
Web-Based 3D Environment for Urban Houses

by

MUHAFIZA BINTI MUSA

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Information Communication Technology)

JULY2005

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

') ee~~'-" "({~~"""''-­
"") Y'i I \'., " -\w.A '-

CERTIFICATION OF APPROVAL

Web-Based 3D Environment for Urban Houses

By

Muhafiza binti Hj. Musa

A project dissertation submitted to the

Information Technology Program

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

Bachelor of Technology (Hons)

Information Communication Technology

Approved by,

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

(MUHAFIZA BINTI MUSA)

ABSTRACT

After the emergence of technologies especially in Information, Communication and

Technology (ICT) industry, many construction companies have ventured in the e­

business in order to be more competitive. One of the interactive multimedia tools such

as virtual reality (VR) have the potential to enhance the efficiency and effectiveness of

all stages of a project, from initial conceptual design through detailed design, planning

and preparation, to construction completion. The objective of this project is to develop a

prototype which run on web-based that totally helps the customers to visualize the real

house they are looking for by experiencing, in near-reality sense of unlimited virtual

walkthrough. In the meantime, it will less the cost of money for transportation as well

as the time taken for the customers to the advertised properties location. For the

construction side the facility in a 3D interactive and immersive environment can

increase the understanding of the design intent, improve the constructability of the

project, and minimize changes and abortive work that can be detected prior to the start

of construction. Basically, nowadays customers need to a site visit in order to see the

house that they are interested to buy. Other than that, most of them are too busy due to

their working hours and some of them live far away from the advertised properties

location. By the emergence of the computer graphics, software technologies, internet

and interactive multimedia tools, many developer companies have ventured in e­

business in order to solve the problem that counter by the customers. The scope of study

of this project will focus on how VR could help the construction company by creative

an immersive environment for their show houses. For this project, System Development

Life Cycle (SDLC) has been chosen because it provides systematic and orderly

approach in solving system problem. The findings from the project will be determining

base on the client satisfaction and evaluation toward the product later on.

ACKNOWLEDGEMENT

In the Name of Allah The Most Gracious and The Most Merciful. Peace and blessing be

upon our Grate Prophet Muhammad Sallahu 'Alaihi Wassalam.

I am indebted to many individuals who contributed m vanous ways m

completing my project dissertation successfully. I wish to extend my greatest

appreciation for precious time, assistants, guidance and support offered to me by the

following parties: -

Dr Wan Fatimah Wan Ahmad (FYP Supervisor)

Mohd Zuhairi Mohd Nor (Project Engineer OSK Properties)

Mr. Nordin Zakaria (FYP Coordinator)

Hj Musa bin A wang & Hjh. Hasnah binti Shafie (beloved parents)

All staffs in OSK Properties Sg. Petani, Kedah

All staffs in IT /IS Department

All my friends

Not to forget to those who involved directly or indirectly for ensuring the timely

completion of this report. My final draft report would not have been possible and

success as it now without your help and support.

11

TABLE OF CONTENT

ABSTRACT ... !

ACKNOWLEDGEMENT .. .ii

TABLE OF CONTENTiii

LIST OF FIGURES ... v

ABBREVIATIONS AND NOMENCLATURES ... vi

CHAPTER 1: INTRODUCTION

1.1 Background StudyI

1.2 Problem Statement

1.2.1 Problem Identification ... 1

1.2.2 Significance of The Project ... 2

1.3 Objectives and Scope of Study

1.3.1 Objectives ... 2

1.3.2 Scope of Study .. 3

1.3.3 The Relevancy Of The Project 3

1.3.4 Feasibility of the Project within Scope and Time Frame4

CHAPTER2: LITERATURE REVIEW AND THEORY

2.1 What is Virtual Reality? .. 5

2.2 The immersiveness in VR .. 6

2.3 VR in Website Visualization ... 8

2.4 VR- The Benefits .. 9

2.5 Main Components and Devices .. 10

CHAPTER3:METHODOLOGY

3.1 Project flow .. 13

3.2 Procedure Identification .. 14

3.3 Tools ... 17

iii

3.4 Design

3.4.1 Use Case Diagram ... 18

3.4.2 Storyboard18

3.5 Development

3.5 .1 The Atmosphere Platform ... 20

3.5.2 Exploring Atmosphere Environment 21

3.5.3 Interacting Atmosphere Environment 26

3.5.4 Atmosphere Overview ... 28

3.5.5 Publishing .. .30

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Creating the VR Walkthrough .. 33

4.2 Data Analysis .. .46

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion .. 48

5.2 Recommendation .. .48

REFERENCE .. 50

APPENDIXES

iv

LIST OF FIGURES

Figure 3.0 Process Flow

Figure 3.1 Software Development Life Cycle

Figure 3.2 Use Case Diagram

Figure 3.3 Storyboard

Figure 4.0 Floor Plan

Figure 4.1 Solid Object Editor

Figure 4.2 Scene Editor

Figure 4.3 Upper View

Figure 4.4 Front View

Figure 4.5 Living Room

Figure 4.6 Master Bedroom

Figure 4.7 Kitchen

Figure 4.8 Other Room

Figure 4.9 Montage

Figure 4.10 Homepage

Figure 4.11 About Us

Figure 4.12 Site Maps

Figure 4.13 Iris (part 1)

Figure 4.14 Iris (part II)

Figure 4.15 Preferences of Decision

v

CHAPTER!

INTRODUCTION

1.1. BACKGROUND OF STUDY

The usability of Web sites is becoming a very important topic as organizations struggle

to reach, and especially to retain, a wider audience. It describes the many business,

technical and other benefits to the organization above and beyond the straightforward

benefits to people with disabilities that can be realized by applying the Virtual

Environment (VE) to Web sites. Virtual Reality (VR) walkthrough as a branch to VR

has been used by many sectors and fields of work to visualize and represent their work

in a more elaborate way. By incorporating a VR walkthrough on online, it will reflect

its advancement in technology as whole as well as the competitive advantage between

other companies.

1.2. PROBLEM STATEMENT

1.2.1. Problem Identification

The main problem in this project is obviously to create a multimedia-advertising

module that look realistic as well as capable to run on online basis. Nowadays,

customers need to do site visit in order to see the particular house that they are

interested to buy. Some of the customers have less of time and some of them are living

far away from the advertised properties' location. In the meantime, the developers are

confronting a competitive edge between their rivals on how they can get the biggest

profit to their company through advertising. This kind of thinking actually has driven

the properties developers to use the advertisement sector in order to attract the buyers.

1

As an initiation, the website could provide a virtual walkthrough of the house

properties. This could give an advantage to the company to attract more and potentials

buyers as oppose to the other company that lack such as promotions.

1.2.2. Significance ofthe Project

Internet and intranet web sites have become an integral part of software development as

well as the wider fields of commercial, educational and recreational activity. In order to

improve the understanding of web based software engineering it's required to

understand first how web sites are used. Information about the structure and usage of

sites is valuable to administrators, maintainers, content developers and users. The

volume and complexity of the data generated by typical tools is a major limitation. Its

describe the use of virtual worlds, including a novel extension of the perspective wall,

for visualizing web site activity. Examples from the environment are presented and

discussed. A website can benefit almost any business. While it can be a very effective

marketing tool it is more important as a business essential - since the customers expect

it. By incorporating VR walkthrough in the website, the customers will have the chance

to see and sense the houses in term of design and its dimension. Comparing to merely

pictures and textual description, a VR walkthrough would give better feel of how the

houses would be look like physically. A walkthrough will give a sense of

immersiveness to the user where the users feel as though he or she is in the actual

environment itself.

1.3. OBJECTIVES AND SCOPE OF STUDY

1.3.1. Objectives

I. To develop a prototype which runs on web-based that totally helps the

customers to visualize the real house they are looking for by experiencing, in

near-reality sense of unlimited virtual walkthrough

2

2. To minimize the cost of money for transportation as well as the time taken for

the customers to the advertised properties location

3. To give more controls to customers by giving them a range of choices in their

experience with product information

4. To present the immersiveness of VE in the product as which users feel

interactive, realistic with and within which people can interact

1.3.2. Scope of Study

The scope of this project is about developing a VR walkthrough on a website. The main

idea was to promote the new residential area that has just been open in Sungai Petani.

Collaboration has been done with the construction company, the OSK Properties Sdn.

Bhd. in order to make the project more successful. For this project, several houses have

been chosen to be developed such as Iris II (Single Storey Semi-D Bungalows) and

Casa (Single Storey Terrace House).This urban houses will be developed in 3D

environment which allow user to interact and view freely on the website.

