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ABSTRACT

Mathematical modelingand simulation of Steam MethaneReformer(SMR) over sulfide

nickel catalyst on alumina support has been studied. It is consists of primary and

secondary reformers which is playan important role in the production of ammonia. This

study consists of chemical reaction kinetics; chemical reaction equation and rate

constants for a given catalyst; to develop a mathematical model for a steam reformer

incorporating the reaction kinetics; to study the behavior of the reactor for changes in

different variables such as feed rate, feed composition, temperature, etc.
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ABBREVIATIONS AND NOMENCLATURES

Nj = moles

Fj = Molar flow rates

q - net rates of formation

V = volume (m3)

W = weight (kg)

k = specific reaction rate

Cj = concentrations

T = temperature (K)

P = pressure (Pa)

R = 8.314m3.Pa/mol.K
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Journals, patents, info from PETRONAS Ammonia Sdn. Bhd, and techniques belong to

KTI, Kellogg, Topsoe, ICI, Selas and TEC companies have been study closely for this

project. The products from Ammonia/Syngas plant are:

• Carbon monoxide (CO), gas

• Oxogas (mixture of H2 and CO)

• Ammonia

The CO and oxogas are produced from natural gas and steam. Ammonia is produced

from a mixture ofhydrogen and nitrogen in the ratio ofH2 to N2 at 3:1, The fuel for the

reformer furnace is by product off-gases (primary fuel) and natural gas (secondary fuel).

The reactions by which this ratio is achieved are given as follows:

CH4 + H20<-»CO + 3H2 Methane reforming reaction (Reaction 1)

CO + H20 <-> C02 + H2 Water gas shift reaction

CH4 + 3/2 02 «-*• 2H20 + CO Combustion reaction

(Reaction 2)

(Reaction 3)



Reaction 1, the steam reforming reaction, and reaction 2, the water gas shift reaction,

are endothermic and occur in the primary reformer. Reaction 3, the combustion

reaction, is exothermic and occurs along with reactions 1 and 2 in the secondary

reformer. Optimization ofthe reforming process involvesthe manipulationofparameter

to achieve high process yield while maintaining low operating and installed costs.

Theparameterswhich are monitored in this design includetemperature, pressure, steam

to carbon ratio, and percentoxygenin the air feed. The steam reformingprocess has the

following reactions:

Reaction (1) describes the mechanism ofreforming all hydrocarbons.

1- CnHm + nH20~nC0 + (n-f-m/2)H2 -heat

[CH4+ H20 «-> CO + 3H2] Methane reforming reaction

Reaction (2) providesan overallsummary ofhow CO2 is formed but is actually formed

from CO as indicated in reaction (3)

2. CflHm + 2nH20*->nC02 + (2n + m/2)H2-heat

3, CO+ H20^C02 + H2+heat [Water gas shift reaction]



1.2 Problem Statement

The focus on this project is basically on mathematical modeling and simulation of the

primary reformers. In the study ofsteam reformation in a real system, reactor geometry,

steam-to-carbon-ratio, temperature and pressure of the reaction, flow pattern inside the

reactor and other parametersare all factors that affect a reformer's performance.

Accurate individual analysis ofeach limiting mechanism (heat transfer, mass transfer

andchemical kinetics) is perhaps thepreferred method for quantifying reactor

performance, but the interactions between the mechanisms often make such combined

analysis difficult, ifnot impossible.



1.3 Objectives and Scope of Study

The objective ofthis project is:

• To develop mathematical modeling and simulation studies of Steam Methane

Reformer (SMR) in Ammonia Plantusing Polymath.

The scopes of this study include complex interaction of heat transfer and coupled

chemical reactions. The furnace in the present system is a side-wall fired type in which

the burner energy is transferred by radiation and convection to the reformer tubes,

passes through the tube walls by conduction and is transferred to the catalyst bed by a
combined mechanism.

In order to perform a complete analysis of the reformer, the behavior under transient

conditions, such as start-up, shutdown, change of operating conditions and feed

disturbances in addition to steady stateshould be investigated.



CHAPTER 2

LITERATURE REVIEW

2.1 Steam Methane Reformer (SMR)

A methane reformer is a device used in chemical engineering, which canproduce pure

hydrogen gas from natural gas using a catalyst. SMR uses an external source ofhot gas

to heat tubes in which catalytic reaction takes place that converts steam and lighter

hydrocarbons such as natural gas (methane) or refinery feedstock into hydrogen and

carbon monoxide (syngas). The SMR furnace is a process furnace that is used to

maintain the reactants at a temperature that favors the production of hydrogen. Steam

reforming is achieved by reaction over a catalyst at high temperature. In addition to the

energy required to provide the steam, the overall reaction is endothermic, so energy
must be added to drive it.

