
x(k)y=vector of state variable
Au(k)= vector of control movements
d(k)= vector of additive disturbance variables

y(k)= vector of process output

In general, a wiener model consists of a dynamic linear block in cascade with a static non-
linearity at the output. For the static non linear element, Continuous Piecewise Linear (PWL)
function y=f (v) is use in this paper (Cervantes et al, 2003). The PWL functions have proved to

be a very powerful tool in the modeling and analysis of nonlinear systems.

2.3.4 Hammerstein Model

The Hammerstein model (Ramesh et al, 2007) consists of a nonlinear static element followed in
series by a linear dynamic element. Hammerstein model has been considered as alternatives to
linear models in a number of chemical process applications such as distillation column, CSTR,

pH Process etc. The structure of the Hammerstein model is shown in figure below.
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Where

u(t) = input of the nonlinear static block.
x(t) = output of the nonlinear static block.
Simultaneously;

x(t) = input of the linear dynamic block

y(t} = output of the linear dynamic block.

In (Ramesh et al, 2007) research study, they use a new wavenet based nonlinear function to
describe the nonlinear static block and Output Error (OE) model is used to describe the linear
dynamic block.

The linear block is the Output Error (OE) model, given by the following equation.

Blg™)
Ag”)

B:l‘-}'_l} - blq,—nlff + bﬂq—iﬁhl) + o+ bﬁﬂ,-{mhmhl]

Y= x(f)

s

A =Ttag™ +ag™+ +ag™

where:

nb s the number of coefficients in B(g-1)

na is the number of coefficients in 4(g-1)

nk is the delay from input to output

by by, ..., b, are the coefficients of polynomial B

aj .y , ..., ay are the coefficients of polynomial 4
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It also consist of Wavenet structure based nonlinear function x = F() to represent the static
nonlinearity of the Hammerstein model.

F) = @ — rPL+as s, (- rges )

+..tas, f©s, (G- roes, )

+awg Emy (@ - rQ —ow )
ot omg Ow (G- D -ow )+ d

2.3.5 Volterra Model

One of the commonly used nonlinear dynamic empirical model structures is the Volterra model,
and this work develops a systematic approach to the identification of third-order Volterra and
Volterra-Laguerre models from process input-output data[10]. Volterra series analysis is an
extension of small-signal analysis into the field of weakly nonlinear behavior (Schetzen M,
1980).

The general form of the Volterra model is given as,

L. |
yk =t 3 D e B e Rl — 1)k~ )

=l =1 fy=l
Where;

N=model order

M = model memory, the duration over which the past inputs have an effect on the current output,

y (k)
hg =the bias term,

The Volterra model kernels are given by h i (ji, ..., jn), and the identification problem involves
determining the values of these kernels. The Volterra model structure is capable of capturing a
variety of nonlinear systems behavior. It has the ability to capture asymmetric output responses
to symmetric changes in the input in many chemical engineering systems including reactors and

distillation columns.
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The Volterra model structure can be considered as a nonlinear extension of the FIR model
thereby facilitating its use in on-line applications. One disadvantage of this structure is the
number of parameters that must be estimated as the model order increases. This factor has
limited the widespread use of higher-order Volterra models for practical applications.
In this work, {Schetzen M, 1980) shows that by judiciously exploiting the model structure, input
sequences can be tailored so that simplify the task of and minimize the data requirements for
identifying the parameters for a third-order Volterra model.
The third-order Volterra model is first decomposed in the following manner (Soni and Parker,
2004),

1K) = hy + LARY+ DIRY -+ Sb+ Ok}

LK)

f

M

3 hdfulk—i)
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N -
39 3 dglid, ek~ Oafk— )
el ]
M=l
+33 % wlh,f fulk =Pk - )
Jjmf ]
Ml '
O%) = 233 ol flulh ~ ok~ )+

=1 F=i0

Moo §-1
63 9 3 hald, Rtk —dyutk— [lalk - £)
P
Where;
L=Linear

D= nonlinear diagonal
S= third-order sub-diagonal

O=nonlinear off-diagonal term
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CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

Process Identification of non linear process can be conduct as follow;

>

Build CSTR Model

Generate input output data from

various input sequence

Simulate input output data with neural network

Data Analysis

Viodel Satisfactory
Obtain ¥ = Y :

YES

Figure 13: Schematic Project Work Flow



3.2 Development of CSTR Model

To build CSTR model, the author use Simulink based simulation (Figure 12). Simulink is a tool
in MATLAB for modeling, simulating and analyzing multidomain dynamic systems, including
linear and nonlinear dynamics system. Its primary interface is a graphical block diagramming
tool and a customizable set of block libraries. The coding for CSTR model and its S-function is
attached in APPENDIX. |

Simulink based model is very useful and user friendly as the author just need to change the input

without changing the overall programming source code of the model.

