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ABSTRACT 
 

 
Optical flow is a concept for estimating motion of objects within a visual representation.  

Motion is represented as vectors at every pixel in a digital image sequence of two frames 

which are taken at time t and t + δt respectively. Based on the assumption of the 

observed brightness (intensity) of any object point is constant over time interval and the 

movement is small, optical flow equation (OFE) is derived and used in algorithm to 

calculate optical flow for a particular motion. In order to inject robustness in the 

algorithm, time-varying uniform illumination and calculation of large range of motion 

also have been taken into account while formulating the algorithm. The algorithm is used 

as reference to create a coding input for the MATLAB, which is the software used in this 

project. As a result, the software generates a separate view of static and moving objects. 

Further study of the output obtains more accurate data. The experimental process will be 

carried out using a video as an input to determine whether the project succeeds or need 

more modifications. The outcome of this project is beneficial for motion analyst to 

predict the parameter of moving objects, animations, statistics and also robotic eye.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Optical Flow Concept 

 

In a digital image, each pixel is represented by a value of intensity (I), obtained from the 

projection of objects in 3D motion field to a 2D image plane. As the objects move, the 

corresponding projections in the 2D image plane also change their position. Optical flow is 

the vector field that reflects the direction and magnitude of the relative displacement of these 

pixels over the sequence of images. 

 

 

Optical center
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3D motion field 

Image intensity
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I2

Optical center
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3D motion field 

Image intensity
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Figure 1-1: Projection on the image plane of the 3D motion 

 

Optical flow is useful in pattern recognition, computer vision, and other image processing 

applications. It is closely related to motion estimation and motion compensation. Some 

consider using optical flow for collision avoidance and altitude acquisition system for 

unmanned air vehicles (UAVs). For motion estimation application, the optical flow algorithm 
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is used to estimate an optical flow from an image pair. The optical flow is then used to 

estimate the vehicle velocity. 

Figure 1-2 shows the optical flow vectors which represent the motion of object in a digital 

image sequence. 

 

 

a) Image 1  b) Image 2 c) Optical Flow 
 

Figure 1-2: Optical flow field from sequence of image. 

 

 

Horn et. al. [3] did pioneering work on the development of optical flow techniques based on 

computing spatiotemporal differences from an image sequence. Since then, many methods 

and algorithms for determining optical flow were developed [4]. According to the result of 

J.L. Barron et. al. [4], Kanade-Lucas optical flow algorithm [5] is used because it is robust, 

accurate, insensitive to noise and non-uniform light intensity sources, and suitable for real-

time computation. Therefore, a method proposed by Lukas and Kanade is used as the basis 

for the optical flow algorithm for this project. 
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1.2 Problem Statement 

n optical flow algorithm has been developed for synthetic motion estimation. Two images, 

 

owever, this algorithm has several limitations that certainly affect its credibility to 

deliver

) Under varying illumination condition, it may fail to calculate accurately since the 

b) er motion range (more than 1 pixel), the algorithm failed 

c)  in which is very important to 

 

 

A

8 × 8 pixels2 in size, are used in the algorithm to represent the simple motion sequences. The 

first images, I (x, y, t), represents the image intensity at time, t and spatial coordinates, x and 

y. The second image, I (x+δx, y+δy, t+δt), represents the synthetic motion of the δx and δy, 

and the change in time, δt. 

 

H

 accurate results as a motion estimator. These limitations are noted as follow: 

 

a

method itself relies on the pixels’ intensity value which is assumed to be constant 

over the time interval. 

When dealing with larg

to estimate motion accurately. This is due to the assumption made in optical flow 

equation’s derivation whereby the motion is small. 

This algorithm is yet to be applied with real image

determine its applicability in real life application.  
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1.3 Objectives and Scope of Study 

he main objective of this project is to develop a robust optical flow algorithm for the motion 

he algorithm is expected to receive input (frames of images) from external devices such as 

he scope of the project also included experiment to validate the optical flow algorithm by 

 

 

T

estimation. This robust algorithm will be developed to overcome the limitations that have 

been described in previous section. It is expected to have capability of producing accurate 

results even under influence of uniform illumination changes and long ranges of motion 

(more than 1 pixel). 

 

T

digital camera via MATLAB’s Image Acquisition Toolbox. Using a video input object, live 

data is acquired and analyzed to calculate any motion between two adjacent image frames. 

Any motion in the stream (optical flow field) is plotted in a MATLAB figure window. 

 

T

using real image. The experiment enables the evaluation of the algorithm‘s accuracy and the 

overall performance with respect to the predefined project’s objective. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Optical Flow Equation 

ptical flow is a concept for motion estimation of objects within a visual representation. 