Below is diagram for Production of 1,000 Metric Tons per day of ammonia (Nitrogen
and Hydrogen in a 3:1 stoichiometricratio)
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2.2 Process Description of Reformer in Ammonia Plant
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A mixture of carbon monoxide, hydrogen, and carbon dioxide is produced by steam

reforming, a process in which natural gas and steam are mixed and reacted in a reformer

operated at 1.6 MPa. Natural gas may be assumed to consist entirely of methane (CH4),

although other compounds may be present in small concentrations. In the present

process, steam and natural gas are fed to the reformer in a ratio of 3.0 moles of steam

per mole of methane. The reformer consists of an arrangement of vertical tubes filled

with nickel-impregnated ceramic catalyst. Rows of these tubes are located inside an

insulated firebox, where they are heated by the combustion ofnatural gas.

The natural gas and steam that are blended to become the reformer feed enter the

process at 30°C and 210°C, respectively. The mixture is preheated to 450°C by exhaust

gas from the firebox/ chamber, and it is introduced to the reformerthrough a header that

distributes the mixture evenly among the parallel reformer tubes. Two key reactions

occur: the steam-reforming reaction itself,

CH4 + H20 (g) <-* CO + 3H2

and the water-gas shift reaction,

CO + H20 +-> CO2 + H2

The product gas leaves the reformer at 855°C and 1.6MP&.

Energy efficiency in steam reforming is improved by recovering heat from the burner

exhaust gas, which leaves the firebox at 960°C. The exhaust gas is cooled in a series of

heat-exchange operations that preheat the reformer feed streams to 450°C, produce

superheated steam at 4.8MPa and 100°C superheat from boiler feed water at 30°C, and

preheat the combustion air to 300°C. The superheated steam is used to drive turbines

elsewhere in the process or it can be exported, for example to generate electricity. The

burner exhaust gas leaves the heat-recovery units and enters a stack at 150°C for release

to the atmosphere.



2.3 Functions for each Reformer

23.1 Pre-reformer

The pre-reformerconverts all the heavierhydrocarbons to CH4, H2 etc. The natural gas

and hydrogen mix from the desulphurization section has steam added and is heated with

the hot flue gas from the reformer waste heat convection section. From here, the

reaction mixture goes to the pre-reformer loaded with high activity nickel catalyst.

Higher hydrocarbons are not present in the gas leaving pre-reformer that consist of

steam, carbon oxides and methane that can be heated to higher temperature (>600°C)

without any thermal cracking.

Note:

- If the steam to carbon ratio drops to very low levels, and especially if the steam flow

stopscompletely,even for few seconds, a heavy carbon lay down must be expected.

- On the other hand, ifthe catalyst is exposed to steam alone, it will be oxidised.

The minimum operating temperature must be observed. If the catalyst contains

magnesia, under certain conditions it may react with steam to form Magnesium

hydroxide.

MgO + H20-+Mg(OH)2

The conditions at which the reaction may take place depend on the steam partial

pressure and temperature. In case of extensive oxidation of the catalyst, it has to be

replaced. If the catalyst is slightly oxidized it will be reduced during start-up, but the

activity will decreased to some extent.

2.3.2 Tubular reformer

Heat flux limited, thus based on a calculated reformer heat duty of 50MMkcal/hr, the

reformer:

Sized to contain = 230 catalyst tubes

Inner diameter tube = 4 inches

10



Length tube = 35 feet

Maximum heat flux through tubewalls, f- 5,921.176 kcal/ft^hr

Total needed surfacearea ofreformer tubes, d/f - a = 8457.28ft2

t = a/36.7tfpertube = 230 tubes needed.

Catalyst volume was calculated from tube number and tube volume. The primary

reformer contains a total of 690ft3 ofcatalyst.

Diameter - 12 ft, Long = 20 ft

10 feet of reactor length are left void of catalyst so that combustion may occur away

from the catalyst.

2.3.2.1 Heat Input

The heat released in the tubular reformer is supplied by the firing of the two fuels. The

primary fuel consists of off-gases from thePSA unit, the cold boxunit and theNitrogen

wash unit. The hydrogen stream from the cold box unit may be utilized as fuel if it is off

spec or the ammonia plant is down. The secondary fiiel consists of natural gas. The

fuels are supplied through one common fuel line. The reformer is fired by using all

primary fuel availableand supplemented by natural gas. The duty controllercontrols the

total heat input to the radiant section. The setting of the duty controller should be

adjusted by the operator to keep the desired temperature at the reformer outlet.

Note: The higher the temperature, the lower unconverted methane.

If there is a loss of one of the fuel streams then flow controller will compensate by

increasing the natural gas flow. The flow of natural gas to the fuel header is controlled

bythe duty controller during normal operation. Thesetting of duty controller represents

the total fuel heat input to the tubular reformer as measured by the individual flow

meters on each gas stream that feeds the reformer burner.

11



2.4 Methane Content in the Reformer

The methane content in the process gas at the outlet of the reformer is determined by the

following parameters:

• Operating pressure

• Reforming temperature

• Steam/carbon ratio

• Approach to the theoretical equilibrium which depends on the capacity and

the catalyst activity.

