

EXTRACT MOTION FROM PICTURE SEQUENCE

By

MOHD SHAFIQ AHMAD DAHALAN

FINAL PROJECT REPORT

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Mechanical Engineering)

JANUARY 2008

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

ABSTRACT

Optical flow is a concept for estimating motion of objects within a visual representation.

Motion is represented as vectors at every pixel in a digital image sequence of two frames

which are taken at time t and t + δt respectively. Based on the assumption of the

observed brightness (intensity) of any object point is constant over time interval and the

movement is small, optical flow equation (OFE) is derived and used in algorithm to

calculate optical flow for a particular motion. In order to inject robustness in the

algorithm, time-varying uniform illumination and calculation of large range of motion

also have been taken into account while formulating the algorithm. The algorithm is used

as reference to create a coding input for the MATLAB, which is the software used in this

project. As a result, the software generates a separate view of static and moving objects.

Further study of the output obtains more accurate data. The experimental process will be

carried out using a video as an input to determine whether the project succeeds or need

more modifications. The outcome of this project is beneficial for motion analyst to

predict the parameter of moving objects, animations, statistics and also robotic eye.

 ii

TABLE OF CONTENTS

ABSTRACT …………………………………………………………………...………..ii

TABLE OF CONTENTS……………………………………………………………....iii

LIST OF ILLUSTRATION……………………………………………………………iv

CHAPTER 1- INTRODUCTION

1.1 Optical Flow Concept...1

1.2 Problem Statement……………………………….……….……………………….….3

1.3 Objective and Scope of Study………………………………………………………..4

CHAPTER 2-LITERATURE REVIEW

2.1 Optical Flow Equation……………...5

2.2 Lukas-Kanade Algorithm....……………………………………………….………...6

2.3 Robust Optical Flow Algorithm…………………………………………….……….8

2.4 Camera Model……………….. ……………………………………………….…….9

CHAPTER 3-METHODOLOGY/ PROJECT WORK

3.1 Camera Calibration…………….…………………………………………….….….13

3.2 Optical Flow Algorithm………………………………………………….………....15

 3.2.1 Robust Optical Flow Algorithm……………………………….…….…....15

 3.2.2 Illumination Variation Correction……………………………….……..…16

 3.2.3 Iterative Lukas-Kanade Optical Flow………………………….…………17

CHAPTER 4- RESULT AND DISCUSSION

4.1 Camera Calibration Result…………………………………………………………18

4.2 Optical Flow Algorithm Performance……………………………………………...20

4.2.1 Synthetic Motion Test………………………………………………….20

4.2.2 Real Motion Test……………………………………………………….24

4.3 Discussion………………………………………………………………………….26

 iii

CHAPTER 5- CONCLUSION AND RECCOMENDATION……….......................28

REFERENCES………………………………………………………………………..29

APPENDICES………………………………………………………………………...31

APPENDIX A: Matlab Source Code

APPENDIX B: Pictures of calibration

APPENDIX C: Gantt Chart

 iv

LIST OF ILLUSTRATIONS
LIST OF FIGURE

Figure 1-1: Projection on the image plane of 3D motion 1

Figure 1-2: Optical flow field from sequence of image 2

Figure 2-1: Region that is taken into account for calculation of k 8

Figure 2-2: Gaussian pyramids 9

Figure 2-3: Camera standard coordinate system 10

Figure 2-4: Camera system setup 11

Figure 3-1: Camera calibration toolbox 14

Figure 4-1: Camera calibration result 18

Figure 4-2: Image of camera calibration (camera-centered) 19

Figure 4-3: Image of camera calibration (world-centered) 20

Figure 4-4: Image sequence for optical flow algorithm calculation which has

 undergone illumination effect 21

Figure 4-5: Optical flow result for real motion estimation 24

LIST OF TABLE

Table 4-1: The result of calculated optical flow with compared to actual

 displacement 23

Table 4-2: The results of calculated optical flow with illumination effect

 using original iterative Lukas-Kanade algorithm

 (i.e. without illumination correction) 24

Table 4-3: The result of estimated velocity, ve compared to average value, vc 26

 v

CHAPTER 1

INTRODUCTION

1.1 Optical Flow Concept

In a digital image, each pixel is represented by a value of intensity (I), obtained from the

projection of objects in 3D motion field to a 2D image plane. As the objects move, the

corresponding projections in the 2D image plane also change their position. Optical flow is

the vector field that reflects the direction and magnitude of the relative displacement of these

pixels over the sequence of images.

Optical center

2D motion plane

3D motion field

Image intensity

I1

I2

Optical center

2D motion plane

3D motion field

Image intensity

I1

I2

Figure 1-1: Projection on the image plane of the 3D motion

Optical flow is useful in pattern recognition, computer vision, and other image processing

applications. It is closely related to motion estimation and motion compensation. Some

consider using optical flow for collision avoidance and altitude acquisition system for

unmanned air vehicles (UAVs). For motion estimation application, the optical flow algorithm

 1

is used to estimate an optical flow from an image pair. The optical flow is then used to

estimate the vehicle velocity.

Figure 1-2 shows the optical flow vectors which represent the motion of object in a digital

image sequence.

a) Image 1 b) Image 2 c) Optical Flow

Figure 1-2: Optical flow field from sequence of image.

