# PEDESTRIANS CHARATERISTICS AT TRAFFIC LIGHT SIGNAL INTERSECTION IN IPOH

# NOOR AILEEN BT MOHD ADNAN

# CIVIL ENGINEERING UNIVERSITI TEKNOLOGI PETRONAS JUNE 2006

Pedestrians Characteristics at Traffic Light Signal Intersection in Ipoh

by

Noor Aileen Bt Mohd Adnan

Dissertation submitted in partial fulfillment of The requirements for the Bachelor of Engineering (Hons) (Civil Engineering)

**JUNE 2006** 

Universiti Teknologi PETRONAS Bandar seri Iskandar 31750 Tronoh Perak Darul Ridzuan

# **CERTIFICATION OF APPROVAL**

Pedestrians Characteristics at Traffic Light Signal Intersection in Ipoh

by

Noor Aileen Bt Mohd Adnan

A project dissertation submitted to the Civil Engineering Program Universiti Teknologi PETRONAS In partial fulfillment for the requirement of the BACHELOR OF CIVIL ENGINEERING (Hons)

Approved by,

(Assoc. Prof. Dr. Madzlan b Napiah)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK JUNE 2006

# **CERTIFICATION OF ORIGINALITY**

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

\_\_\_\_\_ (NOOR AILEEN BT MOHD ADNAN)

# ACKNOWLEDMENT

First and utmost, the author would like to express her deepest gratitude to Assoc. Prof. Dr Madzlan B Napiah, Final Year Project Supervisor from Civil Engineering Department; University Technology of Petronas for continuous guiding and providing valuable advices needed to complete this project. Without his support and guidance, it would be difficult to complete this project and achieved the targeted objectives.

Appreciation also goes to Final Year Project Committee especially Miss Koh Moi Ing, the FYP co-ordinator for all her efforts in managing all FYP students in completing their tasks.

Not forgetting to all the traffic lab technicians who had in one-way or another, contributed to the thesis as well as providing valuable information on various matters during the entire duration of the project.

# TABLE OF CONTENT

| LIST OF FIGURE                                                                                                                                                                                      | 3                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| LIST OF TABLE                                                                                                                                                                                       | 3                                                                    |
| ABSTRACT                                                                                                                                                                                            | 4                                                                    |
| CHAPTER 1                                                                                                                                                                                           |                                                                      |
| INTRODUCTION                                                                                                                                                                                        | 5                                                                    |
| 1.1       BACKGROUND OF PROJECT         1.2       PROBLEM STATEMENT         1.3       OBJECTIVE         1.3.1       Scope of Study                                                                  | 6<br>8                                                               |
| CHAPTER 2                                                                                                                                                                                           |                                                                      |
| LITERATURE REVIEW                                                                                                                                                                                   | 10                                                                   |
| <ul> <li>2.1 INTRODUCTION</li> <li>2.2 AASIDRA SOFTWARE</li> <li>2.3 WARRANTS FOR TRAFFIC SIGNALS</li></ul>                                                                                         | 11<br>12<br>13<br>14<br>14<br>15<br>16<br>16<br>16<br>17<br>17<br>18 |
| CHAPTER 3                                                                                                                                                                                           |                                                                      |
| METHODOLOGY                                                                                                                                                                                         |                                                                      |
| <ul> <li>3.1 INTRODUCTION.</li> <li>3.2 RECONNAISSANCE SURVEY.</li> <li>3.2.1 Location 1: Jalan Sultan Yusuf.</li> <li>3.2.2 Location 2: Jalan Dato Onn Jaafar - Jalan Sultan Idris Shah</li> </ul> | 21<br>22                                                             |
| 3.3 VIDEO SURVEYS                                                                                                                                                                                   |                                                                      |
| <ul> <li>3.4 MANUAL COUNT</li> <li>3.5 DATA COLLECTION</li> </ul>                                                                                                                                   |                                                                      |
| 3.5.1 Location 1: Jalan Sultan Yusuf.                                                                                                                                                               |                                                                      |
| 3.5.2 Location 2: Jalan Dato Onn Jaafar Jalan Sultan Idris Shah                                                                                                                                     | 26                                                                   |
| 3.6 DATA PROCESSING AND DISCUSSION                                                                                                                                                                  |                                                                      |
| 3.7 LEVEL OF SERVICE RECOMMENDATION                                                                                                                                                                 | 28                                                                   |

# **CHAPTER 4**

| RESUI | T AND D | ISCUSSION                               |      |
|-------|---------|-----------------------------------------|------|
| 4.1   | INTRODU | JCTION                                  |      |
| 4.2   |         | DLLECTED FROM SITE SURVEYS              |      |
| 4.3   | DELAY T | IME FOR VEHICLE                         |      |
| 4.4   | DELAY T | IME FOR PEDESTRIAN                      |      |
| 4.5   | COMPLIA | NCE AND NON-COMPLIANCE                  |      |
| 4.6   | CROSSIN | G TIME                                  |      |
| 4.7   | PEDESTR | IAN SPEED                               |      |
| CHAP  | TER 5   |                                         |      |
| JUNCT | TON ANA | LYSIS                                   |      |
| 5.1   | INTRODU | ICTION                                  |      |
| 5.2   | LOCATIO | N 1                                     |      |
| 5.3   | LOCATIC | N 2                                     |      |
| CHAP? | FER 6   |                                         |      |
| CONC  | LUSIONS | AND RECOMMENDATIONS                     |      |
| 6.1   | CONCLU  | SIONS                                   |      |
| 6.2   | RECOMM  | ENDATIONS                               |      |
| REFER | ENCES   | ••••••••••••••••••••••••••••••••••••••• |      |
| APPEN | NDIX A  | DATA COLLECTION AT LOCATE               | ON 1 |
| APPEN | DIX B   | DATA COLLECTION AT LOCATI               | ON 2 |

# LIST OF FIGURE

| Figure 1: Types of push-button traffic signalized system | 11 |
|----------------------------------------------------------|----|
| Figure 2: Non-compliance pedestrian                      | 17 |
| Figure 3: Location 1                                     |    |
| Figure 4: Pedestrian Crossing at Jalan Sultan Yusuf      |    |
| Figure 5: Location 2                                     |    |
| Figure 6: Delay time for location 1 and 2                |    |
| Figure 7: Comparison of crossing time                    |    |
|                                                          |    |

# LIST OF TABLE

| Table 1: Average Pedestrian Delays at Traffic Signals    | 15 |
|----------------------------------------------------------|----|
| Table 2: Average Motor Vehicle Delays at Traffic Signals | 16 |
| Table 3: Level-of-service definitions for VEHICLES       | 18 |
| Table 4: Pedestrian level-of-service on walkway          | 18 |
| Table 5: Description of Level of Service                 | 19 |
| Table 6: Geometrical Data on both site surveys           | 24 |
| Table 7: Data collected at site survey                   | 29 |
| Table 8: Delay time for vehicle                          | 30 |
| Table 9: Compliance and Non-compliance                   | 31 |
| Table 10: Pedestrian Crossing time                       | 32 |
| Table 11: Speed of pedestrian                            |    |
| Table 12: Data analyzed at Location 1                    | 36 |
| Table 13: Data analyzed at Location 2                    | 37 |

# ABSTRACT

Pedestrian crossing is one of the greatest challenges for the traffic and safety engineering communities. Lack of facilities for pedestrian caused fatal accidents involving pedestrians especially at intersections where there is high volume of vehicles. Many major roads in Malaysia are ignoring the facilities for pedestrian to cross the road. Therefore, many pedestrians risk their live to cross the roads even though they knew the danger and risk they have to take. Concerning pedestrian fatality at intersection, nowadays a lot of facilities for pedestrians have been provided in order to increase the safety of pedestrian at signalized intersection. These include the pedestrian crossing lane, traffic system for pedestrians and provided safe place for pedestrian to cross the road. By adding facilities at traffic light signal, the delays for vehicle will be higher and this can caused heavy congestion. On the other hand, if the delays time for pedestrian is high, the possibility of non-compliance pedestrian will increase.

This project studied the characteristic of the pedestrians in term of delays and compliancy at two selected signalized intersections. Traffic survey was conducted to study the performance of the traffic signal with the existence of pedestrian facilities at the two intersections selected. Two types of traffic signal for pedestrians were used namely pushbutton system which located at Jalan Sultan Yusuf and fixed-time system which located at Jalan Dato Onn Jaafar – Jalan Sultan Idris Shah. The performance of the road as well as performance of pedestrian crossing was analyzed using SIDRA software. Finally, recommendations on how to improve the intersection were proposed.

The average walking speed for pedestrian is 1.6 m/s for free-flow walking. The average walking speed is 1.28 m/s and 1.56 m/s for both traffic systems. It can be concluded that the average walking speed at the intersections is quite normal. Non-compliance pedestrians at the intersection are quite low at both sites. For Jalan Sultan Yusuf, the LOS for pedestrian is B while for vehicle is D. For Jalan Dato Onn Jaafar – Jalan Sultan Yusuf the LOS for pedestrian and vehicle is B and D, respectively.

# CHAPTER 1 INTRODUCTION

# 1.1 Background of Project

In designing the traffic light at the intersections, pedestrian's aspect, especially in Malaysia, is given less emphasizes. Most of the intersection, do not consider the safety of the pedestrians. Therefore, the accidents involving pedestrians are very high in Malaysia. Hazardous intersection types for pedestrian crossings include high-volume, high-speed and multilane intersections with complex signal phasing or without any traffic control at all. Pedestrians are at risk even at simple stop sign or yield sign intersections because of the common disregard of traffic control devices by motorists. Pedestrians have not been accorded equal status with vehicles at intersections. Roadways have been designed and constructed primarily to accommodate vehicular traffic rather than pedestrians.

Pedestrians' factor is one of the most important factors in traffic management in transportation accommodation system, especially in the big city, shopping areas and urban areas. Traffic management takes two considerations for pedestrian which are the safety of the pedestrians and the smoothness of the traffic.

Traffic signal control at a junction reduces the conflict between traffic streams. The aim of good traffic signal design is to optimize traffic throughout at the junction whilst addressing the objective of improved highway safety. This includes giving full consideration to the needs and demand for pedestrian flow at the junction. Traffic signals are the most common form of control for important junctions within an urban highway network. The widespread use of traffic signal control can be attributed to a number of factors, including:

(i) Signals make the most effective use of road space where development is intense

- (ii) Signals provide inherent flexibility in coping with variable and changing traffic patterns
- (iii) Signals can be coordinated on an area-wide basis, so as to minimize overall delays through a highway network (known as Urban Traffic Control UTC)
- (iv) Signal junctions are usually safer for pedestrians than other forms of junction control, as positive pedestrian crossing periods can be provided within the signal stage sequence.

Pedestrian crossing lane at the signalized intersection is the most commonly used especially in city center. In general, there are three signs shown for pedestrian crossing signal which are:

- (i) <u>Green light signal with pedestrians walking symbol</u>
   This sign shows that the pedestrians can cross the road safely as the traffic signal for vehicles are red. This green light signal shows the time for pedestrian to move from the curb of road and cross the road. In certain country, the traffic lights are designed to produce a sound for blind people.
- (ii) <u>Green light flashing with pedestrian walking symbol</u>

This also called clearance time for pedestrians. The time designed should make sure pedestrians can cross the road safely.

(iii) <u>Red light with pedestrian waiting symbol</u>
 The symbol represents time the pedestrians are not allowed to cross the road.
 This time is called delay time for pedestrians. This means green light signal for vehicles.

## 1.2 Problem Statement

Roadways have been designed and constructed primarily to accommodate vehicular traffic rather than pedestrians. Traffic improvements that include widening streets, adding lanes, and using traffic engineering solutions that increase vehicular efficiency can decrease pedestrian safety.

6

A high percentage of pedestrians, especially in large urban areas, regularly violate pedestrian traffic control and place themselves at risk of collisions with motor vehicles.<sup>1</sup>

About one-third of fatal collisions with pedestrians are the result of pedestrians disobeying intersection traffic control or making dangerous judgments in attempting to cross a street.<sup>2</sup> Pedestrian traffic control violations generally receive low levels of enforcement.

The design and improvement of roadways often fail to meet the needs of pedestrians of all ages and capabilities for safely crossing intersections, including older persons, young children and those with impaired vision or difficulty in walking. Many intersection reconstruction projects and traffic control installations have increased the distances that one must walk to cross at an intersection. This is quite difficult especially for older people to walk faster at wider lane. Intersection signal timings may be too short to permit safe intersection crossings. Traffic engineers may use a walking speed that is too fast for many pedestrians in determining the necessary time for pedestrians to cross the street. Traffic engineers may assume walking speed for one group not including the children and older people. The speed for younger and healthy people will vary according of group of people.

Crash data consistently show that collisions with pedestrians occur far more often with turning vehicles than with straight-through traffic. Left-turning vehicles are more often involved in pedestrian accidents than right-turning vehicles, partly because drivers are not able to see pedestrians to the left as well.<sup>3</sup>

Pedestrians involved in crashes are more likely to be killed as vehicle speed increases. The fatality rate for a pedestrian hit by a car at 20 mph is 5 percent. The fatality rate rises to 80 percent when vehicle speed is increased to 40 mph.<sup>4</sup>

Right turn on red (RTOR) contributes to pedestrian crashes because it creates reduced pedestrian opportunities to cross intersections without having to confront turning vehicles.

7

Major issues related to pedestrians and signalized intersections include:

- (i) Seemingly arbitrary length of Walk and flashing Don't Walk cycles.
- Pros and cons of lengthening flashing Don't Walk to accommodate slower pedestrians.
- (iii) Safety trade-off of shortened pedestrian phase implemented to enhance vehicular right turns
- (iv) Fairness of laws that allow motorists to enter an intersection on the yellow while prohibiting pedestrians from doing so during flashing Don't Walk.
- (v) Trade-off between motor traffic delays and pedestrian delays at actuated pedestrian crossings.
- (vi) Integrating pedestrian recall and pedestrian actuation in way pedestrians will understand.

In designing and operating intersections that are attentive to the needs of pedestrians, the following considerations should be addressed:

- (i) Minimizing time and distance pedestrians need to cross roadway.
- (ii) Making pedestrian movements more predictable through the use of crosswalks and signalization

# 1.3 Objective

The main objective of this project is to study the characteristic of pedestrians in term of the speed of pedestrians; pedestrians who obey the traffic signal and the delay time of pedestrians need to wait at the intersection. The level of service for pedestrian as well as foe vehicle will be determined in order to observe the performance of the pedestrian crossing and what the effect of its existence to the level of service for vehicles. If the performance of that intersection is not good, the proposal to improve the level of service and safety at the traffic light signal intersection will be identified.

# 1.3.1 Scope of Study

The study will involve the following:

(i.) Site survey determination

Site surveys will be selected within Ipoh area. The factors taken into consideration in order to conduct the survey were high volume of pedestrian and high delay time for pedestrians.

(ii.) Data Collection

Pedestrian speed, pedestrian flow rate, pedestrian delays and compliance and noncompliance pedestrians will be determined.

# (iii.) Data Analysis

Data collected will be analyzed by using software SIDRA. Results from analysis will determine the LOS for both pedestrians and vehicle movements.

# CHAPTER 2 LITERATURE REVIEW

## 2.1 Introduction

Pedestrian activity can be a major component in urban street capacity analysis, and pedestrian characteristics are an important factor in the design and operation of transportation systems. Concentrated pedestrians movement occurs at public events, in and near transit terminals, high-rise buildings, department stores, theaters, parking garages, and other major traffic generators. The concentration of pedestrian activity at street corners and crosswalks makes them critical traffic links for both sidewalks and street networks. An overloaded corner or crosswalk not only affects pedestrian convenience, but can only delay vehicle turning movements, thereby reducing the capacity of the intersection and connecting street.<sup>1</sup>

Speed is an important level-of-service criterion because it can be easily observed and measured. Photographic studies show that pedestrian movement on sidewalks is affected by the presence of other pedestrians, even areas above 40 sq ft/ped. At 60 sq ft/ped, pedestrians have been observed walking in a checkerboard pattern, rather than directly behind or alongside each other. These same observations suggest<sup>11</sup> that up to 100 sq ft/ped are required before completely free movement occurs without conflicts, and that at 130 sq ft/ped, individual pedestrians are no longer influenced by others. Bunching or "platooning" does not completely disappear until space is about 500 sq ft/ ped or higher.<sup>6</sup>

#### Push-button basis

Pelican (pedestrian light controlled) crossings signals remain at green to drivers and red to pedestrians until pedestrian activates a push-button to secure a crossing phase; vehicles must then stop for a red signal, even if there are no pedestrians use the crossing. Figure 1 shows the type push-button system which available in Ipoh.



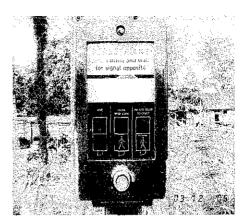



Figure 1: Push-button traffic signalized system

# Fixed-time basis

Initially, all pelican signals operated on a fixed-time basis, and then vehicle-actuation was initiated on roads with 85<sup>th</sup> percentile>56 km/h. The principle of vehicle-actuation means that, following the expiry of a preset minimum green to vehicles, the change to pedestrian priority is initiated when a suitable gap in the vehicular stream is detected or when a vehicle maximum running time expires. A pelican signal has an upper limit on the time that a crossing may be occupied by pedestrians; this reduces the delays to vehicles in locales with high pedestrian flows. Vehicle-actuated pelicans are used at locations with high vehicle approach speeds and/or where there are significant numbers of elderly pedestrians.

# 2.2 aaSIDRA software

The aaSIDRA or Traffic SIDRA (Signalised & unsignalised Intersection Design and Research Aid) software is for use as an aid for design and evaluation of the following intersection types:

- (i) Signalised intersections (fixed-time / pre-timed and actuated),
- (ii) Roundabouts,
- (iii) Two-way stop sign control,
- (iv) All-way stop sign control, and
- (v) Give-way (yield) sign-control.

aaSIDRA uses detailed analytical traffic models coupled with an iterative approximation method to provide estimates of capacity and performance statistics (delay, queue length, stop rate, etc). Although aaSIDRA is a single intersection analysis package, it can perform traffic signal analysis as an isolated intersection (default) or as a coordinated intersection by specifying platooned arrival data.

aaSIDRA output includes Level of Service (LOS) results based on the concept described in the US Highway Capacity Manual (HCM) and various other publications. The following options are offered for LOS determination:

- (i) Delay (HCM),
- (ii) Degree of saturation,
- (iii) Delay (HCM) and degree of saturation,
- (iv) Delay (RTA NSW),
- (v) ICU method.

#### 2.3 Warrants for Traffic Signals

The Manual on Uniform Traffic Control Devices (MUTCD) specifies eight different warrants that justify the installation of a traffic signal. Traffic signal control should not be implemented if none of the warrants met. As the project is concentrating on the pedestrians, the explanation regarding Pedestrians Warrant is explained in brief.

- (i) Warrant 1: Eight-Hour Vehicular Volume
- (ii) Warrant 2: Four-Hour Vehicular Volume
- (iii) Warrant 3: Peak Hour

# (iv) Warrant 4: Pedestrian

- (v) Warrant 5: School Crossing
- (iv) Warrant 6: Coordinated Signal System
- (v) Warrant 7: Crash Experience
- (vi) Warrant 8: Roadway Network

## 2.3.1 Pedestrian Warrant

The Pedestrian Warrant addresses situations in which the need for signalization is the frequency of vehicle-pedestrian conflicts and the inability of pedestrians to avoid such conflicts due to the volume of traffic present. Signals may be placed under this warrant at mid-block locations, as well as at intersections. If the traffic signal is justified at an intersection by this warrant only, it will usually be at least a semi-actuated signal (a full actuated signal is also a possibility at an isolated intersection) with pedestrian push-button and signal heads for pedestrians crossing the major street.

The Pedestrian Signal Warrant shall not be applied at locations where the distance to the nearest traffic control signal along the major street is less than 300ft, unless the proposed traffic control signal will not restrict the progressive movement of traffic. The criterion for pedestrian volume crossing the major roadway may be reduced as much as 50% if the average crossing speed of pedestrians is less than 4ft/s. If a traffic control signal is justified by both this signal warrant and a traffic engineering study, the traffic control signal shall be equipped with pedestrian signal heads conforming to requirements set forth.<sup>8</sup>

Pedestrian analysis uses some familiar terms, as well as others not used elsewhere in the manual. The pedestrian capacity terminologies used in this report are as followed:

- (i) Pedestrian speed is the average pedestrian walking speed, generally expressed in units of meter per second
- (ii) Pedestrian flow rate is the number of pedestrians passing a point per unit time, expressed as pedestrians per 15 minutes or pedestrians per minute; 'point' is referred to a perpendicular line of sight across the width of a walkway.
- (iii) Unit width flow is the average flow of pedestrians per unit of effective walkway width, expressed as pedestrians per minutes per meter.
- (iv) Platoon refers to number of pedestrians walking together in a group
- (v) Pedestrian density is the average number of pedestrians per unit or area within a walkway or queuing area, expressed as pedestrians per square meter.

- (vi) Pedestrians speed is the average area provided for each pedestrian in a walkway or queuing area, expressed in terms of square meter per pedestrians.
- (vii) Pedestrian delay is the time the pedestrian has to wait at the curb when the traffic signalized crossing is red.
- (viii) Compliance is the pedestrian which is obey the traffic light and cross only when the traffic signal for pedestrian crossing turns green.
- (ix) Non-compliance is pedestrian who does not obey the traffic light for pedestrians.Pedestrians who cross road when the traffic light is red.

#### 2.4 Characteristic of Pedestrian

#### 2.4.1 Pedestrian Walking Speed

Speed is an important design element that will determine sufficient time require for crossing manoeuvre before traffic begins to move. This is an aspect which requires careful local study if the best solution is to be provided, and is likely to be both time-of-day and area dependent. Some researches into road crossing speeds have indicated an average value in the range of 1.2 m/s to 1.35 m/s at busy crossings with a mix of pedestrian age groups. Average walking speeds approximating to the free-flow walking speeds in pedestrians concourses of 1.6 m/s can be expected.

Pedestrian speed is measured by dividing the length of the cross lane with time traveled by the pedestrian. This is an important element to determine the minimum flash time so that the last pedestrian can cross the road safely with minimum delay time for the vehicles.

# **Quantifying Pedestrian Walk Times**

A lot of researches have been conducted regarding pedestrian's speed. Manual Uniform Traffic Control Devices (MUTCD, 1988), proposes the speed for pedestrian is between 0.76 - 1.83 m/s. The average walking speed is 1.3 meter per second (m/s) for men and 1.1 meter per second (m/s) for women. A half-mile walk at this rate would take 10 minutes without stopping.<sup>8</sup> A pedestrian walking for this distance across typical block

lengths of one-eighth mile must cross four streets. If streets are narrow, traffic volume is light, and all intersections have four-way stops at which every vehicle yields the right-ofway to pedestrians, a person walking would experience a minimum of delay. There would still be some delay to look both ways before crossing to see if the street was clear. Table 1 and Table 2 shows average delays for a variety of signal cycle lengths and pedestrian green phases.

| Cycle length | Green phase for | pedestrians                                                                                                              | Average delay |
|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| (seconds)    | (seconds)       |                                                                                                                          | (seconds)     |
| 60           | 15              | aya ta ar ina kata data di kata na kata data data data data data data dat                                                | 17.25         |
| 60           | 10              | al fan 'n de bernel werne dat dat in dit her dit her de bernet.<br>1<br>1<br>1<br>1                                      | 21.25         |
| 90           | 15              | an na heral e stan na na heral na heral<br>1                                                                             | 31.67         |
| 90           | 10              | ina ang mang mang nang pinang nang mang mang mang mang mang mang                                                         | 36.00         |
| 120          | 15              | 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                          | 46.375        |
| 120          | 10              | ni ni manani na mana<br>Manani | 50.875        |

**Table 1: Average Pedestrian Delays at Traffic Signals** 

#### 2.4.1 Motor Vehicle Delay

The Institute of Transportation Engineers (ITE) has calculated vehicle delays at signalized intersections and found that "when capacity is below about 75 percent of maximum flow, the green phases and cycle length have the most pronounced effect on average delay. The calculations assume a saturation flow of 1.11 vehicles per second (veh/sec) (4,000 veh/hr) and an approach flow of 0.264 veh/sec (950 veh/hr)." Table 3 shows the average delay increase for vehicle traffic as the green phase is reduced.<sup>9</sup>

| Cycle length | Green phase for pedestrians                                                                                                | Average delay<br>(seconds)                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| (seconds)    | (seconds)                                                                                                                  | كالمحيطة أحجاجه ومحالم ومكلما خالفي وأكاب ووالتي وراكب وكأمر وواكب والزور |
| 60           | 15                                                                                                                         | 52.12                                                                     |
| 60           | 20                                                                                                                         | 19.07                                                                     |
| 60           | .25                                                                                                                        | 14.21                                                                     |
| 60           | 30                                                                                                                         | 10.44                                                                     |
| 60           | en en la contra cont<br>135<br> | 7.29                                                                      |
| 90           | 25                                                                                                                         | 36.27                                                                     |
| 90           | 35                                                                                                                         | 22.86                                                                     |
| 90           | 45                                                                                                                         | 15.33                                                                     |
| 90           | 55                                                                                                                         | 9.34                                                                      |
| 90           | 65                                                                                                                         | 4.85                                                                      |
| 120          | 35                                                                                                                         | 42.47                                                                     |
| 120          | 45                                                                                                                         | 31.50                                                                     |
| 120          | 55                                                                                                                         | 23.69                                                                     |
| 120          | 65                                                                                                                         | 17.03                                                                     |
| 120          | 75                                                                                                                         | 11.46                                                                     |

Table 2: Average Motor Vehicle Delays at Traffic Signals

## 2.4.2 Walking distances

Walking distance is an important design aspect, since the shorter the distance, the higher the probability that it will be made on foot. Pedestrians tend to use the crossing lane at traffic signalized intersection when the flow of vehicle is too heavy. It is dangerous to cross at the busy intersection, though.

