# Dynamic Studies of Steam Methane Reformer (SMR) in Ammonia Plant

By

Norzuliana bt Mohammad Nazir

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

JANUARY 2009

i

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

# CERTIFICATION OF APPROVAL

# Dynamic Studies of Steam Methane Reformer (SMR) in Ammonia Plant

by

NORZULIANA BT MOHAMMAD NAZIR

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by.

2009 avons Ô

(ASSOC.PROF.M.RAMASAMY)

Supervisor

Universiti Teknologi PETRONAS

Tronoh, Perak

JANUARY 2009

## **CERTIFICATION OF ORIGINALITY**

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NORZULIANA BT MOHAMMAD NAZIR

#### ABSTRACT

Mathematical modeling and simulation of Steam Methane Reformer (SMR) over sulfide nickel catalyst on alumina support has been studied. It is consists of primary and secondary reformers which is play an important role in the production of ammonia. This study consists of chemical reaction kinetics; chemical reaction equation and rate constants for a given catalyst; to develop a mathematical model for a steam reformer incorporating the reaction kinetics; to study the behavior of the reactor for changes in different variables such as feed rate, feed composition, temperature, etc.

#### ACKNOWLEDGEMENT

I would like to take this opportunity to acknowledge and thank everyone that has given me all the supports and guidance throughout the whole period of completing the final year project. Firstly, many thanks to the university and the Final Year Project coordinators that have coordinated and made the necessary arrangements.

I must also acknowledge the endless help and support received from my supervisor, Assoc. Prof. Dr. M. Ramasamy throughout the whole period of completing the final year project. His guidance and advices are very much appreciated. Apart from that, many thanks to the engineer Mohd. Rinaldi Hamdi from Plant Operation Department PETRONAS Ammonia Sdn. Bhd. for helping me with the info and operating procedures in ammonia plant.

Finally, many thanks to my fellow colleagues for their help and ideas throughout the completion of this study. Thank you all.

#### TABLE OF CONTENTS

| CERTIFICATIO | N OF AP | PROVAL        | •         | •       | •        | •     | •        | ii      |
|--------------|---------|---------------|-----------|---------|----------|-------|----------|---------|
| CERTIFICATIO | N OF OR | IGINALITY     | •         | •       | •        | •     | ٠        | iii     |
| ABSTRACT .   | •       | • •           | •         | •       | •        | ٠     | •        | iv      |
| ACKNOWLEDG   | EMENT   | · ·           | •         | •       | •        | •     | •        | v       |
| CHAPTER 1:   | INTR    | ODUCTION      | •         | •       | •        | •     | •        | 1       |
|              | 1.1     | Background    | of Study  | 1.      | •        | •     | •        | 1       |
|              | 1.2     | Problem Stat  | ement     | •       | •        |       | •        | 2       |
|              | 1.3     | Objectives ar | nd Scop   | e of St | udy      | •     | •        | 3       |
| CHAPTER 2:   | LITE    | RATURE RE     | VIEW      |         |          |       |          |         |
|              | 2.1     | Steam Metha   | ne Refo   | ormer ( | (SMR)    |       | •        | 4       |
|              | 2.2     | Process Desc  | ription   | of Ref  | ormer in | Amm   | onia Pla | int 7   |
|              | 2.3     | Functions for | each R    | eform   | er.      | •     |          | 10      |
|              | 2.4     | Methane Cor   | ntent in  | the Re  | former   | •     | •        | 12      |
|              | 2.5     | Carbon Mon    | oxide C   | ontent  | in the R | eform | er's Out | let 12: |
|              | 2.6     | Catalyst Prop | perties   | •       | •        | •     | •        | 13      |
|              | 2.7     | Mathematica   | I Mode    | lling   | •        |       |          | 13      |
|              | 2.8     | Polymath So   | ftware    | •       | •        | •     | •        | 14      |
|              | 2.9     | Summary of    | properti  | ies     | •        | •     | •        | 16      |
| CHAPTER 3:   | MET     | HODOLOGY      | •         | •       | •        | •     | •        | 18      |
|              | 3.1     | Overall meth  | odolog    | y.      | •        | •     |          | 18      |
|              | 3.2     | Algorithm fo  | or Soluti | on of ( | Complex  | Reac  | tion     | 19      |
| CHAPTER 4:   | RESU    | JLT AND DIS   | CUSSI     | ON      | •        | •     |          | 20      |

|                 | 4.1                             | Discu | ssion  | •    | • | • | • | • | 20 |
|-----------------|---------------------------------|-------|--------|------|---|---|---|---|----|
|                 | 4.2                             | Resul | t.     | •    | • | • |   | • | 29 |
| CHAPTER 5:      | CONCLUSION AND RECOMMENDATION . |       |        |      |   |   |   |   | 32 |
|                 | 5.1                             | Concl | usion  | •    | • |   | • | • | 32 |
|                 | 5.2                             | Recor | nmenda | tion | • | • | • | • | 32 |
| REFERENCES      | •                               | •     | •      | •    | • | • | • | • | 33 |
| APPENDICES      | •                               | •     | •      | •    | • | • | • | • | 35 |
| APPENDIX 1:REPO | RT FO                           | R POL | YMATI  | Η.   | - | • | • | • | 35 |
| APPENDIX 2:TABL | E FOR                           | POLY  | MATH   |      | • | • |   | • | 37 |
|                 |                                 |       |        |      |   |   |   |   |    |

## LIST OF FIGURES

| Figure 2.1 | Process step to produce Ammonia (PASB)    |    | 5  |
|------------|-------------------------------------------|----|----|
| Figure 2.2 | Diagrams (PASB)                           |    | 6  |
| Figure 2.3 | Reformer section (PASB)                   |    | 6  |
| Figure 2.4 | Detailed schematic diagram of reformer    |    | 7  |
| Figure 2.5 | Reformer                                  |    | 8  |
| Figure 2.6 | Block Representation                      |    | 14 |
| Figure 4.1 | The structure of Selas reformer           | 21 |    |
| Figure 4.2 | Selas reformer district schematic drawing | 21 |    |
|            |                                           |    |    |

#### LIST OF TABLES

| Table 2.1 | Catalyst properties                         | 13 |
|-----------|---------------------------------------------|----|
| Table 4.1 | ODE Solver Algorithm for Multiple Reactions | 29 |

.

#### ABBREVIATIONS AND NOMENCLATURES



#### CHAPTER 1

#### **INTRODUCTION**

#### 1.1 Background of Study

Journals, patents, info from PETRONAS Ammonia Sdn. Bhd, and techniques belong to KTI, Kellogg, Topsoe, ICI, Selas and TEC companies have been study closely for this project. The products from Ammonia/Syngas plant are:

- Carbon monoxide (CO), gas
- Oxogas (mixture of H<sub>2</sub> and CO)
- Ammonia

The CO and oxogas are produced from natural gas and steam. Ammonia is produced from a mixture of hydrogen and nitrogen in the ratio of  $H_2$  to  $N_2$  at 3:1. The fuel for the reformer furnace is by product off-gases (primary fuel) and natural gas (secondary fuel). The reactions by which this ratio is achieved are given as follows:

| $CH_4 + H_2O \leftrightarrow CO + 3H_2$        | Methane reforming reaction | (Reaction 1) |
|------------------------------------------------|----------------------------|--------------|
| $\rm CO + H_2O \leftrightarrow \rm CO_2 + H_2$ | Water gas shift reaction   | (Reaction 2) |
| $CH_4 + 3/2 O_2 \leftrightarrow 2H_2O + CO$    | Combustion reaction        | (Reaction 3) |

Reaction 1, the steam reforming reaction, and reaction 2, the water gas shift reaction, are endothermic and occur in the primary reformer. Reaction 3, the combustion reaction, is exothermic and occurs along with reactions 1 and 2 in the secondary reformer. Optimization of the reforming process involves the manipulation of parameter to achieve high process yield while maintaining low operating and installed costs.

