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ABSTRACT

Rising crude oil price and global energy concerns have revived great interests in the

oil and gas industry, including the optimization of oil refinery operations. However,

the economic environment of the refining industry is typically one of low margins

with intense competition. This state of the industry calls for a continuous

improvement in operating efficiency by reducing costs through engineering

strategies. These strategies are derived based on an understanding of the world

energy market and business processes, with the incorporation of advanced financial

modeling and computational tools. Regard to the matter, this work proposes the

application of the two-stage stochastic programming approach with fixed recourse to

effectively account for both economic and operational risk management in the

planning of oil refineries under uncertainty. The scenario planning and analysis

approach is adopted to consider uncertainty in three parameters: prices of crude oil

and commercial products, market demand for products, and production yields.

However, a large number of scenarios are required to capture the probabilistic nature

of the problem. Therefore, to circumvent the problem posed by the resulting large-

scale model, a Monte Carlo simulation approach is implemented based on the

sample average approximation (SAA) technique. The SAA technique enables the

determination of the minimum number of scenarios required yet still able to

compute the true optimal solution of the problem for a desired level of accuracy

within the specified confidence intervals. Two measures of risk are considered,

namely mean-absolute deviation (MAD) and Conditional Value-at-Risk (CVaR). A

representative numerical example is presented to illustrate the proposed modeling

approach using GAMS modeling language with the nonlinear solver CONOPT3.
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ABBREVIATIONS AND NOMENCLATURES

Sets and Indices

/ set of materials/product i

IP set ofmaterials/product i with price uncertainty

ID set ofmaterials/product i with demand uncertainty

IY set of materials/product i with yield uncertainty

S set of scenarios s

K set of demand shortfall k\ and demand surplus kj

M set ofyield shortfall m\ and yield surplus m%

N set ofminimum number of scenario s

Parameters

C$,i unit price of raw materials and saleable products / with price uncertainty for

scenario s

Ps probability of each scenario s

di}k demand penalty for material i with demand uncertainty for either demand

shortfall or surplus k

9i,m yield penalty for product i with yield uncertainty for either yield shortfall or

surplus m

& weight factor, 6j, 62

a confident level



Continuous Variables

X material and saleable products flowrate

CVaR conditional- value- at- risk

MAD mean absolute deviation

Zi.s.k demand penalty for material i in scenario 5 with demand uncertainty for

either demand shortfall or surplus k

yi,s,m yield penalty for product i in scenario s with yield uncertainty for either

yield shortfall or surplus m

Zo deterministic profit

$ monetary value of demand and yield penalty

M expected deterministic profit (x(z0) and expected demand and yield penalty

H confident interval

S(n) sampling variance estimator

z confident interval

Non-convex variables

VaR value-at-risk

vi
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CHAPTER 1

INTRODUCTION

1. BACKGROUND OF STUDY

Stochastic Programming (SP) is a framework for modeling optimization that

involves uncertainty. The following example of linear program helps to explain the

concept of Stochastic:

in {ciXl +C2X2 +.... +CnXn] "\mm

Subject to

aux\ + anxi +.... + ainXn < bi

anxi + anx2+ .... + aznXn <bi

dm\X\ + (XmlX2 + .... + ClmnXn <. bn

X),X2,...,Xn >0

(1)

By using matrix vector notation, formulation (1) can be written as:

min cTx

s.t Ax <b V (2)

x>0 J
If b is a constant, the model is called Deterministic model. However, with b is

uncertain, it is called Stochastic Model.

Two-stage Stochastic Programming with fixed recourse via scenario analysis is

applied in Chemical process industry, oil and gas industry, water reservoir system,

environment protection and control, etc... to predict planning under uncertainties

and operational risk management by applying the concept of Variance, Mean

Absolute Deviation (MAD) and Conditional-value-at-risk (CVaR)

Recourse is corrective action made after a random event has taken place. An

example of two-stages Recourse is described as:



• Variables x: control the flow rate of Methane enters reactor to form

Methanol.

• Random event: The control valve is malfunctioned and fully opened which

results in the abundant amount of Methane fed into reactor, affecting the

product quality.

• Recourse action y: To correct what has been messed up by the random event:

fix the control valve, penalty for overproduction of Methanol.

The above example includes two stages: the data for the first stage (x) are known

with certainty and some data for the second stage are stochastic or random which

need corrective action. Two-stage Stochastic Programming aims to serve the

optimization purpose of a process by minimizing uncertainties and maximizing

profit.

2. PROBLEM STATEMENT

The midterm refinery production planning problem addressed in this paper can be

stated as follows. Given the following information:

• The available process units and their capacities;

• Cost of crude oil and refinery products;

• Market demand of products

Our goal is to determine our goal is to determine the amount of materials that are

processed in each process stream of each process unit by considering the following

uncertain parameters whose stochastic data (including probabilities) are available or

obtainable:

• Market demand for products, that is, production amounts of desired products;

Prices of crude oil and the saleable products; and

Product (or production) yields of crude oil from chemical reactions in the

crude distillation unit

•



It is assumed that:

• The uncertain parameters of prices, costs, and demands are externally

imposed, that is, they are exogenous uncertainties;

• Further, the uncertain parameters are random variables that exhibit the

behavior and properties of discrete probability distribution functions; and

• The physical resources of the plant are fixed.