# 2.4.3 Non-Compliance (Pedestrians did not followed the rule before crossing the road)

Pedestrians tend to take the least energy route (the shortest distance and the flattest path) between two points. They tend to cross road with the most convenient locations rather than at designated crossings. According to American Association of State Highway and Transportation Officials (AASHTO) roadway design policy  $(2001)^{10}$ , pedestrians usually do not walk over 1 mile to work or over 0.5 mile to transit stop. About 80 percent of the distances traveled by pedestrian will be less than 0.5 mile. When the delay time for the

pedestrian is too high, the pedestrians tend to cross the road without using the crossing lane provided. They tend to cross the road when the volume of vehicle is lessened. Figure 2 illustrates a common non-compliance scenario.



Figure 2: Non-compliance pedestrian

# 2.5 Level of Service

The Level of Service (LOS) expresses the performance of a highway at traffic volumes less than capacity. LOS for class I highway (project site) is based on two measures which is Percent Time Spent Following (PTSF) and the Average Travel Speed (ATS). At an operational level of analysis, LOS is determined based on existing or future traffic conditions and specific roadway characteristics. Level of service (LOS) is a quality measure, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience. A given LOS (A, B, C, D, E, and F) comprises or describes a range of conditions or values always given from the perspective of the facility user.

# 2.5.1 Level of Service (for vehicle)

The Level of Service (LOS) expresses the performance of a highway at traffic volumes less than capacity.

|                     | Control delay per vehicle in seconds (6)<br>(including geometric delay) |                                          |
|---------------------|-------------------------------------------------------------------------|------------------------------------------|
| Level of<br>Service | Signals and<br>Roundabouts                                              | Stop Signs and<br>Give-Way (Yielo) Signs |
| A                   | d≤10                                                                    | ci≤10                                    |
| 9                   | 10 < d ≤ 20                                                             | 10 ≤ d ≤ 15                              |
| C                   | 2C < d ≤ 35                                                             | 15 < d ≤ 25                              |
| <u>-</u>            | 35 < d ≤ 55                                                             | 25 ≪ d ≤ 35                              |
| Ε                   | 55 ≤ <b>d</b> ≤ 60                                                      | 35 ≪ d ≤ 50                              |
| Ŧ                   | 80 < d                                                                  | 50 < d                                   |

Table 3: Level-of-service definitions for VEHICLES

# 2.5 Level of Service (for pedestrians)

The definitions for pedestrian LOS are given in Table 4 while Table 5 gives the description of the definitions.

# Table 4: Pedestrian level-of-service on walkway

| Level of service | Space (sq ft / | Exp                    | ected flows and sp        | nd speeds     |  |
|------------------|----------------|------------------------|---------------------------|---------------|--|
|                  | ped)           | Ave. speed<br>(ft/min) | Flow rate<br>(ped/min/ft) | Vol/cap ratio |  |
| A                | ≥130           | ≥260                   | ≤2                        | ≤0.08         |  |
| B                | ≥40            | ≥250                   | ≤7                        | ≤0.28         |  |
| C                | ≥24            | ≥240                   | ≤10                       | ≤0.40         |  |
| D                | ≥15            | ≥225                   | ≤15                       | ≤0.60         |  |
| E                | ≥6             | ≥150                   | ≤25                       | ≤1.00         |  |
| F                | <6             | <150                   | Var                       | iable         |  |

# Table 5: Description of Level of Service

| Level of service | Description                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Α                | Pedestrians move in desired paths without altering their<br>movements in response to other pedestrians. Walking speeds are<br>freely selected, and conflicts between pedestrians are likely                                                                                                                                                                                                  |  |  |
| В                | Sufficient area is provided to allow pedestrians to freely select<br>walking speeds, to bypass other pedestrians, and to avoid crossing<br>conflicts with others. At this level, pedestrians begin to be aware of<br>other pedestrians, and to respond to their presence in the selection<br>of walking path.                                                                                |  |  |
| С                | Sufficient space is available to select normal walking speeds, and<br>to bypass other pedestrians in primarily unidirectional streams.<br>Where reverse direction or crossing movement exist, minor<br>conflicts will occur, and speeds and volume will be somewhat<br>lower.                                                                                                                |  |  |
| D                | Freedom to select individual walking speed and to bypass other<br>pedestrian is restricted. Where crossing or reverse-flow movements<br>exist, the probability of conflict is high, and its avoidance requires<br>frequent changes in speed and position.                                                                                                                                    |  |  |
| E                | Virtually all pedestrians would have their normal walking speed<br>restricted, requiring frequent adjustment of gait. Insufficient space<br>is provided for passing of slower pedestrians. Cross or reverse-flow<br>movements are possible only with extreme difficulties. Design<br>volume approaches the limit of walkway capacity, with resulting<br>stoppages and interruptions of flow. |  |  |
| F                | All walking speeds are severely restricted, and forward progress is<br>made only by shuffling. There is frequent, unavoidable contact<br>with other pedestrians. Cross and reverse-flow movements are<br>virtually impossible. Space is more characteristic of queued<br>pedestrians than of moving pedestrian's stream.                                                                     |  |  |

# 2.6 Facilities for Pedestrians

Pedestrians may sometimes need an exclusive signal stage. The following warrant for the exclusive signal stage

- (i) The pedestrian flow across any one arm is 300 pedestrians per hour or more
- (ii) The turning traffic into any arm has an average headway of less than 5 seconds during its green time and is conflicting with a flow of more than 50 pedestrians per hour
- (iii) There are special circumstances such as significant numbers of elderly, infirm or disabled pedestrians.

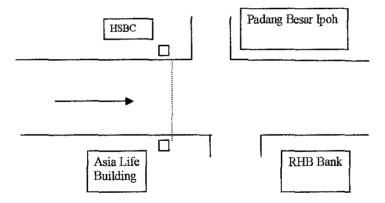
# CHAPTER 3 METHODOLOGY

## **3.1 Introduction**

The pre sampling data collections were determined according to two locations selected; Location 1 is at Jalan Sultan Yusuf which uses push-button system and Location 2 at Jalan Sultan Iskandar Shah which uses fixed-time system. The locations were selected based on high volume of vehicles use the road and pedestrians crossing the road.

## 3.2 Reconnaissance Survey

Cameras are set up at the site location identified. The duration for the survey is estimated to be 2 to 3 hours. The most suitable time to conduct the survey is during the peak hour as this time many pedestrians will be using the crossing lane.


A few site surveys had been examined in order to choose the suitable location for the survey. Locations selected should fulfill the important factors such as:

- (i) High volume of vehiclesThe site surveys selected are among the busy road within Ipoh area.
- (ii) High delay time for pedestrian
   The pedestrians have to wait for a long time to cross to road where the vehicles volume is high. This is referring to fixed time traffic light control system.
- (iii) High volume of pedestrians
   Usually the pedestrians will be using the crossing lane when the road is
   busy. The site surveys are selected based on high volume of the
   pedestrians using the crossing lane.

After visiting a few locations, two locations have been selected to conduct the surveys based on criteria mentioned above. First location is Jalan Sultan Yusuf which operated under push-button system and second location is at Jalan Sultan Dato Onn Jaafar – Jalan Sultan Idris Shah operated under fixed-time system. The suitable time for conducting survey was observed to be from 8 to 11 am on Jalan Sultan Iskandar Shah and from 12 to 3 pm on Jalan Sultan Yusuf.

## 3.2.1 Location 1: Jalan Sultan Yusuf

2 cameras were set up for the directions; to observe the volume of the vehicles and to collect data for pedestrian crossing. To estimate data using SIDRA, the volume for pedestrians as well as vehicles must be collected at all direction. But, the pedestrian characteristic only focused at one traffic signal only which is next to BCB building. Figure 3 shows a schematic layout at Location 1 while Figure 4 pictures the said location.



**Figure 3: Location 1** 

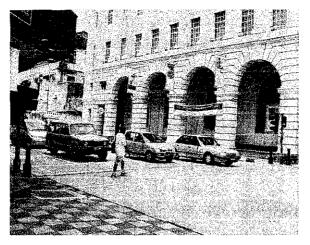



Figure 4: Pedestrian Crossing at Jalan Sultan Yusuf

# 3.2.2 Location 2: Jalan Dato Onn Jaafar - Jalan Sultan Idris Shah

Data along Jalan Sultan Iskandar Shah can only be collected during morning time and the author did the site survey at 8.00 am till 11.00 am. The time is chosen as during lunch hour the traffic will be taken control by traffic police. This is to avoid heavy congestion along the road as many workers from nearby working areas will be out during lunch hour. During 3-hours of observation, many pedestrians were seen using the crossing lane to get to the other side of road. The location selected is a good place to do the survey as it is located near wet market, shopping area and near office area.

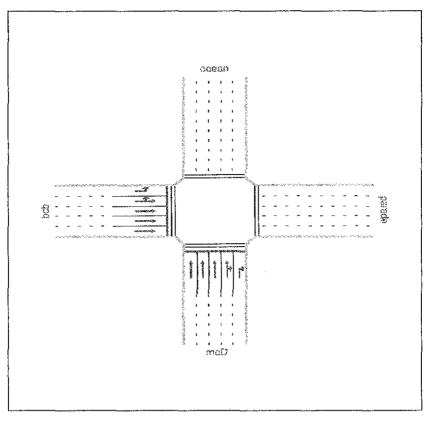



Figure 5: Location 2

The survey can only be conducted during non-peak hour time as at 1pm - 2pm and at 5pm - 6pm the traffic will be taken control by police. This is due to heavy congestion at the main roads within Ipoh city center during this hour. Figure 5 shows schematic layout at Location 2.

The characteristic and physical layout at both location are given in Table 6.

| Detail                 | Location 1  | Location 2 |
|------------------------|-------------|------------|
| Type of traffic signal | Push-button | Fixed time |
| Road length (m)        | 14.3        | 15.7       |
| No. of lane            | 5           | 5          |
| Flashing time (sec)    | 11.0        | 9.0        |

**Table 6: Geometrical Data on both site surveys** 

#### 3.3 Video surveys

Video recorders were used to take the pedestrian movement, together with their interaction with vehicles during periods of observation. The delays and behavior patterns are recorded such as reluctance of an elderly person to cross the road. The pedestrians crossing difficulties will be analyzed. Cameras are set up at the selected sites and video recordings taken of the pedestrian movement, together with vehicles where appropriate, during the selected observation periods.

#### 3.4 Manual count

Manual counts are concerned with counting the flow of pedestrians through a junction, across a road, or along section. Because it is important to determine conflicts with motor vehicles, vehicles counts are normally carried out at the same time. The time period in the day over which the counts are undertaken must coincide with the peak times of the activity of study. The day of the week made must be representative of the demand. School holidays, early closing, and special events should be avoided.

## 3.5 Data Collection

The data collection for both site study were done during the weekdays because during this daytime, many pedestrians are staff working at site study area use the pedestrian lane to cross the roads.

#### 3.5.1 Location 1: Jalan Sultan Yusuf

Pedestrian crossing lane at Jalan Sultan Yusuf located in between of Asia Life building, RHB Bank and HSBC Bank. This location is one of the main roads in Ipoh and many pedestrians use this lane to cross the road especially during weekdays. This crossing lane used push-button basis which the button must be pushed first and the pedestrians have to wait until the green light signal for pedestrians before crossing the road. The pre-sampling data collection was conducted on 13<sup>th</sup> of October 2005 from 12.00 pm till 3.00 pm. The target to get the maximum volume of pedestrians is during the peak hour, the time when most of pedestrians will be using the road. The location for the push-button system is chosen based on a few criteria including:

- Pedestrian displays and push buttons are required at all signalized intersections unless the pedestrian movement is prohibited.
- (ii) Crosswalks should be located as close as possible to the intersection.
- (iii) Push buttons shall not be placed more than 5 feet from the normal path of the pedestrian, and no more than 15 feet from the center point at the end of the associated crosswalk.
- (iv) Special consideration should be given to people with disabilities when locating the push buttons. When the push button is installed on a vehicle signal standard, a paved path at least 4-feet wide from the shoulder or sidewalk to the standard shall be provided
- (v) If installed behind a guardrail, pedestrian push button posts should not be greater than 1.5 feet from the face of the guardrail.

# 3.5.2 Location 2: Jalan Dato Onn Jaafar – Jalan Sultan Idris Shah

On 29<sup>th</sup> September 2005, traffic survey was conducted at Jalan Sultan Iskandar Shah to collect the data needed for the fixed time traffic system. The location is selected based on the following factors:

- (i) Traffic controlled signal is a fixed-time basis
- Undivided five-lane road with uniform width (and similar width between sites).
   Different pedestrian behaviour is expected at signalized crossing on divided roads due to some pedestrians stopping in the median area or due to the use of staged crossing.
- (iii) Sufficient pedestrian flow. A balance judgment was applied between flows too high or too low to ensure the integrity of the data was maintained. Excess flows would overwhelm the surveyor causing data to be missed. On the other hand,

flows that are very low could have the reverse effect of the observers being underworked and becoming distracted.

(iv) Surveys were conducted at pedestrian actuated mid-block signalized crossings.
 Such crossings are usually located where high pedestrian activity is concentrated along short sections of road carrying high traffic volumes.

2 cameras were set up for the directions; to observe the volume of the vehicles and to collect data for pedestrian crossing. The survey was conducted at 1200 pm which was peak hour time. Unfortunately, during 15 minutes of observation, the traffic was taken control by traffic police. Therefore, the survey had to stop

The author did a second observation at Jalan Sultan Iskandar Shah on 6<sup>th</sup> October. This time, the author used only 1 camera as the crossing lane is concentrated only from one direction. The time taken was at 8-11a.m.

For data collection in the laboratory, the video taken at the site surveys were observed to gather data for pedestrians as well as vehicles. The data were collected as mentioned below:

- (i) Time taken for pedestrian to cross the road during green phase
- (ii) Volume of compliance and non-compliance pedestrians
- (iii) Capacity of vehicle along the roads

A few problems had occurred during the collection of the data such as:

- (i) A lot of pedestrians tend to wait at the corner of the building or far from the curb of the road. As the camera must focus on the pedestrians' traffic signal and at the same time focus at the road, the pedestrian movement could not be captured and the data collection for delay time is difficult to collect.
- (ii) The cameras itself must be located at sheltered location as it was a rainy day.

- (iii) Some of pedestrian preferred not to use the lane of crossing but cross the road in between the vehicles when the vehicles stopped at the red light. This is quite difficult to capture as the cameras were only limited at certain angel only.
- (iv) Only one camera was available at one junction and it was difficult to capture all the characteristic of pedestrians at the junction.
- (v) Two cameras were used to capture for four pedestrian crossings at Jalan Dato Onn Jaafar – Jalan Sultan Idris Shah. The cameras must be set up at the same time to get the same data for vehicles data collection.

# 3.6 Data processing and Discussion

The data which have been measured at the site locations or at the laboratory were processed by using Microsoft Excel as attached in Appendix A. Graphs show the characteristic of pedestrian while crossing the push-button basis and fixed-time basis.

#### 3.7 Level of Service Recommendation

Based on the result from delay time for pedestrian and vehicle and speed of the pedestrian crossing the road, the LOS recommendation at location 1 and 2 will be discussed. Geometry factors involved are minimum green time for pedestrian, cycle time, setting of fixed time system and length of pedestrian crossing lane.

# CHAPTER 4 RESULT AND DISCUSSION

#### 4.1 Introduction

Collection of pedestrian data using the crossing lane at traffic signalized system can be determined after all the data have been analyzed whether at the site locations or at the laboratory. These include the delay time of the vehicle, delay time for pedestrian and speed of the pedestrian while crossing the roads.

# 4.2 Data Collected from site Surveys

The traffic operation at both crossing lane are different from one another. Therefore, signal phasing at both locations are different. Table 7 shows the pedestrian signal phasing from location 1 and Location 2.

| Location                                | 1           | 2          |
|-----------------------------------------|-------------|------------|
| Туре                                    | Push-Button | Fixed-time |
| Minimum Green time for pedestrian (sec) | 6           | 50         |
| Minimum green time for<br>vehicle (sec) | 25          | 35         |
| Flash time (sec)                        | 12          | 8          |
| All red (sec)                           | 2           | 2          |

# **Table 7: Pedestrian Signal Phasing**

#### 4.3 Delay time for vehicle

The delay time for pedestrian at location 1 which is at Jalan Sultan Yusuf is low compared to Location 2. This is due to difference of red phase between the two locations. At location 1, the delay time for vehicle is 20 seconds only when a pedestrian had pushed the button and the vehicles have to give way to pedestrians to cross the road. but, for location 2, the red phase is 50 seconds in which the vehicles have to give way to pedestrians to cross as well as vehicles from the another approach way. Table 8 shows delay time at both locations.

| Location       | 1           | 2          |
|----------------|-------------|------------|
| Туре           | Push-button | Fixed-time |
| Time of survey | 9 - 10am    | 1 – 2 pm   |
| Delay Max      | 20          | 50         |

## **Table 8: Delay Time for both locations**

## 4.4 Delay time for pedestrian

High delay time for pedestrian at any intersection will make the pedestrian became inpatient and cross the road without waiting for pedestrian crossing signal changed to green. This is one of the factors many crashes involved pedestrian at the intersection. To avoid this, the delay time must be reduced to the minimal point.

In this survey, pedestrians' delay time is time that pedestrians have to wait while waiting at the curb until the pedestrian had entered the crossing lane. The data collected did not include for non-compliance pedestrians. This survey is done assuming the delay time was not interrupted by other factors.

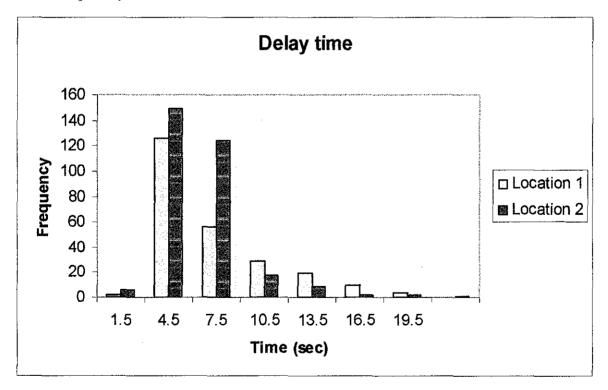



Figure 6: Delay time for location 1 and 2

Figure 6 shows the delay time for both locations. From the graph, it obviously shows that the high percentage of delay time for both locations is below 6.0 seconds. Location 1 which is operated under push-button system shows that high delay time compared to Location 2 which operated under fixed-time system. Waiting time in 5 - 6 seconds is considered normal according to Highway Capacity Manual, TRB 1994.

Pedestrians at Location 1 have to wait longer at the crossing traffic signal as compared to Location 2. Even though the pedestrian had pushed the button, but as the system gave the priority to vehicle, the pedestrians have to wait. This is due to different traffic operation

# 4.5 Compliance and Non-compliance

There are some of the pedestrian who are not patient and could not wait until the traffic crossing signal turns green. This is one of the common problems faced at the intersection. This is very dangerous and risky for these kinds of pedestrians. Compliance pedestrian is pedestrian which is obeyed and only cross the road when the signal turns green, whilst non-compliance pedestrian is pedestrian who did not obeyed and cross the road when there are no vehicle even though the traffic crossing signal is red. Table 9 gives the percentage of compliance and non compliance at both locations.

| Location           | 1      | 2     |
|--------------------|--------|-------|
| Time of survey     | 9-10am | 1-2pm |
| Compliance (%)     | 93.5   | 96.9  |
| Non-compliance (%) | 6.5    | 2.1   |
| Total Pedestrian   | 263    | 320   |

#### **Table 9: Compliance and Non-compliance**

It shows that pedestrian at location 1 tend to cross the road without waiting for the traffic signal. This is because the delay time at this location is higher compared to location 2. The push-button system gives priority to the vehicles. Long cycle time cat this location caused an wider gap between the vehicles which means the pedestrians can cross the road when there is sufficient gap.

#### 4.6 Crossing time

In designing pedestrian crossing traffic signal, the time taken for the pedestrian to safely cross the road must be sufficient. Crossing time is time taken by a pedestrian to cross the road at crossing lane provided under traffic light signal system. In this study, the consideration for crossing time is when the pedestrian step into the crossing lane till he/she left the lane completely. The data is obtained based on video captured during the survey time and a re shown in Table 10. Meanwhile, the profile of pedestrian crossing time at both locations is shown in Figure 7.

| Location                       | 1           | 2          |
|--------------------------------|-------------|------------|
| Type system                    | Push-button | Fixed-time |
| Time of study                  | 1 – 2 pm    | 9 – 10 am  |
| Lane width (m)                 | 14.3        | 15.7       |
| Average crossing time (sec)    | 9.06        | 10.49      |
| Minimum crossing time<br>(sec) | 3.7         | 5.0        |
| Maximum crossing time<br>(sec) | 16.8        | 19.7       |

#### **Table 10: Pedestrian Crossing time**

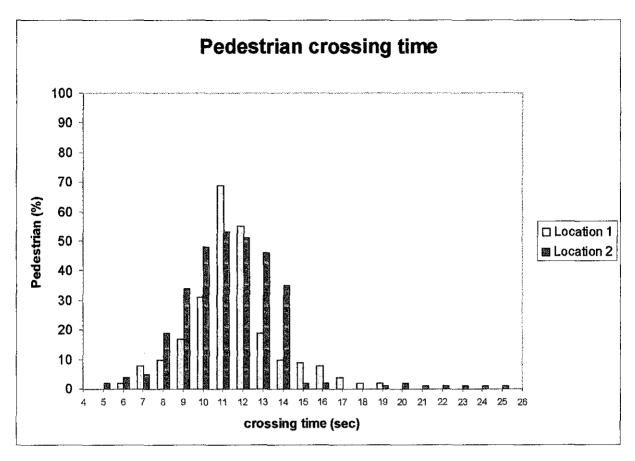



Figure 7: Comparison of crossing time

#### 4.7 Pedestrian speed

Pedestrian speed is one of an important element for designing traffic system for pedestrians. This will ensure all the pedestrians cross the road safely when flashing time occurred. In this survey, the speed of pedestrian is determined by dividing the width of the road with time taken for pedestrian crossing the road. Table 11 shows the summary of pedestrian for both locations.

Table 11: Speed of pedestrian

| Location               | 1           | 2          |  |  |  |
|------------------------|-------------|------------|--|--|--|
| Type of traffic signal | Push-button | Fixed-time |  |  |  |
| Minimum speed (m/s)    | 0.86        | 0.8        |  |  |  |
| Maximum speed (m/s)    | 3.86        | 3.14       |  |  |  |
| Average Speed          | 1.28        | 1,56       |  |  |  |
| Total pedestrian       | 246         | 310        |  |  |  |

Detailed results for speed of pedestrians for location 1 and 2 are attached in Appendix A and Appendix B.

#### CHAPTER 5 JUNCTION ANALYSIS

#### 5.1 Introduction

Data analysis can also be determined by using aaSIDRA software to determine the level of service (LOS) for vehicles as well as pedestrians. In this part, the aaSIDRA analysis is used to analyze the efficiency of crossing traffic signal at two locations selected. To achieve the objective, the analyses of data at both locations were analyzed. Data obtained such as pedestrian and vehicle volume and also the geometrical characteristic of the traffic during the site survey will be used in this software.