3.2.1 Continuous Stir Tank Reactor Model

For this research, simulation s done based on continuous stirred-tank reactor (CSTR) process
model. Assuming that the process is irreversible, exothermic reaction, A—B, constant volume,

and reactor cooled by a single coolant stream. This can be modeled by the following equations:

& = L2 €100 = €a® - keCa®enp ]
E
T(t) = ﬂ (To(®) - CA(t)exp (Rm))

Pc pc
pC ch(t)[ exp( )l (Teo(®) — T(®)

qc(t)pc pc

The objective is to control the output Temperature of the model, by manipulating the coolant
temperature T, (Cervantes et al, 2002).

B !rputs
I states

Cooling Jacket

Tc
Reaction
A—*B
Product
Figure 14: CSTR
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Below are the nominal operating condition used in this simulation based on Cervantes et al,
2003 research.

Nominal CSTR perameter values

Product Concentration Ca 0.1 mol/l
Reactor Temperature T 438.54 K
Coolant Flow Rate Qc 103.41 1/min
Process Flow Rate Q 100 m*/sec
Feed Concentration Cas Imol/l

Feed Temperature T¢ 350K

Inlet Coolant Temperature  Tco 350K

CSTR Volume v 100 m’

Heat Transer Term HA 7X 10° cal/min K
Reaction rate constant K, 7.2 x 10" 1/min
Acttvation Energy Term E/R 8750 K

Heat of Reaction "AH 5x 10* J/mol
Liquid Densities P, Pe 1000 kg/m’
Specific heats Cp, Cpe 0.239 J/kg K

3.3  Input Sequence Generation

Input sequence is generated either from existing simulink library source block or from importing
data from excel file or workspace. Input sequence such as PRBS and Gaussian is generated from
signal builder while the source block for input such as ramp, sine wave, sawtooth and pulse
already exists in the system. For input that is obtained from journals, they are imported from
Microsoft Excel before being used in CSTR Simulink Based Model. Figure 15 shows some

source block that had been used in modeling.
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Figure 15: Simulink Library Seurce Block

3.4 Neural Network Prediction

Input and output from the validated model is taken for further development in Neural Network.
This is to determine which input sequence will provide the best input-output data to get the best

model in predicting output. Network optimization consists of determining the

» Network architecture
e  Compare Feed forward architecture and NARXSP architecture
» Number of neurons in each layer (input, hidden and output layer)
¢  For this study, number of neurons in input layer is fixed to 2 while in output layer,
the number of neuron is fixed to 1
¢ The number of neurons in hidden layer is varied from 1 to 60 to evaluate the
performance of the model prediction fitness
= The appropriate transter function for each layer
e 27 combination of transfer function configuration, consists of pure linear (p), log
sigmoid(l) and tan sigmoid (t) is utilize in the NN to get the best model. Trial and
error method is used in order to determine the optimal combination of the three

elements above that gives the least error prediction.
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Between those empirical models that mentioned earlier in literature review (Wiener,
Hammerstein, Volterra, Gaussian and NN), Neural Network (NN) is selected for prediction of
the behavior of process. NN is selected compare to others as it requires less information to run
(input and output data only) and require less cost for implementation to the real system. Number
of neurons in the hidden layer, the corresponding transfer function for each layer and the network

types is varied for the optimization.
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CHAPTER 4

RESULT& DISCUSSION

4.1 CSTR Model Develo_pment

The author has done a simulation to build CSTR model based on Cervantes et al, 2002. Figure
16 shows the simulink based CSTR model.

3 dc
To Workspacet
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reacior_sfcn
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T
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Figure 16: Simulink Based CSTR Model

This Simulink based CSTR model is used with different input sequence block to generate input-

output data for further use in neural network model.
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4.2 Input-Output Data Generation

Below are the results of running simulink based CSTR model on different input sequence.