The parameters which are monitored in this design include temperature, pressure, steam to carbon ratio, and percent oxygen in the air feed. The steam reforming process has the following reactions:

Reaction (1) describes the mechanism of reforming all hydrocarbons.

1.  $C_n H_m + nH_2 O \leftrightarrow n CO + (n + m/2) H_2$  - heat [CH<sub>4</sub> + H<sub>2</sub>O  $\leftrightarrow$  CO + 3H<sub>2</sub>] Methane reforming reaction

Reaction (2) provides an overall summary of how  $CO_2$  is formed but is actually formed from CO as indicated in reaction (3)

- 2.  $C_nH_m + 2nH_2O \leftrightarrow nCO_2 + (2n + m/2)H_2 heat$
- 3.  $CO + H_2O \leftrightarrow CO_2 + H_2 + heat$  [Water gas shift reaction]

#### 1.2 Problem Statement

The focus on this project is basically on mathematical modeling and simulation of the primary reformers. In the study of steam reformation in a real system, reactor geometry, steam-to-carbon-ratio, temperature and pressure of the reaction, flow pattern inside the reactor and other parameters are all factors that affect a reformer's performance.

Accurate individual analysis of each limiting mechanism (heat transfer, mass transfer and chemical kinetics) is perhaps the preferred method for quantifying reactor performance, but the interactions between the mechanisms often make such combined analysis difficult, if not impossible.

#### 1.3 Objectives and Scope of Study

The objective of this project is:

• To develop mathematical modeling and simulation studies of Steam Methane Reformer (SMR) in Ammonia Plant using Polymath.

The scopes of this study include complex interaction of heat transfer and coupled chemical reactions. The furnace in the present system is a side-wall fired type in which the burner energy is transferred by radiation and convection to the reformer tubes, passes through the tube walls by conduction and is transferred to the catalyst bed by a combined mechanism.

In order to perform a complete analysis of the reformer, the behavior under transient conditions, such as start-up, shutdown, change of operating conditions and feed disturbances in addition to steady state should be investigated.

#### **CHAPTER 2**

#### LITERATURE REVIEW

#### 2.1 Steam Methane Reformer (SMR)

A methane reformer is a device used in chemical engineering, which can produce pure hydrogen gas from natural gas using a catalyst. SMR uses an external source of hot gas to heat tubes in which catalytic reaction takes place that converts steam and lighter hydrocarbons such as natural gas (methane) or refinery feedstock into hydrogen and carbon monoxide (syngas). The SMR furnace is a process furnace that is used to maintain the reactants at a temperature that favors the production of hydrogen. Steam reforming is achieved by reaction over a catalyst at high temperature. In addition to the energy required to provide the steam, the overall reaction is endothermic, so energy must be added to drive it.

Below is diagram for Production of 1,000 Metric Tons per day of ammonia (Nitrogen and Hydrogen in a 3:1 stoichiometric ratio)



Figure 2.1: Process step to produce Ammonia (PASB)



Figure 2.2: Diagram (PASB)



\*Based on the assumption that all downstream processes are ideal, all the carbon monoxide found in the secondary reformer outlet stream will be converted to hydrogen. Therefore, the addition of the hydrogen and carbon monoxide should be in at least a 3:1 ratio with Nitrogen upon exiting the secondary reformer.

Figure 2.3: Reformer section (PASB)



#### 2.2 Process Description of Reformer in Ammonia Plant

Figure 2.4: Detailed schematic diagram of reformer (Elementary Principles of Chemical Process Textbook by Richard M.Felder, Ronald W.Rousseau)



Figure 2.5: Reformer (Elementary Principles of Chemical Process Textbook by Richard M.Felder, Ronald W.Rousseau)

A mixture of carbon monoxide, hydrogen, and carbon dioxide is produced by steam reforming, a process in which natural gas and steam are mixed and reacted in a reformer operated at 1.6 MPa. Natural gas may be assumed to consist entirely of methane (CH<sub>4</sub>), although other compounds may be present in small concentrations. In the present process, steam and natural gas are fed to the reformer in a ratio of 3.0 moles of steam per mole of methane. The reformer consists of an arrangement of vertical tubes filled with nickel-impregnated ceramic catalyst. Rows of these tubes are located inside an insulated firebox, where they are heated by the combustion of natural gas.

The natural gas and steam that are blended to become the reformer feed enter the process at 30°C and 210°C, respectively. The mixture is preheated to 450°C by exhaust gas from the firebox/ chamber, and it is introduced to the reformer through a header that distributes the mixture evenly among the parallel reformer tubes. Two key reactions occur: the steam-reforming reaction itself,

 $CH_4 + H_2O(g) \leftrightarrow CO + 3H_2$ 

and the water-gas shift reaction,

$$CO + H_2O \leftrightarrow CO_2 + H_2$$

The product gas leaves the reformer at 855°C and 1.6MPa.

Energy efficiency in steam reforming is improved by recovering heat from the burner exhaust gas, which leaves the firebox at 960°C. The exhaust gas is cooled in a series of heat-exchange operations that preheat the reformer feed streams to 450°C, produce superheated steam at 4.8MPa and 100°C superheat from boiler feed water at 30°C, and preheat the combustion air to 300°C. The superheated steam is used to drive turbines elsewhere in the process or it can be exported, for example to generate electricity. The burner exhaust gas leaves the heat-recovery units and enters a stack at 150°C for release to the atmosphere.

#### 2.3 Functions for each Reformer

#### 2.3.1 Pre-reformer

The pre-reformer converts all the heavier hydrocarbons to  $CH_4$ ,  $H_2$  etc. The natural gas and hydrogen mix from the desulphurization section has steam added and is heated with the hot flue gas from the reformer waste heat convection section. From here, the reaction mixture goes to the pre-reformer loaded with high activity nickel catalyst. Higher hydrocarbons are not present in the gas leaving pre-reformer that consist of steam, carbon oxides and methane that can be heated to higher temperature (>600°C) without any thermal cracking.

Note:

- If the steam to carbon ratio drops to very low levels, and especially if the steam flow stops completely, even for few seconds, a heavy carbon lay down must be expected.

- On the other hand, if the catalyst is exposed to steam alone, it will be oxidised.

The minimum operating temperature must be observed. If the catalyst contains magnesia, under certain conditions it may react with steam to form Magnesium hydroxide.

Mg O + H<sub>2</sub>O  $\rightarrow$  Mg (OH) <sub>2</sub>

The conditions at which the reaction may take place depend on the steam partial pressure and temperature. In case of extensive oxidation of the catalyst, it has to be replaced. If the catalyst is slightly oxidized it will be reduced during start-up, but the activity will decreased to some extent.

#### 2.3.2 Tubular reformer

Heat flux limited, thus based on a calculated reformer heat duty of 50MMkcal/hr, the reformer:

Sized to contain = 230 catalyst tubes Inner diameter tube = 4 inches Length tube = 35 feet Maximum heat flux through tube walls,  $f = 5,921.176 \text{ kcal/ft}^2\text{hr}$ Total needed surface area of reformer tubes,  $d/f = a = 8457.28\text{ft}^2$  $t = a/36.7\text{ft}^2$  per tube = 230 tubes needed.

Catalyst volume was calculated from tube number and tube volume. The primary reformer contains a total of 690ft<sup>3</sup> of catalyst.

Diameter = 12 ft, Long = 20 ft

10 feet of reactor length are left void of catalyst so that combustion may occur away from the catalyst.