#### 5.2 Location 1

Location 1 is located at Jalan Sultan Yusuf which uses the push-button system for pedestrians. Table 12 below shows the LOS for pedestrian and vehicle. From the result below, LOS is B for the pedestrian crossing signal at Jalan Sultan Yusuf is good for both pedestrians and vehicles. The average delay for pedestrian is slightly higher compared with average delay for vehicle. This is because; the push-button system gives priority to vehicles. Therefore, the delays for pedestrians are expected to be higher.

| کا نتایا اشد نشار سو بیس بیس   | io (g/C) 1<br>(<br>2nd | Flow<br>(veh ( | Cap.<br>veh | of I<br>Satn | Delay    | LOS |
|--------------------------------|------------------------|----------------|-------------|--------------|----------|-----|
| West: HSBC                     |                        |                |             |              |          |     |
| 11 T 0.438*                    |                        | -              | 4206        | 0.672*       | * 12.4   | В   |
|                                |                        |                |             | 0.672        | 12.4     | В   |
| Pedestrians<br>53 (Ped) 0.125* |                        | 259            | 1500        | 0.173        | <br>18.9 | В   |
|                                |                        | 259            | 1500        | 0.173        | 18.9     | В   |
| ALL VEHICLES:                  |                        |                |             | 0.672        |          | В   |
| INTERSECTION                   | (persons):             |                |             |              |          |     |

Table S.15 - CAPACITY AND LEVEL OF SERVICE

**Table 12: Data analyzed at Location 1** 

Based on the Table 12, the LOS for pedestrian crossing within one hour total flow period was LOS B. Meanwhile, for the vehicles flow, the LOS was found to be LOS B. In most of straight route, the LOS for vehicle should be LOS A as there is no other junction interfere with traffic light system and caused delay. But, in this case, even when it is a straight road, the LOS is low. This is due to the heavy traffic flow during the survey as the author chose peak hour time to do the survey. The LOS for pedestrians is quite low as the total volume of pedestrian crossing the road was quite high during the survey. This is because, most of pedestrians have to used the crossing lane to cross the road as the volume of vehicle is increasing especially during the peak hour time. Plus, the location of the road is situated between office areas. Therefore, during lunch hour most of people went out to get lunch.

Detailed results for location 1 are attached in Appendix A.

#### 5.3 Location 2

Location 2 is pedestrian crossing traffic signal which operates under fixed time system which is located at Jalan Dato Onn Jaafar – Jalan Sultan Idris Shah. Table 12 shows the data analyzed at the location.

|             | Green Time<br>Ratio (g/C)<br>1st 2nd<br>grn grn | Flow<br>(veh | Cap.<br>(veh | of D                                         | Delay      | LOS   |
|-------------|-------------------------------------------------|--------------|--------------|----------------------------------------------|------------|-------|
| South: mcD  |                                                 |              |              |                                              |            |       |
| 2 T         | 0.213*                                          |              |              |                                              |            | D     |
| 3 R         | 0.213                                           | 535          | 622          | 0.860*                                       | 50.2       | D     |
|             |                                                 | 1731         | 2012         | 0.860                                        | 43.8       | D     |
| West: bcb   |                                                 |              |              | <u>₩₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ |            |       |
| 10 L        | 0.363                                           | 553          | 664          | 0.833                                        | 40.7       | D     |
| 11 T        | 0.363*                                          | 2324         | 2788         | 0.834                                        | 30.7       | С     |
|             |                                                 | 2877         | 3452         | 0.834                                        | 32.6       | С     |
| Pedestrians |                                                 |              |              |                                              | -          |       |
| 51 (Ped)    | 0.075*                                          | 328          | 900          | 0.364                                        | 34.2       | D     |
| 53 (Ped) (  | ).075                                           | 151          | 900          | 0.168                                        | 34.2       | D     |
| 55 (Ped) (  | 0.075                                           | 142          | 900          | 0.158                                        | 34.2       | D     |
| 57 (Ped) (  | 0.075                                           | 326          | 5 900        | 0.362                                        | 34.2       | 2 D   |
| -           |                                                 | 947          | 7 3600       | 0.364                                        | 34         | 1.2 D |
| ALL VEHI    | CLES:                                           | 46           | 08 54        | 63 0.8                                       | -<br>60 30 | 5.8 D |
| INTERSEC    | TION (persons)                                  | ): 78        | 59 54        | 63 0.8                                       | -<br>60 3  | 6.5   |

Table S.15 - CAPACITY AND LEVEL OF SERVICE

#### Table 13: Data analyzed at Location 2

It can be observed that the LOS for pedestrian and vehicle at all approaches are mostly LOS D. This is because the high average delays for pedestrian 34.2 sec and 40 - 50 seconds for vehicle from all approaches.

For location 2, the main focus of this survey is to study the pedestrian characteristic at one intersection only. But, as aaSIDRA software requirement is to calculate the LOS for that particular road, the data for all junctions must be collected. From what the author could observe, there is non-stop moving vehicle along this road as it is one of the main roads in Ipoh. It is became heavier traffic during lunch hour and when people started to leave the office to go home. It is not awkward if the LOS for pedestrians is low for most of the time.

Detailed results for location 2 are attached in Appendix B

#### CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

#### 6.1 Conclusions

According to Manual Uniform Traffic Control Devices the proposed average speed for pedestrian is 0.76 - 1.83 m/s. But, based on the result the average speed for location 1 and 2 is 1.28 m/s and 1.56 m/s which means the average speed at the site location is normal. Although the pedestrians were from different group of age, but still the average speed is not too fast or too slow.

Based on Table 1, the average delay for 60 seconds cycle length is 17.25 - 21.25 seconds. However, according to the survey the average delay is 20 seconds for push-button system and 50 seconds for fixed time.

A good level of service for traffic signal for pedestrians is when it can minimize the delay time for pedestrians and also for vehicles, guarantee the safety of pedestrians while crossing the road and provide sufficient area for the pedestrian to cross the road.

From the data collected, it can be concluded that level of service B at Jalan Sultan Yusuf achieved the best performance compared with LOS at Jalan Sultan Idris Shah which is LOS D for all approaches. Jalan Sultan Idris Shah uses fixed-time basis which is difficult to amend as it must consider geometrical condition as well as capacity of pedestrians and vehicles. The volume for vehicles and pedestrians can not be expected to be the same for every day but the locations were selected based on the assumption that locations of the site surveys will be high in both volumes. For location 1, the LOS for vehicle's users achieved good LOS. The volume of vehicle uses the road are less than the design capacity, while for the pedestrian minor conflict might occur as it was LOS B.

For location 2, the LOS for vehicle to go straight is LOS C that means it is not very smooth traffic while for pedestrians the LOS is D which means the high delay for pedestrians to cross the road.

The minimum green time at location 1 is 6 seconds and the flashing time is 12 seconds. Even though the flashing time is longer but this makes many pedestrians uneasy when they are unsure whether or not they will have enough time to finish crossing before the traffic pattern changes. Sometimes, they got panic and run when the flashing green phase appeared. Therefore, installation of traffic signal with countdown phase is practical to ensure the safety of the pedestrians and to increase the confidence of the pedestrians to cross the road even though the green light is flashing.

#### 6.2 Recommendations

The width of the lane should be wide enough to provide sufficient space to accommodate pedestrians from both directions. This is to avoid conflict between pedestrian and to reduce delay while in moving queue. In this survey, the width of the lane is 2 meter for both locations. The small width area caused many pedestrians chose not to walk within the lane. They prefer to walk outside the white line when crossing.

When green phase for pedestrian occurred, all the pedestrian will use the lane to cross. The capacities of the pedestrians are high during this time. Generally, two pedestrians who came from opposite direction needs 0.76 meter which means for two meters crossing lane, only 2 to 3 persons can walk simultaneously on the crossing lane. Based on Highway Capacity Manual, TRB 1994, the rule for designing lane width is 2 meter for minor road and 4 meter for major road. Both pedestrian lanes are located at major road with 5 lanes of roads. Therefore, the lane should be widening to 4 meter<sup>6</sup>.

On very wide intersections that require a long time to finish crossing, the flashing hand phase must be very long in duration, e.g. thirty seconds or more. Pedestrian countdown displays are experimental traffic control devices designed to inform pedestrians how many seconds they have left to finish crossing the street. The purpose of informing pedestrians of the remaining time is to keep pedestrians from panicking when they are on time while encouraging late pedestrians to hurry. At intersections with countdown timers, fewer pedestrians already in the intersection start run at the start of the flashing hand, but the number of pedestrians starting to cross after the flashing hand begins actually increases slightly over normal intersections. The countdown timers may make these late-crossing pedestrians more confident that they can make it across in time if they hurry.

This survey is an interesting topic for further studies. The author did the survey at oneway intersection only. It is recommended to do analysis on two-way traffic signalized system to observe the characteristic of pedestrian and to analyze the performance of that selected road. Jalan Sultan Idris Shah which located in front of the Maybank building is one of the examples which can be used as study area.

#### REFERENCES

- 1. Insurance Institute for Highway Safety, Q&A: Pedestrians, December 2000.
- 2. Fatality Analysis Reporting System, FARS, 2000.
- 3. Insurance Institute for Highway Safety, Q&A: Pedestrians, December 2000.
- 4. Insurance Institute for Highway Safety, Status Report 35 (5), May 13, 2000.
- 5. http://www.walkinginfo.org
- Highway Capacity Manual, (1994), Transportation Research Board, Washington,
   D.C
- 7. SIDRA user manual guide.pdf
- 8. Manual on Uniform Traffic Control Devices (MUTCD)
- 9. http://www.usroads.com/journals/p/rej/9710/re971002.htm
- 10. American Association of State Highway and Transportation Officials (AASHTO) roadway design policy (2001)
- 11. Hall. D, 1966

# APPENDIX A

## LOCATION 1 JALAN SULTAN YUSUF

- Pedestrian Data
- Traffic Data
- Data using SIDRA software

#### PEDESTRIAN DATA

Location : Jalan Sultan Yusuf

Pedestrian crossing system: Push-button system

Road length: 14.3 m

Green time: 6 seconds

Flashing time: 11 seconds

Time of survey: 1300 - 1400

|             | Class    |           | Percentage |                         |                                    |
|-------------|----------|-----------|------------|-------------------------|------------------------------------|
| Class (sec) | midvalue | Frequency | frequency  | Cumulative of frequency | Cumulative percentage of frequency |
| 0           | 0        | 0         | 0          | 0                       | 0                                  |
| 2.5 - 3.5   | 3        | 0         | 0          | 0                       | 0                                  |
| 3.5 - 4.5   | 4        | 2         | 0.81       | 2                       | 0.81                               |
| 4.5 - 5.5   | 5        | 8         | 3.25       | 10                      | 4.07                               |
| 5.5 - 6.5   | 6        | 10        | 4.07       | 20                      | 8.13                               |
| 6.5 - 7.5   | 7        | 17        | 6.91       | 37                      | 15.04                              |
| 7.5 - 8.5   | 8        | 31        | 12.60      | 68                      | 27.64                              |
| 8.5 - 9.5   | 9        | 69        | 28.05      | 137                     | 55.69                              |
| 9.5 - 10.5  | 10       | 55        | 22.36      | 192                     | 78.05                              |
| 10.5 - 11.5 | 11       | 19        | 7.72       | 211                     | 85.77                              |
| 11.5 - 12.5 | 12       | 10        | 4.07       | 221                     | 89.84                              |
| 12.5 -13.5  | 13       | 9         | 3.66       | 230                     | 93.50                              |
| 13.5 - 14.5 | 14       | 8         | 3.25       | 238                     | 96.75                              |
| 14.5 - 15.5 | 15       | 4         | 1.63       | 242                     | 98.37                              |
| 15.5 - 16,5 | 16       | 2         | 0.81       | 244                     | 99.19                              |
| 16.5 - 17.5 | 17       | 2         | 0.81       | 246                     | 100.00                             |
| <u></u>     | <u></u>  | 246       | 100.00     |                         |                                    |

#### Table 1: Pedestrian crossing time

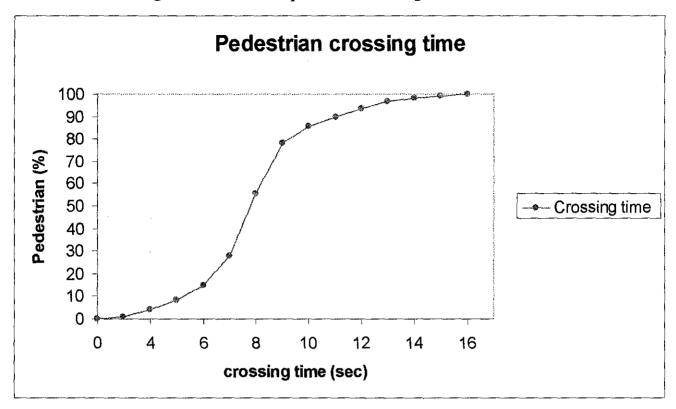
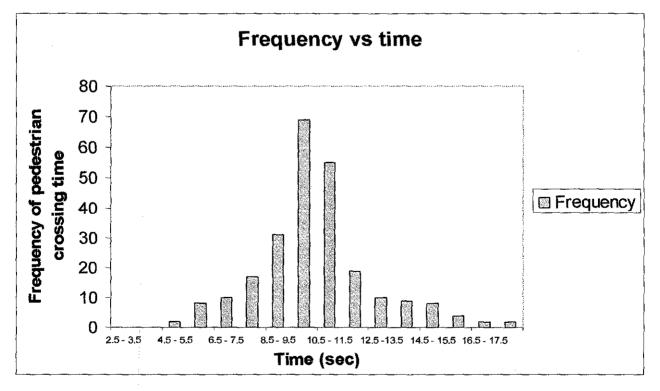




Figure 1: Cumulative pedestrian crossing time





| value         Freque           ).5         0           ).6         1           ).7         0           ).8         1           ).9         6           I.0         10           I.1         21 | ncy frequency<br>0<br>1<br>1<br>2<br>8                                                                                                                             | Percentage frequency           0.00           0.41           0.00           0.41                                                                                                                                                                                                                                 | frequency<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.7         0           0.8         1           0.9         6           1.0         10                                                                                                         | 2                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.810.961.010                                                                                                                                                                                  | 2                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ).9 6<br>I.0 10                                                                                                                                                                                |                                                                                                                                                                    | 0.41                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0 10                                                                                                                                                                                         | 8                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                |                                                                                                                                                                    | 2,44                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 21                                                                                                                                                                                           | 18                                                                                                                                                                 | 4.07                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.1                                                                                                                                                                                            | 39                                                                                                                                                                 | 8.54                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.2 63                                                                                                                                                                                         | 102                                                                                                                                                                | 25.61                                                                                                                                                                                                                                                                                                            | 41                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.3 37                                                                                                                                                                                         | 139                                                                                                                                                                | 15.04                                                                                                                                                                                                                                                                                                            | 57                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.4 27                                                                                                                                                                                         | 166                                                                                                                                                                | 10.98                                                                                                                                                                                                                                                                                                            | 67                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.5 19                                                                                                                                                                                         | 185                                                                                                                                                                | 7.72                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.6 24                                                                                                                                                                                         | 209                                                                                                                                                                | 9.76                                                                                                                                                                                                                                                                                                             | 85                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.7 21                                                                                                                                                                                         | 230                                                                                                                                                                | 8.54                                                                                                                                                                                                                                                                                                             | 94                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.8 0                                                                                                                                                                                          | 230                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                             | 94                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.9 0                                                                                                                                                                                          | 230                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                             | 94                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.0 3                                                                                                                                                                                          | 233                                                                                                                                                                | 1.22                                                                                                                                                                                                                                                                                                             | 95                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.1 3                                                                                                                                                                                          | 236                                                                                                                                                                | 1.22                                                                                                                                                                                                                                                                                                             | 96                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.2 2                                                                                                                                                                                          | 238                                                                                                                                                                | 0.81                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.3 1                                                                                                                                                                                          | 239                                                                                                                                                                | 0.41                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.4 0                                                                                                                                                                                          | 239                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.5 2                                                                                                                                                                                          | 241                                                                                                                                                                | 0.81                                                                                                                                                                                                                                                                                                             | 98                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.6 2                                                                                                                                                                                          | 243                                                                                                                                                                | 0.81                                                                                                                                                                                                                                                                                                             | 99                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.7 1                                                                                                                                                                                          | 244                                                                                                                                                                | 0.41                                                                                                                                                                                                                                                                                                             | 99                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.8 1                                                                                                                                                                                          | 245                                                                                                                                                                | 0.41                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                | .8       0         .9       0         .0       3         .1       3         .2       2         .3       1         .4       0         .5       2         .6       2 | .8         0         230           .9         0         230           .0         3         233           .1         3         236           .2         2         238           .3         1         239           .4         0         239           .5         2         241           .6         2         243 | .8         0         230         0.00           .9         0         230         0.00           .0         3         233         1.22           .1         3         236         1.22           .2         2         238         0.81           .3         1         239         0.41           .4         0         239         0.00           .5         2         241         0.81           .6         2         243         0.81 |

#### Table 2: Pedestrian crossing speed

246

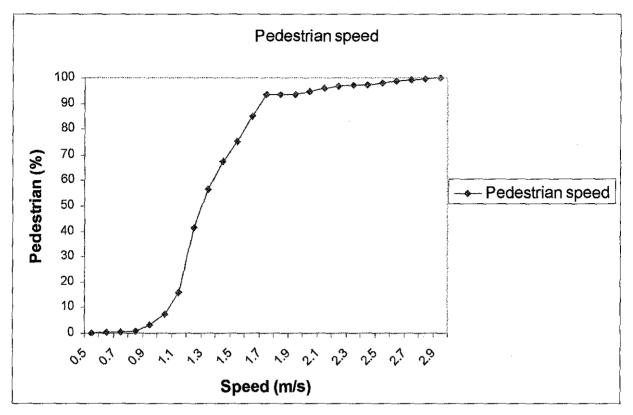
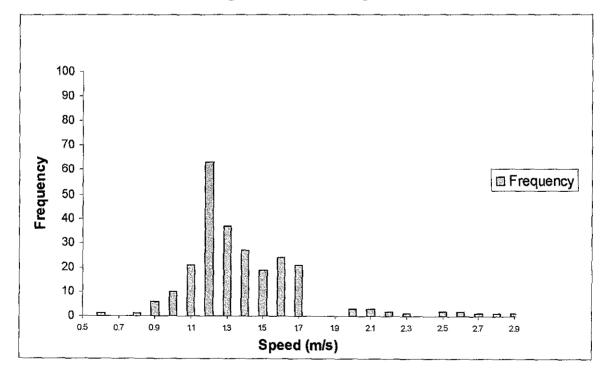
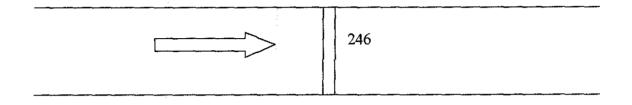




Figure 3: Cumulative pedestrian speed

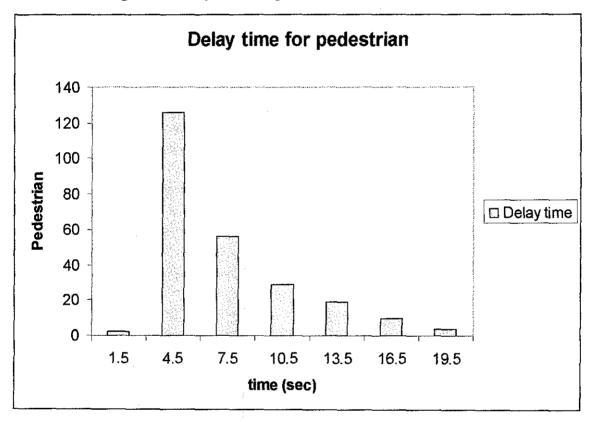

**Figure 4: Pedestrian speed** 



#### TRAFFIC DATA

Location: Jalan Sultan Yusuf Duration of survey: 1 hour

Time of survey: 1300 - 1400




| Time  | Total traffic |
|-------|---------------|
| 1315  | 63            |
| 1330  | 76            |
| 1345  | 53            |
| 1400  | 54            |
| Total | 246           |

| Class (sec) | Median | Frequency | Frequency precentage |      |
|-------------|--------|-----------|----------------------|------|
| 0.0 - 3.0   | 1.5    | 2         | 9                    | 9.35 |
| 3.0 - 6.0   | 4.5    | 126       | 42                   | 2.68 |
| 6.0 - 9.0   | 7.5    | 56        | 2:                   | 2.76 |
| 9.0 - 12.0  | 10.5   | 29        | 1.                   | 1.78 |
| 12.0 - 15.0 | 13.5   | 19        |                      | 7.72 |
| 15.0 - 18.0 | 16.5   | 10        | 4                    | 1.06 |
| 18.0 - 21.0 | 19.5   | 4         | -                    | 1.62 |
|             |        | 246       |                      | 100  |

Table 3: Delay time for pedestrian

Figure 5: Delay time for pedestrian



## aaSIDRA INPUT DATA

### LOCATION 1

Akcelik & Associates - aaSIDRA 2.0.1.206 utp aileen Registered User No. a1061 Licence Type: Educational, Multi Computer

Time and Date of Analysis 10:57 PM, 7 May 2006

Filename: G:\pelajaran\fyp\fyp2\aaSIDRA Projects\push button\aileen1.LIS

Push-button basis Jalan Sultan Yusuf

INPUT DATA LISTING

#### MAIN OPTIONS

|      |      |      |       |       |       | Major |       |     |       |      |      | Unit   | SIDRA |
|------|------|------|-------|-------|-------|-------|-------|-----|-------|------|------|--------|-------|
| Line | Int. | Int. | Def.  | Summ. | Int.  | Road/ | Int.  | Def | Drive | NZ   | User | Time   | Versn |
| Туре | Type | Ctrl | File. | Out.  | Geom. | Fwy   | Coord | Grp | Rule  | Rule | Levl | Method | No.   |
| 0    | 1    | А    | 30    | F     | 7     | EW    | EW    | Y   | R     | N    | A    | Ϋ      | 5.40  |

#### PROGRAM CONTROL DATA

| Line | Cycl | Cycl | Max  | Intg | Stp | Peak | Flow | ΗV  | Total | Satf | PFF  | Satf  |
|------|------|------|------|------|-----|------|------|-----|-------|------|------|-------|
| Туре | Time | Incr | Cycl | Time | Pen | Per  | Scal | Opt | Per   | Scal | *100 | Estim |
| 1    | Р    | 10   | 150  | 6    | 20  | 15   | 100  | P   | 60    | 100  | 95   | Y     |
|      |      |      |      |      |     |      |      |     |       |      |      |       |

#### INTERSECTION DATA

|      |     | No.   |      | Turn | Perct | Lane  | Base | Prac |        |       |
|------|-----|-------|------|------|-------|-------|------|------|--------|-------|
| Line | Int | Appr  |      | On   | Heavy | Width | Satn | Deg  | Apprch |       |
| Type | No. | Lanes | Peds | Red  | Vehs  | (cm)  | Flow | Satn | Dist   | Speed |
| A1   |     | 3     | F    | N    | 0     | 300   | 1950 | 90   | 500    | 60    |

#### APPROACH DESCRIPTION

|      | App |          |          |      | No. | No. |       |     |     |     | Ped. | Cross  | Down |
|------|-----|----------|----------|------|-----|-----|-------|-----|-----|-----|------|--------|------|
| Line | Rd  | Approach | Road     | Name | App | Ext | Med.  |     | Con |     | Dist | ance   | SL   |
| Туре | Loc | (Desc    | ription  | n)   | Lns | Lns | Width | Ped | Тур | TOR | Appr | Exit   | Lgth |
| A2   | Е   | Padang   |          |      | 0   | 5   | N     | F   |     | N   | 1500 | 0      | N    |
| A2   | W   | HSBC     |          |      | 5   | 0   | N     | N   | AN  | N   | 0    | 0      | N    |
| A2   | Е   | Padang   | <b>-</b> | ,    |     |     | N     | F   |     | N   | 1500 | 0<br>0 | -    |

#### APPROACH DATA

|      | Appr | Perct | Appr  | Lane  | Base | Prac. |      |       |       |                 |      |
|------|------|-------|-------|-------|------|-------|------|-------|-------|-----------------|------|
| Line | Road | Heavy | Grade | Width | Satn | Deg.  | PHF  | Arrvl | Appr  | Exit            | Appr |
| Type | Locn | Vehs  | (%)   | (cm)  | Flow | Satn  | *100 | Туре  | Speed | Speed           | Dist |
| A3   | W    | 0     | 0     | 300   | 1950 | 90    | 95   | 3     | 60    | <sup>-</sup> 60 | 500  |

#### MOVEMENT DESCRIPTION

|      | Appr |      |     |     |      | VΈ  | нг  | СЬЕ  | S - |     |      |     |     | PED | s   |
|------|------|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|-----|-----|
| Line | Road | Exit |     | Mov | Mov | Mov |
| Type | Locn | Road | Trn | No. | No. | No. |
| A4   | Ë    |      |     |     |      |     |     |      |     |     |      |     |     | 53  |     |
| A4   | W    | Е    | т   | 11  |      |     |     |      |     |     |      |     |     |     |     |

