Statistical Process Control for Depropanizer Column at Petronas Gas Berhad, Kerteh

by

Siti Fariza bt Ahmad

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

JUNE 2009

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Statistical Process Control for Depropanizer Column at Petronas Gas Berhad, Kerteh

by

Siti Fariza bt Ahmad

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by,

Name -

(Nasser M Ramli)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

April 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

SITI FARIZA BT AHMAD

ABSTRACT

The final report is made in order to give all the details on the Final Year Project II which is *"Statistical Process Control for Depropanizer Column at Petronas Gas Berhad (PGB), Kerteh"*. This report is divided into five main chapters which are : Introduction, Literature Review, Methodology, Results & Discussions and Conclusion.

Statistical Process Control (SPC) has a very high demand in industry right now as it provides a way to monitor process behavior and able us to analyze the variations in the process that may affect the quality of the end product. In this project, the focus in on the depropanizer column at Petronas Gas Berhad (PGB), Kerteh. The short term targets are to apply Statistical Process Control on the column stated, to measure and analyze the variation in the processes, to monitor the consistency of processes used to manufacture the product as designed and finally to suggest the best way in controlling all the variables at the column. While for long term is to implement the results in our industry.

Many variables have to be considered in order to complete the project, which are: (a) Calculated data surrounding the depropanizer column which include all the tag names, (b) Tag names and description, (c) Description of the depropanizer column and (d) Flow sheet for the column showing all the tag name surrounding the column. Mainly, two tools are required in executing this project which are (a) SSPS software and (b) LIMS – Laboratory Information Management System (in PGB, Kerteh). From here, an early analysis on all the variables obtained by using Microsoft Excel has been made. Mainly, the discussion is about the input variables that affecting the output variable, which in this case the output variable is the C_3 composition. Some problems have been identified during the process of analyzing the data using Microsoft Excel.

Simulation using SPSS software has been completed which includes:

a) Descriptive Statistics

a) Crosstabs

- b) Histograms
- c) Paired T-test

b) One Way Anova

- c) Correlationsd) Scatter Plots
- d) Linear Regressions

i

Analysis has been completed for the results obtained from SPSS, focusing on the critical components inside the overhead product composition which is C_3 and some input data that will most probably affect the overhead product composition:

- i) Reflux flow (4FC6203.PV)
- ii) Energy input inside the column (4TI6231.PV)
- iii) Feed conditions (4FY62022.PV, 4TI6009.PV)

It is proven that these four main input variables have a very strong relationship with C_3 composition inside the overhead product and they all come from a general population mean. Increasing or decreasing their values will give a great impact to the C_3 composition. As the samples proved to come from a general population mean, an optimum operating condition could be produced from the average data, in order to maintain C_3 composition within the desired value (98.48 mole%):

Input	Description	Optimum operating
variables		conditions suggested
4FC6203.PV	Reflux flow	112.96 m ³ /hr
4TI6231.PV	Energy input inside the column / Reboiler temperature	116.03 °C
4FY62022.PV	Feed flowrate	143.36 m ³ /hr
4T16009.PV	Feed temperature	95.81 °C

However, these optimum operating conditions suggested must be checked again so that it will not violate the design operating conditions.

This project will not only improve the existing process control of the column but also improve the quality of end product and saving the cost to operate the column.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my Supervisor, Mr Nasser M Ramli, who has given me support, providing advice and guidance, making time for consultation and discussion during the completion of the project.

Secondly, I would like to express my thanks to Petronas Gas Berhad (PGB), Kerteh, for giving their full cooperation by providing me with all the input and data that I need. A few engineers also responsible in giving me their opinions and thoughts regarding the project:

- Mrs. Normala Suliman (Process Plant Engineer)
- Mr. M Feris Halmy Zakaria (Senior Process Plant Engineer)
- All PGB staffs

I would also like to thank Mr M Tazli Azizan, the coordinator for Final Year Project II. With his excellent management and coordination, the flow of this project was seamless.

Last but not least, I would like to thank my family for their moral support, encouragement and understanding throughout the completion of this project.

TABLE OF CONTENTS

ITEMS		PAGE
ABSTRACT		i
AKNOWLEDGEM	ENTS	iii
TABLE OF CONTI	ENTS	iv
CHAPTER 1 : INT	RODUCTION	1
1.1	PROBLEM STATEMENT	1
1.2	OBJECTIVES	1
1.3	SCOPE OF STUDY	1
CHAPTER 2 : LITI	ERATURE REVIEW	2
2.1	STATISTICAL PROCESS CONTROL (SPC)	2
2.2	DISTILLATION/FRACTIONATION COLUMN	5
2.3	DEPROPANIZER COLUMN	7
CHAPTER 3 : MET	THODOLGY	
3.1	FLOWCHART OF METHODOLOGY	8
3.2	TOOLS REQUIRED	9
CHAPTER 4 : RES	ULTS & DISCUSSIONS	
4.1	ANALYSIS ON THE DATA/VARIABLES USING	
	MICROSOFT EXCEL	12
4.2	FACTORS AFFECTING OVERHEAD PRODUCT	
	COMPOSITION	13
4.3	PROBLEMS FACED	16
4.4	ANALYSIS ON THE DATA/VARIABLES	
	USING SPSS SOFTWARE	17
	4.4.1 Descriptive Statistics	17
	4.4.2 Histograms	19

	· · · · · · · · · · · · · · · · · · ·	
4.4.3	Correlation	23
4.4.4	Scatter Plots	24
4.4.5	Crosstabs	27
4.4.6	One-way ANOVA	32
4.4.7	Linear Regression	33
4.4.8	Paired T-test	35
CHAPTER 5 : CONCLUSION &	RECOMMENDATION	38
REFERENCES		40
APPENDICES		
LIST OF FIGURES		
Figure 1: Process Flow Diagram for	Fractionation Trains	5
Figure 2: Process Flow Diagram of	Depropanizer Column	
in Petronas Gas Berhad, K	erteh	7
Figure 3: Flowchart of the Methodo	ology	8
Figure 4: Histograms of Normal, Sk	cewed and Bimodal Distributions	19
Figure 5: Histogram of C1 Composi	tion at the Overhead Product	20
Figure 6: Histogram of C2 Composi	tion at the Overhead Product	20
Figure 7: Histogram of C3 Composi	tion at the Overhead Product	21
Figure 8: Histogram of iC ₄ Compos	ition at the Overhead Product	21
Figure 9: Histogram of nC ₄ Compo	sition at the Overhead Product	21
Figure 10: Histogram of Data from	4FC6203.PV	22
Figure 11: Histogram of Data from	4TI6231.PV	22
Figure 12: Histogram of Data from	4FY62022.PV	22
Figure 13: Histogram of Data from	4TI6009.PV	22
Figure 14: Scatter Plot of C ₃ Comp	osition by 4FC6203.PV	24
Figure 15: Scatter Plot of C ₃ Compo	osition by 4TI6231.PV	25
Figure 16: Scatter Plot of C ₃ Comp	osition by 4FY62022.PV	26
Figure 17: Scatter Plot of C ₃ Comp	osition by 4TI6009.PV	27
Figure 18: Crosstabs between 4FC6	203.PV and C ₃	28

•

CONTRACTOR DE CARDON DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CON

·	
Figure 19: Crosstabs between 4TI6231.PV and C ₃	29
Figure 20: Crosstabs between 4FY62022.PV and C ₃	30
Figure 21: Crosstabs between 4TI6009.PV and C ₃	31
Figure 22: One-way ANOVA for C ₃	32
Figure 23: Summarize of Linear Regression between C_3 and the Main	
Variables (4FC6203.PV, 4FY62022.PV,	
4TI6009.PV & 4TI6231.PV)	34
Figure 24: Summarize of Paired T-test between C3 and the Main	
Variables (4FC6203.PV, 4FY62022.PV,	
4TI6009.PV & 4TI6231.PV)	36

LIST OF TABLES

THE REPORT OF A DESCRIPTION OF A DESCRIP

Table 1: Operating Conditions and Parameter	
Depropanizer Column in Petronas Gas Berhad, Kerteh	7
Table 2: Analysis on the Variables obtained using Microsoft Excel	12
Table 3: The Product Specification for C ₃	12
Table 4: Factors Affecting Overhead Product Composition and their Effects	13
Table 5: Why the Factors Affect Overhead Product Composition	15
Table 6: Overall Descriptive Statistics	17
Table 7: Summarize of Descriptive Statistics	18
Table 8: Summarize on the Relationship between C_3 and the Input Data	23
Table 9: Optimum Operating Conditions Suggested	39

CHAPTER 1 : INTRODUCTION

1.1 PROBLEM STATEMENT

Statistical Process Control (SPC) has a very high demand in industry right now as it provides a way to monitor process behavior and able us to analyze the variations in the process that may affect the quality of the end product. In this project, we would be doing the SPC for the depropanizer column at Petronas Gas Berhad (PGB), Kerteh. This title was chosen based on some characteristics which are: (a) Unique – no previous student has done it before, (b) Possible – the project is doable and within the student's capability, and (c) Within time frame – the project can be completed within time frame given (1 year).

The short term target is to achieve all the objectives stated and thus in the end, come up with the best way in controlling all the variables at the column. While for long term is to implement the result in the industry.

1.2 OBJECTIVES

- To apply Statistical Process Control on depropanizer column at Petronas Gas Berhad, Kerteh
- To measure and analyze the variation in the processes
- To monitor the consistency of processes used to manufacture the product as designed
- To suggest the best way in controlling all the variables at the column

1.3 SCOPE OF STUDY

In doing this project, the scopes of study are:

- Study on Statistical Process Control (SPC)
- Study on fractionation column, mainly on depropanizer column
- Study on SSPS software (a statistical software used to assist in analyzing data)

CHAPTER 2 : LITERATURE REVIEW 2.1 STATISTICAL PROCESS CONTROL (SPC)

Statistical Process Control (SPC) involves using statistical techniques to measure and analyze the variation in processes ^[10]. Most often used for manufacturing processes, the intent of SPC is to monitor product quality and maintain processes to fixed targets. It provides a way to monitor process behavior for chemical and other processes. SPC is used to monitor the consistency of processes used to manufacture a product as designed. It aims to get and keep processes under control. No matter how good or bad the design, SPC can ensure that the product is being manufactured as designed and intended.

SPC will not improve a poorly designed product's reliability, but can be used to maintain the consistency of how the product is made. Process control engineers use SPC to monitor a process's stability, consistency and overall performance. Quality control engineers use SPC to see if the process is functioning within quality standards. In industry, these two departments work together to monitor a chemical process.

Arguably the most successful Statistical Process Control (SPC) tool is the control chart, originally developed by Walter Shewhart in the early 1920s ^[11]. A control chart helps you record data and lets you see when an unusual event, e.g., a very high or low observation compared with "typical" process performance, occurs. A marked increase in the use of control charts occurred during World War II in the United States to ensure the quality of munitions and other strategically important products. The use of Statistical Process Control (SPC) diminished somewhat after the war, though was subsequently taken up with great effect in Japan and continues to the present day. Many SPC techniques have been "rediscovered" by American firms in recent years, especially as a component of quality improvement initiatives like Six Sigma ^[12]. The widespread use of control charting procedures has been greatly assisted by statistical software packages and ever-more sophisticated data collection systems.

The control chart is a graphical representation of certain descriptive statistics for specific quantitative measurements of the manufacturing process. These descriptive statistics are displayed in the control chart in comparison to their "in-control" sampling distributions. The comparison detects any unusual variation in the manufacturing process, which could indicate a problem with the process. Several different descriptive statistics can be used in control charts and there are several different types of control charts that can test for different causes, such as how quickly major vs. minor shifts in process means are detected. Control charts are also used with product measurements to analyze process capability and for continuous process improvement efforts. Control charts attempt to distinguish between two types of process variation:

- Common cause variation, which is intrinsic to the process and will always be present.
- Special cause variation, which stems from external sources and indicates that the process is out of statistical control.

Various tests can help determine when an out-of-control event has occurred. However, as more tests are employed, the probability of a false alarm also increases.

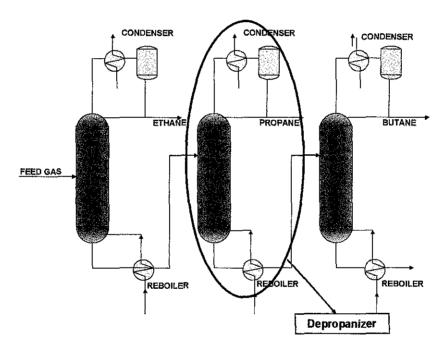
The capability of SPC $^{[25]}$:

- All forms of SPC control charts
 - > Variable and attribute charts
 - > Average (X bar)
 - > Range (R),
 - > Standard Deviation (σ)
 - > Shewhart
 - Cumulative Sum (CUSUM) charts : the ordinate of each plotted point represents the algebraic sum of the previous ordinate and the most recent deviations from the target
 - Combined Shewhart-CuSum
 - Exponentially Weighted Moving Average (EWMA) charts : each chart point represents the weighted average of current and all previous

subgroup values, giving more weight to recent process history and decreasing weights for older data.

- Selection of measures for SPC
- Process and machine capability analysis (C_p and C_{pk})
- Process characterization
- Variation reduction
- Experimental design
- Quality problem solving
- · Cause and effect diagrams

More recently, others have advocated integrating SPC with Engineering Process Control (EPC) tools, which regularly change process inputs to improve performance.


Some of the benefits of applying SPC in processes are :

- Effective method of monitoring a process A primary tool used for SPC is the control chart, a graphical representation that can be analyzed to detect any unusual variation in the manufacturing process, which could indicate a problem with the process. It is also used with product measurements to analyze process capability and for continuous process improvement efforts.
- Detects assignable causes of variation By collecting data from samples at various points within the process, variations in the process that may affect the quality of the end product or service can be detected and corrected. From here, the pattern can be analyzed and thus preventing the problems to be passed on to the customer. This would also means that by applying SPC, the process can be kept in control.
- Accomplishes process characterization From the pattern, the process characterization required can be achieved. For examples, in operating a distillation column, by doing SPC, the optimum operating conditions can be obtained leading to on-spec product and optimum process.

4

- Reduces need for inspection With its emphasis on early detection and prevention of problems, SPC has a distinct advantage over quality methods, such as inspection, that apply resources to detecting and correcting problems in the end product or service.
- Reduce the time required to produce the product The SPC data can be used to identify bottlenecks, wait times, and other sources of delays within the process. Process cycle time reductions coupled with improvements in yield have made SPC a valuable tool from both a cost reduction and a customer satisfaction standpoint.

2.2 DISTILLATION/FRACTIONATION COLUMN

Figure 1: Process Flow Diagram for Fractionation Trains

Fractional distillation is one of the unit operations of chemical engineering Fractionating columns are widely used in the chemical process industries where large quantities of liquids have to be distilled. Such industries are the petroleum processing, petrochemical production, natural gas processing, hydrocarbon solvents production and other similar industries but it finds its widest application in petroleum refineries. Industrial distillation is typically performed in large, vertical cylindrical columns known as "distillation towers" or "distillation columns" with diameters ranging from about 65 cm to 6 m and heights ranging from about 6 m to 60 m or more. Industrial distillation towers are usually operated at a continuous steady state. Unless disturbed by changes in feed, heat, ambient temperature, or condensing, the amount of feed being added normally equals the amount of product being removed ^[9].

The design and operation of a fractionating column depends on the composition of the feed and as well as the composition of the desired products. Given a simple, binary component feed, analytical methods such as the McCabe-Thiele method or the Fenske equation can be used. For a multi-component feed, simulation models are used both for design, operation and construction.

The Fractionation Column Train in Product Recovery Unit at PGB, Kerteh is an example of a fractionation system designed to separate ethane, propane and butane respectively from demethanizer bottom product streams. Three towers are used to separate ethane, propane and butane from the feed stream. The columns can have multiple feeds coming from various units in the gas plant and entering the columns at different tray locations.

2.3 DEPROPANIZER COLUMN

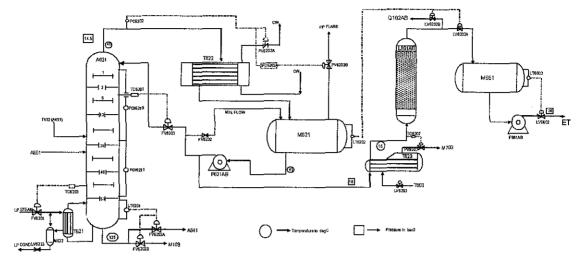
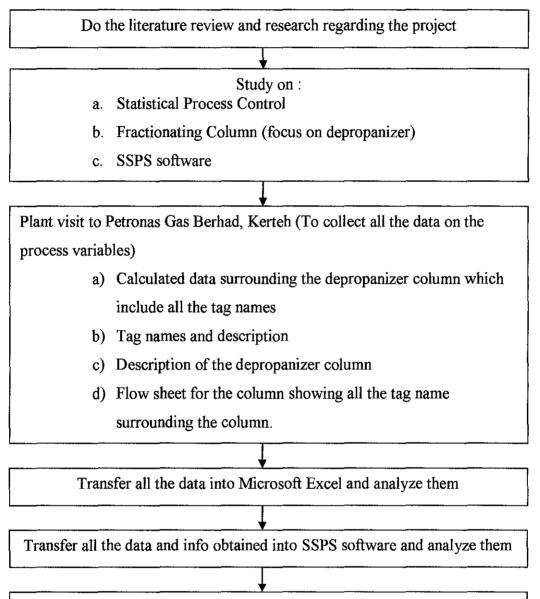


Figure 2: Process Flow Diagram of Depropanizer Column in Petronas Gas Berhad, Kerteh

Table 1. Operating Condition		
Depropanizer Column in Petronas Gas Berhad, Kerteh		
Criteria	Operating conditions	
Ower hand program (oversee)	14.5 harG	

Table 1. Operating Conditions and Parameters for


Criteria	Operating conditions	
Over head pressure (average)	14.5 barG	
Over head temperature	46°C	
Bottom temperature	120 – 135°C	

A depropanizer column is a one type of fractionation/distillation column which function to remove propane from bottom liquid. In PGB, the equipment number for depropanizer is A-621 with 53 number of trays, height of 32.3 m with diameter of 3.2 m. The propane that extracted by the depropanizer is sent to the Export Terminal and/or MTBE Plant. The bottoms from A-621 are C4₊, which flow to the debutanizer, A-641^[3].

CHAPTER 3 : METHODOLOGY

3.1 FLOWCHART OF METHODOLOGY

(See APPENDIX A for FYP2 Gantt Chart)

Produce the final results and conclusions

Figure 3: Flowchart of the Methodology

3.2 TOOLS REQUIRED

- SSPS software A statistical software that can ease the process of analyzing the data. It can be used to generate control charts, regression analysis, descriptive statistics and etc.
- LIMS Laboratory Information Management System (in PGB, Kerteh)

CHAPTER 4 : RESULTS & DISCUSSIONS

On the 27th and 28th of August 2008, a visit to Petronas Gas Berhad (PGB), Kerteh has been done for the purpose of data requisition. The data obtained comprises of:

- a) Calculated data surrounding the depropanizer column which include all the tag names
- b) Tag names and description
- c) Description of the depropanizer column
- d) Flow sheet for the column showing all the tag name surrounding the column.

See Appendix B for samples of data obtained. See also Appendix C which includes all the graphs on all the data obtained for each variable/tag number which are compositions, flow, temperature, pressure and level.

Process data is the cornerstone of all data driven modelling techniques [6], thus the quality of process data used in developing the SPC is crucial to the success of the application. These are some useful questions when collecting data for modelling purpose:

a) What is considered 'normal' process operation?

- In our cases, the 'normal' process operation is considered when the plant is in its daily operation, without any turnaround or plant shutdown.

b) How much data is available and how much should be used?

- The data can be extracted for any time of the year as long as the data is still inside the Laboratory Information Management System (LIMS) in PGB, Kerteh and also the PI system. For this project, the data needed is for two years period with an interval of one hour.

c) What is the quality of the process data?

- For the data that has been taken from PGB, it can be said that it is good enough for the purpose of this project. As the data is taken directly from PI system, supposedly they are all correct for each tag/variables, means that the data is solely coming from each respective tag/analyzer.

d) How noisy is the collected process data?