Generally, when the concentration profile increases, the temperature profile decreases. The

following figures show the cooling jacket temperature profile and its corresponding process

concentration and temperature profile.
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Figure 20: Cooling Jacket

Temperature Profile

Figure 21: Concentration Profile

Figure 22: Temperature Profile
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3) Pulse
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Figure 28: Temperature Profile

44




5) Gaussian Random Noise
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Figure 31: Temperature Profile

Figure 32: Cooling Jacket
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Figure 33: Concentration Profile

Figure 34: Temperature Profile
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7) Repeating Sequence
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Figure 46: Temperature Profile
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Figure 52: Temperature Profile
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4.3 Neural Network Prediction

The two types of NN for modeling CSTR outlet temperature are applied to simulate data
generated using the validated and proven CSTR model from the different input sequences. The

~ thirteen cases of different input sequences are investigated.

Figures in Table 1 show the results for outlet CSTR temperature behavior for NARXSP model in
comparison to the actual behavior of the CSTR model.

Neural Network is considered giving the best performance if;

* Has low root mean squared error (RMSE)
» Has high correct directional change (CDC)
+ Follow well the behavior of the signal
RMSE 1is the mean, standard deviation, and correlation coefficient that show whether the NN

network architecture are highly correlated or not with the input-output data of CSTR model.

The CDC meanwhile is the correct direction of change in a variable that measure the capability

of the model to follow the trend of data given.

Table 1 shows the NARXSP neural network prediction depending on their input. Also, the best
configuration of transfer function and its RMSE and CDC calculated is put into Table 1.

Table 1: NARXSP NN Prediction According to Inputs

Type ‘| INPUT NN | Analysis
Pulse :M_ﬁi—r i i i s e | The  optimal - number  of
ITT A | ! 5 w = 1| neuron for this type of input
_ I e ' | | sequence is 2. Tansig, tansig,
RMSE = | e B I tansig  is  the  best
0.0108 j “335 combination of its transfer
Cc =| 4 05| - H . function. It has low RMSE
54315 | * oo lj: and average CDC. NN
2 PoLoT prediction follows well the
U B e W B @ W w ey 0 @ o w @ @ W W ™ hehayior of pulse
temperature output.
However, there is slightly
deviation during the early

seconds.
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Sawtooth { | The optimal nember of
PTT of neuron for t'hlS type of mp'ut
4 sequence is 2. Purelin,
RMSE = | i tansig, tansig is the best
0.0230 : combination of its transfer
CDC= |« function. It has low RMSE
2883 s and average CDC. Most of
58.883 | the time NARXSP NN
o cannot follow well the trend
of data.
Sonil N T B — The optimal number of
B | | -1 [ e, | neuron for this type of input
TTT | . || sequence is 25. Tansig,
RMSE= | ™ | ansig, tansig is the best
- i P combination of its transfer
N N O O O - Lo .
0.0282 T o s s function. It has low RMSE
@ | e and very high CDC.
CDC= ‘; o H} it ]| However, the NARXSP NN
“ j A I cannot follow the behavior
i ; i AR S !
92.893 IR Joi it r b | and unable to capture the
o 0 W AW 0 D we M w0 o B e w aJT 1120_)120 W w0 20 sharpedges.
Soni2 The optimal number of
PTP neuron for t-his type of inp-ut
sequence is 6. Purelin,
RMSE = tansig, purelin is the best
0.0245 combination of its transfer
: function. It has low RMSE
CDE _6 Bis and very high CDC.
92.38 i However, considerable
wol i oo tiiii i ||deviation occurs at sudden
H 2N 40 & 8 0 120 140 160 80 200
Tirre {min peaks.
15
Baruchl The optimal number of
PTL 1‘11 il :1 ;Urf - ! /] ‘ J! neuron for this type of input
_ c‘séﬁ (Rl M 5"% 5 sequence is 35. Purelin,
RMSE = ‘JI \ i ! i ‘;‘J;j“[ ) ..
°i|i'\ ’ | ’ I U ﬂl"h tansig, logsig is the best
.0'0161 Wiél ]“E J“ M\ combination of its transfer
coc= | ° \] | ” l{ U FH‘ " %‘H function. It has low RMSE
HERRL L ‘:J and high CDC. The
80.203 O T S T SO U OO O I NARXSP can also follow

well the behavior with only
slight deviation
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Baruch?
PTL
RMSE =
0.0174
CDC=
91.371
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The optimal number of
neuron for this type of input
sequence is 35. Purelin,
tansig, logsig is the best
combination of its transfer
function. It has low RMSE
and very high CDC. The
NARXSP can merely follow
the trend of the data driven
model with this type of input
sequence.