#### VEHICLE VOLUMES

|            | Appr |   |        |    |         |         |    |          |    |
|------------|------|---|--------|----|---------|---------|----|----------|----|
| Line Veh   | Road |   | Volume | of | Traffic | Turning | TO | APPROACH |    |
| Type Class | Locn | S | SE     | F  | C NE    | Ñ       | NW | W        | SW |

| A5 | TOT | E |      |
|----|-----|---|------|
| A5 | %HV | E |      |
| A5 | TOT | W | 2684 |
| A5 | %HV | W | 0    |

#### PEDESTRIAN VOLUMES

| Line | Vol. | of | Pedes | strians | in | Front | of | Appro | ach |    |
|------|------|----|-------|---------|----|-------|----|-------|-----|----|
| Туре | S    |    | SE    | E       | NE | N     |    | NW    | Ŵ   | SW |
| A6   |      |    | 2     | 46      |    |       |    |       |     |    |

#### LANE DATA

|            | Appr |      |      |      | $\mathtt{SL}$ | Lane  | Basic | Lane | SL    | No.of | Bus   |
|------------|------|------|------|------|---------------|-------|-------|------|-------|-------|-------|
| Line       | Road | Lane | Lane | Lane | Length        | Width | Satn  | Util | Green | Park  | Stops |
| Type       | Locn | No.  | Dis. | Type | (m)           | (cm)  | Flow  | (웅)  | Const | Manvs | /hour |
| Ā8         | W    | 1    | Т    | 1    | N*            | 300   | 1950  | 100  | N     | N     | Ń     |
| A8         | W    | 2    | т    | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| 8A         | W    | 3    | Ť    | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| A8         | W    | 4    | Т    | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| <b>A</b> 8 | W    | 5    | Т    | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |

#### PHASE DATA

|      |       |     | Opd |
|------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Line | Phase | Mov | Ped |
| Туре | Name  | No. | Dum |
| A14  | A     | 53  | Ρ   |     |     |     |     |     |     |     |     |     |     |     |     |
| A14  | в     | 11  |     |     |     |     |     |     | -   |     |     |     |     |     |     |
|      | A 1/m |     | ·   |     |     |     |     |     |     |     |     |     |     |     |     |

Under Opd/Ped/Dum: L,T,R=Opposed turns, P=Pedestrian, D=Dummy

#### PHASE SEQUENCE DATA

|      | Phase |     | -   |     |     |     |     |     |     |     |
|------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Line | Seq.  | Pha |
| Туре | No.   | Nam |
| A15  | 1     | А   | B   |     |     |     |     |     |     |     |

CURRENT PHASE SEQUENCE

|      | Phase |
|------|-------|
| Line | Seq.  |
| Туре | No.   |
| A16  | 1     |

#### NEGOTIATION RADIUS (GEOMETRIC DATA)

| Line        | Appr<br>Road | Negotiati | on rad | dius for | traffic | exiting | TO APPROACH |  |
|-------------|--------------|-----------|--------|----------|---------|---------|-------------|--|
| Type<br>A21 | Locn<br>W    | S SE      | E<br>P | NE       | n nw    | W       | SW          |  |

#### NEGOTIATION SPEED (GEOMETRIC DATA)

| Line        | Appr<br>Road | Negotiati | lon sp | eed for | traf | fic exi | ting | TO APPROACH |  |
|-------------|--------------|-----------|--------|---------|------|---------|------|-------------|--|
| Туре<br>А22 | Locn<br>W    | S SE      | Б<br>Б | NE      | N    | NW      | W    | SW          |  |

#### NEGOTIATION DISTANCE (GEOMETRIC DATA)

Appr

Line Road -- Negotiation distance for traffic exiting TO APPROACH --

| Туре | Locn | S | SE | E | NE | N | NW | W | SW |
|------|------|---|----|---|----|---|----|---|----|
| A23  | W    |   |    | Р |    |   |    |   |    |

MOVEMENT DATA: PHASE AND TIMING PARAMETERS (Mov.Type: P=Pedestrian, D=Dummy, U V W=Undetected, C=Continuous) F I R S T G R E E N

| Line | Mov. | Mov. | From  | То    | Inter- | Start | End  | Min.  | Max.  |
|------|------|------|-------|-------|--------|-------|------|-------|-------|
| Type | Type | No.  | Phase | Phase | Green  | Loss  | Gain | Green | Green |
| 4    | P    | 53   | A     | в     | 6      | 2     | -8   | 16    | N     |
| 4    |      | 11   | В     | А     | 6      | 3     | 3    | 6     | N     |

MOVEMENT DATA (2)

|      |     | Satn  | Flow |          |       |   | Turn Ty<br>Radius | • • |
|------|-----|-------|------|----------|-------|---|-------------------|-----|
| Line | Mov | 1st   | 2nd  | Prac.    | Grad. |   |                   |     |
| Type | No. | Grn   | Grn  | Deg.Satn | (원)   |   | L                 | R   |
| 5    | 53  | 12000 |      | 90       |       | 0 |                   |     |
| 5    | 11  |       |      | 90       | 0     | 0 | 0                 | 0   |
|      |     |       |      |          |       |   |                   |     |

#### MOVEMENT GROUPING DEFINITION

Line Grp Mov Mov Mov Mov Mov Mov Mov Mov ---- GROUP DESCRIPTION ----Type No. No. No. No. No. No. No. No. No. 11 1 11 11 2 53 HSBC Pedestrians

#### DATA FOR MOVEMENT GROUPINGS

| Line<br>Type | Group<br>No. |     | Delay<br>Weight | Stop<br>Weight | Queue<br>Weight |   |   |
|--------------|--------------|-----|-----------------|----------------|-----------------|---|---|
|              |              | do  | 100w1           | 100w2          | 100w3           |   |   |
| 12 2         | 1            | 100 | 100             | 100            | 100             | 0 | 0 |
| 12 2         | 2            | 100 | 100             | 100            | 100             | 0 | 0 |

#### DATA FOR FUEL/EMISSIONS/COST

| Group | Idling   | Stead  | y Speed | Veh.   | Power Coeffs. | Alphanumeric |
|-------|----------|--------|---------|--------|---------------|--------------|
| No.   | Rate     |        |         | Mass   | (*10E4)       | Description  |
|       | (/h)     | А      | в       | (kq)   |               |              |
|       |          |        | (*10E5) |        | Betal Beta2   | Name Unit    |
| 1     | All para | meters | program | calcul | ated          |              |
| 2     | All para | meters | program | calcul | ated          |              |

MOVEMENT DATA (1)

|              |            | Appro           | bach         |        |   |            | e Space<br>n/veh) |        | PHF<br>*100 | Arrival &<br>Control |
|--------------|------------|-----------------|--------------|--------|---|------------|-------------------|--------|-------------|----------------------|
| Line<br>Type | Mov<br>No. | Speed<br>(km/h) | Dist.<br>(m) |        |   | LA         | HV                |        |             | Type<br>& Coord.     |
| 15<br>15     | 53<br>11   | 4<br>60         | 10<br>500    | 0<br>0 | 0 | 100<br>700 | 0<br>1300         | 0<br>0 | 95<br>95    | 3AN<br>3AN           |

#### GREEN SPLIT PRIORITY

| Line | Applic- | Mov. | Pri. |
|------|---------|------|------|------|------|------|------|------|------|------|------|
| Туре | able?   | No.  | Code |
| 20   | N       | •    | •    | •    | •    | •    | •    | •    | •    | •    | •    |

VARIABLE CYCLE TIME DATA

CYCLE TIMES

| Туре<br>21 | User/<br>Prog<br>N | <br>1st                    | 2nd<br>150 |        | 4th 5t | h 6t1     | n 7t1 | n 8th | . 9th | 10th   | 11th       | 12th   | 13th  | 14th        |
|------------|--------------------|----------------------------|------------|--------|--------|-----------|-------|-------|-------|--------|------------|--------|-------|-------------|
| VARIAB     | LE FLOW            | SCALE                      | DATA       | L      |        |           | F     | LO    | W     | sci    | ΥΓΕ        | S      |       |             |
|            | User/<br>Prog<br>N | Gro                        | ups        |        | st 2nd |           | 4th   | 5th   | 6th   | 7th 81 | <br>th 9th | n 10t) | h 11t | <br>h 12th  |
| End of     | Input              | Data L                     | istir      | na fra | om fil | <b>~·</b> |       |       |       |        |            |        |       |             |
| G:\pela    | -                  |                            |            | -      |        |           | oush  | butt  | :on\a | ileen  | L.DAT      |        |       |             |
| G:\pela    | -                  |                            |            | -      |        |           | push  | butt  | :on\a | ileen: | L.DAT      |        |       | <del></del> |
| <b>~</b>   | -                  | yp\fyp                     |            | -      |        |           | push  | butt  | :on\a | ileen  | L.DAT      |        |       |             |
| RUNTIM     | jaran\f            | yp\fyp<br>MATION<br>aSIDRA | 2\aas      | IDRA   |        |           | oush  | butt  | :on\a | ileen  | 1.DAT      |        |       | <del></del> |

Main Iteration No. 4 Main Iteration No. 5 Calculating Performance Results and Writing Main Output File: G:\pelajaran\fyp\fyp2\aaSIDRA Projects\push button\aileen1.OUT

•

## aaSIDRA OUTPUT DATA

### LOCATION 1

Akcelik & Associates Pty Ltd - aaSIDRA 2.0.1.206 \_\_\_\_\_ utp Registered User No. a1061 aileen Licence Type: Educational, Multi Computer Time and Date of Analysis 10:57 PM, 7 May 2006 lename: G:\pelajaran\fyp\fyp2\aaSIDRA Projects\push button\aileen1.OUT .sh-button basis lan Sultan Yusuf tersection ID: N INFORMATION \_\_\_\_\_\_ Basic Parameters: Intersection Type: Signalised - Actuated Isolated For fully-actuated signal timings, the following specifications will be ignored: Any maximum cycle time specification Any user-given cycle time (unless phase times also given) User-given cycle and phase times (if variable flow scale run) Any variable cycle time specification Any green split priority specification Driving on the right-hand side of the road Input data specified in Metric units Default Values File No. 30 Peak flow period (for performance): 15 minutes Unit time (for volumes): 60 minutes (Total Flow Period) Delay definition: Control delay Geometric delay included aaSIDRA Standard Delay and Queue models used Level of Service based on: Delay (HCM method) Queue definition: Back of queue, 95th Percentile No. of Main (Timing-Capacity) Iterations = 5 Comparison of last two iterations: Difference in intersection degree of satn = 0.0 % Difference in total vehicle capacity = 0.0 % Largest difference in eff. green times = 0 secs (max. value for stopping = 0 secs) ish-button basis alan Sultan Yusuf itersection ID: **EFAULT PARAMETERS** \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ sfault values for some of the important general parameters: Default Values File: DEF30.SDF) 1. Basic saturation flow: 1950 tcu/h This value applies mainly to signalised intersections. For roundabouts and sign-controlled intersections, it is used for determining capacity of priority and continuous movements. 2. Through car equivalents for signalised intersections LEFT THROUGH RIGHT HV LV HV LV HV LV Normal1.0501.8001.0001.6501.0501.800Restricted1.2502.2501.2502.250

3. Opposed turn parameters (Signalised intersection)

|                            | Left turns<br>Right turr                                      | Cr.<br>G.<br>s: 4<br>as: 4     | it.<br>ap<br>.5<br>.0 | Fol.up<br>Hdway<br>2.6<br>2.4 | Deps<br>at End<br>2.2<br>2.5 | % E<br>Opj       | xit Flo<br>posing<br>0<br>0 | W                            |                                            |            |
|----------------------------|---------------------------------------------------------------|--------------------------------|-----------------------|-------------------------------|------------------------------|------------------|-----------------------------|------------------------------|--------------------------------------------|------------|
| 4. Cru                     | ise speed=                                                    | 60 km/h                        | , Ap                  | proach Dia                    | stance                       | <b>-</b> 50      | 0 m                         |                              |                                            |            |
| 5. Quet                    | ue space pe<br>Light vehi                                     |                                |                       |                               | ehicles                      | s: 13            | .0                          |                              |                                            |            |
|                            | list of ir<br>Guide part                                      |                                |                       |                               |                              | s is d           | given i                     | n the                        |                                            |            |
| lan Sul                    | ton basis<br>ltan Yusuf<br>tion ID:<br>Actuate                | ed Isola                       | ted S                 | ignals, Cy                    | ycle Ti                      | ime =            | 48                          |                              |                                            |            |
| ·                          | 0 - TRAFFIC                                                   |                                |                       |                               |                              |                  |                             |                              |                                            |            |
|                            | ov<br>D.                                                      |                                |                       | Throug<br><br>LV              |                              |                  |                             |                              |                                            |            |
| HICLES                     | Dema                                                          | ind flow                       | s in                  | veh/hour a                    | as used                      | i by             | the pro                     | gram                         |                                            |            |
|                            | 11<br>                                                        |                                |                       | 2825                          |                              |                  |                             |                              | 0.95                                       |            |
| DESTRIA                    | ANS<br>53                                                     | Flow                           | (ped/)<br>259         | hour)                         |                              |                  |                             | 1.00                         | 0.95                                       |            |
| ish-buti                   | le and Peak<br>ton basis<br>ltan Yusuf<br>tion ID:<br>Actuate |                                |                       | effects :<br>ignals, Cy       |                              |                  | <u></u>                     | alues.                       |                                            |            |
| ble S.                     | 1 - MOVEMEN                                                   | IT PHASE                       | AND                   | TIMING PA                     | RAMETEI                      | ₹S               |                             |                              |                                            |            |
| 10v<br>10.                 | Tvo First                                                     | Green                          | Sec                   | ond Green                     |                              |                  |                             |                              |                                            |            |
|                            |                                                               | Op Pr                          |                       | To Op Pr                      | 1st<br>Grn                   | 2nd<br>Grn       | 1st<br>Grn                  | 2nd<br>Grn                   | 1st<br>Grn                                 | 2nd<br>Grn |
| est: HSI<br>11 T           | BC<br>*B A                                                    |                                |                       |                               | 6                            |                  |                             |                              | 21                                         |            |
| edestr:<br>53              | (Ped)*A B                                                     | **                             |                       |                               | 16                           |                  | 21.0Mi                      | n<br>                        | 6                                          |            |
| Input p<br>Output          | t Phase Seque<br>phase seque<br>phase sequ                    | uence N<br>ence: A<br>lence: A | o.: 1<br>B            |                               |                              |                  |                             |                              |                                            |            |
| Dum Du<br>Und Ur<br>Unl Ur | edestrian                                                     | n 1st g                        | reen                  | period                        | L<br>R                       | "L<br>"R<br>? "L | ight" t<br>eft and          | rns are<br>urns ar<br>Right" | opposed<br>e oppose<br>opposed<br>ation fl | d          |

ish-button basis

lan Sultan Yusuf tersection ID: Actuated Isolated Signals, Cycle Time = 48

ble S.2 - MOVEMENT CAPACITY PARAMETERS

| ⊙v             | Dem<br>Flow | Satn       | Flow       |            | Ratio      | Total<br>Cap. | Prac.<br>Deg. | Prac.<br>Spare | Lane<br>Util | Deg.<br>Satn |
|----------------|-------------|------------|------------|------------|------------|---------------|---------------|----------------|--------------|--------------|
|                | (veh<br>/h) | 1st<br>Grn | 2nd<br>Grn | 1st<br>Grn | 2nd<br>Grn | (veh<br>/h)   | Satn<br>xp    | Cap.<br>(%)    | (%)          | x            |
| st: HS<br>11 T | BC 2825     | 9614       |            | 0.294      |            | 4206          | 0.90          | 34             | 100          | 0.672*       |
| edestr<br>53   | ians<br>259 | 12000      |            | 0.022      |            | 1500          | 0.90          |                | 100          | 0.173        |

sh-button basis

lan Sultan Yusuf

tersection ID:

Actuated Isolated Signals, Cycle Time = 48

ble S.3 - INTERSECTION PARAMETERS

| Crit App.<br>Mov &<br>No. Turn | Green<br>Period | Pha<br><br>Fr | ases<br><br>To   | Adjusted<br>Lost<br>Time | Adjusted<br>Flow<br>Ratio | Required<br>Grn Time<br>Ratio | Required<br>Movement<br>Time |
|--------------------------------|-----------------|---------------|------------------|--------------------------|---------------------------|-------------------------------|------------------------------|
| 53 E_Ped<br>11 W_T             |                 | A<br>B        | B<br>A<br>Total: | 21<br>6<br><br>27        | 0.294                     | 0.430                         | 21.0Min<br>26.6<br>47.6      |

- Flow ratio not used for cycle time calculations and the adjusted lost time equals the required movement time (=Min or Max as shown in Table S.1)

| Cycle Time:<br>Minimum Maximum Practical Chosen |    |        |
|-------------------------------------------------|----|--------|
| 34 NA 48 48                                     |    |        |
| Intersection Level of Service                   | =  | 7      |
|                                                 |    | B      |
| Worst movement Level of Service                 | =  | B      |
| Average intersection delay (s)                  |    | 12.8   |
| Largest average movement delay (s)              | =  | 18.9   |
| Largest back of queue, 95% (m)                  | 12 | 89     |
| Performance Index                               | -  | 86.22  |
| Degree of saturation (highest)                  | =  | 0.672  |
| Practical Spare Capacity (lowest)               | =  | 34 %   |
| Total vehicle capacity, all lanes (veh/h)       |    | 4206   |
| Total vehicle flow (veh/h)                      | =  | 2825   |
| Total pedestrian flow (ped/h)                   |    | 259    |
| Total person flow (pers/h)                      | -  | 4497   |
| Total vehicle delay (veh-h/h)                   |    | 9.72   |
| Total pedestrian delay (ped-h/h)                | 37 | 1.36   |
| Total person delay (pers-h/h)                   | =  | 15.94  |
| Total effective vehicle stops (veh/h)           | =  | 2070   |
| Total effective pedestrian stops (ped/h)        | =  | 227    |
| Total effective person stops (pers/h)           | =  | 3333   |
| Total vehicle travel (veh-km/h)                 | =  | 1713.2 |
| Total cost (\$/h)                               | =  | 923.47 |
| Total fuel (L/h)                                | _  | 181.0  |
| • • •                                           | _  | 452.51 |
| Total CO2 (kg/h)                                | -  | 452.51 |
|                                                 |    |        |

ish-button basis

lan Sultan Yusuf tersection ID: Actuated Isolated Signals, Cycle Time = 48 ble S.4 - PHASE INFORMATION \_\_\_\_\_ Phase Change Green Displayed Grn+Intgrn No. Time Start Green Secs Prop. \_\_\_\_\_\_ 0 6 15 21 0.438 21 27 21 27 0.562 Α в \*\*\*\*\*\*\* Current Phase Sequence No.: 1 Input phase sequence: A B Output phase sequence: A B .sh-button basis lan Sultan Yusuf tersection ID: Actuated Isolated Signals, Cycle Time = 48 ble S.5 - MOVEMENT PERFORMANCE \_\_\_\_\_\_\_\_\_\_ MovTotalTotalAver.Prop.Eff. Longest QueuePerf.Aver.No.DelayDelayDelayQueuedStop95%BackIndexSpeed(veh-h/h) (pers-h/h) (sec)Rate (vehs) (m)(km/h) st: HSBC 11 T 9.72 14.58 12.4 0.83 0.73 12.7 89 82.95 44.8 \_\_\_\_\_ 'edestrians 53 1.36 1.36 18.9 0.87 0.88 0.6 1 3.27 1.3 ish-button basis ilan Sultan Yusuf itersection ID: Actuated Isolated Signals, Cycle Time = 48 able S.6 - INTERSECTION PERFORMANCE \_\_\_\_\_\_ Total Deg. Total Total Aver. Prop. Eff. Longest Perf. Aver. Tow Sath Delay Delay Delay Queued Stop Queue Index Speed reh/h) x (veh-h/h) (pers-h/h) (sec) Rate (m) (km/h) ≥st: HSBC 2825 0.672 9.72 14.58 12.4 0.835 0.73 89 82.95 44.8 ?edestrians 259 0.173 1.36 1.36 18.9 0.878 0.88 1 3.27 1.3 \_ \_\_ \_\_ \_\_ \_\_ \_\_ ----------LL VEHICLES: 2825 0.672 9.72 14.58 12.4 0.835 0.73 89 82.95 44.8 

Leue values in this table are 95% back of queue (metres).

15.94 12.8 0.839 0.74

86.22

43.3

SHIN 9 7 - TANE DEDENDMANCE

VTERSECTION (persons):

1497 0.672

|          | Morr       |    |    | e Red<br>nes ( |    | Dem<br>Flow | Cap         | Satn  | Delay | Eff.         | Qие<br>95% В |     | Shrt<br>Lane |
|----------|------------|----|----|----------------|----|-------------|-------------|-------|-------|--------------|--------------|-----|--------------|
| ane<br>o | Mov<br>No. | R1 | G1 | R2             | G2 | (veh<br>/h) | (veh<br>/h) |       | (sec) | Stop<br>Rate | (vehs)       | (m) | (m)          |
| est:     | HSBC       |    |    |                |    |             |             |       |       |              |              |     |              |
| Т        | 11         | 27 | 21 | 0              | 0  | 565         | 841         | 0.672 | 12.4  | 0.73         | 12.7         | 89  |              |
| т        | 11         | 27 | 21 | 0              | 0  | 565         | 841         | 0.672 | 12.4  | 0.73         | 12.7         | 89  |              |
| т        | 11         | 27 | 21 | 0              | 0  | 565         | 841         | 0.672 | 12.4  | 0.73         | 12.7         | 89  |              |
| T        | 11         | 27 | 21 | 0              | 0  | 565         | 841         | 0.672 | 12.4  | 0.73         | 12.7         | 89  |              |
| T        | 11         | 27 | 21 | 0              | 0  | 565         | 841         | 0.672 | 12.4  | 0.73         | 12.7         | 89  |              |

ish-button basis
ilan Sultan Yusuf
itersection ID:

Actuated Isolated Signals, Cycle Time = 48

ble S.8 - LANE FLOW AND CAPACITY INFORMATION

| an<br>Io.                                              | Mov<br>No.                         |                       | n Flow<br>Thru                         | (veh<br>Rig           |                                        | Lane<br>Width<br>(m)                         | Adj.<br>Basic                                | ation<br>Aver<br>1st<br>(veh) | Aver<br>2nd           | End<br>Cap<br>(veh<br>/h) | •                 | Deg.<br>Satn<br>x                                  | Lane<br>Util<br>%               |
|--------------------------------------------------------|------------------------------------|-----------------------|----------------------------------------|-----------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------|-----------------------|---------------------------|-------------------|----------------------------------------------------|---------------------------------|
| <i>lest:</i><br>. T<br>? T<br>? T<br>! T<br>! T<br>; T | HSBC<br>11<br>11<br>11<br>11<br>11 | 0<br>0<br>0<br>0<br>0 | 565<br>565<br>565<br>565<br>565<br>565 | 0<br>0<br>0<br>0<br>0 | 565<br>565<br>565<br>565<br>565<br>565 | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00 | 1923<br>1923<br>1923<br>1923<br>1923<br>1923 | 1923<br>1923<br>1923          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0     | 841<br>841<br>841 | 0.672<br>0.672<br>0.672<br>0.672<br>0.672<br>0.672 | 100<br>100<br>100<br>100<br>100 |

Basic Saturation Flow in this table is adjusted for lane width, approach grade, parking manoeuvres and number of buses stopping. Saturation flow scale applies if specified.