#### 2.3.2.1 Heat Input

The heat released in the tubular reformer is supplied by the firing of the two fuels. The primary fuel consists of off-gases from the PSA unit, the cold box unit and the Nitrogen wash unit. The hydrogen stream from the cold box unit may be utilized as fuel if it is off spec or the ammonia plant is down. The secondary fuel consists of natural gas. The fuels are supplied through one common fuel line. The reformer is fired by using all primary fuel available and supplemented by natural gas. The duty controller controls the total heat input to the radiant section. The setting of the duty controller should be adjusted by the operator to keep the desired temperature at the reformer outlet.

Note: The higher the temperature, the lower unconverted methane.

If there is a loss of one of the fuel streams then flow controller will compensate by increasing the natural gas flow. The flow of natural gas to the fuel header is controlled by the duty controller during normal operation. The setting of duty controller represents the total fuel heat input to the tubular reformer as measured by the individual flow meters on each gas stream that feeds the reformer burner.

#### 2.4 Methane Content in the Reformer

The methane content in the process gas at the outlet of the reformer is determined by the following parameters:

- Operating pressure
- Reforming temperature
- Steam/carbon ratio
- Approach to the theoretical equilibrium which depends on the capacity and the catalyst activity.

An increase in the reforming temperature or the steam/ carbon ratio will lower the methane content, while an increase in operating pressure will increase the methane context exit the reformer. Minimum methane content is required for maintaining the methane balance in the cold box unit. As the catalyst ages, the approach to equilibrium of the effluent gas will tend to increase, causing an increase in methane leakage.

#### 2.5 Carbon Monoxide Content in the Reformer's Outlet

The carbon monoxide content outlet the tubular reformer is determined by the same parameters as the methane content. An increase in operating pressure or steam/carbon ratio will lower the carbon monoxide content, while an increase in reforming temperature will increase the carbon monoxide content exit the reformer. Maximum carbon monoxide production is obtained by maximum recycle of  $CO_2$  from the  $CO_2$ removal section.

#### 2.6 Catalyst properties

| Catalyst density $(g_{cat}/m^3)$ | 2355.2  |
|----------------------------------|---------|
| Nickel content (wt.%)            | 9.8     |
| S content (wt.%)                 | 4.9     |
| Alumina content (wt.%)           | Balance |
| Surface area (m <sup>2</sup> /g) | 155     |
| Total pore volume (ml/g)         | 0.9     |
| Size of the sphere (mm)          | 1.75    |
| Average crush strength (N)       | 25      |

#### **Table 2.1: Table of Catalyst Properties**

#### 2.7 Mathematical model

#### 2.7.1 Mathematical modeling of dynamic systems

A simplified mathematical model of the physical system can determine the overall complex behavior of the dynamic system. The analysis of a physical system steps:

(a) Mathematical modeling of a Physical System.

All components of the physical system are linear. The resulting mathematical model may be linear or non-linear, depending on the given physical system. Accurate mathematical modeling of any physical system will lead to non-linear differential equations have either no solution or difficult to find a solution. Assumptions are made to linerise a system, which permits quick solutions for practical purposes.

#### (b) Formulation of Governing Equations

Once the mathematical model is developed, we can apply the basic laws of nature and the principles of dynamics and obtain the differential equations that govern the behavior of the system. The resulting of mathematical model may be linear or non-linear, depending upon the behavior of the elements or components of the dynamic system. (c) Mathematical solution of the governing equations

There are many technique available for finding the solution, namely, the standard methods for the solution of ordinary differential equations, Laplace transformation methods, matrix methods, and numerical methods.

#### (d) Physical Interpretation of the results

The solution of the governing equations of motion for the physical system generally gives the performance.

#### 2.7.2 Control system configurations





#### 2.8 Polymath Software

For this project, polymath software has been used to solve all the differential equations simultaneously. POLYMATH 6.X is a proven computational system, which has been specifically created for educational or professional use. The various POLYMATH programs allow the user to apply effective numerical analysis techniques during interactive problem solving on personal computers. Results are presented graphically for easy understanding and for incorporation into papers and reports. Students,

engineers, mathematicians, scientists, or anyone with a need to solve problems will appreciate the efficiency and speed of problem solution.

The Polymath has 4 major programs:

- (a) LEQ Linear Equations
- (b) NLE Nonlinear Equations
- (c) DEQ Differential Equations
- (d) REG Regression

For this study, DEQ Differential Equations has been used. The purpose of this program is to provide a solution for a system of simultaneous first-order ordinary differential equations and explicit algebraic equations.

There are five numerical integration algorithms available within Polymath. RKF45 has been used to solve the ordinary differential equations.

The Runge-Kutta-Fehlberg (RKF45) is the default algorithm that is highly recommended for most problems. This algorithm monitors the estimate of the integration error, and reduces or increases the step size of the integration in order to keep the error below a specified threshold. The accuracy requested is that both the relative and absolute (maximal) errors be less than the truncation error tolerance. The default value of this tolerance is 1.0E-6. (All the tolerances can be changed in "Settings"). If the integration progresses very slowly the reason for that may be that the system of equations is stiff. Stiff systems of equations contain variables that change (decay) in widely varying time scales. For such systems, the RKF algorithm may require a very small step size for integration and one of the available still algorithms, STIFF or STIFFBS, should be used.

#### 2.9 Summary of Properties

#### 2.9.1 Catalyst

- Type of catalyst: Sulfide nickel catalyst on a gamma support (Ni-0309S)
- Cheap and popularly used.
- Catalyst properties:

| Catalyst density $(g_{cat}/m^3)$ | 2355.2  |
|----------------------------------|---------|
| Nickel content (wt.%)            | 9.8     |
| S content (wt.%)                 | 4.9     |
| Alumina content (wt.%)           | Balance |
| Surface area (m <sup>2</sup> /g) | 155     |
| Total pore volume (ml/g)         | 0.9     |
| Size of the sphere (mm)          | 1.75    |
| Average crush strength (N)       | 25      |

Source: Journal Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support by D.L. Hoang\*., S.H. Chan, O.L.Ding

## 2.9.2 Tubes in the primary reformer

| Inner diameter tube4 inchesLength tube35 feetMaximum heat flux through tube walls, f5,921.176 kcal/ft <sup>2</sup> Total needed surface area of reformer<br>tubes, A8457.28ft <sup>2</sup> Total Catalyst690ft <sup>3</sup> | Sized to contain                               | 230 catalyst tubes                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|
| Length tube35 feetMaximum heat flux through tube walls, f5,921.176 kcal/ft <sup>2</sup> Total needed surface area of reformer<br>tubes, A8457.28ft <sup>2</sup> Total Catalyst690ft <sup>3</sup>                            | Inner diameter tube                            | 4 inches                          |
| Maximum heat flux through tube walls, f5,921.176 kcal/ft²Total needed surface area of reformer<br>tubes, A8457.28ft²Total Catalyst690ft³                                                                                    | Length tube                                    | 35 feet                           |
| Total needed surface area of reformer<br>tubes, A8457.28ft21Total Catalyst690ft3                                                                                                                                            | Maximum heat flux through tube walls, f        | 5,921.176 kcal/ft <sup>2</sup> hr |
| Total Catalyst 690ft <sup>3</sup>                                                                                                                                                                                           | Total needed surface area of reformer tubes, A | 8457.28ft <sup>2\</sup>           |
|                                                                                                                                                                                                                             | Total Catalyst                                 | 690ft <sup>3</sup>                |

Source: http://www.owlnet.rice.edu/chbe403/nh3ref97.html

| Temperature (°C)     | 600        |
|----------------------|------------|
| Pressure (bar)       | 39,220     |
| Vapor Fraction       | 1.00       |
| Mole Flow (kmol/hr)  | 5004.443   |
| Mass Flow (kg/hr)    | 87,783.203 |
| Volume Flow (Cum/hr) | 9,150.887  |
| Enthalpy (MMKCal/Hr) | -212.141   |
| Mole Flow (KMol/Hr)  |            |
| CH <sub>4</sub>      | 1250       |
| H <sub>2</sub> O     | 3750       |
| H <sub>2</sub>       | Too small  |
| СО                   | Too small  |
| CO <sub>2</sub>      | 3.00       |
| N <sub>2</sub>       | 1.443      |
| O <sub>2</sub>       | Too small  |
| AR                   | Too small  |

# 2.9.3 Operating conditions for 1,000 metric tons per day of Ammonia

Source: http://www.owlnet.rice.edu/chbe403/nh3ref97.html

### **CHAPTER 3**

## **METHODOLOGY**

3.1 Overall methodology



#### 3.2 Algorithm for Solution of Complex Reaction



#### **CHAPTER 4**

#### **RESULTS AND DISCUSSION**

#### 4.1 Discussion

The operation behavior of natural gas reformer closely relates to:

- Structure parameters
- Operation conditions.