3. OBJECTIVES

Following are the objectives of the project:

• There are large numbers of scenarios that create difficulty to handle various

circumstances. For example, there may be more than thousands of cases

happening. It is hard to predict and control numerous scenarios. Therefore, it

is necessary to find the minimum number of scenarios to capture all the

circumstances. Monte Carlo simulation approach based on the sample

average approximation (SAA) technique is applied in this thesis to generate

the minimum number of scenarios which present for thousands cases.

• The risk terms in Khor (2007) are handled using the metric mean-absolute

deviation. After obtaining the first model with MAD as risk measurement,

the second model is developed in which the risk terms are performed by

CVaR. A comparison between the two models to assess which of these two

risk measures is superior, both computationally and conceptually, in

capturing the economic and operating risk in the planning of a refinery. Khor

model (2007) is expressed:

mzKz^EizJ-eyizJ-E.-e.W (3)

where:

E[zo ]: Expected deterministic profit (crude oil and saleable

products)

0,, #5 e (0, 1]: weight the components of the objective function

V{z0): Variance ofprice uncertainty

E ,: Expected penalty of demand and yield uncertainties



W: MAD of demand and yield penalty

Apply MAD as risk measure:

max z=E[z0]-^MAD^ -E[^]-Q3MADZq (4)

Apply CVaR as risk measure:

max z=E[z0]~Q}CVaRi-E[Q-Q3CVaR): (5)

Solving optimization problem to find the input flow rate raw materials and

final product to maximize profit.

4. SCOPE OF STUDY

• Monte Carlo simulation approach based on Sample Average Approximation

(SAA) to determine minimum number of scenario

• General formulation of stochastic refinery planning with risk measure

expressed in terms of MAD

• General formulation of stochastic refinery planning with risk measure

expressed in terms of CVaR.



CHAPTER 2

THEORY

1. GENERAL FORMULA OF TWO-STAGE-STOCHASTIC

PROGRAMMING

The classical two-stage stochastic linear program (SLP) was originally proposed in

the seminal works of Dantzig (1955) and Beale (1955) has the following general

form:

min cTx +EAQ(x,£(gj))1
s.t to Ax = b (6)

xeX>0

where Q(x£((a)) =mm q1(g>)v
s.t. to W((d)y = h((o) - T((q)x (7)

v>0

With the notation:

x e Rn : Vector of first-stage decision variables, size (1x n)

c : First-stage column vector of cost coefficient, sizes (n x 1)

A : First-stage coefficient matrix, size (m x n)

b : Corresponding right-hand side vectors, size (m x 1)

(a e Q : Random events or scenario

£(co) : Random vector

q(ay) : Second stage vector of recourse cost coefficient vectors size

(*xl)

A(co) : Second stage right-hand side vectors, size (/ x 1)

T(($) : Matrix that ties the two stages together, size (/ x k)

W(to) : Random recourse coefficient matrix, size (/ x k)

y : Vector of second-stage decision variables, size (kx 1)



cTx is known as the first stage or "here and now" decision, x does not response to

co. In contrast, y presents second stage variable with Q[x,^(g))) is "wait and see"

and is determined after observation regarding co has been obtained. Model (4) is the

second stage problem, the recourse subproblem.

2. TWO-STAGE-STOCHASTIC PROGRAMMING WITH SIMPLE

RECOURSE SUBPROBLEM

Simple recourse model is a special case of recourse model when recourse

coefficients in the second stage, W, form an identity matrix. In general, we have:

e(*.«©))= £&(*,«©))
iel

Where:

Qi (x3 £(co)) =min q+uiy+i +q̂ y";

s.t. I y+i -1 y"i = A(©i) - (T'(co)x)/ (8)

y+i, y'i a)

h((x))-T(G>)x, a feasible solution to (5) is easily determined by setting y+ and y"

accordingly. Moreover, if the i* component of q+u - q^ >0, this feasible solution is

optimal.

Example of simple recourse is that when a target profit in one company is

determined, the company will try to reduce the deviation from profit.

3. TWO-STAGE STOCHASTIC PROGRAMMING WITH FIXED

RECOURSE SUBPROBLEM

Fixed recourse model is the model that the constraint matrix in the recourse

subprolem is fixed (not subject to uncertainty). (8) is written as:



Q(x£((q)) =min qT(®)y
s.t. Wy = h((o)-T(m)x (9)

y>0

When second stage objective coefficients are also fixed, the recourse subproblem

can be written as:

6(*,£(®))= min 7rT(A(co)-r(co)x) (10)

s.t. / W<qJ

7T=£)

4. TWO-STAGE STOCHASTIC PROGRAMMING WITH COMPLETE

RECOURSE SUBPROBLEM

Aproblem is said to have complete recourse if Y(co, %) ={y \Way >x} is nonempty

for any value of /and the recourse function is necessary finite, £>(x,£(co))=co.

Moreover, relatively complete recourse results if Y(a>,x)is nonempty for

all %e {h(co)-T(a))x \(a),x)eQxX'\.