- There are certain periods whereby all the tags show "No Good Data For This Time", this indicates that at that time, the plant is going through a plant turnaround or sudden shutdown. This creates a small hole in the data; however, as the data was taken for two years, there are still enough data to be manipulated.

4.1 ANALYSIS ON THE DATA/VARIABLES USING MICROSOFT EXCEL

Table 2: Analysis on the Variables obtained using Microstf Excel

Variables / Tag	Description	Unit	Average	Maximum	Minimum	Range
C ₁	Composition of C ₁ in Overhead Product	mole %	0.077	1.460	0.000	0 - 0.4
C ₂	Composition of C ₂ in Overhead Product	mol e%	0.546	3.420	0.000	0 - 1.5
C ₃	Composition of C₃ in Overhead Product	mol e%	98.482	99.970	93.870	97 - 99.5
iC4	Composition of iC ₄ in Overhead Product	mol e%	0.871	5.620	0.000	0 – 2
nC ₄	Composition of nC₄ in Overhead Product	mol e%	0.022	1.390	0.000	0 - 0.05
4FY62022.PV	TOTAL DEPROPANIZER FEED	M3/H	143.359	179.480	32.751	120 – 170
4FC6002.PV	A601 BTM TO A621	M3/H	124.854	155.134	22.602	110 – 150
4FI6202.PV	A 621 TO A 641	M3/H	67.017	118.038	0.001	50 - 90
4FC6203.SP	DEPROPANIZER REFLUX	M3/H	112.757	165.000	51.755	90 – 140
4FC6203.PV	DEPROPANIZER REFLUX	M3/H	112.956	165.057	0.001	90 - 140
4TI6009.PV	A601 BTM	DEGC	95.807	124.045	22.352	94 – 99
4TI6204.PV	A621 OVHD	DEGC	45.001	51.248	26.699	44 – 46
4TI6205.PV	A 621 BOTTOM	DEG C	115.761	134.362	27.671	110 – 128
4TC6231.SP	T621 TO A621	DEG C	127.418	150.000	112.303	120 -150
4TC6231.PV	T621 TO A621	DEGC	132.166	155.000	112.307	120 -155
4TI6231.PV	T621 TO A621	DEGC	116.033	128.572	32.556	110 – 124
4TI6214.PV	A621 TRAY 5	DEGC	47.801	56.332	28.609	45 – 51
4TI6213.PV	A621 TRAY 13	DEGC	54.278	69.188	29.000	46 - 62
4TI6202.PV	A621 TRAY 39	DEGC	69.649	87.605	28.384	64 – 75
4TI6203.PV	A621 TRAY 44	DEGC	101.097	107.087	31.907	98 – 105
4PC6202.SP	A621 OVERHEAD	KPAG	1450.620	1459.984	1428.579	1445 - 1455
4PC6202.PV	A621 OVHD	KPAG	1450.157	1558.965	1262.336	1445 – 1455
4LC6201.PV	A621	PCT	44.510	85.824	1.319	35 65
4LT6201.PV	A621	PCT	44.509	85.830	1.369	35 – 65

Note : A601 = deethanizer, A621 = depropanizer, T621 = depropanizer reboiler

Components	Specifications
C ₂	\leq 2.0 mol%
C ₄₊	\leq 3.4 mol%

 Table 3: The Product Specifications for C3

In this project, the focus is only on the overhead product composition. This is mainly due to unavailability of data for the bottom product compositions. The composition data obtained is from 24th October 2007 until 31st July 2008. These data were extracted using Laboratory Information System (LIMS) at PGB, Kerteh. Data older than 24th October 2007 is not available due to the process of upgrading the system and the older data have been removed. Total, there are around 600 numbers of samples to be analyzed for each variable. On the graphs made, x-axis is the sample number as for y-axis is the variables (i.e., compositions, temperature, pressure, level).

As there are only the specifications for C_2 and C_{4+} , the overhead product should be expected to have 0 mole% for C_1 composition. However, referring to graph for C_1 composition, the range is between 0 – 0.4 mole%. This indicates that at certain times, exist a small amount of C_1 in the C_3 product, although this phenomena should not be happened after all. At one point, the C_3 product even have 1.46 mole% of C_1 inside it. For C_2 , i C_4 and n C_4 , seeing the average data, most of the time, they obey the specifications restricted.

4.2 FACTORS AFFECTING OVERHEAD PRODUCT COMPOSITION

Some of the main factors to be considered when investigating the overhead product composition:

Factors	Descriptions	Effect to the Overhead Composition
Reflux	It is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated ^[11] . In this case, the system is the depropanizer. The reflux ratio is the ratio between the boil up rate and the	From the data obtained, it can be seen that when the reflux is low, between $50 - 80$ m3/h, the mole% for C ₃ decreased. It results in low purity of the product. Most of the time, the values fall within the range

Table 4: Factors Affecting Overhead Product Composition and their Effects

Contract of Contract of Contract

	take-off rate. The reflux can be used in controlling the purity of the overhead product while maintaining a fixed	of 90 – 140 m3/h.
	reboiler duty.	
) Energy input nside the column	reboiler duty.Basically, this is the heat supplied by the reboiler. In this case, it is the heat supplied from T621 (Depropanizer Reboiler). The composition of the overhead product can be controlled by manipulating the heat supplied to the fractional distillation column. Energy input will determine the vapor rate or vapor traffic inside the column and also the degree of separation that column can 	From the data obtained for the Depropanizer Reboiler, it can be seen at samples number 520 to 524, when the return temperature to the column is low, the purity of C_3 in the product is very low.
	components will also increase.	
Feed	Both are some of the vital things that will	For the temperature, the optimum
onditions	effect the overhead composition greatly	condition based on the data
- Feed	and must be supplied at the optimum	obtained, is around 94 – 99 °C. In
mperature	conditions. Here, we can only consider	the situation of the supply feed
·Feed pressure	the feed temperature owing to the <i>unavailability data on the feed pressure</i> . However, theoretically, if the feed is from a source at a pressure higher than the distillation column pressure, it is simply piped into the column. Otherwise, the feed is pumped or compressed into the column ^[13] . The feed may be a superheated vapor, a saturated vapor, a partially vaporized liquid-vapor mixture, a saturated liquid (i.e., liquid at its boiling point at the column's pressure), or a sub-cooled liquid ^[11] .	temperature is lower than expected; it will effect the overhead product composition. Low purity of C_3 product will be produced, and more C_1 , C_2 and C_{4+} will be found in the overhead composition. Referring to samples number 520 to 524, whereby the feed temperature is lower, varies from 22 – 68 °C; the composition of C_3 inside the overhead product is only 53 – 87 mole% only. This will give PGB an off-spec C_3 product and will lead to customer complaints.

1

And why do these three factors affect the overhead product composition greatly:

Table 5: Why the Factors Affect Overhead Product Composition

Factors	Why does it affect the Overhead Composition
) Reflux	Reflux is the ratio between the amount of reflux that goes back down the distillation column and the amount of reflux that is collected in the receiver (distillate/overhead composition) ^[11] . Low flow of reflux results in low purity of the product. When the reflux flow is low, it means that the boil-up (return to distillation column) rate is higher than the take-off (overhead product) rate. The low amount that goes back to the distillation column will result in less amount of product composition inside the column compare when the reflux flow is higher. When the reflux flow is higher, it will result in more amount of product composition inside the column, leading to higher purity of overhead product. Plus, higher reflux will also lead to higher vapor/liquid traffic inside the column, resulting in less impurities in the overhead product. However, too high reflux can force the column to handle heat duties that are much higher than they should be, and this is where the importance of finding the optimum conditions coming in.
) Energy 1put inside 1e column	Energy input is the factor that will determine the vapor rate or vapor traffic inside the column and also the degree of separation that column can achieve [13]. High energy input will increase the reflux, resulting in increment of vapor/liquid traffic inside the column and less impurities in the overhead product composition [14]. Higher energy input or in this case when the return temperature from Depropanizer Reboiler is higher, the vapor traffic will also increase, leading to more contact between the liquid and the vapor. This will then increase the performance of the column and also purity of the product.
Feed Feed Feed mperature Feed ressure	As these two variables (temperature and pressure) are linked to each other greatly (increment in temperature will cause increment in pressure too), so we can focus to the feed temperature. When the feed is at low temperature or is not being preheated, it will not have enough energy for the vapor-liquid contact inside the column. This situation will lead to poor performance of the column, and thus the purity of the product.

For multicomponent separations, tray temperatures do not uniquely determine the product composition. This is because the tray temperatures are affected by the feed temperature and the energy input. Nevertheless, it can be seen that when the tray temperatures are higher, the purity of the product also increased.

Next, for the overhead variables, the overhead pressure which is given from tag 4PC6202.PV, the average is 1450.157 kpaG which is near to the operating conditions stated in the theory previously (1450 kpaG). The range also falls within the value of operating conditions (1445 – 1455 kpaG). As for the overhead temperature, the average is

45.001 °C and the data falls within the range of 44 - 46 °C. The given operating condition for the overhead temperature is 46 °C.

For tag 4TI6205.PV, which is for the depropanizer bottom temperature, the average is $115.761 \,^{\circ}$ C. And the data falls within the region of $110 - 128 \,^{\circ}$ C.

As for the level inside the depropanizer, it is controlled by using the control valve at the bottom product. This means that the opening of the valve will be set by the level inside the column. If the level is less than requirement, the opening of the control valve will also be lessen and vice versa. From the data obtained, at samples number 559 and 564; when the level inside the column is slightly lower (25 – 30 PCT), the purity of C_3 inside the product also decreased. This shows that the level inside the column also give an affect towards the purity of the overhead product.

4.3 **PROBLEMS FACED**

However, there are some problems that might cause the analysis to be inaccurate:

- a) Some of the tag/analyzer/indicator did not exist previously. This cause unavailability of the older data.
- b) The data includes the plant shutdown period. This gives a period whereby there is no invalid data for all the variables.
- c) Some of the tag/analyzer/indicator suddenly did not give a reading for a period of time. This also gives a period whereby there is no invalid data for all the variables. It may be broken or in maintenance during that time.

4.4 ANALYSIS ON THE DATA/VARIABLES USING SPSS SOFTWARE

4.4.1 Descriptive Statistics

Table 6: Overall Descriptive Statistics

	N	Range	Minimum	Maximum	Me	an	Std.	Variance	Skew	/ness	Kurl	tosis
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
C1	570	1.46	.00	1.46	.0791	.00724	17291	.030	4.493	.102	25.797	.204
C2	570	3.42	.00	3.42	.5499	.02033	.48540	.236	1.761	.102	5.961	.204
C3	570	6.10	93.87	99.97	98.4765	.03715	.88692	.787	-1.210	.102	3.221	.204
iC4	570	5.62	.00	5.62	.8780	.03147	.75140	.565	1.842	.102	6.260	.204
nC4	569	1	0	1	.02	.005	.125	.016	8.429	.102	77.259	.204
4FY62022.PV	577	*******	*******	*******	*******	*******	*******	371.318	-1.653	.102	4.911	.203
4FC6002.PV	577	*******	*******	*******	*******	*******	******	311.275	-1.465	.102	3.948	.203
4TI6009.PV	577	*******	*******	*******	*******	*******	*******	39.750	-9.403	.102	102.952	.203
4TI6204.PV	577	*******	*******	*******	*******	******	*****	1.842	-9.299	.102	113.818	.203
4PC6202.SP	577	*******	*******	*******	*******	*****	*******	13.443	936	.102	2.616	.203
4PC6202.PV	577	*******	*******	*******	*******	*******	*******	153.712	-7.703	.102	130.393	.203
4TI6205.PV	572	107	28	134	115.76	.688	16.449	270.565	-4.525	.102	20.514	.204
4F16202.PV	572	118	0	118	67.02	.744	17.797	316.732	-1.385	.102	4.763	.204
4LC6201.PV	577	******	*******	*******	******	*******	*******	67.402	.357	.102	5.147	.203
4LT6201.PV	577	*******	*******	*******	*******	*******	*******	67.386	.358	.102	5.146	.203
4FC6203.SP	577	*******	******	*******	*******	*******	*******	242.031	- 498	.102	1.330	.203
4FC6203.PV	573	165	0	165	112.96	.675	16.167	261.381	-1.345	.102	8.123	.204
4TC6231.SP	577	******	*******	*******	*******	*******	*******	126.529	1.233	.102	046	.203
4TC6231.PV	215	43	112	155	132.17	.956	14.011	196.315	.654	.166	-1.152	.330
4TI6231.PV	577	*******	*******	*******	*******	*******	*******	56.296	-7.385	.102	73.120	.203
4PDI6210.PV	564	2	-1	1	53	.014	.343	.117	3.724	.103	15.290	.205
4PDI6211.PV	564	37	-5	32	-4.80	.077	1.821	3.316	15.443	.103	299.840	.205
4TI6214.PV	577	******	******	*******	*******	*******	*******	6.260	758	.102	9.375	.203
4TI6213.PV	577	*******	*******	******	*******	*****	****	25.500	422	.102	1.567	.203
4TI6202.PV	577	*****	******	******	*******	*****	******	19.914	-4.217	.102	34.215	.203
4TI6203.PV	577	*******	*****	*****	*******	*******	******	36.481	-9.564	.102	100.174	.203
Valid N (listwise)	213											

The Descriptive Statistics are used to describe the central tendency and variability of variables measured at the interval level. The most common measure of central tendency is the mean, while the standard deviation is typically used to describe variability. These measures provide concise summaries of the data without all the detail from frequency analysis ^[21].

For this project, the focus will be on the most critical composition for overhead product of a depropanizer column which is propane or C_3 and the input data that will most probably affect the C_3 composition:

- i) Reflux flow (4FC6203.PV)
- ii) Energy input inside the column (4TI6231.PV)
- iii) Feed conditions (4FY62022.PV, 4TI6009.PV)

Referring to Table 6 which shows the Descriptive Statistics for all the variables, some measures that can be analyzed are: Minimum, Maximum, Mean, Standard Error of Mean, Standard Deviation, Variance, Skewness and Kurtosis. The table below will summarize all the information on C_3 and the other variables.

ariables	Range	Min	Max	Mean	S.E.	Std.	Variance	Skewness	Kurtosis
			Į		of Mean	Dev.			ļ
	6.10	93.87	99.97	98.48	0.03715	0.88692	0.787	-1.21	3.221
26203.PV	165	0	165	112.96	0.675	16.167	261.381	-1.345	8.123
6231.PV	-	-	_	-	-	-	56.296	-7.385	73.12
762022.PV	-	-	-	-	-	-	371.318	-1.653	4.911
6009.PV	-		-		-	-	39.75	-9.403	102.952

Table 7: Summarize of Descriptive Statistics

The range is simply the difference between the minimum and maximum value, which are 93.87 mole% and 99.97 mole % respectively. The average or the mean of C_3 is calculated to be 98.48, so generally, it can be seen that the composition of C_3 on the overhead product is quiet good. S.E. mean identifies the standard error of mean. This statistics provides an indication on how well the samples mean represent the population mean. The smaller the value is, the less error will be in the sample and therefore, the sample mean provides a better estimation on the population mean. The value of S.E. mean is 0.03715. This indicates that the two years data will give a good analysis of the equipment itself. The two years sample does not varied a lot due to a small value of standard deviation which is 0.88692. The variance is calculated by squaring the standard deviation, 0.787 (= 0.88692^2).

There are two additional measures reported in this SPSS output that describe the shape of the distribution, skewness and kurtosis. The closer these values are to 0, the more likely that it is that the variables follow a normal distribution. The skewness for C_3 is -1.21, which shows more extreme scores at the lower part of the distribution. It can also be said that that the sample is negatively skewed. Another type of measure is the kurtosis. Positive value of kurtosis indicates a pointy distribution whereas negative values indicate a flat distribution^[23]. The kurtosis value is 3.221 which shows a taller distribution. A positive kurtosis also indicates that the distribution is slightly taller than what can be expected in a normal distribution. These two properties are easier to understand through a graph of distribution. A histogram would be used later to display the distribution.

4.4.2 Histograms

Histogram offers a nice pictorial representation of distributions, and these graphs are normally summarized with descriptions of their shapes. There are four common shapes:

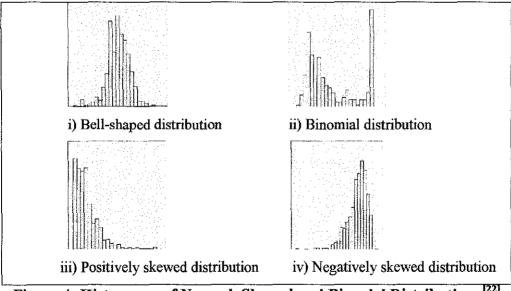
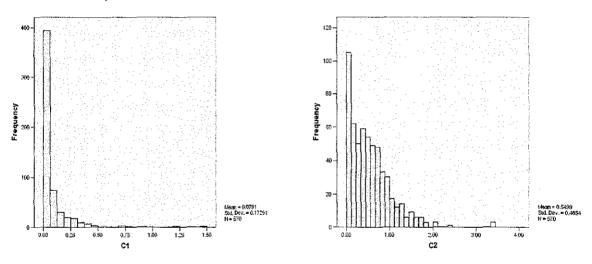
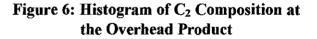




Figure 4: Histograms of Normal, Skewed and Bimodal Distributions^[22]

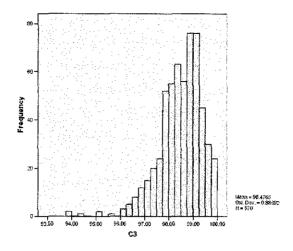
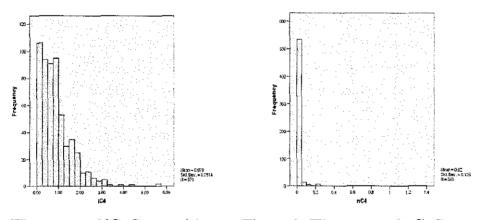

- Bell-shaped distribution symmetric, both sides look pretty much the same. It has the highest frequencies taper off at the high and low ends of the distribution, creating "tails" with few cases.
- Positively skewed distribution looks like a bell-shaped distribution that has been shoved to the left side, with a tail that points in the positive direction of the horizontal axis. There are many cases with low values of the variables and few cases with high values.
- iii) Negatively skewed distribution the opposite of a positively skewed. These distributions show many cases with high values and few cases with low values.
- iv) *Bimodal distribution* symmetric, but the highest frequencies are at both ends, with few cases in the middle.

Figure 5: Histogram of C₁ Composition at the Overhead Product



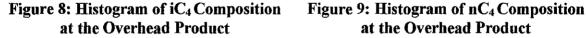

Both histogram above show positively skewed distributions where there are many cases with low values of the variables and few cases with high values. The skewness for C_1 and C_2 are 4.493 and 1.761 respectively, which show that most of the extreme scores are at the upper part of the distributions. As for the kurtosis, the values are 25.797 and 5.961 for C_1 and C_2 respectively. Both components have a very high value of kurtosis which show their distributions are taller than what can be expected in a normal distribution.

Figure 7: Histogram of C₃ Composition at the Overhead Product

Figure above shows the histogram of C_3 composition at the overhead product. The histogram is negatively skewed as discussed before where the skewness is -1.21. Most of the extreme scores are at the lower part of the distribution. The kurtosis is 3.221 which indicates that the distribution is slightly taller than what can be expected in a normal distribution.

Both histograms above are positively skewed which shows there are many data with low values of the variables and few data with high values. The skewness are 1.842 and 8.429 for iC_4 and nC_4 respectively. The difference in their values of skewness can be seen here in the histograms where nC_4 which has a higher skewness, has most of its data on the upper part of the distribution. As for iC_4 , there are some amounts of data which lies towards the middle of the histogram. For the kurtosis, the value for iC_4 is 6.260 which indicates that the distribution is taller than what can be expected in a normal distribution. And for nC_4 , the value of kurtosis is 77.259, a very high value which shows the distribution is much taller than what can be expected in a normal distribution.