1.3.3. The Relevancy of the Project

By the end of timeline, the projects mainly will covers on research and solution the

problems incorporating of findings into the prototype, multimedia authoring as well as

the application principles and techniques. To complete this project, there are two

approaches will be taken such as:

• Research on VR that shown how it was implemented in the market nowadays.

Research is done from various organization backgrounds which shown that VR

is built from different types of styles and for certain purposes.

• Research continues on how the immersiveness in VE has helped marketing area

to produce better wealth and profits from their products.

• Nevertheless, research is also covering on website purposes, which function as

the platform to show the virtual products to customer that came from all over the

world.

3

1.3.4 Feasibility of the Project within Scope and Time Frame

By the end of the semester, the product should be completed as a VR walkthrough in

the website. A short montage will be put as the opening of the website. The montage

will be done depending to the time consuming. Ifthere left anytime till the presentation,

probably the chance to develop it is higher. Later then, is to upload the VR walkthrough

into the website. This is the most critical time during the project since the development

stage only has taken half of the project time frame. To make the navigation successful, a

plug-ins should be downloading before the user want to view the VE. However, limiting

the final product to be only one VE, would buy enough time to enhance it and at the

meantime developing the website as well.

4

CHAPTER2

LITERATURE REVIEW AND THEORY

Traditional methods in interior design usually lack depth and sense of realism, as well

as require the designer and the client to meet in one place. These problems can be

s.olved by utilizing shared virtual reality in the design process and embedded it on

websites. Information can be provided on your site, not only reducing the printing costs

but also fax and mailing costs. Using the services, the customer doesn't need to travel

all the way from their home. The proposed services can be used to greatly enhance the

feeling of presence and help the physically challenged learn to cope with their

environment

2.1 What is Virtual Reality?

There are many definitions of VR. According to physicist Deutsch (2000), VR is the

best physical demonstration of universality, one of the most important concepts of the

theory of the calculability (the own difficulty of the calculation processes and its

limitations). The best and clearer physical manifestation of this theory is the virtual

reality, which the author defines as "any situation in which a person goes, in an artificial

way, through the experience of being in a specific environment." To develop a usable

VR system, the prospective context of use of such a system may need to be considered

in order to make sure it meets the requirements and restrictions of that context

However for the project purposes, the most useful definition is the final product

comparative level of performance in reaching its objectives. This implies of having

experiences where the software learned which action is the best helps it reach its

objectives. VR provides multisensory environments for learners to interact in a context.

Gibson's ecological psychology (1986) recommends VR's active and integrated

perceptualizations, not merely visualizations for learners to create, observe, and

understand relationships within the environment. Despite focusing on visualization,

5

learners or creator also learn through the perceptualizations in the context of human

presence, touch and feels in the immersive environment. . The identified potential

usability problems of a fully immersive prototype, coupled with the needs, requirements

and real-life environment of the end-users lead to guidelines for the development of a

VR application on a semi-immersive desktop environment. The findings lead us to

believe that contextual analysis can be a powerful way to inform the design of a VR

application by offering an understanding of the context of use and to inform developers

of the most appropriate degree of immersiveness of the VR environment

2.2 The immersiveness in VR

Virtual reality (VR) applications are often developed relatively independent from the

real contexts in which they are going to be used. However, it is recognized that user

needs should play a central role in the development of virtual environments that are to

be used in a real-life context, an insight that has existed in the systems development

community for years. Three categories of VR often used are desktop, semi-immersive

and fully immersive VR. Many authors use to classify VR environment on the basis of

the level of immersivity. This can be considered a quality measurement of the presence

feeling or, similarly, the perception of the vit;tual world as a real world.

• Desktop VR- Called Desktop VR or a Window on a World (WoW), this

type of VR yields a standard monitor and common keyboard and mouse to

interact with virtual world. Not very far from a modern CAD system, where

object and data can be managed and yisualized in 3D fashion, is the quality

of the final simulation quite poor due to a limited operator's FOV (Field Of

View) and a 2D interface. Furthermore the small display dimensions also

reduce the need of a head tracking, which is the collimation of the virtual

camera and operator's head. Instead a great benefit is provided by the very

low cost, because the no special hardware is required

6

• Semi-immersive VR - Time and cost reduction has been a critical success

factor for the rapid development of VR semi-immersive systems.

Reproducing in the virtual environment the whole real environment

surrounding the user in a perfect reconstruction process results, in fact,

extremely time consuming. A high calculation power is requested, for

example, to reproduce the user's hand in the virtual environment due to the

huge number of polygons and to the kinematics constrains. Furthermore, one

of the most appreciated features in these systems is the multi-user capability.

In a project verification step and much more in a final project approval it is

particularly needed a presentation device, which is able to make users

navigate inside and around the photorealistic under-approval product.

• Full Immersive VR- Full-immersive visual systems represent the higher

level of user immersiveness in virtual environments. It can be provided by

an HMD (Head Mounted Display) or by a binocular oriental monitor (such

as Fakespace BOOM), both reproducing the Desktop VR, Fakespace BOOM

and Head Mounted Display.

By referring to Cramer, Evers, Zudilova and Sloot, it proof that desktop VR can

be offered as either immersive with, for example, shutter glasses, or non-immersive

without specialized equipment. Currently, data on the appropriate degree of immersion

for a given situation is scarce. There is no complete framework available facilitating the

choice whether a (non-VR) desktop application or VR, fish tank, semi-immersive or

completely immersive virtual reality application might be the best choice for a

particular system and context of use. The choice between these options can only be

made after considerations of usability criteria for an application and analysis of the

context in which a system will be used.

7

2.3 VR in Website Visualization

Few major commercial or educational enterprises would expect to conduct their

business effectively without an Internet presence. Typically one or more web sites are

used for internal or external purposes. Increasingly, software engineering takes place in

an Internet/Intranet environment. Software artifacts as well as processes are developed,

delivered and deployed using web-based technology. User manuals and technical

documentation are routinely supplied as HyperText Mark-up Language (HTML)

format-often with the intention of being accessed remotely rather than being

downloaded in toto by users. Effective re-use depends on the ability to locate suitable

components and their APis. The Java development kit includes a tool, javadoc, which

generates API documentation in HTML format and similar tools have been in use for

some time.

Literate programming tools provide yet another source of web-based software

artifacts and one of the ways that source code is also being used in a web-based form. It

is important for software engineers to be able to comprehend measure and manage web­

based systems as well as those of a more traditional development environment. As with

other aspects of software engineering, the size and complexity of web sites are

challenging to conventional techniques. In this paper we describe some of our

applications of information visualization techniques to web site log data. Similar ideas

have been applied in other areas of software engineering .A better understanding of web

site usage can then be applied to issues specific to software engineering as well as those

of more general applicability.

Web server software varies considerably but individual products are capable of

tracking activity in the form of log files of various kinds. Such files are typically rather

too large (40MB per week in our case) for ready comprehension by human readers. File

and version management involves maintaining the file system structure, dealing with

updated versions of individual resources and the addition of new material. Hyperlink

management includes the removal of "dead" links and the creation of new links in

8

response to observed user demand. Although the power and sophistication of the tools

available to assist site maintainers is increasing, it is still difficult to manage both fine

detail and large scale information. There are many reasons why information about the

structure of a site and the pattern of visitor behavior is useful. These range from site

design to marketing banner advertising. According to Hartley and Churcher,

VR has advanced from the realm of fiction and has been applied in many

different domains. Both the general aspects of VR as well as more technical issues have

been described extensively.

By looking back to the statement above, a conclusion can be made that in order

to achieve the aim of delivering useful visualizations on standard platforms, it actually

limit to non-immersive VR; achieved by using an ordinary display screen to give the

impression of navigating through a 3-dimensional space and will not be concerned with

the data gloves, helmets and specialized systems found in immersive VR environments.

By using the Virtual Reality Modeling Language (VRML) or other optional software to

represent the results. VRML is essentially a scene description language and is more

suitable for our purposes than libraries such as java3d which extend general purpose

programming languages.

2.4 VR- The Benefits

The big area that is gaining momentum is the internet. VR can be added to its interface

to make the net a true "cyberspace." By adding the capability of adding 3D interactive

graphics to a web page, the web revolution can maintain its momentum. This was all

made possible with the invention of VRML (visual reality markup language). VRML

along with java allow entire 3D interactive worlds to be created from a single web page.

Although not widely used today, the technology also allows for shared virtual

environments where someday you may be able to interact with other people from across

the world in a virtual world from a central web site.

9

VR technologies address a wide range of interaction and immersion capabilities

during the VR experience. Immersion varies from first, second-, or third-person

experiences and in physical, perceptual, and psychological options.