Horn et. al. [3] did pioneering work on the development of optical flow techniques based on

computing spatiotemporal differences from an image sequence. Since then, many methods

and algorithms for determining optical flow were developed [4]. According to the result of

J.L. Barron et. al. [4], Kanade-Lucas optical flow algorithm [5] is used because it is robust,

accurate, insensitive to noise and non-uniform light intensity sources, and suitable for real-

time computation. Therefore, a method proposed by Lukas and Kanade is used as the basis

for the optical flow algorithm for this project.

 2

1.2 Problem Statement

n optical flow algorithm has been developed for synthetic motion estimation. Two images,

owever, this algorithm has several limitations that certainly affect its credibility to

deliver

) Under varying illumination condition, it may fail to calculate accurately since the

b) er motion range (more than 1 pixel), the algorithm failed

c) in which is very important to

A

8 × 8 pixels2 in size, are used in the algorithm to represent the simple motion sequences. The

first images, I (x, y, t), represents the image intensity at time, t and spatial coordinates, x and

y. The second image, I (x+δx, y+δy, t+δt), represents the synthetic motion of the δx and δy,

and the change in time, δt.

H

 accurate results as a motion estimator. These limitations are noted as follow:

a

method itself relies on the pixels’ intensity value which is assumed to be constant

over the time interval.

When dealing with larg

to estimate motion accurately. This is due to the assumption made in optical flow

equation’s derivation whereby the motion is small.

This algorithm is yet to be applied with real image

determine its applicability in real life application.

 3

1.3 Objectives and Scope of Study

he main objective of this project is to develop a robust optical flow algorithm for the motion

he algorithm is expected to receive input (frames of images) from external devices such as

he scope of the project also included experiment to validate the optical flow algorithm by

T

estimation. This robust algorithm will be developed to overcome the limitations that have

been described in previous section. It is expected to have capability of producing accurate

results even under influence of uniform illumination changes and long ranges of motion

(more than 1 pixel).

T

digital camera via MATLAB’s Image Acquisition Toolbox. Using a video input object, live

data is acquired and analyzed to calculate any motion between two adjacent image frames.

Any motion in the stream (optical flow field) is plotted in a MATLAB figure window.

T

using real image. The experiment enables the evaluation of the algorithm‘s accuracy and the

overall performance with respect to the predefined project’s objective.

 4

CHAPTER 2

LITERATURE REVIEW

2.1 Optical Flow Equation

ptical flow is a concept for motion estimation of objects within a visual representation.

O

Typically the motion is represented as vectors originating or terminating at pixels in a digital

image sequence which are taken at times t and t+ δt. Assuming image intensity, I

(brightness) is roughly constant over short intervals, as a pixel at location (x, y,t) with

intensity I (x, y, t) will have moved δx, δy and δt between the two frames, following image

constraint equation can be given:

),,(),,(ttyyxxItyxI δδδ +++= (2.1)

Assuming the movement to be small, we can evelop the image constraint at I (x, y, t) with

d

first order Taylor series to get:

termsorderHighery
y
Ix

x
IttyxIttyyxxI +

∂
∂

+
∂
∂

++=+++ δδδδδδ),,(),,(

y
y
Ix

x
IttyxIttyyxxI δδδδδδ

∂
∂

+
∂
∂

++≈+++),,(),,((2.2)

From the Equation 2.1 and 2.2, we achieve:

[] 0),,(),,(≈
∂
∂

+
∂
∂

+−+ y
y
Ix

x
ItyxIttyxI δδδ

 5

0≈
∂
∂

+
∂
∂

+
∂
∂ y

y
Ix

x
I

t
I δδ

Rewrites the derivatives, tI
t
I
=

∂
∂ , xI

x
I
=

∂
∂

 and yI
y
I
=

∂
∂ , the optical flow equation is:

0=++ yIxII yxt δδ (2.3)

Equation 2.3 has two unknowns and so does not have a unique solution. This is the

mathematical problem that there is not enough information in a small area to uniquely

determine motion. But Horn and Schunck [3] has add an additional constrain by using a

global regularization calculation. They assume that images consist of objects undergoing

rigid motion, and so over relatively large areas the optical flow will be smooth. They then

minimize the square of the magnitude of the gradient of optical flow using the equation

yx
y

v
y

v
x

v
x

v
IvI yyxx

t
D

δδλ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++⋅∇∫
2222

22)(r (2.4)

In contrast, Lucas and Kanade [5] use a local least squares calculation to provide the

constraint by minimizing in the neighborhood surrounding the pixel, represented in equation

form by

[22

,
),,(),,(),(tyxIvtyxIyxW

yx
+⋅∇∑

Ω∈

r] (2.5)

2.2 Lukas- Kanade Algorithm

According to the results presented in [4], Lukas-Kanade optical flow algorithm is commonly

adapted in optical flow calculation due to its robustness, accuracy and feasibility for real time

computation. The optical flow equation has two unknown and cannot be solved as such. This

is known as the aperture problem of the optical flow algorithms. To find the optical flow, we

 6

need another set of equation which is given by some additional constraint. The solution as

given by Lukas and Kanade is a non-iterative method which assumes a locally constant flow

in small windows.