With the complete recourse problem, model (4) becomes:

0(jc,4(<d)) =Min /(co)v +MeT z

s.tWy + z>h(a))~T(o))x, y,z>0 (11)

With M: large constant and e: appropriately dimensioned vector of ones.

5. CONCEPTS FROM FINANCIAL MATHEMATICS ON RISK

MEASUREMENT AND RISK MANAGEMENT

Three broad classes of risks are currently receiving wide attention and heavily

studied in the literature related to financial mathematics, risk measurement, and risk

management. The first, market risk, attempts to determine the uncertainty in the

prices of an object that is traded in a liquid market. The second, credit risk, attempts

7



to place a value on the uncertainty associated with an account receivable. For

example, researchers are interested in answering the question of how should we

account for the possibility that a debtor may default on an obligation. The third,

operational risk, basically tries to handle everything else. It considers the full set of

other risks that a business must typically face, including the risk of catastrophic

political events, weather-related risk, and risk of criminal activity (Pulleyblank,

2000). Table 1 provides examples of risk metrics or measures according to the

duration of application and nature of risk involved.

Table 1: Period, nature of risk and risk metric

Duration of application Nature of risk Risk metric

Short term (< 1 month) Operational Earnings

Intermediate/Medium/Midterm

(1 month-1 year)

Financial/Trading Value-at-risk, cash flow,

earnings, credit risk

Long term (> 1 year) Asset valuation Equity

6. ECONOMIC RISK

Economic risk is perceived by business people in two ways. The first is risk of not

achieving the targeted financial objective. The second is the risk of variation in the

results (Park and Sharp-Bette, 1990). The first type of risk may be caused by a

number of causes whether economic, political, technical, or the like (of it), and can

be represented as the probability of not achieving the financial objective. This type

of risk has been employed with planning activities by Barbara and Bagajewicz

(2003). The second type of risk can be well-handled by variance techniques such as

the variance of Expected Monetary Value (EMV) (Bush and Johnson, 1998) or risk-

adjusted return family of methods such as Sharpe ratio (Jones, 1998). Applequist et

al. (2000) has adopted a risk premium defined as an increase in the expected return

in exchange for a given amount of variance in order to evaluate risk and uncertainty

for chemical manufacturing plants (Al-Sharrah, 2006).



7. VALUE-AT-RISK (VAR) AND CONDITIONAL-VALUE-AT-RISK

(CVAR)

Figure 1 expresses the idea about VaR and CVaR.

Probability
Density

Loss

Figure 1: VaR and CVaR illustration

According to Rockafellar and Uryasev (2002), Value-atRisk (VaR) can informally

be defined as a maximum loss in a specified period with some confidence level,

except a (e.g., confidence level = 95%, period = 1 week). Formally, a -VaR is the a-

percentile of the loss distribution. a-VaR is a smallest value such that probability

that loss exceeds or equals to this value is bigger or equals to a. It suffers, however,

from being unstable and difficult to work with numerically when losses are not

normally distributed.

CVaR (Mean Excess Loss, Mean Shortfall or Tail VaR) is a risk assessment

technique used to reduce the probability a portfolio will incur high losses. CVaR is

performed by taking the likelihood (at a specific confidence level, example, 0.95 or

0.99, etc...) that a specific loss will exceed the value at risk (VaR). In mathematical

point of view, CVaR is derived by taking a weighted average between the VaR and

losses exceeding the VaR. CVaR maintains consistency with VaR by yielding the

same results in limited settings where VaR computations are tractable, i.e., for



normal distribution. Most importantly for applications, CVaR can be expressed by a

remarkable minimization formula. This formula can readily be incorporated into

problems of optimization with respect to the decision vector x e Xthat are designed

to minimize risk or shape in within the bounds. Significant shortcuts are thereby

achieved while preserving crucial problem features like convexity.

8. MONTE CARLO SIMULATION APPROACH BASED ON SAMPLE

AVERAGE APPROXIMATION (SAA)

Two first step of SAA algorithm/steps proposed by Santoso et al. (2005):

Stepl: Generate M independent samples each of size N. For each sample solve the

corresponding SAA problem

min^jcV^teO^/)} (12)

Step 2: Compute minimum number of scenario

Step 3: Apply risk measure into the model

(Referred to chapter 3 for more detail about the mathematical equation)

10



9. PROCESS FLOW NETWORK

Crude Oil

Z

g

<

H

Q

>-

x7
-i *n

Naphtha

Jet Fuel

*8

Gas Oil

CF

Xi4

*15

*12

v*13

> ^20

u

u

J. *I6

' l *18

u JC,7

1 ' X\s
-^10

Residuum
FUEL OIL BLENDING

x2

Gasoline

*3

Naphtha

X4

Jet Fuel

JCs

Heating Oil

x6

Fuel Oil

Figure 2: Process flow network

Table 2: Material balance around the units in the process flow network

Material balance

-0.40X14+X16=0 (13)

-0.55X14+X]7 -0 (14)

-0.05XI4+X20=0 (15)

0.5X2-Xn =0 (16)

0.5X2-X16=0 (17)

0.75X5-X12=0 (18)

0.25X5-X18 =0 (19)

-X7+X3+Xn =0 (20)

-X8+X12+X!3=0 (21)