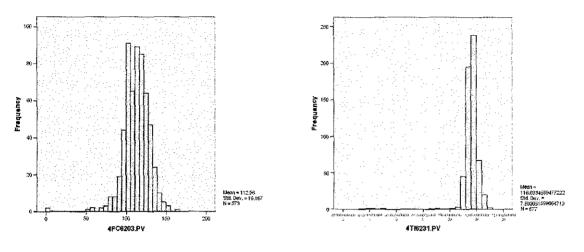


Figure 10: Histogram of Data from 4FC6203.PV

Figure 11: Histogram of Data from 4TI6231.PV

For 4FC6203.PV, the histogram shows a bell-shaped distribution. It has the highest frequencies taper off at the high and low ends of the distribution, creating "tails" with few cases. Although the value of skewness for 4FC6203.PV is -1.345, the histogram is more to a bell-shaped distribution. The value of kurtosis for 4FC6203.PV is 8.123, which indicates a pointy distribution. While for 4TI6231.PV, the histogram is negatively skewed. The histogram also has a pointy distribution with the value of kurtosis is 73.12.

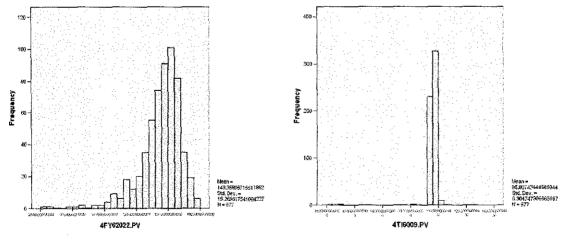


Figure 12: Histogram of Data from 4FY62022.PV

Figure 13: Histogram of Data from 4TI6009.PV

Both histograms above show a negatively skewed distribution with thevalues of skewness are -1.653 and -9.403 for 4FY62022.PV and 4TI6009.PV respectively. 4FY62022.PV has a value of kurtosis 4.911 which shows the distribution is slightly taller than what can be expected in a normal distribution. 4TI6009.PV has a very high value of kurtosis which is 102.952. It can be seen from the pointy distribution of the histogram.

4.4.3 Correlation

Correlation is a measure of covariation ^[21]. It is a simple and effective way of summarizing the degree to which values in two variables correspond with each other. In other words, the more two variables vary together, the stronger the correlation is between them.Pearson's correlation coefficient measures the strength of the linear relationship between two variables. Other types of possible relationship are curvilinear, "U" shaped and inverted "U" shaped relationship. Another term used to describe the relationship between two variables is covariance. A covariance is simply a measure of association which has not been standardized. Correlation coefficient range from -1.0 to +1.0, whereas the range of covariance depends on the variability of the variables being correlated and the number of data in the sample. However, this dependence makes covariances difficult to interpret and compare. The comparison of variables and their relationship become easier when the variables have been standardized. Therefore, correlation of coefficient will be used to describe the relationship between the variables. As discussed earlier, the discussion will focus to C₃ composition and the three input data: 4FC6203.PV, 4TI6231.PV, 4FY62022.PV and 4TI6009.PV.

ta
ta

	4FC6203.PV	4TI6231.PV	4FY62022.PV	4TI6009.PV
C ₃	-0.070	-0.030	-0.0137	0.017
Pearson's Correlation				
Coefficient				

From the table above, it can be seen the linear relationship between C_3 and the input data that will most probably affect the C_3 composition at the overhead product. For 4FC6203.PV (Depropanizer Reflux), 4TI6231.PV and 4FY62022.PV, the correlation are

-0.070, -0.030 and -0.0137 respectively. These values show that all these three input variables have a very weakly negative linear relationship with C₃ composition. As for 4TI6009.PV, the value for correlation is 0.017, which is a weakly positive linear relationship. It can be concluded from these four values that none of them have real linear relationship with C₃ composition at the overhead product. However, this does not indicate that there are no relationship at all between them. There might be another type of relationship exists (i.e.: curvilinear, "U" shaped and inverted "U" shaped relationship). It will be discussed next in the scatter plots.

4.4.4 Scatter Plots

Scatter Plots graph the relationship between two numerical variables ^[22]. The values of independent variable are listed on the horizontal axis (X axis) and the values of the dependent variable are listed on the vertical axis (Y axis). Each case is then placed on the graph at the intersection of its values for the two variables. In this project, the dependent variable is the most critical component at the overhead product which is C₃ and the independent variable is the input data from any tag that would affect the composition of C₃. Again, the focus will be on the factors that affect the overhead product composition (i) Reflux flow – 4FC6203.PV, ii) Energy input inside the column – 4TI6231.PV and iii) Feed conditions – 4FY62022.PV, 4TI6009.PV).

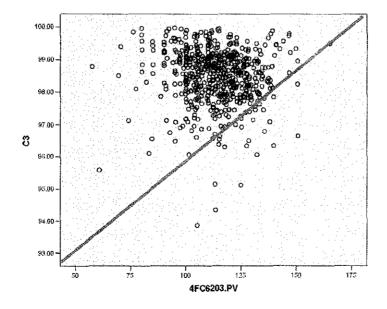


Figure 14: Scatter Plot of C₃ Composition by 4FC6203.PV

4FC6203.PV is the tag that shows the flow of reflux for the depropanizer column. From the scatter plot, it can be seen that almost all the points are grouped tightly together. This shows a very strong relationship between these two variables. The red line was drawn in order to show the relationship between these two variables. Most of the data lies near to this line, and this shows a strong positive relationship between them. However, there are a few outliers in this scatter plot. An outlier is an observation so far removed from the cluster of other observations that it is considered an extreme value. Outliers can have a strong impact on the values of statistics as they can undermine conventional statistical methods. These outliers might be resulting from result of an error or data entry error caused by

- i) Some of the tag/analyzer/indicator did not exist previously. This cause unavailability of the older data.
- ii) The data includes the plant shutdown period. This gives a period whereby there is no invalid data for all the variables.
- iii) Some of the tag/analyzer/indicator suddenly did not give a reading for a period of time. This also gives a period whereby there is no invalid data for all the variables. It may be broken or in maintenance during that time.

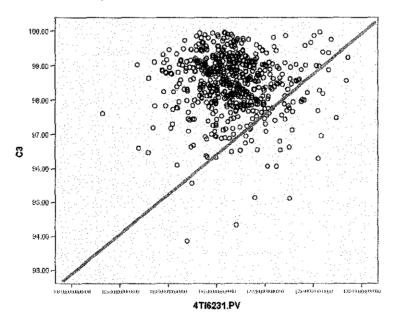


Figure 15: Scatter Plot of C₃ Composition by 4TI6231.PV

4TI6231.PV is the tag that shows the return temperature from the reboiler to the column or the energy input inside the column. Theoretically, the higher energy input inside the column, the higher concentration of C₃ in the overhead product. From the scatter plot, it can be seen that almost all the points are grouped tightly together. This shows a very strong relationship between these two variables. Most of the data lies near to the red line, and this shows a strong positive relationship between them. However, same as the scatter plot from 4FC6203.PV, there are also a few outliers in this scatter plot.

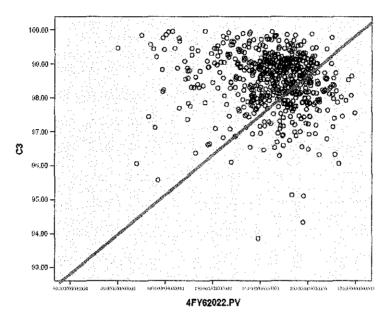


Figure 16: Scatter Plot of C₃ Composition by 4FY62022.PV

4FY62022.PV is the tag that shows the total flow of depropanizer feed. All the points are grouped tightly together, which shows a very strong relationship between these two variables. Most of the data lies near to this line, and this shows a strong positive relationship between them. The increment in the total depropanizer feed will also affect or increase the C₃ concentration inside the overhead product composition.

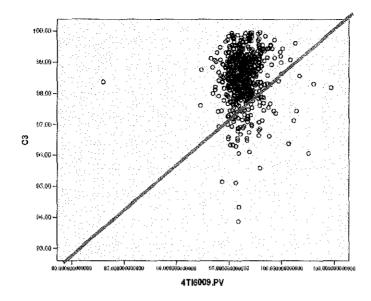


Figure 17: Scatter Plot of C₃ Composition by 4TI6009.PV

This scatter plot shows the relationship between 4TI6009.PV and C_3 composition inside the overhead product. Comparing this scatter plot with the other three previously shows that almost all of the points are grouped together and this scatter plot has less outliers from the other three previously. 4TI6009.PV is a tag that shows the temperature of feed entering the column. From the scatter plot, it can be seen that there is a strong positive relationship between them. This shows that the higher temperature of feed entering the column, the higher purity of C_3 inside the overhead product.

4.4.5 Crosstabs

Crosstabs are a simple and highly effective means of showing the association between two categorical variables ^[22]. A cross tabulation is a grid of all possible combinations of the values for two categorical variables. When the cells of this grid are filled with frequency of occurrence of the intersecting values, the association becomes apparent. Shown next are the results from crosstabs using SPSS software. The relationship between C_3 and the four main variables that will most probably affect C_3 composition in the overhead product are to be examined.

The degrees of freedom (df) are the same for all the crosstabs which is 153408. The formula used to calculate the df is (number of rows -1) x (number of columns -1). Since a vast amount of data are being used, it caused the df to be big.

	Value	Asymp. Sig. (2-sided)	
Pearson Chi-Square	153279.000(a)	153408	.592
Likelihood Ratio	6150.343	153408	1.000
Linear-by-Linear Association	2.744	1	.098
McNemar-Bowker Test	in constant of data and a new data set of the constant of the	1999 - Angel Constanting and Ang	
N of Valid Cases	567		

b Computed only for a PxP table, where P must be greater than 1.

Symmetric Measures

		Value	Asymp. Std. Error(a)	Approx. T(b)	Approx. Sig.
,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Phi	16.442	pender en nyen gen er en en konstruktion er en kan en en er	en eta mendamian dan en de errede arrede	.592
Nominal by Nominal	Cramer's V	.997	, hanna a gu na an an an an abhrail na saoin),	.592
	Contingency Coefficient	.998	en ander en ander en andere me	e e e e e e e e e e e e e e e e e e e	.592
N of Valid Cases	e y ¹ e alter en en elle alt de relier e el annel de	567	ga da na sina na da ka da	1	an an gu an an ann an an an Albert an an
a Not assuming the null	hypothesis.	an in the second se	атумного и почете и конститите — конститите	an e canantes desperadores administrations	la anna an anna an anna anna anna anna
b Using the asymptotic s	standard error assumir	ig the null hypo	thesis.	n yn ei ei ar an ar ferfan yn ferfan yn ar yn de ferfan yn ar y Yn ar yn a	متحجر الأحمالا مسلما برز
c Based on normal appr	oximation.	ngagan wandagagan datan saman san		s in the second second second in second in the second second second second second second second second second s	a too gaala ay too ahaa ay too ahaa
d Kappa statistics canno variable match the value			tric 2-way table in	which the values of	the first

Figure 18: Crosstabs between 4FC6203.PV and C₃

CAB 4614 FINAL YEAR PROJECT II

	Chi-Square	Tests					
	Value df Asymp. Sig. (2-si						
Pearson Chi-Square	153279.000(a)	153408	.592				
Likelihood Ratio	6150.343	153408	1.000				
Linear-by-Linear Association	.511		.475				
McNemar-Bowker Test	• • •	•	.(b)				
N of Valid Cases	567	ale consecutive time in calmon and all o	an na shiri na ma nada kwa sa ka sa na shiran na tara shuka shirin na ma ma na sa na sa sa sa sa sa sa sa sa s				

b Computed only for a PxP table, where P must be greater than 1.

Symmetric Measures

	Value	Asymp. Std. Error(a)	Approx. T(b)	Approx. Sig.
Phi	16.442		foogie statione genetare generations s	.592
Cramer's V	.997	. 18	· · · · · · · · · · · · · · · · · · ·	.592
Contingency Coefficient	.998	n analain na filinnan sonana ann an Anna		.592
ndahang ang tanananta ang atang anahang santa nang	567	anto a parte casari ya na di casari, ya anto	nin standard and a saide search sin saide 1 1 1 1	· · · · · · · · · · · · · · · · · · ·
ypothesis.		<u> </u>		
andard error assumin	g the null hypot	thesis.	ter ann ag annaichtean ag ag na chraidheanna - Mhrain Adh	ayan tan mandaran ana ana an
ximation.	t, analah yang di salah sang sala	anglaga pana sarahar ng sebarah ang ang	n - na na senander settan be en e	n son na shikinga n
	Cramer's V Contingency Coefficient ypothesis. andard error assumin	Phi16.442Cramer's V.997Contingency Coefficient.998567.998ypothesis998	ValueError(a)Phi16.442Cramer's V.997Contingency Coefficient.998567567ypothesis.andard error assuming the null hypothesis.	ValueApprox. T(b)Phi16.442Cramer's V.997Contingency Coefficient.998567ypothesis.andard error assuming the null hypothesis.

Figure 19: Crosstabs between 4TI6231.PV and C₃

CAB 4614 FINAL YEAR PROJECT II

	Chi-Square	Tests					
	Value df Asymp. Sig. (2-si						
Pearson Chi-Square	153279.000(a)	153408	.592				
Likelihood Ratio	6150.343	153408	1.000				
Linear-by-Linear Association	10.567	1	.001				
McNemar-Bowker Test	1. (1999) -	•	.(b)				
N of Valid Cases	567	ay ada ay at an maa ada a ay ah	n ag an tao an an an an an an an an ann an an an an				

b Computed only for a PxP table, where P must be greater than 1.

Symmetric Measures

	 approximate a provincipal constraint a sectore a a a a a 	Value	Asymp. Std. Error(a)	Approx. T(b)	Approx. Sig.
an an ann an ann ann Ann an t-ann an ann an t-ann an t-	Phi	16.442	aya ya kuta wa kuta kuta kuta kuta kuta kuta kuta kut	alan ar anna 1997 an ann an Anna 1997 an Anna Anna 1997 an Anna 19	.592
Nominal by Nominal	Cramer's V	.997		· · · · · · · · · · · · · · · · · · ·	.592
	Contingency Coefficient	.998	tan soon an an an an an an an an	· · · · · · · · · · · · · · · · · · ·	.592
N of Valid Cases	ana ¹ 12 mana ata a anta ny mananana ata ana ata ana	567	antan matana na tana ani ka na sina ka mana	nen ta manta antina antina antina antina 1 1 1 1 1	ine na contra contra porte 1 1 1 1
a Not assuming the null	hypothesis.			9 8	
b Using the asymptotic a	standard error assumir	ng the null hypo	thesis.	anana ye canananyendike ye nananyyan menany	ananana ya ananana yina ananana ana
c Based on normal appro	oximation.	an an haranan kara	an da ann an dùthac ann da an an ann an Arbhann an air	an antanan karibak ana ang ang ang ang ang ang ang ang ang	anan yang sang sang sang sang sang sang sang s
d Kappa statistics canno variable match the value			ric 2-way table in	which the values of	the first

Figure 20: Crosstabs between 4FY62022.PV and C₃

	Chi-Square	Tests					
	Value	Value df Asymp.					
Pearson Chi-Square	153279.000(a)	153408	.592				
Likelihood Ratio	6150.343	153408	1.000				
Linear-by-Linear Association	.159	1	.690				
McNemar-Bowker Test		•	.(b)				
N of Valid Cases	567	in a second and the opposite of the second secon	n e refer a null a comun a cara a cara na na mang tip paradon a nugl ng tarara.				

b Computed only for a PxP table, where P must be greater than 1.

		Value	Asymp. Std. Error(a)	Approx. T(b)	Approx. Sig.
	Phi	16.442		l	.592
Nominal by Nominal	Cramer's V	.997			.592
	Contingency Coefficient	.998	ingen vergen, anne een genote oor vere		.592
N of Valid Cases	en detano estas no tenen estas en desensita en eleccor	567	an ta ana sa ina na si na anifan any siya any si	aj la aj esta danemente e nala constante a ciu	
a Not assuming the null	hypothesis.				
b Using the asymptotic s	standard error assumir	ig the null hypo	thesis.	na an tha ann an an airte a' tha ann ann an ann ann an ann an an ann an a	anan daga per kanan dahar per ke
e Based on normal appr	oximation.	aan aan ah	na na sana ang sa	n an ann an air ann an an Annaichean an Annaichean ann an Annaichean ann an Annaichean ann an Annaichean ann an	na gala ana na gala i ta
d Kappa statistics canno variable match the value	_		ric 2-way table in	which the values of	the first

Symmetric Measures

Figure 21: Crosstabs between 4TI6009.PV and C₃

Figure 18 - 21 show the crosstabs between 4FC6203.PV, 4TI6231.PV, 4FY62022.PV and 4TI6009.PV with C₃. The first information that can be obtained is the chi-square test. Chi-square is used to test for the significance of relationships between variables cross-classified in a bivariate table. The chi-square test results in a chi-square statistic that tells the degree to which the conditional distributions (the distribution of the

dependent variable across different values of the independent variable) differ from what expected under the assumption of "statistical independence." The reported value of Pearson chi-square is 153279 and it is the same for all the input variables used.

The significance level reported for the Pearson chi-square test is also the same for all the input variables used, which is 0.592. It is listed under 'Asymp. Sig. (2-sided)' heading. The significance level is interpreted as a probability. This probability indicates the extent to which the observed and expected frequencies differ by chance. A value of 0.592 is medium (value of higher than 0.7 is assume high), meaning that it would be expected the observed and expected frequencies to differ as much as they do by chance about 59 times out of 100. This indicates that it is unlikely that these frequencies differ by chance. It might be caused by the relationship between them. This will support the hypothesis that there are strong relationship between the output variables used (4FC6203.PV, 4TI6231.PV, 4FY62022.PV & 4TI6009.PV) and C_3 composition.

4.4.6 One-way Analysis of Variance (ANOVA)

One-way ANOVA tests how much the mean values of a numerical variable differ among the categories of a categorical variable ^[22]. It is called one-way ANOVA because there is only one independent variable.

		ANOVA			سينية مروجي	
		Sum of Squares	df	Mean Square	F	Sig.
,	Between Groups	422.602	:	.749	.985	
C3	Within Groups	1.522	2	.761		
	Total	424.124	566			

Figure 22: One-way ANOVA for C₃

Figure 22 shows the summary of ANOVA table for C_3 . The sum of squares (SS) represents the sum of the squared deviations from the mean. The SS represents the extent to which each values vary from the overall grand mean. The total SS is further divided in between-group and within-group resources. The SS for between groups (442.60) represents the variability of the group means from the overall grand mean, and the SS within groups (1.522) represents the variability of each values from the their group mean.

Mean squares (MS) is the estimate of population variance, computed by dividing SS by df. In this case the MS for between groups is 0.749 while the MS for within groups is 0.761. Both values are quite the same. The MS value for between groups should be larger in order to maximize the variation between groups.

The F ratio is also reported. The F ratio is computed by dividing the MS (between groups) by the MS (within groups). In this case, the reported F ratio is 0.985 with the probability of 0.637. With this probability, the chances of being wrong when rejecting the null hypothesis are about 637 times in 1000, which is very high (null hypothesis = all the groups come from the general population). This means that the null hypothesis must be accepted and it shows that all the groups or variables used come from the general population.