From Equation 2.3, assuming that the optical flow (δx, δy) is constant and numbering the

pixels as 1...n, we get:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

tn

t

t

yn

y

y

xn

x

x

I

I
I

y
x

I

I
I

I

I
I

MMM
2

1

2

1

2

1

δ
δ

or bvA −=
r

To solve the over-determined system of equation, we use the least squares method:

())(bAvAA TT −=
r

())(1 bAAAv TT −=
−r

then, we achieve:

⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

∑
∑

∑
∑

∑
∑

−

tx

tx

yy

yx

yx

xx

II
II

II
II

II
II

y
x

1

δ
δ

 (2.6)

 7

2.3 Robust Optical Flow Algorithm

The derivation of the optical flow equation assumes that the intensity (brightness) of a pixel

does not change along its motion trajectory [5]. This assumption is generally applicable but

not true all the time since the illumination may change over the time interval. Assuming the

source of illumination is from a far distance, the illumination will have a uniform effect, k to

the entire frame (feature window area). Then, the Equation 2.1 will becomes:

),,(),,(ttyyxxItyxI δδδκ +++=+ (2.7)

When dealing with optical flow calculation involving illumination variation problem, it is

necessary to compensate the effect of changes in one frame in accordance to the other frame.

As depicted in Figure 2-1, the value of k can be estimated by calculating the average

difference of intensity values between the second frame and the first frame. The calculation

is limited within the highlighted region in which is common for both frames.

κ

y

x

δy

δx

Image 1

Image 2

Figure 2-1: Region that is taken into account for calculation of k.

When the motion is not small (more than 1 pixel), the higher order terms in Equation (2)

become more significant and dominant. Thus the algorithm will produce less or no accurate

results as a motion estimator. In order to solve this problem, an iterative Lukas-Kanade

 8

algorithm is applied which practices coarse-to-fine optical flow estimation. This approach

relies on estimating the flow in an image Gaussian pyramid in Figure 2-2, where the apex is

the original image at a coarse scale, and the levels beneath it are warped representations of

the images based on the flow estimated at the preceding scale. This ensures that the small

motion assumption of Equation 2.2 remains valid.

image image 1

 Compute Flow Iteratively

image

warp & up sample

 Compute Flow Iteratively

Figure 2-2: Gaussian pyramids of image 1 and image 2

2.4 Camera Model

A camera model provides the relationship between an object 3-dimensional (3D) position and

its corresponding pixel position in 2-dimensional (2D) image plane. There are two groups of

parameters namely the extrinsic parameters and intrinsic parameters. The extrinsic

parameters are not constant and depend on the camera orientation while the intrinsic

parameters are orientation independent.

Extrinsic parameters are values of the placement and orientation of the camera, i.e. a rotation

matrix and translation vector. Intrinsic parameters are the important parameters since they

will be used in calculation of motion estimation application and camera orientation is fixed.

The intrinsic parameters are listed below:

 9

a) Focal length : fc = [f1 f2]’

b) Principal point : cc = [c1 c2]’

c) Skew coefficient : αc

d) Lens distortion : kc = [k1 k2 k3 k4 k5]’

Note: In this particular project, only focal length, f is used in motion estimation calculation.

Figure 2-3 shows a camera standard coordinate system. Projected point ip (xp, yp) of Po (Xc,

Yc, Zc) on the image plane is given as:

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=⎥

⎦

⎤
⎢
⎣

⎡

222

1211)(
cxf

cxxf
y
x

d

dcd

p

p α
 (2.8)

Z

X
Y

Center of projection
Image Plane

Po

(0,0)

c1
c2

y x

ip

Z

X
Y

Center of projection
Image Plane

Po

(0,0)

c1
c2

y x

(0,0)

c1
c2

y x

ip

Figure 2-3: Camera standard coordinate system.

For camera velocity estimation, the system setup is prepared as shown in Figure 2-2.

 10

Z

X
camera

ground

Moving direction

Z

X
camera

ground

Moving direction

Figure 2-4: Camera system setup

The optical axis of the camera is perpendicular to the ground plane. Therefore, we can further

assume the distortion and skew coefficient are negligible. Equation 2.6 can be represented as:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
=⎥

⎦

⎤
⎢
⎣

⎡

22

11

c
Z
X

f

c
Z
X

f

y
x

c

c

c

c

p

p
 (2.9)

Differentiate Equation 2.7 with respect to time, the velocity of the camera in X-Y plane is

given as:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+

−+
=⎥

⎦

⎤
⎢
⎣

⎡

zp
yc

zp
xc

y

x

Vcx
ff

vZ

Vcx
ff

vZ

V
V

)(1

)(1

2
22

1
11 (2.10)

Then if the ground is flat, i.e. Zc is constant, Equation 2.8 becomes:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

2

1

f
vZ

f
vZ

V
V

yc

xc

y

x
 (2.11)

 11

whereby:

 Vx and Vy are the camera velocities in X and Y directions respectively.

 Zc is the distance between the feature points on the ground and the centre of

projection of the camera.

 vx and vy are the image velocity, vx = ∆xF and vy =∆yF, where F is camera's frame

rate and (∆x, ∆y) is the optical flow.

 Focal length: fc = [f1 f2]’. Obtained from camera calibration.

 Principal point: cc = [c1, c2]’. Obtained from camera calibration.

 12

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Camera Calibration

The intrinsic parameters of a camera can be determined by using Camera Calibration

Toolbox for Matlab [2] and several chessboard-pattern images taken by the Philips Webcam

SPC 600 NC camera. Figure 3-1 shows the calibration toolbox‘s main window. The

procedures for the calibration process are noted as follow:

Read chessboard-pattern images

Extract images grid corners

Start Calibration process

Results

 (focal length, principal point,
pixel error, distortion)

 13

Figure 3-1: Camera Calibration Toolbox (J.Y Bouguet)

The MATLAB application has to read the pattern of the chessboard images before it can

extract the grid corner of the images. The application will then start the calibration process to

compute the desired result parameters such as focal length, principal point, pixel error and

distortion.

