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ABSTRACT 

The need for efficient and reliable digital data communication systems has been rising 

rapidly in recent years. There are various reasons that have brought this need for the 

communication systems, among them are the increase in automatic data processing 

equipment and the increased need for long range communication. Therefore, the 

LDPC and BCH codes were developed for achieving more reliable data transmission 

in communication systems. This project covers the research about the LDPC and 

BCH error correction codes. Algorithm for simulating both the LDPC and BCH 

codes were also being investigated, which includes generating the parity check 

matrix, generating the message code in Galois array matrix, encoding the message 

bits, modulation and decoding the message bits for LDPC. Matlab software is used 

for encoding and decoding the codes. The percentage of accuracy for LDPC 

simulation codes are ranging from 95% to 99%. The results obtained shows that the 

LDPC codes are more efficient and reliable than the BCH codes coding method of 

error correction because the LDPC codes had a channel performance very close to the 

Shannon limit. LDPC codes are a class of linear block codes that are proving to be 

the best performing forward error correction available. Markets such as broadband 

wireless and mobile networks operate in noisy environments and need powerful error 

correction in order to improve reliability and better data rates. Through LDPC and 

BCH codes, these systems can operate more reliably, efficiently and at higher data 

rates. 
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CHAPTER! 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

When binary data are transmitted electronically, in telecommunications, computers, 

and CD players, errors may occur in the binary digits or bits. In order to correct 

them, extra digits are sent along with the information digits, so message sequences 

are encoded to longer codeword sequences. Codeword with errors may be corrected 

to the original codeword for a small number of errors and then decoded to the original 

message sequence. 

The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of powerful 

random error - correcting cyclic codes. This class of codes is the generalization of 

the Hamming codes for multiple error correction. BCH codes were discovered by 

Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960. BCH 

codes were generalized to codes in pm symbols by Gorenstein and Zierler in 1961. 

[37] 

The first decoding algorithm for BCH codes were devised by Peterson in 1960. After 

that, Peterson's algorithm was generalized and refined by Gorenstein and Zierler, 

Chien, Forney, Berlekamp, Massey, Burton and others. Among all the decoding 

algorithms for BCH codes, Berlekamp's iterative algorithm, and Chien's search 

algorithm are the most efficient ones. 
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Low-density parity-check (LDPC) codes were invented by Gallager in 1962, but were 

nearly forgotten for more than 30 years. Gallager had proposed an interactive 

decoding scheme, which is now known as belief propagation decoding algorithm and 

presented the analysis of decoding performance of LDPC codes. After the 

introduction of turbo codes by Berrou et al, LDPC codes were rediscovered by 

Mackay in 1996, and were shown to demonstrate the properties of LDPC codes 

capable of asymptotically approaching Shannon limit. [3] 

The Noisy Channel Coding Theorem discovered by C. E. Shannon in 1948 offered 

communication engineers the possibility of reducing error rates on noisy channels to 

negligible levels without sacrificing data rates. This respective theorem establishes 

that however contaminated with noise interference a communication channel may be, 

it is possible to communicate digital data or information error-free up to a given 

maximum rate through the channel. The theorectical maximum information transfer 

rate of the channel is regarded as Shannon limit. [4] 

LDPC was the first code to allow data transmission rates close to the theoretical 

maximum, the Shannon Limit. Impractical to implement when developed in 1963, 

LDPC was forgotten. The next 30 or so years of information theory failed to produce 

anything one-third as effective and LDPC remains, in theory, the most effective 

developed to date (2006). 

The explosive growth in information technology has produced a corresponding 

increase of commercial interest in the development of highly efficient data 

transmission codes as such codes impact everything from signal quality to battery 

life. Although implementation of LDPC codes has lagged that of other codes, notably 

the turbo code, the absence of encumbering software patents has made LDPC 

attractive to some and LDPC codes are positioned to become a standard in the 

developing market for highly efficient data transmission methods. 1n 2003 an LDPC 

code beat six turbo codes to become the new standard for the satellite transmission of 

digital television. 
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1.2 PROBLEM STATEMENT 

We study two families of error-correcting codes, which are BCH and LDPC codes. 

For LDPC codes, the MacKay's codes are recently invented, and "Gallager codes" 

were first investigate in 1962, but appear to have been largely forgotten, in spite of 

their excellent properties. 

Comparison studies for LDPC and BCH codes are performed. This is because the 

codes could be implemented in different areas, depending on the application 

constraints such as near capacity performances (Shannon limit), complexity, time for 

decoding, cost for implementing the code on hardware, and transmission capacity. 

Therefore, proper applications for the error correction codes can be implemented in 

order to fit the project's criteria, such as simulation time and cost. Comparisons study 

of both codes involves source codes algorithms for LDPC and BCH codes, error 

performances, simulation time and others. 

This project is to study the importance of LDPC and BCH codes, and the difference 

between both codes. Some of the error correction schemes are computationally 

intensive, or require excessive redundant data which may be inhibitive for a certain 

application. In some cases, cost and simulation time are the main constraint for the 

projects, therefore, the error correction codes are being compared in order to satisfy 

the relative applications or projects' requirements and constraints. 

For example, the satellite data transmissions require more detailed and complex error 

corrections codes compared with the network transmissions and computer file 

transfers, therefore, the higher capacity performance code such as LDPC code can be 

applied to the satellite transmissions. LDPC code can also be applied in digital video 

broadcasting (DVB-S2), and. WiMAX, which is an IEEE standard for microwave 

communication. The less complex codes such as BCH codes can be implemented in 

digital television, mobile communications and storage devices such as compact disk 

in order to save time, reduce cost and reduce application's complexity. 

The comparison study of both codes performed involved error performances, 

simulation time, effect of noise variance, and effect of data rates on the bit error rate 

(BER). The comparison study is important in order that proper applications for error 
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correction codes could be implemented based on the projects' constraints such as time 

for decoding, cost, and codes' complexity. 

1.2.1 Importance of error correction codes 

The need for efficient and reliable digital data communication systems has been rising 

rapidly in recent years. There are various reasons that have brought this need for the 

communication systems, among them are the increase in automatic data processing 

equipment and the increased need for long range communication. The data systems 

developed through the use of conventional modulation and voice transmission 

techniques have generally resulted in systems with relatively low data rates and high 

error probabilities. Therefore, the LDPC codes were developed for achieving more 

reliable data transmission in communication systems. 

The significant application that requires the error correction codes are Internet, deep 

space communications, and satellite broadcasting. 

1.2.2 Applications for error correction codes 

Internet 

In a typical TCP/IP stack, error detection is performed at multiple levels. Each 

Ethernet frame carries a CRC-32 checksum. The receiver discards frames if their 

checksums do not match. Ethernet is a frame-based computer networking technology 

for local area networks (LANs). A checksum is a form of redundancy check, a very 

simple measure for protecting the integrity of data by detecting errors in data that is 

sent through space (telecommunications) or time (storage). A redundancy check is 

extra data added to a message for the purposes of error detection and error correction. 

[5] 
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User Datagram Protocol (UDP) has an optional checksum. Packets with wrong 

checksums are discarded. Common network applications that use UDP include the 

Domain Name System (DNS), for example, http://www.elearning.edu.my, streaming 

media applications, Voice over IP, Trivial File Transfer Protocol (TFTP), and online 

games. 

Transfer Control Protocol (TCP) has a checksum of the payload, TCP header and 

source and destination addresses of the IP header. Packets found to have incorrect 

checksums are discarded and eventually get retransmitted when the sender receives a 

triple-ack or a time-out occurs. Using TCP, applications on networked hosts can 

create connections to one another, over which they can exchange data or packets. The 

protocol guarantees reliable and in-order delivery of sender to receiver data. TCP also 

distinguishes data for multiple, concurrent applications, for instance Web server and 

email server, where they are running on the same host. TCP supports many of the 

internet's most popular application protocols and resulting applications, including the 

World Wide Web, email and Secure Shell. 

Deep Space Telecommunications 

NASA has used many different error correcting codes. For missions between 1969 

and 1977 the Mariner spacecraft used a Reed-Muller code. The noise these spacecraft 

were subject to was well approximated by a "bell-curve" (normal distribution), so the 

Reed-Muller codes were well suited to the situation. [5] 

The standard normal distribution is the normal distribution with a mean of zero and a 

standard deviation of one. It is often called the bell curve because the graph of its 

probability density resembles a bell. 
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The Voyager I & Voyager 2 spacecraft transmitted color pictures of Jupiter and 

Saturn in 1979 and 1980. 

Figure 2 : Voyager Spacecraft 
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Figure 4 :NASA's Deep Space Missions ECC Codes (code imperfectness) 

Color image transmission required 3 times the amount of data, so the Golay (24, 12,8) 

code was used. This Golay code is only 3-error correcting, but it could be transmitted 

at a much higher data rate. Voyager 2 went on to Uranus and Neptune and the code 

was switched to a concatenated Reed-Solomon code-Convolutional code for its 

substantially more powerful error correcting capabilities. Current DSN error 

correction is done with dedicated hardware. For some NASA deep space craft such as 

those in the Voyager program, Cassini-Hyugens (Saturn), New Horizons (Pluto) and 
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Deep Space 1. The use of hardware ECC may not be feasible for the full duration of 

the mission. A solution to the hardware-software error correction problem exists 

called "Deep Space Network@ Home". The different kinds of deep space and orbital 

missions that are conducted suggest that trying to find a "one size fits all" error 

correction system will be an ongoing problem for some time to come. For missions 

close to the earth the nature of the "noise" is different from that on a spacecraft 

headed towards the outer planets. In particular, if a transmitter on a spacecraft far 

from earth is operating at a low power, the problem of correcting for noise gets larger 

with distance from the earth. [ 5] 

Satellite Broadcasting 

The demand for satellite transponder bandwidth continues to grow, fueled by the 

desire to deliver television, including new channels and High Definition TV and IP 

data. An automatic device that receives, amplifies, and retransmits a signal on a 

different frequency. Transponder availability and bandwidth constraints have limited 

this growth, because transponder capacity is determined by the selected modulation 

scheme and Forward Error Correction (FEC) rate. Forward error correction (FE C) is 

a system of error control for data transmission. [5] 

Scientific-Atlanta, which is now part of Cisco Systems, has been evaluating 

developing products based on Turbo Codes concatenated with minimal complexity 

Reed-Solomon Codes in its laboratories in Atlanta, Georgia and Toronto, Canada. 

1.2.3 Significant of the project 

The low-density parity-check (LDPC) and Bose Chaudhuri Hocquenghem (BCH) 

codes are error correcting codes. These codes are a method of transmitting message 

over a noisy transmission channel. In computer science and information theory, the 

issue of error correction and detection has great practical importance. The error 

detection is the ability to detect errors that are made due to noise or other impairments 
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during the transmission from the transmitter to the receiver. Error correction has the 

feature of enabling localization of the errors and correcting them. 

This project will introduce the comparison study for the LDPC and BCH codes. 

Moreover, this project also provides the encoding and decoding techniques which 

would be simulated by using Matlab simulation tool. 

The comparison study of both codes performed involved error performances, 

simulation time, effect of noise variance, and effect of data rates on the bit error rate 

(BER). The comparison study is important in order that proper applications for error 

correction codes could be implemented based on the projects' constraints such as time 

for decoding, cost, and codes' complexity. 

1.3 OBJECTIVES 

• Investigate and do research on the LDPC and BCH codes. 

• Investigate the algorithm for generating the parity check matrix, encoding the 

message bits, modulation and decoding the message bits for LDPC and BCH 

codes. 

• Implement the encoding and decoding simulations for the LDPC and BCH 

codes using the Matlab software. 

• Conduct and generate the results using Matlab software simulations. 