4.4.7 Linear Regression

				Model Sun	nmary(b)						
	-	n	A Jamata J	Std Freer of the	Change Statistics						
Model	R	R Square	Adjusted R Square		R Squar Change		F Change	df1	df2	Sig. F Change	
1	.070(a)	.005	.003	.86430		005	2.753	1	565	.098	
a Predicto	ors: (Const	ant), 4FC	6203.PV	k na sa salasan di manganan kumalika su salama di d				n dan yang baran dan sad	n, gali na kata na kata i	na ana ang siline ang sana ang dia ang	
b Depend	lent Variał	ole: C3	ى رىپىرى ئىيەنىيە ئىسىرىيەت. يەت	adaman di sonata nanata na sinang di karafa d	,			oodi oo dhaar dh		n a successive de la sectión com	
1	.137(a)	.019	.017	.85828	•••••••••••••••••••••••••••••••••••••••	019	10.749	1	565	.001	
3 Predicto	ors: (Const	ant), 4FY	62022.PV	lander of the second	Con mari sComari		Auri	n ann ann an san an san an san	dhaan all namaanaa	in - _{Mala} Posto d _{e d} estrucció	
o Depend	lent Varial	ole: C3			5		di			and a definition of a station of the	
1	.030(a)) .00	1001	.86602		001	.511	1	565	.475	
1 Predicte	ors: (Const	ant), 4TI6	231.PV	fan yn yn ferst anwelen i ner er yn yn arterionen, degeren en are	na haa ahaan		6		,, ,		
o Depend	lent Varial	ole: C3	ی دو دو روان ۲۰۰۰ میکند. ور در در ادوان ۱۹	nanagan ku da an anan na ka sa Mandagan ang Matala da				fasteriet en 1920 feit ende	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Model Su	ummary(b)		, , , , , , , , , , , , , , , , , , ,	in an <mark>tan</mark> a ang pinainana ang panginani na ina ang pan-ana ang			in italian ina a	alan an an tara tara tara sa an a	ng na Arrigan.	a antana jugi sebenanga pera salanta	
L	.017(a)	.000	001	generalise data en	.86629		.000	.159	1	565 .690	
1 Predicte	ors: (Const	tant), 4TI6	5009.PV	la kana ana ang pantina kana ang pang tina kana kana kana kana kana kana kana k	enes,, een monten foeddo -			e na na serie de la companya de la c	••••••		
) Depend	lent Varial	ole: C3	e e chiere e a construction de la construcción de la construcción de la construcción de la construcción de la c	anandradaa ayo maanaadaaanda maana aanaanda maana				en en sentra se sentra en		ada - mpinanalan ayar daaraa m	

			C	oeffic	ients(a)		
Mod el	Unstandardiz ed Coefficients	Standard ized Coefficie nts	t	Sig ·	95% Confidence Interval for B	Correlations	Collinearity Statistics

	В	Std. Error	Beta			Lower Bound	er	-		Pa rt	Tolerance	VIF
(Consta nt)	98.953	.286		345.440	.00 0	98.391	99.5 16					· · · · · · · · · · · · · · · · · · ·
4FC620 3.PV	004	.003	070	-1.659	.09 8	009	.001	070	070	- .07 0	1.000	1.000
ependent Va	riable: C	6	an a	a an an Iongan a channana ann an		inner norðar skýrðar s		la anna a		dan atasah	an a	te e sere e e se se seren
(Consta nt)	99.50 2	.313		317.690	.00 0	98.887	100. 117	2				
4FY620 22.PV	007	.002	137	-3.279	.00 1	011	003	.137	137	.13 7	1.000	1.000
ependent Va	riable: C	3	an a san an a	: 		, 	·		f	1	antan antan an or ar orang ada	
(Consta nt)	97.53 6	2.375	ni a china na contest denem de	41.075	.00. 0	92.872	102. 200				· mm - 1	
4TI6009 .PV	.010	.025	.017	.398	.69 0	039	.058	.017	.017	.01 7	1.000	1.000
ependent Va	riable: C	3	n an						an langa ng ng ng ng ng ting ting ting ting ting	e 1999 e 1999 e 19		
(Consta nt)	99.32 2	1.176		84.455	.00 0	97.012	101. 632				nakanan kina amin' ti mutata a ma	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12
4TI6231 .PV	007	.010	030	715	.47 5	027	.013	- .030	030	.03 0	1.000	1.000
	Image: Application of the system 4FC620 3.PV ependent Var (Constant) 4FY620 22.PV ependent Var (Constant) 4TI6009 .PV ependent Var (Constant) 4TI6003 .PV ependent Var (Constant) 4TI6231	(Consta nt) 98.953 4FC620 3.PV 004 ependent Variable: CI (Consta nt) 99.50 2 4FY620 22.PV 007 4FY620 22.PV 007 4FY620 22.PV 007 ependent Variable: CI (Consta nt) 97.53 6 4TI6009 .PV .010 ependent Variable: CI (Consta nt) 99.32 2 4TI6231 007	B Error (Consta nt) 98.953 .286 4FC620 3.PV 004 .003 ependent Variable: C3 .003 .003 (Consta nt) 99.50 2 .313 4FY620 22.PV 007 .002 ependent Variable: C3 .003 (Consta nt) 97.50 6 .313 4FY620 22.PV 007 .002 ependent Variable: C3 .003 (Consta PV 97.53 6 2.375 (Consta PV .010 .025 ependent Variable: C3 .010 .025 (Consta nt) 99.32 2 1.176 4TI6231 4TI6231 .007 .010	B Std. Error (Consta nt) 98.953 .286 4FC620 3.PV 004 .003 070 ependent Variable: C3 .003 070 (Consta nt) 99.50 2 .313 .313 4FY620 22.PV 007 .002 137 ependent Variable: C3 .003 .137 (Consta nt) 97.53 6 2.375 (Consta nt) .010 .025 .017 ependent Variable: C3 .010 .025 .017 (Consta nt) 99.32 2 1.176 .176	BStd. Error(Consta nt)98.953.286345.4404FC620 3.PV004.003070-1.659ependent Variable: C3(Consta 99.50 299.50 2.313317.6904FY620 2.PV007.002137-3.279ependent Variable: C3(Consta 97.53 697.53 2.37541.075(Consta nt)97.53 62.37541.075 $4T16009$.PV.010.025.017.398ependent Variable: C3(Consta 99.32 299.32 1.1761.17684.455	BStd. Error(Consta nt)98.953.286 345.440 00 04FC620 3.PV004.003070 -1.659 09 8ependent Variable: C3(Consta nt)99.50 2.313 317.690 00 04FY620 2.PV007.002 0.02137 -3.279 00 1ependent Variable: C3(Consta pendent Variable: C397.53 62.375 41.075 00 0ependent Variable: C3(Consta pendent Variable: C397.53 62.375 41.075 00 0ependent Variable: C30.10.025.017.398 69 0ependent Variable: C321.176 84.455 00 0	B Std. Error Lower Lower Bound (Consta nt) 98.953 .286 345.440 $\stackrel{00}{_0}$ 98.391 4FC620 3.PV 004 .003 070 -1.659 $\stackrel{09}{_8}$ 009 ependent Variable: C3 (Consta nt) 99.50 .313 317.690 $\stackrel{00}{_0}$ 98.887 4FY620 22.PV 007 .002 137 -3.279 $\stackrel{00}{_1}$ 011 ependent Variable: C3 (Consta nt) 97.53 6 2.375 41.075 $\stackrel{00}{_0}$ 92.872 4TI6009 PV .010 .025 .017 .398 $\stackrel{69}{_0}$ 039 ependent Variable: C3 (Consta nt) 99.32 1.176 84.455 $\stackrel{00}{_0}$ 97.012	BStd. ErrorBetaLower Bounder Bound(Consta nt)98.953.286 345.440 $\stackrel{00}{_0}$ 98.39199.5 164FC620 3.PV004.003070 -1.659 $\stackrel{09}{_8}$ 009 .001ependent Variable: C3(Consta 299.50 2.313 317.690 $\stackrel{00}{_0}$ 98.887100. 1174FY620 22.PV007.002 137 -3.279 $\stackrel{00}{_1}$ 011 003ependent Variable: C3(Consta 297.53 62.375 41.075 $\stackrel{00}{_0}$ 92.872102. 200ependent Variable: C30.010.025.017.398 $\stackrel{69}{_0}$ 039.058ependent Variable: C3(Consta 299.321.17684.455 $\stackrel{00}{_0}$ 97.012101. 632	BStd. ErrorLower Bounder Bou nd- orde r(Consta nt)98.953.286 345.440 .00 0 98.391 99.5 164FC620 3.PV004.003070 -1.659 $.09$ 8 009 .001 070 ependent Varible: C3Consta nt) 99.50 2.313 317.690 $.00$ 0 98.887 $100.$ 1174FY620 	B Std. Error Beta Lower Bound er Bound nd - orde r Parti al (Consta nt) 98.953 .286 345.440 .00 98.391 99.5 16 . 4FC620 3.PV 004 .003 070 -1.659 .09 8 009 .001 070 070 epuendent Variable: C3 .002 137 317.690 .00 0 98.887 100. 117 . 4FY620 22.PV 007 .002 137 -3.279 .00 1 011 003 .137 137 4FY620 22.PV 007 .002 137 -3.279 .00 1 011 .003 .137 137 epuendent Variable: C3 41.075 .00 0 92.872 102. 200 .017 .017 epuendent Variable: C3 .010 .025 .017 .398 .69 0 .039 .058 .017 .017 epuendent Variable: C3 .010 .025 .017 .398 .00 0 .058 .0	B Std. Error Beta Lower Bound Cower Bound nd cr bound r - Bound nd - parti r Pa rt (Consta nt) 98.953 .286 345.440 .00 98.391 99.5 16 -<	B Std. Error beta Error Lower Error $\frac{1}{800}$ $\frac{1}{90}$ $\frac{1}{90}$ $\frac{1}{91}$ Pa al Tolerance (Consta nt) 98.953 .286 345.440 $\frac{00}{0}$ 98.391 $\frac{95.5}{16}$. .

Figure 23: Summarize of Linear Regression between C₃ and the Main Variables (4FC6203.PV, 4FY62022.PV, 4TI6009.PV & 4TI6231.PV)

Linear regression is used to make predictions based on a linear relationship between the dependent and independent variables ^[23]. These predictions are made using an equation to estimate a line that best fits the relationship. The linear relationship has been discussed earlier in *Section 4.4.3 Correlation*. Here, the discussion is mainly on the regression equation that can be extracted from the results obtained in SPSS.

- a) $C_3 = -0.004(4FC6203.PV) + 98.953$
- b) $C_3 = -0.007(4FY62022.PV) + 99.502$
- c) $C_3 = 0.010(4TI6009.PV) + 97.536$
- d) $C_3 = -0.007(4TI6231.PV) + 99.332$

Shown above are the regression equation that describes the relationship between C_3 composition and the main variables that will most probably affect it. It can be seen

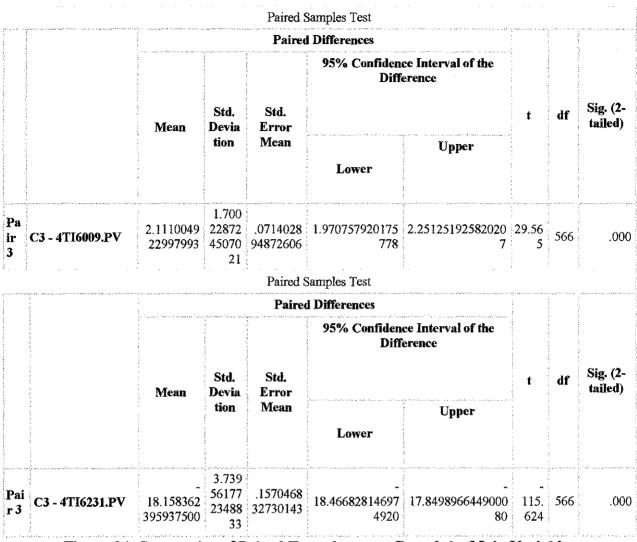


Figure 24: Summarize of Paired T-test between C₃ and the Main Variables (4FC6203.PV, 4FY62022.PV, 4TI6009.PV & 4TI6231.PV)

For each test, a t-value, degrees of freedom (df) and a 2-tailed significance is reported. For each test, the df reported is 566 because each test is based on a sample of 567 data. The lowest t-value (t = -115.624) is given by the pair C₃-4TI6231.PV, while the highest t-value (t = 29.565) is given by the pair C₃- 4TI6009.PV. In all four pairs, the reported 2-tailed significance is 0.000. This means that these results will be expected less than 1 time in 1000 (p < 0.001) if the null hypothesis is true.

Because the probability of these results occurring is very low, the null hypothesis is rejected for each test. This indicates that the two population means are not equal and this is true because for each test, both variables are very different although they have strong relationship. The independent and dependent variables will have different population means.

CHAPTER 5 : CONCLUSION & RECOMMENDATION

This project "Statistical Process Control on the Depropanizer Column at Petronas Gas Berhad, Kerteh" has been completed fulfilling the requirement of CAB 4614 : Final Year Project II.

Simulation using SPSS software has been completed which includes:

- a) Descriptive Statistics e) Crosstabs
- b) Histograms f) One Way Anova
- c) Correlations g) Paired T-test
- d) Scatter Plots h) Linear Regressions

And analysis has been done for the results obtained from SPSS, focusing on the critical components inside the overhead product composition which is C_3 and some input data that will most probably affect the overhead product composition:

- a) Reflux flow (4FC6203.PV)
- b) Energy input inside the column (4TI6231.PV)
- c) Feed conditions (4FY62022.PV, 4TI6009.PV)

Before analyzing the relationships between the input and output variables, a check within and between the variables have been done in order to ensure that the two years data used come from a general population mean and to know whether they follow a normal distribution or not. The check was being done using:

- a) Descriptive Statistics
- b) Histograms
- c) Paired T-test
- d) One Way Anova

It is proven that these four main input variables have a very strong relationship with C_3 composition inside the overhead product. Increasing or decreasing their values will give a great impact to the C_3 composition. The relationship has been analyzed through these analyses:

- a) Histograms e) Linear Regressions
- b) Correlations
- c) Scatter Plots
- d) Crosstabs

As the samples proved to come from a general population mean, an optimum operating condition could be produced from the average data, in order to maintain C_3 composition within the desired value (98.48 mole%):

Input variables	Description	Optimum operating conditions suggested				
4FC6203.PV	Reflux flow	112.96 m ³ /hr				
4TI6231.PV	Energy input inside the column / Reboiler temperature	116.03 °C				
4FY62022.PV	Feed flowrate	143.36 m ³ /hr				
4T16009.PV	Feed temperature	95.81 °C				

Table 9: Optimum Operating Conditions Suggested

However, these optimum operating conditions suggested must be checked again so that it will not violate the design operating conditions.

REFERENCES

- McCabe, W.L., Smith, J.C. & Harriot, P. 2005. "Unit Operations of Chemical Engineering", Singapore, McGraw Hill.
- 2) Geankoplis, C.J. 2003. "Transport *Processes and Separation Process Principles* (*Includes Unit Operation*)", United States of America, Pearson Prentice Hall.
- 3) Petronas Gas Berhad. "Operation and Maintenance Manual, Peninsular Gas Utilisation Project Stage II, System 2 (Volume I)".
- 4) Kunlun Hu & Jingqi Yuan, 2007, "Multivariate statistical process control based on multiway locality preserving projections".
- 5) Smeti, E.M., Thanasoulias, N.C., Kousouris, L.P. & Tzoumerkas, P.C., 2007, "An approach for the application of statistical process control techniques for quality improvement of treated water".
- AlGhazzawi, A. & Lennox, B., 2006. "Monitoring a complex refining process using multivariate statistics", Control Systems Group, The University of Manchester, UK
- 7) Min Woo Lee, Sung Hun Hong, Hyeoksun Choi, Ji-Hoon Kim, Dae Sung Lee & Jong Moon Park, 2008, "Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors".
- 8) Robinson, S., 2005, "A statistical process control approach to selecting a warm-up period for a discrete-event simulation".
- 9) Cook, D.F., Zobel, C.W. & Wolfe, M.L., 2005, "Environmental statistical process controls using an augmented neural network classification approach".
- Jacqueline I. Kroschwitz & Arza Seidel (2004). Kirk-Othmer Encyclopedia of Chemical Technology, 5th Edition, Hoboken, NJ: Wiley-Interscience. ISBN 0-471-48810-0.
- 11) Kister, Henry Z. (1992). "Distillation Design", 1st Edition, McGraw-Hill. ISBN 0-07-034909-6.
- 12) King, C.J. (1980). "Separation Processes". McGraw Hill. 0-07-034612-7.

- 13) Perry, Robert H. & Green, Don W. (1984). "Perry's Chemical Engineers' Handbook", 6th Edition, McGraw-Hill. ISBN 0-07-049479-7.
- 14) Beychok, Milton (May 1951). "Algebraic Solution of McCabe-Thiele Diagram". Chemical Engineering Progress.
- 15) Seader, J. D. & Henley, Ernest J. (1998). "Separation Process Principles". New York: Wiley. ISBN 0-471-58626-9.
- 16) Moore, F., Rukovena, F., "Random Packing, Vapor and Liquid Distribution: Liquid and gas distribution in commercial packed towers, Chemical Plants & Processing", Edition Europe, August 1987, p. 11-15.
- 17) Spiegel, L., "Structured Packing, Liquid Distribution: A new method to assess liquid distributor quality, Chemical Engineering and Processing 45", 2006, p. 1011-1017.
- 18) Kunesh, J. G., Lahm, L., Yanagi, T., "Packed Tower Distributors: Commercial Scale Experiments That Provide Insight on Packed Tower Distributors", Ind. Eng. Chem. Res., 1987, vol. 26, p. 1845-1850
- 19) Gary, J.H. & Handwerk, G.E. (1984). "Petroleum Refining Technology and Economics", Second Edition, Marcel Dekker, Inc. ISBN 0-8247-7150-8.
- 20) Nelson, W.L. (1958). "Petroleum Refinery Engineering", Fourth Edition, McGraw Hill. LCCN 57010913.
- 21) Shannon, D.M. & Davenport, M.A. 2001. "Using SPSS to Solve Statistical Problems (A Self Instruction Guide)", New Jersey, Merrill Prentice Hall.
- 22) Sweet, S.A. & Martin, K.G. 2003. "Data Analysis with SPSS, A First Course in Applied Statistics", Second Edition, USA, Pearson Education, Inc.
- 23) Field, A. 2000. "Discovering Statistics using SPSS for Windows", Great Britain, SAGE Publications Ltd.
- 24) Norusis, M.J. 2000. "SPSS 10.0 Guide to Data Analysis", New Jersey, Prentice Hall, Inc.
- 25) Corston, R. & Colman, A. 2003. "A Crash Course in SPSS", Second Edition, Australia, Blackwell Publishing.
- 26) Foster, J.J. 2001. "Data Analysis using SPSS for Windows Version 8 to 10, A Beginner's Guide", Great Britain, SAGE Publications Ltd.