3.2 Optical Flow Algorithm

3.2.1 Robust Optical Flow Algorithm

Image 1 and image 2 are the input for the algorithm. It will undergo illumination variation

correction to compensate the effect of change in one frame in accordance to the other frame.

The algorithm will start the calculation process using Iterative Lukas Kanade. Result of the

calculation then will be used to estimate the 3D velocity. The procedures for the optical flow

algorithm are noted as follow:

 14

Image 2

Illumination Variation

Correction*

Iterative Lukas Kanade

Optical Flow Calculation**

Result Optical Flow

(u, v)

Estimate the 3D Velocity

Ve =Z v / f

Image1

 15

3.2.2 Illumination Variation Correction*

Compute Lukas-Kanade

optical flow (δx, δy)

Determine the average value of

K
K = image2 (1:width- δx , 1:

height- δy) - image1 (δx :width ,

In the illumination variation correction process, the average value, K is estimated by

calculating the average difference of intensity values between the second frame and the first

frame. The steps are repeated until it converges.

Compensate image2 with K

image2= image2 - K

Repeat steps until
converge

Re compute the optical

flow
(δx, δy)

 16

3.2.3 Iterative Lukas-Kanade Optical Flow **

Create the Gaussian
pyramid of image

Compute the iterative
Lukas-Kanade optical

flow
at the highest level

(δx, δy)

Up-sample thru bilinear
interpolation for twice

resolution and multiply by 2,
(δx*, δy*)

Compute It from block

displaced by δx*, δy*. Apply
LK to get the flow correction

(δx’, δy’)

Obtain the Result
δx = δx* + δx’
δy = δy* + δy’

Repeat steps until
reach base image

 17

In the Iterative Lukas Kanade process, the Gaussian pyramid of image is created. The

calculation will compute the original image at coarse scale before interpolate the result and

multiply by 2. Lukas Kanade algorithm is used to get flow correction. The steps repeated

until reach the base image.

 18

CHAPTER 4

RESULTS AND DISCUSSION

Experiments are performed to check the feasibility, precision and robustness of the proposed

algorithm. The first experiment, the camera intrinsic parameters are determined through

calibration.

4.1 Camera Calibration Result

Camera Calibration Toolbox has been used to calibrate Philips Webcam SPC 600 NC

camera. This step is carried out in order to get the camera’s focal length value. The

parameters obtained after the experiment are:

Figure 4-1: Camera calibration result

 19

Figure 4-2: Image of camera calibration (camera-centered)

Notice that the coefficient alpha_c and the 6th order radial distortion coefficient kc have

not been estimated (this is default mode). Therefore, the angle between the x and y axes

is 90 degrees. In most practical situations, this is a very good assumption [2]. From the

result, the value of focal length of the camera is approximately 658 mm.

 20

Figure 4-3: Image of camera calibration (world-centered)

4.2 Optical Flow Algorithm Performance

4.2.1 Synthetic Motion Test

This test is carried out in order to verify the functionality of the algorithm to estimate

motion. The performance of the algorithm is measured by cropping 2 features windows

of 60 × 60 pixels2 from an image to represent Ii be the grayscale image at time ti and Ii+1

be the grayscale image at time ti+1 (refer to Figure 4-1). During this time interval, let the

image be translated by d = (δx, δy). In addition, the second image has been imposed an

increases in brightness to simulate the illumination variation condition.

The calculated optical flow (δx, δy) is compared to the actual displacement of pixels

between the images and results are shown in Table 4-1. The optical flow also calculated

 21

using original iterative Lukas-Kanade algorithm (i.e. without illumination correction) to

show how illumination can effect the result (refer Table 4-2).

Figure 4-4: Image sequence for optical flow algorithm calculation which has undergone

illumination effect

 22

Table 4-1: The result of calculated optical flow with compared to actual displacement

Actual
displcaement (unit

pixel)
Calculated disp.

(unit pixel)
Error measure

δx δy δx δy δx δy

0 0 0.0000 0.0000 - -
1 0 0.9995 0.1433 0.05 -
2 0 2.0457 0.1268 2.89 -
3 0 3.0198 -0.1359 0.66 -
4 0 3.9699 -0.0252 0.75 -
5 0 4.9236 0.1170 1.53 -
0 1 -0.0071 1.0541 - 5.41
1 1 1.0136 1.1813 1.36 18.13
2 1 2.0768 1.1698 3.84 16.98
3 1 2.9785 1.1543 0.72 15.43
4 1 4.0158 1.1288 0.40 12.88
5 1 5.0864 1.1925 1.73 19.25
0 2 0.0017 2.1082 - 5.41
1 2 1.0550 2.1179 5.50 5.90
2 2 2.0856 2.1577 4.28 7.89
3 2 3.0977 2.1313 3.23 6.57
4 2 4.0544 2.1874 1.36 9.37
5 2 4.9965 2.0981 0.07 4.91
0 3 0.0217 2.9499 - 1.67
1 3 1.0114 3.0844 1.14 2.81
2 3 2.0359 3.1151 1.80 3.84
3 3 3.0099 2.8073 0.33 6.42
4 3 4.0768 3.1632 1.92 5.44
5 3 5.0454 3.0424 0.91 1.41
0 4 0.0213 4.0105 - 0.26
1 4 1.0697 4.0283 6.97 0.71
2 4 2.0982 4.1481 4.91 3.70
3 4 3.0127 3.8421 0.42 3.95
4 4 3.9811 3.9811 0.47 0.47
5 4 5.0663 4.1544 1.33 3.86
0 5 0.0235 5.0342 - -0.68
1 5 1.0676 5.0881 6.76 1.76
2 5 1.9825 5.0677 0.88 1.35
3 5 3.0512 5.0399 1.71 0.80
4 5 3.9905 5.0377 0.24 0.75
5 5 5.0307 5.3505 0.61 7.01
6 8 6.1287 8.6766 2.15 8.46
8 6 8.1003 6.0477 1.25 7.95
10 10 9.6542 10.4288 3.46 4.29