• Conduct a comparison performance study for LDPC and BCH codes. 
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1.4 SCOPE OF STUDY 

This project covers the research about the LDPC and BCH codes. Matlab will be 

used for encoding and decoding the LDPC and BCH codes. This study would 

enhance our knowledge on the LDPC and BCH error correcting code, where we 

learned the method of transmitting a message over a noisy transmission channel. The 

codes could minimize the probability of lost information transmitted. The Matlab 

software is used for simulating the encoding and decoding for both the error 

correcting codes. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 SUPPORTING INFORMATION 

.. Source 
Encoder 

Source 
Decoder 

Channel 
Encoder 

Channel 
,.._ _ _, Decoder 

I Modulator 

I 

1•--IDemodulatorl•----' 

Figure 5: Block diagram of a general communication system 

Coding is the conversion of information to another form. From Figure 5, source 

coding is conducted for lowering the redundancy in the information, for example ZIP, 

JPEG, and MPEG2. The channel coding is to defeat the channel noise. The 

application of redundant symbols to correct data errors could be implemented by 

channel encoding. Modulation is the conversion of symbols to a waveform for 

transmission. The conversion of the waveform back to symbols is done by 

demodulation. The decoding uses the redundant symbols to correct errors. Several 

parameters for code performance evaluations are code rate (R), Signal - to - noise 

ratio (Eb/No), and Bit Error Rate (BER). The coding gain is the saving in Eb/No 

required to achieve a given BER when coding is used vs. that with no coding. 

Generally, the lower the code rate, the higher the coding gain. Better codes provides 

better coding gains, however, they are usually more complicated and have higher 

complexity, for instance LDPC codes. [6] 
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2.2 LDPC CODES 

Low-density parity-check (LDPC) codes are a class of linear block codes. This code 

contains the parity-check matrix which contains only a few 1 's in comparison to the 

amount of O's. Basically there are two different possibilities to represent LDPC 

codes. They can be described either via matrices or using the graphical 

representation. There are several different algorithms for constructing suitable LDPC 

codes. The semi-randomly generate sparse parity check matrices was proposed by 

Mackay. There are several algorithm used to decode LDPC codes, the most common 

one are belief propagation algorithm, the message passing algorithm and the sum

product algorithm. 

The parity-check codes use linear sums of the information bits, called parity symbols 

or parity bits, for error detection or correction. A single parity check code is 

constructed by adding a single parity bit to a block of data bits. The parity bit takes 

on the value of one or zero as needed to ensure that the summation of all the bits in 

the codeword yields an even or odd result. The summation operation is performed 

using modulo-2 arithmetic. If the added parity is designed to yield an even result, the 

method is termed odd parity. 

The matrix H is defined as the parity-check matrix, which will enable us to decode 

the received vectors. For each (k x n) generator matrix G, there exists an (n-k) x n 

matrix H, such that the rows of G are orthogonal to the rows of H; that is, GHT = 0, 

where HT is the transpose of H, and 0 is a k x (n-k) all-zeros matrix. HT is a matrix 

whose rows are columns ofH and whose columns are the rows of H. 

The product UHT yields the result UHT = 0. Thus, once the parity-check matrix His 

constructed to fulfill the foregoing orthogonality requirements, it can be used to test 

whether the received vector is a valid number of the codeword set U. U is a 

codeword generated by G ifUHT = 0. [7] 
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2.2.1 Gallager's decoding scheme for LDPC 

Maximum-likelihood decoding is a convenient concept for decoding the LDPC codes 

as it minimizes the probability of decoding error and more effective than other 

decoding scheme. However, the maximum-likelihood decoder's disadvantage is that 

the decoder compares the received sequence with all possible code words, which is 

particularly true for long block lengths, since the size of the code set grows 

exponentially with block length. A desirable decoder should be relatively simple in 

terms of equipment, storage and computation, even if it moderately increases the 

probability of error. If the lower probability of error is required, we can simply 

increase the block length of the code. [8] 

There are two types of decoding scheme which will be described. The first decoding 

scheme is relatively simple but only applicable to Binary Symmetric Channel (BSC) 

at rates below capacity. The second decoding scheme, which decodes directly from 

the a posteriori, or production probabilities at the channel output is a more promising 

decoder. 

In the first decoding scheme, the decoder computes all the parity-checks and changes 

any digit that is contained in more than some fixed number of unsatisfied parity

check equations. Using these new values, the parity checks are recomputed. This 

process is repeated until the parity checks are all satisfied. 

If the parity-check sets are small, this decoding procedure is reasonable, since most of 

the parity-check sets will contain either one transmission error or no transmission 

errors. Therefore, when most of the parity-check equations checking on a digit are 

unsatisfied, there is a strong indication that that digit is in error. 
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Figure 6 : Parity-check set tree 

2.2.2 Mackay's encoding and decoding scheme for LDPC 

Mackay reported the empirical which are observation and experiment for 

performance of Gallager's LDPC codes on Gaussian channels. It was shown that 

performance successfully better than that of standard convolutional and concatenated 

codes can be achieved, and the performance is ahnost as close to the Shannon limit as 

that of Turbo codes. [9] 

A linear code may be described in terms of a generator matrix G or in terms of a 

parity check matrix H, which satisfies Hx=O for all codewords x. The Gallager codes 

were superior for practical purposes. 

During the work on Mackay's codes, it was realized that it is possible to create good 

codes from very sparse random matrices, and to decode them using approximate 

probabilistic algorithms. The Gallager's decoding algorithm and codes were 

reinvented. The sparse random parity check matrices [9] were created in the 

following ways. 

i. Construction lA. 

An M by N matrix (M rows, N colnnms) is created at random with weight per colnnm 

t, and weight per row as uniform as possible, and overlap between any two columns 
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no greater then 1. The weight of a column is the number of non-zero elements. The 

overlap between two columns is their inner product. 

ii. Construction 2A 

Up to M/2 of the columns are designated weight 2 columns, and these are constructed 

such that there is zero overlap between any pair of columns. The remaining columns 

are made at random with weight 3, with the weight per row as uniform as possible, 

and overlap between any two columns of the entire matrix no greater than 1. 

iii. Construction lB and 2B. 

A small number of columns are deleted from a matrix produced by constructions IA 

and 2A, respectively, so that the bipartite graph corresponding to the matrix has no 

short cycles oflength less than some length 1. 

The constructions stated above do not ensure that all rows of the matrix are linearly 

independent, therefore the M x N matrix created is the parity matrix of a linear code 

with rate at least R =MIN, where K = N- M. R denotes the rate. The generator 

matrix of the code can be created by Gaussian elimination. 

The Gaussian channel is simulated with binary input ±a and additive noise of 

variance equals to 1. If one communicates using a code of rate R then it is 

2 
. I d "b h . I . . b Eb a d h" b . convent1ona to escn e t e s1gna to nmse ratio y - = -- an t 1s num er IS 

No 2Ra.2 

reported in decibels as 10 logw EWN"o-
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iv. Decoding 

The decoding problem is to fmd the most probable vector x such that Hx mod 2 = 0, 

with the likelihood of x given by ITnf~n where fh=11(1+exp(-2ayn/a.2)) 

and f~ = 1-f~, and Yn is the channel's output at time n. 

Gallager's algorithm may be viewed as an approximate belief propagation algorithm. 

Moreover, the Turbo decoding algorithm may also be viewed as a belief propagation 

algorithm. 

The elements ofx are referred as bits and to the rows ofH are referred as checks. We 

denote the set of bits n that participate in check m by N (m) = {n: Hrnn =1}. We 

define the set of checks in which bit n participates, M (n) = {m: Hmn =1}. A set N 

(m) is denoted with bit n excluded by N (m)/n. The algorithm has two alternating 

parts, in which quantities qmn and rmn associated with each non-zero element in the H 

matrix are iteratively updated. The quantity q:i,n is meant to be the probability that 

bit n of x is x, given the information obtained via checks other than check m. The 

quantity rfun is meant to be the probability of check m being satisfied if bit n of x is 

considered fixed at x and the other bits have a separable distribution given by the 

probabilities {qrnn' : n' E N(m)\n}. The algorithm would produce the exact posterior 

probabilities of all the bits if the bipartite graph defmed by the matrix H contained no 

cycles. 

2.3 BCH CODES 

Bose - Chaudhuri - Hocquenghem (BCH) codes are a generalization of Hamming 

codes that allow multiple error correction. They are a powerful class of cyclic codes 

that provide a large selection of block lengths, codes rates, alphabet sizes, and error

correcting capability. At the block lengths of a few hundred, BCH codes could 

outperform all other block codes with the same block length and code rate. BCH 
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codes employ a binary alphabet and a codeword block length of n =2m- I, where m 

= 3, 4, and etc. [27] 

2.3.1 BCH Codes Parameters 

The BCH codes have the following parameters for any positive integers 'm' and 't', 

where m<:3 andt<2 m-I. 

Block length: n = 2 m- I; 

Number of parity- check digits: n- k s mt ; 

Minimum distance: d min <: 2t +I. 

This code [37] is capable of correcting combinations of 't' or fewer errors in a block 

of n = 2 m- 1 digits. The generator polynomial of this code is specified in terms of its 

roots from the Galois field. GF(2m). The generator polynomial g(X) of the t- error

correcting BCH code of length 2 m - I is the lowest - degree polynomial over GF(2) 

that has : "a, a2
, a3 

... a2f' as its roots. Let ¢t(X) be the minimal polynomial of a;. 

Then, g(X) must be the least common multiple (LCM) of¢1(X),qh(X), ... ,¢2t(X), 

which isg(X) = LCM{¢t(X),¢2(X), ... ,¢21(X)}. 

Hence, every even power of 'a' in the sequence of "a, a2
, a3 

... a2
'" has the same 

minimal polynomial as the preceding odd power of 'a' in the sequence. As a result, 

the generator polynomial g(X) of the binary t- error- correcting BCH code oflength 

2 rn - I can be reduced from g(X) = LCM{¢t(X),¢2(X), ... ,¢2t(X)} to 

g(X) = LCM{¢t(X),¢,(X), ... ,¢zt-t(X)}. 

Due to the degree of each minimal polynomial is 'm' or less, the degree of g(X) is at 

most 'mt'; that is, the number of parity - check digits, n - k, of the code is at most 

equal to 'mt'. 'n' represents the block size, 'n- k' represents the parity- check digits 
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and 't' represents the number of errors that could be corrected with BCH codes. If 

the value of 't' is small, n - k is exactly equal to 'mt'. The BCH codes defined are 

usually called primitive BCH codes, where its parameters are code length of 2 m - 1 

withm:>IO. [37] 

The single - error - correcting BCH code of length 2 m - 1 is generated by 

g(X) =¢I( X). Because 'a' is a primitive element of GF(2m), ¢I( X) is a primitive 

polynomial of degree 'm'. Therefore, the single - error- correcting BCH code of 

length 2 m - 1 is a Hamming code. 

Let v(X) = vo +via' + ... + v.- w(•-IJ• = 0 be a code polynomial in a t - error -

correcting BCH code of length n = 2 m - 1. This equality can be written as a matrix 

product as follows: 

1 

a' 

0
21 

(vo, VI, ••• , Vn -1) · ::::: 0 

a<n-l)i 

for 1 :> i :> 2t . The condition given as above shows that the inner product of 

( ) d (1 i 2i (n-I)i) • 1 t Th C. ' ' • th vo, VI, ••• , vn -I an ,a ,a , ... ,a IS equa o zero. eretore, as v 1s e 

codeword in the BCH code, then 

v·HT =0 
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2.3.2 Galois Array 

Galois array theory is an important for BCH codes encoding and decoding 

algorithms. In mathematics, more specifically in abstract algebra, Galois Theory, 

named after Evariste Galois, provides a connection between field theory and group 

theory. Using Galois Theory, certain problems in field theory can be reduced to group 

theory, which is in some sense simpler and better understood. Abstract algebra is the 

field of mathematics that studies algebraic structures, such as groups, rings, fields, 

modules, vector spaces, and algebras. 