 

 

 
 
O

Typically the motion is represented as vectors originating or terminating at pixels in a digital 

image sequence which are taken at times t and t+ δt. Assuming image intensity, I 

(brightness) is roughly constant over short intervals, as a pixel at location (x, y,t) with 

intensity I (x, y, t) will have moved δx, δy and δt between the two frames, following image 

constraint equation can be given: 

 

),,(),,( ttyyxxItyxI δδδ +++=                                         (2.1) 

 

Assuming the movement to be small, we can evelop the image constraint at I (x, y, t) with 

        

d

first order Taylor series to get: 

 

termsorderHighery
y
Ix

x
IttyxIttyyxxI +

∂
∂

+
∂
∂

++=+++ δδδδδδ ),,(),,(             

y
y
Ix

x
IttyxIttyyxxI δδδδδδ

∂
∂

+
∂
∂

++≈+++ ),,(),,(                              (2.2) 
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Equation 2.3 has two unknowns and so does not have a unique solution. This is the 

mathematical problem that there is not enough information in a small area to uniquely 

determine motion. But Horn and Schunck [3] has add an additional constrain by using a 

global regularization calculation. They assume that images consist of objects undergoing 

rigid motion, and so over relatively large areas the optical flow will be smooth. They then 

minimize the square of the magnitude of the gradient of optical flow using the equation  
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In contrast, Lucas and Kanade [5] use a local least squares calculation to provide the 

constraint by minimizing in the neighborhood surrounding the pixel, represented in equation 

form by 

[ 22

,
),,(),,(),( tyxIvtyxIyxW

yx
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Ω∈

r ]    (2.5) 

 

 

2.2 Lukas- Kanade Algorithm 

 

According to the results presented in [4], Lukas-Kanade optical flow algorithm is commonly 

adapted in optical flow calculation due to its robustness, accuracy and feasibility for real time 

computation. The optical flow equation has two unknown and cannot be solved as such. This 

is known as the aperture problem of the optical flow algorithms. To find the optical flow, we 
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need another set of equation which is given by some additional constraint. The solution as 

given by Lukas and Kanade is a non-iterative method which assumes a locally constant flow 

in small windows. 

 

From Equation 2.3, assuming that the optical flow (δx, δy) is constant and numbering the 

pixels as 1...n, we get: 
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To solve the over-determined system of equation, we use the least squares method: 
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2.3 Robust Optical Flow Algorithm 

 

The derivation of the optical flow equation assumes that the intensity (brightness) of a pixel 

does not change along its motion trajectory [5]. This assumption is generally applicable but 

not true all the time since the illumination may change over the time interval. Assuming the 

source of illumination is from a far distance, the illumination will have a uniform effect, k to 

the entire frame (feature window area). Then, the Equation 2.1 will becomes: 

 

),,(),,( ttyyxxItyxI δδδκ +++=+                                 (2.7) 

  

When dealing with optical flow calculation involving illumination variation problem, it is 

necessary to compensate the effect of changes in one frame in accordance to the other frame. 

As depicted in Figure 2-1, the value of k can be estimated by calculating the average 

difference of intensity values between the second frame and the first frame. The calculation 

is limited within the highlighted region in which is common for both frames. 

 

κ 

y 

x 

δy

δx

Image 1

Image 2

 
 

Figure 2-1: Region that is taken into account for calculation of k. 

 

When the motion is not small (more than 1 pixel), the higher order terms in Equation (2) 

become more significant and dominant. Thus the algorithm will produce less or no accurate 

results as a motion estimator. In order to solve this problem, an iterative Lukas-Kanade 
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algorithm is applied which practices coarse-to-fine optical flow estimation. This approach 

relies on estimating the flow in an image Gaussian pyramid in Figure 2-2, where the apex is 

the original image at a coarse scale, and the levels beneath it are warped representations of 

the images based on the flow estimated at the preceding scale. This ensures that the small 

motion assumption of Equation 2.2 remains valid. 

 

 

 
image image 1 

   Compute Flow Iteratively

image 

warp & up sample 

    Compute Flow Iteratively 

 

Figure 2-2: Gaussian pyramids of image 1 and image 2 

 

 

2.4 Camera Model  

 

A camera model provides the relationship between an object 3-dimensional (3D) position and 

its corresponding pixel position in 2-dimensional (2D) image plane. There are two groups of 

parameters namely the extrinsic parameters and intrinsic parameters. The extrinsic 

parameters are not constant and depend on the camera orientation while the intrinsic 

parameters are orientation independent.  

 

Extrinsic parameters are values of the placement and orientation of the camera, i.e. a rotation 

matrix and translation vector. Intrinsic parameters are the important parameters since they 

will be used in calculation of motion estimation application and camera orientation is fixed. 

The intrinsic parameters are listed below: 
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a) Focal length : fc = [f1    f2]’ 

b) Principal point : cc = [ c1  c2]’ 

c) Skew coefficient : αc  

d) Lens distortion : kc = [ k1  k2  k3  k4  k5 ]’ 

 

Note: In this particular project, only focal length, f is used in motion estimation calculation. 