 23

Table 4-2: The results of calculated optical flow with illumination effect using original

iterative Lukas-Kanade algorithm (i.e. without illumination correction)

Actual
displcaement (unit

pixel)
Calculated disp.

(unit pixel)
Error measure

δx δy δx δy δx δy

0 0 -1.1811 2.6420 - -
1 0 -0.4213 2.6328 142.13 -
2 0 -0.7551 2.9261 137.76 -
3 0 -0.8123 2.9203 127.08 -
4 0 -0.3622 2.7739 109.06 -
5 0 -0.8605 2.8054 117.21 -
0 1 -0.7339 3.3298 - 232.98
1 1 -0.2330 3.5920 123.30 259.20
2 1 -1.7740 3.2924 188.70 229.24
3 1 -0.6458 3.2224 121.53 222.24
4 1 -0.0847 3.4046 102.12 240.46
5 1 -0.3630 3.3522 107.26 235.22
0 2 -0.0474 3.9030 - 95.15
1 2 0.0886 4.0680 91.14 103.40
2 2 0.3545 4.1375 82.28 106.88
3 2 -0.4872 4.0798 116.24 103.99
4 2 1.3263 4.1866 66.84 109.33
5 2 0.4397 4.2066 91.21 110.33
0 3 0.5983 5.7594 - 91.98
1 3 0.7803 5.7042 21.97 90.14
2 3 0.5173 5.6206 74.14 87.35
3 3 1.1357 5.5185 62.14 83.95
4 3 0.9154 5.6824 77.12 89.41
5 3 0.9860 5.8954 80.28 96.51
0 4 2.3125 7.6629 - 91.57
1 4 2.5872 8.2083 158.72 105.21
2 4 3.3844 8.1059 69.22 102.65
3 4 2.5118 8.0370 16.27 100.93
4 4 3.2326 8.0571 19.19 101.43
5 4 2.6520 7.8752 46.96 96.88
0 5 3.0548 9.2564 - 85.13
1 5 2.8547 9.8576 185.47 97.15
2 5 2.6632 9.0188 33.16 80.38
3 5 3.6574 9.3584 21.91 87.17
4 5 3.8812 9.8711 2.97 97.42
5 5 3.1542 9.0548 36.92 81.01

 24

4.2.2 Real Motion Test

The algorithm performance as velocity estimator needs to be tested and analyzed by

using real image sequence. Camera used has a maximum capacity of grabbing 30 frames

per second (fps) and frame size of 176 × 144 pixels2 is used for this test. Then, captured

images are cropped into 60 × 60 pixels2 to minimize computational time and the optical

flow algorithm is applied. The result from optical flow algorithm for 2 difference

distances between the feature points on the ground and the centre of projection of the

camera, Z is shown in Table 4-3.

Figure 4-5: Optical flow result for real motion estimation

 25

Table 4-3: The result of estimated velocity, ve compared to average value, vc

Estimated velocity
(cm/s) Z value

Frame
per

second

Actual
velocity
(cm/s)

Optical
flow

(pixel) Value Average

Error
(%)

6.8958 1.6996
7.5621 1.8637 2
7.1423 1.7602

1.7745 11.28

3.5772 0.8816
3.0263 0.7458

30

1
3.6488 0.8992

0.8422 15.78

10.1592 1.2519
10.5448 1.2994 2
10.4277 1.2849

1.2787 36.07

6.7721 0.8345
6.3372 0.7809

10

15

1
7.0329 0.8666

0.8273 17.27

3.5688 1.7590
3.4137 1.6826 2
3.5746 1.7619

1.7345 13.28

2.2598 1.1138
1.7864 0.8805

30

1
1.5648 0.7713

0.9219 7.81

6.0188 1.4833
5.8473 1.4410 2
6.8472 1.6874

1.5372 23.14

3.5864 0.8839
3.7485 0.9238

20

15

1
3.6621 0.9025

0.9034 9.66

 26

4.3 Discussion

Based on the result, the optical flow algorithm has performed its functionality up to initial

expectation. Under uniform illumination changes, the algorithm is capable of estimating

the optical flow with error less than 10% in δx and less than 20% in δy. When dealing

with large displacement ‘motion’, the algorithm successfully estimate the optical flow up

to 10 units (pixels).

From the result in Table 4-2, it is clearly shown that without considering illumination

effect, the optical flow algorithm will suffers severely from inaccurate results when

dealing with motion with illumination variation. As presented in the robust optical flow

algorithm, the illumination effect need to be compensated first before proceed with

further optical flow calculation. This is important step since the principle of optical flow

calculation is based on the intensity values of pixels in a sequence of images.