Group theory is that branch of mathematics concerned with the study of groups. It has 

several applications in physics and chemistry. Galois Theory uses groups to describe 

the symmetries of the equations satisfied by the solutions to a polynomial equation. 

[10] 

A group G is a collection of objects with an operation · satisfying the following rules: 

I) For any two elements x andy in the group G we also have x·y in the group G. 

2) There is an element, which is usually written I or e, but sometimes 0, called 

the identity in G such that for any x in the group G we have l·x = x = x · I. 

3) For any elements x, y, z in G we have (x · y) · z = x · (y · z). This property is 

called associativity; it means we can write x·y·z unambiguously. 

4) Every element x in G has a unique inverse y (sometimes written -x or x-1) so 

that X • y = y • X= J. [11] 

Field theory is a branch of mathematics which studies the properties of fields. A field 

is a mathematical entity for which addition, subtraction, multiplication and division 

are well-defined. 

A field F is quite similar with a group, but it has two operations, usually written · and 

+. F is a field ifF has elements 0 and I such that F with the operation + is a group, 
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for example (f, +),the set F without the element 0 is a group with the operation · , for 

example (F {0}, ·). Besides, it also involves relations like (x + y) ·z = x · z + y · z, 0 · 

x = 0 = x · 0, x · y = y · x. The general defmition of a field is that a field is a set in 

which we can add, subtract and multiply any elements, and can divide by any element 

other than 0. [11] 

Originally Galois used permutation groups to describe how the various roots of a 

given polynomial equation are related to each other. The modern approach to Galois 

Theory, developed by Richard Dedekind, Leopold Kronecker and Emil Artin, among 

others, involves studying automorphisms of field extensions. In mathematics, an 

automorphism is an isomorphism from a mathematical object to itself. It is, in some 

sense, a symmetry of the object, and a way of mapping the object to itself while 

preserving all of its structure. The set of all automorphisms of an object forms a 

group, called the automorphism group. It is, loosely speaking, the symmetry group of 

the object. [11] 

Galois theory is concerned with symmetries in the roots of a polynomial p(x). for 

example, if p(x) = x'- 2 then the roots are ± .J2. A symmetry of the roots is a way 

of swapping the solutions around in a way which does not matter in some sense. 

Therefore, .J2 and - .J2 are the same because any polynomial expression 

involving .J2 will be the same if .J2 is replaced by - .J2. For example, for the 

equation .Ji' +.Ji +1 = 3 +.Ji, or a' +a+ I= 3+a when a -.Ji, and this will be 

true for any expression involving only adding and multiplying .J2. [11] 

2.3.3 Decoding of BCH Codes 

There are several decoding scheme available for BCH codes, which would be 

described as follows: 

i. Berlekamp- Massey algorithm (BMA) 

The BMA was invented by Berlekamp and Massey. This is a computationally 

efficient method to solve the syndrome equation, in terms of the nmnber of 
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operations in GF (2m). The BMA is important for BCH decoders' 

implementation in software. 

ii. Euclidean algorithm (EA) 

Euclidean algorithm involves determining the greatest common divisor (GCD) 

of two integers of elements of any Euclidean domain by repeatedly dividing 

the two numbers and the remainder in turns. Due to its regular structure, the 

EA is widely used in hardware implementations for BCH decoders. 

iii. Direct solution 

This method was proposed by Peterson. It directly fmds the coefficients of 

error locator polynomial as a set of linear equations. The term Peterson -

Gorenstein - Zierler decoder was used in the literature. As the complexity of 

inverting a matrix grows with eh cube of the error - correcting capability, the 

direct solution method works only for small values of 't'. 

For this project, the Berlekamp decoding scheme would be implemented for decoding 

the BCH codes. 

When the codeword v(X) = vo+ v1X + vzX 2 + ... + v. -1X"-1 is transmitted, the 

transmission errors would result in the following received vector: 

r(X) = ro + nX + rzX2 + ... + rn -1X"-1 

In order to decode the BCH codes, the elements f3 E GF(2m) to number the positions 

of a codeword, or the order of the coefficients of the associated polynomial. 

By using the GF(2m) arithmetic, the positions of the errors can be found with 

solving a set of equations. These equations can be obtained from the error 

polynomial e(X) and the zeros of the code, ai. 

The equation r(X) = v(X) + e(X) represents the polynomial associated with a 
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received codeword, where the error polynomial is defined as 

e(X)=en(X11 )+e•2(X'2 )+ ... +e;,(X") and v-:;.t is the number of errors. The sets 

for e(X) and H matrix are known as the error values and error positions respectively, 

where e; E {0,1} for binary BCH codes and a E GF(2m). 

Firstly, the syndrome from the received vector r(X) would be computed for decoding. 

The syndrome could be represented by: S = r · Hr . The ith component of the 

syndrome is s, = r( a') = ro + rw' + rza21 + ... + rn- w<•-IJI, for I-:;. i .,;,. 2t . The 

syndrome components are elements in the field GF (2m). The syndrome could be 

computed by dividing the r(X) by the minimal polynomial ¢.(X) of ai, which is 

r( X) = c;( X)¢.( X) + tJ,( X) , where di(X) is the remainder with the degree less than 

that of ¢.(X) . Because ¢.(a' ) = 0 , the syndrome could be written as: 

s, = r(a') = di(a'). 

Let the error locator polynomial be defmed as 

' a(x)= TIO+a 11 x)=l+aix+azx2 + ... +o;,x', with roots equal to the inverses of 
l=l 

the error locations. Then the following relation between the coefficients of a (x) and 

the syndromes holds: 

Sv+l S! S2 ... Sv 01' 

Sv+2 Sz s, 
000 Sv+I 01' -1 

= 

Sz, Sv Sv+I 000 Szv-1 0"1 

The decoder consists of digital circuits and processing elements to accomplish the 

following tasks: 

• Compute the syndromes, by evaluating the received polynomial at the zeros of 

the code. 
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• Find the coefficients of the error locator polynomial a(x) 

• Find the inverses of the roots of a(x), for example, the locations of the errors, 

it iv a , ... ,a . 

• Find the values of the errors eit, ... , eiv· 

• Correct the received word with the error locations and values found. 
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CHAPTER3 

METHODOLOGY 

3.1 PROCEDURE IDENTIFICATION 

In order to perform effectively in this project, the problem statement and objectives 

are firstly defined. The objective for this project is to do research on the LDPC and 

BCH codes. Before starting for simulating the LDPC and BCH codes in the Matlab 

simulation software, detailed understanding of the LDPC and BCH codes 

characteristics including the H matrix generation, Galois array matrix, encoding the 

message bits, channel modulation and decoding the received bits are required. 

Furthermore, the Matlab software would be used for encoding and decoding the 

codes. The algorithm for the LDPC and BCH source codes would be investigated as 

well. The Matlab software is used as a simulation tool that helps to generate results 

of encoding and decoding for both the LDPC and BCH codes. 

Generating the parity-
check matrix 

~ 
The decoded 

Encoding message bits were being 
blocks compared with 
~ the information 

Modulation and bits 

channel simulations 

.~ 
Decoding 

Figure 7 : LDPC and BCH codes algorithm 
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3.1.1 LDPC codes algorithm 

Low Density Parity Check codes can be specified by a non-systematic sparse parity

check matrix, H. H matrix would have a uniform column weight greater than 3, and a 

uniform row weight as well. H is constructed at random subject to these constraints. 

An (nj,k) LDPC code is specified by a parity check matrix H, having n-k rows, n 

columns and j 1 's per column. For this Matlab program, the k=3. All the parity 

check matrices would have 3 ones per column. The code formed from such a parity 

check matrix is known as a regular Gallager code. [7] The LDPC Matlab source 

codes could be referred in Appendix A. 

Step 1: Generating the parity check matrix 

For generating the parity check matrix for a (200,100,3) LDPC code, the fimction 

gen _Idpc(rows,cols) could be used as follows: 

h=gen_ldpc(100,200); 

The algorithm [7] for implementation of this function was shown as follows: 

1. An all zero matrix H of dimension rows x cols is created. 

2. For each column in H, three l 's are placed in rows chosen at random, subject 

only to the constraint that the ones be placed in distinct rows. 

3. The Matlab software then runs through the matrix searching for a row with 

zero 1 's or just one 1. If a row has no 1 's in it then it is a redundant row. So 

the software chooses 2 columns in the same row at random and places I 's in 

those columns. If a row just has one 1 in a row, this means that the codeword 

bit in that column is always zero. Therefore whenever the software find a row 

with just one 1 in it, it randomly picks another column in the same row and 

places a 1 there. 

4. The software then calculates the number of 1 's per row. Number of l's per 

row = ( cols x bits _per_ col)/rows. If this is not an integer, the software rounds 
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the value to the next higher integer. If the number of 1's per row calculated is 

not an integer, it is not possible to have a uniform number of ones in each row. 

5. The software then runs through the matrix trying to make the number of 1 's 

per row as uniform as possible. For any row containing more number of ones 

than the value calculated in Step 4, the software picks a column containing a 1 

at random and tries to move that 1 to a different row in the same column. The 

software makes sure that the row chosen does not have a I in that particular 

column. If the software is not able to find such a row, it just tries with a 

different column containing a l in row i. 

6. A good parity check matrix for LDPC codes generates a factor graph with no 

cycles in it. The software runs through the graph trying to eliminate cycles of 

length 4, for example situations where pairs of rows share! 's in a particular 

pair of colunms as shown in Figure 6. The figure 6 shown below is the parity 

check matrix of a (20, I 0,3) LDPC code. 

II 

v~ 
0 0 0 0 0 

0 0 0 I I I 
0 0 I I 0 I 0 0 0 0 I 
0 0 0 0 0 0 0 1 0 I 0 
0 0 0 I 0 I 0 I I 0 0 0 0 0 
0 0 0 0 0 0 1 I 0 0 0 0 I I 0 0 
0 0 I 0 0 0 0 0 0 I I I I 0 0 0 
I 0 0 I 0 0 0 0 I 0 I 0 0 0 0 0 
I I I 0 I I 0 0 0 0 0 0 0 I 0 0 
0 0 0 0 0 I 0 0 I 0 0 0 I 0 0 I 

Figure 8 : Parity check matrix of a (20, 10, 3) LDPC code. 

Step 2: Encoding the Message Blocks 

The codeword which is by 'u' variable, and an M by N IG parity check matrix H 

could be related as u.HT = 0. The message bits, s, are located at the end of the 

codeword and the check bits, c occupy the beginning of the codeword, where the 

equation is u =[cis]. [7] 

Let H =[AlB], where A is an M by M matrix and B is an M by N-M matrix. If the 

message bits 's' are located at the end of the codeword, the first part of H is an 
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identity matrix. The equation derived are Ac + Bs = 0, and c = A"1 Bs. The check bits 

could be computed as long as A is non-singular. 

For encoding ofiG parity check matrix, the first M by M part of the matrix (A) has to 

be non singular. The IG parity check matrix could be obtained by the gen _ldpc() 

function. The function rearrange_ cols(parity check) rearranges the columns of the IG 

parity check matrix such that A is non singular. The function does only the colurrm 

operations of the Gauss-Jordan reduction that can be used to reduce the IG parity 

check matrix to the systematic form. 

Step 3: Conducting Modulation and Channel Simulation 

For this program, the Binary Phase Shift Keying (BPSK) and Additive White 

Gaussian Noise (A WGN) are the constraints for performing the modulation and 

channel simulation respectively. The Binary Phase Shift Keying uses a single carrier 

with the phase shifts of 180° to carry the sigualln communications. [7] 

The additive white Gaussian noise (A WGN) channel model is one in which the only 

impairment is the linear addition of wideband or white noise with a constant spectral 

density a Gaussian distribution of amplitude. The model does not account for the 

phenomena of fading, frequency selectivity, interference, nonlinearity or dispersion. 