- 27) http://www.naturalgas.org
- 28) http://www.epa.gov
- 29) http://en.wikipedia.org
- 30) http://primis.phmsa.dot.gov
- 31) http://www.eia.doe.gov
- 32) http://www.controlguru.com
- 33) http://www.patentstorm.us

APPENDICES

- APPENDIX A FYP2 Gantt Chart
- APPENDIX B Samples of the Data obtained
- APPENDIX C Graphs for each Variables/Tag Number
 - ~ Appendix C.1 : Composition
 - ~ Appendix C.2 : Flow Variables
 - ~ Appendix C.3 : Temperature Variables
 - ~ Appendix C.4 : Pressure Variables
 - ~ Appendix C.5 : Level Variables
- APPENDIX D Letter Requesting Permission to Visit PGB, Kerteh
- APPENDIX E SPSS RESULTS
 - ~ Appendix E.1 : Histograms
 - ~ Appendix E.2 : Scatter Plots
 - ~ Appendix E.3 : One Sample T-test
 - ~ Appendix E.4 : Factorial Anova
 - ~ Appendix E.5 : Compare Means
 - ~ Appendix E6 : Reliability Analysis

APPENDIX A – FYP2 Gantt Chart

FYP2 Gantt Chart

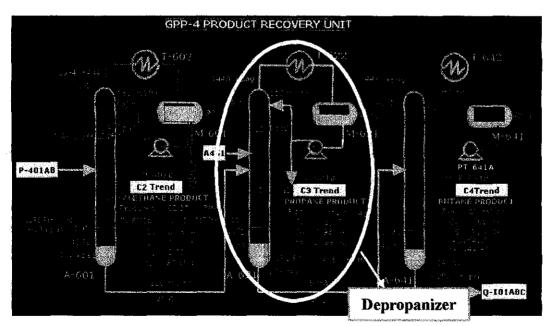
No.	Detail/ Week	1	2	3	4	5	6	7		8	9	10	11	12	13	14
1	Project Work Continue															
2	Submission of Progress Report 1															
3	Project Work Continue															
4	Submission of Progress Report 2	<u> </u>														
5	Seminar (compulsory)								 					·····		
5	Project work continue	-														
6	Poster Exhibition															
7	Submission of Dissertation (soft bound)															
8	Oral Presentation															
9	Submission of Project Dissertation (Hard				<u> </u>		<u> </u>					<u> </u>				

Suggested milestone Process

APPENDIX B - Samples of the Data obtained

«.¹

			신영상 영상은 것	이 같은 아파			en e			있는 정말 것		14 Sec. 1
D6 🗧	∱ 152.692718	505859	<u>. 1997 - 1997 - 1997 - 1997 -</u>	<u> </u>	<u></u>	11.1.1.1.1.1.1.1	fund de	t des the base	i segni e	99404 PA 4	ng segrad	an a she
C	D	E	F	G	H		J	K	S Los	M	N	C
	M3-8	1.89 U	DEGC	DECO		VDAG						
	TOTAL	M17 LI	DEGC	DEGC	KPAG	KPAG	DEC C	M3 H	PCT		M3:HR	M3:H
la l	DEPROPARZER	A401 BTM TO			A421		A2 621	A2 621 TO			DEPROPANIZER	DEPROP
	FEED	A021				A421 OVHD	BOTTOM		A621	· · ·	REFLUX	REF
	#V62022.PV	#C6042.PV		an dia sa internet en	The second se	PC6202.PV		and a set of the set of the	and the first sector of	mail a Gran and a		-1FC 62
01 Nov 07 00:00:00											106.3721085	
01-Nov-07 01:00:00	se contra e se se l'all'all' à a	136.092133	95.3352356								118.2884903	
01-Nov-07 02:00:00			94.9005585 95.4891663	45.22388		1444.95642					122.0334625	
) D1-Nov-07 D4:00:00		135.14502				1445.00007						117.1
01-Nov-07 05:00:00	· · · · · · · · · · · · · · · · · · ·	135.166077	95.2738647			1444.88135					107.0106001	
01-Nov-D7 06:00:00		136.167923	94.3844757	45.2792							121.7437744	
01-Nev-07 07:00:00	en la Tres e construir de la c										112,9181976	
01-Nov-07-08:00:00	154.0132446		95.5653305			1444,94482					138,790863	
01-Nov-07 09:00:00	150.0091754	129.988708	97.663475	44.83835	1445	1445.06104	122.2769	40.66962	55.892342	56.923824	138.8748627	139.9
01-Nov-07 10:00:00	149.146347	128.491608	98.4425507	44.88677	1445.211	1444.95007	120.5856	40.92438	55.379223	55.361156	132.150528	131.9
01-Nav-07 11:00:00	154.4525757	135.077118	96.66B129	44 83747	1445.077	1445.2207	118.5751	46.02605	56.455734	56.477798	121.2039948	121.4
1 01-Nov-07 12:00:00	the second s	on an electronic service and	95.5276947			1445.45251	19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second		a second seco	137.6242676	
01-Nov-07 13:00:00			94.9272766			1447.27148		45.71428		62.716686	117.092186	
01-Nov-07 14:00:00		138.358408				1448.39026		50.50385		60.855966	126.1557688	
01-Nov-07 15:00:00		128.245987	96.51898961 DE 4355007			1447.55006				58.202587	128.064198 112 9255985	
01-Nov-07 16:00:00	· · · · · · · · · · · · · · · · · · ·	128.614029	96.4355087 96.0068436		enserveren in addie	1445.74292					105.0942154	
61-Nov-07 18:00:00	149.4823303		93.4569702					1			103.0342154	
01-Nov-07 19:00:00	145.0749207		93.4642639	45.2717		· · · · · · · · · · · · · · · · · · ·		1000 100		10111	115,4829102	
D1-Nov-07 20:00:00		131,333099				1453.99829					120.360043	
01-Nov-07 21:00:00	·	122.216232	98.9949417			1452,53809					126,4035568	
01-Nov-07 22:00:00	142.6994934	129.275299	97 8942947	45.09514	1452.671	1452.65015	126.6496	33.28025	70.00621	69.999321	116.4609604	116
01-Nov-07 23:00:00	108.0300369	100.626503	96.8702316	45.2365	1453.753	1453.55994	125.6904	62.11195	57.514151	57.60062	110.0555725	110
02-Nov-07 00:00:00	149.0470501	138.450668	94.7595291	45.11971	1454.681	1454.84241	118,1186	59.50872	43.342602	43.344265	110.6259354	110.9
	149.0470561 17 / Apr07 / Ma							59.50872	43.342602	43.344265	110.6259354	: 11

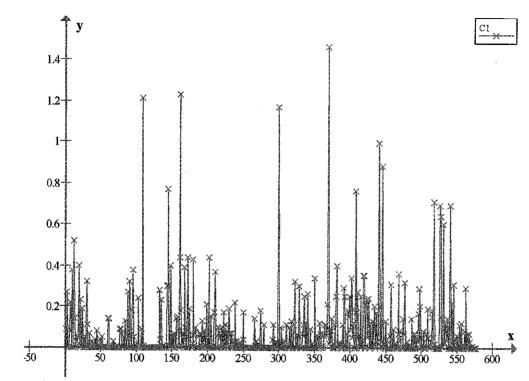

Sample of Calculated Data Surrounding the Depropanizer Column

· · ·		P I-DIC al	Dol/CCL4	. 81/01/200	S S OO am"	"08/05/000		"1 h" "ovor	one" 1 1 1	nahannaain	ne "]]		- 1	
ч.:.	C5. €	C C		E	E	G	H		- 1 - 1	K	i Le	M	() N	0
si.		- Moie	*• Mole	•, Mole	*- Mole	• Mole	* Mole	Kg L	• Mole	. Mole	* Male	*+ Mole	*• Mole	Kg L Provane
		Propane - Methase	Propane - Ethane	Propiane - Propiane	Propane - Methane	Propane - Ethane	Propane - Propane	Propane Density S :15 C	Propano - Neo- Pentane	Butane	Pentane	n-Butane		Denoity 15 C
	• • • • • • • •			SP #601C3								CSP46601CII		
	01-Jan 06 06:00.00													
	31-Jan-08 07:00:00													
	11-Jan-06 08:00:00						98.25						U D	
	01-Jan-06 09:00:00 11-Jan-06 10:00:00				0.02		98.26		- č					
	11-Jan-06 11:00:00			96.05	0.02		98.26							
	11-Jan-06 12:00:00				0.02		9B.26		····	1992 A. 1997 A. 1997			Ö	
	01. Jan 06 13:00:00						98.25					0.1		
	01-Jan-05 14:00:00			96.05	0.02				Ē		i i	0.1	·	
	01-Jan-06 15:00:00			96.05			98.26			0.75	: C) 0.1	Ō	0.6
	11lan-06 16:00:00		0.2	98.61	0.05	0.08	98.91	0.507	с с	0.9	. ε	0,04	្រាល	0.5
	01-Jan-06 17:00:00	0.01	0.2		0.06									
7 1	01-Jan-06 18:00:00	0.01												
	01-Jan-06 19:00:00		0.2											
	01-Jan-06 20:00:00		0.2											
	01-Jan-86 21:00:00		0.2											
	01-Jan-06 22:00:00												0 . n	
	31 Jan 08 23 00:00		0.2		0.06									
	B2-Jan-06 00:00:00													
	02-Jan-06 01:00:00 02-Jan-06 02:00:00											3 0.04		
	02-Jan-06 02:00:00													
	02-Jan-06 04:00:00													
	02-Jan-06 05:00:00				0.05									
	02-Jan-06 06:00:00		0.2		0.06					0.9		0.04		
9				98.61						1 09	e a company de la company	o'∷"n.04		0.6

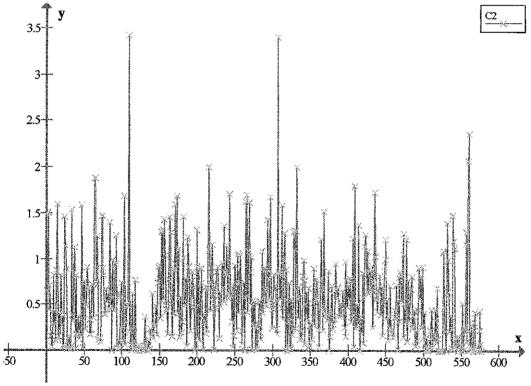

Sample of Data on Composition of Overhead Product at the Depropanizer Column

Tag Name	Description	Unit
4FY62022.PV	TOTAL DEPROPANIZER FEED	M3/H
4FC6002.PV	A601 BTM TO A621	M3/H
4FI6202.PV	A 621 TO A 641	M3/H
4FC6203.SP	4FC6203.SP DEPROPANIZER REFLUX	
4FC6203.PV	DEPROPANIZER REFLUX	M3/H
4TI6009.PV	A601 BTM	DEGC
4TI6204.PV	A621 OVHD	DEGC
4TI6205.PV	A 621 BOTTOM	DEG C
4TC6231.SP	T621 TO A621	DEG C
4TC6231.PV	T621 TO A621	DEGC
4TI6231.PV	T621 TO A621	DEGC
4TI6214.PV	A621 TRAY 5	DEGC
4TI6213.PV	A621 TRAY 13	DEGC
4TI6202.PV	A621 TRAY 39	DEGC
4TI6203.PV	A621 TRAY 44	DEGC
4PC6202.SP	A621 OVERHEAD	KPAG
4PC6202.PV	A621 OVHD	KPAG
4LC6201.PV	A621	PCT
4LT6201.PV	A622	PCT

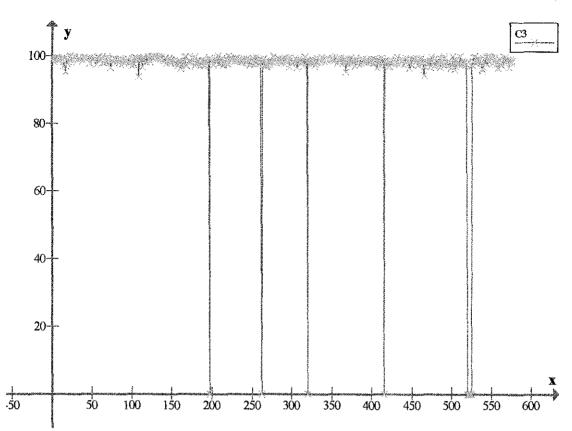
Tag Name and the Descriptions Surrounding the Depropanizer Column



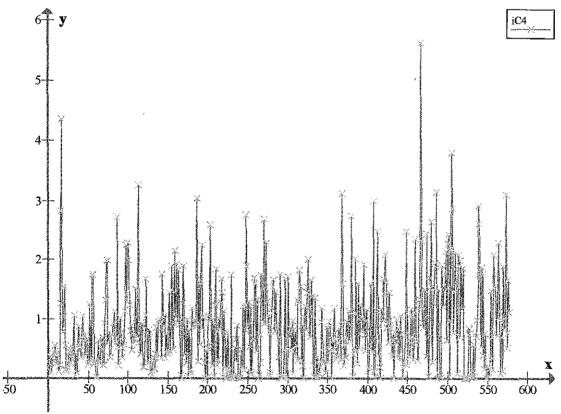
Flow Sheet for the Product Recovery Unit

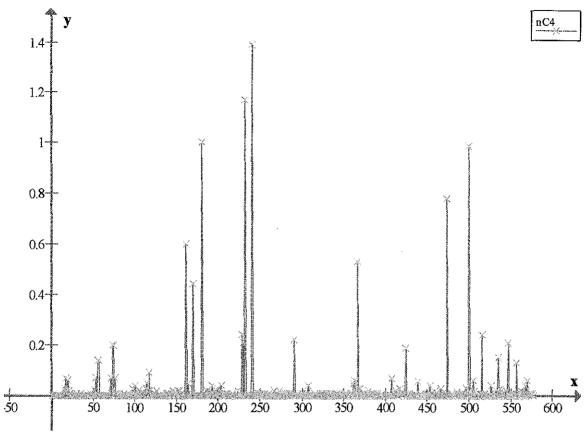

Flow Sheet for the Depropanizer Column

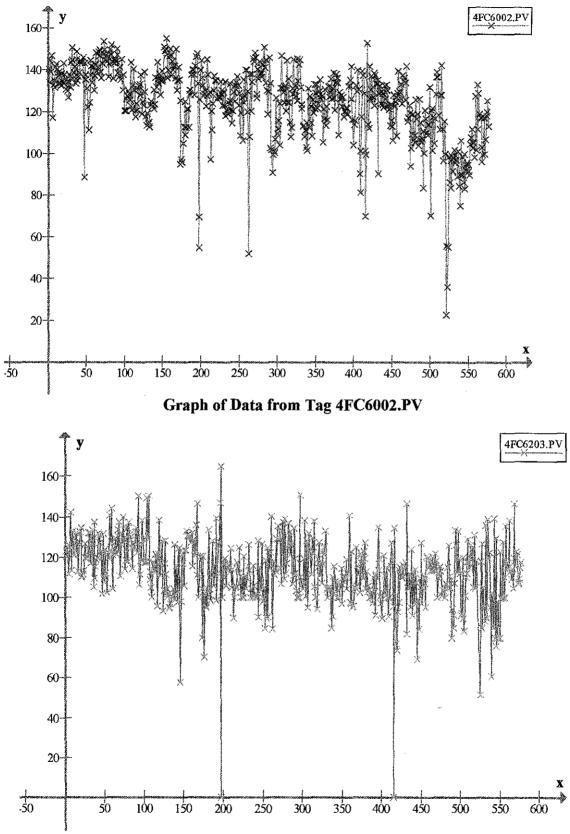
APPENDIX C – Graphs for each Variables/Tag Number



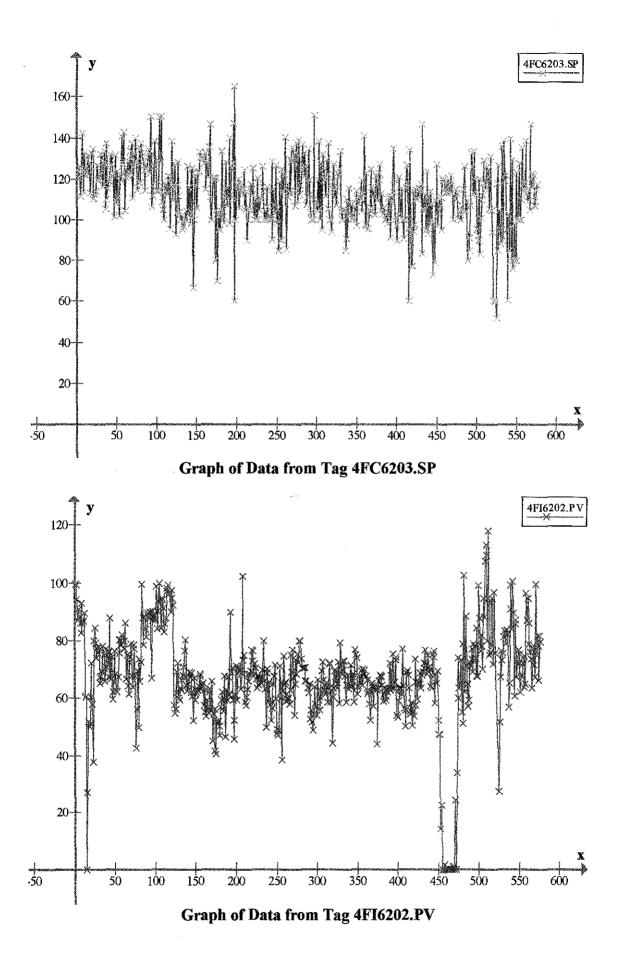
Appendix C.1 : Composition

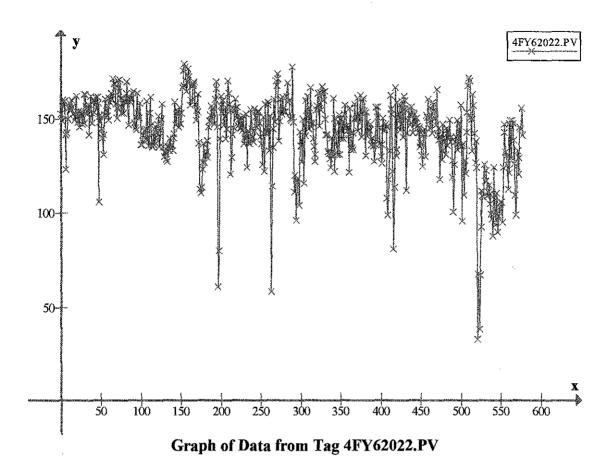



Graph of C₂ Composition at the Overhead Product of Depropanizer

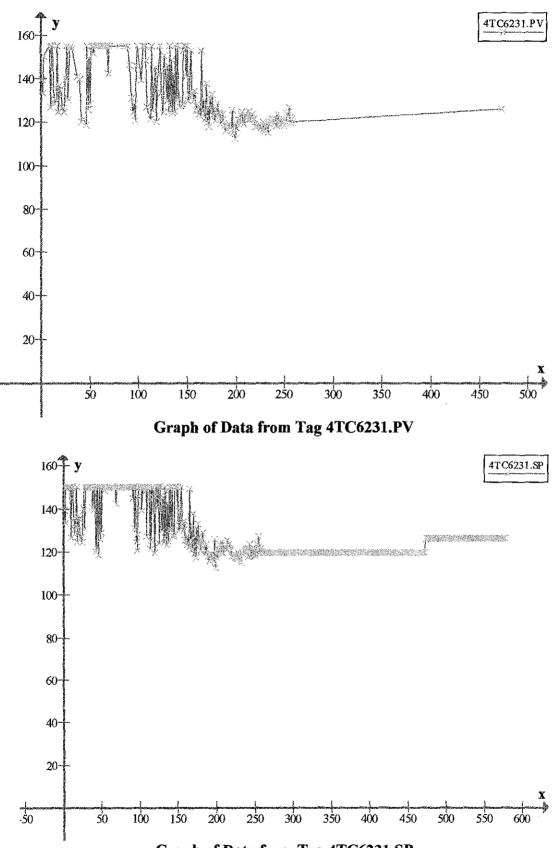


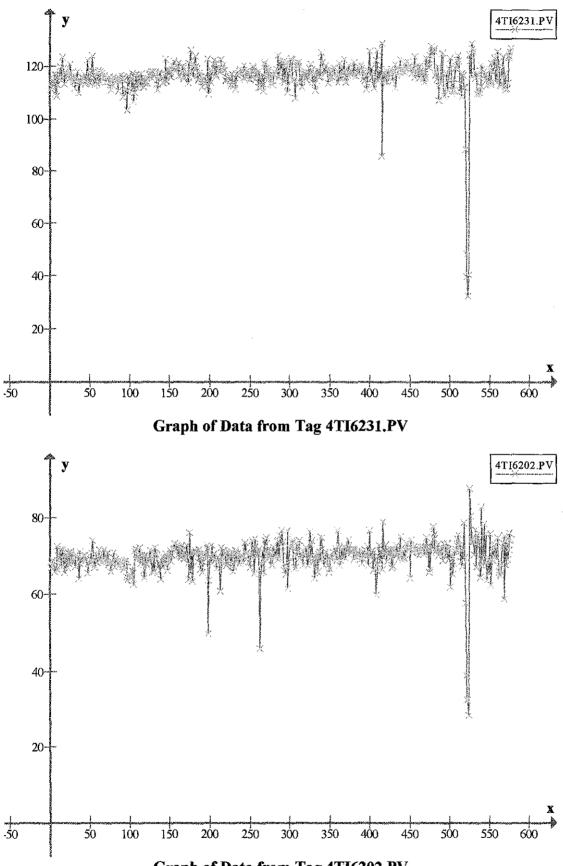
Graph of iC4 Composition at the Overhead Product of Depropanizer