However, it was found that, in some occasions the estimation in x-direction has shown

better result as compared to the y-direction estimation. This situation arises from the

hierarchical matching-based methods (coarse-to-fine estimation) itself, in which they

provide an efficient estimation for large displacements but are less accurate [12]. The

accuracy can be improved by employing coarse-to-over fine approach as presented in

[13] but it will affect the algorithm in term of execution time. This approach leads to

sharpening of the flow edges and sub-pixel motion is observed to be more accurately

estimated as well. Alternatively, by utilizing the high speed imaging capability of CMOS

image sensors, more accurate optical flow with wide range of scene velocities in real time

[12].

For the real image sequence optical flow test, the estimated value of velocity, Ve show

ability of computing the optical flow. Two different distances between the feature points

on the ground and the centre of projection of the camera, Z are used in this test and the

result are compared. Both didn’t produce a very good but the result did show that the

more distance between the feature points on the ground and the centre of projection of the

 27

camera, Z produced better result. This is because the setup of image acquisition processes

very poor and also the effect of the focal length of the camera. The different value of

frame rate (fps) is used in the test to observe the effect to the estimation. From the result,

it has given significant effect to result and this shows the more frame rate can produce

more accurate result [12]. The velocity calculation is made based on Equation 2.11.

Therefore, this algorithm has proved its robust performance in motion estimation both

under synthetic motion and real motion.

 28

CHAPTER 5

CONCLUSION AND RECOMENDATION

The aim of this project is to extract motion from picture sequence using optical flow

algorithm. In optical flow calculation, it is necessary to consider illumination effect as it

could change with respect to time and the algorithm has to have capability to handle

larger range of motion.

As presented in result section, the algorithm has performed well in estimating synthetic

motion condition for both motion under uniform illumination variation and large

displacement motion. In order to confirm the applicability and its performance in dealing

with real image motion, experiments have been conducted and the results have been

analyzed. From the findings, the robust optical flow algorithm for real images shows a

very fair result but also a positive indication on its practical functionality in real life

situation.

For future works, focus should be made on the performance in dealing with real image

motion to produce more accurate result so that the algorithm will be more relevant for the

real applications. This is important since the result from this report for the real motion is

lower than expected. Apart from that, it also necessary to improve the algorithm in term

of execution time which is important in order to be relevant for real time application.

.

 29

REFERENCES

[1] Pished Bunnun, Yahya H Zweiri, Lakmal D Seneviratne and Kaspar Althoefer, 1997,

Feasibility of Velocity Estimation for All Terrain Ground Vehicles using an Optical

Flow Algorithm, Marcel Dekker, Inc.

[2] J.Y. Bouguet, Camera Calibration Toolbox for Matlab, September 20, 2006

<http://www.vision. caltech.edu/>

[3] B.K.P. Horn and B.G. Schunck, 1981, Determining Optical Flow Artificial

Intelligence, Wiley.

[4] J.L. Barron, D.J. Fleet, and S.S. Beauchemin, 1994, Performance of optical flow

techniques, Int. J. Comput.

[5] B.D. Lucas and T. Kanade, 1981, An Iterative Image Registration Technique with an

Application to Stereo Vision, DARPA Image Understanding Workshop.

[6] Yucel Altunbasak, Russel M. Merasereau and Andrew J.Patti, 1990, A Fast

Parametric Motion Estimation Algorithm with Illumination and Lens Distortion

Correction, CRC Press, Taylor & Francis Group.

[7] Lukas Kanade Method, April 12, 2007, <http://en.wikipedia .org/wiki/Lucas_

Kanade>

[8] Samuel Ben-Ezra, VideoControl – GUI to control image acquisition, February 12,

2008, <http://www.mathworks.com/matlabcentral/fileexchange

/loadAuthor.do?objectType= author&objectid=1094722>

[9] M. Black, D.J. Fleet, and Y.Yacoob, 1998, A framework for modellig appearance

change in image sequences, Int. Conf. on Computer Vision.

 30

[10] Garcia C., Tziritas G., 2001, "Translational Motion Estimation from 2D

displacements", (to appear in) Proceedings of the IEEE International Conference on

Image Processing (ICIP2001), Thessalonique, Greece.

[11] Aleix M. Martinez, 1998, Image Processing, Wiley.

[12] Sukhwan Lim, Abbas El Gamal, 1996, “Optical flow estimation using high frame

rate sequences”, Stanford University, Department Of Electrical Engineering.

[13] Tomer Amiaz*, Eyal Lubetzkyy, Nahum Kiryati*, 1997, “Coarse to Over-Fine

Optical Flow Estimation”, Tel Aviv University, *School of Electrical Engineering ,

School of Computer.