-X9+X14+X15=0 (22)

-X17+Xl8+X]9 =0 (23)

-X10-X13-X15-Xl9+X5 =0 (24)

Materials and saleable products are divided into three groups

• Demand uncertainty (Xjd): X2, X3, X4, X5, X6

11



• Yield uncertainty (X\y): X4, X7, Xg, X9, Xio

• Price uncertainty (XiP): Xi, X2, X3, X4, X5, Xe, X(4

12



CHAPTER 3

METHODOLOGY

1. OPTIMIZATION PROBLEM

a) Objective

MAD: max z=E[zQ] -^MAD^ -E[^]-Q3MADZq, or

CVaR : max z=E[z0] - QfiVaR^ ~E[Q - Q3CVaR^

b) Variables

• X;: material and saleable products

• Objective value: z ($/day)

• Penalty demand: Z(ID, S,K)

• Penalty yield: Y(IY,S, M)

c) Constrained equations of the model

X,< 15,000 (25)

X14<2,500 (26)

-Yield(S,IY)xX1+XIY+Y(IY,S,,Ml,)-Y(iY,S,,M2,)=0 (27)

XID+Z(IY,S/Kl>Z(ro,S,'K2>=0 (28)

And equation from eq.(13) to eq.(24)

Lower and upper bounds of all the materials and products flowrate:

13



Table 3: Lower bound and upper bound of all material and products flow rate

x, Lower bound Upper bound

X! 12,500 15000

x2 2000 2700

x3 625 1100

X4 1875 2300

x5 1700 1700

x6 6175 9500

x7 1625 1950

x8 2750 3300

x9 2500 3000

Xio 3750 3000

Xi, 1000 1350

X12 1275 1275

Xi3 1475 3300

X14 2500 2500

X15 0 3000

X16 1000 1200

X17 1375 1650

X18 425 425

X19 950 1650

X20 125 150

2 MONTE CARLO SIMULATION APPROACH BASED ON SAMPLE

AVERAGE APPROXIMATION (SAA)

In this work, we adopt the Monte Carlo simulation approach for scenario generation

based on the Sample Average Approximation (SAA) method (Shapiro, 2000;

Shapiro and Homem-de-Mello , 1998; You and Grossmann, 2008) proposed by

Santoso et al. (2005). The procedure involved is as follows:

Stepl:

A relatively small number of scenarios (for example, 50 scenarios) with their

associated probabilities are randomly and independently generated for the uncertain

parameters of prices, demands, and yields. (This data is otherwise obtained from

plant historical data.) The resulting stochastic model (a linear program) with the

objective function given in (4) or (5) is solved to determine the optimal stochastic

profit with its corresponding material flowrates.

14



max profit= E[z] =£ Z P*cvxi ~S P* ZZfe+SZw,M
iel seS seS te/ kzK /e/ meM

*[*,] ^[5]

E[z] = E[z0]-E&] (29)

Step 2:

From the stochastic profit in step 1 and materials's flowrate in step 1, Monte

Carlo sampling variance estimator is calculated:

5("} K 5-1
Wherez^^c^x--^

• Confidence interval H of 1-a is given as:

zanS(n) r -i , 2a/25(n)

I(*H-*.)J
s=l (30)

LJ Vs LJ Vs
(31)

The minimum number of scenarios N that is theoretically required to obtain

an optimal solution is determined using the relation below:

N =

Where:

H

~l2

(32)

Za/2 = 1-96 at confidence interval (1-a) = 95% (Assuming za/z is

standard normal deviate such that \-zal2 satisfies for a standard

normal distributed variable z~N(0, 1), Pr(z^a/2) = 1-072

Numerical experiments indicate that well controlled choice of the sample sizes can

significantly reduce the computational time and improve the accuracy of obtained

solutions.

15



Step 3:

Risk measure using the metrics of MAD and CVaR is incorporated in a new

stochastic model with the scenarios given by the minimum number of scenarios N,

in which the N number of scenarios are generated as a new set of independent

random samples of the uncertain parameters.

A new stochastic model is formulated based on minimum number of scenarios N

with the incorporation of the risk measure of MAD and CVaR, respectively,

3. GENERAL FORMULATION OF STOCHASTIC REFINERY PLANNING

WITH RISK EXPRESSED IN TERMS OF MAD

Konno and Koshizuka (2005), Konno and Yamazaki (1991), LI risk of mean-

absolute deviation as a measure of deviation from the expected profit. Thus, the

objective function of the model is reformulated as follow:

MAD(x) =£
n n

2>./*y -E TRJXJ
>i . -'"' J

(33)

In our case, the rate of return R in (33) is replaced by unit price or unit cost of

materials (crude oil and refinery products) and x refers to the production flow rate of

materials in a refinery. Therefore, the formulation of the MAD term becomes:

MAD(z0) =£[|z0>,-£[z0][

= E

stS
YuPsZ0,t
StS

ZQ,s ~ / ,ftZ0..<
seSS€S

MAD(z0) =5>-
ssS (£/ fe/ SES

(34)

16



The expectation operator or mean of a discrete probability of deterministic profit is

given by:

£[zo] =ZI A"V^ (35)
is/ seS

Where z0 =£c(i,*ff, (36)
isIP

Khor et al. 2007, MAD^ =£ P, x^-£/>a (37)
se5 seS

where ^ = Z S ^A,* +S 2 fc^,*,* V5 e^
iel keK iel meM

demand uncertainty penalty yield uncertainty penalty

4. GENERAL FORMULATION OF STOCHASTIC REFINERY PLANNING

WITH RISK EXPRESSED IN TERMS OF CVAR

Rockafellar and Uryasev (2002) define Conditional Value-at-risk for continuous

distribution function:

Fa{x,VaR) =VaR+-l—\YL {f^9y^)-VaR) (38)

With discrete probability distribution in y, CVaR is written as:

Fa(x,VaR) =VaR +-^-Y,IJP^f^yi^-VaR) <39)I-a ,-e/ ssS-

Applying the concept of CVaR into the recourse terms:

max2 =£[z0]-eiCVaRZo-£,[^]-e3CVaR5

a) CVaRz : Risk measure for uncertainty in price of crude oil and refinery

products

CVaR(zJ =VaR, +-!_££A(C/A -VaR,) (40)

b) CVaR4: Risk measure for uncertainty in market demand and production

yield.

17



CVaR4-VaR2 +l+«,?/' Z Z dukzi,s,k +Z Z ft>^-,5,m ~VaR2
is/ keK is/ msAf

(41)

Put eq. (40) and (41) into (5), we achieve the stochastic model in which risk

elements are expressed in term of CVaR.



CHAPTER 4

NUMERICAL RESULTS AND DISCUSSIONS

1. NUMERICAL RESULT

1.1 Determining minimum number of scenarios by Monte Carlo simulation

approach based on the sample average approximation (SAA) technique to

generate the scenarios

We illustrate the risk modeling approach proposed in this paper on the numerical

example taken from Khor et al. (2008) and provide major details on the

implementation using GAMS/CONOPT3.

Table 4: Flowrates of crude oil and saleable products

Xi 7574 Xn 1000

x2 2000 X]2 1274

x3 950 X13 1877

X4 2300 X14 2500

x5 1698 Xis 500

x6 6327 Xi6 1000

x7 1950 Xn 1375

x8 3151 Xi8 424.6

x9 3000 X19 950.4

Xio 3000 X20 125

Table 5: Summary of computational results

Monte Carlo sampling variance 489.4

estimator S(n)

Lower bound of confidence interval H 965.3

Upper bound of confidence interval H 1237

Range of confidence interval H 271.3

Minimum number of scenarios N 13
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1.2 Solving stochastic programming model to maximize profit with MAD as

risk measurement

z, = -8.02x, +18.63x2 +8x3 +12.46x4 +14.56x5 +6.05x6-1.49x14

z2 =-7.97x, +18.39x2 + 8.06x3 +12.46x4 +14.4x5 +5.96x6 -1.5x14
(42)

2B = -8.01x, + 18.65x2 +8.O6X3 +12.59x4 + 14.48x5 + 6.01x6 -1.49x14

with probability: pi = 0.0038, p2 = 0.0986, ..., pi3 = 0.000752

The expectation of deterministic profit:

^[20] =(0.0038)(-8.02x] +18.63*, +8x3 +12.46x4 +14.56x5 +6.05xfl -1.49x]4)

+(0.0986)(-7.97x, +18.39x, +8.06x3 +12.46x, +14.4xs +5.96x6 -1.5x14)

+

+(0.000752)(-8.01x1 +18.65x: +8.06x3 +12.59x4 +14.48x5 +6.01x6 -1.49xI4)

(43)

MAD(z0) =(0.0038)

•(0.0986)

(-8.02x, +18.63x, +8x3 +12.46x4 +14.56x; +6.05xfi -1.49xM)

(0.0038)(-8.02x, +18.63x, +8x3 +12.46x4 +14.56x5 +6.05x6 -1.49jcm)

+(0.0986) (-7.97*, +18.39x, +8.06x3 +12.46x4 +14.4x; +5.96x6 -1.5x]4)

_+.... +(0.000752) (-8.0U, +18.65x2 +8.06x3 +I2.59x4 +14.48x5 +6.01x6 - 1.49x14)

(-7.97x, +18.39x3 +8.06x3 +12.46x4 +14.4x5 +5.96x6 -1.5x]4)

(0.0038)(-8.02x] +18.63x, +8x3 +12.46x4 +14.56x5 +6.05x6 -1.49x|4)

+(0.0986)(-7.97X, +18.39x3 +8.06x3 +12.46x4 +14.4x5 +5.96x6 -1.5x14)

+.... +(0.000752)(-8.01xl +18.65x^ +8.06x3 +12.59x4 +14.48x5 +6.01x6 -1.49x|4)_

(-8.0b;, +18.65x2 +8.06x3 +12.59x4 +14.48x5 +6.01x6 -l-49x14)

(0.000752)
(0.0038)(-8.02x, +18.63x2 +8x3 +12.46x4 +14.56x5 +6.05x6 -1.49x]4)

+(0.0986)(-7.97x, +18.39x2 +8.06x3 +12.46x4 +14.4x5 +5.96x6 -1.5x14)

A-8.01x, +18.65x2 +8.06x3 +12.59x4 +14.48x5 +6.01x, A
-....+(0.000752)

-1.49x,

(44)
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The expectation of the objective function value is given by the original objective

fimction itself: The corresponding expression for expected profit is formulated for

the 13 scenarios that have been randomly generated. Finally, computational results

obtained from using GAMS/CONOPT3 gives a maximum profit of $681.95/day.