An increase in the reforming temperature or the steam/ carbon ratio will lower the

methane content, while an increase in operating pressure will increase the methane

context exit the reformer. Minimum methane content is required for maintaining the

methane balance in the cold box unit. As the catalyst ages, the approach to equilibrium

ofthe effluent gas will tend to increase, causingan increase in methane leakage.

2.5 Carbon Monoxide Content in the Reformer's Outlet

The carbon monoxide content outlet the tubular reformer is determined by the same

parameters as the methane content. An increase in operating pressure or steam/carbon

ratio will lower the carbon monoxide content, while an increase in reforming

temperature will increase the carbon monoxide content exit the reformer. Maximum

carbon monoxide production is obtained by maximum recycle of C02 from the C02

removal section.

12



2.6 Catalyst properties

Table 2.1: Table of Catalyst Properties

Catalystdensity (gcat/mj) 2355.2

Nickel content (wt.%) 9.8

S content (wt.%) 4.9

Alumina content (wt.%) Balance

Surface area(m2/g) 155

Total pore volume (ml/g) 0.9

Size ofthe sphere (mm) 1.75

Average crush strength (N) 25

2.7 Mathematical model

2.7.1 Mathematical modeling ofdynamic systems

A simplified mathematical model of the physical system can determine the overall

complex behavior ofthe dynamic system. The analysis ofa physical system steps:

(a) Mathematical modeling ofa Physical System.

All components of the physical system are linear. The resulting mathematical

model may be linear or non-linear, depending on the given physical system.

Accurate mathematical modeling of any physical system will lead to non-linear

differential equations have either no solution or difficult to find a solution.

Assumptions are made to linerise a system, which permits quick solutions for

practical purposes.

(b) Formulation ofGoverning Equations

Once the mathematical model is developed, we can apply the basic laws of

nature and the principles of dynamics and obtain the differential equations that

govern the behaviorofthe system. The resulting of mathematical model may be

linear or non-linear, depending uponthe behaviorofthe elements or components

of the dynamic system.

13



(c) Mathematical solution ofthe governing equations

There are many technique available for finding the solution, namely, the

standard methods for the solution of ordinary differential equations, Laplace

transformation methods, matrix methods, and numerical methods.

(d) Physical Interpretation ofthe results

The solution of the governing equations of motion for the physical system

generally gives the performance.

2.7.2 Control system configurations

Mathematics!
inputs nOutputs

expression

Figure 2.6: Block representation

2.8 Polymath Software

For this project, polymathsoftwarehas been used to solve all the differential equations

simultaneously. POLYMATH 6.X is a proven computational system, which has been

specifically created for educational or professional use. The various POLYMATH

programsallow the user to apply effective numerical analysis techniquesduring

interactive problem solving onpersonal computers. Results arepresented graphically

for easy understanding and for incorporation into papers and reports. Students,

14



engineers, mathematicians, scientists, or anyone with aneed to solve problems will
appreciate the efficiency andspeed ofproblem solution.

ThePolymath has 4 major programs:

(a) LEQ Linear Equations

(b) NLE NonlinearEquations

(c) DEQ DifferentialEquations

(d) REG Regression

For this study, DEQ Differential Equations has been used. The purpose ofthis program
is to provide asolution for asystem ofsimultaneous first-order ordinary differential
equations and explicitalgebraic equations.

There are five numerical integration algorithms available within Polymath. RKF45 has
been used tosolve the ordinary differential equations.

The Runge-Kutta-Fehlberg (RKF45) is the default algorithm that is highly
recommended formostproblems.This algorithm monitors the estimate ofthe

integration error, and reduces or increases the step size ofthe integration in order to
keep the error below aspecified threshold. The accuracy requested isthat both the
relative and absolute (maximal) errors be less than die truncation error tolerance. The
default value ofthis tolerance is 1.0E-6. (AH the tolerances can be changed in
"Settings"). Ifthe integration progresses very slowly the reason for that may be that the
system ofequations is stiff. Stiffsystems ofequations contain variables mat change
(decay) in widely varying time scales. For such systems, the RKF algorithm may
require avery small step size for integration and one ofthe available still algorithms,
STIFF or ST1FFBS, should be used.

15



2.9 Summary ofProperties

2.9.1 Catalyst

- Type ofcatalyst: Sulfide nickel catalyst on agamma support (N1-0309S)

- Cheapandpopularly used.