However, it produces simple, tractable mathematical models which are useful for 

gaining insight into the underlying behavior of a system before these other 

phenomena are considered. 

The A WGN channel is a good model for many satellite and deep space 

communication links. It is not a good model for most terrestrial links because of 

multipath, terrain blocking, interference, etc. However for terrestrial path modeling, 

AWGN is commonly used to simulate background noise of the channel under study, 

in addition to multipath, terrain blocking, interference, ground clutter and self 

interference that modern radio systems encounter in terrestrial operaton. 
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Step 4: Decoding Received Blocks 

The decoding problem is to find the most probable vector x such that Hxmod2 = 0, 

with the likelihood of x given by TIJ.= where 1: =l/(l+exp(-2try./a-2
)) 

and/.0 = 1-1:, and Yn is the channel's output at time n. [7] 

For the initialization, we first initialize q~. and q~. to the likelihoods of Xn, 

f."andf:. For the AWGN channel, f.' =1/(l+exp(-2tryn/u 2
)) and /.0 =1-1: 

where the input to the Gaussian channel is± a, a-2 = No/2 is the variance of the 

additive noise and Yn is the soft output of the Gaussian Channel. 

For the horizontal step calculation, we compute oqmn = q~. - q~., next 

onnn = r!,- r;. = n oqmn" : n'E .L(m) \ n is computed, Next we would get 

r:. =(l+onn.)/2 and r~ =(l+o,m.)/2 

Next is the vertical step calculation, for this step we update the values of q~. and q~. 

using the r's obtained in step 2. 

The equations are: 

q~. =amnf.0nr: ... :m'EM(n)\m where amn is chosen such that q~n +q~n =I. 

The pseudoposterior probabilities are then obtained as: 

q~ =aJ."Tir: •. :mEM(n) and q~ =aJ:Tir~ •. :mEM(n) 

The final step is the tentative decoding, we set rn =I if q1 n >0.5 and rn=O otherwise. 

In the software implementation the algorithm iterates 1000 times. 

The function decode_ldpc(rx_waveform,No,amp,h,scale) does the decoding. 

The function returns the decoded codeword and not the message bits. 
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The function can be used along with the modulation and channel transmission 

functions as shown below: 

Once the decoding is done or the termination condition is satisfied or the maximum 

numbers of iterations are performed, the message bits need to be extracted. At the 

last step of encoding the message blocks, the reordering done to get a non-singular A 

was undone. If this reordering was done again, the message bits would be located at 

the end of the decoded codeword and can be extracted easily. The rearranged_ cols 

array (output by the rearrange_cols() function) that holds the reordering information 

is used to do the reordering. The extract_mesg(vhat,rearranged_cols) works in this 

manner. 

3.1.2 BCH Codes Algorithm 

The BCH codes algorithm was divided into several parts for more detailed 

explanations. The several parts of BCH codes algorithms are: constructing the 

codeword length, generates a matrix consists of random binary numbers and creates a 

Galois field array, gets generator polynomial, encodes the message, BPSK 

modulation, channel simulation, demodulation and decode the received codes. BCH 

Matlab source could be referred in Appendix C. 

Referred to the MATLAB communication toolbox functions, the algorithm for BCH 

code is described as follows: 

Step 1: Construct the codeword 

m=4; 

n=2·"m-1; 

k=5; 

nwords=10; 

From the codes above, 'n' represents the codeword length, 'k' is the message length, 

and the 'nwords' represents the number of words to encode for this program. 
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Step 2: Create Galois field array 

msg=gf(randint(nwords,k)); 

From the code above, randint (10,5) generates an 10 by 5 matrix of random binary 

numbers. "0" and "1" occur with equal probability. 

'GF' function creates a Galois field array. The msg = gf(randint(nwords,k) creates a 

Galois field array from the matrix 'randint(nwords,k)'. The Galois field has 2Am 

elements, where for this program, the value of m is set to default value 1. Each 

element of x must be 0 or 1. The output for 'msg' is a variable that MATLAB 

recognizes as a Galois field array, rather than an array of integers. [ 13] 

Step 3: Create generator polynomial 

[genpoly,t]=bchgenpoly(n,k) 

The function 'bchgenpoly' gets generator polynomial and error - correction 

capability. genpoly = bchgenpoly (n,k) returns the narrow - sense generator 

polynomial of a BCH code with code length 'n' and message length 'k'. The 

codeword length 'n' must have the form 2Am -1 for some integer 'm' between 3 and 

16. The output 'genpoly' is a Galois row vector that represents the coefficients of the 

generator polynomial in order of descending powers. The narrow-sense generator 

polynomial is (X-alpha) * (X-alphaA2) • ... • (X-alpha A (N-K)), where alpha is a root 

of the default primitive polynomial for the field GF (N+l). [14] 
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Step 4: Encode the message 

code= bchenc(msg,n,k); 

CODE = BCHENC (MSG,N,K) encodes the message in MSG using an (N,K) BCH 

encoder with the narrow-sense generator polynomial. MSG is a Galois array of 

symbols over GF (2). Each K-element row ofMSG represents a message word, where 

the leftmost symbol is the most significant symbol. Parity symbols are at the end of 

each word in the output Galois array CODE. [15] 

1. Fundamental checks on parameter data types: Firstly, MSG must be a Galois 

array; secondly, MSG must be in GF (2). 

2. Set and check the parity position. Parity position must be either at the 

beginning or at the end. 

3. Check the message length. The message length must equal K. 

4. Get the generator polynomial. 

5. Get the generator matrix. The function 'cyclgen' is used. CYCLGEN 

produce parity-check and genemtor matrices for cyclic code. H = 

CYCLGEN(N, P) produces the parity-check matrix for a given codeword 

length N and generator polynomial P. The vector P gives the binary 

coefficients of the generator polynomial in order of ascending powers. A 

polynomial can generate a cyclic code if and only if it is a factor of X "N-1. 

The message length of the code is K = N- M, where M is the degree ofP. The 

parity-check matrix is an M-by-N matrix. 

6. Do the coding. Code= msg * gen. (message * generator matrix) 

7. Rearrange parity if necessary. [20] 

y=double(code.x) 

The above code converts 'code' from Galois array to integers for modulation. 
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Step 5: BPSK modulation 

y2=pskmod(y,2); 

The 'PSKMOD' function represents phase shift keying modulation. 

Y = PSKMOD(X, M) outputs the complex envelope of the modulation of the 

message signal X, using the phase shift keying modulation. M is the alphabet size and 

must be an integer power or 2. The message signal X must consist of integers 

between 0 and M-1. For two-dimensional signals, the function treats each column as 

I channel. [16] 

I. Check that x is a positive integer 

2. Check that M is a positive integer. Determine whether is BPSK, QPSK, or 

OPSK. 

3. Check that x is within range. Elements of input X must be integers in [0, M-

1]. 

4. Determine the initial phase. The default value is 0. 

5. Evaluate the phase angle based on M and the input value. The phase angle lies 

between 0 - 2 *pi. 

6. The complex envelope is (cos (theta)+ j*sin (theta)). This can be expressed as 

exp (j*theta). Ifthere is an initial phase, it is added to the existing phase angle 

7. Restore the output signal to the original orientation. 

Step 6: A WGN channel simulation 

channel=awgn(y2, 10); 

A WGN add white Gaussian noise to a signal. 

Y =A WGN(X, SNR) adds white Gaussian noise to X. The SNR is in dB. 

The power of X is assumed to be 0 dBW. If X is complex, then A WGN adds 

complex noise. [17] 
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Step 7: BPSK demodulation 

r=pskdemod(channel,2); 

Demodulation is basically tbe reverse of modulation. 

The demodulator, which is designed specifically for the symbol-set used by the 

modulator, determines tbe phase of tbe received signal and maps it back to tbe 

symbol it represents, tbus recovering the original data. [18] 

r2=gf(r); 

The above code converts tbe signal 'r' to Galois array. 

Step 8: Decode the received message 

[newmsg,err,ccode] = bchde<:(r2.n,k) 

The function 'BCHDEC; represents tbe BCH decoder. 

DECODED = BCHDEC (CODE, N, K) attempts to decode tbe received signal in 

CODE using an (N,K) BCH decoder witb tbe narrow-sense generator polynomial. 

CODE is a Galois array of symbols over GF (2). Each N-element row of CODE 

represents a corrupted systematic codeword, where tbe parity symbols are at the end 

and the lefunost symbol is th~ most significant symbol. 

In the Galois array DECODED, each row represents the attempt at decoding the 

corresponding row in CO DEl A decoding failure occurs if a row of CODE contains 
I 

more than T errors, where T is the number of correctable errors as returned from 

BCHGENPOLY. In tbis case, BCHDEC forms the correspo11ding row of DECODED 
I 

by merely removing N-K synibols from the end oftbe row of CODE. 

[DECODED,CNUMERR,CCODE] = BCHDEC(r2, n, k) returns CCODE, the 

corrected version of CODE, The Galois array CCODE is in the same format as 

33 



CODE. If a decoding failure occurs in a certain row of CODE, then the corresponding 

row in CCODE contains that row unchanged. [19] 

1. Fundamental check on parameter data types: Firstly, CODE must be a Galois 

array. Secondly, code must be in GF (2). 

2. Check width of code. CODE must be either an N-element row vector or a 

matrix with N columns. 

3. Set and check the parity position. Parity position must be either beginning or 

at the end. 

4. Get the number of errors we can correct 

5. Bring the coded word into the extension field 

6. Call to core algorithm Berlekamp 

7. Bring back to gf(2). 

3.2 IDENTIFICATION OF REQUIRED APPARATUS/TOOLS 

This project requires Matlab simulation tool for producing results of encoding and 

decoding for the error correction codes. Comparison study for LDPC codes with 

BCH codes will be conducted through the Matlab simulation as well. 
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CHAPTER4 

RESULTS AND DISCUSSIONS 

4.1 PERFORMANCES OF LDPC AND BCH CODES WITH VARYING SNR 

Performance of LDPC and BCH cades with varying SNR 
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Figure 9 : BER vs. SNR 

. 

Figure 9 shows the error performances for both the LDPC and BCH codes. The y -

axis represents the bit error rate, which is the ratio of the number of bits incorrectly 

received to the total number of bits sent during a specified time interval. For a given 

communication system, the bit error ratio will affected by both the data transmission 

rate and the signal power margin. The results comparison analysis was performed. 
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The above figure shows that the higher the value of Signal to Noise Ratio (SNR), the 

lower the Bit Error Rate (BER). This is because if SNR is higher, the signal power is 

stronger compared to the noise power, therefore, larger and clearer signal could the 

detected by the receiver. The BER of the LDPC is lower than the BER for BCH 

codes. This shows that the LDPC is a more efficient code, where it uses Sum Product 

Algorithm decoding scheme. The sum-of-product algorithm involves more detailed 

calculations and iterations on the decoding part for LDPC codes. 

From Figure 9 observed, the LDPC code allows the data transmission rates close to 

the theoretical maximmn, the Shannon limit. Although the LDPC cannot guarantee 

prefect transmission, the probability of error information can be made as small as 

desired. The results were measured by bit error rate and signal to noise ratio. 

Shannon showed the existence of capacity achieving codes but achieving capacity is 

only part of it. For practical communication, we need fast encoding and decoding 

algorithms. The LDPC codes are the linear codes associated with sparse bipartite 

graphs. LDPC code is a very good error correction codes, this is due to the codes are 

equipped with very fast encoding and decoding algorithms. 