Structure parameters: Furnace tube diameter, length, wall thickness, heat conduction property, blackness, tube pitch (or pitch between two rows of tubes if multiple rows); burner pattern and arrangement; chamber structure size; and flue gas tunnel arrangement and so on.

Operations conditions: Natural gas components, water carbon ratio, inlet temperature and pressure, operation load; catalyst property, structure, size, and bed void factor; fuel property, temperature, pressure, air surplus coefficient, composition and temperature of turbine exhaust gas, and so on.

- Strong endothermic reaction
- The tubular reactor, also named as primary reformer and used in the industrial units, is heated from outside tubes.
- The tubes are filled with the nickel-based catalyst, to accelerate the natural gas reforming reaction and the flue gas generated in outside tube (chamber) by the combustion process provides heat to reformer tubes through the radiation heat transfer.

Figure 4.1: The structure of Selas reformer drawing





4.2.1 Schematic diagram of primary reformer (tubular reactor)

#### 4.2.2 Inside tube model

Reformer is a tubular packed bed reactor. Its tubes have internal diameter of 152 mm, height of 11.35 mm, filled with the catalyst particles of 16 x 6 x 16 mm (lower section) and 16 x 6 x 8 mm (upper section). At tube entrance reactant gas Reynolds number  $Re>10^5$ .

Assumptions have been made such as inside tube the gas flow can be considered as a steady state, tube wall effect is significant, temperature and concentrations distributions in radial direction are pronounced, so a two-dimension model is more reasonable. Since it difficult to obtain accurate two-dimension model parameters to describe the mass and heat transfer inside tube, the general way is to assume that the reforming reaction is pseudo-homogeneous phase.

#### 4.2.3 Outside tube model

Selas reformer used in Urumqi Second Ammonia Plant is a furnace which has a single row of tubes, receives the radiation heat from burners installed on two sidewalls (each sidewall has two rows of burner). Its structure is shown if Figure 3.1. Inside reformer,

Chamber size: 11.35 m high, 2.45 m wide and 18 m long

88 tubes made by HP-50 compose a row in middle of the furnace, the inter-tube space is 0.25m, and the tube diameter is  $172.6 \times 10.3 mm$ 

In the reformer, all 88 tubes have same temperatures at same horizontal altitude, therefore three-dimensional temperature distribution in the reformer can be simplified into two-dimensional one. Since tube arrangement in a Selas sidewall-burning furnace is symmetric, the simulation only needs to study half of tubes. Along the wall and tube, divide the height into 20 sections (each section represents a zone). Correspondingly, the space between the tube row and the wall is divided into 20 zones, the width direction is divided into two kinds of zones (combustion and flue gas zone), the width ratio of these two zones is 1:3, which is similar to the industrial unit. Therefore, the system is divided into 20 sidewall zones, 20 tube-surface zones, 20 combustion zones, 20 flue gas zones,

a furnace top zone, and a furnace bottom zone; Its sums up to 82 zones. (see Figure 3.2). So, 82 zone temperatures need to be computed.

# 4.2.4 Algorithm for Solution of Complex Reactions in the primary reformer

Seldom is the reaction of interest the only one occurs that occurs in a tubular reactor. Typically, multiple reactions will occur, some desired and some undesired. One of the key factors in the economic success of a chemical plant is the minimization of undesired side reactions that occurs along with the desired reaction.

In complex reaction systems consisting of combinations of parallel and series reactions, the availability of software packages (ODE solvers) makes it much easier to solve problems using moles  $N_j$  or molar flow rates  $F_j$  rather than conversion. For gas systems, the molar flow rates are usually the preferred variable in the mole balance equation.

Below are the mole balance equations for complex reactions where  $r_A$  and  $r_B$  are the net rates of formation of A and B.

Mole Balance

 $dN_A/dt = F_{A0} - F_A + \int^{v} r_A dV$ 

Equation 1

For packed bed reactor

 $dF_A/dV = r_A$ 

 $dF_{\rm B}/dV = r_{\rm B}$ 

**Equation 2** 

### 4.2.4.1 Reactions

| СН | $I_4 + H_2O$         | → CC | ) + 3H <sub>2</sub> | Methane reforming reaction | (Reaction 1)                          |
|----|----------------------|------|---------------------|----------------------------|---------------------------------------|
| A  | В                    | С    | 3D                  |                            | · · · · · · · · · · · · · · · · · · · |
| со | + H <sub>2</sub> O ↔ | CO2  | $+H_2$              | Water gas shift reaction   | (Reaction 2)                          |
| С  | в                    | F    | D                   |                            | ,                                     |
|    | 4.2.4.2              |      | Mole Ball           | ance                       |                                       |

| (b) Write m             | ole balance on each ar  | nd every species              | Equation 3 |
|-------------------------|-------------------------|-------------------------------|------------|
| $dF_{CH4}/dW = r_{CH4}$ | $dF_{H2O}/dW = r_{H2O}$ | $dF_{\rm CO}/dW = r_{\rm CO}$ |            |
| $dF_{H2}/dW = r_{H2}$   | $dF_{CO2}/dW = r_{CO2}$ |                               |            |

### 4.2.4.3 Net Rate Laws

# (c) Write the net rate of reaction for each species

The key point for multiple reactions is to write the net rate of formation of each species. That is, we have to sum up the rates of formation for each reaction in order to obtain the net rate of formation. In general the net rate of reaction for every species is the sum of all rates of the reactions in which their species appears.

| $\mathbf{r}_{CH4} = \mathbf{r}_{1CH4}$                                 | Equation 4 |
|------------------------------------------------------------------------|------------|
| $\mathbf{r}_{\rm H2O} = \mathbf{r}_{\rm 1H2O} + \mathbf{r}_{\rm 2H2O}$ |            |
| $\mathbf{r}_{\rm CO} = \mathbf{r}_{\rm 1CO} + \mathbf{r}_{\rm 2CO}$    |            |
| $\mathbf{r}_{\rm H2} = \mathbf{r}_{\rm 1H2} + \mathbf{r}_{\rm 2H2}$    |            |
| $r_{02} = r_{202}$                                                     |            |

(d) Write rate law for one species in every reaction

The rate laws for each of the individual reactions are expressed in terms of concentrations,  $C_j$ , of the reacting species. A rate law is needed for one species in each reaction.

 $k_{1A}$ 

Reaction (1):  $CH_4 + H_2O \iff CO + 3H_2$ 

Followed an elementary rate law, then the rate of disappearance of CH<sub>4</sub> in reaction 1 would be

 $-\mathbf{r}_{1CH4} = \mathbf{k}_{1CH4} \mathbf{C}_{CH4} \mathbf{C}_{H2O}$  Equation 5

Reaction (3):  $CO + H_2O \leftrightarrow CO_2 + H_2$ 

$$-\mathbf{r}_{2CO} = \mathbf{k}_{2CO} \mathbf{C}_{CO} \mathbf{C}_{H2O}$$

Equation 6

(e) In each reaction relate the rates of reaction of each species to one another.