According to Mahoney (1994),

"Architects and designers are increasing their use of computer-generated

walkthroughs of their designs, and while the various types of walkthrough, or

jlythrough, differ, they all involve motion"

By referring to the quotes above, it is proved that VR can engage learners at the

emotional level through the "willing suspension of disbelief'. Its immersion

characteristic utilizes role-playing and varying perspectives as a fundamental way of

knowing. Virtual "agents" or human-like avatars can be the dramatic characters if

instructional designers desire more predictability and control than possible with human

models.

2.5 Main Components and Devices

According to Wicken and Baker (1994), said that VR has five main components which

are variable according per the instructional context requirements:

•

•
•

•
•

dimensionality,

motion or animation,

interaction,

viewpoint or frame of reference, and

Immersion, or embodiment, through enhanced multisensory experiences .

By referring to Wicken and Baker (1994) above, some instructional contexts

depend on specific realities, which the contexts that never vary. Scientists seeking

medical cures must observe atomic particles in specific places and with specific

behaviors when manipulated. In the other hand, some instructional contexts require

nonspecific realities; which the contexts with naturally varying conditions. VR's range

10

of realities enables instructional designers and practioners to increase contextual

complexities as learners' transition from novices to experts.

Persiani (200 I) in her article wrote that, VR is a way for humans to visualize,

manipulate and interact with computers and extremely complex data. A good definition

to point the attention on the TWO main VR behaviors: enhanced visualization and

interaction. Both of them mean real-time elaboration. All VR environments can mix in

different levels these items and the most part of the rest of this paper is intended to

clarify the role ofthese features to allow the operator to view and interact with data in a

3D environment, where reality may be reconstructed or completely simulated.

Following leading features already cited (enhanced visualization and interaction), starts

to describe the most important hardware equipment used by VR.

A general VR application, wishing to provide to the operator a 3D feeling of the

surrounding virtual world, usually exploits the capabilities of a stereo projection. The

stereo vision is performed by active stereography or passive stereography. The first is

most largely used due to a better 3D experience: this is accomplished by creating two

different images of the world, one for each eye. The images are computed with the

viewpoints offset by the equivalent distance between the eyes. The two images can be

displayed sequentially on conventional monitor or projection display. Liquid Crystal

shutter glasses are then used to shut off alternate eyes in synchronization with the

display. When the brain receives the images in rapid enough succession, it fuses the

images into a single scene and perceives depth. A fairly high display swapping rate

(min. 60Hz) is required to avoid perceived flicker.

Passive stereoscopy instead is used in very low cost applications and is based

on the production of the images through differently polarized filters, with corresponding

filters placed in front of the eyes. Anaglyph images use red or blue glasses to provide a

crude (no color) stereovision. On the other hand, the Input Processes of a VR program

control the devices used to input information to the computer (motion tracking). There

are a wide variety of possible input devices: keyboard, mouse, trackball, joystick, 3D &

6D position trackers (glove, wand, head tracker, body suit, etc.). All these devices

11

return a relative spatial position with respect a static receiver, while several sensors are

placed on operator's hands and head. Tracking devices handle the interactions, the

scripted object actions, simulations of physical laws (real or imaginary) and determines

the world status. This simulation is basically a discrete process that is iterated once for

each time step or frame. It is the simulation engine that takes the user inputs along with

any tasks programmed into the world such as collision detection, scripts, etc. and

determines the actions that will take place in the virtual world.

Above was some example of input and output devices used in VR. The

application run from VR usually will be connected to these types of devices. By looking

back to the project, user doesn't need any output devices in order to explore the

walkthrough. The main requirement was to download the plug-ins in order to view the

VE provided in the sites.

12

CHAPTER3

METHODOLOGY

This chapter will cover on how the project being conducted aud done. The first part will

show about the flow of the project starting from the interface. The second part will

focus on procedure identification of the project. On this section it will cover on

methodology used in the project. Follow by is the tools used which contained of

software and hardware requirement of the project. Lastly, will be the design section

which covers all about the software used in the project.

3.1. PROJECT FLOW

~
i
i

link ~
i
i

,', /.:; -----+ l_mont~ge H hcmapag:e_:_l-->1 \{ie;w­
product

L___"-'--.J

Login website

Web·based

Figure 3.0: Process Flow

13

YR
Walkthrough

Prlnt.document

From the figure 3.0 above, it explains about on how the process flow happens in the

project. The main purpose of the figure above is to show how the user will use the

website in order to browse the advertised houses. The flow starts when the user begins

to navigate the webpage. The opening will be a short montage that brief about the

company latest project. User can skip the montage in order to reach the main page

faster. Starting at the main page, the search index has the connectivity with mySql

database. From the main page; the user can navigate to other pages in order to view all

the products. Several of the promoted products are given a VR Walkthrough in their

pages (refer to the figure 4.13) which show the linked button.Lastly, the user can close

the site or print out the document they needed.

3.2 PROCEDURE IDENTIFICATION

Throughout this chapter, the systematic approach analysts take to the analyst and

design of information. Much of this embodied in what is called the systems

development life cycle (SDLC). The SDLC is a phased approach to analysis and design

that holds that systems are best developed through the use of a specific cycle of analyst

and user activities.

14

Develop & Documentation ri

Implementation & Evaluation

Figure 3.1: Software Development Life Cycle

This life cycle can be divided into seven sequential phases, although in reality

that phases are interrelated and are often accomplished simultaneously. The seven

phases are identifying problems, opportunities, and objectives; determining information

requirements; analyzing system needs; designing the recommend system; developing

and documenting software, testing and maintaining and lastly implementing and

evaluating final products.

• Identifying problems, opportunities, and objectives

The first stage is to define problems of the projects that being faced by target

user. When the problems have been identified, and then know what are the

opportunities and objectives to be achieved through the projects.

• Determine information requirements

This section involves the research part, which required finding of information

about the projects requirement. Research can be done either through articles,

15

journals from library or surfing the net. Rather than that, information about

clients or user is the most important of all. Designers need to know what the

clients want before start the developing stage.

• Analyzing system needs

Since the project requires a walkthrough that can be view from the net, a lot of

research must be done in order to understand what the system need. The

research will cater on website requirements, software chosen and also the

hardware used through the projects

• Designing the recommend system

When all the inputs or data ready, the next stage is to design the flow of

recommend system. From these sketches, designer will see thoroughly the whole

system before pass it to the developers.

• Developing and documenting software

In this stage, the most critical time of all required me to develop the prototype.

At the meantime, all the research before must be documented as a report as well

as a reference to the reader. All the information gathered must be kept and

arranged nicely in a hardcover report (dissertation).

• Testing and maintaining

When the product has been finished developed, it will be test in order to see is

capability. Usually, failures always occur in this stage and quickly it will be

repair as soon as possible. Some enhancement and improvement will be done to

the product before production. Maintaining will be the last past in order to test

the strength capability and quality of the products.

• Implementing and evaluating final products

The final stage is implementation into real environment. The products will be

present to the management first in order to see the response. Later, when the

16

management satisfies with the products, it will be present to the customers.

Evaluation will be start soon as the products being received by customer. It's

very important to know the customers reaction and response for further action

and enhancement.

3.3 TOOLS

The following are the tools suggested to be used in the development of the

project:-

Hardware Requirement

• PC running on Windows 95/98/2000/ME/NT/XP (i386)

• High Performance Graphic Card (ATI RADEON 9250)

• Intel Pentium 4 with processor of 1.6 GHz, Ram of 512mb

• Digicam Sony 3.0 pixels

Software Requirement

• Adobe Atmosphere 1.0

• Adobe Photoshop 7.0

• Adobe Acrobat Reader 7.0

• Macromedia Director Mx

• Web Publisher (Macromedia Dreamweaver)

There was a change of software during the developing stage. The main software of

Blender 3D, has been changed to Adobe Atmosphere 1.0 before the development stage

begun. Between Blender and Adobe, it is clear that Adobe is more user friendly and

easier to use comparing the VR walkthrough produced by Blender. Therefore, this

software has chosen the Adobe as the platforms to develop the VE in this project.

17

3.4DESIGN

3.4.1 Use Case Diagram

The use case diagram describes the interaction between user and the application. As

illustrated in the figure 3.2 below, the main interaction between user and the website is

the VR Walkthrough. Firstly, user need to visit their interested product and just click to

the button provided at the bottom of the page. From there, it will link you to another

page which will display the VR directly. The user does not need to install plug-in like

other software, which this kind application is friendlier user.

User

3.4.2 Storyboard

Figure 3.2: Use Case Diagram

Web
administrator

The figure provided below (figure 3.3) will represent as all the basic interface of the

website and the arrangement of the content display on it.