| lov<br>lo.     | Моч<br>Тур     | Dem<br>Flow<br>(veh<br>/h) | Total<br>Cap.<br>(veh<br>/h) | Util |        | 1st 2nd   | Aver.<br>Delay<br>(sec) | Eff.<br>Stop<br>Rate | 95%<br>Back of<br>Queue<br>(veh) | Perf.<br>Index |
|----------------|----------------|----------------------------|------------------------------|------|--------|-----------|-------------------------|----------------------|----------------------------------|----------------|
| est: H<br>11 T | SBC            | 2825                       | 4206                         | 100  | 0.672* | 21*       | 12.4                    | 0.73                 | 12.7                             | 82.95          |
| Pedest 53      | rians<br>(Ped) | 259                        | 1500                         | 100  | 0.173  | <b></b> - | 18.9                    | 0.88                 | 0.6                              | 3.27           |

able S.12A - FUEL CONSUMPTION, EMISSIONS AND COST - TOTAL

| <pre>Alan Sultan Yusuf<br/>Itersection ID:<br/>Actuated Isolated Signals, Cycle Time = 48<br/>Able S.12B - FUEL CONSUMPTION, EMISSIONS AND COST - RATE<br/>Mov Fuel Cost HC CO NOX CO2</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | Total                                                                                      | Cost<br>Total<br>\$/h                                                 | Total                                            | Total                                             | Total                                               | Total                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|---------------------------------------|
| edestrians<br>53 27.67<br>27.67<br>LL VEHICLES: 181.0 895.80 0.768 36.56 1.100 452.5<br>MTERSECTION: 181.0 923.47 0.768 36.56 1.100 452.5<br>Pump price of fuel (\$/L) = 0.850<br>Fuel resource cost factor = 0.50<br>Ratio of running cost to fuel cost = 3.0<br>Average income (\$/h) = 23.00<br>Time value factor = 0.60<br>Average occupancy (persons/veh) = 1.5<br>Light vehicle mass (1000 kg) = 1.4<br>Heavy vehicle mass (1000 kg) = 1.0<br>Light vehicle idle fuel rate (L/h) = 1.350<br>Heavy vehicle idle fuel rate (L/h) = 2.000<br>The idle fuel and vehicle mass parameters given above are th<br>values (data given in RIDES may override some of these param<br>ish-button basis<br>ilan Sultan Yusuf<br>itersection ID:<br>Actuated Isolated Signals, Cycle Time = 48<br>ible S.12B - FUEL CONSUMPTION, EMISSIONS AND COST - RATE<br>Mov Fuel Cost HC CO NOX CO2                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                                                                            |                                                                       |                                                  |                                                   |                                                     |                                       |
| 53       27.67         27.67         LL VEHICLES: 181.0       895.80       0.768       36.56       1.100       452.5         NTERSECTION: 181.0       923.47       0.768       36.56       1.100       452.5         RAMETERS USED IN COST CALCULATIONS         Pump price of fuel (\$/L)       =       0.850         Fuel resource cost factor       =       0.50         Ratio of running cost to fuel cost       =       3.0         Average income (\$/h)       =       23.00         Time value factor       =       0.60         Average occupancy (persons/veh)       =       1.4         Heavy vehicle mass (1000 kg)       =       11.0         Light vehicle mass (1000 kg)       =       1.10         Light vehicle idle fuel rate (L/h)       =       2.000         The idle fuel and vehicle mass parameters given above are th       values (data given in RIDES may override some of these param         ish-button basis                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                            |                                                                       |                                                  |                                                   |                                                     |                                       |
| 27.67         LL VEHICLES: 181.0       895.80       0.768       36.56       1.100       452.5         TRESECTION:       181.0       923.47       0.768       36.56       1.100       452.5         RAMETERS USED IN COST CALCULATIONS         Pump price of fuel (\$/L)       =       0.850         Fuel resource cost factor       =       0.50         Ratio of running cost to fuel cost       =       3.0         Average income (\$/h)       =       23.00         Time value factor       =       0.60         Average occupancy (persons/veh)       =       1.4         Heavy vehicle mass (1000 kg)       =       1.4         Heavy vehicle idle fuel rate (L/h)       =       1.350         Heavy vehicle idle fuel rate (L/h)       =       2.000         The idle fuel and vehicle mass parameters given above are th       values (data given in RIDES may override some of these param         ish-button basis       alan Sultan Yusuf       tersection ID:       Actuated Isolated Signals, Cycle Time =       48         able S.12B - FUEL CONSUMPTION, EMISSIONS AND COST - RATE       Mov       Fuel       Cost       HC       CO       NOX       CO2                                                            |                                                                                                                              |                                                                                            | 27.67                                                                 |                                                  |                                                   |                                                     |                                       |
| NTERSECTION:       181.0       923.47       0.768       36.56       1.100       452.5         RAMETERS USED IN COST CALCULATIONS         Pump price of fuel (\$/L)       =       0.850         Fuel resource cost factor       =       0.50         Ratio of running cost to fuel cost       =       3.0         Average income (\$/h)       =       23.00         Time value factor       =       0.60         Average occupancy (persons/veh)       =       1.4         Heavy vehicle mass (1000 kg)       =       1.4         Heavy vehicle idle fuel rate (L/h)       =       1.350         Heavy vehicle idle fuel rate (L/h)       =       2.000         The idle fuel and vehicle mass parameters given above are th values (data given in RIDES may override some of these param         ish-button basis       1an Sultan Yusuf         itersection ID:       Actuated Isolated Signals, Cycle Time =       48         able S.12B - FUEL CONSUMPTION, EMISSIONS AND COST - RATE                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                            | 27.67                                                                 |                                                  |                                                   |                                                     |                                       |
| NTERSECTION:181.0923.470.76836.561.100452.5RAMETERS USED IN COST CALCULATIONSPump price of fuel (\$/L)=0.850Fuel resource cost factor=0.50Ratio of running cost to fuel cost=3.0Average income (\$/h)=23.00Time value factor=0.60Average occupancy (persons/veh)=1.5Light vehicle mass (1000 kg)=1.4Heavy vehicle idle fuel rate (L/h)=1.350Heavy vehicle idle fuel rate (L/h)=2.000The idle fuel and vehicle mass parameters given above are th<br>values (data given in RIDES may override some of these paramish-button basis<br>alan Sultan Yusuf<br>itersection ID:<br>Actuated Isolated Signals, Cycle Time =Able S.12B - FUEL CONSUMPTION, EMISSIONS AND COST - RATEMovFuel Cost HCCONOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |                                                                                            |                                                                       |                                                  |                                                   |                                                     | 452.5                                 |
| Pump price of fuel (\$/L)=0.850Fuel resource cost factor=0.50Ratio of running cost to fuel cost=3.0Average income (\$/h)=23.00Time value factor=0.60Average occupancy (persons/veh)=1.5Light vehicle mass (1000 kg)=1.4Heavy vehicle mass (1000 kg)=11.0Light vehicle idle fuel rate (L/h)=1.350Heavy vehicle idle fuel rate (L/h)=2.000The idle fuel and vehicle mass parameters given above are th<br>values (data given in RIDES may override some of these paramIsh-button basis<br>alan Sultan Yusuf<br>itersection ID:<br>Actuated Isolated Signals, Cycle Time =48able S.12B - FUEL CONSUMPTION, EMISSIONS AND COST - RATEMovFuel Cost HCCONOXCO2NOXCO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |                                                                                            |                                                                       |                                                  |                                                   |                                                     | 452.5                                 |
| <pre>values (data given in RIDES may override some of these param<br/>sh-button basis<br/>lan Sultan Yusuf<br/>stersection ID:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel resourc<br>Ratio of run<br>Average inco<br>Time value f<br>Average occu<br>Light vehicl<br>Heavy vehicl<br>Light vehicl | e cost f<br>ning cos<br>me (\$/h)<br>actor<br>pancy (p<br>e mass (<br>e mass (<br>e idle f | actor<br>at to fue<br>persons/ve<br>1000 kg)<br>1000 kg)<br>Tuel rate | ≥h)<br>(L/h)                                     |                                                   | 3.0<br>23.00<br>0.60<br>1.5<br>1.4<br>11.0<br>1.350 |                                       |
| No. Rate Rate Rate Rate Rate Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                                                                            |                                                                       |                                                  |                                                   |                                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alan Sultan Yu<br>Atersection ID<br>Act<br>Able S.12B - F                                                                    | suf<br>:<br>uated Is<br>UEL CONS                                                           | SUMPTION,                                                             | EMISSIO                                          | NS AND CO                                         | )ST - RAI                                           |                                       |
| No.         Rate         Rate | alan Sultan Yu<br>htersection ID<br>Act<br>able S.12B - F<br>Mov<br>No.                                                      | suf<br>:<br>uated Is<br>UEL CONS<br><br>Fuel                                               | COST                                                                  | EMISSION                                         | NS AND CO                                         | OST - RAT                                           | CO2<br>Rate                           |
| Pedestrians 10.68 10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alan Sultan Yu<br>htersection ID<br>Act<br>able S.12B - F<br>Mov<br>No.                                                      | suf<br>:<br>uated Is<br>UEL CONS<br><br>Fuel<br>Rate<br>L/100km<br><br>10.6                | COST<br>Rate<br>\$/km<br>0.52                                         | EMISSION<br>HC<br>Rate<br>g/km<br>0.448          | NS AND CO<br>CO<br>Rate<br>g/km<br>21.34          | DST - RAT<br>NOX<br>Rate<br>g/km<br>0.642           | CO2<br>Rate<br>g/km<br>264.1          |
| ALL VEHICLES: 10.6 0.52 0.448 21.34 0.642 264.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alan Sultan Yu<br>Atersection ID<br>Act<br>Able S.12B - F<br>Mov<br>No.<br>No.<br>est: HSBC<br>11 T<br>Pedestrians           | suf<br>:<br>uated Is<br>UEL CONS<br>Fuel<br>Rate<br>L/100km<br>10.6<br>10.6                | Cost<br>Rate<br>\$/km<br>0.52<br>0.52<br>10.68                        | EMISSION<br>HC<br>Rate<br>g/km<br>0.448<br>0.448 | NS AND CO<br>CO<br>Rate<br>g/km<br>21.34          | DST - RAT<br>NOX<br>Rate<br>g/km<br>0.642           | CO2<br>Rate<br>g/km<br>264.1          |
| INTERSECTION: 10.6 0.54 0.448 21.34 0.642 264.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | alan Sultan Yu<br>htersection ID<br>Act<br>able S.12B - F<br>Mov<br>No.<br>est: HSBC<br>11 T<br>Pedestrians<br>53            | suf<br>:<br>uated Is<br>UEL CONS<br>Fuel<br>Rate<br>L/100km<br>10.6<br>                    | COST<br>Rate<br>\$/km<br>0.52<br>0.52<br>10.68<br>10.68               | EMISSION<br>HC<br>Rate<br>g/km<br>0.448<br>0.448 | NS AND CO<br>CO<br>Rate<br>g/km<br>21.34<br>21.34 | DST - RAT<br>NOX<br>Rate<br>g/km<br>0.642<br>0.642  | CO2<br>Rate<br>g/km<br>264.1<br>264.1 |

ush-button basis alan Sultan Yusuf ntersection ID:

\_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ Demand Flow (veh/h) Adj. Eff Grn Deg Aver. Longest Shrt ------ %HV Basic (secs) Sat Delay Queue Lane L T R Tot Satf. 1st 2nd x (sec) (m) (m) ane Demand Flow (veh/h) 0. \_\_\_\_\_ lest: HSBC 56556501922210.67212.48956556501922210.67212.48956556501922210.67212.48956556501922210.67212.48956556501922210.67212.48956556501922210.67212.489 т Т Т T T \_\_\_\_\_ \_\_\_\_\_\_ 0 2825 0 2825 0 0.672 12.4 89 'edestrians 259 6 0.173 18.9 0.6 Across E approach Total % Cycle Max Aver. Max LL VEHICLES 
 Flow
 HV
 Time
 X
 Delay
 Queue

 2825
 0
 48
 0.672
 12.4
 89
 \_\_\_\_\_ stal flow period = 60 minutes. Peak flow period = 15 minutes. weue values in this table are 95% back of queue (metres). )te: Basic Saturation Flows (in through car units) have been adjusted for grade, lane widths, parking manoeuvres and bus stops. ish-button basis ilan Sultan Yusuf itersection ID: Actuated Isolated Signals, Cycle Time = 48 ble S.15 - CAPACITY AND LEVEL OF SERVICE Mov Green Time Total Total Deg. Aver. LOS Typ Ratio (g/C) Flow Cap. of Delay ------ (veh (veh Satn 1st 2nd /h) /h) (v/c) (sec) grn grn lov 10. st: HSBC 2825 4206 0.672\* 12.4 B 11 T 0.438\* -----\_\_\_\_\_ ----2825 4206 0.672 12.4 B \_\_\_\_\_ Pedestrians 53 (Ped) 0.125\* 259 1500 0.173 18.9 B \_\_\_\_\_ 1500 0.173 18.9 259 В ALL VEHICLES: 2825 4206 0.672 12.4 В INTERSECTION (persons): 4497 4206 0.672 12.8 \_\_\_\_\_ \_\_\_\_ Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the aaSIDRA Output Guide or the Output section of the on-line help. Intersection capacity is calculated considering vehicle movements only. \* Maximum v/c ratio, or critical green periods

ble S.14 - SUMMARY OF INPUT AND OUTPUT DATA

ish-button basis

ble D.O - GEOMETRIC DELAY DATA \_\_\_\_\_ Negn Negn Negn Appr. Downstream rom To Radius Speed Dist. Dist. Distance pproach Approach (m) (km/h) (m) (m) (m) \_\_\_\_\_\* \_\_\_\_\_\_\_ ----\_\_\_\_\_ est: HSBC East S 60.0 10.0 500 106 Downstream distance is distance travelled from the stopline until exit cruise speed is reached (includes negotiation distance). Acceleration distance is weighted for light and heavy vehicles. The same distance applies for both stopped and unstopped vehicles. sh-button basis lan Sultan Yusuf tersection ID: Actuated Isolated Signals, Cycle Time = 48 ble D.1 - LANE DELAYS ----- Delay (seconds/veh) ------Deg. Stop-line Delay Acc. Queuing Stopd ane Mov Satn 1st 2nd Total Dec. Total MvUp (Idle) Geom Control o. No. x dl d2 dSL dn dq dqm di dig dic \_\_\_\_\_\_ 'est: HSBC 

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

 T
 11
 0.672
 12.4
 0.0
 12.4
 7.2
 5.2
 0.0
 5.2
 0.0
 12.4

</tabr/> \_\_\_\_\_\_ dn is average stop-start delay for all vehicles queued and unqueued

Ish-button basis Ilan Sultan Yusuf Itersection ID:

Actuated Isolated Signals, Cycle Time = 48

ble D.2 - LANE STOPS

| lane<br>lo. | Deg.<br>Satn<br>X | Ef<br>hel | fectiv<br>he2 | -    | Rate<br>Overall<br>h |       | Queue<br>Move-up<br>Rate<br>hqm |
|-------------|-------------------|-----------|---------------|------|----------------------|-------|---------------------------------|
| lest:       | HSBC              |           |               |      |                      |       |                                 |
| . Т         | 0.672             | 0.73      | 0.00          | 0.00 | 0.73                 | 0.835 | 0.00                            |
| : T         | 0.672             | 0.73      | 0.00          | 0.00 | 0.73                 | 0.835 | 0.00                            |
| ) T         | 0.672             | 0.73      | 0.00          | 0.00 | 0.73                 | 0.835 | 0.00                            |
| l T         | 0.672             | 0.73      | 0.00          | 0.00 | 0.73                 | 0.835 | 0.00                            |
| jΤ          | 0.672             | 0.73      | 0.00          | 0.00 | 0.73                 | 0.835 | 0.00                            |

hqm is average queue move-up rate for all vehicles queued and unqueued

ish-button basis

#### 

ble D.3 - LANE QUEUES

|                           | Deg.<br>Satn                             | Ovrfl.<br>Oueue -        | Avera             | age (ve                  | eh)                      |                          | Perce                        | ntile                                | (veh)                        |                              | Queue<br>Stor.               |
|---------------------------|------------------------------------------|--------------------------|-------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|
| ane<br>o.                 | X                                        | No                       | Nb1               | Nb2                      | Nb                       | 70%                      | 85%                          | 90%                                  | 95%                          | 98%                          | Ratio                        |
| 'est:<br>T<br>T<br>T<br>T | HSBC<br>0.672<br>0.672<br>0.672<br>0.672 | 0.0<br>0.0<br>0.0<br>0.0 | 6.6<br>6.6<br>6.6 | 0.0<br>0.0<br>0.0<br>0.0 | 6.6<br>6.6<br>6.6<br>6.6 | 7.9<br>7.9<br>7.9<br>7.9 | 10.2<br>10.2<br>10.2<br>10.2 | 11.2<br>11.2<br>11.2<br>11.2<br>11.2 | 12.7<br>12.7<br>12.7<br>12.7 | 15.3<br>15.3<br>15.3<br>15.3 | 0.18<br>0.18<br>0.18<br>0.18 |
| ' T                       | 0.672                                    | 0.0                      | 6.6               | 0.0                      | 6.6                      | 7.9                      | 10.2                         | 11.2                                 | 12.7                         | 15.3                         | 0.18                         |

Values printed in this table are back of queue (vehicles).

wble D.4 - MOVEMENT SPEEDS (km/h)

| Mov<br>No. | App. Sp<br>Cruise | eeds<br>Negn |      | Speeds<br><br>Cruise | ~ | Move-up<br>2nd<br>Grn |      | tion Spd<br>Overall |
|------------|-------------------|--------------|------|----------------------|---|-----------------------|------|---------------------|
| Nest:      | HSBC<br>60.0      | 60.0         | 60.0 | 60.0                 |   |                       | 50.1 | 44.8                |

"Running Speed" is the average speed excluding stopped periods.

ish-button basis ilan Sultan Yusuf itersection ID:

Actuated Isolated Signals, Cycle Time = 48

#### able D.5 - PROGRESSION FACTORS & ACTUATED SIGNAL PARAMETERS

| Mov<br>No.  | Control      | Coord. | Arrival<br>Type | Delay<br>Prog.<br>Factor | Queue<br>Prog.<br>Factor | Gap<br>Settin<br>es | .gs<br>eh | 1st | Grn | . Sett<br>2nd<br>Gmin | Grn |
|-------------|--------------|--------|-----------------|--------------------------|--------------------------|---------------------|-----------|-----|-----|-----------------------|-----|
| √est:<br>11 | HSBC<br>VA   | No     | 3               | 1.000                    | 1.000                    | 2.5                 | 3.1       | 6   | 50  |                       |     |
| edes<br>53  | trians<br>VA | No     | 3               | 1.000                    | 1.000                    |                     |           |     |     |                       |     |

--- End of aaSIDRA Output ---

### **Intersection Summary**

#### **Push-button basis**

|            | lik<br>sociates |
|------------|-----------------|
| aa Traffic | SIDRA           |

| Performance Measure               | Vehicles        | Pedestrians  | Pers    |
|-----------------------------------|-----------------|--------------|---------|
| Demand Flow                       | 2825 veh/h      | 259 ped/h    | 4497 p  |
| Degree of Saturation              | 0.672           | 0.173        |         |
| Capacity (Total)                  | 4206 veh/h      |              |         |
| 95% Back of Queue (m)             | 89 m            | 1 m          |         |
| 95% Back of Queue (veh)           | 12.7 veh        | 0.6 ped      |         |
| Control Delay (Total)             | 9.72 veh-h/h    | 1.36 ped-h/h | 15.94   |
| Control Delay (Average)           | 12.4 s/veh      | 18.9 s/ped   | 12.8 s/ |
| Level of Service                  | LOS B           | LOS B        |         |
| Level of Service (Worst Movement) | LOS B           | LOS B        |         |
| Total Effective Stops             | 2070 veh/h      | 227 ped/h    | 3333 p  |
| Effective Stop Rate               | 0.73 per veh    | 0.88 per ped | 0.74 pe |
| Travel Distance (Total)           | 1713.2 veh-km/h | 2.6 ped-km/h | 2572.4  |
| Travel Distance (Average)         | 606 m           | 10 m         | 572 m   |
| Travel Time (Total)               | 38.3 veh-h/h    | 2.0 ped-h/h  | 59.4 pe |
| Travel Time (Average)             | 48.8 secs       | 27.9 secs    | 47.6 se |
| Travel Speed                      | 44.8 km/h       | 1.3 km/h     | 43.3 kr |
| Operating Cost (Total)            | 896 \$/h        | 28 \$/h      | 923 \$/ |
| Fuel Consumption (Total)          | 181.0 L/h       |              |         |
| Carbon Dioxide (Total)            | 452.5 kg/h      |              |         |
| Hydrocarbons (Total)              | 0.768 kg/h      |              |         |
| Carbon Monoxide (Total)           | 36.56 kg/h      |              |         |
| NOX (Total)                       | 1.100 kg/h      |              |         |
|                                   |                 |              |         |

والمحاوية والمحربة والمراجع والمراكبة المحافية المحافية المحافية المحافية والمحافية والمراجع

G:\pelajaran\fyp\fyp2\aaSIDRA Projects\push button\aileen1 Produced by aaSIDRA 2.0.1.206 Copyright© 2000-2002 Akcelik & Associates Pty Ltd

Generated 6/11/2006 6:26:04 PM

والمحارب والمرابع والمرابع والمرابع والمحر فالمرابع والمرابع والمرابع والمرابع والمرابع والمرابع المرابع فالمحر فالمحر فالمحر فالمحر

sons

pers/h

pers-h/h s/pers

pers/h per pers 4 pers-km/h n bers-h/h secs cm/h /h

والمراجع والم

file://C:\Documents and Settings\TeDdY\Local Settings\Temp\ 136B33E.HTM

6/11/2006

### **Movement Summary**



#### **Push-button basis**

Pedestrian crossing - Actuated isolated Cycle Time = 48 seconds

#### **Vehicle Movements**

And the other with a second the second to the second s

| Mov No          | Turn                           | Dem Flow<br>(veh/h)                | Cap<br>(veh/h)                   | Deg of<br>Satn<br>(v/c)         | Aver<br>Delay<br>(sec)                         | Level of<br>Service                                                                                            | 95%<br>Back of<br>Queue<br>(m)    | Eff. Stop<br>Rate                                                                                               | Aver<br>Speed<br>(km/h)         | Oper<br>Cost<br>(\$/h)            |
|-----------------|--------------------------------|------------------------------------|----------------------------------|---------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|
| HSBC            | e fræði ser fræði sægræg       | ena prazena zna grua (nazina inaci | e Shekine (në Shekine propose sh | nen a shaken in shaken shaken s | n provensko stre kalen en Dereke konstanten so | nen en fan e | a seasona ann an Shaolana (1997). | na menina di mengena di meningka meningka seringka seringka seringka seringka seringka seringka seringka sering | nen senen e senen senen senen s | n og har fra efter fra offens fra |
| 11              | т                              | 2825                               | 4206                             | 0.672                           | 12.4                                           | LOS B                                                                                                          | 89                                | 0.73                                                                                                            | 44.8                            | 896                               |
| Approach        |                                | 2825                               | 4206                             | 0.672                           | 12.4                                           | LOS B                                                                                                          | 89                                | 0.73                                                                                                            | 44.8                            | 896                               |
| All<br>Vehicles | produktion produktion provinge | 2825                               | 4206                             | 0.672                           | 12.4                                           | LOS B                                                                                                          | 89                                | 0.73                                                                                                            | 44.8                            | 896                               |

#### **Pedestrian Movements**

| Mov No                                      | Dem Flow<br>(veh/h)                                      | Aver Delay<br>(sec)                                                              | Level of<br>Service                                          | 95%<br>Back of<br>Queue<br>(m)        | Eff. Stop Rate                           | Oper Cost<br>(\$/h)                                |              |
|---------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|------------------------------------------|----------------------------------------------------|--------------|
| به امواد موجد موجد هواد عوجه موهد مواد هوی. | אין איניי ועל יביי וניי איני איני איני איני איני איני אי | والمراجعين المراجع المرجع الموجع المواجر المواجر المواجر المواجر المواجر المواجر | والموافر الموافر الموفر الموافر حوالي هويتها فارهر الأوار مو | ela este este con este este este este | an a | وفارعوه وفارعهم وترارعون وفارعون والمراجع والمراجع | n er er er e |
| 53                                          | 259                                                      | 18.9                                                                             | LOS B                                                        | 1                                     | 0.88                                     | 28                                                 |              |
| II Peds                                     | 259                                                      | 18.9                                                                             | LOS B                                                        | 1                                     | 0.88                                     | 28                                                 |              |

G:\pelajaran\fyp\fyp2\aaSIDRA Projects\push button\aileen1 Produced by aaSIDRA 2.0.1.206 Copyright© 2000-2002 Akcelik & Associates Pty Ltd

Generated 6/11/2006 6:28:45 PM

# **APPENDIX B**

## LOCATION 2 JALAN SULTAN IDRIS SHAH

- Pedestrian Data
- Traffic Data
- Data using SIDRA software

### PEDESTRIAN DATA

Location: Jalan Dato Onn Jaafar – Jalan Sultan Idris Shah

Pedestrian crossing system: Fixed time

Road Length: 15.7 m

Green time: 50 seconds

Flashing time: 50 seconds

Time of survey: 0900 – 1000

|                                              | Class                                 |           | Percentage | Cumulative of | Cumulative percentage of |
|----------------------------------------------|---------------------------------------|-----------|------------|---------------|--------------------------|
| Class (sec)                                  | midvalue                              | Frequency | frequency  | frequency     | frequency                |
| 3.5 - <u>4.</u> 5                            | 4                                     | 0         | 0          | 0             | 0.0                      |
| 4.5 - 5.5                                    | 5                                     | 2         | 0.6        | 2             | 0.6                      |
| 5.5 - 6.5                                    | 6                                     | 4         | 1.3        | 6             | 1.9                      |
| 6.5 - 7.5                                    | 7                                     | 5         | 1.6        | 11            | 3.5                      |
| 7.5 - 8.5                                    | 8                                     | 19        | 6.1        | 30            | 9.6                      |
| 8.5 - 9.5                                    | 9                                     | 34        | 11.0       | 64            | 20.6                     |
| 9.5 - 10.5                                   | 10                                    | 48        | 15.5       | 112           | 36.1                     |
| 10.5 - 11.5                                  | 11                                    | 53        | 17.1       | 165           | 53.2                     |
| 11.5 -12.5                                   | 12                                    | 51        | 16.5       | 216           | 69.7                     |
| 12.5 -13.5                                   | 13                                    | 52        | 16.8       | 268           | 86.5                     |
| 13.5 - 14.5                                  | 14                                    | 35        | 11.3       | 303           | 97.8                     |
| 14.5 - 15.5                                  | 15                                    | 2         | 0.6        | 305           | 98.4                     |
| 15.5 - 16.5                                  | 16                                    | 2         | 0.6        | 307           | 99.0                     |
| 16.5 - 17.5                                  | 17                                    | 0         | 0.0        | 307           | 99.0                     |
| 17.5 - 18.5                                  | 18                                    | 0         | 0.0        | 307           | 99.0                     |
| 18.5 - 19.5                                  | 19                                    | 1         | 0.3        | 308           | 99.3                     |
| 19.5 - 20.5                                  | 20                                    | 2         | 0.6        | 310           | 100.0                    |
| <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | · · · · · · · · · · · · · · · · · · · | 310       | 100.0      |               |                          |