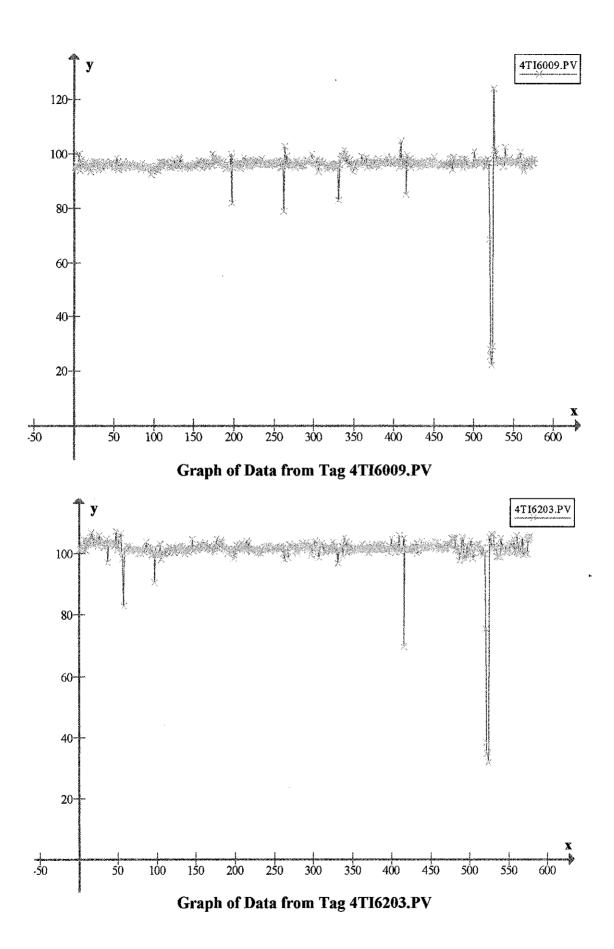


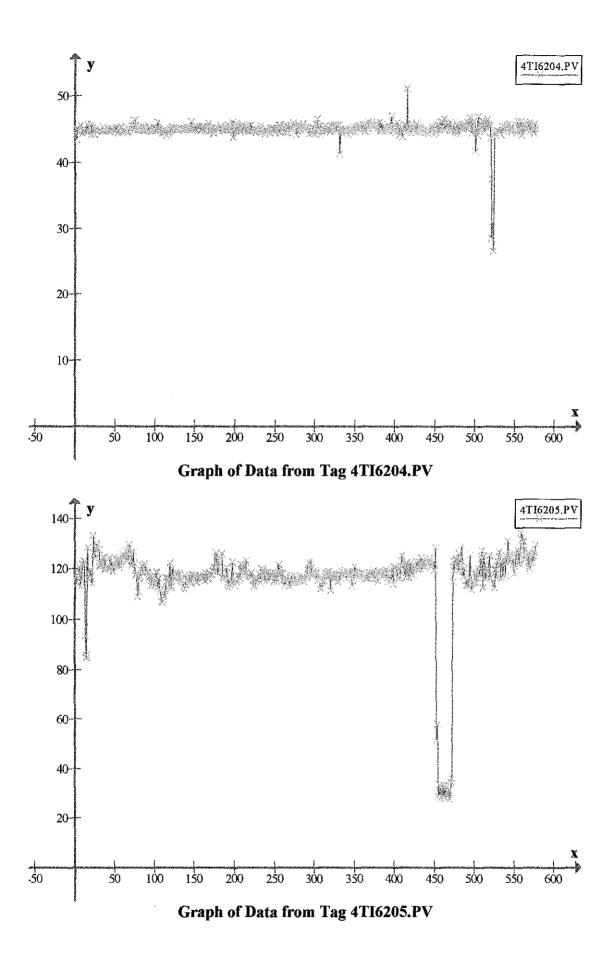


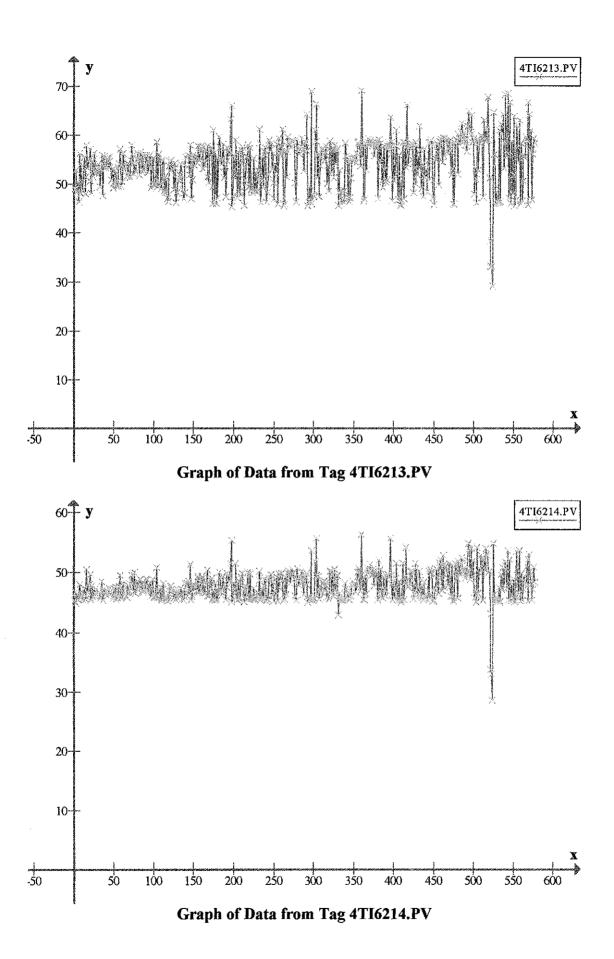
Appendix C.2 : Flow Variables

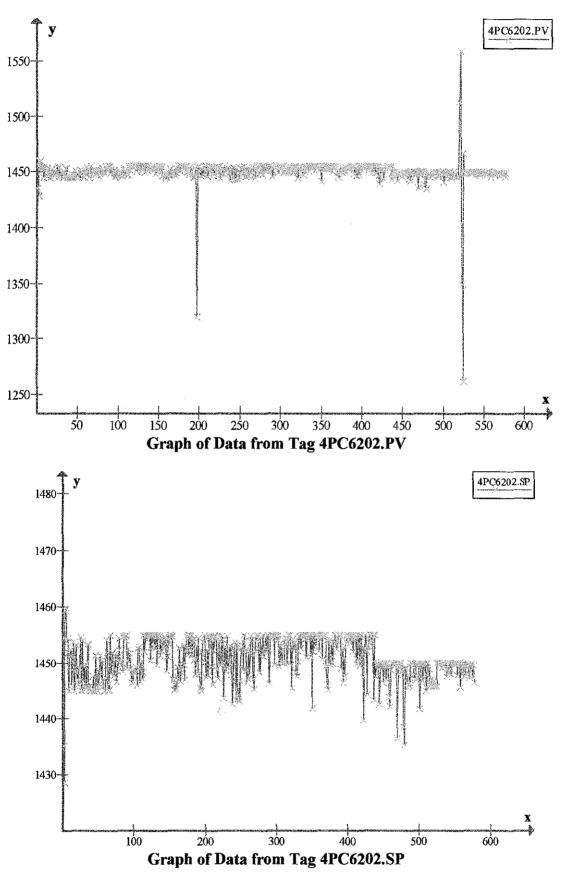


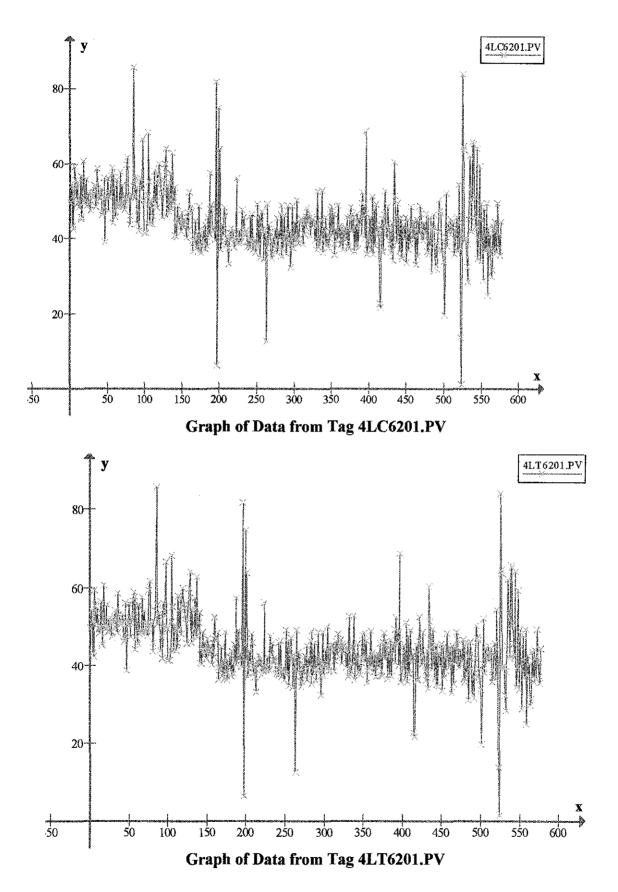



Appendix C.3 : Temperature Variables








î

APPENDIX D - Letter Requesting Permission to Visit PGB, Kerteh

To: Mrs. Normala Bt Suliman,

Plant Operation Department, Petronas Gas Bhd, 24300 Kerteh, Kemaman, Terengganu.

Through: Mr. Nasser Bin M Ramli Department of Chemical Engineering , University Technology PETRONAS, Bandar Seri Iskandar, 31750 Tronoh PERAK

Dear Madam,

Request for Depropanizer Column Data for UTP, FYP.

In regard to the subject above, I am writing this letter to request for permission to come to PGB on the 27th and 28th of August 2008 to obtain data on Depropanizer column for my final year project, "Statistical Process Control for Depropanizer Column at PGB, Kerteh".

- 2. The following are my request:
 - a. Calculated data surrounding the depropanizer column which include all the tag name
 - b. Tag name and description
 - c. Description of the depropanizer column

d. Flow sheet for the column showing all the tag name surrounding the column.

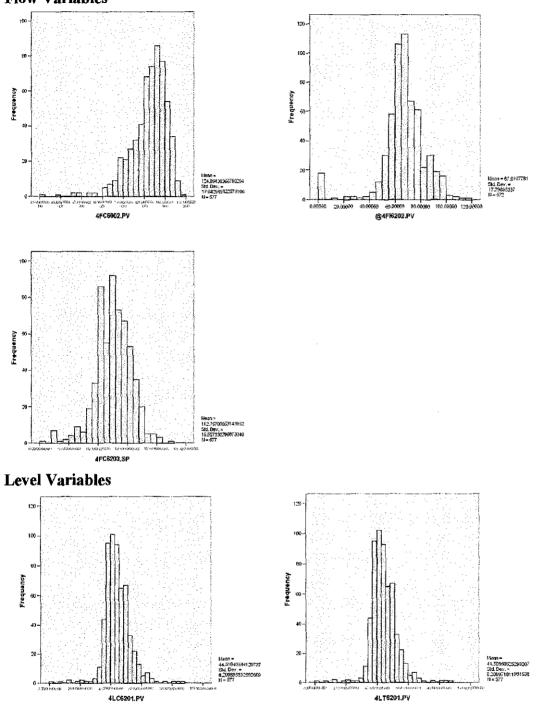
I would like to request for the data from month of January 2006 until July 2008.

Your cooperation in this matter is highly appreciated. Thank you for your commitment and support.

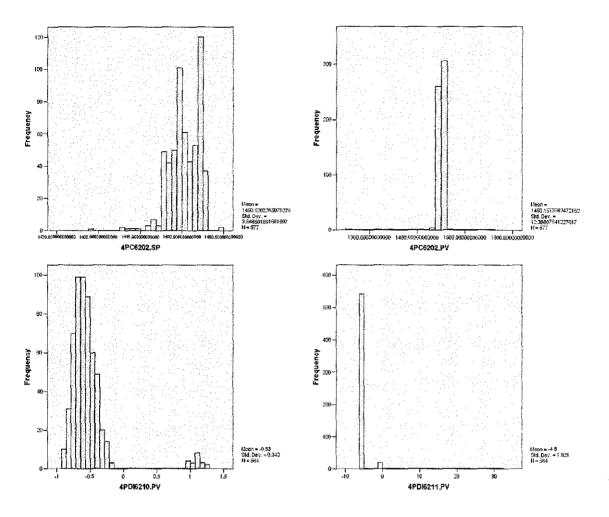
Thank you,

Yours truly,

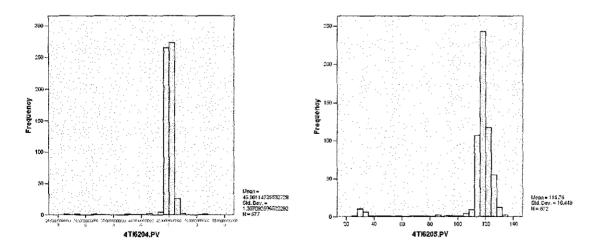
Siti Fariza Bt Ahmad

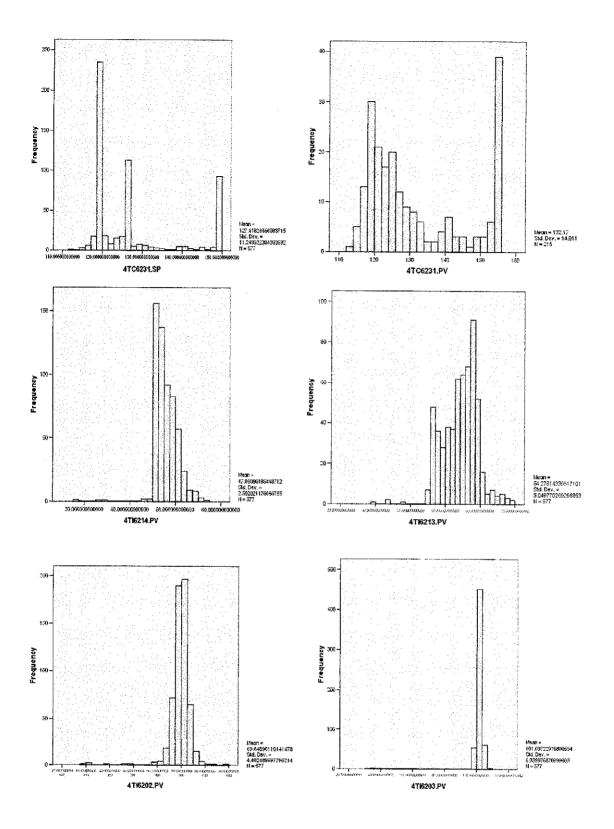

Chemical Engineering Student, University Technology PETRONAS.

Verified By:

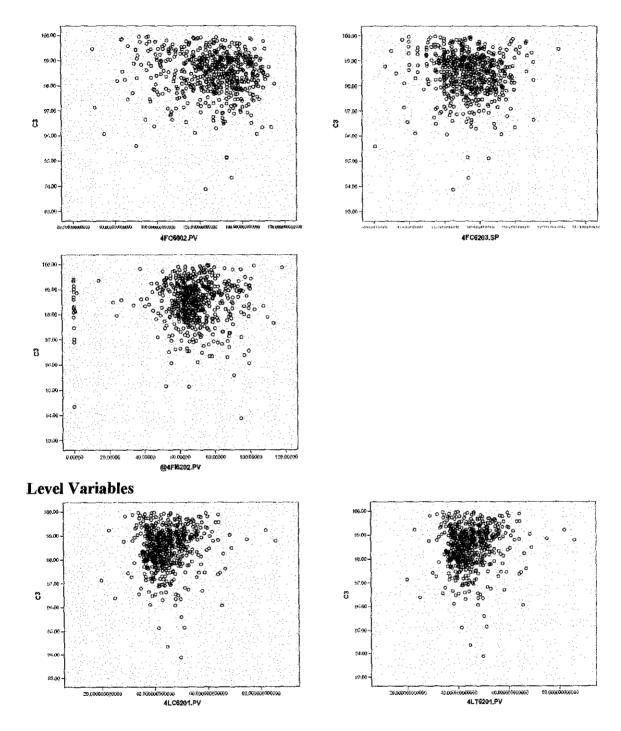

Mr. Nasser Bin M Ramli Department Of Chemical Engineering, University Technology PETRONAS

.....

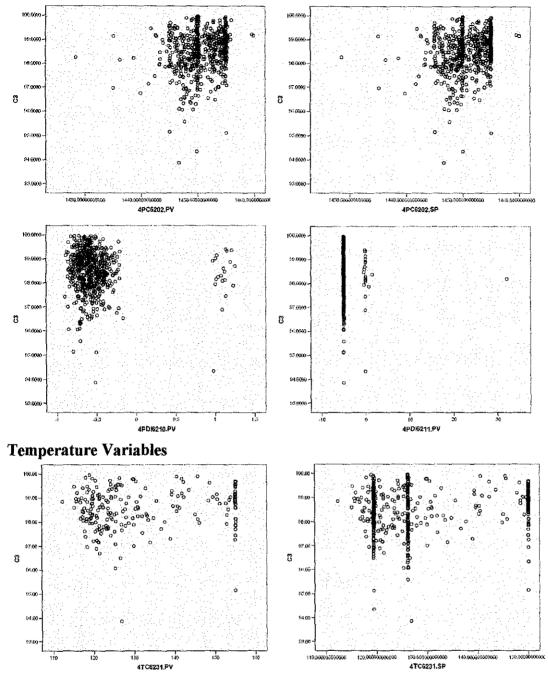

APPENDIX E Appendix E.1 : Histograms Flow Variables

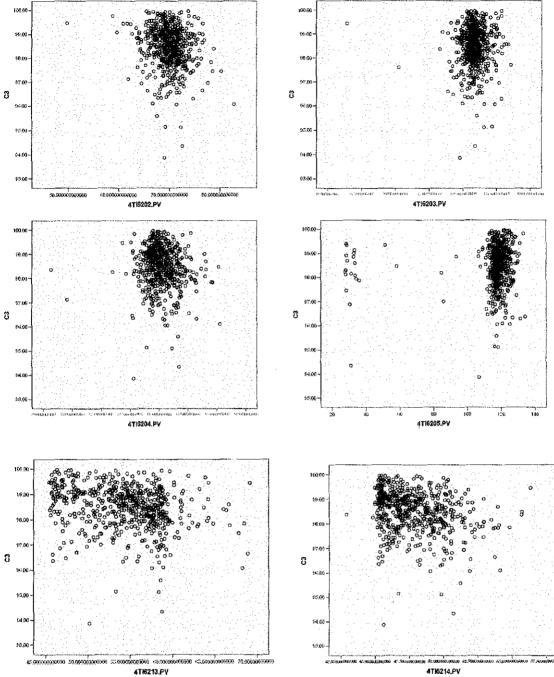


Pressure Variables



Temperature Variables





<u>Appendix E.2 : Scatter Plots</u> Flow Variables

Pressure Variables

4T16214.PV

<u>Appendix E.3 : One Sample T-test</u> Flow Variables

				One-Sample Test		
		e nerge fo de recours	e	Test Valı	ue = 0	yn annenenn wy y gygerrinnenen er yng y wran wr y gyng gyng anne a
		t df [!]		Mean Difference	95% Confidence Inte	erval of the Difference
	L	u.	tailed)	Mean Difference	Lower	Upper
C1	10.921	569	.000	.07909	.0649	.0933
C2	27.047	569	.000	.54989	.5100	.5898
C3	2650.851	569	.000	98.47649	98.4035	98.5495
iC4	27.896	569	.000	.87795	.8161	.9398
nC4	4.743	568	.000	.025	.01	.04
4FY62022.PV	178.706	576	.000	143.358957155118600	141.78335414816610	144.93456016207100
4FC6002.PV	169.989	576	.000	124.854363667902900	123.41176412203690	126.29696321376900
@4F16202.PV	90.061	571	.000	67.01677809	65.5552160	68.4783402
4FC6203.SP	174.099	576	.000	112.757000531439500	111.48493706199840	114.02906400088060
4FC6203.PV	167.243	572	.000	112.956	111.63	114.28

Level Variables

				One-Sample Test					
n an fallen en en en anna en en fallen en e		Test Value = 0							
	t	df	Sig. (2-	Mean Difference	95% Confidence Diffe				
			tailed)		Lower	Upper			
C1	10.921	569	.000	.07909	.0649	.0933			
C2	27.047	569	.000	.54989	.5100	.5898			
C3	2650.851	569	.000	98.47649	98.4035	98.5495			
iC4	27.896	569	.000	.87795	.8161	.9398			
nC4	4.743	568	.000	.025	.01	.04			
4LC6201.PV	130.230	576	.000	44.510405441297400	43.83911361998286	45.18169726261190			
4LT6201.PV	130.241	576	.000	44.508605252932010	43.83739716677656	45.17981333908740			