18

Figure 3.3: Storyboard

I: the company's name and logo

2: the buttons, which contain ofhomepage, products, prices, FAQ, about us and

etc. which will link to the appropriate pages

3: provide company news and updated product. This side also providing link

directly to the news or houses posted.

4: page content

5: important buttons as stated above, be repeated again at the bottom

19

3.5 DEVELOPMENT

3.5.1 The Atmosphere Platform

• Platform Features

The Atmosphere platform integrates many features into a single application:

Immersion Create environments with dramatic lighting, animated 3-D

objects, real-time behavior, video and audio in small and less embedded in a

PDF or HTML document.

Interactivity Atmosphere users can easily create realistic environments and

behavior thanks to the built-in JavaScript API and integrated physics engine.

Users can interact realistically with environments, objects and avatars that can

behave independently or under user control.

Multimedia Atmosphere supports directional sounds, streaming video and

audio, SWF animations and high definition 3-D objects including animations.

Collaboration Add multi-user interaction with text chat, avatar motion and

gestures, shared object synchronization and message passing, without

additional server software or hardware. An HTTP server is all that's required.

• The Atmosphere Architecture

The Atmosphere platform consists of 3 parts:

Atmosphere An easy to use, powerful authoring application that can be used

to create, import and manipulate 3-D objects, light, sound, images, textures,

video and other multimedia; attach scripted behaviors to objects and

environments; and securely publish these environments to the Web or PDF.

Atmosphere Player A web browser plug-in that allows users to interactively

view and navigate Atmosphere environments embedded in web pages.

Atmosphere Player for Adobe Reader™ enables users to access Atmosphere

environments embedded in PDF documents.

20

Atmosphere Collaboration Server A publicly available server, which allows

messaging, object synchronization and interactivity between users of

Atmosphere environments.

• Atmosphere Player The Adobe® Atmosphere™ Player® is a free application that

allows users to view, interact, and collaborate with others in environments created

with Atmosphere and published online or within PDF documents. Atmosphere

environments can be viewed within a web page using the Player plug-in.

• Web Page Integration Atmosphere Player supports communication between web

page HTML, Java and JavaScript allowing web designers full control of user

experience using the Player's JavaScript API.

• A Multimedia Experience The Atmosphere Player offers the user a rich and

interactive multimedia experience without requiring a high-bandwidth connection

(56K normally suffices). Atmosphere environments can also be viewed in

• Atmosphere Player System Requirements:

Intel Pentium II or faster processor

Microsoft® Windows® 98SE, Windows ME, Windows 2000, Windows XP

Home or Pro

64 MB of available RAM (128 MB recommended)

14 MB of available hard-disk space

16-bit color (32-Bit Color recommended)

56K modem or faster Internet connection

Microsoft Internet Explorer 5 and above.

Graphic Card Support: Radeon 7500 or higher, GeForce 2 or higher

21

3.5.2 Exploring Atmosphere Environment

Before we tum our attention to learning how to create interactive environments in

Atmosphere, let's learn how to use the Atmosphere Player. The Player is a free plug-in

that allows people to view and interact with Atmosphere environments embedded in

web pages and PDF documents.

• Using the Atmosphere Player

When you installed Atmosphere, the Player was installed automatically. If you need

help with Atmosphere installation, please see Appendix A, "Installing and Configuring

Atmosphere." Once installed, Atmosphere environments will be loaded in the Player

automatically when you navigate to a web page or open a PDF document that contains

an Atmosphere. If the Player isn't installed, a dialog box will appear asking if you wish

to install it. The Atmosphere Player features support for hardware acceleration. If the

Player detects a supported video card, it will enable hardware acceleration

automatically. This animated spinning globe icon and a progress bar will appear as the

Atmosphere environment is loading. When the spinning globe icon disappears, the

geometry for the environment has completed loading and will be displayed. Textures

and multimedia files will continue to download.

• Opening Local Atmosphere Files

In addition to Atmosphere environments that are posted online, you can also open

environments that are saved locally. To open a local environment, right-click in the

Player window and select File > Open from the pop-up menu. This will open a dialog

box where you can select an Atmosphere environment to open. The Player can only

open and view AERfiles, not ATMO files.

• Navigating Atmosphere Environments

There are several ways to navigate in Atmosphere Player, using the mouse or keyboard.

Before navigate an Atmosphere environment, the environment must be the focus of the

web page. Try by give the environment focus by clicking on it.

22

Movement Mouse motion Keyboard:

Move forward Drag mouse forward Up arrow

Move backwards Drag mouse backwards Down arrow

Turn to left Drag mouse to left Left arrow

Turn to right Drag mouse to right Right arrow

Ascend upward Shift+drag mouse upward Shift+up arrow

Descend downward Shift+drag mouse downward Shift+down arrow

Tilt view up Ctrl+drag mouse upward Ctrl+up arrow

Tilt view down Ctrl+drag mouse downward Ctrl+down arrow

Strafe left Shift+Drag mouse to left Shift+ Left arrow

Strafe right Shift+ Drag mouse to right Shift+ Right arrow

• Using the Tool bar

If look in the lower left corner of an Atmosphere environment, it shows a toolbar of

icons. The Atmosphere Player toolbar includes several icon buttons that toggle

properties and open palettes. It can control several settings using these icon buttons. If

forget which button does what, hold the mouse cursor over the top of the button and a

tool tip will appear with the button name. Turn this toolbar on and off using the

Contextual menu -right-click to bring up the pop-up menu and choose toolbar to make

the icons appear or disappear. Try to access all the toolbar commands from the

Contextual menu, which is convenient if the toolbar is hidden.

• Detecting Collisions

As moving through Atmosphere environments, notice that it cannot move through solid

objects such as walls and pillars. This is because the Collide option is enabled. The

Collide button allows user to toggle this feature, enabling movement through solid

objects when turned off. If have trouble navigating a particular environment, user can

disable the Collide button to make it easier to move around.

23

• Setting Gravity

Another physical constraint in Atmosphere environments is gravity. If the Gravity

toggle button is enabled while user are higher than the floor of the environment, then

user, and avatar - if turned on, will descend until user come to rest on a solid object. It

won't descend unless both the Gravity and Collide button are enabled. If there is no

solid object underneath, then it will continue to descend until the entire environment is

out of site. If the Gravity toggle button is disabled, then it will hang in the air after

releasing the mouse. If user ever find he/her falling off the edge of environment, user

can right click on the environment and select

• Understanding and Using Avatars

As moving around in public Atmosphere environments on web sites, user may see other

characters moving about. These characters are called avatars and they provide a visual

representation of visitors to the environment. Each visitor has her own avatar. To see

the avatar, click on the Show My Avatar button in the Player toolbar. An environment

with the default avatar visible. Click the Show My Avatar button on the toolbar to see

the avatar.

User can load different avatars using the Avatar palette. Clicking the Avatar

button in the Player toolbar will open the Avatar palette. The top of the Avatar palette

includes a box that shows a snapshot of your Current Avatar, another box that holds an

avatar that can send to others, and a series of snapshots labeled My Avatars that holds a

library of avatars that can swap at any time. Avatars, like bookmarks, can be shared

with other users in an environment during a Chat session. Interacting with an

Atmosphere Environment, explains how to do this. To change avatar, simply select one

from the library in My Avatars and drag it to the Current Avatar box. Atmosphere will

load the new character and present it in the Atmosphere window. User can delete an

avatar by selecting it in the My Avatars sections and pressing the Delete key. If right­

click in the My Avatars section, a Contextual menu will let user change the. thumbnail

size to Small, Medium or Large. If delete one of the default avatars from the My

Avatars section there is no way to recover it unless you reinstall Atmosphere.

24

User can change avatars easily to suit the whim. The Avatar panel holds several

different characters that can be use. To change the character, follow these steps.

I. Click the Avatar button in the Player toolbar to open the Avatar palette.

II. From the My Avatars section, drag the new avatar that you wish to use to the

Current Avatar box at the top of the panel.

III. Enable the Show My Avatar button in the Player toolbar to see the new avatar.

• Setting Player Preferences

The Preferences button in the Player toolbar will open a palette with three separate tabs

-General, Display and Chat. Each of these tabs includes settings which change how the

Player works.

I. General Preferences The General tab of the Preferences palette includes

settings for the avatar Nickname and URL under the Personal Defaults

heading. The Nickname will appear in the Chat palette along with any

message that type when in Chat mode. It will also identify in the Users

palette to other visitors in the environment. To load a new avatar, simply

enter the avatar's URL into the Avatar URL field and the avatar will show

up as the Current Avatar in the Avatar palette. From here drag it into the

My Avatars section. There is also a Show My Avatar option to make the

avatar visible in the Atmosphere Player, which works the same way as the

Show My Avatar button in the tool bar.