 31

APPENDICES

 31

APPENDIX A
MATLAB SOURCE CODE

Illumination effect

function [new_im1,new_im2] = illumination(im1, im2,numLevels,
windowSize);

ori_image1=im1;
ori_image2=im2;

previous_k =0;

for i=1:3

 %Build Pyramids
 pyramid1 = im1;
 pyramid2 = im2;

 for i=2:numLevels
 im1 = reduce(im1);
 im2 = reduce(im2);
 pyramid1(1:size(im1,1), 1:size(im1,2), i) = im1;
 pyramid2(1:size(im2,1), 1:size(im2,2), i) = im2;
 end;

 image1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels-1))),
1:(size(pyramid1,2)/(2^(numLevels-1))), numLevels);
 image2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels-1))),
1:(size(pyramid2,2)/(2^(numLevels-1))), numLevels);

 [height,width]=size(image1);

 [u,v] = LucasKanade(image1, image2, windowSize);
 u1=u(3:size(u,1)-2, 3:size(u,2)-2);
 v1=v(3:size(v,1)-2, 3:size(v,2)-2);

 delta_x= -mean(mean(u1))';
 delta_y= mean(mean(v1))';

 X = abs(delta_x);
 Y = abs(delta_y);

 if (delta_x >= 0 && delta_y >= 0) % positive displacement
 k = image2(Y+2:height-1,2:width-X-1) - image1(2:height-Y-
1,X+2:width-1);

 elseif (delta_x < 0 && delta_y < 0)
 k = image2(2:height-Y-1,X+2:width-1) - image1(Y+2:height-
1,2:width-X-1);

 elseif (delta_x >= 0 && delta_y < 0)

 32

 k = image2(2:height-Y-1,2:width-X-1) - image1(Y+2:height-
1,X+2:width-1);

 else
 k = image2(Y+2:height-1,X+2:width-1) - image1(2:height-Y-
1,2:width-X-1);

 end

 avg_k=mean(mean(k))';
 avg_k= avg_k + previous_k;
 im1= ori_image1;
 im2= ori_image2 - avg_k;
 previous_k = avg_k;
end

new_im1= im1;
new_im2= im2;

Lukas Kanade

function [u,v,cert] = LucasKanadeRefined(uIn, vIn, im1, im2);

uIn = round(uIn);
vIn = round(vIn);

u = zeros(size(im1));
v = zeros(size(im2));

%to compute derivatives, use a 5x5 block...
% take the middle 3x3 block as derivative
for i = 3:size(im1,1)-2
 for j = 3:size(im2,2)-2

 curIm1 = im1(i-2:i+2, j-2:j+2);
 lowRindex = i-2+vIn(i,j);
 highRindex = i+2+vIn(i,j);
 lowCindex = j-2+uIn(i,j);
 highCindex = j+2+uIn(i,j);

 if (lowRindex < 1)
 lowRindex = 1;
 highRindex = 5;
 end;

 if (highRindex > size(im1,1))
 lowRindex = size(im1,1)-4 ;
 highRindex = size(im1,1);
 end;

 if (lowCindex < 1)
 lowCindex = 1;
 highCindex = 5;
 end;

 33

 if (highCindex > size(im1,2))
 lowCindex = size(im1,2)-4 ;
 highCindex = size(im1,2);
 end;

 if isnan(lowRindex)
 lowRindex = i-2;
 highRindex = i+2;
 end;

 if isnan(lowCindex)
 lowCindex = j-2;
 highCindex = j+2;
 end;

 curIm2 = im2(lowRindex:highRindex, lowCindex:highCindex);

 [curFx, curFy, curFt]=ComputeDerivatives(curIm1, curIm2);

 curFx = curFx(2:5, 2:5);
 curFy = curFy(2:5, 2:5);
 curFt = curFt(2:5, 2:5);

 curFx = curFx(:);
 curFy = curFy(:);
 curFt = -curFt(:);

 A = [curFx curFy];

 U = pinv(A'*A)*A'*curFt;

 u(i,j)=U(1);
 v(i,j)=U(2);

 cert(i,j) = rcond(A'*A);

 end;
end;

u = u+uIn;
v = v+vIn;

Lukas Kanade 2

function [u, v] = LucasKanade(im1, im2, windowSize);

fx = conv2(im1,0.25* [-1 1; -1 1]) + conv2(im2, 0.25*[-1 1; -1 1]);
fy = conv2(im1, 0.25*[-1 -1; 1 1]) + conv2(im2, 0.25*[-1 -1; 1 1]);
ft = conv2(im1, 0.25*ones(2)) + conv2(im2, -0.25*ones(2));

% make same size as input
fx=fx(1:size(fx,1)-1, 1:size(fx,2)-1);
fy=fy(1:size(fy,1)-1, 1:size(fy,2)-1);

 34

ft=ft(1:size(ft,1)-1, 1:size(ft,2)-1);

u = zeros(size(im1));
v = zeros(size(im2));

halfWindow = floor(windowSize/2);
for i = halfWindow+1:size(fx,1)-halfWindow
 for j = halfWindow+1:size(fx,2)-halfWindow
 curFx = fx(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);
 curFy = fy(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);
 curFt = ft(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);

 curFx = curFx(:);
 curFy = curFy(:);
 curFt = -curFt(:);

 A = [curFx curFy];

 U = pinv(A'*A)*A'*curFt;

 u(i,j)=U(1);
 v(i,j)=U(2);
 end;
end;

u(isnan(u))=0;
v(isnan(v))=0;

Optical flow

function opticalFlow (im1,im2)

R1 = [60 20 60 60];
R2 = [60 20 60 60];
im1 = imcrop(im1,R1);
im2 = imcrop(im2,R2);

numLevels=3; windowSize=3; iterations=1;

% change color image to grayscale
if size(im1,3)==3
 im1 = rgb2gray(im1);
 im2 = rgb2gray(im2);
end

im1=im2double(im1);
im2=im2double(im2);
if (rem(size(im1,1), 2) ~= 0)
 % warning('image will be cropped in height!');
 im1 = im1(1:(size(im1,1) - rem(size(im1,1), 2^(numLevels - 1))),
:);