1.3 Solving stochastic programming to maximize profit with CVaR as risk

measurement

The following is the procedure for developing a loss distribution in order to

determine the value for the parameter VaR.

• Determining VaRi from loss distribution of deterministic profit

The value-at-risk for uncertainty in prices ofproducts and raw materials is named

VaRi

• For each scenario, computing the deterministic profit by :

ielP

• The probability of each scenario is randomly generated using the

Monte Carlo simulation method based on pseudorandom number

generation.

• The computed values zs are sorted in ascending order

Table 6: Deterministic profit and cumulative distribution function

Scenario Net price P(S)

Cumulative Distribution

function

S7 70555.504 0.00 0.00

S8 70871.458 0.05 0.05

S9 71084.146 0.15 0.21

S2 71164.304 0.10 0.30

S10 71228.051 0.15 0.46

S4 71260.214 0.06 0.52

S12 71449.532 0.11 0.62

Sll 71467.178 0.10 0.72

S3 71942.881 0.08 0.80

S5 72060.121 0.03 0.84

SI 72066.503 0.00 0.84

S13 72165.129 0.00 0.84

S6 72443.891 0.16 1.00
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The plot of cumulative distribution function against the sorted

deterministic profit values is developed to obtain a representation of

the loss distribution. At confidence interval of (1-0!) = 0.95, we can

read off the value of VaR} from the loss distribution plot, as depicted

in Figures 3, which represents the penalty for uncertainty in prices

and in both demands and yields, respectively
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From Figure 3, at (1-a) = 0.95, VaRi = 7.235E+4

• Determining VaR2 from loss distribution by demand and yield penalty.

Similar to the procedure for determining VaR], the following is the procedure for

developing a loss distribution in order to determine the value for the parameter

VaR2:

• For each scenario, penalty of market demand for products and

production yield is calculated:

^ =E Z di,kZi,s,k +Z S aUmyi,s,m V5 £S
iel keK iel meM

• The computed values of ^s are sorted in ascending order. The

cumulative distribution function for each scenario is developed:

Table 7: Penalty ofyield and demand and cumulative distribution function

Scenario

Yield+demand

penalty P(S)
Cumulative probability

distribution

S3 165329.67 0.034 0.03

S4 165499.64 0.004 0.04

S5 165726.18 0.061 0.10

S12 166547.84 0.151 0.25

SI 166691.09 0.106 0.36

S10 167287.10 0.082 0.44

S8 167367.18 0.002 0.44

S2 169472.01 0.152 0.59

S7 169630.23 0.098 0.69

S9 170024.86 0.099 0.79

Sll 173081.81 0.157 0.95

S13 173398.64 0.052 1.00

S6 173912.20 0.001 1.00

The cumulative distribution function is plotted against the sorted

computed values to obtain a representation of the loss distribution.

At confidence interval of (1-a) = 0.95, we can read off the value of

VaR2 from the loss distribution plot, as depicted in Figures 4, which

represents the penalty for uncertainty in prices and in both demands

and yields, respectively.
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From Figure 4, at (1-ot) - 0.95, Var2 = 1.731E+5

From VaRi and vaR2 values, apply model in eq. (5) in Gams, (Profit)r

$20,820.665/day

Summary of the numerical result

Table 8: (Values of) Parameters

Goal programming weight for risk measure on price

uncertainty

0.0001

Goal programming weight for risk measure on

demand and yield uncertainty

0.01

Confidence level p 0.95

Table 9: Computational results

Optimal solution for model with MAD $681.95/day

VaRi 7.235E+4

VaR2 1.731E+5

Optimal solution for model with CVaR $20 800.66/day

Expected profit E[zq] for model with CVaR $23343.776/day

Table 10: Computational statistics of GAMS implementation for determining
optimal solutions of MAD- and CVaR-based mean-risk stochastic program

Solver

Number of continuous variables

Number of constraints

CPU time/resource usage

Number of iterations
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Table 11: Model statistics

Number of continuous variables 281

Number of constraints 145

Table 12: Model performance

Solver

CPU time/resource usage

Number of iterations

2. DISCUSSION

GAMS/CONOPT3

(trivial)

20 (using MAD)

101 (using CVaR)

Table 13: Comparison between MAD and CVaR

Factor MAD CVaR

1. Considers confidence level

(95%, 99%, etc..)

No Yes

2. Differentiates distribution of

objective function (whether

discrete or continuous)

No Yes

3. Computationalproperty Hon-.:

HnzaAs
Linear. Applicable to large portfolios

& large number of scenarios with

little computational resources

From Table 13, we see that CVaR is more advantageous than MAD because the

former takes into account the confidence level and the class of distribution of the

objective function (whether it is a discrete or continuous distribution). Moreover,

the actual form ofMAD isnonlinear (although it can be linearized, for example, as

proposed by Papahristodoulou and Dotzauer (2004)) while CVaR is a linear
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function. Furthermore, in the case of a large number of scenarios, but with the

availability of limited computational resource, CVaR is more useful thanMAD.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

Stochastic programming is one of the ultimate operation research models for

optimization that involves uncertainties. The input values such as materials flowrate,

shortfall and surplus of demand and yield penalty are determined maximize the

profit.