 

 

Figure 2-3 shows a camera standard coordinate system. Projected point ip (xp, yp) of Po (Xc, 

Yc, Zc) on the image plane is given as: 
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Figure 2-3: Camera standard coordinate system. 

 

For camera velocity estimation, the system setup is prepared as shown in Figure 2-2. 
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Figure 2-4: Camera system setup 

 

The optical axis of the camera is perpendicular to the ground plane. Therefore, we can further 

assume the distortion and skew coefficient are negligible. Equation 2.6 can be represented as: 
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Differentiate Equation 2.7 with respect to time, the velocity of the camera in X-Y plane is 

given as: 
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Then if the ground is flat, i.e. Zc is constant, Equation 2.8 becomes: 
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whereby: 

 Vx and Vy are the camera velocities in X and Y directions respectively. 

 Zc is the distance between the feature points on the ground and the centre of 

projection of the camera. 

 vx and vy are the image velocity, vx = ∆xF and vy =∆yF, where F is camera's frame 

rate and (∆x, ∆y) is the optical flow. 

 Focal length: fc = [f1 f2]’. Obtained from camera calibration. 

 Principal point: cc = [c1, c2]’. Obtained from camera calibration. 
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CHAPTER 3 

METHODOLOGY / PROJECT WORK 

 

3.1 Camera Calibration 

 

The intrinsic parameters of a camera can be determined by using Camera Calibration 

Toolbox for Matlab [2] and several chessboard-pattern images taken by the Philips Webcam 

SPC 600 NC camera. Figure 3-1 shows the calibration toolbox‘s main window. The 

procedures for the calibration process are noted as follow: 

 

  
Read chessboard-pattern images 

 
Extract images grid corners 

 

 
 

Start Calibration process 
 

 
Results 

 (focal length, principal point, 
pixel error, distortion) 
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Figure 3-1: Camera Calibration Toolbox (J.Y Bouguet) 

 

 

The MATLAB application has to read the pattern of the chessboard images before it can 

extract the grid corner of the images. The application will then start the calibration process to 

compute the desired result parameters such as focal length, principal point, pixel error and 

distortion.  

 

 

3.2  Optical Flow Algorithm 

3.2.1 Robust Optical Flow Algorithm 

 

Image 1 and image 2 are the input for the algorithm. It will undergo illumination variation 

correction to compensate the effect of change in one frame in accordance to the other frame. 

The algorithm will start the calculation process using Iterative Lukas Kanade. Result of the 

calculation then will be used to estimate the 3D velocity. The procedures for the optical flow 

algorithm are noted as follow: 
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Image 2 

 

 
Illumination Variation 

Correction* 

Iterative Lukas Kanade 

Optical Flow Calculation** 

Result Optical Flow 

(u, v) 

 

Estimate the 3D Velocity 

Ve =Z v / f 

 
Image1 
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3.2.2 Illumination Variation Correction* 

 

 

 

 
Compute Lukas-Kanade 

optical flow (δx, δy) 
 

 
Determine the average value of 

K 
K = image2 (1:width- δx , 1: 

height- δy )  -  image1 (δx :width , 

 
 

In the illumination variation correction process, the average value, K is estimated by 

calculating the average difference of intensity values between the second frame and the first 

frame. The steps are repeated until it converges. 

 

 

 

 
Compensate image2 with K 

image2= image2 - K 
 

Repeat steps until 
converge  

 
 

 
Re compute the optical 

flow 
(δx, δy) 
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3.2.3 Iterative Lukas-Kanade Optical Flow ** 

 

 

 
Create the Gaussian 
pyramid of image 

 

Compute the iterative 
Lukas-Kanade optical 

flow  
at the highest level 

(δx, δy) 

 
Up-sample thru bilinear 
interpolation for twice 

resolution and multiply by 2,  
( δx*, δy*) 

 
Compute It from block 

displaced by δx*, δy*. Apply 
LK to get the flow correction 

(δx’, δy’) 

 
Obtain the Result 
δx  = δx* + δx’  
δy  = δy* + δy’  

 

 
Repeat steps until 
reach base image 
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In the Iterative Lukas Kanade process, the Gaussian pyramid of image is created. The 

calculation will compute the original image at coarse scale before interpolate the result and 

multiply by 2. Lukas Kanade algorithm is used to get flow correction. The steps repeated 

until reach the base image. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Experiments are performed to check the feasibility, precision and robustness of the proposed 

algorithm.  The first experiment, the camera intrinsic parameters are determined through 

calibration. 