 Table 1: Pedestrian crossing time

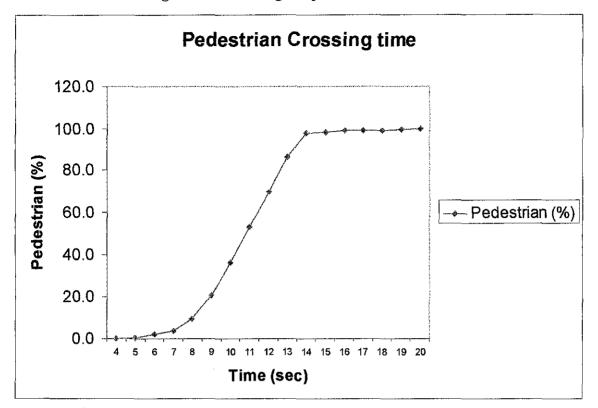
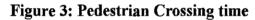
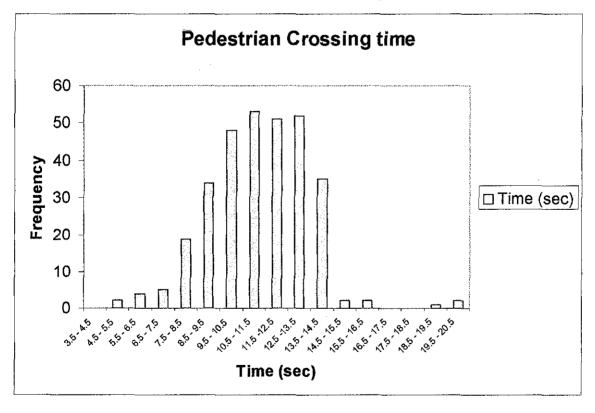
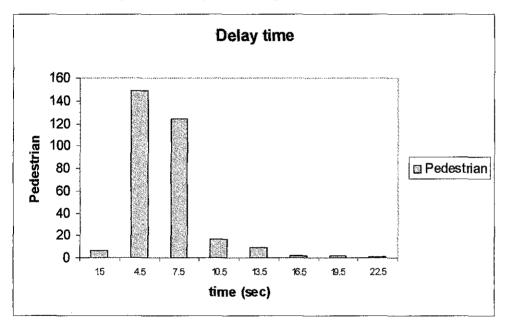





Figure 2: Percentage of pedestrian over time






| Class (sec) | Median | Frequency | Frequency precentage |
|-------------|--------|-----------|----------------------|
| 0.0 - 3.0   | 1.5    | 6         | 1.29                 |
| 3.0 - 6.0   | 4.5    | 149       | 48.06                |
| 6.0 - 9.0   | 7.5    | 124       | 40.35                |
| 9.0 - 12.0  | 10.5   | 17        | 5.48                 |
| 12.0 - 15.0 | 13.5   | 9         | 2.9                  |
| 15.0 - 18.0 | 16.5   | 2         | 0.65                 |
| 18.0 - 21.0 | 19.5   | 2         | 0.65                 |
| 21.0 - 24.0 | 22.5   | 1         | 0.32                 |
|             |        | 310       | 100                  |

Table 2: Delay time for pedestrian

Figure 4: Delay time for pedestrian



# TRAFFIC DATA

Location: Jalan Dato Onn Jaafar – Jalan Sultan Idris Shah

Duration of survey: 1 hour

Time of survey: 0900 – 1000

|             | Time  | Total traffic |
|-------------|-------|---------------|
|             | 0915  | 584           |
|             | 0930  | 743           |
|             | 0945  | 287           |
| <del></del> | 1000  | 594           |
|             | Total | 2208          |

| Time  | Total traffic |
|-------|---------------|
| 0915  | 152           |
| 0930  | 139           |
| 0945  | 114           |
| 1000  | 120           |
| Total | 525           |

| Time  | Total traffic |
|-------|---------------|
| 0915  | 263           |
| 0930  | 312           |
| 0945  | 241           |
| 1000  | 320           |
| Total | 1136          |

| Time  | Total traffic |
|-------|---------------|
| 0915  | 118           |
| 0930  | 187           |
| 0945  | 114           |
| 1000  | 89            |
| Total | 508           |

.

# aaSIDRA INPUT DATA

**LOCATION 2** 

Akcelik & Associates - aaSIDRA 2.0.1.206 utp aileen Registered User No. a1061 Licence Type: Educational, Multi Computer

Time and Date of Analysis 3:26 AM, 8 May 2006

Filename: G:\pelajaran\fyp\fyp2\aaSIDRA Projects\all-red pedestrian cross\aileen2.LIS

fixed-time basis jln sultan idris shah

INPUT DATA LISTING

#### MAIN OPTIONS

|                  |          |       |          |       |          | Major |       |          |       |       |      | Unit         | SIDRA |
|------------------|----------|-------|----------|-------|----------|-------|-------|----------|-------|-------|------|--------------|-------|
| Line             | Int.     | Int.  | Def.     | Summ. | Int.     | Road/ | Int.  | Def      | Drive | NZ    | User | Time         | Versn |
| <b>111-110-0</b> | <b>m</b> | AL. 1 | 1732 T - | 0+    | <u> </u> |       | 0 1   | <b>a</b> | D     | D 1 - | + 1  | M = 4 1 = -1 | N7    |
| rype             | Type     | CTTL  | rıle     | out.  | Geom.    | Łwy   | Coord | Grp      | ките  | Rute  | LevL | Method       | NO.   |

#### PROGRAM CONTROL DATA

| Line | Cycl | Cycl | Max  | Intg | Stp | Peak | Flow | HV  | Total | Satf | PFF  | Satf  |
|------|------|------|------|------|-----|------|------|-----|-------|------|------|-------|
| Туре | Time | Incr | Cycl | Time | Pen | Per  | Scal | Opt | Per   | Scal | *100 | Estim |
| 1    | Р    | 10   | 150  | 6    | 20  | 15   | 100  | Ρ   | 60    | 100  | 95   | Y     |

#### INTERSECTION DATA

|      |     | No.   |      | Turn | Perct | Lane  | Base | Prac |        |       |
|------|-----|-------|------|------|-------|-------|------|------|--------|-------|
| Line | Int | Appr  |      | On   | Heavy | Width | Satn | Deg  | Apprch |       |
| Type | No. | Lanes | Peds | Red  | Vehs  | (Cm)  | Flow | Satn | Dist   | Speed |
| A1   |     | 3     | F    | N    | 3     | 300   | 1950 | 90   | 500    | 60    |

#### APPROACH DESCRIPTION

|      | App |          |        |      | No. | No. |       |     |     |     | Ped. | Cross | Down |
|------|-----|----------|--------|------|-----|-----|-------|-----|-----|-----|------|-------|------|
| Line | Rd  | Approach | Road   | Name | App | Ext | Med.  |     | Con |     | Dist | ance  | SL   |
| Туре | Loc | (Desc:   | riptio | n)   | Lns | Lns | Width | Ped | Тур | TOR | Appr | Exit  | Lgth |
| A2   | S   | mcD      |        |      | 5   | 0   | N     | F   | FN  | N   | 1500 | 0     | N    |
| A2   | E   | parade   |        |      | 0   | 5   | N     | F   |     | Ň   | 1500 | 0     | N    |
| A2   | Ň   | ocean    |        |      | 0   | 5   | N     | F   |     | N   | 1500 | 0     | Ň    |
| A2   | W   | bcb      |        |      | 5   | 0   | N     | F   | FN  | N   | 1500 | 0     | N    |

#### APPROACH DATA

|      | Appr | Perct | Appr  | Lane  | Base | Prac. |                |       |                 |                 |      |
|------|------|-------|-------|-------|------|-------|----------------|-------|-----------------|-----------------|------|
| Line | Road | Heavy | Grade | Width | Satn | Deg.  | $\mathbf{PHF}$ | Arrvl | Appr            | Exit            | Appr |
| Туре | Locn | Vehs  | (୫)   | (cm)  | Flow | Satn  | *100           | Type  | Speed           | Speed           | Dist |
| A3   | S    | 3     | 0     | 300   | 1950 | 90    | 95             | 3     | <sup>-</sup> 60 | <sup>-</sup> 60 | 500  |
| A3   | W    | 3     | 0     | 300   | 1950 | 90    | 95             | 3     | 60              | 60              | 500  |

#### MOVEMENT DESCRIPTION

|      | Appr |      |     |     |      | VΕ  | EHICLES |      |     |     |      |     |     | PEDS |     |
|------|------|------|-----|-----|------|-----|---------|------|-----|-----|------|-----|-----|------|-----|
| Line | Road | Exit |     | Mov | Exit |     | Mov     | Exit |     | Mov | Exit |     | Mov | Mov  | Mov |
| Туре | Locn | Road | Trn | No. | Road | Trn | No.     | Road | Trn | No. | Road | Trn | No. | No.  | No. |
| A4   | S    | N    | Т   | 2   | E    | R   | 3       |      |     |     |      |     |     | 51   |     |
| A4   | E    |      |     |     |      |     |         |      |     |     |      |     |     | 53   |     |
| A4   | N    |      |     |     |      |     |         |      |     |     |      |     |     | 55   |     |
| A4   | W    | N    | L   | 10  | E    | т   | 11      |      |     |     |      |     |     | 57   |     |

VEHICLE VOLUMES

| Line |       | Appr<br>Road |   |    |      |    | -            |    | APPROACH |    |
|------|-------|--------------|---|----|------|----|--------------|----|----------|----|
| туре | Class | Locn         | S | SE | E    | NĒ | N            | NW | W        | SW |
| A5   | TOT   | S            |   |    | 508  |    | <b>1</b> 136 |    |          |    |
| A5   | 8HV   | S            |   |    | 0    |    | 0            |    |          |    |
| A5   | TOT   | Ë            |   |    |      |    |              |    |          |    |
| A5   | 8HV   | E            |   |    |      |    |              |    |          |    |
| A5   | TOT   | Ň            |   |    |      |    |              |    |          |    |
| A5   | 8HV   | N            |   |    |      |    |              |    |          |    |
| A5   | TOT   | W            |   |    | 2208 |    | 525          |    |          |    |
| A5   | %HV   | W            |   |    | 0    |    | 0            |    |          |    |

### PEDESTRIAN VOLUMES

| Line | Vol. | of | Pedes | trians | in | Front | of | Appro | ach |    |
|------|------|----|-------|--------|----|-------|----|-------|-----|----|
| Туре | S    |    | SE    | E      | NE | E N   |    | NW    | W   | SW |
| A6   | 312  |    | 1     | .43    |    | 135   |    | 3     | 10  |    |

### LANE DATA

|            | Appr |      |               |      | $\mathtt{SL}$ | Lane  | Basic | Lane | SL    | No.of | Bus   |
|------------|------|------|---------------|------|---------------|-------|-------|------|-------|-------|-------|
| Line       | Road | Lane | Lane          | Lane | Length        | Width | Satn  | Util | Green | Park  | Stops |
| Туре       | Locn | No.  | Dis.          | Type | (m)           | (CM)  | Flow  | (8)  | Const | Manvs | /hour |
| Å8         | S    | 1    | Т             | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| A8         | S    | 2    | Т             | 1.   | N*            | 300   | 1950  | 100  | N     | N     | N     |
| A8         | S    | 3    | Ť             | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| A8         | S    | 4    | TR            | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| A8         | S    | 5    | R             | 1    | N*            | 300   | 1950  | 100  | N     | N     | Ň     |
| A8         | W    | 1    | L             | 1    | N*            | 300   | 1950  | 1.00 | N     | N     | N     |
| A8         | W    | 2    | $\mathbf{LT}$ | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| <b>A</b> 8 | W    | 3    | т             | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| <b>A</b> 8 | W    | 4    | Т             | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |
| A8         | W    | 5    | Т             | 1    | N*            | 300   | 1950  | 100  | N     | N     | N     |

### SHARED LANE DATA

|      |      |      | F.  | IRST MO | OVEMENT |     | S   | ECOND 1 | 40VEMEN | T             |
|------|------|------|-----|---------|---------|-----|-----|---------|---------|---------------|
|      | Appr |      |     | Free    | Basic   | SL  |     | Free    | Basic   | $\mathbf{SL}$ |
| Linc | Road | Lanc | Mov | Queue   | Satn    | Grn | Mov | Queue   | Satn    | Grn           |
| Type | Locn | No.  | No. | (veh)   | Flow    | Con | No. | (veh)   | Flow    | Con           |
| A9   | S    | 4    | 2   | 0       | 1950    | N   | 3   | 0       | 1950    | N             |
| A9   | W    | 2    | 10  | 0       | 1950    | N   | 11  | 0       | 1950    | N             |

### PHASE DATA

|      |         |         | Opd |        | Opd   |      | Opd  |       | Opd   |      | Opd  |     | Opd |     | Opd |
|------|---------|---------|-----|--------|-------|------|------|-------|-------|------|------|-----|-----|-----|-----|
| Line | Phase   | Mov     | Ped | Mov    | Ped   | Mov  | Ped  | Mov   | Ped   | Mov  | Ped  | Mov | Ped | Mov | Ped |
| Туре | Name    | No.     | Dum | No.    | Dum   | No.  | Dum  | No.   | Dum   | No.  | Dum  | No. | Dum | No. | Dum |
| A14  | А       | 10      |     | 11     |       |      |      |       |       |      |      |     |     |     |     |
| A14  | В       | 2       |     | 3      |       |      |      |       |       |      |      |     |     |     |     |
| A14  | С       | 51      | Ρ   | 53     | P     | 55   | Р    | 57    | Ρ     |      |      |     |     |     |     |
| A14  | D       | 55      | P   |        |       |      |      |       |       |      |      |     |     |     |     |
| A14  | Е       | 57      | Р   |        |       |      |      |       |       |      |      |     |     |     |     |
| A14  | F       | 51      | Р   | 11     |       |      |      |       |       |      |      |     |     |     |     |
| A14  | н       | 3       |     | 57     | Р     |      |      |       |       |      |      |     |     |     |     |
| A14  | J       | 51      | Ρ   | 55     | P     | 11   |      |       |       |      |      |     |     |     |     |
| Unde | r Opd/P | ed/Dum: | L,T | , R=Op | posed | i tu | rns, | P=Pec | destr | ian, | D=Du | mmy |     |     |     |

### PHASE SEQUENCE DATA

| Line<br>Type |   |   |   |   |   | Pha<br>Nam |  |  |
|--------------|---|---|---|---|---|------------|--|--|
| A15          | 1 | А | в | С |   |            |  |  |
| A15          | 2 | С | D | Ε | F |            |  |  |

| A15 | 3 | Н | J |   |   |
|-----|---|---|---|---|---|
| A15 | 4 | Е | H | D | J |
| A15 | 5 | E | Н | F | J |
| A15 | 6 | С | Н | D | Ĵ |
| A15 | 7 | С | н | F | J |

#### CURRENT PHASE SEQUENCE

|      | Phase |
|------|-------|
| Line | Seq.  |
| Type | No.   |
| A16  | 1     |
| ALO  | T     |

#### NEGOTIATION RADIUS (GEOMETRIC DATA)

| Line | Appr<br>Road | Ne | gotiat: | ion ra | dius | for | tra | ffic | exiting | TO APPRO | ACH |
|------|--------------|----|---------|--------|------|-----|-----|------|---------|----------|-----|
| Туре | Locn         | S  | SE      | E      | NE   |     | N   | NW   | W       | SW       |     |
| A21  | S            |    |         | P      |      |     | P   |      |         |          |     |
| A21  | W            |    |         | P      |      |     | P   |      |         |          |     |

#### NEGOTIATION SPEED (GEOMETRIC DATA)

| Line | Appr<br>Road | Ne | gotiat | ion sp | eed for | traf | fic exi | ting | TO APPROACH | I |
|------|--------------|----|--------|--------|---------|------|---------|------|-------------|---|
| Type | Locn         | S  | SE     | Е      | NĒ      | N    | NW      | W    | SW          |   |
| A22  | S            |    |        | Р      |         | Р    |         |      |             |   |
| A22  | W            |    |        | Р      |         | P    |         |      |             |   |

#### NEGOTIATION DISTANCE (GEOMETRIC DATA)

| Line | Appr<br>Road |   | Negotiat: | ion di | istance | for | traffic | exiting | j TO | APPROACH |  |
|------|--------------|---|-----------|--------|---------|-----|---------|---------|------|----------|--|
| Type | Locn         | S | SE        | E      | NĖ      | N   | NW      | W       | SW   |          |  |
| A23  | S            |   |           | P      |         | P   |         |         |      |          |  |
| A23  | W            |   |           | P      |         | р   |         |         |      |          |  |

### MOVEMENT DATA: PHASE AND TIMING PARAMETERS (Mov.Type: P=Pedestrian, D=Dummy, U V W=Undetected, C=Continuous) F I R S T G R E E N

| Line | Mov. | Mov. | From  | То    | Inter- | Start | End  | Mìn.  | Max.  |
|------|------|------|-------|-------|--------|-------|------|-------|-------|
| Туре | Туре | No.  | Phase | Phase | Green  | Loss  | Gain | Green | Green |
| 4    |      | 2    | B     | С     | 6      | 3     | 3    | 6     | N     |
| 4    |      | 3    | в     | С     | 6      | 3     | 3    | 6     | N     |
| 4    | Р    | 51   | С     | А     | 6      | 2     | -8   | 16    | N     |
| 4    | Р    | 53   | С     | A     | 6      | 2     | -8   | 16    | N     |
| 4    | . P  | 55   | C     | A     | 6      | 2     | -8   | 16    | N     |
| 4    |      | 10   | A     | В     | 6      | 3     | 3    | 6     | N     |
| 4    |      | 11   | A     | в     | 6      | 3     | 3    | 6     | N     |
| 4    | P    | 57   | С     | A     | 6      | 2     | -8   | 16    | N     |

#### MOVEMENT DATA (2)

|      |     | Satn         | Flow |          |       |   | Turn Type<br>Radius/Pe |  |
|------|-----|--------------|------|----------|-------|---|------------------------|--|
| Line | Mov | 1 <b>s</b> t | 2nd  | Prac.    | Grad. |   |                        |  |
| Туре | No. | Grn          | Grn  | Deg.Satn | (%)   |   | LR                     |  |
| 5    | 2   |              |      | 90       | 0     | 0 | 0 0                    |  |
| 5    | 3   |              |      | 90       | 0     | 0 | 0 0                    |  |
| 5    | 51  | 12000        |      | 90       |       | 0 |                        |  |
| 5    | 53  | 12000        |      | 90       |       | 0 |                        |  |
| 5    | 55  | 12000        |      | 90       |       | 0 |                        |  |
| 5    | 10  |              |      | 90       | 0     | 0 | 0 0                    |  |

| 5 | 11 |       | 90 | 0 | 0 | 0 | 0 |
|---|----|-------|----|---|---|---|---|
| 5 | 57 | 12000 | 90 |   | 0 |   |   |

#### OPPOSED TURN PARAMETERS

| Line | Opsd |              | Crit  | Fol.up | Deps   | Exit |
|------|------|--------------|-------|--------|--------|------|
| Туре | Mov  | Opsd         | Gap   | Hdway  | at End | Flow |
|      | No.  | Turn         | (*10) | (*10)  | (*10)  | (%)  |
| 7    | 3    | R            | 40    | 24     | . 25   | 0    |
| 7    | 10   | $\mathbf{L}$ | 45    | 26     | 22     | 0    |

#### MOVEMENT GROUPING DEFINITION

| Line | Grp | Mov |     | GROUP  | DESCRIPTION |  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|-------------|--|
| Type | No. |     |        |             |  |
| 11   | 1   | 2   | 3   |     |     |     |     |     |     | mcD |        |             |  |
| 11   | 2   | 10  | 11  |     |     |     |     |     |     | bcb |        |             |  |
| 11   | 3   | 51  | 53  | 55  | 57  |     |     |     |     | Ped | estria | rs          |  |

#### DATA FOR MOVEMENT GROUPINGS

| Line | Group | Flow  | Delay  | Stop   | Queue  |   |   |
|------|-------|-------|--------|--------|--------|---|---|
| Туре | No.   | Scale | Weight | Weight | Weight |   |   |
|      |       | 웅     | 100w1  | 100w2  | 100w3  |   |   |
| 12 2 | 1     | 100   | 100    | 100    | 100    | 0 | 0 |
| 12 2 | 2     | 100   | 100    | 100    | 100    | 0 | 0 |
| 12 2 | 3     | 100   | 100    | 100    | 100    | 0 | 0 |

#### DATA FOR FUEL/EMISSIONS/COST

| Group | Idling   | Steady | Speed   | Veh.    | Power | Coeffs. | Alphar | numeric |
|-------|----------|--------|---------|---------|-------|---------|--------|---------|
| No.   | Rate     |        |         | Mass    | (*1)  | 0E4)    | Descri | ption   |
|       | (/h)     | A      | в       | (kg)    |       |         |        |         |
|       |          |        | (*10E5) |         | Beta1 | Beta2   | Name   | Unit    |
| 1     | All para | meters | program | calcul  | ated  |         |        |         |
| 2     | All para | meters | program | calcula | ated  |         |        |         |
| 3     | All para | meters | program | calcul  | ated  |         |        |         |
|       |          |        | -       |         |       |         |        |         |

#### MOVEMENT DATA (1)

|      |     | Appr   | oach<br> |   | Queue Space<br>(cm/veh) |               |      |   | PHF<br>*100 | Arrival &<br>Control |
|------|-----|--------|----------|---|-------------------------|---------------|------|---|-------------|----------------------|
| Line | Mov | Speed  | Dist.    |   |                         |               |      |   |             | Туре                 |
| Туре | No. | (km/h) | (m)      |   |                         | $r_{\Lambda}$ | HV   |   |             | & Coord.             |
| 15   | 2   | 60     | 500      | 0 | 0                       | 700           | 1300 | 0 | 95          | 3 <i>e</i> n         |
| 15   | 3   | 60     | 500      | 0 | 0                       | 700           | 1300 | 0 | 95          | 3FN                  |
| 15   | 51  | 4      | 10       | 0 | 0                       | 100           | 0    | 0 | 95          | 3FN                  |
| 15   | 53  | 4      | 10       | 0 | 0                       | 100           | 0    | 0 | 95          | 3FN                  |
| 15   | 55  | 4      | 10       | 0 | 0                       | 100           | 0    | 0 | 95          | 3FN                  |
| 15   | 10  | 60     | 500      | 0 | 0                       | 700           | 1300 | 0 | 95          | 3FN                  |
| 15   | 11  | 60     | 500      | 0 | 0                       | 700           | 1300 | 0 | 95          | 3FN                  |
| 15   | 57  | 4      | 10       | 0 | 0                       | 100           | 0    | 0 | 95          | 3 FN                 |

#### GREEN SPLIT PRIORITY

| Line Ap | plic- | Mov. | Pri. |
|---------|-------|------|------|------|------|------|------|------|------|------|------|
|---------|-------|------|------|------|------|------|------|------|------|------|------|

| Type<br>20 | able?<br>N | No. Coo     | ie No.    | Code    |        | Code   | No.    | Code    | No.    | Code     |
|------------|------------|-------------|-----------|---------|--------|--------|--------|---------|--------|----------|
| 20         | 10         | • •         | •         | •       | •      | •      | •      | •       | •      | •        |
| VARIAB     | LE CYCLE   | TIME DATA   |           |         |        |        |        |         |        |          |
|            |            |             |           | СҮС     | СЬЕ    | ΤI     | MES    |         |        |          |
| Line       | User/      |             |           |         |        |        |        |         |        |          |
| Туре       | Prog       | 1st 2nd 3   | Brd 4th 5 | oth 6th | 7th 8  | th 9th | . 10th | 11th 12 | 2th 13 | th 14th  |
| 21         | N          | 150         | 10        |         |        |        |        |         |        |          |
|            |            |             |           |         |        |        |        |         |        |          |
| VARIAB     | LE FLOW    | SCALE DATA  |           |         |        |        |        |         |        |          |
|            |            |             |           |         | FL     | οw     | SCA    | LES     |        |          |
| Line       | User/      | Groups      |           |         |        |        |        |         |        |          |
|            | Prog       |             | 1st 2n    | d 3rd   | 4th 5t | h 6th  | 7th 8t | h 9th 3 | 10th 1 | lth 12th |
| 22         | N          |             | 100 12    |         |        |        |        |         |        |          |
|            |            |             | 200 12    |         |        |        |        |         |        |          |
| End of     | Input D    | ata Listino | from fi   | le:     |        |        |        |         |        |          |
|            |            | p\fyp2\aaS  |           |         | ll-red | pedes  | trian  | cross\a | aileen | 2.DAT    |
| ····       | 7          |             |           |         |        | £      |        |         |        |          |