II. Display Preferences The Display tab of the Preferences palette lists and

lets user choose Preferred Rendered. Options include Hardware (Direct3D)

and Software. If the computer system has a video card that supports

hardware rendering, then it will see better performance and image quality

by selecting the Hardware (Direct3D) option as the Preferred Rendered.

Software rendering, although slower, will always work regardless of the

system. Even if select the Hardware (Direct3D) option, hardware rendering

may be unavailable if Atmosphere is unable to recognize your video card.

25

Appendix A, "Installing and Configuring Atmosphere," includes

information on configuring Atmosphere to recognize video card as well as

a list of supported video cards.

III. Chat Preferences The Chat tab ofthe Preferences palette includes options

to Enable Chat, Enable Chat Logging, Print URLs of Shared Links and

Enable Bookmarks. At times, user may wish to tum off some of these

options to maintain privacy. Note that by right-clicking in an environment,

a Chat item appears in the pop-down menu. User can control the behavior

of the Chat window - whether it appears at the bottom of the environment

window or as a detached, floating window- by toggling this option. The

Chat tab of the Preferences panel includes options for controlling the Chat

features.

3.5.3 Interacting Atmosphere Environment

Atmosphere environments are compelling experiences because they allow users to

interact with them realistically. For example, users can interact with other visitors and

with objects in the scene that have scripted behaviors attached to them.

• Moving Through Portals

Much like web pages can be linked to each other, Atmosphere environments can be

connected using portals. A portal's location is denoted by a set of spinning red, green,

and blue squares. When a user's avatar is moved into a portal, the linked environment

will automatically load in place of the existing one. Portals offer a way to link to other

Atmosphere environments. User can select to move back and forward between linked

environments using the Navigation > Back and Forward right-click pop-up menu

commands. If a Portal's squares are laying fat, then it is not active. This could be due

to a broken link or a server that is offline.

26

• Jumping Between Environments

When building Atmosphere environments, user may find it easier to work with several

smaller interconnected environments that are linked using Portals. A good example of

this is the Museum environment on the Atmosphere product pages at Adobe.com.To

practice jumping between different Atmosphere environments using Portals, follow

these steps.

I. Visit the Atmosphere product pages at Adobe.com by typing

http://www.adobe.com/products/atmosphere/ into a web browser.

II. Locate the Museum Atmosphere environment in the Showcase pages and

enter the Atmosphere scene. Try

http://www.adobe.com/products/atmosphere/showcase/showmuseum.html

III. Navigate about the scene until you locate a Portal and move into it.

IV. The linked Atmosphere environment is loaded into the Player.

Portals offer a way to link to other Atmosphere environments.

• Understanding Entry Points

When first enter an Atmosphere environment, user will arrive at a location called the

Entry Point that is designated by the environment creator. From the Atmosphere Player

interface, user can have avatar immediately jump back to this location using the

Navigation> Reenter World command on the Contextual (right-click) menu.

• Communicating and Collaborating with Other Visitors

When visit Atmosphere environments online, it can enable a Chat palette that allows

text conversations with other online visitors if the environment has been designed for

collaboration. Open a Chat palette by clicking on the Chat button in the Player toolbar.

The Chat palette can also be used to display information about the environment. The

Chat palette displays the text of online messages as users communicate with one

another. User can also place the Chat window at the bottom of the Atmosphere

environment by right-clicking and selecting Chat from the Contextual menu. The Chat

palette can also be opened at the bottom of the Atmosphere Player interface.

27

• Interacting with the Environment

In addition to Portals and Chat, user can also interact with some Atmosphere

environments through scripting that the designer has included. Some common

interactivity options are listed below.

Sounds and movies Within the Atmosphere environments, user can position

sounds near objects that will grow louder as a user approaches, and softer as

they move away. User can also add background sounds to the entire scene.

Movies can be added as textures to any surface.

Interacting with the Web Page Atmosphere environments embedded within

web pages can interact with items on the page using standard HTML form

elements such as drop-down lists and buttons.

Interacting with Scripted Objects Scripts can add interactive behavior to any

Atmosphere object. For example, scripts allow users to click on objects to

initiate behavior. Imagine that a builder and are taking clients through an

Atmosphere representation of their new home. Scripted behaviors would allow

them to change options like paint color or tile patterns by clicking on the

walls. The scene would be updated as clients make and evaluate their choices,

allowing immediate visual feedback.

3.5.4 Atmosphere Overview

Adobe Atmosphere is a professional authoring tool for assembling and creating 3-D

interactive stage sets. This new embedded multimedia type gives the web or document

designer the ability to present a rich variety of interactive content, including three­

dimensional objects, sound, streaming audio and video, SWF animations, and physical

behaviors, all within the context of a live theater performance. The Atmosphere

platform includes Atmosphere- an easy to use but powerful authoring tool designed to

enable the creation of Atmosphere content; Atmosphere Player, web browser and

Adobe Reader plug-in for navigating and interacting with 3-D environments on the Web

28

and in PDF documents; and Atmosphere Collaboration Server which enables user

communication and object synchronization.

Atmosphere scenes are composed of multiple assets. These assets can come

from a variety of places. They can be created directly in Atmosphere, loaded from a

library of pre-built objects, imported from other 2D and 3D design applications, or

created at run-time using the Atmosphere Player's JavaScript API (Application

Programming Interface). Assets of an Atmosphere scene can contain geometric,

appearance, animation, and interaction information. Some of the assets that make up an

Atmosphere scene are:

I. 2D Text Created at run-time

II. 2D Sprites Loaded at run-time

III. Props 3D Objects which are created in an external design application and either

imported into a scene using Atmosphere or loaded at run-time

IV. Surface Objects 3D objects which are either created by importing other formats

into Atmosphere and converting to this native type or converted by Atmosphere,

then exported and loaded at run-time

V. Solid Objects 3D objects which are created in Atmosphere and either placed

into a scene by Atmosphere or exported and loaded at run-time

VI. Script Objects - Imported into a scene using Atmosphere This phase of the

Atmosphere workflow includes asset creation (Solid Objects), asset import

(Props, Surface Objects, Solid Objects, Script Objects), and asset import and

conversion (Surface Objects).

• Scene Modeling

In this phase of the workflow, combine scene assets geometrically, modify their

appearance, and specifY the appearance of the scene as a whole. This is the process of

building a spatially and visually coherent 3D environment or stage set. Geometric

combination includes positioning 3D assets and possibly scaling them in relationship to

each other. Appearance editing includes applying color and textures to 3D object

surfaces, and editing imported surface properties. Textures can include local or

29

streamed video content in popular formats. Finally, global illumination computation can

be used to make all the assets in the scene work together visually in a more realistic

way.

• Lighting and Light Maps

The Lighting Control palette allows user to light Atmosphere scenes in the Appearance

Editor's Player View. Atmosphere uses two different lighting methods -pre-computed

and dynamic lighting. Pre-computed lighting information is placed in Light Maps that

are saved along with the environment's geometry information. Dynamic lighting is

applied in real-time using scripts. Atmosphere offers sophisticated lighting called

Radiosity: you can learn more about lighting in .

3.5.5 Publishing

Publishing an environment is one of the final steps to make environment visible online.

The process of publishing will bundle all of the files that make up the world-geometry,

texture, light maps, sound, video and scripts-into a single, remarkably compact AER

file ready for a web page or PDF file. Once published, the entire world will be able to

see you creation, but they won't be able to open and "borrow" any of its components.

• Testing and Debugging Environments - It would be a pity, after all hard work,

if the Atmosphere environment didn't behave as planned. To make sure users

won't be disappointed; it's a good idea to test the environment before release it.

• Locating Errors - Experienced Atmosphere developers are familiar with some

of the bugs that are common to online 3-D worlds, and make a point of checking

for them. Atmosphere is perhaps the easiest-to-use 3-D package ever, but 3-D

worlds are complex places, and bugs have a way of sneaking up on the most

careful developer.

• Inactive Portals - If a Portal references a URL that cannot be located, then the

normally spinning red, green and blue squares will lay flat. Flat Portal panels

mean user should double check the URL listed for the Portal.

30

• Leaking Light - Jf create a room and the walls don't quite meet or align

correctly with the ceiling, then light from the sun or background may leak in

causing unwanted lighting in the scene. This is easy to check in the Player view.

If don't need it for anything else, tum off the Sun's light and shadows in the

Settings tab of the Lighting Control palette before lighting the environment.