 35

 im2 = im2(1:(size(im1,1) - rem(size(im1,1), 2^(numLevels - 1))),
:);
end;

if (rem(size(im1,2), 2) ~= 0)
 % warning('image will be cropped in width!');
 im1 = im1(:, 1:(size(im1,2) - rem(size(im1,2), 2^(numLevels -
1))));
 im2 = im2(:, 1:(size(im1,2) - rem(size(im1,2), 2^(numLevels -
1))));
end;
%
% im2=im2+0.0;
ori_image1=im1;
ori_image2=im2;

subplot(1,2,1), imshow(im1)
subplot(1,2,2), imshow(im2)
%==
====
[im1,im2] = illumination(ori_image1, ori_image2,numLevels, windowSize);
%==
====

%Build Pyramids
pyramid1 = im1;
pyramid2 = im2;

for i=2:numLevels
 im1 = reduce(im1);
 im2 = reduce(im2);
 pyramid1(1:size(im1,1), 1:size(im1,2), i) = im1;
 pyramid2(1:size(im2,1), 1:size(im2,2), i) = im2;
end;

% base level computation
%disp('Computing Level 1');
baseIm1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels-1))),
1:(size(pyramid1,2)/(2^(numLevels-1))), numLevels);
baseIm2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels-1))),
1:(size(pyramid2,2)/(2^(numLevels-1))), numLevels);
[u,v] = LucasKanade(baseIm1, baseIm2, windowSize);

%propagating flow 2 higher levels
for i = 2:numLevels
 %disp(['Computing Level ', num2str(i)]);
 uEx = 2 * imresize(u,size(u)*2);
 vEx = 2 * imresize(v,size(v)*2);

 curIm1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels - i))),
1:(size(pyramid1,2)/(2^(numLevels - i))), (numLevels - i)+1);
 curIm2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels - i))),
1:(size(pyramid2,2)/(2^(numLevels - i))), (numLevels - i)+1);

 [u, v] = LucasKanadeRefined(uEx, vEx, curIm1, curIm2);

 36

 for r = 1:iterations
 [u, v, cert] = LucasKanadeRefined(u, v, curIm1, curIm2);
 end
end

u=u(10:size(u,1)-10,10:size(u,2)-10);
v=v(10:size(v,1)-10,10:size(v,2)-10);

figure; quiver(u(20:40,10:30), v(20:40,10:30))

%final result
u=mean(mean(u))'
v=mean(mean(v))'

 37

APPENDIX B
Pictures of calibration

Figure A-1: Chessboard before calibrate

 38

Figure A-2: Chessboard after calibrate

 39

FYP II GANTT CHART

Table A-1: Suggested Milestone for the First Semester of 2-Semester Final Year Project

No. Detail/ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 Selection of Project Topic

2 Preliminary Research Work

3 Submission of Preliminary Report

4 Seminar 1 (optional)

5 Project Work

6 Submission of Progress Report

7 Seminar 2 (compulsory)

8 Project work continues

9 Submission of Interim Report Final Draft

10 Oral Presentation

 Suggested milestone

 Process

A
PPE

N
D

IX
 C

 40

Table A-2: Suggested Milestone for the Second Semester of 2-Semester Final Year Project

No. Detail/ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 Project Work Continue

2 Submission of Progress Report 1

3 Project Work Continue

4 Submission of Progress Report 2

5 Seminar (compulsory)

5 Project work continue

6 Poster Exhibition

7 Submission of Dissertation (soft bound)

8 Oral Presentation

9 Submission of Project Dissertation (Hard Bound)

 Suggested milestone
 Process

 41

Table A-3: Final Year Project Workflow for the First Semester of 2-Semester Final Year Project

Process Flow Details Wee k
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1) Research
 a)Optical flow
 b)Lukas kanade
 c)Robust Optical flow
 d)Camera model
 e)Motion based foreground segmentation
 e)Data gathered
 f)Report prepared

2) Research on algorithm
 a)Optical flow
 b)Lukas kanade
 c)Robust Optical flow
 d)Motion based foreground segmentation
 e)MATLAB
 f)C++
 g)Comparison advantages and disadvantages

3) Design the algorithm
 a)select camera
 b)Find focal length
 c)design the algorithm

4) Test
 a)synthetic motion
 b)real motion
 c)report prepared

S
em

ester B
reak

 42

Table A-4: Suggested Milestone for the First Semester of 2-Semester Final Year Project

Process Flow Details Wee k
1 2 3 4 5 6

 7

 8 9 10 11 12 13 14
1) Research
 a)Optical flow
 b)Lukas kanade
 c)Robust Optical flow
 d)Camera model
 e)Motion based foreground segmentation
 e)Data gathered
 f)Report prepared

2) Research on algorithm
 a)Optical flow
 b)Lukas kanade
 c)Robust Optical flow
 d)Motion based foreground segmentation
 e)MATLAB
 f)C++
 g)Comparison advantages and disadvantages

3)Design the algorithm
 a)select camera
 b)Find focal length
 c)design the algorithm

4) Test
 a)synthetic motion
 b)real motion
 c)report prepared

S
em

ester B
reak

 43

 44

	Mohd Shafiq Ahmad Dahalan (M5958).doc
	muka_depan.doc
	FYP_II_GANTT_CHART_apex.doc