- Catalyst properties;

Catalyst density (gcat/m3)

Nickel content (wt.%)

S content (wt.%)

Alumina content (wt.%)

Surface area (m2/g)

Totalpore volume (ml/g)

Sizeofthe sphere (mm)

Average crush strength (N)

2355.2

9.8

4.9

Balance

155

0.9

1.75

25

Source: Journal Kinetic and modelling study ofmethane steam reforming over sulfide
nickel catalyst on agamma alumina support by D.L. Hoang*., S.H. Chan, O.L.Ding

2.9.2 Tabes in the primary reformer

Sized to contain

Inner diameter tube

Length tube

Maximum heat flux through tubewalls, f

Total needed surface area ofreformer
tubes, A

Total Catalyst

230 catalyst tubes

4 inches

35 feet

5,921.176 kcal/fAir

8457.28fr*

690ft3

Source: http://www.owlnet.rice.edu/chbe403/nh3ref97.html

16



2.9.3 Operating conditions for 1,000 metric tons per day of Ammonia

Temperature (°C) 600

Pressure (bar) 39,220

Vapor Fraction LOO

Mole Flow (kmol/hr) 5004.443

Mass Flow (kg/hr) 87,783.203

Volume Flow (Cum/hr) 9,150.887

Enthalpy (MMKCal/Hr) -212.141

Mole Flow (KMol/Hr)

CH4 1250

H20 3750

H2 Too small

CO Too small

C02 3.00

N2 1.443

02 Too small

AR Too small

Source: http.7/www.owlnet.rice.edu/chbe403/nh3ref97.html

17



CHAPTER 3

METHODOLOGY

3.1 Overall methodology

18
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3.2 Algorithm for Solution of Complex Reaction

Reactions

Mole Balance

Mel Rale Laws

Stoichiomelrv

Pressure Drop

Combine

Multiple Reactions

'-.Is Number each reaction

(Ij A + 2B- —C

[2} M + C——*2D

J
( (2> Wnfe mole balance on each and every species

dhW d!>-r. ^-r- ,„d d±>W— r.. — riv* - — r>*, >iiiu m>
aw aw aw aw

I
'<&) Write the nol rate uf reaction for each species

r\ = ri'.\ + r>,\• ""is =ri'ti+r;n- rt'-=r:,;+rlt;. and r,', = r^ + iS,-,

''}-- Write rate law for cmo aperies in every reaction

""tA--k1ACAC5 and r^x--k,ACACr

la) In (Kii h ,eaelion ruble the r.ites ot reaction of each species to one another

>'m=X\- rjV^-r^. i^B -0- rfn -0. »'ic ' r3A ^ *',Kt ''=!> --^a

(6/ Combine net rates rale laws, and. relative rates to write the not rales in
terms of concentrations

r.\ -"^ia^-a^-h —k:\*- \*~c- rit =~-'cia'-,\^h

rr ^kiACACB-k;At:ACc/-1'- r/j - ;ik:•,-£"ACV

I
© For isothermal (T =T(1) £H*~}>hiifie reactions, write the conrent rations in

terms of molar flow rates

eg-- f'^c-i;, ~-y- c» =cc, -'-y whh Ft-F^+r-H+iv+Fp
h,- r*,

For iiCilliil l.>!uiiti reaction, just use concentrations as they are, e.g.. C v C

I
(§) Write the ^is-'uVirs: pressure drop term in terms of motor flow rates

civ

T

a F, T ., P
• = -J— . with v= —

dW 2v 1;T T., ' P„

Use miODfc" solver (e.g., Polymath) to combine steps CU through '
to solve for the profile** of molar flow rates, concentration, and
pressure, for example.

19



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Discussion

The operation behavior ofnatural gas reformer closely relates to:

Structure parameters

Operation conditions.

Structureparameters: Furnace tube diameter, length, wall thickness, heat

conductionproperty, blackness, tube pitch (or pitch between two rows oftubes

ifmultiple rows);burnerpatternand arrangement; chamber structure size; and

flue gas tunnel arrangement and so on.

Operations conditions: Natural gas components, water carbonratio, inlet

temperature andpressure, operation load; catalystproperty, structure, size, and

bed void factor; fuel property, temperature, pressure, air surplus coefficient,

composition and temperature ofturbine exhaust gas, and so on.

Strong endothermic reaction

- The tubular reactor, also named as primary reformer and used in the

industrial units, is heated from outside tubes.

- The tubes are filled with the nickel-based catalyst, to accelerate the natural

gas reformingreactionand the flue gas generated in outside tube (chamber)

by the combustionprocess providesheat to reformer tubes through the

radiation heat transfer.

20



4.2.1
Schematicdiagram

ofprimaryreformer(tubularreactor)
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4.2.2 Inside tube model

Reformer is a tubular packed bed reactor. Its tubes have internal diameter of 152 mm,

height of 11.35 mm, filled with the catalyst particles of 16 x 6 x 16 mm (lower section)

and 16x6x8 mm (upper section).,At tube entrance reactant gas Reynolds number

Re>105.

Assumptions have been made such as inside tube the gas flow can be considered as a

steady state, tube wall effect is significant, temperature and concentrations distributions

in radial direction are pronounced, so a two-dimension model is more reasonable. Since

it difficult to obtain accurate two-dimension model parameters to describe the mass and

heat transfer inside tube, the general way is to assume that the reforming reaction is

pseudo-homogeneous phase.