• Missing Textures - If user imported Viewpoint Objects and converted them to

Surface Objects that now seem to be missing their textures, then it may have

forgotten to move the texture map saved as a PNG file to the server. The

Publishing process will move textures applied to Solid Objects, but textures

from converted Viewpoint Objects need to be moved by hand after being

converted.

• Scripting Errors - If the environment generates scripting errors, they will be

displayed in the Chat palette when the world is loaded in the Player. These

errors will give the line number of the script and an error message that are

helpful for debugging.

• Incorrectly positioned Entry Point - If the environment loads, but the floor

seems to be missing, the problem could be that Entry Point object is contained

within the Floor object. Another problem occurs when Entry Points are

positioned outside of the environment: when the scene loads in the Player with

Gravity enabled, the user falls away from the environment. In both cases, go into

the Scene Editor and reposition the Entry Point.

• Testing the Final Environment - It's a good idea to open project in different

browsers and on different versions of the operating system. Browser versions

can have bugs that cause pages and environments that work fine elsewhere to

have problems. This is particularly true if environment communicates with

HTML elements on a web page.

• Using World Settings - The World Settings dialog box should be set before

publish the environment. To do this, select File> World Settings (Alt+Ctrl+S).

This will open the World Settings dialog box. If wish to specify Adobe's

Collaboration Server, simply enter wac://atmosphere.adobe.com in the Server

URLfield.

31

• Publishing an Atmosphere Environment - Publishing completed environment

is as easy as selecting File > Publish > World (Ctrl+P). This will open a file

dialog box where user can save the file to the AER format. This published name

can be different from the name for the project file saved in the ATMO format.

The publishing process will also create an HTML file that is named the same as

the AER file that will load the Atmosphere environment in a web browser. Once

the file is saved, it will launch a web browser and show you the environment in

the Player. If user don't want a web browser to launch when publish, user can

disable this feature in the Preferences dialog box.

• Publishing a Single Model - In addition to publishing an entire environment,

user can also publish just a single model using the File > Publish >Model menu

command. Publishing a model will save it with its texture to the specified

directory using the ATMO file format. It will not launch a web browser.

• Publishing Preferences - The Preferences dialog offers an option to Launch

Web Browser on Publish. This option will cause a web browser to launch and

display file when publish an Atmosphere environment-this is handy for

debugging and previewing the environments. There is also an option to include a

Web Page URL. This URL will be loaded in the browser when the environment

is published. If the Web Page U~ field is left blank, then the HTML file

created by Atmosphere will be loaded in the web browser. However, if a Web

Page URL is included, then the specified URL will be loaded.

32

CHAPTER4

RESULT AND DISCUSSION

Generally, to begin a project, gathering information is among the important of

all. At this stage, analyst should know what the system wants and requires in order

meeting the clients need. Besides, the information about client itself should be

considered since they are the target user that will evaluate the project later on. Both of

them are important if we want to achieve the objective of the project.

Since from the beginning till now, the projects still in progress, especially in

developing stage. Up till now, the main design has been completed. From time to time

new features will be added to the project environments such as more collision detection,

sounds and others. At the meantime, the template of the website has been finished

developed and ready to be used as the final products (VR Walkthrough) finish.

4.1 Creating the VR Walkthrough

This is the main important part of the project. In this part, the project required of

designing a realistic and immersive products like the actual environment. The first stage

is to develop a floor plan in the Adobe Atmosphere before we began to map it. During

the drawing a lot of factors shall be considered such as the wide of the area, including

car porch, living room, kitchen, bedrooms and others. Below was the first stage of the

development stage.

33

Figure 4.0: Floor Plan

Basically, Atmosphere's three editors display scene contents in either wireframe views

or the Player View. The Solid Object Editor and the Scene Editor display objects using

wireframe views and the Appearance Editor Displays objects in the Player View.

• Wireframe

Wireframe views show the lines that make up edges of objects and are commonly

used in 3-D applications to create and modify the geometry of objects. In Atmosphere,

wireframe are used to create and edit the geometry of objects and to compose scenes by

applying geometric transformations to these objects. Wireframe views can be switched

to eight preset positions by right-clicking in a Solid Object or Scene Editor window and

selecting the Preset Position menu item. The Preset Positions are grouped in two sets in

the menu: Top (F5), Front (F6), Right (F7) and Perspective (F8) in one group, and

34

Bottom (Shift+F5), Back (Shift+F6), Left (Shift+F7) and Isometric (Shift+F8) in the

second. Note that the Shift key toggles the reverse perspective for the Top, Front and

Right positions. F5 shows Top view while Shift+F5 shows bottom view etc.Example as

below:

Solid Object Editor

The Solid Object Editor is used to create objects and displays them in windows that

can have eight positional types. You can switch to the Scene Editor from the Solid

Object Editor by toggling the Object> Edit Selected Object menu command (or you

can double-click on the background of the scene).

Figure 4.1: Solid Object Editor

35

Scene Editor

The Scene Editor is used to place scene objects and also has eight wireframe

positional presets. When the Scene Editor is active, the Scene Tools toolbar is

active. Notice that the background color changes when selecting Solid Object and

Scene Editor. By default the Solid Object Editor's background is a dark blue and the

Scene Editor's background is a dark gray. The same water fountain viewed in

perspective in the Scene Editor. The Scene Editor is used to work with scene

objects. You can switch between The Scene Editor and Solid Object Editor by

selecting a Solid Object and choosing the Object> Edit Selected Object menu

command (or by double clicking on the Solid Object in the Scene view). You can

switch from Solid Object Editor to Scene Editor by double-clicking in the

background away from any objects.

Figure 4.2: Scene Editor

36

• Player View

The Player View is a preview of the scene including lighting, and textures. The

Player View shows the scene as it will appear in the Atmosphere Player. Scripted

behaviors, run-time interaction and loaded models, sound, video, physics (with the

exception of Player navigation), and dynamic lighting will not appear in the Player

View. In order to test the full experience of an Atmosphere environment, the user must

publish the scene and view it in a copy of the Atmosphere Player, usually within a Web

browser. The Publish feature of Atmosphere will do this automatically for you. The

Player View position is independent from the wireframe views and is controlled by the

Navigate tool in the Tools.

Appearance Editor

The View > Player View (F4) menu command opens the Appearance Editor and

displays the current scene in Player View. You can navigate around the scene just as

you would in the Atmosphere Player by selecting the Navigate Tool in the Tools

toolbar. The Appearance Editor also allows you to apply and remove lighting, colors

and textures. The Appearance Editor's Player View lets you see objects as they will

appear in the Atmosphere Player. Figure 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 are taken

from the VR walkthrough. All the scenes are captured from different perspectives.

37

Figure 4.3: Upper View

Figure 4.4: Front View

38

Figure 4.5: Living Room

Figure 4.6: Master Bedroom

39

Figure 4.7: Kitchen

Figure 4.8: Other Room

40

At the meantime, a website has been developed in order to get ready to be used

when the VR walkthrough is finished developed. The prototype will be upload to the

website and this is the part of critical moment to see if the project success. The website

is functioning as the medium for user that came from various places since the location is

far from their current location. The website developed is a user friendly and easy to be

navigated. Users can get all the information they require such as the products offered

and latest residential being built through the site.

When users login to the website the first thing they will face will be the opening

montage (refer to the figure 4.9) below. Basically, the montage is showing what the

website is all about and its function to the society.

Figure 4.9: Montage

41

Figure 4.10 below shows the usage of the main page of the website. At this

page, the top frame and left frame will be permanently located. Only, the main panel

will verify depend what the term of the pages are. At the top frame, we have a tool bars

of homepage, products, price, link and others. While in the left panel show about the

latest news or discovery achieved by the company. For the main panel, there is a short

brief about Bandar Puteri Jaya (the resident's name) and some promotion towards it.

Besides, it also has a search engine for price preferences and houses base on users

requirements.

Bandar Pu_~eri Jaya

Stratew:Lc
Location.

Convenie.nt
Lifestyle

Cap\OJoothollom .. oflro<h '
loll•goln•"""'""
CommunllyUvlng

Rooldon~o!tholopllomlzH

.tylo ond ologonoo

Figure 4.10: Homepage

The purpose of this page (figure 4.11) is to describe the background of the

companies. Some of the features are like core values of the company, mission and

vision and most important is the corporate mission. Other features like the top and left

frame were the same like the main page. This is because we want to standardize all the

pages for more convenient and easier to be navigating by users.