Reaction (1):  $CH_4 + H_2O \iff CO + 3H_2$   $-r_{1CH4} = k_{1CH4}C_{CH4}C_{H2O}$ 

Need to relate the rates of formation of other species in Reaction 1 to the given rate law.

| $\frac{r1CH4}{-1} = \frac{r1H20}{-1} = \frac{r1C0}{1} = \frac{r1H2}{2}$                      | Equation 7                        |
|----------------------------------------------------------------------------------------------|-----------------------------------|
| $\mathbf{r}_{1H2O} = \mathbf{r}_{1CH4} = -\mathbf{k}_{1CH4}\mathbf{C}_{CH4}\mathbf{C}_{H2O}$ | Equation 8                        |
| $r_{1CO} = -r_{1CH4} = k_{1CH4}C_{CH4}C_{H2O}$                                               | Equation 9                        |
| $r_{1H2} = 3 (-r_{1CH4}) = 3 k_{1CH4} C_{CH4} C_{H2O}$                                       | Equation 10                       |
| Reaction (2): $CO + H_2O \leftrightarrow CO_2 + H_2$                                         | $-r_{3CO} = k_{3CO}C_{CO}C_{H2O}$ |

| $r_{2H2O} =$ | $r_{2CO} = -$ | - k <sub>2CO</sub> | $C_{CO}C_{H2C}$ |
|--------------|---------------|--------------------|-----------------|
|--------------|---------------|--------------------|-----------------|

 $r_{2CO2} = -r_{2CO} = k_{2CO}C_{CO}C_{H2O}$ 

 $\mathbf{r}_{2H2} = -\mathbf{r}_{2CO} = \mathbf{k}_{2CO} \mathbf{C}_{CO} \mathbf{C}_{H2O}$ 

(f) Combine net rates, rate laws, and relative rates to write the net rates in terms of concentration.

We now substitute the rate laws for each species in each reaction to obtain the net rate of reaction for that species.

The net rates of reaction for species CH4, H2O, CO, H2 are

 $r_{CH4} = r_{1CH4} + r_{2CH4} = -k_{1CH4}C_{CH4}C_{H20}$  Equation 14

 $r_{H20} = r_{1H20} + r_{2H20} = -k_{1CH4}C_{CH4}C_{H20} - k_{2C0}C_{C0}C_{H20}$  Equation 15

 $r_{CO} = r_{1CO} + r_{2CO} = k_{1CH4}C_{CH4}C_{H2O} - k_{2CO}C_{CO}C_{H2O}$  Equation 16

 $r_{H2} = r_{1H2} + r_{2H2} = 3 k_{1CH4}C_{CH4}C_{H2O} + k_{2CO}C_{CO}C_{H2O}$ 

 $r_{CO2} = r_{3CO2} = k_{3CO}C_{CO}C_{H2O}$ 

Equation 17

Equation 18

Equation 11

Equation 12

Equation 13

# 4.2.4.4 Stoichiometry: Concentrations

(g) If the reactions are gas-phase reactions, proceed as follows.

For ideal gases

$$C_j = F_{TO}/v_O (F_j/F_T)(P/P_O)(T_O/T) = C_{TO}(F_j/F_T)(P/P_O)(T_O/T)$$

Where  $\mathbf{F}_{\mathrm{T}} = \sum_{j=1}^{n} \mathbf{F}_{j}$ 

And  $C_{TO} = P_O/RT_O$ 

\*For isothermal system ( $T=T_0$ ) with no pressure drop ( $P=P_0$ )

 $C_j = C_{TO} (F_j/F_T)$ 

Now insert rate laws written in terms of molar flow rates into the mole balances. After performing this operation for each species, arrive at a coupled set of first-order ordinary differential equations to be solved for the molar flow rates as a function of reactor volume (distance along the length of the reactor)

Combining mole balance, rate laws and stoichiometry for species in the gas phase and for isothermal operation with no pressure drop gives us:

Coupled ODE

$$dF_1/dV = r_1 = \sum_{i=1}^{m} r_{i1} = f_{n1} [C_{TO} (F_1/F_T), ..., C_{TO}F_j/F_T]$$

There are coupled ordinary differential equations that must be solved simultaneously with either a numerical package or by writing and ODE solver.

In combining the mole balance, rate laws, and stoichiometry, the results from (a) to (g) have been used. The total molar flow rate of all the gases is:

$$F_T = F_{CH4} + F_{H20} + F_{C0} + F_{H2} + F_{C02}$$

Rewrite mole balances on each species in the total molar flow rate.

Mole Balance on CH<sub>4</sub>

 $dF_{CH4}/dV = r_{CH4} = -k_{1CH4}C_{CH4}C_{H2O}$ 

$$dF_{CH4}/dV = -k_{1CH4}C_{TO}^{2}(F_{CH4}/F_{T})(F_{H2O}/F_{T})$$

Mole Balance on H<sub>2</sub>O

 $dF_{H2O}/dV = r_{H2O} = -k_{1CH4}C_{CH4}C_{H2O} - k_{2CO}C_{CO}C_{H2O}$ 

 $= -k_{1CH4}C_{TO}^{2}(F_{CH4}/F_{T})(F_{H2O}/F_{T}) - k_{2CO}C_{TO}^{2}(F_{CO}/F_{T})(F_{H2O}/F_{T})$ Equation 21

Mole Balance on CO

 $dF_{CO}/dV = r_{CO} = k_{1CH4}C_{CH4}C_{H2O} - k_{2CO}C_{CO}C_{H2O}$ 

Equation 20

Equation 19

 $= -k_{1CH4}C_{TO}^{2}(F_{CH4}/F_{T})(F_{H2O}/F_{T}) - k_{2CO}C_{TO}^{2}(F_{CO}/F_{T})(F_{H2O}/F_{T})$ Equation 22

• Mole Balance on H<sub>2</sub>

 $dF_{H2}/dV = r_{H2} = 3 k_{1CH4}C_{CH4}C_{H20} + k_{2C0}C_{C0}C_{H20}$ = 3 k<sub>1CH4</sub>C<sup>2</sup><sub>T0</sub> (F<sub>CH4</sub>/F<sub>T</sub>) (F<sub>H20</sub>/F<sub>T</sub>) - k<sub>2C0</sub>C<sub>T0</sub><sup>2</sup>(F<sub>C0</sub>/F<sub>T</sub>) (F<sub>H20</sub>/F<sub>T</sub>) Equation 23 • Mole Balance on CO<sub>2</sub>