 

4.1  Camera Calibration Result 

 

Camera Calibration Toolbox has been used to calibrate Philips Webcam SPC 600 NC 

camera. This step is carried out in order to get the camera’s focal length value. The 

parameters obtained after the experiment are: 

 

  
Figure 4-1: Camera calibration result 
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Figure 4-2: Image of camera calibration (camera-centered) 

 

 

Notice that the coefficient alpha_c and the 6th order radial distortion coefficient kc have 

not been estimated (this is default mode). Therefore, the angle between the x and y axes 

is 90 degrees. In most practical situations, this is a very good assumption [2]. From the 

result, the value of focal length of the camera is approximately 658 mm.  
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Figure 4-3: Image of camera calibration (world-centered) 

 

 

4.2  Optical Flow Algorithm Performance  

 
4.2.1  Synthetic Motion Test 

 

This test is carried out in order to verify the functionality of the algorithm to estimate 

motion. The performance of the algorithm is measured by cropping 2 features windows 

of 60 × 60 pixels2 from an image to represent Ii be the grayscale image at time ti and Ii+1 

be the grayscale image at time ti+1 (refer to Figure 4-1). During this time interval, let the 

image be translated by d = (δx, δy). In addition, the second image has been imposed an 

increases in brightness to simulate the illumination variation condition.  

 

The calculated optical flow (δx, δy) is compared to the actual displacement of pixels 

between the images and results are shown in Table 4-1. The optical flow also calculated 
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using original iterative Lukas-Kanade algorithm (i.e. without illumination correction) to 

show how illumination can effect the result (refer Table 4-2). 

 

 
Figure 4-4: Image sequence for optical flow algorithm calculation which has   undergone 

illumination effect 
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Table 4-1: The result of calculated optical flow with compared to actual displacement 

 

Actual 
displcaement (unit 

pixel) 
Calculated disp.     

(unit pixel) 
Error measure 

δx δy δx δy δx δy 

0 0 0.0000 0.0000 - - 
1 0 0.9995 0.1433 0.05 - 
2 0 2.0457 0.1268 2.89 - 
3 0 3.0198 -0.1359 0.66 - 
4 0 3.9699 -0.0252 0.75 - 
5 0 4.9236 0.1170 1.53 - 
0 1 -0.0071 1.0541 - 5.41 
1 1 1.0136 1.1813 1.36 18.13 
2 1 2.0768 1.1698 3.84 16.98 
3 1 2.9785 1.1543 0.72 15.43 
4 1 4.0158 1.1288 0.40 12.88 
5 1 5.0864 1.1925 1.73 19.25 
0 2 0.0017 2.1082 - 5.41 
1 2 1.0550 2.1179 5.50 5.90 
2 2 2.0856 2.1577 4.28 7.89 
3 2 3.0977 2.1313 3.23 6.57 
4 2 4.0544 2.1874 1.36 9.37 
5 2 4.9965 2.0981 0.07 4.91 
0 3 0.0217 2.9499 - 1.67 
1 3 1.0114 3.0844 1.14 2.81 
2 3 2.0359 3.1151 1.80 3.84 
3 3 3.0099 2.8073 0.33 6.42 
4 3 4.0768 3.1632 1.92 5.44 
5 3 5.0454 3.0424 0.91 1.41 
0 4 0.0213 4.0105 - 0.26 
1 4 1.0697 4.0283 6.97 0.71 
2 4 2.0982 4.1481 4.91 3.70 
3 4 3.0127 3.8421 0.42 3.95 
4 4 3.9811 3.9811 0.47 0.47 
5 4 5.0663 4.1544 1.33 3.86 
0 5 0.0235 5.0342 - -0.68 
1 5 1.0676 5.0881 6.76 1.76 
2 5 1.9825 5.0677 0.88 1.35 
3 5 3.0512 5.0399 1.71 0.80 
4 5 3.9905 5.0377 0.24 0.75 
5 5 5.0307 5.3505 0.61 7.01 
6 8 6.1287 8.6766 2.15 8.46 
8 6 8.1003 6.0477 1.25 7.95 
10 10 9.6542 10.4288 3.46 4.29 
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Table 4-2: The results of calculated optical flow with illumination effect using original 

iterative Lukas-Kanade algorithm (i.e. without illumination correction) 

 

Actual 
displcaement (unit 

pixel) 
Calculated disp.     