Monte Carlo simulation approach based on Sample Average Approximation (SAA)

is a powerful method to estimate the minimum number of scenarios required to

compute the optimal solution, because it can capture all the possible scenarios and is

thus representative of all scenarios. This procedure saves time and is convenient

particularly if a large number of scenarios have been sampled. In this work, for the

risk metric of MAD, we have verified that the same optimal solution as for the

mean-risk stochastic model with 13 scenarios is obtained if larger numbers of

scenarios are considered, for instance, for 100 and 300 scenarios. A similar

experiment on CVaR is currently ongoing.

This work attempts to consider the use of the risk metrics of MAD and CVaR for the

explicit handling of economic and operational risk management in refineryplanning

problems under uncertainty in prices, demands, and yields.

The risk is expressed in form of Mean Absolute Deviation - a measure of

operational risk provides the computational non-linear property. However, the non

linear property can be linearised.

Conditional Value-at Risk used in conjunction with Value- at Risk is convenient for

large portfolios and a large number of scenarios with relatively small computation
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resources. Moreover, CVaR is a convex function. In petroleum refinery planning,

the recourse term is written in form of CVaR.

Conditional Value-at Risk is more advantageous than Mean Absolute Deviation

because Conditional Value-at Risk consider the confidence interval, the distribution

of objective function (discrete or continuous)

2. RECOMMENDATIONS

The recommendations for future studies on the work presented here include the

following:

• To develop a systematic approach for considering the weight factors B\ and

82 in the stochastic programming framework.

• To develop an approach for obtaining the Pareto-optimal curve for a mean-

risk stochastic program with MAD and CVaR as risk measures.
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APPENDIX

1. PROGRAM CODE

*STITTLE: FINDING THE NUMBER OF SCENARIO

SETS

1 material /1*20/

M YEILD SHOREALL OR SURPLUS /Ml , M2/

K DEMAND SHORT FALL OR SURPLUS /Kl, K2/

Sonecho >taskin.txt

dset=S mg=Sheet4!A16:A28 rdim=l

dset=IDmg=Sheet4!B15:F15 cdim=l

dset=IYrng=Sheet4!H15:L15 cdim-1

dset=IPrng=Sheet4!N15:T15 cdim^l

pai=D rng=Sheet4!A15:F28 cdim=l rdim=l

par=Yieldmg=Sheet4!G15:L28 cdim=l rdim=l

par=Price rag=Sheet4!M15:T28 cdim=l rdim=l

par=Prng=Sheet4!U15:V28 rdim=l

Soffecho

Scall gdxxnv.exe CVaR.xls @taskin.txt

Sgdxin CVaR.gdx

Sets

S(*) scenario

ID(I) demand

IY(I) yeild

IP(I) price;

Sload S ID IY IP

display S, ID, IY, IP;

Parameters

D(S,ID) demand

Yield(S,IY) yield

Price(S,IP) price

P(S) probability

Sload D Yield Price P

display D, Yield, Price , P;

Sgdxin

Table Penalty_Demand<ID,K) TABLE OF PENALTY DEMAND

Kl K2

2 25 20
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3 17 13

4 5 4

5 6 5

6 10 8;

Table Penalty_Yield(IY,M) TABLE OF PENALTY YIELD

Ml M2

7 5 3

4 5 4

8 5 3

9 5 3

10 5 3;

Variables

OBJ Maximize Profit for Z {objective function value)

Varl

Var2

X(I);

Positive Variables

Y(IY,S,M) SHORT FALL OR SURPLUS FOR YEILD

Z(ID,S,K) SHORT FALL OR SURPLUS FOR DEMAND

Equations

OBJFNC Objective function

DEMAND(ID,S) Demand,

YIELD_CON(IY,S) Yield,

Feedi,

Feed 14,

PDUJ4J6,

PDUJ4J7,

PDU_14_20,

FB_2_11,

FB_2J6,

FB_5J2,

FB_5_18,

UB_8,

UBJ4,

UB_17,

UB_18,

UB 6

OBJFNC. OBJ =e= SUM«S,IP),P(S)*PRICE(S,IP)*X(IP)) -0.0001 *(72400+ (l/(i-

0.95))*SUM((S,IP),P(S)*(PRICE(S,IP)*X(IP)-72400)))-

SUM(S,P(S)*(SUM((ID,K),Penalty_Demand(ID,K)*Z(ID,S,K))+SUM((IY,M),Penalty_Yield(IY,M)*Y(IY,S,M)))).