 $dF_{CO2}/dV = r_{CO2} = k_{2CO}C_{CO}C_{H2O}$ 

$$= -k_{2CO}C_{TO}^{2}(F_{CO}/F_{T}) (F_{H2O}/F_{T})$$
 Equation 24

 $C_{T0} = P_0/RT_0 = 170.61 \text{ mol/m}^3$ 

# 4.2 Result

Table 4.1: ODE Solver Algorithm for Multiple Reactions

| (1) dEculdV                                                                 |
|-----------------------------------------------------------------------------|
| (2) $dF_{\rm H2}/dV = r_{\rm H4}$                                           |
| (3) $dF_{co}/dV = r_{co}$                                                   |
| (4) $dF_{HD}/dV = r_{HD}$                                                   |
| (5) $dF_{cov}/dV = r_{cov}$                                                 |
| (6) $\mathbf{r}_{CH4} = -\mathbf{k}_{LCH2}\mathbf{C}_{max}\mathbf{C}_{max}$ |
| (7) $r_{H20} = -k_{1CH4}C_{CH4}C_{H20}$                                     |
| (8) $r_{CO} = k_{1CH4}C_{CH4}C_{H2O} - k_{2CO}C_{CO}C_{H2O}$                |
| (9) $f_{H2} = 3 k_{1} c_{H4} C_{C14} C_{T00} + k_{2} C_{10} C_{10}$         |
| (10) $r_{c02} = k_{200}C_{c0}C_{m0}$                                        |
| (11) $r_{1H20} = r_{1CH4}$                                                  |
| (12) $r_{1CO} = -r_{1CH4}$                                                  |
| (13) $r_{1H2} = 3(-r_{1CH4})$                                               |
| (14) $r_{2H2O} = r_{2CO}$                                                   |
| (15) $r_{2H20} = r_{2C0}$                                                   |
| (16) $r_{2CO2} = -r_{2CO}$                                                  |
| (17) $r_{2H2} = -r_{2CO}$                                                   |
| (18) $r_{CH4} = r_{1CH4} + r_{2CH4}$                                        |
| (19) $f_{H20} = f_{1H20} + f_{2H20}$                                        |
| (20) $r_{co} = r_{1co} + r_{2co}$                                           |
| $(21) r_{H2} = r_{1H2}$                                                     |
| $(22) \ \mathbf{f}_{CO2} = \mathbf{f}_{2CO2}$                               |
| $(23) C_{CH4} = C_{TO}F_{CH4}/F_{T}$                                        |
| (24) $C_{H20} = C_{T0}F_{CH4}/F_{T}$                                        |
| $(25) C_{\rm CO} = C_{\rm TO} F_{\rm CO} / F_{\rm T}$                       |
| $(20) C_{H2} = C_{TO}F_{H2}/F_{T}$                                          |
| (27) $C_{C02} = C_{T0}F_{C02}/F_{T}$                                        |
| (20) $F_{T} = F_{CH4} + F_{H20} + F_{C0} + F_{H2} + F_{02} + F_{C02}$       |
| $ (30) k_{m} = 0.1701 \text{ mol/m}^3 $                                     |
| (31) $k_{ch4} = 0.1 / 9 \text{ bar-1}$                                      |
| (32) $F_{cov} = 1791.251$                                                   |
| (33) $F_{\text{trans}} = 5342.75 \text{ kmol/hr}$                           |
| $(34) F_{co} = 0 \text{ kmol/hr}$                                           |
| (35) $F_{122} = 0$ kmol/hr                                                  |
| (36) $F_{CO2} = 4.275  \text{kmol}  \text{Jm}$                              |
|                                                                             |





Figure 4.3: Graph F (Molar Flow Rate) VS W (Catalyst Weight)

Figure above is the graph for F, Molar flow rate of chemical species inside the primary reformer versus catalyst weight (W) that will be get after the optimum weight has been identified throughout this graph. From the graph we can consider that the weight of catalyst that produce highest molar flow rate for the hydrogen is the optimum weight for catalyst in the primary reformer. Hydrogen is the most desired chemical species in the primary reformer, so the highest molar flow rate of hydrogen can produce the highest conversion and yield of hydrogen.

So from the graph, it shows that we can get 7096 kmol/hr of hydrogen if 50,000g or 50 kg of catalyst used. So here we can conclude that 50kg of catalyst is the most optimum catalyst weight for the primary reformer.

## **CHAPTER 5**

# CONCLUSION AND RECOMMENDATION

## **5.1** Conclusion

The entering molar flow rates,  $F_{jo}$ , along with the entering temperature,  $T_o$ , and pressure,  $P_o$  are specified as are the specific reaction rates  $k_{ij}$ . Consequently, all the mole balance equations can be solved simultaneously with an ODE solver (Polymath). In fact, with almost all ODE solvers, the combine step can be eliminated as the ODE solver will do the work. In this case, the ODE solver algorithm is shown in Table 4.1.

From the graph, it shows that 7096 kmol/hr of hydrogen will be produced if 50,000g or 50 kg of catalyst been used. So here we can conclude that 50kg of catalyst is the most optimum catalyst weight for the primary reformer.

## 5.2 Recommendation

The process modeled and optimized here is an equilibrium model. That is, each reactor is assumed to be operating at equilibrium. In reality however, equilibrium cannot be reached, and an approached to equilibrium model should be adopted. The approach to equilibrium in the reformers is affected by choice of catalyst. Numerous catalysts of differing properties are available to suit specific purposes. Once a catalyst is chose, parameters such as catalyst activity, surface area, particle size, crush strength, and nickel content among others should be considered to more accurately model the process.

#### REFERENCES

1. A.Kayode Coker. 2001, "Modeling of Chemical Kinetics and Reactor Design", Gulf Professional Publishing

2. C.Liao, Paul A. Erickson, 2007, "Characteristic time as a descriptive parameter in steam reformation hydrogen production processes", *International Journal of Hydrogen Energy* **33 (2008)**: 1652-1660

3. Andrew E. Lutz, 2003, "Thermodynamic analysis for hydrogen production by steam reforming", *International Journal of Hydrogen Energy* **28 (2003)**: 159-167

4. H.M. Kvamsdal, H.F. Svendsen, T.Hertzberg, O.Olsvik, "Dynamic simulation and optimization of a catalytic steam reformer", *Chemical Engineering Science* 54 (1999) 2697-2706

5. Megan Strait, Glenda Allum, Nisha Gidwani, "Synthesis Gas Reformers", http://www.owlnet.rice.edu/chbe403/nh3ref97.html

6. J.R. Rostrup-Nielsen, Catalytic steam reforming, in: J.R. Anderson,
M. Boudart (Eds.), Catalysis – Science and Technology, vol. 5,
Springer-Verlag, Berlin, 1984 (Chapter 1).

7. V.M. Twigg, Catalyst Handbook, second ed., Wolf Publishing Co., London, 1989.

8. W.W. Akers, D.P. Camp, Kinetics of the methane-steam reaction, AIChE J. 1 (1955) 471-475.

9. I.M. Bodrov, L.O. Apel'baum, M.I. Temkin, Kinetics of the reaction of methane with steam on the surface of nickel, Kinet. Catal. 5 (1965) 696–705.

10. I.M. Bodrov, L.O. Apel'baum, M.I. Temkin, Kinetics of the reaction of methane with water vapour catalysed by nickel on a porous carrier, Kinet. Catal. 8 (1967) 821-828.

11. J.R.H. Ross, M.C.F. Steel, Mechanism of the steam reforming of methane over a coprecipitated nickel-alumina catalyst, J. Chem. Soc. Faraday Trans. 1 (1973) 10.

12. M.E. Agnelli, M.C. DeMicheli, E.N. Ponzi, Catalytic deactivation of methane reforming catalysts, Ind. Eng.
Chem. Res. 26 (1987) 1704–
1713.

13. J. Xu, G.F. Froment, Methane steam reforming, methanation and water-gas shift: 1 Intrinsic kinetics, AIChE J. 35 (1989) 88–96.

14. M.A. Soliman, A.M. Adris, A.S. Al-Ubaid, S.S. El-Nashaie, Intrinsic kinetics of nickel/calcium aluminate catalyst for methane steam reforming, J. Chem. Tech. Biotechnol. 55 (1992) 131–138.

15. D.J. Gunn, An analysis of convective dispersion and reaction in the fixed-bed reactor, Int. J. Heat Mass Transfer 47 (2004) 2861–2875.