42

OSK PROPERTIES SON.BHD l•ono otlhootJbodl•'l'
undo< OSK ~oldlng• Bothod. Looolod In tOo no~h of ponl...,lo<
Moloyolo{S;. Poloni.KodoO~ OSK Proporilu h.H boon oporotod
•lnoo o holl4ooodo ago. Buloolly. Its molnjob •••• Inn In In
~ulldlng tosldonllol• oround sungol Pot>nl ond pro., do Htvloos
lo olhoromoll oo.-..lruollon oompony. Ono of tho blggost p«>J«"
In Sungol PoUnllhol hlng p<omolod now Iss BondotPutoll
Joyo.whloh lo dosorlbod In lhls-bollo. Forlu!lhor lnfotmol\on.
uoot oon n...,go\o lo olhot pogootovlo"'\ho "'"'On! ptojooo
bo\ng \nvolvod.

Core Values-

Evon though tho oompony no• QKW<ll, and whllolho ooopo of Ito
ootvlooo n .. o~pondod olgnlfl<•mtly. ootloln lhlngowlll novor

ohongo ol OSK. TOo oomponl"ool,.n;lh llooln Ito ooto oorpor~o voluuwllloh howo olood lhot .. t oftlmo.
""""In tod~lul-poood. hlgMy oompot!IW. ond chango drWon buolnoss onvlronmonl.

.A> In ovol)thlng- do, ... put tho lnlotoob of our ollontoll..t. Thlo muno giving out bost. booouoo"'o
boll thollho\uuooo..-lo outouooHS. Thoy o.on obo.lhotofoto. o>q>ootlh do\ollod """'"""' otlontlon lhol
oddr..,...lndlvlduol noodo. whlol1 lo.,hotour ollonb hno oomo lo o>q>ool of"' and duo

Figure 4.11: About Us

Figure 4.12: Site Maps

43

Above will be the final figure of the website. This is the current status of the

project be done till now. Figure 4.12 shows the site map ofBandar Puteri Jaya at Sungai

Petani. In order to assist the customer, the page also provides maps that covering all the

access way either from Penang or the North-South Highway from the south. This page

will guide the users; if there require to know the exact location of their favorite

residential. Other than that, it will also provide information about the privileges and

facilities around the town. This will help enough the users to imagine how Bandar

Puteri Jaya looks alike.

The next figure will be the page of the product promoted. As informed in the

Figure 3.3 (storyboard) before, the main point is the content, and then followed by the

button for VR walkthrough at the bottom of the page. For this site, there main products

have been selected, which are Iris II and Casa. Below are the examples:

Ills Ills a hornolhlls"!'Ooiolly dod~no<!to ~1on~ -·
oomlo~ tho! you ond "'"' lomlly dujr.. 11 P<OVid,.
omplo """"" th.t olio- I"'" to •~gogo in oil "'"' ~
soonos: o boumut gordom soonofll, unpoiMod no~ of
ohlldto.,.olougMo<,tho otlon off<Oodom, tt.ojoylo
...., y.our do~"'d homo ond tho roftuhlng o"'bionoo
that ,...,,, .. you oil tho d6f' long. Exporlon"* lho
opoolo""'"'" of Go1don POIIc Uvlng ol Sungol Pdonl,
lfotholl..t""o'olllsl<lnd.

Figure 4.13: Iris (part 1)

44

Figure 4.14: Iris (part 11)

Basically, this project also explain the important having a manageable content

management in maintaining the virtual 3D web world. For this project, a prototype of a

virtual 3D web using Adobe Atmosphere platforms will be developed. This is to show

how having a manageable content can help the web administrator in maintaining the

virtual 3d world especially when editing the world object is required.

45

4.2 Data Analysis

After implementing the data collection methods, finally it has produced a result for this

research. Basically, the objectives of the data analysis are

• To stress the importance of getting a feel for goodness of data that we have

been collecting, then

• To understand and apply the different types of analyses and tests on the

variables and lastly

• To interpret the results

From the starting point; begun implementing the data collection methods since two

weeks ago by distributing the research questions form among students in UTP. Rather

than that, an experimental design has been done during the classes in order to support

the hypothesis regarding this research. After obtaining all the data required, finally it

comes out with a graphics representations that based on the research conducted.

From the Figure 4.14 below, it is proof that the major percentage 33% of the

students said that they agree with the entire questions given (refer to the appendix to

view the questions). It means that from the survey conducted, it proved that most of the

students are very comfortable with walkthrough on online. Followed by is 27% which

represents of strongly agreeing. As the second preferences, it has strength the result in

the agreeing the products offer by the developer. The third preferences are 20% which

is neither agree or disagree with the questions asked. In this section, the students is

rather confuse or not sure what they wanted in the products, which means some part of

the application is not meet their requirement or satisfaction.

The fourth preferences is about 13% which represent the disagree decision from

the student. The result of this surveys is actually based on how much question that been

selected by disagree decision. From the percentage, it shows that only several students

are not agreeing with the questions asked in the survey. The poorest preferred decision

in the survey is only 7% percent, which means this is the least decision made by the

46

students. From the percentage, it proved that only a one or two questions are not

strongly disagree by the students. For clearer visualization, see the graphics

representations of the survey conducted below.

Figure 4.15: Preferences of Decision

47

CHAPTERS

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

By incorporating VR walkthrough on the website, the houses could be presented in a

more elaborative way. With this, the developer is capable to introduce to the public

about the initial conceptual design through detailed design, planning and preparation,

until the construction completion. In this project, an immersive virtual environment will

be developing where it is interactive and considerably realistic. The VE is then

embedded into web pages whereby the customers can view it. At the end of the project,

I'll hope that the product will meet the mission of an exploration into the role of

multimedia, content and the customers who participates in the buying process.

5.2 Recommendation

For the recommendation part, a lot of enhancement should be done to the project.

Planning of the project is very important especially when conducting a short-time

project like this. As for me, the first recommendation will be time taken for developing

a project should be longer. Meaning, only this semester the final year project is

conducted in one (I) semester, others were in two (2) semesters. Since there will be

much time for next year student, it's recommended that this kind of project should be

added with a lot more objects and interactive features. This is because, the

immersiveness of the environment will depend on how real the feeling was, and else if

the project has all the support collusion detection and sounds in the environment, then it

will be much advantage.

48

In the other hand, it's recommend to plan the work in detail before attempted to

conduct any development. For this project, the respective properties developers have

been contacted in order to enter the site location and obtain all the information needed.

At this time, it's better to discuss what they need or required in the project. All this kind

information will help a lot in the developing stage. Work will be insufficient if there

isn't much information about the products they're promoting at. Nowadays, a lot of

software has been used in designing interactive multimedia development. As for

recommendation, a research need to be done first in order to find the appropriate

software before begin the development. Search on several potential software, then

compare the pros and cons to each other. To assist more, just ask the previous student or

lecturers who expert in this field.

Lastly, if the project still incomplete, the result of the project must be shown

even a portion of it. For this project, it's recommended to show the final stage of

integration between the published products with web browser. Although the product is

not fully furnished with script or others, the proof of integration between web-based and

virtual reality (VR) will be enough to convince the internal or external examiner.

49

REFERENCES

Mahoney, D.P.l994, Walking through Architectural Designs, Computer Graphics

World, v17 n6 p22 (7)

Gibson, G. 1996, Perceptual and Visualization, Information Science and System,

Morgan State University, USA

Wicken, J. and Baker, N. 1994, VR Component in Reality Aspects, Department of

Chemistry, Imperial College, London

Henriette S.M. Cramer, Evers, V., Zudilova, E.V. and Sloot, P.M.A. 2004, Context

Analysis To Support Development Of Virtual Reality Applications, Springer-Verlag

London Limited 2004

Hartley, D. and Churcher, N. 2004, Virtual Worlds for Web Site Visualization,

Software Visualization Group, Department of Computer Science, University of

Canterbury, Private Bag 4800, Christchurch, New Zealand

Persiani, F. 2001, Semi-Jmmersive Virtual Reality, DIEM, University of Bologna, Italy

Roseendaal, T. 2004, Blender, <http:// www.blender3d.org>

Mitchell, K. 1996, Virtual Reality, <http://www.VirtualReality.com>

Deutch, D. 2001, Universality, <http:// www.virtualreality@Everything2 com.html>

50

APPENDIXES

Appendix 1: QUESTIONAIRES

Using the scale below, state the extent to which you agree with each of the following

statements in measuring the efficiency of navigating the VR walkthrough on the

website.

Strongly Disagree Neither agree
Disagree Nor disagree

I 2 3

I. Save time and costs rather than visiting the show

houses at the site.

2. Place a booking on the website is more faster than

the usual way of buying houses.

3. Increase understanding about the house design

when navigating VR walkthrough.

4. The feeling of immersiveness is likely close to the

real environment.