0.01*( 173200

+ (1/(1 0.95))*SUM(S,P(S)*(SUM((ID,K), Penalty_Demand(ID,K)*Z(ID,S,K))

+SUM((IY,M),PenaIty_Yield(IY,M)*Y(IY,S,M))-173200)));
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♦•LIMITATIONS OF PLANT CAPACITY

FeedL. X(T)=L= 15000;

Feedl4.. X('14')=L=2500;

*Reformulated stochastic constraints to account for uncertain yield coefficient

YIELD_CON(IY,S).. -YIELD(S,IY)*X('r} + X(IY) + Y(IY,S;Mr) - Y(IY,S,'M2') =E= 0;

**CONSTRAINTS ON PRODUCTION DEMANDS

DEMAND(ID,S).. X(ID) + Z(ID,S,'K r)-Z(ID,S,'K2') =E= D(S,ID);

PDU_14_16.. -0.40*X('14,) + X(,16')=E=0;

PDUJ4J7.. -0.55*X('14') + X('17')=E=0;

PDU_14_20.. -0.05*X('34') + X('20') =E- 0;

FB_2_11.. 0.5*X('2') -X('ll') =E= 0;

FB_2_16.. 0.5*X('2') - X('16') =E= 0;

FB__5_12.. 0.75*X('5') - X('12') =E= 0;

FB_5_18.. 0.25*X('5')-X('18')=E=0;

UB_8- -X('7') + X('3') + X('l 3') =E= 0;

UBJ4.. -X('8') + X('12') + X('I3') =E= 0;

UBJ7.. -X('9') + X('14') + X('I5') =E= 0;

UB_18.. -X('17') + X('18') +X('19') =E= 0;

UB_6.. -X('IO') - X('13') -XC15') - X('19') + X('6') =E= 0;

*DECISION VARIABLE BOUNDS

Y.UP(IY,S,M)=1500;

*Initial values

X.L{T)= 12500;

X.L{'2') = 2000;

X.L{'3') = 625;

X.L('4')=1875;

X.L('5')=1700;

X.L('6') = 6175;

X.L('7')=1625;

X.LC81) = 2750;

X.L('9') = 2500;

X.L('10,)-3750

X.L('ir) = 1000

X.L('12')=1275

X.L('13')=1475

X.L('14') = 2500

X.L('15') = 0;

X.L('16')=1000;

X.L('17') = 1375;

X.L('I8') = 425;

X.L('19') = 950;

X.L('20')=125;

Upper bounds of variables
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X.UP('1') =

X.UP(T) =

X.UP('3') -

X.UP('4') =

X.UP('5') =

X.UP('6') =

X.UP('7') =

X.UP('8') =

X.UP('9') =

X.UPCIO1)

x.up('ir)

X.UP('12')

X.UP('I3')

X.UP('14')

X.UP('15')

X.UP('lff)

X.UPC1T)

x.upcis')

x.upc^*)

X.UP{'20')

15000

2700

1100

2300

1700

9500

1950

3300

3000

= 3000

= 1350

= 1275

= 3300

= 2500

= 3000

= 1200

= 1650

= 425;

= 1650;

= 150;

MODEL CVaR /al!/;

SOLVECVaR USINGLP MAXIMIZING OBJ;

DISPLAY OBJ.L, X.L, Y.L, Z.L ;

EXECUTE_UNLOAD 'CVaR.GDX'.OBJ;

EXECUTE 'GDXXRW.EXE CVaR.GDX VAR=OBJ RNG=SHEET4!A68':

2. EXPECTED PROFIT

SOLVE

HODEL FindEprofit

TYPE LP

SOLVER CPLEX

S U H H A R Y

OBJECTIVE E_profit

DIRECTION MAXIMIZE

FROM LINE 118

**** SOLVER STATUS

**** MODEL STATUS

**** OBJECTIVE VALUE

1 NORMAL COMPLETION

1 OPTIMAL

1100.9109
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3. VARIANCE ESTIMATOR

SOLVE

MODEL FindSn_Sn

TYPE DNLP

SOLVER CONOPT

SUMMARY

OBJECTIVE Sn

DIRECTION MINIMIZE

FROM LINE 143

'*** SOLVER STATUS

'*** MODEL STATUS

'*** OBJECTIVE VALUE

1 NORMAL COMPLETION

2 LOCALLY OPTIMAL

503.0991

4. MAXIMUM PROFIT WITH MAD AS RISK MEASUREMENT

**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

•GAMS Rev 146 XS6/MS Windows 02/19/05 10:07:35 Page
General Algebraic Modeling System
Execution

2 00 VARIABLE OBJ.L SSI.954 Maximize Profit for Z

(objective function v

alue)

5. MAXIMUM PROFIT WITH CVAR AS RISK MEASUREMENT

**** REPORT SUHHARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

JGAHS Rev 146 XS6/HS Windows 03/23/05 15:35:02 Page
General Algebraic Modeling System
Execution

213 VARIABLE OBJ.L

37

20320.665 Haximise Profit for Z
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6. MATERIALS' FLOWRATE

204 VARIABLE X.L

I 7574.363, 2 2000.000, 3 950.000, 4 2300.000, 5 1689.393
6 633 6.419, 7 1950.000, 8 3150.813, 9 3000.000, 10 3000.000
II 1000.000, 12 1267.045, 13 1883.768, 14 2500.000, 15 500.000
16 1000.000, 17 1375.000, 18 422.348, 19 952.652, 20 125.000
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