4.2.3 Outside tube model

Selas reformer used in Urumqi Second Ammonia Plant is a fiirnace which has a single

row of tubes, receives the radiation heat from burners installed on two sidewalls (each

sidewall has two rows ofburner). Its structure is shown ifFigure 3.1. Inside reformer,

Chamber size: 11.35 m high, 2.45 m wide and 18 m long

88 tubes made by HP-50 compose a row in middle ofthe furnace, the inter-tube space is

0.25m, and the tube diameter is 172.6 x 10.3 mm

In the reformer, all 88 tubes have same temperatures at same horizontal altitude,

therefore three-dimensional temperature distribution in the reformer can be simplified

into two-dimensional one. Since tube arrangement in a Selas sidewall-burning furnace

is symmetric, the simulationonly needs to study halfof tubes. Along the wall and tube,

divide the height into 20 sections (each section represents a zone). Correspondingly, the

space between the tube row and the wall is divided into 20 zones, the width direction is

divided into two kinds of zones (combustion and flue gas zone), the width ratio ofthese

two zones is 1:3, which is similar to the industrial unit. Therefore, the system is divided

into 20 sidewall zones, 20 tube-surface zones, 20 combustion zones, 20 flue gas zones,

22



a furnace top zone, and a furnace bottom zone; Its sums up to 82 zones, (see Figure

3.2). So, 82 zone temperatures need to be computed.

4.2.4 Algorithm for Solution ofComplex Reactionsin the primary

reformer

Seldom is the reaction of interest the only one occurs that occurs in a tubular reactor.

Typically, multiple reactions will occur, some desired and some undesired. One of the

key factors intheeconomic success of a chemical plant isthe minimization ofundesired

side reactions that occurs along with the desired reaction.

In complex reaction systems consisting of combinations of parallel and series reactions,

the availability of software packages (ODE solvers) makes it much easier to solve

problems using molesNj or molarflowratesFj ratherthan conversion. For gas systems,

the molar flow rates are usuallythe preferredvariable in the mole balance equation.

Below are the mole balance equationsfor complexreactions where rA and rB are the net

rates offormation ofA and B.

Mole Balance

dNA/dt - FA0 - FA + f rAdV Equation 1

For packed bed reactor

dFA/dV = rA dFs/dV = rB Equation 2
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4.2.4.1 Reactions

(1) Number each reaction

CH4 + H2O^CO + 3H2

A B C 3D

CO +H20 ~ CO, +H2 Water gas shift reaction

C B F D

Methane reforming reaction (Reaction 1)

(Reaction 2)

4.2.4.2 Mole Balance

(b) Write mole balance on each and every species

dFCH4/dW =rCH4 oTWdW =r^o dFco/dW = rco

dFi^/dW = rm dFco2/a*W- rC02

4.2.4.3 Net Rate Laws

(c) Write the net rate ofreaction for each species

The key point for multiple reactions is to write the net rate offormation ofeach species
That is, we have to sum up the rates offormation for each reaction in order to obtain the
net rate offormation. In general the net rate ofreaction for every species is the sum of
all rates ofthe reactions in which their species appears.

fCH4=:ricH4

rco^rico + r^o

fH2 - T1H2 + T2H2

ro2 - r2Q2
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(d) Write rate law for one species in every reaction

The rate laws for each ofthe individual reactions are expressed in terms of
concentrations, Cj, ofthe reacting species. Arate law is needed for one species in each
reaction.

kjA

Reaction (1): CH4 + H20 ** CO+ 3H2

Followed an elementary rate law, then the rate ofdisappearance ofCH4 in reaction 1
would be

-ricm =kiGH4CcH4CH2o Equation 5

Reaction (3): CO+ H20 *-> C02+ H2

-r2Co =k.coCcoC^o Equation 6

(e) In each reaction relate the rates ofreaction ofeach species to one another.

Reaction (1): CH4 +H20 ** CO +3H2 -r1CH4 =k^C^Ce*)

Need to relate the rates offormation ofother species in Reaction 1to the given rate law.
J-1CJS4 _ rlSrZO _ rlCO _ rlX2

-1 -1 ~ 1 ~ Equation 7

rimo= ricH4= -k^nAH&o Equation 8

nco =-r1CH4 =k1CH4CcH4CH2o Equation 9

rim =3(-riCH4) =3kicroCcwCreo Equation 10

Reaction (2): CO +H20 ~ C02 +H2 .r3co =k3coCCoCH2o
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*2H2o- r2CO = - kscoCcoC^o
Equation 11

r2co2 = - r2Co = k2coCcoCmo
Equation 12

r2H2 = -r2CO = kacoCcoCico
Equation 13

The net rates ofreaction for species CH,, H20, CO, H2 are
*H4 =rlcm +r2CH4 =. JccwCcMCmoEquation 14

**o- r1KO+ r2ffio =. k1CH4CCH4Clno- fecoCcoC^ Equation 15

rco= r1Co +r2Co =k^Cc^o -W^ko Equation 16
ita - rIH2 +^ =3JccwCcwCbo +W^oCW

TC02 = r3C02 = kscoCcoCico

4.2.4.4 StoUMometry: Concentrations

(g) If the reactions are gas-phase reactions, proceed as follows.
For idealgases

Cj =FT0/v0 (F/FtXP/PoXtvd =Croff/FrXP/PoXTyi)
Where FT - V71 F

AndCxo-Po/RTo

*For isothermal system (T=T0) with no pressure drop (P=Po)
Cj-Cto^j/Ft)
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c_MAg „„ Wmw ^ ,aws ^