Parker
PPL
RMSE =
0.0136
CDC=
89.848

038,

T

0.375

ra

0385

Qutput

035

oarl-L

.

0BT ST e
i

036 - -

0%} ---1

0

' I I ' | ' H ' '
H H L L 3 L i L I
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The optimal number of
neuron for this type of
input sequence is 50.
Purelin, purelinlogsig is
the best combination of its
transfer function. Tt has
low RMSE and high
CDC. Normally, neural
network  with  higher
number of neuron will
require longer simulation
time.

Liu
LPP
RMSE =
0.0030
CDC=
80.203

154 NS SR RO S
bW 40 80

The optimal number of
neuron for this type of input
sequence is 1. Logsig,
Purelin, Purelin is the best
combination of its transfer
function. It has very low
RMSE and high CDC.There
is also a slight deviation
when the signal changes
direction but NARXSP NN
considerably  follow  the
behavior well.

Comparable Correct Directional Change (CDC) values are obtained for all networks as indicated

by the satisfactory directional change tracking. Almost all data present low RMSE value. The

NARXSP NN follows well the process behavior with acceptional deviation.
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Comparison then made with Feed Forward (FF) Back Propagation(BP). Table 2 shows the Feed
Forward neural network prediction depending on their input. Also, the best configuration of
transfer function and its RMSE and CDC calculated is put into Table 2.

Table 2: Feed Forward BP Prediction According to Inputs

Type | INPUT NN Analysis
Pulse 4} { The optimal number of
LLT 2 neuron for this type of input
3 sequence is 35. Logsig,
rmse = | 4 logsig, tansig is the best
0.1923 5 combination of its transfer
) ° function. It has low RMSE
CDC= |’ and very low CDC. FF BP
N , cannot follow the shape of
1.0050 | ° ] R D A process change. It was
TR T TR W & w @ A TR ™ T P | overshoot at some point.
Sine
7l The optimal number of
PTP ’ neuron for this type of input
mse= | sequence is 2. Purelin,
: tansig, purelin is the best
0.0805 | ° combination of its transfer
# function. It has low RMSE
oC= | 4 i || and average CDC. The FF
49748 | ° VAVAYA VAN Jiiy | BP predict smaller
5 N R Bi;T ..‘:;.)&n'” e sinusoidal pattern and very
K % - far from the real data plot.
Gaussian z T " ov— The optimal number of
‘ L Do neuron for this type of input
PPL “l ‘ ’ sequence is 2. Purelin,
Rmses 1: | ' h1 purelin, logsig is the best
| Iifeieti | combination of its transfer
0.1628 : i function. it has low RMSE
OC = » {. ‘ o and average CDC. Also, the
. NI FF BP prediction is very far
55.276 :, l J\H VT from the real temperature.
L I SRR N ‘__ Moreover, the shape is not
Do Wm0 e T T ™ T P following well the shape of
the CSTR temperature.
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PRBS
PTP

rmse =
0.0510
cDC =
18.091

amaummmmmwwmzw

The optimal number of
neuron for this type of mput
sequence is 8. Purelin,
tansig, purelin is the best
combination of its transfer
function. It has low RMSE
and low CDC. The shape
predicted not follows well
the actual process and very
far with CSTR model output.

Sawtooth
PTP
rmse=
0.0782
CDC=
65.829

5 & & A & e o e

|00 IED MD % 180 00

The optimal number of
neuron for this type of input
sequence is 50. Purelin,
tansig, purelin is the best
combination of its transfer
function. It has low RMSE
and above average CDC, FF
BP predict quite weli but it
is very far from CSTR
model output.