(unit pixel) 
Error measure 

δx δy δx δy δx δy 

0 0 -1.1811 2.6420 - - 
1 0 -0.4213 2.6328 142.13 - 
2 0 -0.7551 2.9261 137.76 - 
3 0 -0.8123 2.9203 127.08 - 
4 0 -0.3622 2.7739 109.06 - 
5 0 -0.8605 2.8054 117.21 - 
0 1 -0.7339 3.3298 - 232.98 
1 1 -0.2330 3.5920 123.30 259.20 
2 1 -1.7740 3.2924 188.70 229.24 
3 1 -0.6458 3.2224 121.53 222.24 
4 1 -0.0847 3.4046 102.12 240.46 
5 1 -0.3630 3.3522 107.26 235.22 
0 2 -0.0474 3.9030 - 95.15 
1 2 0.0886 4.0680 91.14 103.40 
2 2 0.3545 4.1375 82.28 106.88 
3 2 -0.4872 4.0798 116.24 103.99 
4 2 1.3263 4.1866 66.84 109.33 
5 2 0.4397 4.2066 91.21 110.33 
0 3 0.5983 5.7594 - 91.98 
1 3 0.7803 5.7042 21.97 90.14 
2 3 0.5173 5.6206 74.14 87.35 
3 3 1.1357 5.5185 62.14 83.95 
4 3 0.9154 5.6824 77.12 89.41 
5 3 0.9860 5.8954 80.28 96.51 
0 4 2.3125 7.6629 - 91.57 
1 4 2.5872 8.2083 158.72 105.21 
2 4 3.3844 8.1059 69.22 102.65 
3 4 2.5118 8.0370 16.27 100.93 
4 4 3.2326 8.0571 19.19 101.43 
5 4 2.6520 7.8752 46.96 96.88 
0 5 3.0548 9.2564 - 85.13 
1 5 2.8547 9.8576 185.47 97.15 
2 5 2.6632 9.0188 33.16 80.38 
3 5 3.6574 9.3584 21.91 87.17 
4 5 3.8812 9.8711 2.97 97.42 
5 5 3.1542 9.0548 36.92 81.01 
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4.2.2 Real Motion Test 

 

The algorithm performance as velocity estimator needs to be tested and analyzed by 

using real image sequence. Camera used has a maximum capacity of grabbing 30 frames 

per second (fps) and frame size of 176 × 144 pixels2 is used for this test. Then, captured 

images are cropped into 60 × 60 pixels2 to minimize computational time and the optical 

flow algorithm is applied. The result from optical flow algorithm for 2 difference 

distances between the feature points on the ground and the centre of projection of the 

camera, Z is shown in Table 4-3. 

 

  
Figure 4-5: Optical flow result for real motion estimation 
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Table 4-3: The result of estimated velocity, ve compared to average value, vc
 

Estimated velocity 
(cm/s) Z value 

Frame 
per 

second 

Actual 
velocity 
(cm/s) 

Optical 
flow 

(pixel) Value Average 

Error     
(%) 

6.8958 1.6996 
7.5621 1.8637 2 
7.1423 1.7602 

1.7745 11.28 

3.5772 0.8816 
3.0263 0.7458 

30 

1 
3.6488 0.8992 

0.8422 15.78 

10.1592 1.2519 
10.5448 1.2994 2 
10.4277 1.2849 

1.2787 36.07 

6.7721 0.8345 
6.3372 0.7809 

10 

15 

1 
7.0329 0.8666 

0.8273 17.27 

3.5688 1.7590 
3.4137 1.6826 2 
3.5746 1.7619 

1.7345 13.28 

2.2598 1.1138 
1.7864 0.8805 

30 

1 
1.5648 0.7713 

0.9219 7.81 

6.0188 1.4833 
5.8473 1.4410 2 
6.8472 1.6874 

1.5372 23.14 

3.5864 0.8839 
3.7485 0.9238 

20 

15 

1 
3.6621 0.9025 

0.9034 9.66 
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4.3  Discussion 

 

Based on the result, the optical flow algorithm has performed its functionality up to initial 

expectation. Under uniform illumination changes, the algorithm is capable of estimating 

the optical flow with error less than 10% in δx and less than 20% in δy. When dealing 

with large displacement ‘motion’, the algorithm successfully estimate the optical flow up 

to 10 units (pixels).  

 

From the result in Table 4-2, it is clearly shown that without considering illumination 

effect, the optical flow algorithm will suffers severely from inaccurate results when 

dealing with motion with illumination variation.  As presented in the robust optical flow 

algorithm, the illumination effect need to be compensated first before proceed with 

further optical flow calculation. This is important step since the principle of optical flow 

calculation is based on the intensity values of pixels in a sequence of images. 

 

However, it was found that, in some occasions the estimation in x-direction has shown 

better result as compared to the y-direction estimation. This situation arises from the 

hierarchical matching-based methods (coarse-to-fine estimation) itself, in which they 

provide an efficient estimation for large displacements but are less accurate [12]. The 

accuracy can be improved by employing coarse-to-over fine approach as presented in 

[13] but it will affect the algorithm in term of execution time. This approach leads to 

sharpening of the flow edges and sub-pixel motion is observed to be more accurately 

estimated as well. Alternatively, by utilizing the high speed imaging capability of CMOS 

image sensors, more accurate optical flow with wide range of scene velocities in real time 

[12]. 