For BCH codes, it shows that as the SNR increases, the BER or bit error rate 

decreases. However, when compared with the LDPC code performance graph, the 

BCH code shows higher bit error rate. LDPC is a more powerful code, although the 

decoding algorithm is more complex, it can actually decode more errors, and the bit 

error rate results also lower compared with BCH code. Signal to noise ratio (SNR) is 

an engineering term for the power ratio between a signal (meaningful information) 

and the background noise. 

Signal to noise ratio (SNR) [21] is an engineering term for the power ratio between a 

signal (meaningful information) and the background noise. 

36 



SNR = p,, ... , 
Pnoise 

SNR are usually expressed in terms of the logarithmic decibel scale because many 

signals have a very wide dynamic range. In decibels, the SNR is 20 times the base I 0 

logarithm of the amplitude ratio or I 0 times the logarithm of the power ratio: 

SNR = !Ologw(p,, ... ,) 
Pnoise 

For this project, we relate the SNR with the noise variance (No), which is: 

I 
SNR = 10 log to(-) 

No 

An error ratio is the ratio of the number of bits, or blocks incorrectly received to the 

total number of bits, or blocks sent during a specified time interval. The error ratio is 

usually expressed in scientific notation. For example, 2.5 erroneous bits out of 

I 00,000 bits transmitted would be 2.5 out of I 05 or 2.5 x 1 o·5• 

Moreover, the bit error ratio for the transmission is the number of erroneous bits 

received divided by the total number of bits transmitted. For the information BER, 

the number of erroneous decoded bits is divided by the total number of decoded bits. 
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4.2 THE EFFECT OF NOISE VARIANCE ON THE ACCURACY 

PERFORMANCE FOR LDPC AND BCH CODES 

The. Effect Of Nqise Vareince On The Accuracy Performance For tDPC and BCH Codes _ 
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Figure l 0 : Percentage of accuracy vs. Noise variance 
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The percentage of accuracy for this LDPC code program is 95%. For the BCH code, 

the percentage of accuracy for noise variance range from 0.1 to 0.3 is 99.5%, at noise 

variance for 0.35, the perc(lntage of accuracy is 95%, and its accuracy decreased 

simultaneously with the increasing of noise variance. The larger the noise variance, 

the larger the probability of error occurred in the error correction codes. 

For the LDPC codes, the codes were able to be successfully implemented in large 

range of noise variance, which is from 0.1 to 0.9. However, for the BCH codes, it 

was only capable for implementation with small noise variance, which ranges from 

0.1 to 0.35. 
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The percentage of accuracy for BCH code depend on the noise variance added to it. 

The larger the noise variance, the larger the probability of error occurred in the BCH 

codes. When the noise variance gets more than 0.4, the BCH codes could not decode 

the received codeword correctly. Thus, LDPC codes were more efficient for 

implementation in encoding and decoding through a noisy charmel. 

Generally, Figure 10 shows that the larger the noise variance, the lower the 

percentage of accuracy for decoding, and the larger the probability of error occurred 

in the LDPC codes. The implementation of both the LDPC and BCH codes in this 

MATLAB simulation program were very successful. The programs were able to 

generate the message bits, encode the message bits with the check bits, send the 

encoded bits through the A WGN charmel and also decoded the received bits 

successfully with the least probability of error. 

4.3 BLOCK LENGTH VS. SIMULATION TIME 
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Figure 11 : Simulation time vs. block length 

39 



Figure II shows that the LDPC codes took longer time for encoding and decoding 

when compared with the BCH codes. This is due to the LDPC codes are more 

complicated and have higher complexity. 

LDPC codes have much iteration to converge, which takes times. LDPC codes are a 

way of producing random codes, which is suggested by Shannon's proof of the 

channel coding theorem; however its decoding algorithm grows linearly with the code 

length. 

LDPC takes a long time to converge to good solutions. The very long code word 

lengths are producing good decoding efficiency, in other words, the longer the LDPC 

codeword is sent through the channel modulation, the more accuracy of decoded data 

received. The iterative convergence is quite slow, which it takes 1000 iterations to 

converge under standard conditions. Therefore, due to those reasons, the 

transmission time increases for the information encoding, transmission, and decoding. 

For the large parity check matrix such as rows = 200 and columns = 500, the LDPC 

codeword decoding would last for almost 2 hours. 

From Figure I 1, it shows that the BCH codes takes less time for encoding and 

decoding to complete. This is due to the encoding and decoding algorithm of BCH 

codes are much simpler than the encoding and decoding algorithm for LDPC codes. 

However, BCH codes can only be effectively implemented with small block length 

code, where LDPC codes can be effectively implemented with unlimited block length 

code. 
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4.4 ERROR PERFORMANCES FOR THE CODED AND UNCODED LDPC 

CODES 

1~~----~----~----~----~~----~----~----~----~L_ __ __J 
·1 0 2 3 4 5 E 7 8 

EbJNo {dB) 

Figure 12 :Error performances for the coded and uncoded codeword [37] 

Figure 12 [37] shows that when a message is coded with LDPC codes, the errors 

contained in the received message could be reduced effectively. The error correction 

codes could detect errors that are made due to noise or other impairments in the 

course of the transmission from the transmitter to the receiver. The error correction 

has the additional feature that enables localization of the errors and correcting them. 

The error correction schemes are computationally intensive, and require excessive 

redundant data which may be inhibitive for a certain application. 

Error correction in some applications, such as a sender-receiver system, can be 

achieved with only a detection system in tandem with an automatic repeat request 

scheme to notify the sender that a portion of the data sent was received incorrectly 
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and will need to be retransmitted, however where efficiency is important, it is 

possible to detect and correct errors with far less redundant data. [22] 

The LDPC code is a powerful code where it transmits a message over a noisy 

transmission chaunel. For LDPC code, althought it cannot gurantee perfect 

transmission, the probability oflost information can be made as small as desired. [23] 

From the Figure shown, the Shannon Limit is able to reach bit error probability of 

0.00000 I at SNR equals to -0.8. The LDPC codes were able to decode and correct 

the errors up to 0.00003 bit error probability at the SNR of 3.5. For the uncoded 

BPSK code, it can correct the errors up to 0.00035 at the SNR of 8. Therefore, the 

message that implements LDPC error correction codes was able to transmit and 

receive more accurately. 

4.5 BLOCK LENGTH VS. BIT ERROR PERCENTAGE FOR LDPC CODES 
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Figure 13 : Block length vs. bit error percentage for LDPC code 
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From the Figure 13, it was observed that the longer the codeword generated; the 

higher probability of error would occur. The percentage of accuracy for this program 

is 99%, which is quite similar with the theoretical values. 

The results obtained shows that the LDPC codes is a very efficient coding method of 

error correction. This error correction coding technique had a channel performance 

very close to the Shannon limit. Both of the LDPC codes implemented in Matlab 

simulation achieved the results which are very close to the theoretical values. 

4.6 BIT ERROR RATE VS. NUMBER OF ROWS 

Bit Error Rate Vs. Number of Rows 
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Figure 14 : BER vs. number of rows for bch codes 

1000 

From Figure 14, it shows that the bit error rate is higher when the code size increases. 

The n = 127, k = 8 BCH code generated the highest probability of error when 

compared to the BCH codes for n = 63, k = 7, and n = 31, k = 6. One way to lower 
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the noise density is to reduce the bandwidth. For a given communication system, the 

bit error ratio is affected by both the data transmission and the signal power margin. 

The power margin is the difference between available signal power and the minimum 

signal power needed to overcome system losses and still satisfy the minimum input 

requirement of the receiver for a given performance level. 

4.7 PROBABILITY OF ERROR VS. NUMBER OF ROWS FOR BCH 

CODES 
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Figure 15 :Probability of errors vs. number of rows for BCH codes 

Figure 15 shows that the longer the number of rows for BCH codes, the lower the 

probability of errors or bit error rate (BER). When a codeword was sent with more 

number of times, more iterations for decoding would be conducted, which will reduce 

the Bit Error Rate. 
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Bit error ratio (BER) [24] is an error ratio of the number of bits incorrectly received 

to the total number of bits sent during a specified time interval. The error ratio is 

usually expressed in scientific notation, for instance 2.5 x I o-5 

The bit error ratio would be affected by both the data transmission rate and the signal 

power margin. Data transmission is the conveyance of information from one space to 

another. 
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CHAPTERS 

CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 

This project allows me to learn two very interesting and powerful error correcting 

codes, which are LDPC and BCH codes. The codes are methods of transmitting 

message over a noisy transmission channel. The codes are practically important for 

error correction and detection during the transmission of data. This error detection 

would detect errors that are made due to noise during the transmission from the 

transmitter to the receiver and eliminate the noise. Compare with BCH codes, the 

LDPC codes can allow data transmission rate close to the Shannon limit or theoretical 

maximum. 

The LDPC code algorithm could be divided into four parts, which are generating the 

parity-check matrix, encoding message blocks, modulation channel simulations and 

decoding the received message bits. Moreover, the several parts of BCH codes 

algorithms are: constructing the codeword length, generates a matrix consists of 

random binary numbers and creates a Galois field array, gets generator polynomial, 

encodes the message, BPSK modulation, channel simulation, demodulation and 

decode the received codes. 

The implementations of error correction codes in Matlab simulation software for this 

Final Year Project were very successful. The codes enabled us to analyze the error 

correction codes in further detail and research were conducted successfully. 
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5.2 RECOMMENDATION 

I. Implementation of LDPC code on MIMO architecture and OFDM 

modulation. 

According to Intel Technology Journal (May 15, 2006) [38], the wireless 

channels often suffer the problem of interference caused by the reception of a 

small number of reflections from remote objects. The interference causes the 

receiver to receive the imperfect signals. The OFDM modulation provides 

good interference rejection mechanism. The use of OFDM modulation within 

MIMO structured systems creates a strong system that has the ability to 

successfully reject fading and interference. 

The MIMO channel can increase its capacity and throughput by using the 

proper coding prior to transmission. The coding procedure includes adding 

the protection bits to the transmitted data during transmission. LDPC codes 

were recommended for this system as they are highly efficient capacity -

approaching codes. LDPC codes will fultill the high - throughput potential of 

MIMO systems efficiently. [38] 

2. Implementation of LDPC and BCH and other error correcting codes on 

hardware by using FPGA. The hardware description language (HDL) and 

schematic design should be provided for FPGA implementations. The 

languages are VHDL and Verilog. 

47 



REFERENCES 

[I] Madhu Sudan, "Essential Coding Theory", September 27,2004. 

http://theory.lcs.mit.edu/-madhu!FT04/scribe/lect06.pdf#search=%22history 

%20of%20BCH%20codes%22 

[2] http://en.wikipedia.org/wiki/Berlekamp-Massey _algorithm 

[3] http://en.wikipedia.org/wiki!Low _Density _Parity_ Check_ Codes 

[4] Robert H. Morelos - Zaragoza, The Art Of Error Correcting Coding, John 

Wiley & Sons, LTD, 2002. 

[5] http://en.wikipedia.org/wiki!Error _detection_ and_ correction 

[6] Jian Sun, An introduction to low density parity check (LDPC) codes, Wireless 

communication research laboratory, Lane department of computer science and 

electrical engineering, West Virgina University, June 3, 2003 

[7] http://plaza.ufl.edu/nayagam 

[8] Robert G. Gallager, Low- Density Parity- Check Codes, 1963 

[9] www.inference.phy.cam.ac.uk/mackay/codes/ 

[I 0] http://en.wikipedia.org/wiki/Galois _theory 

[II] http://nrich.maths.org/public 

[12] http://en. wikipedia.org/wiki!Berlekamp-Massey _algorithm 

[13] MATLAB communication toolbox functions for Galois array 

[14] MATLAB communication toolbox functions for generator polynomial 

[15] MATLAB communication toolbox functions for bchenc 

[16] MATLAB communication toolbox functions for pskmod 

[17] MATLAB communication toolbox functions for awgn 

[18] MATLAB communication toolbox functions for pskdemod 

48 



[19] MATLAB communication toolbox functions for bchdec 

[20] http://www.comap.com/product/?idx=655 

[21] wikipedia.orglwiki/Signal-to-noise _ratio 

[22] http:!len.wikipedia.orgfwiki!Error _correction 

[23] http:!len.wikipedia.orglwiki!LDPC 

[24] http:!len.wikipedia.orglwiki!Bit_error_rate 

[25] Proakis, John G., "Digital Communications, Singapore", McGraw Hill, 1995. 