Sonil
PPL
Rmse=
0.1217
ChC=
2.5126

&

' . I I ' ' ' | .
L L i I L L L T |
0 : 4 & B 00 120 140 162

The optimal number of
neuron for this type of input
sequence is 30. Purelin,
logsig, purelin is the best
combination of its transfer
function. It has low RMSE
and very low CDC. There is
imprecise matching between
the Feed Forward BP with
the CSTR model output.

Soni2
pTP
rmse =
0.1952
CDC=
3.5176

s

g

' ' ' | ' ' I
H H H L L L L
60 80 100 20 142 160 160 200

The optimal number of
neuron for this type of input
sequence is 35.
Purelin,logsig,purelin is the
best combination of its
transfer function. It has low
RMSE and very low CDC.
There is inaccurate matching
between the Feed Forward
BP with the CSTR model
output.

35




The optimal number of

Baruchl

A - neuron for this type of input
PTP f\ ihl i )L ’7 b l {] sequence is 20.
rmse = ”Hf!l J” i‘i M’H f_[ , Purelin,logsig,purclin is the
i M ik[i M}'MJ : best combination of its
0.0523 !\( i]} JMW LLI transfer function. It has low
e = | —le Uw r’ﬂ” i RMSE and average CDC.
as0m1 | \J Y A The FF BP prediction is not
’ closely match the CSTR
S L m b LG || temperature. Large deviation

T i OCCurs.
Raruch2 | T~ The optimal number of
) neuron for this type of input
PTT ’ sequence is 35. Purelin,
: logsig, purelin is the best
MSE =\ e Am A N combination of its transfer

00523 |40t :
DU e L '_/J U y function. It has low RMSE
CDC = ) ; and high CDC. The same
5 observation can be seen
21.608 | ° when Baruch 2 input is
! Lo i i ) | applied. The FF BP also
TR momom w w w W e i cannot correctly match the

CSTR model.
Parker B The optimal number of
PTP ! neuron for this type of input
) i sequence is 2. Purelin,
rmse = tansig, purelin is the best
0.0656 | o I combination of its transfer
function. It has low RMSE
we =) and low CDC.The FF BP
45226 | | slightly follow the
W m W & W W @ T ) difference are quite wide.

Liu 0; f\ AR I ' The optimal number of
Nl \ | i N}% ;"ﬁ neuron for this type of input
PTP N f o sequence is 35. Purelin,
rmse = l \ I R i tansig, purelin is the best
S D combination of its transfer
0.0520 | | '\ [ '\ ‘ 1 ﬂﬂ function. It has low RMSE
CDC = | o i "i\ ! \I ’ 1l“ i\’_ and aboye average CDC.
69.849 | \ [{‘ \ i] \[‘ﬁj ';*f There is an  apparent
o | L) I ”j deviation at the early
AR Z ‘ seconds when the signal

o 10 0 X0 40 0 60 K0 o0 w0 0w
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' L ' I I . ' .
L I T— L H L L
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changes direction.
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FeedNeural Network cannot predict the behavior of the output very well. Low correct directional
change (CDC) value shows that Neural Network cannot trend the behavior of the signal when it
is changing direction. Feed forward BP failed to track the temperature behavior dexterously

when it is unable to follow the shape of the data driven CSTR model.

Results clearly indicate that good sequence of input, proper selection of the NN type, together
with optimum configuration of the corresponding network architectures, can efficiently and
accurately model the process temperature behavior. Only NARXSP NN with real output fed to
the network feature tracks the process behavior as efficient and as accurate as the CSTR model.
Generally, it is obvious that NARXSP-based stiction model gives the best performance compare
to Feed Forward Neural Network. Narxsp Neural Network gives the best performance, due to
low root mean squared error (RMSE) and it follow well the behavior of the signal. It is widely
accepted that NARXSP structure always results in excellent performance since the actual output
available during training is fed back to the network as part of the inputs for prediction (Gomm et
al, 1996).In most cases, test using high number of neurons gives long computational time

compare to test using low number of neurons.

Consequently, a significant disadvantage of this mode of operation, termed the predictor mode, is
the inability of the model to be used independently from the plant (Zabiri and Mazuki, 2009).
An alternative as proposed by (Gomm et al, 1996) which is to use the trained NARXSP network
in the parallel (feedback) architecture, where the predicted output from the network is being
delayed and fed back along with the input to the network. This alternative mode of operation is

called model mode.