Coupled ODE

dF1/dV =r, =2Sl r„ =fn, [Cro(Fl/FTX ....OoF/Frf

Ft - FCH4 +Fh20 +Fco +F^+FC02
Equation 19

Rewrite mo.e balances on each species in the tota. molar flow rate.
• Mole Balance on CH4

dFCH4/dV - rCH4 «-kICH4CcH4CH2o

dFCH4/dV - -kicmC2™ (FcH4^T) (Fh^t)
Equation 20

Mole Balance on H20

dWdV=̂ 0=.k1CH4CCH4CH20- k2coCcoClI20

Equation^'^^^^
• Mole Balance on CO

dFca/dV^rco^klCH4cCH4CH20_k2coCcoCH2o
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- -krcH4C2To(FcH4/FT) (Fh2o/Ft) - k2COC2TO (Fco/FT) (Fhjo/Ft)
Equation 22

• Mole Balance on H2

dFH2/dV =rH2=3k1CH4CcH4C„2o+k2CoCcoCH2o

=3klc„4C\o(FCH4/FT) (WFt) _k2cocT02(Fco^T) (Fffio/FT) Equation 23
* MoleBalance on C02

dFCo2/dV- rc02 - kacoCcoCiDo

k2coCT02(FCo^T) (Fjco^t)
Equation 24

Cro - Po/RT0= 170.61 mol/m3
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4.2 Result

Table 4.1:ODE Solver Algorithm for Multiple Reactions
0) dfcH4/dV = rcrM" — —— ..
(2) dfWdV =rffi0
(3) dFCo/dV = rco
(4) dFH2/dV = rH2
(5) dFcoz/dV^rccE
(6) rcH4--k!CH4CcH4CH20

ill ^0Z^C^C^-k^oCcoCmo
(JO) rcc^kjcoCcoCHjo
(H) nH2o=ricH4
02) rlco =-riCH4
03) rIH3 =3(-rlcI«)
(14) T2mo=r2co
(15) r2H2o=r2co
(16) r2Co2=!:-r2co
(17) r2Hj = -r2co
08) tau~rKm+T2an

(20) rco= ncxj + rico
(21) rH2 = riH2
(22) rco2 = r2C02
(23) CCH4=CroFcH4/FT
(24) Ch2o=CtoFch^t
(25) Cco =CtoFCo^t
(26) Qc=CtoFh2^t
(27) Qxh^CtoFok/Ft

(30) kern = 0.179bar-1
(31) kco=40.91 bar-1
(32) FcH4=178J.25kmoWir
(33) Fmo=5343.75 kmoVhr
(34) Fco= 0kmoWir
(35) FiE=OkmoMir
(36) Fcm= 4.275kmolflir
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4.2.1 Result from Polymath:

& POLYMATH 5.10Fditrtiorwl Release- !ODE ResultsGrapli, Solution#411

L£ File Gpticns Help

i

F(MoIarFlowRat»J VS W(CatalystWeight)

&

J.JK-: -.SK~

Figure 4.3: Graph F (Molar Flow Rate) VS W (Catalyst Weight)

Figure above is the graphfor F, Molar flowrate ofchemical species insidethe primary

reformer versus catalyst weight (W)thatwillbe get afterthe optimum weight hasbeen

identifiedthroughoutthis graph. Fromthe graph we can consider that the weightof

catalystthat producehighest molar flow rate for the hydrogen is the optimum weightfor

catalyst in the primary reformer. Hydrogen is the most desired chemical species in the

primary reformer, so the highest molarflow rate ofhydrogen can produce the highest

conversion and yield ofhydrogen.
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catalyst weight for the prtoary refon„e, § "^"*» mOSt *«—»
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5.1 Conclusion

CHAPTER 5

CONCLUSroNANDRECOMME]yi)AiioN

The entering molar flow rate* P i

' °m SOlver aIg°ri*« fa shown in Table 41
*romthegraph,itshowsthat7096kmol/hr,,fi. a

«-«*.weigh, „ ».^^n!mm *****°f"*• •If •*»

5.2 Recommendation

,«*« ~*°"k"* —tad » ™» „«^ m|Kfcr
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APPENDICES

APPENDIX 1: REPORTFROMPOLYMATH
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dinary Differential Equations