[26] Forouzan, Behrouz A., "TCP/IP Protocal Suite, 2nd edition", McGraw Hill, 

2003. 

[27] Bernard Sklar, "Digital Communications Fundamentals and Applications, 2nd 

edition", Prentice Hall, 2001. 

[28] Mackay, D.J.C.; Neal, R.M., "Near Shannon limit performance oflow density 

parity check codes", IEEE Transactions on Information Theory, Volume: 33 

Issue 6, 1997. 

[29] Mackay, D.J.C., "Good error-correcting codes based on very sparse matrices", 

IEEE Transactions on Information Theory, Volume: 45 Issue 2, March 1999. 

[30] R.G.Gallager., "Low Density Parity Check Codes", IEEE Transactions on 

Information Theory, 1963. 

[31] Kschischang, F.R.; Frey, B.J.; Loeliger, "Factor graphs and the sum-product 

algorithm", IEEE Transactions on Information Theory Volnme: 47 Issue: 2, 

2001. 

[32] Kavcic, A. Xiao Ma Mitzenmacher, M., "Binary intersymbol interference 

channels: Gallager codes, density evolution, and code performance bounds", 

IEEE Transactions on Information Theory, July 2003. 

[33] E. R. Berlekamp, R. J. McEiiece, and H. C. A. van Tilborg, "On the 

intractability of certain coding problems," lEE Transactions on Information 

Theory, vol. 24, May 1978. 

49 



[34] C. Berrou and A. Glavieux, "Near optimum error correcting coding and 

decoding: Turbo - codes," IEEE Transactions on Communications, 

October 1996. 

(35] M. C. Davey and D. J. C. Mackay, "Low density parity check codes over 

GF(q)," IEEE Communications Letter, June 1998. 

(36] G. L. Feng and T. R. N. Rao, "Decoding algebraic-geometric codes up to the 

designed minimum distance," IEEE Transactions on Information Theory, 

volume 39, January 1993. 

[37] Shu Lin, Daniel J. Costello, Jr., "Error Control Coding'', Prentice Hall, Second 

Edition, 2004. 

[38] http://www.intel.corn!technology/iUf2006/volume I Oissue02/art07 _ MIMO _ Ar 

chitecture/p02 _ intro.htm. 

50 



APPENDICES 

51 



APPENDIX A 

LDPC SOURCE CODES 

>> rows=lOO; 
>> cols,200; 
>> h=gen_ldpc(rows,cols); 

variance = 

0.4140 

>> [newh,rearranged_cols]=rearrange_cols(h); 
>> for i=l:rows 
for j=l:rows 
A(i,j)=newh(i,j); 
end 
end 
>> for i=l:rows 
for j=rows+l:cols 
B{i,j-rows)=newh(i,j); 
end 
end 
>> for i=l:cols-rows 
s(i)=round(rand); 
end 
>> s=s. '; 
>> Ainverse=inv_GF2(A); 
d~ul_GF2(Ainverse,B); 

>> c~ul_GF2{d,s); 
>> ul=c; 
>> for i=rows+l:cols 
ul(i)=s(i-rows); 
end 
>> u=reorder_bits(ul,rearranged_cols); 
>> tx_wavefor.m=bpsk(u,l); 
>> No=O.S; 
>> rx_waveform=awgn(tx_waveform,No); 
>> scale(l:length(c))=l; 
>> length{rx_waveform) 

ans = 

200 

» vhat=decode_ldpc_log(rx_waveform,No,l,h,scale) 

vhat = 

Columns 1 through 14 

0 1 0 1 1 1 1 1 

Columns 15 through 28 

0 0 1 1 1 0 0 1 

Columns 29 through 42 

1 0 1 0 0 0 1 0 

Columns 43 through 56 

0 0 0 1 1 0 1 0 

Columns 57 through 70 

0 0 0 1 0 0 1 1 

Columns 71 through 84 

0 1 0 1 0 1 1 1 
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0 

1 

0 

0 

0 

1 

1 1 1 0 0 

0 0 1 1 0 

1 1 0 0 1 

1 0 0 0 0 

0 1 1 0 1 

0 0 1 1 1 



Columns 85 through 98 

1 0 1 0 

Columns 99 through 112 

1 1 0 1 

Columns 113 through 126 

1 1 1 1 

Columns 127 through 140 

1 1 0 1 

Columns 141 through 154 

1 1 0 1 

Columns 155 through 168 

1 1 1 1 

Columns 169 through 182 

0 0 0 0 

Columns 183 through 196 

0 0 1 0 

Columns 197 through 200 

1 0 1 1 

1 1 0 

0 0 1 

1 1 1 

0 1 0 

1 1 1 

1 1 0 

1 0 1 

1 0 1 

>> uhat=extract_mesg(vhat,rearranged_cols} 

uhat = 

Columns 1 through 14 

0 1 0 1 

Columns 15 through 28 

1 1 1 1 

Columns 29 through 42 

0 1 0 1 

Columns 43 through 56 

0 1 1 1 

Columns 57 through 70 

1 1 1 1 

Columns 71 through 84 

0 0 1 0 

Columns 85 through 98 

1 0 1 0 

Columns 99 through 100 

1 1 

1 0 1 

1 1 1 

0 1 0 

1 0 1 

0 1 1 

1 1 1 

1 1 0 
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1 1 0 1 0 1 1 

0 1 1 0 0 0 0 

1 1 0 0 0 1 1 

1 0 1 0 0 1 1 

0 1 0 1 0 1 1 

1 1 0 1 0 1 1 

1 1 1 0 0 0 1 

1 0 0 1 1 0 0 

1 0 0 0 0 1 1 

0 0 0 1 1 1 1 

1 0 0 1 1 1 1 

0 1 0 1 1 1 1 

0 1 0 1 1 0 0 

1 0 0 0 1 0 0 

0 1 1 0 0 1 0 



APPENDIXB 

LDPC SUBROUTINE MATLAB M- FILES 

1. qen ldpc. m 

function [H]=gen_ldpc(rows,cols) 

%H=gen_ldpc(rows,cols) 

bits _per_ col"'-'3; 

for i=l:rows 

row_flag(i)=O; 

for j=l:cols 

end 

parity check(i,j)=O; 

end 

%add bits_per_col l's to each column with the only constraint being that 

%the l's should be placed in distinct rows 

for i=l:cols 

end 

a=randper.m(rows); 

for j=l:bits_per_col 

parity_check(a(j),i)=l; 

row_flag(a(j))=row_flag(a(j))+l; 

end 

row_flag; 

max_ones_per_row=ceil{cols*bits_per_col/rows); 

parity_check; 

%add l's to rows having no l(a redundant row) or only one !(that bit in 

%the codeword becomes 

%zero irrespective of the input) 

for i=l:rows 

if row_flag(i)==l 

j=unidrnd(cols); 

while parity_check(i,j)==l 

j=unidrnd(cols); 

end 

parity_check(i,j)=l; 

row_flag(i)=row_flag(i)+l; 

end 

if row_flag(i)==O 

for k=1:2 

j=unidrnd(cols); 

while parity_check(i,j)==l 

j=unidrnd(cols); 

end 

parity_check(i,j)=l; 

row_flag{i)=row_flag(i)+l; 

end 
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end 

end 

%try to distribute the ones so that the number of ones per row is as 

%uniform as possible 

for i==l:rows 

j=l; 

a=randperm(cols); 

while row_flag(i}>max_ones_per_row; 

if parity_check(i,a(j)l==l 

parity_check(i,a(j))=O; 

row_flag{i)=row_flag{i)-1; 

newrow=unidrnd(rows); 

k=O; 

while row_flag(newrow)>=max_ones_per_row I parity_check(newrow,a(j))==l 

newrow=unidrnd(rows); 

k=k+l; 

if k>:=rows 

break; 

end 

end 

if parity_check(newrow,a(j))==O 

parity_check(newrow,a(j))=l; 

row_flag(newrow)=row_flag(newrow)+l; 

else 

parity_check(i,a(j)}=l; 

row_flag(i)=row_flag(i)+l; 

end 

end%if loop 

j""j+l; 

end%while loop 

end%for loop 

row_flag; 

parity_check; 

parity_check; 

%try to eliminate cycles of length 4 in the factor graph 

for loop""l:lO 

ones_position(l)=O; 

for r=l:rows 

ones_count=:=O; 

for c=l:cols 

if parity_check(r,c)==l 

ones_count=:=ones_count+l; 

ones_position(ones_count)""c; 

end 

end 
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for i=1:r-1 

corrnnon=O; 

end 

for j=l:ones_count 

end 

if parity_check{i,ones_position(j))==1 

common=common+ 1 

if common==1 

theco1=ones_position(j); 

end 

end 

if comrnon=2 

comrnon=common-1; 

if(round{rand)==O) 

coltoberearranged=thecol; 

thecol=ones_position(j); 

else 

co1toberearranged=ones_position(j); 

end 

parity_check(i,coltoberearranged)=3; %make this entry 3 so 

%that we dont use 

newrow=unidrnd(rows); 

%of this entry again 

%while getting rid 

%of other cylces 

%while ((newrow==i) I (parity_check(newrow,ones_position(j))~1)) 

iteration=O; 

while parity_check(newrow,coltoberearranged)~=O 

newrow=unidrnd(rows); 

iteration=iteration+l; 

if iteration=S 

end 

break; 

end 

if iteration=S 

while parity_check(newrow,coltoberearranged)==l 

newrow=unidrnd(rows); 

end 

end 

parity_check(newrow,coltoberearranged)=l; 

end 

for i=r+l:rows 

common,O; 

for j=l:ones_count 

if parity_check(i,ones_position(j))==l 

common=common+l 

end 

if common=! 

thecol=ones_position(j); 

end 

if common=2 
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end 

common~common-1; 

if(round(rand)==O) 

coltoberearranged=thecol; 

thecol=ones_position(j); 

else 

coltoberearranged=ones_position(j); 

end 

parity_check(i,coltoberearranged)=3;%make this entry 3 so that 

%we dont use 

newrow=unidrnd(rows); 

%of this entry again 

%while getting rid 

%of other cylces 

%while ((newrow==i)! (parity_check(newrow,ones_position(j))==l)) 

iteration:=O; 

while parity_check(newrow,coltoberearranged)-=0 

newrow=unidrnd(rows); 

iteration=iteration+l; 

if iteration==S 

end 

break 

end 

if iteration==S 

while parity_check(newrow,coltoberearranged)==l 

newrow=unidrnd(rows); 

end 

end 

parity_check(newrow,coltoberearranged)=l; 

end 

end 

end 

end; 

parity_check; 

for i=l:rows 

row_flag(i),O; 

for j=l:cols 

if parity_check(i,j)==l 

row_flag(i)=row_flag(i)+l; 

end 

if eq(parity_check(i,j),3) %replace the 3's with O's 

parity_check(i,j)=O; 

end 

end 

end 

variance=var(row_flag) 

H=parity_check; 

%Get the Parity Checks 

%A=O; 
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%B=O; 

%for i=l:rows 

% for j=l:rows 

% A(i,j)=parity_check(i,j); 

% end 

%end 

%for i=l:rows 

% for j=rows+l:cols 

% B(i,j-rows)=parity_check(i,j); 