The best input sequence selected, which are Baruchl input, Sine Wave input and Liu Input. As
an initiative, from the best inputs, combinations are made between any two best inputs. Then, the

effect of NARXSP NN prediction for the process behavior is observed.
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Table 3: Baruchl and Liu Combination Input Prediction

Type | INPUT NN Analysis
Baruch! Purelin, tansig, tansig is the
Liy . best combination of its

l' H% transfer function. It has low
PTT | | }3 g" RMSE and average CDC.
RMSE = | glsi: H There is an apparent

I ? deviation especially at the
0.0174 i L

i h peak of sinusotdal pattern of

CDC= behavior. Clear deviation at
55,166 | 0 w0 e mo A w e wows | oml Lo bd time of 350 sec to 600 sec

Time (min)

reaction.

Subsequently, combination between one best input and one input with poor performance is made

and further tested in NARXSP NN model. For this purposes, Baruch 1 and Soni 1 input is

combined and produce new pattern of input sequences.

Table 4: Baruchl and Soni 1 Combination Input Prediction

Type INPUT NN Analysis
Sonil ®— — ‘ Purelin, tansig, purelin is the
| L o .
Baruchl @ iE r ‘ \ J‘ best combination of its
TTP » !E | [ 1 transfer function. It has low
RMSE = al |“\[5 s MllLtl i th! ulwl ] \||| RMSE and above average
al ! j‘ "i i CDC. There is an apparent
0.0100 , | |
]l 1 H | deviation at the early
coc= i | | ,
AL L R S A seconds when the signal
82648 C S0 1000 10 2000 2500 000 300 400 4500 5000 M i 30 &0 @ @0 W0 @6 8 m

Time {min}

changes direction.
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From the graphs obtained combination of the best input (Baruch 1) and input with poor
performance (Soni 1) give better performance compare to the combination of two best input
(Baruch 1 and Liu). This shows that, it is not necessary that the combination of both good inputs

will lead to a better prediction of model.
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5.1

CHAPTERS

CONCLUSION & RECOMMENDATION

Conclusion

The author is successful in building the CSTR model with various input sequence. The
CSTR model created is able to generate input output data structure for NN purpose. The
input-output data that generated from simulink-based model can be run in neural network
to determine the best input sequence. In this study, a black box Neural Network-based
modeling approach is proposed in modeling the temperature behavior of process. For
different types of input sequences, the NARXSP-based model is practically good in
predicting the actual process temperature profile. Numerical evaluations showed that with
optimized model structures, NARXSP model is able to predict temperature behavior in
CSTR to sufficient accuracy. It is also found that parallel (feedback) network trained
using the series-parallel form (NARXSP) is able to provide multi-steps ahead prediction
with sufficient accuracy. The best input sequences that can represent the best empirical
model are Baruch 1, Sine and Liu inputs. The NN model ability in predicting the actual
behavior of the process condition depends on its type. Generally, NARXSP neural

network give the best prediction compare to feed forward neural network.

The project is successful within the time limit.
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5.2

Recommendation

For area of improvement, study on more variety of input sequence from journals should
be made to get a better input sequence. Besides that, research can be improve by using
other types of neural network with different architecture such as Elman NN, Layered NN,
NARX NN and Cascade NN, instead of using only NARXSP and Feed forward neural
network. Additionally, for better analysis, study can alternatively be conduct with
different types of empirical model such as Volterra Model, Gaussian Model,
Hammerstein Model, and Wiener Model to replace the functions of Neural Network

empirical model.
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APPENDIX
Coding of MATLAB for CSTR Model:

function dx = reactor(t,x,T])
tmodel for reactor

% Concentration of B in CSTR {ibmcl/ft"3)

% Temperature in C3TR (F}
T = x{2);
% Parameters:

% Volumetric Flowrate (m™3/sec)

g = 100;
z Volume of CSTR (m~3)}
vV o= 100;

% Density of A-B Mixture (kg/m"3)

rho = 1000;

% Heat capacity of A-B Mixture (J/kg-K)

Cp = .239;

% Heat of reaction for A->B {(J/mol)

mdeld = hed;

% B - Activation energy in the Arrhenius Fgquation (J/mol)
% R -~ Universal Gas Constant = 2.31451 J/mcl-K

FEoverR = 8750;

% Pre-exponential factor {(1/sec)

kO = 7.2el10;