# APPENDICES

# **APPENDIX 1: REPORT FROM POLYMATH**

**.** .

|   | Variable | Initial value | Minimal value | Maximal value | Final value           |
|---|----------|---------------|---------------|---------------|-----------------------|
|   | CA       | 42.62692      | 0.1175844     | 42.62692      | 0.11758 <del>44</del> |
|   | CB       | 127.8808      | 28.6985       | 127.8808      | 28.6985               |
|   | CC       | 0             | 0             | 0.1045428     | 0.0005167             |
|   | CD       | 0             | 0             | 113.3804      | 113.3804              |
|   | CE       | 0.1023046     | 0.1023046     | 28.41302      | 28.41302              |
|   | СТо      | 170.61        | 170.61        | 170.61        | 170.61                |
|   | FA       | 1.781E+06     | 7358.629      | 1.781E+06     | 7358.629              |
|   | FB       | 5.344E+06     | 1.796E+06     | 5.344E+06     | 1.796E+06             |
|   | FC       | 0             | 0             | 5122.892      | 32.33887              |
| D | FD       | 0             | 0             | 7.096E+06     | 7.096E+06             |
| 1 | FE       | 4275.         | 4275.         | 1.778E+06     | 1.778E+06             |
| 2 | FT       | 7.129E+06     | 7.129E+06     | 1.068E+07     | 1.068E+07             |
| 3 | k1A      | 0.179         | 0.179         | 0.179         | 0.179                 |
| 4 | k2C      | 40.91         | 40.91         | 40.91         | 40.91                 |
| 5 | r1A      | -975.7583     | -975.7583     | -0.6040348    | -0.6040348            |
| 6 | r1B      | -975.7583     | -975.7583     | -0.6040348    | -0.6040348            |
| 7 | r1C      | 975.7583      | 0.6040348     | 975.7583      | 0.6040348             |
| B | r1D      | 2927.275      | 1.812104      | 2927.275      | 1.812104              |
| 9 | r2B      | 0             | -359.3892     | 0             | -0.6066894            |
| 0 | r2C      | 0             | -359.3892     | 0             | -0.6066894            |
| 1 | r2D      | 0             | 0             | 359.3892      | 0.6066894             |
| 2 | r2E      | 0             | 0             | 359.3892      | 0.6066894             |
| 3 | rA       | -975.7583     | -975.7583     | -0.6040348    | -0.6040348            |
| 4 | гВ       | -975.7583     | -975.7583     | -1.210724     | -1.210724             |
| 5 | rC       | 975.7583      | -1.572491     | 975.7583      | -0.0026545            |
| 6 | rD       | 2927.275      | 2.418794      | 2927.275      | 2.418794              |
| 7 | rE       | 0             | 0             | 359.3892      | 0.6066894             |
| B | W        | 0             | 0             | 5.0E+04       | 5.0E+04               |

d(FB)/d(W) = rB

d(FA)/d(W) = rA

d(FE)/d(W) = rE

d(FD)/d(W) = rD

d(FC)/d(W) = rC

the second second

out:blank

6/1/2009

1 k1A = 0.179

bar^-1

2 CTo = 170.61

mol/m^3

- 3 FT = FA+FB+FC+FD+FE
- 4 CC = CTo\*FC/FT
- 5 CE = CTo\*FE/FT
- 6 CD = CTo\*FD/FT
- 7 k2C = 40.91
- 8 CB = CTo\*FB/FT
- 9  $r_{2C} = -k_{2C} + C_{C} + C_{B}$
- 10 CA = CTo\*FA/FT

concentration

- 11 r2D = -r2C
- 12 rA = -k1A\*CA\*CB

Net rates in terms of concentration

- 13 r1A = rA
- 14 r2E = -r2C

15 r1D = 3\*(-r1A)

- 16 r1C = -r1A
- 17 r1B = r1A
- 18 r 2B = r 2C
- 19 rE = k2C\*CC\*CB
- 20 rB = -k1A\*CA\*CB-k2C\*CC\*CB
- 21 rD = (3\*k1A)\*CA\*CB+k2C\*CC\*CB
- 22 rC = k1A\*CA\*CB-k2C\*CC\*CB

InterpretationImage: Constraint of the equationsImage: Constraint of the equationsImage: Constraint of the equationImage: Constraint of t

ata file: c:\users\juls\documents\norzuliana.pol

# **APPENDIX 2: TABLE FROM POLYMATH**

# **OLYMATH Polynomial Regression Migration Document**

| (Cat waight  | ED (H2)   |             |              |              |                |             |             |
|--------------|-----------|-------------|--------------|--------------|----------------|-------------|-------------|
| (cat. weight |           | E01E600 067 | 5015600 967  | 2 51563E+13  | Coefficients   | 55,81875    | 5015600.867 |
| 0            | 0457000   | 5075400.007 | 26101000.007 | 6 85405E+12  | Std dev s      | 5 447983    | 158887 7877 |
| 1067.666     | 2457000   | 50/5196.64/ | 2010190.047  | 4 40000 : 40 |                | 0.517194    | 787632 6611 |
| 1500.034     | 3001000   | 5099330.888 | 2098330.888  | 4.402990+12  | OFO cost int   | 10.67905    | 311420 0629 |
| 2033.254     | 3519000   | 5129094.561 | 1610094.561  | 2.5924E+12   | 99% CONT. INL  | 0.07000     | 311420.0030 |
| 2528.092     | 3899000   | 5156715.799 | 1257715.799  | 1.58185E+12  | Variance       | 6.2E+11     |             |
| 3010.033     | 4204000   | 5183617.142 | 979617.1425  | 9.5965E+11   | Sum of Squares | 6.08E+13    |             |
| 3532.168     | 4481000   | 5212762.065 | 731762.0648  | 5.35476E+11  | Model          | FD = a1 * V | V + a0      |
| 4094.15      | 4733000   | 5244131.197 | 511131.1968  | 2.61255E+11  |                |             |             |
| 4579.988     | 4920000   | 5271250.066 | 351250.066   | 1.23377E+11  |                |             |             |
| 5016.924     | 5069000   | 5295639.287 | 226639.2867  | 51365366278  |                |             |             |
| 5563.238     | 5234000   | 5326133.851 | 92133.85054  | 8488646415   |                |             |             |
| 6124.567     | 5383000   | 5357466.533 | -25533.46712 | 651957943.2  |                |             |             |
| 6557.633     | 5486000   | 5381639.735 | -104360.2649 | 10891064897  |                |             |             |
| 7026.057     | 5588000   | 5407786.577 | -180213.4234 | 32476877984  |                |             |             |
| 7545 724     | 5691000   | 5436793.738 | -254206.2618 | 64620823534  |                |             |             |
| 8040 473     | 5779000   | 5464410.008 | -314589.9917 | 98966862897  |                |             |             |
| 8530 355     | 5860000   | 5491754.608 | -368245.3915 | 1.35605E+11  |                |             |             |
| 9080 087     | 5942000   | 5522439.961 | -419560.0392 | 1.76031E+11  |                |             |             |
| 9632 479     | 6018000   | 5553273.791 | -464726.209  | 2.1597E+11   |                |             |             |
| 10010        | 6067000   | 5574346.541 | -492653.4592 | 2.42707E+11  |                |             |             |
| 10600        | 6136000   | 5607279.602 | -528720.3975 | 2.79545E+11  |                |             |             |
| 11010        | 6181000   | 5630165,289 | -550834.7106 | 3.03419E+11  |                |             |             |
| 11500        | 6239000   | 5662540 164 | -576459.8364 | 3.32306E+11  |                |             |             |
| 12050        | 6283000   | 5688216 788 | -594783.212  | 3.53767E+11  |                |             |             |
| 12630        | 6334000   | 5720591 662 | -613408 3378 | 3.7627E+11   |                |             |             |
| 12000        | 6373000   | 5746826 474 | -626173 526  | 3.92093E+11  |                |             |             |
| 13100        | 6407000   | 5771044 Q11 | -635055 0891 | 4.03295E+11  |                |             |             |
| 13000        | 6442000   | 5708179 723 | -643820 2773 | 4 14505E+11  |                |             |             |
| 14020        | 6495000   | 5833003 722 | -651096 2782 | 4 23926E+11  |                |             |             |
| 15110        | 6614000   | 5850022 150 | -654977 8413 | 4 28996E+11  |                |             |             |
| 15610        | 6544000   | 5886931 533 | -657068 467  | 4.31739E+11  |                |             |             |
| 16090        | 6570000   | 5013166 345 | -656833 6551 | 4.3143E+11   |                |             |             |
| 10000        | 6507000   | 5041633 907 | -655366 0933 | 4 29505E+11  |                |             |             |
| 10090        | 6621000   | 5967868 719 | -653131 2815 | 4 2658E+11   |                |             |             |
| 17000        | 6646000   | 5006804 468 | -649105 5322 | 4 21338E+11  |                |             |             |
| 17300        | 6667000   | 6024245 655 | -642754 3454 | 4 13133E+11  |                |             |             |
| 18070        | 660000    | 6052712 216 | 636286 7836  | 4.10100E+11  |                |             |             |
| 08681        | 0009000   | 6080622 504 | -620277 4002 | 3 961165+11  |                |             |             |
| 19080        | 670000    | 6100640 24  | _610251 64   | 3 835085+14  |                |             |             |
| 19600        | 0129000   | 0109040.34  | 600225 0107  | 3 712785111  |                |             |             |
| 20120        | 0740000   | 6167600 000 | -508300 1614 | 3 570625+11  |                |             |             |
| 20640        | 0700000   | 610/033.033 | 586074 4404  | 3 437185111  |                |             |             |
| 21160        | 0703000   | 6246262 45  | 577727 0504  | 2 32791E+11  |                |             |             |
| 21510        | 0794000   | 0210202.13  | 562742 4000  | 3 17774E144  |                |             |             |
| 22030        |           | 0240201.099 | -000/12.1000 | 3 00020E+44  |                |             |             |
| 22570        | 0024000   | 6205040.023 | 533000 0300  | 2 84074E114  | 1              |             |             |
| 23100        | 000828000 | 0300013.90  | E16042 0150  | 2.070742-11  | 1              |             |             |
| 23640        | 06852000  | 0335156.084 | 400704 7040  | 2.0/ 120ET11 | 4              |             |             |
| 24180        | 1 6864000 | 0305298.209 | 490101.1913  | 2.401UJET11  | 4              |             |             |
| 24540        | 00073000  | 0303392.958 | 40/00/.0418  | 2.3/1015711  | 1              |             |             |
| 25080        | 6884000   | 0415535.082 | 400404.91/0  | 2.194095711  | 4              |             |             |
| 25620        | 6896000   | 6445677.207 | 450322.7933  | 2.02/912+11  | 4              |             |             |
| 26170        | 6907000   | 6476377.518 | 430622.4810  | 1.00430E+11  | 4              |             |             |
| 26540        | 6914000   | 6497030.455 | -416969.5446 | 1.13004E+11  | 4              |             |             |
| 27080        | 6923000   | 6527172.58  | -395827.4203 | 1.000/9E+11  | 4              |             |             |
| 27640        | 6933000   | 6558431.079 | -374568.9211 | 1.40302E+11  | 4              |             |             |
| 28000        | ) 6939000 | 6578525.828 | -360474.1716 | 1.299421+11  | -              |             |             |
| 28560        | 6948000   | 6609784.328 | -338215.6724 | U 1.1439E+11 | 1              |             |             |