RUNTIME INFORMATION

Undertaking aaSIDRA run: fixed-time basis

Calculating Capacities and Timings Main Iteration No. 0 Main Iteration No. 1 Calculating Performance Results and Writing Main Output File: G:\pelajaran\fyp\fyp2\aaSIDRA Projects\all-red pedestrian cross\aileen2.OUT

# aaSIDRA OUTPUT DATA

# **LOCATION 2**

Akcelik & Associates Pty Ltd - aaSIDRA 2.0.1.206 \_\_\_\_\_ \_\_\_\_\_ utp Registered User No. a1061 aileen Licence Type: Educational, Multi Computer 3:26 AM, 8 May 2006 Time and Date of Analysis Filename: G:\pelajaran\fyp\fyp2\aaSIDRA Projects\all-red pedestrian cross\aileen2.0UT fixed-time basis iln sultan idris shah Intersection ID: RUN INFORMATION . . . . . . . . . . . . . . . . . . . \* Basic Parameters: Intersection Type: Signalised - Fixed Time Driving on the right-hand side of the road Input data specified in Metric units Default Values File No. 30 Peak flow period (for performance): 15 minutes Unit time (for volumes): 60 minutes (Total Flow Period) Delay definition: Control delay Geometric delay included aaSIDRA Standard Delay and Queue models used Level of Service based on: Delay (HCM method) Queue definition: Back of queue, 95th Percentile \* No. of Main (Timing-Capacity) Iterations = 1 Comparison of last two iterations: Difference in intersection degree of sath = 0.0 % Difference in total vehicle capacity = 0.0 % Largest difference in eff. green times = 0 secs (max. value for stopping = 0 secs) fixed-time basis jln sultan idris shah Intersection ID: DEFAULT PARAMETERS \_\_\_\_\_ Default values for some of the important general parameters: (Default Values File: DEF30.SDF) 1. Basic saturation flow: 1950 tcu/h This value applies mainly to signalised intersections. For roundabouts and sign-controlled intersections, it is used for determining capacity of priority and continuous movements.

| • | opposed turn | parameters | (Signalised | a inters | ection)     |
|---|--------------|------------|-------------|----------|-------------|
|   |              | Crit.      | Fol.up      | Deps     | % Exit Flow |
|   |              | Ġap        | Hdway       | at End   | Opposing    |
|   | Left turn    | s: 4.5     | 2.6         | 2.2      | 0           |
|   | Right tur    | ns: 4.0    | 2.4         | 2.5      | 0           |

4. Cruise speed= 60 km/h, Approach Distance= 500 m

#### 5. Queue space per vehicle in metres Light vehicles: 7.0 Heavy vehicles: 13.0

A full list of input data defaults and ranges is given in the Input Guide part of aaSIDRA User Guide.

fixed-time basis jln sultan idris shah Intersection ID:

Fixed-Time Signals, Cycle Time = 80

Table S.0 - TRAFFIC FLOW DATA -----------Left Through Right Flow Peak Motz Scale Flow TA HA TA HA TA HA No. Factor VEHICLES Demand flows in veh/hour as used by the program South: mcD 0 1196 0 л 0 n 1.00 0.95 2 Ő 0 0 0 535 3 0 1.00 0.95 . .... .... ..... \_\_\_\_\_ West: bcb 10 11 -----PEDESTRIANS Flow (ped/hour) 1.00 51 328 0.95 53 151 1.00 0.95 55 142 1.00 0.95 57 1.00 326 0.95 \_\_\_\_ \_\_\_\_\_ Based on unit time = 60 minutes. Flow Scale and Peak Hour Factor effects included in flow values. fixed-time basis jln sultan idris shah Intersection ID: Fixed-Time Signals, Cycle Time = 80 Table S.1 - MOVEMENT PHASE AND TIMING PARAMETERS PHASE MATRIX Mov Lost Tim Req.Mov.Time Eff. Grn Mov First GreenSecond Green------------1st 2nd 1st2ndFr To Op PrFr To Op PrGrn Grn Grn Grn Grn Grn No. Typ First Green Second Green -----\_\_\_\_\_ ----South: mcD 2 Т \*B C 6 22.3 17 6 22.3 6 22.3 3 R вс 17 \_\_\_\_\_ \_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ West: bcb 10 L A B 11 T \*A B 6 32.8 6 32.9 29 29 Pedestrians 51 (Ped)\*C A 53 (Ped) C A 16 22.0Min 6 22.0Min 16 6 55 (Ped) C A 57 (Ped) C A 16 22.0Min 16 22.0Min 6 6 Current Phase Sequence No.: 1 Input phase sequence: A B C Output phase sequence: A B C 

| Moveme | nt Types:  |       |         |          | U | nder | heading 'Op': |
|--------|------------|-------|---------|----------|---|------|---------------|
| Ped    | Pedestrian |       |         |          |   | L    | "Left" turns  |
| Dum    | Dummy      |       |         |          |   | R    | "Right" turns |
| Und    | Undetected | in bo | th gree | n period | 3 | LR   | "Left and Rig |
| Unl    | Undetected | in 1s | t green | period   |   | С    | "Constant" sa |
| Un2    | Undetected | in 2n | d green | period   |   |      |               |
|        |            |       | -       | -        |   |      |               |

Fixed-Time Signals, Cycle Time = 80

: are opposed s are opposed

ght" opposed aturation flow

Table S.2 - MOVEMENT CAPACITY PARAMETERS

| Mov<br>No. | Dem<br>Flow |            | Flow       | Flow       | Ratio | Total<br>Cap. | Prac.<br>Deg. | Prac.<br>Spare | Lane<br>Util | Deg.<br>Satn |
|------------|-------------|------------|------------|------------|-------|---------------|---------------|----------------|--------------|--------------|
| NO.        | (veh<br>/h) | 1st<br>Grn | 2nd<br>Grn | 1st<br>Grn | 2nd   | (veh          | Satn<br>xp    | Cap.           | (%)          | x            |
| South: n   | cD          |            |            |            |       |               |               |                |              |              |
| 2 Т        | 1196        | 6541       |            | 0.183      |       | 1390          | 0.90          | 5              | 100          | 0.860*       |
| 3 R        | 535         | 2926       |            | 0.183      |       | 622           | 0.90          | 5              | 100          | 0.860*       |
| West: bo   | b           |            |            |            |       |               |               |                |              |              |
| 10 L       | 553         | 1831       |            | 0.302      |       | 664           | 0.90          | 8              | 100          | 0.833        |
| 11 T       | 2324        | 7691       |            | 0.302      |       | 2788          | 0.90          | 8              | 100          | 0.834        |
| Pedestr    | ians        |            |            |            |       |               |               |                |              |              |
| 51         | 328         | 12000      |            | 0.027      |       | 900           | 0.90          |                | 100          | 0.364        |
| 53         | 151         | 12000      |            | 0.013      |       | 900           | 0.90          |                | 100          | 0.168        |
| 55         | 142         | 12000      |            | 0.012      |       | 900           | 0.90          |                | 100          | 0.158        |
| 57         | 326         | 12000      |            | 0.027      |       | 900           | 0.90          |                | 100          | 0.362        |

fixed-time basis

fixed-time basis jln sultan idris shah Intersection ID:

jln sultan idris shah

Intersection ID:

Fixed-Time Signals, Cycle Time = 80

#### Table S.3 - INTERSECTION PARAMETERS

| Mov | App.  | Green<br>Period |       |        | Adjusted<br>Lost | Adjusted<br>Flow | Required<br>Grn Time | Required<br>Movement |
|-----|-------|-----------------|-------|--------|------------------|------------------|----------------------|----------------------|
| NO. | Turn  |                 | Fr    | То     | Time             | Ratio            | Ratio                | Time                 |
| 11  | W_T   |                 | <br>A | в      | 6                | 0.302            | 0.336                | 32.9                 |
| 2   | ST    |                 | В     | С      | 6                | 0.183            | 0.203                | 22.3                 |
| 51  | S_Ped |                 | С     | А      | 22               | -                | -                    | 22.0Min              |
|     |       |                 |       |        | <del>-</del>     |                  | <b>-</b>             |                      |
|     |       |                 |       | Total: | 34               | 0.485            | 0.539                | 77.1                 |

- Flow ratio not used for cycle time calculations and the adjusted lost time equals the required movement time (=Min or Max as shown in Table S.1)

| Cycle Time:<br>Minimum<br>46 | Maximum<br>150 | Practical<br>74 | Chosen<br>80 |   |        |
|------------------------------|----------------|-----------------|--------------|---|--------|
| Intersectio                  | on Level of    | 5 Service       |              | ÷ | D      |
| Worst movem                  | ent Level      | of Service      |              | = | Ď      |
| Average int                  | ersection      | delay (s)       |              | = | 36.5   |
| Largest ave                  | erage movem    | ment delay      | (s)          | = | 50.2   |
| Largest bad                  | k of queue     | e, 95% (m)      |              | = | 167    |
| Performance                  | Index          |                 |              | = | 253.02 |

| Degree of saturation (highest)            | =           | 0.860   |              |
|-------------------------------------------|-------------|---------|--------------|
| Practical Spare Capacity (lowest)         | -           | 5       | <del>ያ</del> |
| Total vehicle capacity, all lanes (veh/h) | =           | 5463    |              |
| Total vehicle flow (veh/h)                | =           | 4608    |              |
| Total pedestrian flow (ped/h)             | =           | 947     |              |
| Total person flow (pers/h)                | =           | 7859    |              |
| Total vehicle delay (veh-h/h)             | #           | 47.13   |              |
| Total pedestrian delay (ped-h/h)          | =           | 9.00    |              |
| Total person delay (pers-h/h)             |             | 79.69   |              |
| Total effective vehicle stops (veh/h)     | =           | 4549    |              |
| Total effective pedestrian stops (ped/h)  | ×           | 876     |              |
| Total effective person stops (pers/h)     | =           | 7699    |              |
| Total vehicle travel (veh-km/h)           | =           | 2790.6  |              |
| Total cost (\$/h)                         | =           | 2387.88 |              |
| Total fuel (L/h)                          | =           | 366.7   |              |
| Total CO2 (kg/h)                          | <del></del> | 916.81  |              |
|                                           |             |         |              |

fixed-time basis jln sultan idris shah Intersection ID: Fixed-Time Signals, Cycle Time = 80

Table S.4 - PHASE INFORMATION

| Phase<br>No. | Change<br>Time                         | Green<br>Start | Displayed<br>Green |    | Intgrn<br>Prop. |
|--------------|----------------------------------------|----------------|--------------------|----|-----------------|
| Ä            | 0                                      | <u>-</u>       | 29                 | 35 | 0.438           |
| в            | 35                                     | 41             | 17                 | 23 | 0.287           |
| С            | 58                                     | 64             | 16                 | 22 | 0.275           |
|              | ······································ |                |                    |    |                 |

Current Phase Sequence No.: 1 Input phase sequence: A B C Output phase sequence: A B C

fixed-time basis jln sultan idris shah

Intersection ID: Fixed-Time Signals, Cycle Time = 80

Table S.5 - MOVEMENT PERFORMANCE

| Mov<br>No. |       | Total<br>Delay<br>(pers-h/h | Delay | Prop.<br>Queued               | Eff.<br>Stop<br>Rate |                             | ick | Perf.<br>Index | Aver.<br>Speed<br>(km/h) |
|------------|-------|-----------------------------|-------|-------------------------------|----------------------|-----------------------------|-----|----------------|--------------------------|
| South: n   | ncD   |                             |       |                               |                      |                             |     |                |                          |
| 2 Т        | 13.59 | 20.38                       | 40.9  | 1.00                          | 1.01                 | 16.6                        | 116 | 64.56          | 28.2                     |
| 3 R        | 7.45  | 11.18                       | 50.2  | 1.00                          | 1.01                 | 16.2                        | 113 | 30.28          | 25.1                     |
| West: bo   |       |                             |       |                               |                      | * == += += += = = = = = = = |     |                |                          |
| 10 L       | 6.25  | 9.38                        | 40.7  | 0.97                          | 0.99                 | 22.9                        | 160 | 28.61          | 28.2                     |
| 11 T       | 19.83 | 29.75                       | 30.7  | 0.98                          | 0.97                 | 23.8                        | 167 | 113.33         | 32.5                     |
| Pedesti    | ians  |                             |       | لفلة علو حيد عله عزم عليه عيد |                      | •                           |     |                |                          |
| 51         | 3.12  | 3.12                        | 34.2  | 0.92                          | 0.93                 | 1.4                         | 1   | 5.62           | 0.8                      |
| 53         | 1.44  | 1.44                        | 34.2  | 0,92                          | 0.93                 | 0.6                         | 1   | 2.59           | 0.8                      |
| 55         | 1.35  | 1.35                        | 34.2  | 0.92                          | 0.93                 | 0.6                         | 1   | 2.43           | 0.8                      |
| 57         | 3.10  | 3.10                        | 34.2  | 0.92                          | 0.93                 | 1.4                         | 1   | 5.59           | 0.8                      |

fixed-time basis jln sultan idris shah Intersection ID:

Fixed-Time Signals, Cycle Time = 80

Table S.6 - INTERSECTION PERFORMANCE

|                  | Satn<br>x       | Total<br>Delay<br>(veh-h/h) ( | Delay<br>pers-h/h | Delay<br>(sec) | Queued | Stop<br>Rate | Queue<br>(m) | Index  | Speed<br>(km/h) |
|------------------|-----------------|-------------------------------|-------------------|----------------|--------|--------------|--------------|--------|-----------------|
| South: 1<br>1731 | ncD<br>0.860    | 21.04                         | 31.56             | 43.8           | 1.000  | 1.01         | 116          | 94.84  | 27.2            |
| West: b<br>2877  | cb<br>0.834     | 26.09                         | 39.13             | 32.6           | 0.980  | 0.97         | 167          | 141.94 | 31.6            |
| Pedest:<br>947   | rians<br>0.364  | 9.00                          | 9.00              | 34.2           | 0.925  | 0.93         | 1            | 16.24  | 0.8             |
| ALL VEH          | ICLES:<br>0.860 | 47.13                         | 70.69             | 36.8           | 0.987  | 0.99         | 167          | 236.78 | 29.8            |
| INTERSE          | CTION           | (persons):                    |                   |                |        |              |              |        |                 |
| Queue va         | alues j         | In this tab                   | le are 9          | 5% back        | of que | <br>ue (me   | etres).      |        |                 |

fixed-time basis

jln sultan idris shah

Intersection ID:

Fixed-Time Signals, Cycle Time = 80

Table S.7 - LANE PERFORMANCE

| Lane   | Mov     | Gree | n Ti | mes (s | sec) | (veh | (veĥ  | Satn | Aver.<br>Delay | Stop | 95%<br> | e u e<br>Back |     |
|--------|---------|------|------|--------|------|------|-------|------|----------------|------|---------|---------------|-----|
| No.    | No.     | R1   | G1   | R2     | G2   | /h)  | /h)   | х    | (sec)          | Rate | (vehs   | ) (m)         | (m) |
| South: | mcD     |      |      |        |      |      |       |      |                |      |         |               |     |
| 1 T    | 2       | 63   | 17   | 0      | 0    | 352  | 409 0 | .860 | 40.9           | 1.01 | 16.6    | 116           |     |
| 2 Т    | 2       | 63   | 17   | 0      | 0    | 352  | 409 0 | .860 | 40.9           | 1.01 | 16.6    | 116           |     |
| 3 Т    | 2       | 63   | 17   | Ó      | 0    | 352  | 409 0 | .860 | 40.9           | 1.01 | 16.6    | 116           |     |
| 4 TR   | 2,      | 63   | 17   | 0      | 0    | 342  | 397 0 | .860 | 46.3           | 1.01 |         | 113           |     |
| •      | 3       |      |      | -      | -    |      |       |      |                |      |         |               |     |
| 5 R    | 3       | 63   | 17   | 0      | 0    | 335  | 389 0 | .860 | 50.2           | 1.01 | 16.0    | 112           | ÷   |
| West:  | <br>bcb |      |      |        |      |      |       |      |                |      |         |               |     |
| 1 L    | 10      | 51   | 29   | 0      | 0    | 553  | 664 0 | .833 | 40.7           | 0.99 | 22.9    | 160           |     |
| 2 Т    | 10,     | 51   | 29   | 0      | 0    | 581  | 697 0 | .834 | 30.7           | 0.97 | 23.8    | 167           |     |
|        | 11      | 01   |      | · ·    | •    | 001  | ••••  |      | 001            |      |         | 107           |     |
| ЗТ     | 11      | 51   | 29   | 0      | 0    | 581  | 697 0 | .834 | 30.7           | 0.97 | 23.8    | 167           |     |
| 4 T    | 11      | 51   | 29   | Ó      | 0    | 581  | 697 0 | .834 | 30.7           | 0.97 | 23.8    | 167           |     |
| 5 Т    | 11      | 51   | 29   | Ō      | Ō    | 581  | 697 0 | .834 |                | 0.97 |         | 167           |     |
|        |         |      |      |        |      |      |       |      |                |      |         |               |     |

fixed-time basis jln sultan idris shah Intersection ID:

Fixed-Time Signals, Cycle Time = 80

Table S.8 - LANE FLOW AND CAPACITY INFORMATION

|     |           |                  |       | Satura | tion  | Flow  | End  | Tot  |      |      |
|-----|-----------|------------------|-------|--------|-------|-------|------|------|------|------|
| Lan | Mov       | Dem Flow (veh/h) | Lane  | Adj.   | Aver  | Aver  | Cap  | Cap  | Deg. | Lane |
| No. | No.       |                  | Width | Basic  | 1st   | 2nd   | (veh | (veh | Satn | Util |
|     |           | Lef Thru Rig Tot | (m)   | (tcu)  | (veh) | (veh) | /h)  | /h)  | x    | 8    |
|     | ••••••••• |                  |       |        |       |       |      |      |      |      |

| South:<br>1 T<br>2 T | 2<br>2    | 0      | 352<br>352   | 0        | 352<br>352 | 3.00         | 1923<br>1923 | 1923 | 0 | 0      | 409 | 0.860 | 100<br>100                                |
|----------------------|-----------|--------|--------------|----------|------------|--------------|--------------|------|---|--------|-----|-------|-------------------------------------------|
| 3 T<br>4 TR          | 2<br>2,   | 0<br>0 | 352<br>141   | 0<br>200 | 352<br>342 | 3.00<br>3.00 | 1923<br>1923 |      | 0 | 0<br>0 |     | 0.860 | $\begin{array}{c} 100 \\ 100 \end{array}$ |
| 4 110                | 3         | Ŭ      | <b>T T T</b> | 200      | J12        | 3.00         | 1920         | 1000 | U | Ŷ      | 55, | 0.000 | 100                                       |
| 5 R                  | 3         | 0      | 0            | 335      | 335        | 3.00         | 1923         | 1831 | 0 | 0      | 389 | 0.860 | 100                                       |
| West:                |           |        |              |          |            |              |              |      |   |        |     |       |                                           |
| 1 L                  | 10        | 553    | 0            | 0        | 553        | 3.00         | 1923         | 1831 | 0 | 0      | 664 | 0.833 | 100                                       |
| 2 Т                  | 10,<br>11 | 0      | 581          | 0        | 581        | 3.00         | 1923         | 1923 | 0 | 0      | 697 | 0.834 | 100                                       |
| 3 т                  | 11        | 0      | 581          | 0        | 581        | 3.00         | 1923         | 1923 | 0 | 0      | 697 | 0.834 | 100                                       |
| 4 T                  | 11        | 0      | 581          | 0        | 581        | 3.00         | 1923         | 1923 | 0 | 0      | 697 | 0.834 | 100                                       |
| 5 т                  | 11        | 0      | 581          | 0        | 581        | 3.00         | 1923         | 1923 | 0 | 0      | 697 | 0.834 | 100                                       |

Basic Saturation Flow in this table is adjusted for lane width, approach grade, parking manoeuvres and number of buses stopping. Saturation flow scale applies if specified.

Table S.10 - MOVEMENT CAPACITY AND PERFORMANCE SUMMARY

| Mov<br>No. | Mov   | Dem<br>Flow | Total        | Lane<br>Util | Deg.<br>Satn | Eff. |     |       | Eff.         | 95%<br>Back of   | Perf.  |
|------------|-------|-------------|--------------|--------------|--------------|------|-----|-------|--------------|------------------|--------|
| NO.        | Тур   | (veh        | Cap.<br>(veh |              |              | 1st  | 2nd | Delay | Stop<br>Rate | Back of<br>Queue | Index  |
|            |       | /h)         | /h)          | (5)          | x -          | Grn  |     | (sec) |              | (veh)            |        |
| South:     | mcD   |             |              |              |              |      |     |       |              |                  |        |
| 2 T        |       | 1196        | 1390         | 100          | 0.860*       | 17*  |     | 40.9  | 1.01         | 16.6             | 64.56  |
| 3 R        |       | 535         | 622          | 100          | 0.860*       | 17   |     | 50.2  | 1.01         | 16.2             | 30.28  |
| West: b    | cb    |             |              |              |              |      |     |       |              |                  |        |
| 10 L       |       | 553         | 664          | 100          | 0.833        | 29   |     | 40.7  | 0.99         | 22.9             | 28.61  |
| 11 T       |       | 2324        | 2788         | 100          | 0.834        | 29*  |     | 30.7  | 0.97         | 23.8             | 113.33 |
| Pedest     | rians |             |              |              |              |      |     |       |              |                  |        |
| 51         | (Ped) | 328         | 900          | 100          | 0.364        | 6*   |     | 34.2  | 0.93         | 1.4              | 5.62   |
| 53         | (Ped) | 151         | 900          | 100          | 0.168        | 6    |     | 34.2  | 0.93         | 0.6              | 2.59   |
| 55         | (Ped) | 142         | 900          | 100          | 0.158        | 6    |     | 34.2  | 0.93         | 0.6              | 2.43   |
| 57         | (Ped) | 326         | 900          | 100          | 0.362        | 6    |     | 34.2  | 0.93         | 1.4              | 5.59   |

\* Maximum degree of saturation, or critical green periods

fixed-time basis

jln sultan idris shah

Intersection ID:

Fixed-Time Signals, Cycle Time = 80

| Table S.12A - | FUEL CONS            | UMPTION,              | EMISSIO             | NS AND CO           | ost - to:            | <b>FAL</b>           |
|---------------|----------------------|-----------------------|---------------------|---------------------|----------------------|----------------------|
| Mov<br>No.    | Fuel<br>Total<br>L/h | Cost<br>Total<br>\$/h | HC<br>Total<br>kg/h | CO<br>Total<br>kg/h | NOX<br>Total<br>kg/h | CO2<br>Total<br>kg/h |
| South: mcD    |                      |                       |                     |                     |                      |                      |
| 2 T<br>3 R    | 96.7<br>46.3         | 599.59<br>317.11      | 0.440<br>0.217      | 19.33<br>8.92       | 0.554<br>0.253       | 241.8<br>115.8       |
|               | 143.0                | 916.70                | 0.658               | 28.25               | 0.807                | 357.6                |

| West: bcb<br>10 L<br>11 T           | 46.1<br>177.6 |                                  | •••   | 9.12<br>36.49 | 0.258<br>1.049 |       |
|-------------------------------------|---------------|----------------------------------|-------|---------------|----------------|-------|
|                                     | 223.7         | 1314.26                          | 1.008 | 45.62         | 1.307          | 559.2 |
| Pedestrians<br>51<br>53<br>55<br>57 |               | 54.35<br>25.02<br>23.53<br>54.02 |       |               |                |       |
|                                     |               | 156.91                           |       |               |                |       |
| ALL VEHICLES:                       | 366.7         | 2230.97                          | 1.666 | 73.87         | 2.113          | 916.8 |
| INTERSECTION:                       | 366.7         | 2387.88                          | 1.666 | 73.87         | 2.113          | 916.8 |

# PARAMETERS USED IN COST CALCULATIONS

| Pump price of fuel (\$/L)<br>Fuel resource cost factor | = | 0.850<br>0.50 |
|--------------------------------------------------------|---|---------------|
| Ratio of running cost to fuel cost                     | = | 3.0           |
| Average income (\$/h)                                  | = | 23.00         |
| Time value factor                                      | = | 0.60          |
| Average occupancy (persons/veh)                        | = | 1.5           |
| Light vehicle mass (1000 kg)                           | = | 1.4           |
| Heavy vehicle mass (1000 kg)                           | # | 11.0          |
| Light vehicle idle fuel rate (L/h)                     | = | 1.350         |
| Heavy vehicle idle fuel rate (L/h)                     | = | 2.000         |