% U - Overall Heat Transfer Coefficient (W/m™Z2-K)

% A - Area - this value is specific for the U calculation {m"2}
UA = 5e4;

% Feed Concentration (mol/m™3)

Caf = 1;

% Feed Temperature (K}

Tf = 350;

o}

+ Compute x:

dCa= (q/V*(Caf - Ca) - kO*exp(~EoverR/T)*Ca):;

aT = (q/V*¥{Tf - T) + mdelH/{rho*Cp)*kO*exp(-EoverR/T)*Ca + UA/V/rho/Cp*(Ti-
T)ii

dx=[{dCa;dT];
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Coding for S-Function in Simulink :

function [sys,x0,str,ts]=reactor sfenit,x,u,flag,Cinit, Tinit)
switch flag

case 0

oo

il

[sys,x0,str,ts] = mdlInitializeSizes (Cinit, Tinit); Finitialize

L

str=[];
ts=[C 0];

s=gimsizes;
s.NumCeontStates=2;
5.NumDigcStates=0;
s.NumQutputs=2;
s.NumInputs=1;
s.DirFeedthrough=0;
5.NumSampleTimes=1;
sys=simsizes(s};

x0=[Cinit, Tinit];

case 1 %tderivatives
Ti=u;
sys=reactor(t,x,Tj};
case 3 %output
Sys=x;
case {2 4 9} %Z:discrete,d:calcTimelit, 9:termination

sys={1:

otherwise error({['unhandled flag=',numZstr(flag)]);:

end



Sample of NARXSP Neural Network Coding:

clear;cle;
% Extract data from M-file
A = xlsread('sinenormalize');

P tr A(1:500,1)';

T tr = A(1:500,2)";

P v = A(501:800,1}7;

T v = A{501:800,2}';

P te = A(801:1000,1)"';
T te = A(801:1000,2)"';

[9)

% converting vector to cell

P tr = conZseq(P tr); T tr = conZseq(T tr};
P_v = conZseg(P v); T_v = con2seqi(T _v);

P te = conZseq(P _te); T te = conZseq(T te);

% create the training matrix
boy = 3;

pt = [P tri{boy:end);T tr(boy:end)]; tt = T tr(boy:end);
T v(boy:rend)}; ttv = T v(iboy:end};
pte = [P_te(boy:end);T te(boy:end)]; tte = T te(boy:end);

ptv = [P_v{boy:end)

de = 2;
dl = [l:de];
d2 = [1l:de];

% naming TF
p = 'purelin'; t = 'tansig'; 1 = 'logsig';

narx net = newnarxsp(minmax(pt),dl,d2,([2 2 1],{t,t,p}):

narx net.trainFcn = 'trainrp';
narx net.trainParam.show = 10;
narx net.trainParam.epochs = 600;

for k=1l:de,
Piil,k}=P trik};

end

for k=1:de,
Pi{2,k}=T _tri{ki;

end

val.P=ptv; val.T=ttv;

test.P=pte; test.T=tte;

% [net tr] = train(net,? tr,T tr,[],![],val, test);
narx net = train(narx net,pt,tt,Pi,[],val,test);

a = sim{narx net,pte,Pi};

a = cellZmat(a);
tte = cellZmat(tte);

% Actual min max of the data set
T temax = 1; T temin = 0.0000;

T te = tte;
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% Unnormalized data set

[rowl,coll] = size(T te);

unnorm Tte = zeros(1l,1:cell);

for 3 = l:coll;
unnorm Tte(j) = T te(j)* (T temax~T temin)+T temin;
J o= 3+l

end

unnorm a = zeros(i,l:coll);

for j3 = l:colli;
unnorm a(ji) = a(jj)*(T_temax-T temin)+T_temin;
ij = Jitl:

end

figure (4}

time = 1l:length(T te};

plot {time, unnorm Tte,'-', time,unnorm a,’'-r'),...
xlabel ("Time (min} '), ylabel ("Output'),...

axis ([0 1000 0.4 0.5]),...

legend ('Model', "NARXSP')

grid onj;

% rmse calculation

{rowl,coll] = size(T te):

error_col = zeros(l,l:coll);

for i = l:coll;
error col({i) = (unnorm a{i) - unnorm Tte(i})"2;
i = 1+1;

end

sum _error = sum{error col};

rmse = sgrt(sum error/coll)