% end 

%end 

%ainvb=inv(sparse(A))*sparse(B); 

%ainvb=inv(A)*B; 

%toe 

2. rearrange cols.m 

function [b,rearranged_cols]=rearrange_cols(A) 

%(b,rearranged_cols]=rearrange_cols(A) 

%Rearrange the columns of the parity check matrix to get non singular 

%A matrix 

dim=size(A); 

rows=dim ( 1) ; 

cols=dim(2); 

newA=A; 

for i=l:rows 

rearranged_cols(i)=O; 

end 

for i=l:rows 

if newA(i,i)=O 

k=i+l; 

if k<cols 

%while A{rows,k)==O 

while newA(i,k)==O 

k=k+l; 

if k==cols 

break 

end 

end 

%if k-=cols 

temp=newA(l:rows,k); 

newA(l:rows,k)=newA(l:rows,i); 

newA(l:rows,i)=temp; 

rearranged_cols(i}=k; 

temp=A(l:rows,k); 

A(l:rows,k)=A(l:rows,i); 

A(l:rows,i)=temp; 

%end 
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end 

end 

for j=l:rows 

if j-~i 

if newA(j~iJ==l 

newA(j,l:cols)=xor(newA(i,l:cols),newA(j,l:cols}); 

end 

end 

end 

A; 

end 

rearranged_cols; 

b=A; 

3. inv Gf2.m 

function [b]=inv_GF2(A) 

%Ainv=inv_GF2(A) 

dim=size (A); 

rows=dim(l); 

cols,dim(2}; 

for i=l:rows 

for j=l:rows 

unity(i,j)=O; 

end 

unity(i,i)=l; 

end 

for i=l:rows 

b(l:rows,i)=gflineq(A,unity(l:rows,i),2); 

end 

4. mul GF2.m 

function [c]~ul_GF2(A,B) 

%[c]=mul_GF2(A,B) 

di.m=size (A) ; 

m=dim(l);%no of rows of the first matrix 

n=dim(2);%no of eels of the first matrix and no of rows of 2nd matrix 

dim=size (B); 

p=dim(2);%no of eels of the second matrix 

for i=l:m 

for j=l :p 

templ=A(i,l:n); 

temp2=B(l:n,j); 

prod=templ.*(temp2.'); 

suml=O; 

for k=l:n 

59 



suml~xor{suml,prod{k)); 

end 

c (i, j) =suml; 

end 

end 

5. reorder bit5 .m 

function [u]= reorder_bits(c,rearranged_cols) 

%v= reorder_bits(c,rearranged_cols) 

dim=size(rearranged_cols); 

rows=dim ( 2) ; 

for i=rows:-1:1 

end 

if rearranged_cols(i)-=0 

temp=c(i); 

c(i}=c(rearranged_cols(i)); 

c{rearranged_cols(i))=temp; 

end 

u=c; 

6. bpsk.m 

function [waveform]=bpsk(bitseq,amplitude) 

%waveform=bpsk(bitseq,amplitude) 

for i=l:length{bitseq) 

end 

if bitseq(i)=l 

waveform(i)=-amplitude; 

else 

waveform(i)~amplitude; 

end 

7.~ 

function (xJ=awgn(waveform,No); 

%x=awgn(waveform,No); 

NoiseStdDev=sqrt(No/2); 

x=waveform + NoiseStdDev*randn{l,length(waveform)); 

8. decode ldpc loq.m 

function [vhat,iteration}=decode_ldpc(rx_waveform,No,amp,h,scale) 

%[vhat]=decode_ldpc{rx_waveform,No,amp,h,scale) 

dim=size (h); 

rows,dim(l); 

cols=dim{2); 

vhat{l,l:cols)=O; 

zero(l,l:rows)=O; 
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prevhat(l:cols)=l; 

s~struct('alpha_mn',O,'beta_mn',O, 'garnma_mn',O); 

%associate this structure with all non zero elements of h 

%Initialization : set garnma_n to log-likelyhood ratios for every code 

%bit and then initialize the alpha_mns for 

% all non -zero elements of the parity_check matrix 

for j=l:cols 

gamma_n(j)=(4/No)*rx_wavefor.m(j); 

temp=exp(-abs(garnma_n(j))); 

for i=l:rows 

if (h(i,j}==l) 

newh(i,j)=s; 

newh(i,j).alpha_mn=sign(gamma_n(j))*log((l+temp)/(1-temp}); 

end 

end 

end 

for iteration=l:lOO 

%%%%%%%%%%%begin horizontal step%%%%%%%%%%%%%%%%%%%%%%5 

for i=l:rows 

prod_of_alpha_mn=l; 

sum_of_alpha_mn=O; 

for j=l:cols 

if h(i,j)==l 

for k=l: cols 

if ((h(i,j}==l)&(j~=k)) 

prod~of_alpha_mn=prod_of_alpha_mn*newh(i,j).alpha_mn; 

sum_of_alpha_mn=sum_of_alpha_mn+abs(newh(i,j) .alpha_mn); 

end 

end 

temp=exp(-sum_of_alpha_mn); 

newh(i,j) .beta_mn=sign(prod_of_alpha_mn)*log((l+temp)/(1-temp)); 

end 

end 

end 

%%%%%%%%%%%%%%end horizontal step%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%begin vertical step%%%%%%%%%%%%%%%%% 

for j=l:cols 

sum of beta_mn=O; 

for i=l:rows 

if (h (i, j) ==1) 

sum_of_beta_mn=sum_of_beta_mn+newh(i,j) .beta_mn; 

end 

end 
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for i=l:rows 

newh(i,j) .gamma_mn=gamma_n(j)+sum_of_beta_mn-newh(i,j) .beta_mn; 

temp=exp(-abs{newh{i,j) .gamma_mn)); 

newh(i,j).alpha_mn=sign(newh(i,j) .gamma_mn)*log((l+temp)/(1-temp)); 

end 

%%%%%%calculate pseudo log APP ratios 

lambda_n(j)=gamma_n{j)+sum_of_beta_mn; 

if larnbda_n(j)>=O 

end 

vhat(j)=O; 

else 

vhat(j)""li 

end 

%%%%%%%%%%%%%%%%%%%end vertical step%%%%%%%%% 

%%%%%%%%%%stop if v.bat'=O or if u get the same codeword 20 

%consequtive times 

iteration; 

if prevhat==vhat 

converge=converge+l; 

else 

end 

converge=O; 

prevhat=vhat; 

end 

if mul_GF2(vhat,h. ')==zero 

break; 

end 

if converge==20 

break 

end 

%decoding 

9 . extract mesq. m 

function [u]= extract_mesg(c,rearranged_cols) 

%u= extract_mesg(c,rearranged_cols) 

dim=size(rearranged_cols); 

rows=dim(2); 

dim=size (c); 

cols=dim(2); 

for i=l:rows 

if rearranged_cols(i)-=0 

temp=c (i); 

c{i)=c(rearranged_cols(i)); 

c(rearranged_cols(i})=temp; 

end 

end 

u=c(rows+l:cols); 
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APPENDIXC 

BCH MATLAB SOURCE CODES 

>> m = 4; 

>> n = 2"'m-l; 

>> k = 5; 

>> nwords = 10; 

>> msg = gf(randint(nwords,k}); 

>> [genpoly,t] = bchgenpoly(n,k); 

>>code= bchenc(msg,n,k); 

>> y=double(code.x); 

>> y2=pskmod(y,2); 

>> channel=awgn(y2,10); 

>> r=pskdemod(channel,2}; 

>> r2=gf (r); 

>> [newmsg,err,ccode] = bchdec(r2,n,k} 

newmsg = GF(2) array. 

Array elements 

err 

0 

ccode 

Array 

0 

1 

0 

1 

0 

1 

0 

1 

1 

1 

0 

= GF(2) 

0 

1 

1 

1 

1 

1 

0 

0 

0 

1 

0 

array. 

elements = 

Columns 1 through 

0 0 

1 0 

1 1 

0 1 

0 1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

14 

1 

0 

1 

0 

1 

1 

1 

1 

0 

1 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 0 0 0 

1 1 1 0 

1 1 0 0 

0 1 0 1 
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0 0 0 

1 0 0 

1 0 0 



1 0 

1 1 1 1 0 1 0 1 1 0 0 1 

0 0 

0 1 0 0 0 1 1 1 1 0 1 0 

1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 

0 0 1 0 0 0 1 1 1 1 0 1 

0 1 

1 0 0 0 0 1 0 1 0 0 1 1 

0 1 

1 0 1 1 0 0 1 0 0 0 1 1 

1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 

Column 15 

1 

1 

0 

0 

0 

1 

1 

1 

0 

1 

>> if ccode==code 

disp{ 'All errors were corrected.') 

end 

All errors were corrected. 

>> if newmsg==msg 

disp( 'The message was recovered perfectly. ') 

end 

The message was recovered perfectly. 
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APPENDIXD 

BCH SUBROUTINE MATLAB SOURCE CODES 

1. bchqenpoly.lll. 

function [genpoly, t] = bchgenpoly(N,K,varargin); 

%BCHGENPOLY Generator polynomial of BCH code. 

% Initial checks 

error(nargchk(2,3,nargin)}; 

t = bchnumerr(N,K); 

t2 = 2*t; 

prim_poly 1; 

m log2 (N+l); 

if ~isempty{varargin) 

prim_poly = varargin{l}; 

% Check prim_poly 

if isernpty(prim_poly) 

if -isnumeric(prim_poly) 

error('To use the default PRIM_POLY, it must be marked by [] .'); 

end 

else 

if -isnumeric{prim_poly) 

prim _poly) 

I I -isscalar(prirn_poly) 

error('PRIM~POLY must be a scalar integer.'); 

end 

if -isprimitive(prim_poly) 

II 

error('PRIM_POLY must be a primitive polynomial.'); 

end 

end 

end 

% Alpha is the primitive element of this GF(2Am) field 

if prim_poly == 1 

alpha= gf(2,m); 

else 

alpha gf(2,m,prim_poly); 

end 

% genpoly LCM([l alpha.Ak]) ... for k 1 2t-ll 

% Find all the minimun polynomials, add them to list of minimum 

(floor(prim_poly) 

% polynomials, if they're not there yet. Then convolve all the minimum 

% polynomials to make the generator polynomial. 
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minpol_list minpol (alpha); 

for k=[l:t2-1J 

minpoly = minpol(alpha.Ak); 

[len,w] = size{minpol_list); 

minpol_mat = repmat(minpoly, [len 1]); 

eq = (minpol_ mat 

if (~any{sum(eq') 

minpol_list); 

w)) 

minpol_list = [minpol_list;minpoly]; 

end 

end 

% convolve all the rows of the minpol_list with each other. 

len= size{minpol_list,l); 

genpoly = 1; 

for(i = 1:len) 

genpoly = conv(genpoly,minpol_list(i,:)); 

end 

% strip any leading zeros 

% the size of the generator polynomial should be N-K+1 

genpoly = genpoly( end-(N-K) :end); 

2. bchenc.m 

function code = bchenc(msg, N, K, varargin) 

%BCHENC BCH encoder. 