Pressure Variables

				One-Sample Test					
				Test Val	ue = 0				
		df	Sig. (2-	Mean Difference	95% Confidence Interval of the Difference				
	L	uı	tailed)	Mean Dhierence	Lower	Upper			
C 1	10.921	569	.000	.0790939	.064869	.093319			
C2	27.047	569	.000	.5498927	.509959	.589826			
C3	2650.851	569	.000	98.4764907	98.403525	98.549457			
iC4	27.896	569	.000	.87795	.8161	.9398			
nC4	4.743	568	.000	.02483	.0145	.0351			
4PC6202.SP	9503.635	576	.000	1450.620236507528000	1450.32044065813200	1450.92003235692300			
4PC6202.PV	2809.627	576	.000	1450.15737634721600	1449.1436330057070	1451.1711196887240			
4PDI6210.PV	-36.445	563	.000	526	55	50			
4PDI6211.PV	-62.613	563	.000	-4.801	-4.95	-4.65			

Temperature Variables

				One-Sample Test		
				Test Valu	e = 0	
	t	df	Sig. (2-	Mean Difference	95% Confidence Inte	rval of the Difference
	•	u	tailed)	Mean Difference	Lower	Upper
C1	10.921	569	.000	.07909	.0649	.0933
C2	27.047	569	.000	.54989	.5100	.5898
C3	2650.851	569	.000	98.47649	98.4035	98.5495
iC4	27.896	569	.000	.87795	.8161	.9398
nC4	4.743	568	.000	.025	.01	.04
4TI6009.PV	365.022	576	.000	95.807434445650500	95.29191934560670	96.32294954569430
4TI6204.PV	796.530	576	.000	45.001147255327300	44.89018298582693	45.11211152482760
4TI6205.PV	168.315	571	.000	115.761	114.41	117.11
4TC6231.SP	272.097	576	.000	127.418266560837100	126.49851786033170	128.33801526134250
4TC6231.PV	138.313	214	.000	132.166	130.28	134.05
4TI6231.PV	371.478	576	.000	116.033458947722100	115.41996308379800	116.64695481164620
4TI6214.PV	458.915	576	.000	47.800861854487100	47.59628114181720	48.00544256715700
4TI6213.PV	258.191	576	.000	54.278143395171000	53.86524297284570	54.69104381749620
4TI6202.PV	374.908	576	.000	69.648901101414800	69.28402034319220	70.01378185963740
4TI6203.PV	402.061	576	.000	101.097229708005400	100.60336387430370	101.59109554170720

Appendix E.4 : Factorial Anova

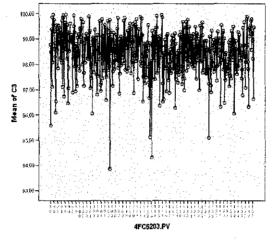
:	Tests of Between-Subjects Effects Dependent Variable: C3								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Corrected Model	422.602(a)	564	.749	.985	.637				
Intercept	5486488.752	1	5486488.752	7210209.505	.000				
@4FC6203.PV	422.602	564	.749	.985	.637				
Error	1.522	2	.761						
Total	5499586.274	567	1 1 1 1	n na sanaharina aritan sana situ ta sana sana 3 2 2 2					
Corrected Total	424.124	566		i de la construcción de la construcción Secondaria de la construcción Secondaria de la construcción de la construcción Secondaria de la construcción de Secondaria de la construcción de la Secondaria de la construcción de la	1				

Tests of Between-Subjects Effects Dependent Variable: C3								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	422.602(a)	564	.749	.985	.637			
Intercept	5486488.752	1	5486488.752	7210209.505	.000			
@4FY62022.PV	422.602	564	.749	.985	.637			
Error	1.522	2	.761	2000 - 10 1000 - 10 10 10 10 10 10 10 10 10 10 10 10 10				
Total	5499586.274	567						
Corrected Total	424.124	566		ya anani da sanan ananan ananan i T E				

4TI6009.PV

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	422.602(a)	564	.749	.985	.637
Intercept	5486488.752	1	5486488.752	7210209.505	.000
@4TI6009.PV	422.602	564	.749	.985	.637
Error	1.522	2	.761	an ar ta ta ta ta ban ar statut da danan I I I	and a second
Total	5499586.274	567			
Corrected Total	424.124	566	 producer success matrix discussions, the success of t	ne negatalan ne na nabala si ana ana.	i inconcer : :

	Tests of Between-Subjects Effects Dependent Variable: C3									
Source	Type III Sum of Squares df Mean Square		Mean Square	F	Sig.					
Corrected Mode	422.602(a)	564	.749	.985	.637					
Intercept	5486488.752	1	5486488.752	7210209.505	.000					
@4TI6231.PV	422.602	564	.749	.985	.637					
Error	1.522	2	.761	n an an an an an Annaichean an Annaichean Annaichean an Annaichean 1975 1977	2 2 2					
Total	5499586.274	567		n di na amerika na na posta na posta d 2 2 2 2 2	2 - 100 - 2 - 2 - 2 					
Corrected Total	424.124	566		77 - 20 - 78 - 77 - 72 - 72 - 73 - 73 - 73 - 73 - 73	•					


Appendix E.5 : Compare Means

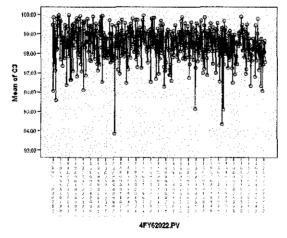
4FC6203.PV

		ANOVA 7	Table				
			Sum of Squares	df	Mean Square	F	Sìg.
		(Combined)	15.095	564	.027	802.944	.001
	Between	Linearity	.027	1	.027	821.753	.001
C1 * 4FC6203.PV	Groups	Deviation from Linearity	15.068	563	.027	802.91 1	.001
	Within Groups		.000	2	.000	5	
	Total		15.095	566			
		(Combined)	125.242	564	.222	1.625	.459
	Between Groups	Linearity	.008	1	.008	.056	.835
C2 * 4FC6203.PV		Deviation from Linearity	125.235	563	.222	1.628	.459
	Within Grou	ups	.273	2	.137	(*************************************	1
	Total	langetain eonadh ann an an dhanna dh' eonaich ann air eonai	125.516	566		01 - 11 - 11 - 11 - 11 1 1 4 1	1.1
	e Melante fan herherte fan herherten yn gefan heren yn yn 1	(Combined)	422.602	564	.749	.985	.637
	Between Groups	Linearity	2.056	1	2.056	2.703	.242
C3 * 4FC6203.PV		Deviation from Linearity	420.546	563	.747	.982	.638
	Within Groups		1.522	2	.761		gernaria. S
	Total		424.124	566		, 1999, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 199 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 199	
endersen en e	trategetra en l'harden de de den a K	(Combined)	297.376	564	.527	1.757	.434
	Between	Linearity	3.043	1	3.043	10.139	.086
iC4 * 4FC6203.PV	Groups	Deviation from Linearity	294.333	563	.523	1.742	.436
	Within Grou	Ips	.600	2	.300	2014 - 1996 - 1997 - 1996 2017 - 1997 - 1997 - 1996 2017 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 2017 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 2017 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 2017 - 1997 - 1	
	Total	an algebran nan i na ann an an ann an ann an ann an	297.976	566	a narrana e conservadore e a seconda de secon	2000-000 000-000 000 000 000 000 - - 	garat na a
		(Combined)	6.994	563	.012	41.410	.024
	Between	Linearity	.003	1	.003	11.207	.079
nC4 * 4FC6203.PV	Groups	Deviation from Linearity	6.991	562	.012	41.463	.024
	Within Grou	ıps	.001	2	.000		
	Total		6.995	565		2011-02-02-02-02-02-02-02-02-02-02-02-02-02-	

M	easures	s of Associati	 	
	R		Eta Squared	2
and the second second second wave and some state and	le an an anna	e 1911 - Stan Barris, Stan and Stan Barrier, Stat	 	

C1 * 4FC6203.PV	043	.002	1.000	1,000
C2 * 4FC6203.PV	008	.000	.999	.998
C3 * 4FC6203.PV	070	.005	.998	.996
iC4 * 4FC6203.PV	.101	.010	.999	.998
nC4 * 4FC6203.PV	022	.000	1.000	1.000

Mean of C₃ vs. 4FC6203.PV

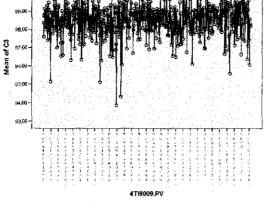

		ANOVA I	able				
			Sum of Squares	df	Mean Square	F	Sig.
analan analan ina analan I		(Combined)	15.095	564	.027	802.944	.001
	Between	Linearity	.034	1	.034	1024.898	.001
C1 * 4FY62022.PV	Groups	Deviation from Linearity	15.061	563	.027	802.550	.001
Within Groups .000 2 Total 15.095 566 Image: Stress of the stress o	.000	(*************************************	-				
	Total	15.095	566				
na franciska se na se	Between Groups	(Combined)	125.242	564	.222	1.625	.459
		Linearity	.467	1	.467	3.417	.206
C2 * 4FY62022.PV		Deviation from Linearity	124.776	563	.222	1.622	.460
	Within Gro	ups	.273	2	.137	11 UKU Kerne orkosoro u	
	Total		125.516	566		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
n de en transforen fransjon av an die en een die steder. Die de		(Combined)	422.602	564	.749	.985	.637
C 7 •	Between	Linearity	7.918	1	7.918	10.406	.084
C3 * 4FY62022.PV	Groups	Deviation from Linearity	414.684	563	.737	.968	.643
	Within Gro	ups	1.522	2	.761		

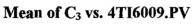
4FY62022.PV

	Total		424.124	566			
iC4 * 4FY62022.PV	(Combined)		297.376	564	.527	1.757	.434
	Between	Linearity	5.400	1	5.400	17.993	.051
	Groups	Deviation from Linearity	291.976	563	.519	1.728	.439
	Within Groups		.600	2	.300		
	Total	297.976	566	* ** *** ****			
e an de sitte de construction de la	n and the state of	(Combined)	6.994	563	.012	41.410	.024
	Between	Linearity	.000	1	.000	.025	.889
nC4 * 4FY62022.PV	Groups	Deviation from Linearity	6.994	562	.012	41.483	.024
	Within Gro	ups	.001	2	.000		
	Total	un nel en	6.995	565	a ana ana ana ana ana ana ana ana ana a		-

Measures of Association

	R	R Squared	Eta	Eta Squared
C1 * 4FY62022.PV	048	.002	1.000	1.000
C2 * 4FY62022.PV	.061	.004	.999	.998
C3 * 4FY62022.PV	137	.019	.998	.996
iC4 * 4FY62022.PV	.135	.018	.999	.998
nC4 * 4FY62022.PV	.001	.000	1.000	1.000

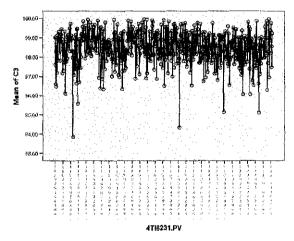

Mean of C₃ vs. 4FY62022.PV


4TI6009.PV

	at y the second second		Sum of Squares	df	Mean Square	F	Sig.
	· · · · · · · · · · · · · · · · · · ·	(Combined)	15.095	564	.027	802.944	.001
	Between	Linearity	.083	1	.083	2501.899	.000
C1 * 4TI6009.PV	Groups	Deviation from Linearity	15.012	563	.027	799.927	.001
	Within Grou	ups	.000	2	.000		
	Total		15.095	566		802.944 2501.899 799.927 1.625 14.154 1.603 .985 .157 .986 1.737 14.509 1.734 41.410 13.222	
n ning na san san san san na san sa san sa san sa san sa sa san sa	an a	(Combined)	125.242	564	.222	1.625	.459
	Between	Linearity	1.934	1	1.934	14.154	.064
C2 * 4TI6009.PV	Groups	Deviation from Linearity	123.308	563	.219	1.603	.464
	Within Grou	црs	.273	2	.137	27 802.944 83 2501.899 27 799.927 00	
	Total		125.516	566			
ವರ್ಷ-೧೯೯೬ ಮೇಲು ಕ್ರಿಮುಖ್ಯ ಸಿಕ್ಕೆಯು ಕೋಡಿಗಳು ಎಂದಿ ಕಿ	Between Groups	(Combined)	422.602	564	.749	.985	.637
		Linearity	.119	1	.119	.157	.73
C3 * 4TI6009.PV		Deviation from Linearity	422.483	563	.750	.986	.637
	Within Grou	ups	1.522	2	.761	14.154 1.603 .985 .157 .986 1.757 14.509 1.734	
	Total		424.124	566		.749 .985 . .119 .157 . .750 .986 .	2 2 2 2
		(Combined)	297.376	564	.527	1.757	.434
	Between	Linearity	4.354	1	4.354	14.509	.063
iC4 * 4TI6009.PV	Groups	Deviation from Linearity	293.022	15.095566	.438		
	Within Grou	ups	.600	2	.300	2501.899 799.927 1.625 14.154 1.603 .985 .157 .986 .157 1.757 14.509 1.734 41.410 .13.222	
	Total		297.976	566			
		(Combined)	6.994	563	.012	41.410	.024
	Between	Linearity	.004	1	.004	13.222	.068
nC4 * 4TI6009.PV	Groups	Deviation from Linearity	6.990	562	.012	41.460	.024
	Within Grou			2	.000		
	Total		6.995	565	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1

	: N		s of Associati		
		R	R Squared	Eta	Eta Squared
	C1 * 4TI6009.PV	.074	.006	1.000	1.000
•	C2 * 4TI6009.PV	-		.999	5 A A A A A A A A A A A A A A A A A A A

C3 * 4T16009.PV	.017	1000	.998	.996
iC4 * 4TI6009.PV	121	.015	.999	.998
nC4 * 4TI6009.PV			1.000	


4TI6231.PV

		ANOVA	Table				
ya a sa a manana interneti na na ang	(1979) A start a st		Sum of Squares	df	Mean Square	F	Sig.
		(Combined)	15.095	564	.027	802.944	.001
	Between	Linearity	.051	1	.051	1541.128	.001
C1 * 4TI6231.PV	Groups	Deviation from Linearity	15.044	563	.027	801.633	.001
	Within Gro	цря	.000	2	.000	(*************************************	
	Total	n na hanna an mar ann an tharachan an san a' tha an an ann an tharachan an tao an ann an tao an an an	15.095	566	tantanta dan tang dali ng piga ng kijing dan tana a		
1999-1997 - Selen Sensor († 1999-1999) - Selen Sensor († 1999-1999) - Selen Sensor († 1999-1999) - Selen Sensor	Between	(Combined)	125.242	564	.222	1.625	.459
		Linearity	.940	1	.940	6.882	.120
C2 * 4TI6231.PV	Groups	Deviation from Linearity	124.302	563	.221	1.616	.461
	Within Gro	unationalista de la companya de contra de la c La contra de la contr	.273	2	.137	(kana ani
	Total	an na shindar tan ina a na gitarik na analan ni ni tatalan.	125.516	566	ando en el deber de a	.221 1.616 .137	in Azona di A
n an an 1997 a na amrèidh ann an 1977.		(Combined)	422.602	564	.749	.985	.637
	Between	Linearity	.383	1	.383	.504	.551
C3 * 4TI6231.PV	Groups	Deviation from Linearity	422.219	563	.750	.986	.637
	Within Grow	ups	1.522	2	.761	····· ···	
	Total	na na manana manana ang kanang na manang na manang na manana na manana na manana na manana na manana na manana	424.124	566	····· ··· ··· · · · · · · · · · · · ·	,	
iC4 *	Between	(Combined)	297.376	564	.527	1.757	.434

4TI6231.PV	Groups	Linearity	.452	1	.452	1.506	.345
		Deviation from Linearity	296.924	563	.527	1.757	.434
	Within Gro	ups	.600	2	.300		
	Total	na gynniferne refera a nyw i gan er erneren a gan a gynner er a frank er a gynner	297.976	566			
	(Combined)		6.994	563	.012	41.410	.024
	Between	Linearity	.011	1	.011	35.338	.027
nC4 * 4TI6231.PV	Groups	Deviation from Linearity	6.984	562	.012	41.421	.024
	Within Gro	ups	.001	2	.000	an a	
	Total		6.995	565			

	 -							-
		Mea	sure	s of A	Assoc	iatio	m	

	R	R Squared	Eta	Eta Squared
C1 * 4TI6231.PV	.058	.003	1.000	1.000
C2 * 4TI6231.PV	.087	.007	.999	.998
C3 * 4TI6231.PV	030	.001	.998	.996
iC4 * 4TI6231.PV	039	.002	.999	.998
nC4 * 4TI6231.PV	.039	.002	1.000	1.000

Mean of C₃ vs. 4TI6231.PV

<u>Appendix E6 : Reliability Analysis</u> Flow Variables

.

		N	%
atta a a a a a a a a a a a a a a a a a a	Valid	565	97.4
Cases	Excluded(a)	15	2.6
	Total	580	100.0

Reliability Statistics	· · ·
Cronbach's Alpha Cronbach's Alpha Based on Standardized Items	
.669	10

1970 Terri i composicio que prove presente entre	Item Statistic	38	
	Mean	Std. Deviation	N
C1	.07691452035399	.163566965507099	565
C2	.54499649911505	.471480549904397	565
C3	98.48033228849560	.866657272953024	565
iC4	.87338219292036	.725855715994939	565
nC4	.02251028495575	.111360065267466	565
4FY62022.PV	144.45997756012770	16.778372856275400	565
4FC6002.PV	125.85432057338470	15.522987539406000	565
@4FI6202.PV	67.09559999469030	17.739073493510310	565
4FC6203.SP	113.49274405420350	14.431698606362370	565
4FC6203.PV	113.49217039823000	14.530803908865030	565

					Inte	r-Item Correla	tion Matrix			
	C1	C2	C3	iC4	nC4	4FY62022. PV	4FC6002. PV	@4F16202. PV	4FC6203. SP	4FC6203. PV
C1	1.00 0	.121	- .239	- .030	.074	047	068	021	040	043
C2	.121	1.00 0	- .484	- .091	- .044	.060	.048	045	008	007
C3	_ .239	- .484	1.00 0		- .203	138	077	.030	069	070
iC4	- .030	- .091	- .795	1.00 0	.100	.136	.078	002	.100	.102
nC4	.074	- .044	- .203	.100	1.00 0	.001	009	007	022	022
4FY62022.	-	.060	- -	.136	.001	1.000	.938	001	.445	.443

PV	.047		.138							
4FC6002.P V	- .068	.048	- .077	.078	- .009	.938	1.000	.026	.481	.478
@4F16202. PV	- .021	- .045	.030	- .002	- .007	001	.026	1.000	.115	.117
4FC6203.S P	- .040	- 800.	- .069	.100	- .022	.445	.481	.115	1.000	.999
4FC6203.P V	- .043	- .007	- .070	.102	- .022	.443	.478	.117	.999	1.000

	C1	C2	C3	iC4	пС 4	4FY62022.P V	4FC6002.P V	@4FI6202.P V	4FC6203.S P	4FC6203.P V
C1	.02 7	.00 9	- .034	- .004	- 4 .00 1	130	ge mederane active come constructions	, ala manan ing malangan ka	i in an canto a an c	102
	.00 9	.22 2	- .198	.031	- .00 2	.478	.352	374	051	050
C3	- .03 4	- .19 8	.751	- .500	- .02 0	-2.000	-1.034	.466	868	883
iC4	- .00 4	.03 1	- .500	.527	.00 8	1.658	.874	022	1.051	1.071
nC4	.00 1	- .00 2	.020	.008	.01 2	.002	016	014	036	036
4FY62022.P V	- .13 0	.47 8	2.00 0	1.65 8	.00 2	281.514	244.237	307	107.861	107.968
4FC6002.P V	- .17 2	.35 2	- 1.03 4	.874	- .01 6	244.237	240.963	7.080	107.654	107.806
@4FI6202.P V	- .06 0	- .37 4	.466	.022	- .01 4	307	7.080	314.675	29.567	30.069
4FC6203.SP	- .09 5	.05 1	.868	1.05 1	.03 6	107.861	107.654	29.567	208.274	209.502
4FC6203.P V	- .10 2	- .05 0	- .883	1.07 1	- .03 6	107.968	107.806	30.069	209.502	211.144

	Summary Item Statistics	-	
Mean	Minimum Maximum Range	Maximum /	Variance N of

a ta se a tradecia de la composición de				alla coin	Minimum		Items
Item Means	66.439	.023		144.437	6417.510	3614.281	10
Item Variances	125.811	.012	314.675	314.662	25374.817	18445.596	10
Inter-Item Covariances	21.126	-2.000	244.237	246.238	-122.093		10
Inter-Item Correlations	.051	795	.999		-1.257		10

Item-Total Statistics Scale **Corrected Item-**Squared Cronbach's Scale Mean if Item Variance if Total Multiple Alpha if Item Deleted Item Deleted Correlation Correlation Deleted **C**1 664.31603384612300 3160.602 -.064 .998 .677 C2 663.84795186736200 3158.969 .005 1.000 .677 **C3** 565.91261607798100 3168.846 -.104 1.000 .679 iC4 663.51956617355600 3150.720 .101 1.000 .676 nC4 664.37043808152100 3159.668 -.018 .996 .677 4FY62022.PV 519.93297080634900 1958,411 .619 .885 .564 4FC6002.PV 538.53862779309200 1984.930 .675 .888. .549 @4FI6202.PV 597.29734837178600 2711.972 .072 .022 .734 4FC6203.SP 550.90020431227300 2042.015 .697 .998 .547 4FC6203.PV 550.90077796824700 2037.625 .694 .998 .547

	Scale Statistics								
Mean	Variance		N of Items						
664.39294836647700	3159.456	56.209040554667600	10						

		Sum of Squares	df	Mean Square	F	Sig
Between Peopl		178193.332	1		i galation and a second	
Within People	Between Items	18378621.405	9	2042069.045	19506.825	.000
	Residual	531380.293	5076	104.685		
	Total	18910001.698	5085	3718.781	eren da eseren da eseren en esta esta esta esta esta esta esta esta	
Total	n in de la deservación de la sector de la de la de la deservación de la deservación de la deservación de la de	19088195.030	5649	3379.040	and a second	
Grand Mean $= 6$	6.439294836647	70				

Level Variables

	Case Processing S	•	
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Ν	%
	Valid	566	97.6
Cases	Excluded(a)	14	2.4
	Total	580	100.0

a Listwise deletion based on all variables in the procedure.