2%% CDC caleulation
dl=zeros(1l,co0ll-1};

1i=2;

for iii=l:icoll~1
ai=unnorm Tte(:,ii} - unnorm Tte(:,11-1);
bi=unnorm a(:,ii) - unnorm a{:,ii-1};
ci=ai*bi;
dl(:,ii-1)=ci;
ii=1ii+1;
1ii=iid+1;

end

Dtl=zeros(l,coll-1};

Jji3=1;

for jijj=l:colli-1l
if dl(:,333)>0
Dtl{:,333)=1;

else
DL1{:,533)=0;
end
133733311
J333=3333+1;
end
[xrow2,ccl2] = size(Dtl);

CDC = (sum(Dtl))*{100/{col2))



Sample of Feed Forward Neural Network Coding:

clear
% Extract data from M-file

A = xlsread('sinenormalize');

% Determine size of XY matrix
[row,col] = size(A) ;

% Allpcating input and target columns for T, ¥V, and T3

P tr A(1:500,1)7;

T tr = A(2:500,2)";

P v = A(501:800,1)"';
T v = A(501:800,2)";
P_te = A(801:1000,1}";
T te = A(B01:1000,2)';
P te = B(1:1000,1}";
T te = B{1:1000,2)"';

@

% naming IF

p = 'purelin'; t = 'tansig';
poonanng 00802983 2522022a050
(SR R R I v I} 5] ToORTUMTDOT VoS Th0D0
% net=newcf (minmax(P tr), [37
11, {"logsig", "1ogsig', 'logsig'}, "trainrp’, "learngdm’, 'mse
net=newff (minmax (P tr) {2 2 1},{p,t,p}, "trainrp',’'learng
: ¢ 2553 EERRETRRH5S Setup nebwork $:%%%%%%%%%

net.trainParam.show=100;
net.trainParam.epochs=500;
net.trainparam.goal=le-4;

% Train network with early stopping
rand('seed' ,419877);

net = init{net);
%% Set up the validation and testing sets in a structure form
val.P=P v; val.T=T v;

test.P=P te; test.T=T_te;

% [net tr] = train(net,?P tr,T tr,[],{],val,test);
%[net tr] = train{net,? tr,T tr, [1,01,[]1,[1};

% Simulate network

a = sim{net, P _te};

g figure(l)

% [slope,intercept, ] = postreg(a,T te);

o

Actual min max of the data set
T temax = 1; T temin = 0;



% Unnormalized data set

[rowl,coll] = size(T te);

unnerm Tte = zeros(l,1l:ccll);

for 7 = 1l:coll;
unnorm Tte(j) = T te{j)*(T temax-T temin)+T temin;
i =3+l

end

unnerm a = zeros(l,l:coll);

for Jj3 = l:coli;

unnorm_a(ji} = a{jj)*(T temax-T femin)+T_temin;
3 = Ji+1;
end
figure{2)
fime = l:length(T te);
plot (time, unnorm Tte,'-', time,unnorm a,’'-xr'),..
xlabel ('Time (min)'), ylabel{'Output'},...

axis ([0 1000 -0.3 2.51),...
legend('model", 'Feed forward')
grid on;

% rmse calculation

[rowl,coll] = size(T te);

error_col = zeros(l,l:coll};

for i = l:coll;
error cel{i) = {(unnerm a{i} - unnorm Tte(i))"2;
i = i+1;

end

sum_error = sum{erroxr ccl);

rmse = sqrt(sum_error/coll)

£22% CDC calculation
dl=zeros(l,coll-1};

ii=2;

for ili=l:icoll-1l
ai=unnorm Tie(:,ii) — unnorm Tte(:,ii-1);
bi=unnorm a(:,ii} - unnorm a(:,ii-1});

ci=al*bi;
di(:,ii-1)=ci;
ii=ii+1;
1ii=3iii+1;
end
Dtl=zeros{l,coll~1l);
j33-1;
for ij3jj=l:coll-1
if di(:,j33)1=0
Dtl(:,3iil=%;
else
DtI{:,333)=0;
end
13333341
J333=3333+%:
end

[row2,colZ2] = size{Dtl):
CDC = {sum{Dtl))*(100/(col2))
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