Variable Initial value Minimal value Maximal value Final value

CA 42.62692 0.1175844 42.62692 0.1175844

CB 127.8808 28.6985 127.8808 28.6985

CC 0 0 0.1045428 0.0005167

CD 0 0 113.3804 113.3804

CE 0.1023046 0.1023046 28.41302 28.41302

CTb 170.61 170.61 170.61 170.61

FA 1.781E+06 7358.629 1.781E+06 7358.629

FB 5.344E+06 1.796E+06 5.344E+06 1.796E+06

FC 0 0 5122.892 32.33887

0 FD 0 0 7.096E+06 7.096E+06

1 FE 4275. 4275. 1.778E+06 1.778E+06

2 FT 7.129E+06 7.129E+06 1.068E+07 1.068E+07

3 klA 0,179 0.179 0.179 0.179

4 k2C 40.91 40.91 10.91 40.91

5 rlA -975.7583 -975.7583 -0.6040348 -0.6040348

5 rlB -975.7583 -975.7583 -0.6040348 -0.6040348

7 rlC 975.7583 0.6040348 975.7583 0.6040348

3 rlD 2927.275 1.812104 2927.275 1.812104

9 r2B 0 -359.3892 0 -0.6066894

o r2C 0 -359.3892 0 -0.6066894

1 r2D 0 0 359.3892 0.6066894

2 r2E 0 0 359.3892 0.6066894

3 rA -975.7583 -975.7583 -0.6040348 -0.6040348

4 rB -975.7583 -975.7583 -1.210724 -1.210724

5 rC 975.7583 -1.572491 975.7583 -0.0026545

5 rD 2927.275 2.418794 2927.275 2.418794

7 rE 0 0 359.3892 0.6066894

3 W 0 0 5.0E+04 5.0E+04

d(FB)/d(W) = rB

d(FA)/d(W) = rA

d(FE)/d(W) = rE

d(FD)/d(W) - rD

d(FC)/d(W) - rC

»out:blank

No Title

01-Jun-2009

6/1/2009



1 klA

barA~

= 0.179

2 CTo = 170.61

mo!/fr "3

3 FT = FA+FB+FC+FD+FE

4 CC = CTo*Fq/FT

5 CE = CTo*FE/FT

6 CD = CTo*FD/FT

7 k2C = 40.91

8 CB = CTo*FB/FT

9 r2C == -k2C*CC*CB

10CA = CTb*FA/FT

conee itratlon

11 r2D == -r2C

12 rA = -klA*CA*CB

Net rates in terms of concentration

13 rlA = rA

14 r2E = -r2C

15 rlD * 3*(-rlA)

16 rlC = -rlA

17 rlB = rlA

18 r2B = r2C

19 rE = k2C*CC*CB

20 rB = -klA*CA*CB-k2C*CC*CB

21 rD = (3*klA)*CA*CB+k2C*CC*CB

22 rC = klA*CA*CB-k2C*CC*CB

Total number of equations 27

•Jumber of differential equations 5

dumber of explicit equations 22

Elapsed time 1.157 sec

Solution method RKF 45

Step size guess, h 0.000001

"runcation error tolerance, eps 0.000001

ata file: c:\users\juis\documents\norzuliana.poi

bout:blank 6/1/2009
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(Cat. weight FD(H2) |

0 0 5015600.867 5015600.867 2.51563E+13 Coefficients 55.81875 5015600.867

1067.666 2457000 5075196.647 2618196.647 6.85495E+12 Std»dev.s 5.447983 158887.7877

1500.034 3001000 5099330.888 2098330.888 4.40299E+12 R2,SE(y) 0.517184 787632.6611

2033.254 3519000 5129094.561 1610094.561 2.5924E+12 95% conf. int. 10.67805 311420.0638