	Reliability Statistics								
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items(a)	N of Items							
.575	326	7							
y nah hara ang tetapanan meteruna ang tetapana ang harang ang t		and the second							

a The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

	Item Statisti	CS	
	Mean	Std. Deviation	N
C1	.07677862897527	.163454127337414	566
C2	.54564138162545	.471312903245088	566
C3	98.48080873321550	.865964167354561	566
iC4	.87245748939930	.725546681257210	566
nC4	.02247051413428	.111265496012091	566
4LC6201.PV	44.71388119606584	7.442476392164560	566
4LT6201.PV	44.71223363101272	7.441440597134860	566

	C1	C2	C3	iC4	nC4	4LC6201.PV	4LT6201.PV
C1	1.000	.120	239	029	.074	.000	.000
C2	.120	1.000	484	092	044	064	065
C3	239	484	1.000	795	203	.097	.097
iC4	029	092	795	1.000	.101	067	066
nC4	.074	044	203	.101	1.000	053	053
4LC6201.PV	.000	064	.097	067	053	1.000	1.000
4LT6201.PV	.000	065	.097	066	053	1.000	1.000

	Inte	r-Item	Covari	ance N	/latrix	
C1	C2	C 3	iC4	nC4	4LC6201.PV	4LT6201.PV
.027	.009	034	003	.001	.000	.000
.009	.222	197	032	002	226	226
034	- 197	.750	499	020	.628	.628
003	032	499	.526	.008	359	358
.001	002	020	.008	.012	044	044
.000	226	.628	359	044	55.390	55.382
.000	226	.628	358	044	55.382	55.375
	.027 .009 034 003 .001 .000	C1 C2 .027 .009 .009 .222 .034 .197 .003 .032 .001 .002 .000 .226	C1C2C3.027.009.034.009.222.197.034.197.750.003.032.499.001.002.020.000.226.628	C1C2C3iC4.027.009.034.003.009.222.197.032.034.197.750.499.003.032.499.526.001.002.020.008.000.226.628.359	C1C2C3iC4nC4.027.009.034.003.001.009.222.197.032.002.034.197.750.499.020.003.032.499.526.008.001.002.020.008.012.000.226.628.359.044	.027 .009 .034 .003 .001 .000 .009 .222 .197 .032 .002 .226 .034 .197 .750 .499 .002 .226 .003 .032 .499 .020 .628 .003 .032 .499 .526 .008 .359 .001 .002 .020 .008 .012 .044 .000 .226 .628 .359 .044 55.390

The covariance matrix is calculated and used in the analysis.

		S	ummary Iter	n Statistics			
	Mean	Min <u>im</u> um	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	27.061	.022	98.481	98.458	4382.668	1428.686	7
Item Variances	16.043	.012	55.390	55.378	4474.185	722.279	7
Inter-Item Covariances	2.601	499	55.382	55.881	-110.918	142.761	7
Inter-Item Correlations	- 036	795	1.000	1.795	-1.258	.098	7
			l 1		-1.258	.098	

Item-Total Statistics										
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item- Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted					
C1	189.34749294545310	221.554	011	.998	.592					
C2	188.87863019280290	222.654	096	1.000	.596					
C3	90.94346284121280	219.766	.039	1.000	.591					
iC4	188.55181408502900	223.488	115	1.000	.600					
nC4	189.40180106029410	221.714	060	.996	.592					
4LC6201.PV	144.71039037836250	55.374	1.000	1.000	033(a)					
4LT6201.PV	144.71203794341560	55.389	1.000	1.000	033(a)					

a The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics							
	Variance	Std. Deviation	N of Items				
189.42427157442840	221.527	4.883781888592170	7				

,

		Sum of Squares	đf	Mean Square	F	Sig
Between People	(17880.391	565	31.647		
	Between Items	4851816.311	6	808636.052	60154.192	.000
Within People	Residual	45570.826	3390	13.443	la companya di sensa di sensa 1	3
	Total	4897387.136	3396	1442.105	en in the second second	
Total	hannen herrer er et an en en der anandere er er et er	4915267.527	3961	1240.916	galanan arte a mada ana a'ar '''	,
in a star and a second star	27.060610224918	lan an isang sang sang sang sang sang sang sang	3701		-)

a 1940 - Maria Mandrid, yang bagta pang sanaka sala sala	Case Processing Summary								
		Ν	%						
na dala mana ang ang ang ang ang ang ang ang ang	Valid	557	96.0						
Cases	Excluded(a)	23	4.0						
	Total	580	100.0						

	Reliability Statistics	· · · · · · · · · · · · · · · · · · ·
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items(a)	N of Items
.476	133	9
assumptions. You may want t	a negative average covariance among items. This violates reliability o check item codings.	

	Item Statistics	5	
	Mean	Std. Deviation	N
C1	.07801921723519	.164477236832011	557
C2	.54557095511670	.473351328660734	557
C3	98.48062431418310	.871228489210761	551
iC4	.87113274506284	.728331672510184	55'
nC4	.02277973249551	.112133950019201	55
4PC6202.SP	1450.63659646053000	3.618205011470361	55′
4PC6202.PV	1450.61859689709100	3.643678580561583	55′
4PDI6210.PV	52484223339318	.344210277898480	55'
4PDI6211.PV	-4.79796388330342	1.832241468839767	55

........

,,				Int	ter-Item	Correlation M	latrix	و المحمود المحمد المالي المحمد ال	العداد والانتقار المتحافظ المحافر المحافظ المحافي
	Cl	C2	C3	iC4	nC4	4PC6202.SP	4PC6202.PV	4PDI6210.PV	4PDI6211.PV
C1	1.000	.121	240	029	.073	.023	.025	009	034
C2	.121	1.000	486	089	044	.005	.003	.003	.070
Č3	240	486	1.000	795	203	.214	.215	063	038
iC4	029	089	795	1.000	.101	259	260	.078	.011
nC4	.073	044	203	.101	1.000	037	036	019	022
4PC6202.SP	.023	.005	.214	259	037	1.000	.999	003	084
4PC6202.PV	.025	.003	.215	260	036	.999	1.000	003	085
4PDI6210.PV	009	.003	063	.078	019	003	003	1.000	.420
4PDI6211.PV	034	.070	038	.011	022	084	085	.420	1.000

The covariance matrix is calculated and used in the analysis.

Inter-Item Covariance Matrix											
	C 1	C2	C3	iC4	nC4	4PC6202.SP	4PC6202.PV	4PDI6210.PV	4PDI6211.PV		
C1	.027	.009	034	003	.001	.014	.015	.000	010		
C2	.009	.224	200	031	002	.008	.005	.001	.061		
C3	034	200	.759	505	020	.674	.683	019	061		
iC4	003	031	505	.530	.008	683	690	.020	.015		
nC4	.001	002	020	.008	.013	015	015	001	005		
4PC6202.SP	.014	.008	.674	683	015	13.091	13.167	003	557		
4PC6202.PV	.015	.005	.683	690	015	13.167	13.276	004	565		
4PDI6210.PV	.000	.001	019	.020	001	003	004	.118	.265		
4PDI6211.PV	010	.061	061	.015	005	557	565	.265	3.357		

The covariance matrix is calculated and used in the analysis.

			Summary Ite	m Statistics			
	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	332.881	-4.798	1450.637	1455.435	-302.344	402634.349	5
Item Variances	3.489	.013	13.276	13.264	1055.859	31.289	9
Inter-Item Covariances	.320	690	13.167	13.857	-19.078	4.861	\$
Inter-Item Correlations	013	795	.999	1.794	-1.256	.069	9

The covariance matrix is calculated and used in the analysis.

n nana ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item- Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
C1	2995.85249498778300	54.432	008	.998	.484
C2	2995.38494324990200	54.515	043	1.000	.489
C3	2897.44988989083600	52.646	.082	1.000	.478
iC4	2995.05938145995600	57.648	338	1.000	.531
nC4	2995.90773447252300	54.523	057	.996	.485
4PC6202.SP	1545.29391774448800	16.140	.867	.997	153(a)
4PC6202.PV	1545.31191730792800	15.973	.865	.997	154(a)
4PDI6210.PV	2996.45535643841200	53.807	.102	.186	.479
4PDI6211.PV	3000.72847808832200	52.798	064	.191	.536

a The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Scale Statistics							
Mean	Variance	Std. Deviation	N of Items				
2995.93051420501900	1	•	2 I I I I I I I I I I I I I I I I I I I				

	والمحافظ والمحافظ والمروف والمحاف والمحاف والمحاف	ANOVA	(a)	genne i stanna di senara secondo como se	ge an talan an talan a sana kan kan	
		Sum of Squares	df	Mean Square	F	Sig
Between People	i sekeren al makteri a artisk tertosetosom B	3363.247	556	6.049	and a construction of a constr	ça or asas S
	Between Items	1794138658.873	8	224267332.359	70781458.135	.000
Within People	Residual	14093.254	4448	3.168	,	
	Total	1794152752.127	4456	402637.512	,	
Total		1794156115.374	5012	357972.090	2000 (1000) (1000) (1000) (1000) 2 2 4 4	jaan tahun T
Grand Mean = 3	32.88116824500	0210		hatin ndan nitar a sua ana		in en ann
a The covarianc	e matrix is calcul	ated and used in th	e analy	ysis.		

Temperature Variables

.

		Ν	%
	Valid	213	36.7
Cases	Excluded(a)	367	63.3
	Total	580	100.0

	Reliability Statistics	
- 5	Cronbach's Alpha Based on Standardized Items	1
.537	_444	15

.537		.44	4
	Item Statist	ics	
	Mean	Std. Deviation	N
C1	.07417840375587	.163620321266652	213
C2	.58084507042254	.498036938310142	213
C3	98.53981220657270	.846964592631871	213
iC4	.77366197183099	.672579320081844	213
nC4	.03046948356808	.150980335025310	213
4TI6009.PV	96.02691270711830	1.151548180442863	213
4TI6204.PV	44.95142950138576	.365807218375046	213
4TI6205.PV	118.04151321126750	5.499390060330370	213
4TC6231.SP	131.18470316425730	12.482085355795660	213
4TC6231.PV	132.16368480281680	14.061264055360200	213
4TI6231.PV	116.22683332559640	3.001368500299624	213
4TI6214.PV	47.15534339152590	1.466056847828780	213
4TI6213.PV	53.23452024504610	3.608632312624981	213
4TI6202.PV	69.20279315715660	2.608833031042179	213
4TI6203.PV	101.61748576276170	2.047075171117764	213

							Inter	-Item Co	rrelation	Matrix					
	С 1	C 2	С 3	iC 4	n C 4	4TI60 09.PV	4TI62 04.PV	4TI62 05.PV	4TC6 231.S P	4TC6 231.P V	4TI62 31.PV	4TI62 14.PV	4TI62 13.PV	4TI62 02.PV	4TI62 03.PV
C1	1. 00 0	.1 89	- .3 97	.0 79	.1 72	040	003	090	073	075	.042	006	.028	.065	.061
C2	.1 89	1. 00 0	.5 15	- .1 28	- .0 43	.100	253	112	103	095	.146	023	.061	.182	.036
СЗ	1	.5	•	- .7 37	:	.138	.035	.229	.127	.122	115	171	206	- 17 1	030
iC4	.0 79	- .1 28	- .7 37	1. 00 0	.0 20	259	.128	184	043	043	.006	.211	.194	.046	003
nC4	.1 72	- .0 43	.2 02	.0 20	1. 00 0	.094	.068	004	102	098	.089	.099	.055	.083	.002
4T160		.1	.1	-	.0	1.000	152	.080	289	283	.364	- 156	084	.216	.215

09.PV	.0 40	i i	38	.2 59	i	,						2 ,		dinan , printo.	
4TI62 04.PV	.0 03	.2 53	.0 35	.1 28	.0 68	152	1.000	.021	014	019	.135	.803	.657	.284	.019
4TI62 05.PV	- .0 90	- .1 12	.2 29	.1 84	- .0 04	.080.	.021	1.000	.163	.179	.170	013	.014	006	.095
4TC6 231.S P		- .1 03	.1 27	- .0 43	- .1 02	289	014	.163	1.000	.994	022	092	030	028	.033
4TC6 231.P V		.0 95	.1 22	- .0 43	- .0 98	283	019	.179	.994	1.000	030	095	032	025	.020
4TI62 31.PV	.0 42	.1 46	- .1 15	.0 06	.0 89	.364	.135	.170	022	030	1.000	.183	.177	.387	.559
4TI62 14.PV	- .0 06	.0 23	- .1 71	.2 11	.0 99	156	.803	013	092	095	.183	1.000	.888	.388	.054
4TI62 13.PV	.0 28	.0 61	- .2 06	.1 94	.0 55	084	.657	.014	030	032	.177	.888	1.000	.570	.103
4TI62 02.PV		.1 82	.1 71	.0 46	.0 83	.216	.284	006	028	025	.387	.388	.570	1.000	.318
4TI62 03.PV	.0 61		.0 30	- .0 03	.0 02	.215	.019	.095	.033	.020	.559	.054	.103	.318	1.000
The cov	ariar	nce n	natriz	x is c	alcu	lated and	l used in	the anal	ysis.						

	С 1	C 2	С 3	i C 4	n C 4	4T160 09.PV	4TI62 04.PV	4TI62 05.PV	4TC6 231.S P	4TC62 31.PV	4TI62 31.PV	4TI62 14.PV	4TI62 13.PV	4TI62 02.PV	4TI62 03.PV
C1	2	1	_0 55	0	0		.000	- 081	- 150	- 172	.021	001	.017	.028	.020
C2	.0 1 5	.2 4 8	- .2 17	- .0 4 3	.0 0 3	.057	046	308	642	665	.219	017	.110	.237	.037
C3	5	1	.7 17	2	2		.011	1.068	1.340	1.449	291	212	629	377	053
iC4	0	.0	- .4 20	5	0	· · · · · · · · · · · · · · · · · · ·	.032	680	363	411	.012	.209	.472	.081	004

.

		3		· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , ,	ander and and and a	1					, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		
nC4	.0 0 4	- .0 0 3	_ .0 26	.0 0 2	2	.016	.004	003	192	208	.040	.022	.030	.033	.001
4TI60 09.PV	- .0 0 8	.0 5 7	.1 35	.2 0 1	.0 1 6	1.326	064	.504	-4.158	-4.575	1.260	264	351	.649	.507
4TI62 04.PV	.0 0 0	- .0 4 6	.0 11	.0 3 2	.0 0 4	064	.134	.042	064	097	.148	.431	.868	.271	.014
4TI62 05.PV	8	- .3 0 8	1. 06 8	.6 8	- .0 0 3	.504	.042	30.243	11.175	13.815	2.808	105	.268	082	1.068
4TC62 31.SP	.1 5 0	4	1. 34 0	0	- .1 9 2	-4.158	064	11.175	155.80 2	174.49 6	836	-1.690	-1.358	903	.852
4TC62 31.PV	- .1 7 2	- .6 6 5		1	- .2 0 8	-4.575	÷.097	13.815	174.49 6	197.71 9	-1.247	-1.959	-1.599	=.922	.590
4TI62 31.PV	.0 2 1	.2 1 9	- .2 91	.0 1 2	.0 4 0	1.260	.148	2.808	836	-1.247	9.008	.805	1.919	3.031	3.437
4TI62 14.PV	- .0 0 1	- .0 1 7	2 12	.2 0 9	.0 2 2	264	.431	105	-1.690	-1.959	.805	2.149	4.699	1.485	.163
4TI62 13.PV	.0 1 7		- .6 29	7		351	.868	.268	-1.358	-1.599	1.919	4.699	13.022	5.364	.759
4TI62 02.PV	.0 2 8	.2 3 7		.0 8 1	3	.649	.271	082	903	922	3.031	1.485	5.364	6.806	1.697
4T162 03.PV	.0 2 0	3	.0 53	- .0 0 4	.0 0 1	.507	.014	1.068	.852	.590	3.437	.163	.759	1.697	4.191

	Summary Item Statistics												
	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items						
Item Means	67.320		132.164			2518.883	15						
Item Variances	28.125	¢	197.719	4		3767.061	15						

Inter-Item Covariances	2.020	-4.575	174.496	179.070	-38.143	291.802	15		
Inter-Item Correlations	.051	737	.994	1.731	-1.349	.059	15		
The covariance matrix is calculated and used in the analysis.									

		Item-Total	Statistics		
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item- Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
C1	1009.73000800132700	846.754	074	.999	.540
C2	1009.22334133466000	848.359	087	1.000	.542
C3	911.26437419851000	841.912	.070	1.000	.538
iC4	1009.03052443325200	848.234	067	1.000	.542
nC4	1009.77371692151500	846.613	064	.998	.540
4TI6009.PV	913.77727369796400	857.732	192	.379	.549
4TI6204.PV	964.85275690369700	842.844	.146	.725	.538
4TI6205.PV	891.76267319381500	756.853	.195	.168	.520
4TC6231.SP	878.61948324082500	335.259	.777	.989	.222
4TC6231.PV	877.64050160226600	291.366	.744	.989	.248
4TI6231.PV	893.57735307948600	814.416	.132	.492	.531
4TI6214.PV	962.64884301355700	836.798	.084	.902	.537
4TI6213.PV	956.56966616003600	811.916	.103	.870	.535
4TI6202.PV	940.60139324792600	818.085	.142	.528	.531
4TI6203.PV	908.18670064232100	823.707	.155	.359	.531

Scale Statistics									
	Variance	Std. Deviation	N of Items						
1009.80418640508300	846.075	29.087373552144740	15						

an an an the theory of the State State of the state	in a subscription of the second angle particular second second second	ANOVA(a)) 	an a	unione et la companya de la company	
		Sum of Squares	df	Mean Square	F	Sig
Between People		11957.864	212	56.405	1 	· · · · · · · · · · · · · · · · · · ·
Within People	Between Items	7511308.334	14	536522.024	20552.836	.000
	Residual	77478.232	2968	26.105	gen fin of the state of the source of the so	
	Total	7588786.566	2982	2544.865	2	,
Total		7600744.430	3194	2379.695	1	2 - 12 ¹ 1
Grand Mean = 6	57.320279093672	.20				
a The covarianc	e matrix is calcul	ated and used in th	ie anal	ysis.		