% Initial checks 

error(nargchk(3,4,nargin)); 

% Number of optional input arguments 

nvarargin = nargin - 3; 

% % Fundamental checks on parameter data types 

if ~is a (msg, 'gf') 

error('MSG must be a Galois array.'); 

end 

if {msg .m ~=1) 

error{'MSG must be in GF{2). '); 

end 

%set and check the parity position 

if(nargin>3) 

pari tyPos varargin{l}; 

else 

pari tyPos 'end'; 

end 
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if( ~strcmp(parityPos,'beginning') && -strcmp(parityPos, 'end') } 

error('PARITYPOS must be either ''beginning'' or ''end'' 1
) 

end 

[m_msg, n_msg] size(msg); 

if (n_msg -"" K) 

error('The message length must equal K.') 

end 

% get the generator polynomial 

genpoly = bchgenpoly(N,K); 

% get the generator matrix 

[h, genJ = cyclgen{N, {double(genpoly.x)}); 

% do the coding 

code = msg * gen; 

% rearrange parity if necessary 

%if(isempty(varargin) I I strcmp{lower(varargin{l}), 'beginning')) 

if(strcmp(parityPos, 'end')) 

code= [code(:,N-K+l:end), code(:,l:N-K)]; 

end 

3. pskm.od.m 

function y = pskmod(x,M,varargin) 

%PSKMOD Phase shift keying modulation 

% Error checks 

if {nargin > 3) 

error{'comm:pskmod:numarg', 'Too many input arguments. '); 

end 

% Check that x is a positive integer 

if {-isreal(x) I I any{any(ceil(x) N= x)) I I ~isnumeric(x)) 

error{'comm:pskmod:xreal', 'Elements of input X must be integers in [0, M-1]. '); 

end 

% Check that M is a positive integer 

if (~isreal{M) II ~isscalar(M) II M<=O II {ceil(M)~=M) II -isnumeric(M)) 

error('comm:pskmod:Mreal', 'M must be a positive integer. '); 

end 

% Check that M is of the form 2AK 

if (-isnwneric (M) II (ceil (log2 (M)) -= log2 {M))) 

error( 'comm:pskmod:Mpow2', 'M must be in the form of M 

integer. '); 

end 

% Check that x is within range 
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if ({min{min{x)) < 0) !! {max{max{x)) > (M-1))) 

error{'comm:pskmod:xreal', 'Elements of input X must be integers in [0, M-1]. '); 

end 

% Determine initial phase. The default value is 0 

if (nargin == 3) 

ini_phase = varargin{l}; 

if (isempty(ini_phase)) 

ini _phase = 0; 

elseif (~isreal(ini_phase) ! I ~isscalar(ini_phase)) 

error('comm:pskmod:ini_phaseReal', 'INI_PHASE must be a real scalar. '); 

end 

else 

ini _phase 0; 

end 

% --- Assure that X, if one dimensional, has the correct orientation --- % 

wid= size{x,l); 

if {wid === 1) 

x x(:); 

end 

% Evaluate the phase angle based on M and the input value. The phase angle 

% lies between 0 - 2*pi. 

theta = 2*pi*x/M; 

%The complex envelope is (cos{theta) + j*sin(theta)). This can be 

% expressed as exp(j*theta). If there is an initial phase, it is added 

% to the existing phase angle 

y = exp(j*(theta + ini_phase)); 

% --- restore the output signal to the original orientation --- % 

if (wid :== 1) 

y = y. '; 

end 

4 . .!!!2!!..:..!!! 

function y=awgn(varargin) 

%AWGN Add white Gaussian noise to a signal. 

% --- Initial checks 

error(nargchk{2,5,nargin))i 

% --- Value set indicators (used for the string flags) 

pModeSet 0; 

measModeSet 0; 

% --- Set default values 

reqSNR II; 

sig I l ; 

sigPower 0; 

pMode 'db'; 

measMode 'specify'; 
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state []; 

% --- Placeholder for the signature string 

SigStr = 1 1 i 

% --- Identify string and numeric arguments 

for n=l:nargin 

if (n>l) 

sigStr(size(sigStr,2)+1) '/'; 

end 

% --- Assign the string and numeric flags 

if(ischar(varargin{n})) 

sigStr(size(sigStr,2)+1} = 's'; 

elseif(isnumeric(varargin{n})) 

sigStr(size(sigStr,2)+1) = 'n'; 

else 

error('Only string and numeric arguments are allowed.'); 

end 

end 

% --- Identify parameter signatures and assign values to variables 

switch sigStr 

% --- awgn(x, snr) 

case 'n/n' 

sig 

reqSNR 

varargin{l}; 

varargin{2}; 

% --- awgn(x, snr, sigPower) 

case 'n/n/n' 

sig 

reqSNR 

sigPower 

varargin{l}; 

varargin{2}; 

varargin{3}; 

% --- awgn(x, snr, 'measured') 

case 'n/n/s' 

sig varargin{l}; 

reqSNR varargin{2}; 

measMode lower(varargin{3}}; 

measModeSet 1; 

% --- awgn(x, snr, sigPower, state) 

case 'n/n/n/n' 

sig 

reqSNR 

sigPower 

state 

varargin{l}; 

varargin{2}; 

varargin{3}; 

varargin{4}; 

% --- awgn(x, snr, 'measured', state) 

case 'n/n/s/n' 

sig 

reqSNR 

varargin{l}; 

varargin{2}; 
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end 

measMode lower(varargin{3}); 

state varargin{ 4}; 

measModeSet 1; 

% --- awgn{x, snr, sigPower, 'db!linear') 

case 'n/n/n/s' 

sig 

reqSNR 

sigPower 

pMode 

pModeSet 

varargin{l}; 

varargin{2}; 

varargin{3}; 

lower{varargin{4}); 

1; 

% --- awgn{x, snr, 'measured', 'dbllinear'} 

case 'n/n/s/s' 

sig varargin{1}; 

reqSNR varargin{2}; 

measMode lower(varargin{3}}; 

pMode lower (varargin{ 4}); 

measModeSet 1; 

pModeSet 1; 

% --- awgn(x, snr, sigPower, state, 'dbllinear') 

case 'n/n/n/n/s' 

sig 

reqSNR 

sigPower 

state 

pMode 

pModeSet 

varargin{1}; 

varargin{2}; 

varargin{3}; 

varargin{4}; 

lower(varargin{S}); 

1; 

% --- awgn(x, snr, 'measured', state, 'dbllinear') 

case 'n/n/s/n/s' 

sig varargin{l}; 

reqSNR varargin{2}; 

measMode lower(varargin{3}); 

state varargin{4}; 

pMode lower(varargin{S}); 

measModeSet 1; 

pModeSet 1; 

otherwise 

error ('Syntax error.'); 

% --- Parameters have all been set, either to their defaults or by 

%the values passed in, so perform range and type checks 
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% --- sig 

if(isempty(sig)) 

error('An input signal must be given.'}; 

end 

if(ndims(sig)>2) 

error('The input signal must have 2 or fewer dimensions.'); 

end 

% --- measMode 

if (measModeSet) 

if(-strcmp(measMode, 'measured')) 

error('The signal power parameter must be numeric or ''measured'','}; 

end 

end 

% --- pMode 

if(pModeSet) 

switch pMode 

case {'db' 'linear'} 

otherwise 

error('The signal power mode must be ''db'' or ''linear''.'}; 

end 

end 

% -- reqSNR 

if {any ( [-isreal (reqSNR} (length(reqSNR) >1) (length (reqSNR):::=:Q)])) 

error('The signal-to-noise ratio must be a real scalar.'); 

end 

if(strcmp(pMode, 'linear')) 

if {reqSNR<=O) 

error('In linear mode, the signal-to-noise ratio must be> 0.'); 

end 

end 

% --- sigPower 

if(-strcmp(measMode, •measured')} 

end 

%---If measMode is not 'measured', then the signal power must be specified 

if(any([-isreal(sigPower) (length(sigPower)>l) {length(sigPower)==O)])) 

error('The signal power value must be a real scalar.'); 

end 

if(strcmp(pMode,'linear')) 

if { sigPower<O} 

error('In linear mode, the signal power must be>= 0.'); 

end 

end 
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% --- state 

if(~isempty(state)) 

if(any([~isreal(state) 

floor(state))-=0)])) 

(length(state)>l) (length(state)==O) 

error('The State must be a real, integer scalar.'); 

end 

end 

% --- All parameters are valid, sq no extra checking is required 

any( (state-

% --- Check the signal power. This needs to consider power measurements on matrices 

if(strcmp(measMode,'measured')) 

sigPower = sum(abs(sig(:)).A2)/length(sig(:)); 

if(strcmp{pMode,'db')) 

sigPower = lO*loglO(sigPower); 

end 

end 

% --- Compute the required noise power 

switch lower(pMode) 

case 'linear' 

noisePower 

case 'db' 

sigPower/reqSNR; 

noisePower = sigPower-reqSNR; 

pMode = 'dbw'; 

end 

% --- Add the noise 

if(isreal(sig)} 

opType = 'real'; 

else 

opType 'complex'; 

end 

y sig+wgn(size{sig,l), size{sig,2), noisePower, 1, state, pMode, opType); 

S. pskdemod.m 

function z = pskdemod(y,M,varargin) 

%PSKDEMOD Phase shift keying demodulation 

% Error checks 

if {nargin > 3) 

error('comm:pskdemod:numarg', 'Too many input arguments. '); 

end 

%Check y, m 

if( -isnumeric(y)J 

error('comm:pskdemod:Ynum', 'Y must be numeric.'); 

end 

% Checks that M is positive integer 

if (-isreal (M) II -isscalar (M) I I M<=O II (ceil (M) -=M) II -isnumeric (M)) 
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error('comm:pskdemod:Mreal', 'M must be a positive integer. '); 

end 

% Checks that M is in of the form 2AK 

if(-isnumeric(M) II (ceil(log2 (M)) -= log2 (M))) 

error (' comrn:pskdemod:Mpow2', 'M must be in the form of M 

integer. '); 

end 

% Determine INI PHASE. The default value is 0 

if (nargin == 3) 

ini_phase = varargin{l}; 

if (isempty(ini_phase)) 

ini_phase = O; 

2AK, where K is an 

elseif (-isreal(ini_phase} I I -isscalar(ini_phase)) 

error('comm:pskdemod:Ini_phaseReal', 'INI PHASE must be a real scalar. '); 

end 

else 

ini_phase 0; 

end 

% generate a constellation 

const = pskmod(O:M-l,M, ini_phase); 

%demodulate. 

z = genqamdemod(y,const); 

6. bchdec.m 

function [decoded, cnumerr,ccode] 

%BCHDEC BCH decoder. 

error(nargchk(3,4,nargin)); 

bchdec(coded,N,K, varargin); 

% Fundamental checks on parameter data types 

if -isa(coded, 'gf') 

error{'CODE must be a Galois array.'); 

end 

if (coded.m-""1) 

error ('Code must be in GF(2). '); 

end 

[m _code, n_ code] size{coded); 

% Check mandatory parameters code, N, K, t 

% --- code 

if isempty(coded.x) 

error('CODE must be a nonempty Galois array.'); 

end; 

% --- width of code 
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if N "'= n_code 

error('CODE must be either aN-element row vector or a matrix with N columns.'}; 

end 

%set and check the parity position 

if(nargin>3} 

pari tyPos varargin{l}; 

else 

pari tyPos 'end'; 

end 

if{ "'Strcmp(parityPos,'beginning 1
) && ~strcmp(parityPos, 'end'} ) 

error( 'PARITYPOS must be either 1 'beginning'' or ''end' 1 1
) 

end 

% get the number of errors we can correct 

t = bchnumerr(N,K); 

M = log2 (N+l); 

% bring the coded word into the extension field 

coded= gf(coded.x,M); 

[m_code, n_code] = size(coded); 

for j=l:m_code, 

% Call to core algorithm BERLEKAMP 

[coded(j,:) cnumerr(j}] = berlekamp(coded{j,:),N,K,t,l,'bch'); 

end 

%bring back to gf(2) 

ccode = gf(coded.x}; 

switch parityPos 

case 'end' 

decoded = ccode (:, 1: K) ; 

case 'beginning' 

decoded= ccode(:,N-K+l:end); 

end; 
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APPENDIXE 

SIMULATION RESULTS FOR LDPC AND BCH CODES 
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Block Length vs. Bit Error Percentage 
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