| the second s |         |             |              |             |
|----------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|-------------|
| 29110                                                                                                          | 6956000 | 6640484.639 | ~315515.3606 | 99549942791 |
| 29680                                                                                                          | 6964000 | 6672301.326 | -291698.6739 | 85088116363 |
| 30040                                                                                                          | 6969000 | 6692396.076 | -276603.9244 | 76509731000 |
| 30610                                                                                                          | 6976000 | 6724212.762 | -251787.2377 | 63396813068 |
| 31170                                                                                                          | 6983000 | 6755471.262 | -227528.7385 | 51769326831 |
| 31550                                                                                                          | 6988000 | 6776682.386 | -211317.614  | 44655133986 |
| 32110                                                                                                          | 6994000 | 6807940.885 | -186059.1148 | 34617994190 |
| 32680                                                                                                          | 7000000 | 6839757.572 | -160242.4281 | 25677635751 |
| 33050                                                                                                          | 7004000 | 6860410.509 | -143589.4911 | 20617941946 |
| 33620                                                                                                          | 7010000 | 6892227.196 | -117772.8044 | 13870433447 |
| 34000                                                                                                          | 7014000 | 6913438.32  | -100561.6799 | 10112651461 |
| 34570                                                                                                          | 7019000 | 6945255.007 | -73744.99317 | 5438324018  |
| 35140                                                                                                          | 7024000 | 6977071.694 | -46928.30646 | 2202265947  |
| 35520                                                                                                          | 7027000 | 6998282.818 | -28717.18199 | 824676541.3 |
| 36100                                                                                                          | 7032000 | 7030657.692 | -1342.307789 | 1801790.199 |
| 36660                                                                                                          | 7036000 | 7061916.191 | 25916.19144  | 671648978.6 |
| 37050                                                                                                          | 7039000 | 7083685.503 | 44685.5034   | 1996794214  |
| 37620                                                                                                          | 7043000 | 7115502.19  | 72502.19011  | 5256567571  |
| 38010                                                                                                          | 7046000 | 7137271.502 | 91271.50207  | 8330487090  |
| 38580                                                                                                          | 7049000 | 7169088.189 | 120088.1888  | 14421173085 |
| 39160                                                                                                          | 7053000 | 7201463.063 | 148463.063   | 22041281070 |
| 39550                                                                                                          | 7055000 | 7223232.375 | 168232.3749  | 28302131979 |
| 40120                                                                                                          | 7058000 | 7255049.062 | 197049.0617  | 38828332699 |
| 40510                                                                                                          | 7061000 | 7276818.374 | 215818.3736  | 46577570390 |
| 41090                                                                                                          | 7064000 | 7309193.248 | 245193.2478  | 60119728773 |
| 41670                                                                                                          | 7066000 | 7341568.122 | 275568.122   | 75937789869 |
| 42050                                                                                                          | 7068000 | 7362779.246 | 294779.2465  | 86894804159 |
| 42640                                                                                                          | 7071000 | 7395712.308 | 324712.3082  | 1.05438E+11 |
| 43020                                                                                                          | 7073000 | 7416923.433 | 343923.4326  | 1.18283E+11 |
| 43610                                                                                                          | 7075000 | 7449856.494 | 374856.4943  | 1.40517E+11 |
| 44190                                                                                                          | 7077000 | 7482231.369 | 405231.3685  | 1.64212E+11 |
| 44580                                                                                                          | 7079000 | 7504000.68  | 425000.6805  | 1.80626E+11 |
| 45160                                                                                                          | 7081000 | 7536375.555 | 455375.5547  | 2.07367E+11 |
| 45550                                                                                                          | 7082000 | 7558144.867 | 476144.8666  | 2.26714E+11 |
| 46130                                                                                                          | 7084000 | 7590519.741 | 506519.7408  | 2.56562E+11 |
| 46520                                                                                                          | 7086000 | 7612289.053 | 526289.0528  | 2.7698E+11  |
| 47110                                                                                                          | 7088000 | 7645222.114 | 557222.1145  | 3.10496E+11 |
| 47690                                                                                                          | 7089000 | 7677596.989 | 588596.9887  | 3.46446E+11 |
| 48080                                                                                                          | 7091000 | 7699366.301 | 608366.3007  | 3.7011E+11  |
| 48670                                                                                                          | 7092000 | 7732299.362 | 640299.3623  | 4.09983E+11 |
| 49060                                                                                                          | 7093000 | 7754068.674 | 661068.6743  | 4.37012E+11 |
| 49640                                                                                                          | 7095000 | 7786443.548 | 691443.5485  | 4.78094E+11 |
| 500001                                                                                                         | 7096000 | 7806538.298 | 710538,298   | 5.04865E+11 |