2528.092 3899000 5156715.799 1257715.799 1.58185E+12 Variance 6.2E+11

3010.033 4204000 5183617.142 979617.1425 9.5965E+11 Sum of Squares 6.08E+13

3532.168 4481000 5212762.065 731762.0648 5.35476E+11 Mode! FD = a1 * W + aO

4094.15 4733000 5244131.197 511131.1968 2.61255E+11

4579.988 4920000 5271250.066 351250.066 1.23377E+11

5016.924 5069000 5295639.287 226639.2867 51365366278

5563.238 5234000 5326133.851 92133.85054 8488646415

6124.567 5383000 5357466.533 -25533.46712 651957943.2

6557.633 5486000 5381639.735 -104360.2649 10891064897

7026.057 5588000 5407786.577 -180213.4234 32476877984

7545.724 5691000 5436793.738 -254206.2618 64620823534

8040.473 5779000 5464410.008 -314589.9917 98966862897

8530.355 5860000 5491754.608 -368245.3915 1.35605E+11

9080.087 5942000 5522439.961 -419560.0392 1.76031 E+11

9632.479 6018000 5553273.791 -464726.209 2.1597E+11

10010 6067000 5574346.541 -492653.4592 2.42707E+11

10600 6136000 5607279.602 -528720.3975 2.79545E+11

11010 6181000 5630165.289 -550834.7106 3.03419E+11

11590 6239000 5662540.164 -576459.8364 3.32306E+11

12050 6283000 5688216.788 -594783.212 3.53767E+11

12630 6334000 5720591.662 -613408.3378 3.7627E+11

13100 6373000 5746826.474 -626173.526 3.92093E+11

13550 6407000 5771944.911 -635055.0891 4.03295E+11

14020 6442000 5798179.723 -643820.2773 4.14505E+11

14660 6485000 5833903.722 -651096.2782 4.23926E+11

15110 6514000 5859022.159 -654977.8413 4.28996E+11

15610 6544000 5886931.533 -657068.467 4.31739E+11

16080 6570000 5913166.345 -656833.6551 4.3143E+11

16590 6597000 5941633.907 -655366.0933 4.29505E+11

17060 6621000 5967868.719 -653131.2815 4.2658E+11

17580 6646000 5996894.468 -649105.5322 4.21338E+11

18070 6667000 6024245.655 -642754.3454 4.13133E+11

18580 6689000 6052713.216 -636286.7836 4.04861 E+11

19080 6710000 6080622.591 -629377.4093 3.96116E+11

19600 6729000 6109648.34 -619351.66 3.83596E+11

20120 6748000 6138674.089 -609325.9107 3.71278E+11

2064G 6766000 6167699.839 -598300.1614 3.57963E+11

21160 6783000 6196725.588 -586274.4121 3.43718E+11

2151C 6794000 6216262.15 -577737.8501 3.33781E+11

2203C 6809000 6245287.899 -563712.1008 3.17771 E+11

22570 6824000 6275430.023 -548569.9766 3.00929E+11

2310C 683800C 6305013.96 -532986.0398 2.84074E+11

2364C 6852000 6335156.084 -516843.9156 2.67128E+11

2418C 6864000 6365298.209 -498701.7913 2.48703E+11

2454C 687300C 6385392.958 -487607.0418 2.37761 E+11

2508C 6884000 6415535.082 -468464.9176 2.19459E+11

2562C 6896000 6445677.207 -450322.7933 2.02791 E+11

2617C 6907000 6476377.518 -430622.4816 1.85436E+11

2654C 6914000 6497030.455 -416969.5446 1.73864E+11

27080 6923000 6527172.58 -395827.4203 1.56679E+11

2764( 6933000 6558431.079 -374568.9211 1.40302E+11

280CK 6939000 6578525.828 -360474.1716 1.29942E+11

2856C 6948000 6609784.328 -338215.6724 1.1439E+11



29110 6956000 6640484.639 -315515.3606 99549942791

29680 6964000 6672301.326 -291698.6739 85088116363

30040 6969000 6692396.076 -276603.9244 76509731000

30610 6976000 6724212.762 -251787.2377 63396813068

31170 6983000 6755471.262 -227528.7385 51769326831

31550 6988000 6776682.386 -211317.614 44655133986

32110 6994000 6807940.885 -186059.1148 34617994190

32680 7000000 6839757.572 -160242.4281 25677635751

33050 7004000 6860410.509 -143589.4911 20617941946

33620 7010000 6892227.196 -117772.8044 13870433447

34000 7014000 6913438.32 -100561.6799 10112651461

34570 7019000 6945255.007 -73744.99317 5438324018

35140 7024000 6977071.694 -46928.30646 2202265947

35520 7027000 6998282.818 -28717.18199 824676541.3

36100 7032000 7030657.692 -1342.307789 1801790.199

36660 7036000 7061916.191 25916.19144 671648978.6

37050 7039000 7083685.503 44685.5034 1996794214

37620 7043000 7115502.19 72502.19011 5256567571

38010 7046000 7137271.502 91271.50207 8330487090

38580 7049000 7169088.189 120088.1888 14421173085

39160 7053000 7201463.063 148463.063 22041281070

39550 7055000 7223232.375 168232.3749 28302131979

40120 7058000 7255049.062 197049.0617 38828332699

40510 7061000 7276818.374 215818.3736 46577570390

41090 7064000 7309193.248 245193.2478 60119728773

41670 7066000 7341568.122 275568.122 75937789869

42050 7068000 7362779.246 294779.2465 86894804159

42640 7071000 7395712.308 324712.3082 1.05438E+11

43020 7073000 7416923.433 343923.4326 1.18283E+11

43610 7075000 7449856.494 374856.4943 1.40517E+11

44190 7077000 7482231.369 405231.3685 1.64212E+11

44580 7079000 7504000.68 425000.6805 1.80626E+11

45160 7081000 7536375.555 455375.5547 2.07367E+11

45550 7082000 7558144.867 476144.8666 2.26714E+11

46130 7084000 7590519.741 506519.7408 2.56562E+11

46520 7086000 7612289.053 526289.0528 2.7698E+11

47110 7088000 7645222.114 557222.1145 3.10496E+11

47690 7089000 7677596.989 588596.9887 3.46446E+11

48080 7091000 7699366.301 608366.3007 3.7011 E+11

48670 7092000 7732299.362 640299.3623 4.09983E+11

49060 7093000 7754068.674 661068.6743 4.37012E+11

49640 7095000 7786443.548 691443.5485 4.78094E+11

50000 7096000 7806538.298 710538.298 5.04865E+11