 

For the real image sequence optical flow test, the estimated value of velocity, Ve show 

ability of computing the optical flow. Two different distances between the feature points 

on the ground and the centre of projection of the camera, Z are used in this test and the 

result are compared. Both didn’t produce a very good but the result did show that the 

more distance between the feature points on the ground and the centre of projection of the 
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camera, Z produced better result. This is because the setup of image acquisition processes 

very poor and also the effect of the focal length of the camera. The different value of 

frame rate (fps) is used in the test to observe the effect to the estimation. From the result, 

it has given significant effect to result and this shows the more frame rate can produce 

more accurate result [12]. The velocity calculation is made based on Equation 2.11.  

 

Therefore, this algorithm has proved its robust performance in motion estimation both 

under synthetic motion and real motion. 
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CHAPTER 5 

CONCLUSION AND RECOMENDATION 

The aim of this project is to extract motion from picture sequence using optical flow 

algorithm. In optical flow calculation, it is necessary to consider illumination effect as it 

could change with respect to time and the algorithm has to have capability to handle 

larger range of motion. 

 

As presented in result section, the algorithm has performed well in estimating synthetic 

motion condition for both motion under uniform illumination variation and large 

displacement motion. In order to confirm the applicability and its performance in dealing 

with real image motion, experiments have been conducted and the results have been 

analyzed. From the findings, the robust optical flow algorithm for real images shows a 

very fair result but also a positive indication on its practical functionality in real life 

situation. 

 

For future works, focus should be made on the performance in dealing with real image 

motion to produce more accurate result so that the algorithm will be more relevant for the 

real applications. This is important since the result from this report for the real motion is 

lower than expected. Apart from that, it also necessary to improve the algorithm in term 

of execution time which is important in order to be relevant for real time application. 

. 
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APPENDIX A 
MATLAB SOURCE CODE 

 
Illumination effect 
 
function [new_im1,new_im2] = illumination(im1, im2,numLevels, 
windowSize); 
  
ori_image1=im1; 
ori_image2=im2; 
  
previous_k =0; 
  
for i=1:3 
         
    %Build Pyramids 
    pyramid1 = im1; 
    pyramid2 = im2; 
  
    for i=2:numLevels 
        im1 = reduce(im1); 
        im2 = reduce(im2); 
        pyramid1(1:size(im1,1), 1:size(im1,2), i) = im1; 
        pyramid2(1:size(im2,1), 1:size(im2,2), i) = im2; 
    end; 
  
    image1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels-1))), 
1:(size(pyramid1,2)/(2^(numLevels-1))), numLevels); 
    image2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels-1))), 
1:(size(pyramid2,2)/(2^(numLevels-1))), numLevels); 
  
    [height,width]=size(image1); 
  
    [u,v] = LucasKanade(image1, image2, windowSize); 
    u1=u(3:size(u,1)-2, 3:size(u,2)-2); 
    v1=v(3:size(v,1)-2, 3:size(v,2)-2); 
  
    delta_x= -mean(mean(u1))'; 
    delta_y= mean(mean(v1))'; 
     
    X = abs(delta_x); 
    Y = abs(delta_y); 
  
  
    if (delta_x >= 0 && delta_y >= 0)   % positive displacement 
        k = image2(Y+2:height-1,2:width-X-1) - image1(2:height-Y-
1,X+2:width-1); 
         
    elseif (delta_x < 0 && delta_y < 0) 
        k = image2(2:height-Y-1,X+2:width-1) - image1(Y+2:height-
1,2:width-X-1); 
     
    elseif (delta_x >= 0 && delta_y < 0) 
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        k = image2(2:height-Y-1,2:width-X-1) - image1(Y+2:height-
1,X+2:width-1);    
     
    else 
        k = image2(Y+2:height-1,X+2:width-1) - image1(2:height-Y-
1,2:width-X-1);  
         
    end 
  
    avg_k=mean(mean(k))'; 
    avg_k= avg_k + previous_k; 
    im1= ori_image1;  
    im2= ori_image2 - avg_k; 
    previous_k = avg_k; 
end 
  
  
new_im1= im1; 
new_im2= im2; 
 
Lukas Kanade 
 
function [u,v,cert] = LucasKanadeRefined(uIn, vIn, im1, im2); 
  
uIn = round(uIn); 
vIn = round(vIn); 
  
u = zeros(size(im1)); 
v = zeros(size(im2)); 
  
%to compute derivatives, use a 5x5 block...  
% take the middle 3x3 block as derivative 
for i = 3:size(im1,1)-2 
   for j = 3:size(im2,2)-2 
        
      curIm1 = im1(i-2:i+2, j-2:j+2); 
      lowRindex = i-2+vIn(i,j); 
      highRindex = i+2+vIn(i,j); 
      lowCindex = j-2+uIn(i,j); 
      highCindex = j+2+uIn(i,j); 
       
      if (lowRindex < 1)  
         lowRindex = 1; 
         highRindex = 5; 
      end; 
       
      if (highRindex > size(im1,1)) 
         lowRindex = size(im1,1)-4  ;
         highRindex = size(im1,1); 
      end; 
       
      if (lowCindex < 1)  
         lowCindex = 1; 
         highCindex = 5; 
      end; 
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      if (highCindex > size(im1,2)) 
         lowCindex = size(im1,2)-4  ;
         highCindex = size(im1,2); 
      end; 
       
      if isnan(lowRindex) 
         lowRindex = i-2; 
         highRindex = i+2; 
      end; 
       
      if isnan(lowCindex) 
         lowCindex = j-2; 
         highCindex = j+2; 
      end; 
       
      curIm2 = im2(lowRindex:highRindex, lowCindex:highCindex); 
       