The idle fuel and vehicle mass parameters given above are the default values (data given in RIDES may override some of these parameters).

fixed-time basis jln sultan idris shah Intersection ID:

Fixed-Time Signals, Cycle Time = 80

## Table S.12B - FUEL CONSUMPTION, EMISSIONS AND COST - RATE

| Mov<br>No.  | Rate                           | Cost<br>Rate<br>\$/km | Rate                                   |       | NOX<br>Rate<br>g/km | Rate  |
|-------------|--------------------------------|-----------------------|----------------------------------------|-------|---------------------|-------|
| South: mcD  |                                |                       |                                        |       |                     |       |
| 2 Т         | 13.3                           | 0.83                  | 0.607                                  | 26.65 | 0.764               | 333.4 |
| 3 R         | 14.4                           | 0.98                  | 0.674                                  | 27.68 | 0.784               | 359.3 |
|             | 13.7                           | 0.88                  | 0.628                                  | 26.97 | 0.770               | 341.4 |
| West: bcb   | نېې بېږ 🖬 دک کان کار کار کار د |                       |                                        |       |                     |       |
| 10 L        | 13.8                           | 0.89                  | 0.641                                  | 27.35 | 0.774               | 345.6 |
| 11 T        | 12.6                           | 0.72                  | 0.564                                  | 25.89 | 0.744               | 314.9 |
|             | 12.8                           | 0.75                  | 0.579                                  | 26.17 | 0.750               | 320.8 |
| Pedestrians |                                |                       | •••••••••••••••••••••••••••••••••••••• |       |                     |       |
| 51          |                                | 16.57                 |                                        |       |                     |       |
| 53          |                                | 16.57                 |                                        |       |                     |       |
| 55          |                                | 16.57                 |                                        |       |                     |       |
| 57          |                                | 16.57                 |                                        |       |                     |       |
|             |                                | 16.57                 | <b></b>                                |       |                     |       |
|             |                                |                       |                                        |       |                     |       |

| ALL VEHICLES: |      | -    |       |       |       |       |
|---------------|------|------|-------|-------|-------|-------|
| INTERSECTION: | 13.1 | 0.85 | 0.597 | 26.47 | 0.757 | 328.5 |

| fixed-time ] | basis      |          |       |      |   |    |
|--------------|------------|----------|-------|------|---|----|
| jln sultan : | idris shah |          |       |      |   |    |
| Intersection | n ID:      |          |       |      |   |    |
|              | Fixed-Time | Signals, | Cycle | Time | = | 80 |

Table S.14 - SUMMARY OF INPUT AND OUTPUT DATA

| Lane<br>No. | Dema<br>L | and Fl<br>T | ow (v<br>R |       |       | Basic | Eff Grn<br>(secs)<br>1st 2nd   | Sat   | Delay | Longest<br>Queue<br>(m) | Shrt<br>Lane<br>(m) |
|-------------|-----------|-------------|------------|-------|-------|-------|--------------------------------|-------|-------|-------------------------|---------------------|
| South       | mcD       |             |            |       |       |       |                                |       |       | *                       |                     |
| 1 T         |           | 352         |            | 352   | 0     | 1922  | 17                             | 0.860 | 40.9  | 116                     |                     |
| 2 Т         |           | 352         |            | 352   | 0     | 1922  | 17                             | 0.860 | 40.9  | 116                     |                     |
| 3 Т         |           | 352         |            | 352   | Ö     | 1922  | 17                             | 0.860 | 40.9  | 116                     |                     |
| 4 TR        |           | 141         | 200        | 342   | 0     | 1923  | 17                             | 0.860 | 46.3  | 113                     |                     |
| 5 R         |           |             | 335        | 335   | 0     | 1923  | 17                             | 0.860 | 50.2  | 112                     |                     |
|             | <br>0     | 1196        | 535        | 1731  | 0     |       |                                | 0.860 | 43.8  | 116                     |                     |
| West:       | bcb       |             |            |       |       |       | •• <b>•• ••</b> •• •• •• •• •• |       |       |                         |                     |
| 1 L         | 553       |             |            | 553   | 0     | 1922  | 29                             | 0.833 | 40.7  | 160                     |                     |
| 2 Т         |           | 581         |            | 581   | 0     | 1923  | 29                             | 0.834 | 30.7  | 167                     |                     |
| 3 Т         |           | 581         |            | 581   | 0     | 1923  | 29                             | 0.834 | 30.7  | 167                     |                     |
| 4 T         |           | 581         |            | 581   | 0     | 1923  | 29                             | 0.834 |       | 167                     |                     |
| 5 T         |           | 581         |            | 581   | 0     | 1923  | 29                             | 0.834 | 30.7  | 167                     |                     |
|             | 553       | 2324        | 0          | 2877  | 0     |       |                                | 0.834 | 32.6  | 167                     |                     |
| Pedest      | rians     | 3           |            |       |       |       |                                |       |       |                         |                     |
| Acros       | 38 S 8    | pproa       | ch         | 328   |       |       | 6                              |       | 34.2  |                         |                     |
| Acros       | ss E a    | approa      | ich        | 151   |       |       | 6                              | 0.168 | 34.2  | 0.6                     |                     |
| Acros       | s N a     | approa      | ch         | 142   |       |       | 6                              |       | 34.2  | 0.6                     |                     |
| Acros       | ssW a     | approa      | ch         | 326   |       |       | 6                              | 0.362 | 34.2  | 1.4                     |                     |
| ALL VE      | EHICLE    | ES          | <br>       | Total | <br>8 |       | Cycle                          | Max   | Aver. | Max                     |                     |
|             |           |             |            | Flow  | ΗV    |       | Time                           | Х     | Delay | Queue                   |                     |
|             |           |             |            | 4608  | 0     |       | 80<br>===========              | 0.860 | 36.8  | 167                     |                     |
| Total i     | Elow p    | period      |            |       |       |       | low peric                      |       |       |                         |                     |

for a set and the set of the set

Queue values in this table are 95% back of queue (metres).

Note: Basic Saturation Flows (in through car units) have been adjusted for grade, lane widths, parking manoeuvres and bus stops.

fixed-time basis

jln sultan idris shah

Intersection ID:

Fixed-Time Signals, Cycle Time = 80

### Table S.15 - CAPACITY AND LEVEL OF SERVICE

| Mov<br>No. | Моч<br>Тур | Ratio<br>1st | (g/C) | Total<br>Flow<br>(veh<br>/h) | Total<br>Cap.<br>(veh<br>/h) | Deg.<br>of<br>Satn<br>(v/c) | Aver.<br>Delay<br>(sec) | LOS |
|------------|------------|--------------|-------|------------------------------|------------------------------|-----------------------------|-------------------------|-----|
| South: 2 T |            | 0.213*       |       | 1196                         | 1390                         | 0.860*                      | 40.9                    | D   |

| 3 R                                                   | 0.213                                                                                                                                    | 535                                                          | 622                                                     | 0.860*                                                            | 50.2                        | D                      |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|------------------------|--|--|--|--|
|                                                       |                                                                                                                                          | 1731                                                         | 2012                                                    | 0.860                                                             | 43.8                        | D                      |  |  |  |  |
| West: bcb                                             |                                                                                                                                          |                                                              |                                                         |                                                                   |                             |                        |  |  |  |  |
| 10 L<br>11 T                                          | 0.363<br>0.363*                                                                                                                          | 553<br>2324                                                  | 664<br>2788                                             | 0.833<br>0.834                                                    | 40.7<br>30.7                | D<br>C                 |  |  |  |  |
|                                                       |                                                                                                                                          | 2877                                                         | 3452                                                    | 0.834                                                             | 32.6                        | c                      |  |  |  |  |
| Pedestrians<br>51 (Ped)<br>53 (Ped)<br>55 (Ped)       | 0.075                                                                                                                                    | 328<br>151<br>142                                            | 900<br>900<br>900                                       | 0.364<br>0.168<br>0.158<br>0.362                                  | 34.2<br>34.2<br>34.2        | D<br>D<br>D            |  |  |  |  |
| 55 (Ped)<br>57 (Ped)                                  | 0.075                                                                                                                                    | 326                                                          | 900                                                     | 0.362                                                             | 34.2                        | D                      |  |  |  |  |
|                                                       |                                                                                                                                          |                                                              |                                                         | 0.364                                                             |                             |                        |  |  |  |  |
| ALL VEHICLE                                           | s:                                                                                                                                       | 4608                                                         | 5463                                                    | 0.860                                                             | 36.8                        | D                      |  |  |  |  |
| INTERSECTIO                                           | ON (persons):                                                                                                                            | 7859                                                         | 5463                                                    | 0.860                                                             | 36.5                        |                        |  |  |  |  |
| average<br>independ<br>For the<br>aaSIDRA<br>Intersed | f Service calc<br>control delay<br>dent of the cu<br>criteria, ref<br>Output Guide<br>ction capacity<br>v/c ratio, or                    | r includi<br>arrent de<br>Ser to th<br>or the C<br>r is calc | ng geome<br>lay def:<br>e "Leve<br>utput se<br>ulated o | etric dela<br>inition us<br>l of Servi<br>ection of<br>consideria | sed.<br>ice" top<br>the on- | ic in the<br>line help |  |  |  |  |
| jln sultan io<br>Intersection<br>I                    | fixed-time basis<br>jln sultan idris shah<br>Intersection ID:<br>Fixed-Time Signals, Cycle Time = 80<br>Table D.0 - GEOMETRIC DELAY DATA |                                                              |                                                         |                                                                   |                             |                        |  |  |  |  |
| From<br>Approach                                      | To F<br>Approach                                                                                                                         | adius Sp                                                     | eed Di                                                  | gn Appr.<br>st. Dist.<br>n) (m)                                   | . Dist                      | tream<br>ance<br>m)    |  |  |  |  |
| South mcD                                             |                                                                                                                                          |                                                              |                                                         |                                                                   |                             |                        |  |  |  |  |

| From<br>Approach | To<br>Approach | Negn<br>Radius<br>(m) | Negn<br>Speed<br>(km/h) | Negn<br>Dist.<br>(m) | Appr.<br>Dist.<br>(m) | Downstream<br>Distance<br>(m) |
|------------------|----------------|-----------------------|-------------------------|----------------------|-----------------------|-------------------------------|
| South: mcD       |                |                       |                         |                      |                       |                               |
|                  | East           | 10.0                  | 18.5                    | 15.7                 | 500                   | 102                           |
|                  | North          | S                     | 60.0                    | 19.5                 | 500                   | 106                           |
| West: bcb        |                |                       |                         |                      |                       |                               |
|                  | East           | S                     | 60.0                    | 19.5                 | 500                   | 106                           |
|                  | North          | 5.0                   | 13.1                    | 10.0                 | 500                   | 103                           |

Downstream distance is distance travelled from the stopline until exit cruise speed is reached (includes negotiation distance). Acceleration distance is weighted for light and heavy vehicles. The same distance applies for both stopped and unstopped vehicles.

fixed-time basis jln sultan idris shah Intersection ID: Fixed-Time Signals, Cycle Time = 80

Table D.1 - LANE DELAYS

|      |     |      |       |      |       | Delay | (second | ds/vel | n)     |      |         |
|------|-----|------|-------|------|-------|-------|---------|--------|--------|------|---------|
|      |     | Deg. | Stop- | line | Delay | Acc.  | Queu:   | ing    | Stopd  |      |         |
| Lane | Mov | Satn | lst   | 2nd  | Total | Dec.  | Total   | MvUp   | (Idle) | Geom | Control |
| No.  | No. | х    | d1    | d2   | dSL   | dn    | dq      | dqna   | di     | dig  | dic     |

| South:  | mcD  |         |         |      |         |        |        |       |       |        |        |
|---------|------|---------|---------|------|---------|--------|--------|-------|-------|--------|--------|
| 1. T    | 2    | 0.860   | 33.8    | 7.1  | 40.9    | 8.6    | 32.3   | 2.2   | 30.1  | 0.0    | 40.9   |
| 2 Т     | 2    | 0.860   | 33.8    | 7.1  | 40.9    | 8.6    | 32.3   | 2.2   | 30.1  | 0.0    | 40.9   |
| 3 Т     | 2    | 0.860   | 33.8    | 7.1  | 40.9    | 8.6    | 32.3   | 2.2   | 30.1  | 0.0    | 40.9   |
| 4 TR    | 2,   | 0.860   | 33.8    | 7.3  | 41.1    | 5.8    | 35.3   | 2.2   | 33.1  | 0.0    | 46.3   |
|         | 3    |         |         |      |         |        |        |       |       | 9.0    |        |
| 5 R     | 3    | 0.860   | 33.8    | 7.4  | 41.2    | 3.8    | 37.4   | 2.2   | 35.2  | 9.0    | 50.2   |
| West: 1 | bcb  |         |         |      |         |        |        |       |       |        |        |
| 1 L     | 10   | 0.833   | 25.4    | 5.6  | 31.0    | 2.8    | 28.2   | 1.2   | 27.0  | 9.7    | 40.7   |
| 2 Т     | 10,  | 0.834   | 25.4    | 5.3  | 30.7    | 8.4    | 22.3   | 1.2   | 21.2  | 0.0    | 30.7   |
|         | 11   |         |         |      |         |        |        |       |       | 0.0    |        |
| 3 Т     | 11   | 0.834   | 25.4    | 5.3  | 30.7    | 8.4    | 22.3   | 1.2   | 21.2  | 0.0    | 30.7   |
| 4 Т     | 11   | 0.834   | 25.4    | 5.3  | 30.7    | 8.4    | 22.3   | 1.2   | 21.2  | 0.0    | 30.7   |
| 5 T     | 11   | 0.834   | 25.4    | 5.3  | 30.7    | 8.4    | 22.3   | 1.2   | 21,2  | 0.0    | 30.7   |
| dn is   | aver | age sto | p-start | dela | y for a | all ve | hicles | queue | d and | unqueu | <br>ed |

fixed-time basis jln sultan idris shah Intersection ID: Fixed-Time Signals, Cycle Time = 80

Table D.2 - LANE STOPS

\_\_\_\_\_

| Lane<br>No.                               | Deg.<br>Satn<br>x                                           | Ef<br>he1                                    | fectiv<br>he2                                | e Stop<br>Geom.<br>hig               | Rate<br>Overall<br>h                         | Prop.<br>Queued<br>pq                              | Queue<br>Move-up<br>Rate<br>hqm              |
|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|
| South<br>1 T<br>2 T<br>3 T<br>4 TR<br>5 R | : mcD<br>0.860<br>0.860<br>0.860<br>0.860<br>0.860<br>0.860 | 0.85<br>0.85<br>0.85<br>0.85<br>0.85         | 0.16<br>0.16<br>0.16<br>0.16<br>0.16         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 1.01<br>1.01<br>1.01<br>1.01<br>1.01         | 1.000<br>1.000<br>1.000<br>1.000<br>1.000          | 0.27<br>0.27<br>0.27<br>0.28<br>0.28         |
| West:<br>1 L<br>2 T<br>3 T<br>4 T<br>5 T  | bcb<br>0.833<br>0.834<br>0.834<br>0.834<br>0.834<br>0.834   | 0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87 | 0.11<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10 | 0.02<br>0.00<br>0.00<br>0.00<br>0.00 | 0.99<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97 | 0.979<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980 | 0.15<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14 |

hg is the average value for all movements in a shared lane hqm is average queue move-up rate for all vehicles queued and unqueued

Table D.3 - LANE QUEUES

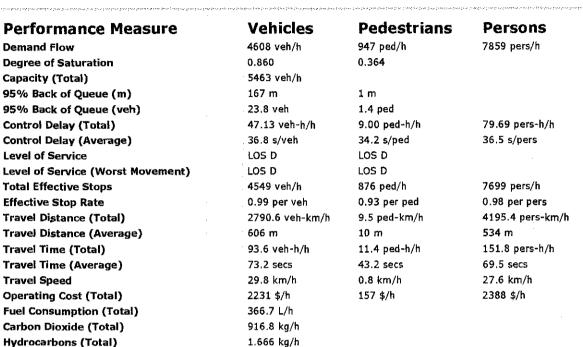
| Tana        | Deg.<br>Satn | Ovrfl.        | Avera | age (ve | eh) |      | Perce | ntile | (veh) |      | Queue          |
|-------------|--------------|---------------|-------|---------|-----|------|-------|-------|-------|------|----------------|
| Lane<br>No. | X            | Queue -<br>No | Nb1   | Nb2     | Nb  | 70%  | 85%   | 90%   | 95%   | 988  | Stor.<br>Ratio |
| South       | : mcD        |               |       |         |     |      |       |       |       |      |                |
| 1 T         | 0.860        | 0.7           | 8.4   | 1.1     | 9.5 | 11.5 | 13.7  | 14.9  | 16.6  | 18.2 | 0.23           |
| 2Т          | 0.860        | 0.7           | 8.4   | 1.1     | 9.5 | 11.5 | 13.7  | 14.9  | 16.6  | 18.2 | 0.23           |
| ЗТ          | 0.860        | 0.7           | 8.4   | 1.1     | 9.5 | 11.5 | 13.7  | 14.9  | 16.6  | 18.2 | 0.23           |
| 4 TR        | 0.860        | 0.7           | 8.1   | 1.1     | 9.2 | 11.2 | 13.3  | 14.6  | 16.2  | 17.9 | 0.23           |
| 5 R         | 0.860        | 0.7           | 8.0   | 1.1     | 9.1 | 11.0 | 13.1  | 14.3  | 16.0  | 17.6 | 0.22           |

West: bcb 0.833 0.9 12.3 1.5 13.8 16.6 19.5 21.1 22.9 24.7 0.32 1 L 1.514.417.320.422.023.825.60.331.514.417.320.422.023.825.60.331.514.417.320.422.023.825.60.331.514.417.320.422.023.825.60.331.514.417.320.422.023.825.60.33 0.834 0.9 12.9 2 T 0.834 0.9 12.9 0.834 0.9 12.9 0.834 0.9 12.9 0.834 0.9 12.9 3Т 4 T 5 T 0.834 0.9 \_\_\_\_\_ Values printed in this table are back of queue (vehicles). fixed-time basis jln sultan idris shah Intersection ID: Fixed-Time Signals, Cycle Time = 80 Table D.4 - MOVEMENT SPEEDS (km/h) \_\_\_\_\_ Queue Move-up App. Speeds Exit Speeds Mov -----Av. Section Spd 1st 2nd \_\_\_\_\_ No. Cruise Negn Negn Cruise Grn Grn Running Overall South: mcD 2 60.0 60.0 60.0 60.0 30.9 3 60.0 18.5 18.5 60.0 30.3 46.3 28.2 46.3 28.2 42.4 25.1 \_\_\_\_\_ ----West: bcb 
 10
 60.0
 13.1
 13.1
 60.0
 39.4

 11
 60.0
 60.0
 60.0
 60.0
 40.4
 28.2 32.5 43.5 47.5 "Running Speed" is the average speed excluding stopped periods. fixed-time basis jln sultan idris shah Intersection ID: Fixed-Time Signals, Cycle Time = 80 Table D.5 - PROGRESSION FACTORS & ACTUATED SIGNAL PARAMETERS Delay Queue Disp. Grn. Settings Mov Arrival Prog. Prog. 1st Grn 2nd Grn No. Control Coord. Type Factor Factor Gmin Gmax Gmin Gmax \_\_\_\_\_ \_\_\_\_\_ South: mcD 2 FT NO 3 1.000 1.000 6 NA 3 FT NO 3 1.000 1.000 6 NA \_\_\_\_\_ West: bcb 
 10
 FT
 No
 3
 1.000
 1.000
 6
 NA

 11
 FT
 No
 3
 1.000
 1.000
 6
 NA
 \_\_\_\_\_ -----\_\_\_\_\_ Pedestrians 
 51
 FT
 No
 3
 1.000
 1.000

 53
 FT
 No
 3
 1.000
 1.000


 55
 FT
 No
 3
 1.000
 1.000

 57
 FT
 No
 3
 1.000
 1.000
 57 \_\_\_\_\_

--- End of aaSIDRA Output ---

# **Intersection Summary**

# fixed-time basis



73.87 kg/h

2.113 kg/h

G:\pelajaran\fyp\fyp2\aaSIDRA Projects\all-red pedestrian cross\aileen2 Produced by aaSIDRA 2.0.1.206 Copyright© 2000-2002 Akcelik & Associates Pty Ltd

Generated 6/11/2006 7:07:20 PM

Carbon Monoxide (Total)

NOX (Total)

 $file://C:\label{eq:constraint} file://C:\label{eq:constraint} file://C:\label{eq:constraint$ 

akcelik & associates aa Traffic SIDRA

# **Movement Summary**



# fixed-time basis

Signalised - Fixed time Cycle Time = 80 seconds

## **Vehicle Movements**

| Mov No          | Turn                             | Dem Flow<br>(veh/h)                                 | Cap<br>(veh/h)                                  | Deg of<br>Satn<br>(v/c)                   | Aver<br>Delay<br>(sec)              | Level of<br>Service                        | 95%<br>Back of<br>Queue<br>(m)          | Eff. Stop<br>Rate                                             | Aver<br>Speed<br>(km/h)                   | Oper<br>Cost<br>(\$/h)           |
|-----------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------|--------------------------------------------|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------|----------------------------------|
| ncD             | n dan na garan garan garaka gara | e possi pose provi possi done boso pode dona        | n Serder Server Johan group serve Server Server | an panan panén dinan panén dinan dinén di | na tana tanà tanà taon taon taon ta | n 2000 - 2000 2000 2000 2000 2000 200      | in fann fa de finne fann fann fan senne | de van de der die kaar die de die die die die die die die die | n pone provenské pone provenské přek pr   | de found for the formal sector f |
| 2               | Т                                | 1196                                                | 1390                                            | 0.860                                     | 40.9                                | LOS D                                      | 116                                     | 1.01                                                          | 28.2                                      | 600                              |
| 3               | R                                | 535                                                 | 622                                             | 0.860                                     | 50.2                                | LOS D                                      | 113                                     | 1.01                                                          | 25.1                                      | 317                              |
| Approach        |                                  | 1731                                                | 2012                                            | 0.860                                     | <b>43.8</b>                         | LOS D                                      | 116                                     | 1.01                                                          | 27.2                                      | 917                              |
| ocb             | na hayan yan yan yan yan yan ya  | ale faile faile faile faile faile faile faile faile | net their fille drakes a finale teach teach     | ana dan basi basi dan basi dan basi       | Andreiten förde förer sockenen s    | ase to ye teestin oo e tinge tin af federi | na franciski hilofoto Degeroa           | a naga maga naga maga talap talap t                           | de true contrato de la contrato de la des | ite a coda treve fode dreve      |
| 10              | Ł                                | 553                                                 | 664                                             | 0.833                                     | 40.7                                | LOS D                                      | 160                                     | 0.99                                                          | 28.2                                      | 298                              |
| 11              | т                                | 2324                                                | 2788                                            | 0.834                                     | 30.7                                | LOS C                                      | 167                                     | 0.97                                                          | 32.5                                      | 1016                             |
| Approach        | te to be considered as the co    | 2877                                                | 3452                                            | 0.834                                     | 32.6                                | LOS C                                      | 167                                     | 0.97                                                          | 31.6                                      | 1314                             |
| All<br>Vehicles |                                  | 4608                                                | 5463                                            | 0.860                                     | 36,8                                | LOS D                                      | 167                                     | 0.99                                                          | 29.8                                      | 2231                             |

### **Pedestrian Movements**

| lov No | Dem Flow<br>(veh/h) | Aver Delay<br>(sec) | Level of<br>Service | 95%<br>Back of<br>Queue<br>(m) | Eff. Stop Rate | Oper Cost<br>(\$/h) |
|--------|---------------------|---------------------|---------------------|--------------------------------|----------------|---------------------|
| 51     | 328                 | <b>34.2</b>         | LOS D               |                                | 0.93           | 54                  |
| 53     | 151                 | 34.2                | LOS D               | 1                              | 0.93           | 25                  |
| 55     | 142                 | 34.2                | LOS D               | 1                              | 0.93           | 24                  |
| 57     | 326                 | 34.2                | LOS D               | 1                              | 0.93           | 54                  |
| Peds   | 947                 | 34.2                | LOS D               | 1                              | 0.93           | 157                 |

G:\pelajaran\fyp\fyp2\aaSIDRA Projects\all-red pedestrian cross\aileen2 Produced by aaSIDRA 2.0.1.206 Copyright© 2000-2002 Akcelik & Associates Pty Ltd

Generated 6/11/2006 7:08:48 PM

file://C:\Documents and Settings\TeDdY\Local Settings\Temp\ 15DD3C9.HTM

6/11/2006