      [curFx, curFy, curFt]=ComputeDerivatives(curIm1, curIm2); 
       
      curFx = curFx(2:5, 2:5); 
      curFy = curFy(2:5, 2:5); 
      curFt = curFt(2:5, 2:5); 
  
      curFx = curFx(:); 
      curFy = curFy(:); 
      curFt = -curFt(:); 
       
      A = [curFx curFy]; 
       
      U = pinv(A'*A)*A'*curFt; 
       
      u(i,j)=U(1); 
      v(i,j)=U(2); 
       
      cert(i,j) = rcond(A'*A); 
       
   end; 
end; 
  
u = u+uIn; 
v = v+vIn; 
 
Lukas Kanade 2 
 
function [u, v] = LucasKanade(im1, im2, windowSize); 
  
  
fx = conv2(im1,0.25* [-1 1; -1 1]) + conv2(im2, 0.25*[-1 1; -1 1]); 
fy = conv2(im1, 0.25*[-1 -1; 1 1]) + conv2(im2, 0.25*[-1 -1; 1 1]); 
ft = conv2(im1, 0.25*ones(2)) + conv2(im2, -0.25*ones(2)); 
  
% make same size as input 
fx=fx(1:size(fx,1)-1, 1:size(fx,2)-1); 
fy=fy(1:size(fy,1)-1, 1:size(fy,2)-1); 
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ft=ft(1:size(ft,1)-1, 1:size(ft,2)-1); 
  
u = zeros(size(im1)); 
v = zeros(size(im2)); 
  
halfWindow = floor(windowSize/2); 
for i = halfWindow+1:size(fx,1)-halfWindow 
   for j = halfWindow+1:size(fx,2)-halfWindow 
      curFx = fx(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow); 
      curFy = fy(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow); 
      curFt = ft(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow); 
    
      curFx = curFx(:); 
      curFy = curFy(:); 
      curFt = -curFt(:); 
       
      A = [curFx curFy]; 
       
      U = pinv(A'*A)*A'*curFt; 
       
      u(i,j)=U(1); 
      v(i,j)=U(2); 
   end; 
end; 
  
u(isnan(u))=0; 
v(isnan(v))=0; 
 
 
Optical flow 
 
function opticalFlow (im1,im2) 
  
  
R1 = [60 20 60 60]; 
R2 = [60 20 60 60]; 
im1 = imcrop(im1,R1); 
im2 = imcrop(im2,R2); 
  
numLevels=3; windowSize=3; iterations=1; 
  
  
% change color image to grayscale 
if size(im1,3)==3 
    im1 = rgb2gray(im1); 
    im2 = rgb2gray(im2); 
end 
  
im1=im2double(im1);       
im2=im2double(im2); 
if (rem(size(im1,1), 2) ~= 0) 
   % warning('image will be cropped in height!'); 
    im1 = im1(1:(size(im1,1) - rem(size(im1,1), 2^(numLevels - 1))), 
:); 
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    im2 = im2(1:(size(im1,1) - rem(size(im1,1), 2^(numLevels - 1))), 
:); 
end; 
  
if (rem(size(im1,2), 2) ~= 0) 
   % warning('image will be cropped in width!'); 
    im1 = im1(:, 1:(size(im1,2) - rem(size(im1,2), 2^(numLevels - 
1)))); 
    im2 = im2(:, 1:(size(im1,2) - rem(size(im1,2), 2^(numLevels - 
1)))); 
end; 
%  
% im2=im2+0.0; 
ori_image1=im1; 
ori_image2=im2; 
  
subplot(1,2,1), imshow(im1) 
subplot(1,2,2), imshow(im2) 
%======================================================================
==== 
[im1,im2] = illumination(ori_image1, ori_image2,numLevels, windowSize); 
%======================================================================
==== 
  
%Build Pyramids 
pyramid1 = im1; 
pyramid2 = im2; 
  
for i=2:numLevels 
    im1 = reduce(im1); 
    im2 = reduce(im2); 
    pyramid1(1:size(im1,1), 1:size(im1,2), i) = im1; 
    pyramid2(1:size(im2,1), 1:size(im2,2), i) = im2; 
end; 
  
% base level computation 
%disp('Computing Level 1'); 
baseIm1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels-1))), 
1:(size(pyramid1,2)/(2^(numLevels-1))), numLevels); 
baseIm2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels-1))), 
1:(size(pyramid2,2)/(2^(numLevels-1))), numLevels); 
[u,v] = LucasKanade(baseIm1, baseIm2, windowSize); 
  
%propagating flow 2 higher levels 
for i = 2:numLevels 
   %disp(['Computing Level ', num2str(i)]); 
    uEx = 2 * imresize(u,size(u)*2);   
    vEx = 2 * imresize(v,size(v)*2); 
     
    curIm1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels - i))), 
1:(size(pyramid1,2)/(2^(numLevels - i))), (numLevels - i)+1); 
    curIm2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels - i))), 
1:(size(pyramid2,2)/(2^(numLevels - i))), (numLevels - i)+1); 
     
    [u, v] = LucasKanadeRefined(uEx, vEx, curIm1, curIm2); 
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    for r = 1:iterations 
        [u, v, cert] = LucasKanadeRefined(u, v, curIm1, curIm2); 
    end   
end 
  
u=u(10:size(u,1)-10,10:size(u,2)-10 ); 
v=v(10:size(v,1)-10,10:size(v,2)-10 ); 
  
figure; quiver(u(20:40,10:30), v(20:40,10:30)) 
  
  
%final result 
u=mean(mean(u))' 
v=mean(mean(v))' 
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APPENDIX B 
Pictures of calibration 
 
 

 
 
Figure A-1: Chessboard before calibrate 
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Figure A-2: Chessboard after calibrate 
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FYP II GANTT CHART 
 
Table A-1: Suggested Milestone for the First Semester of 2-Semester Final Year Project 
 
 

No. Detail/ Week 1 2 3 4 5 6 7  8 9 10 11 12 13 14 
1 Selection of Project Topic  
  

2 Preliminary Research Work  
  

3 Submission of Preliminary Report   
   

4 Seminar 1 (optional)  
   

5 Project Work   
  

6 Submission of Progress Report   
  

7 Seminar 2 (compulsory)  
  

8 Project work continues  
  

9 Submission of Interim Report Final Draft  
  

10 Oral Presentation  
   
   
   Suggested milestone 

   Process 

A
PPE

N
D

IX
 C
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Table A-2: Suggested Milestone for the Second Semester of 2-Semester Final Year Project 
 
 

No. Detail/ Week 1 2 3 4 5 6 7  8 9 10 11 12 13 14 
1 Project Work Continue  
  

2 Submission of Progress Report 1  
   

3 Project Work Continue  
  

4 Submission of Progress Report 2  
  

5 Seminar (compulsory)  
  

5 Project work continue  
  

6 Poster Exhibition  
  

7 Submission of Dissertation (soft bound)  
  

8 Oral Presentation  
  

9 Submission of Project Dissertation (Hard Bound)  

  
    Suggested milestone 
     Process 
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Table A-3: Final Year Project Workflow for the First Semester of 2-Semester Final Year Project 
 

Process Flow Details        Wee  k        
 1 2 3 4 5 6 7  8 9 10 11 12 13 14 
1) Research                             
   a)Optical flow                             
   b)Lukas kanade                             
   c)Robust Optical flow                             
   d)Camera model                             
   e)Motion based foreground segmentation                             
   e)Data gathered                             
   f)Report prepared                             
                              
2) Research on algorithm                             
   a)Optical flow                             
   b)Lukas kanade                             
   c)Robust Optical flow                             
   d)Motion based foreground segmentation                             
   e)MATLAB                             
   f)C++                             
   g)Comparison advantages and disadvantages                             
                              
3) Design the algorithm                              
   a)select camera                             
   b)Find focal length                             
   c)design the algorithm                             
                              
4) Test                             
   a)synthetic motion                             
   b)real motion                             
   c)report prepared               

S
em

ester B
reak 
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Table A-4: Suggested Milestone for the First Semester of 2-Semester Final Year Project 
 

Process Flow Details        Wee  k
1 2 3 4 5 6

       
  7 

  8 9 10 11 12 13 14
1 ) Research                             
   a)Optical flow                             
   b)Lukas kanade                             
   c)Robust Optical flow                             
   d)Camera model                             
   e)Motion based foreground segmentation                             
   e)Data gathered                             
   f)Report prepared                             
                              
2) Research on algorithm                             
   a)Optical flow                             
   b)Lukas kanade                             
   c)Robust Optical flow                             
   d)Motion based foreground segmentation                             
   e)MATLAB                             
   f)C++                             
   g)Comparison advantages and disadvantages                             
                              
3 )Design the algorithm                              
   a)select camera                             
   b)Find focal length                             
   c)design the algorithm                             
                              
4) Test                             
   a)synthetic motion                             
   b)real motion                             
   c)report prepared               

S
em

ester B
reak 
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