5. Feel more interesting and joyable when navigate

the walkthrough.

6. It's more satisfy to navigate the walkthrough

rather than looking still picture or visit the promotion

centre.

Agree Strongly
agree

4 5

I 2 3 4

I 2 3 4

I 2 3 4

I 2 3 4

I 2 3 4

I 2 3 4

5

5

5

5

5

5

7. VR walkthrough is an interesting marketing

strategy in promoting product.

8. Website marketing is potential in term of global

and can insert many informative data as we can.

9. User gain more control in term of selecting the

house that they're interested before decide to buy.

10. By using online marketing, the construction

company can update their activities regularly.

1

1

1

1

2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

Appendix 2: KEYBOARD SHORTCUTS

Learning and using the keyboard shortcuts will help you become much more efficient

with Atmosphere. The following list includes all the keyboard shortcuts for Adobe

Atmosphere.

File > New Ctri+N
File > Open Ctri+O
File > Close Ctri+W
File > Save Ctri+S
File > Save As Shift+Ctri+S
File > World Settings Alt+Ctri+S
File > Publish > World Ctri+P
File > Extt Ctri+Q
Edit> Undo Ctri+Z
Edit> Redo Shift+Ctri+Z
Edit > Duplicate Ctri+D
Edit > Clear Delete
Edit > Clear Transform Shift+Ctrl+ T
Edit > Extrude Walls From Floor Shift+Ctri+E
Edit > Deselect All Shift+Ctri+A
Edit > Select All Ctri+A
Edit > Preferences Ctri+K
Object > Group Ctri+G
Object> Ungroup Shift+Ctri+G
Object> Hide > Selection Ctri+H
Object> Hide > All Alt+Ctri+H
Object> Show All Shift+Ctri+H
Object > Lock > Selection Ctri+L
Object> Lock > All Alt+Ctri+L
Object> Unlock All Shift+Ctri+L
Object> Edit Script Ctri+E
View > New View Shift+Ctri+N
View > Preview F4
View> Top FS
View > Front F6
View > Right F7
View > Perspective FS
Access Window menu Alt+W
Access Help menu Alt+H
Move to next menu Right arrow
Move to previous menu Left arrow
Move up menu list Up arrow
Move down menu list Down arrow
Execute selected menu command Enter
Move focus to next palette control Tab
Move focus to previous palette control Shift+ Tab
Simulate click on button with focus Enter
Move forward Up arrow
Move backward Down arrow
Turn to right Right arrow
Turn to left Left arrow
Move upward Shift+up arrow

View> Bottom Shift+FS
View > Back Shift+F6
View > Left Shift+F7
View > Isometric Shift+FS
View > Zoom In Ctrl++
View > Zoom Out Ctri+­
View > Fit All Ctri+O
View > Fit Selected Shift+Ctri+O
View > Grid Ctrl+'
View > Snap to Grid Shift+Ctrl+'
View > Guidelines Ctrl+;
View > Shadows Shift+Ctrl+;
View > Reset Views Shift+Ctri+R
Help> Atmosphere Help F1
Help > Javascript API Documentation F2
Help > Lighting Overview F3
Selection Tool V
Direct Selection Tool A
Rotate T col R
Scale ToolS
Orbit Camera Tool C
Hand Tool H or spacebar
Dynamic Zoom Tool D
Zoom Tool Z
Navigate Tool N
Remove Texture Tool E
Sample Texture Tool I
Apply Texture Tool K
Access File menu Alt+F
Access Edit menu Alt+E
Access Object menu Alt+O
Access View menu Alt+V

Move downward (with Gravity disabled) Shift+down arrow
Tilt view upward Ctrl+up arrow
Tilt view downward Ctrl+down arrow
Strafe right Shift+right arrow
Strafe left Shift+left arrow

Appendix 3: EXAMPLES OF JA V ASCRIPT API

Utility Functions
animators
chat.print ("There are (at most)"+ animators.size +"animators.");
context
indicates the context in which the script is being run:
worldContext The script is attached to a world that has been opened
locaiAvatarContext The script is attached to your avatar, running locally
remoteAvatarContext The script attached to your avatar, running on a remote client
if(context == locaiAvatarContext)
{
chat.print("This is a LOCAL avatar script.");
}
else if (context== RemoteAvatarContext)
{
chat.print("This is a REMOTE avatar script.");
}
else
{
chat.print("This is not an avatar script.");
}
locaiAvatarContext
the value of the 'context' global in an Avatar script which is running on the client that owns the Avatar.
remoteAvatarContext
the value of the 'context' global in an Avatar script which is running on another user's client.
worldContext
the value of the 'context' global in a world script.
version
Returns the version number of the application.
II Some features didn't exist before then ...
if (version < 1.2) { ... }
Global Methods
addAnimator(object)
foo =new Object;
foo.timestep =function(!, deltaT)
{
chat.print("This timestep is at"+ t +"seconds.");
chat.print("Last timestep was at" +(I- deltaT) +" seconds.");
}
addAnimator(foo);
removeAnimator(object)
Removes the given object from the list of animators. If the object is in the animators list more than once,
onlyone instance of it is removed.
removeAnimator(foo);
dump(object)
Displays the properties of the object in the chat output window.
dump(fog);
dir(object)
Displays a hierarchical list ofthe object's children in the chat output window.
obj = theStage.getSolidObject(O);
prim= obj.rootPrimitive;
dir(prim);
path(object)
Returns the absolute path of an object based on parent links.
prim = theStage.getPrimitive("somePrimitive");

primPath = path(prim);
chat.print(primPath);
PluginCommand(stringCommand, O, 0)
//automatically hide the Atmosphere Chat pane
document.all.MetaCtiO.PiuginCommand("eval(application.chatPaneVisible =false);", 0, 0);
//move a world object using a variable value from the webpage
document.all.MetaCtiO.PluginCommand("eval(box.position = Vector(box.position[O], "+
page Value+", box.position[2]));", 0, 0);
sendJS(stringCommand)

I I Open the URL in a browser window
sendJS("window.open ('http://www.adobe.com', ", ");");
II Pop up a JavaScript alert window
sendJS("alert(\"Hello World!~');");
II Update a webpage form checkbox with the Atmosphere current state
sendJS("document.forms['myForm '].chatPaneVis.checked =" + application.chatPaneVisible);
$.gc()
//delete and recreate a new array of box SceneGroups
function deleteBoxes()
{
//delete the first group of boxes
for (i=O; i<50; i++)
{
delete boxes[i].SceneGroup;
}
//force memory clean up
$.gc();
//recreate a new box array
for (i=O; i<50; i++)
{
boxes[i].SceneGroup = SceneGroup("./box.aer'');
}
}
Callbacks
timestep(t, deltaT)
box= SceneGrqup("./box.aer").add();
box.timestep = function(!, deltaT)
{
box.orientation = Rotation('y', t);
}
addAnimator(box);
onLoad()
box= SceneGroup("./box.aer").add();
box.onLoad = function(now)
{
chat.print("onLoad called at: "+now);
}
addAnimator(box);
application
II Print out properties associated with application
dump(application);
type
II prints "Application" to the chat console
chat. print(application.type);
controlKeyDown
A boolean fl ag that is true when the control key is down.

if (application.controlKeyDown) { ... }
shiftKeyDown
A boolean fl ag that is true when the shift key is down.
if(application.shiftKeyDown) { ... }
leftArrowKeyDown
A boolean flag that is true when the left-arrow key is down.
if (application.leftArrowKeyDown) { ... }
rightArrowKeyDown
A boolean flag that is true when the right-arrow key is down.
if(application.rightArrowKeyDown) { ... }
upArrow Key Down
A boolean fl ag that is true when the up-arrow key is down.
if (application.upArrowKeyDown) { ... }
downArrowKeyDown
A boolean fl ag that is true when the down-arrow key is down.
if(application.downArrowKeyDown) { ... }
mouseButtonDown
A boolean fl ag that is true when the left mouse button is down.
if(application.mouseButtonDown) { ... }
chatPaneVisible
Controls display of the chat pane in the Player window area.
application.chatPaneVisible ~false; //tum it off for maximum viewable area
splitPercentage
Specifies the percentage of the Player window area which should be occupied by the chat pane.
application.splitPercentage ~ 20; II set to 20 percent
250 APPENDIX E
toolbarVisible
Controls the display of the toolbar which appears at the lower edge of the Player area.
application.toolbarVisible ~false; //turn it off for maximum viewable area
Methods
getView(index)
Returns the View object selected by the value of index. Currently the only valid value for index is 0.
view ~ application.getView(O);
dump(view);
getViewCountO
Returns the number of views in the application. Currently will always return l.
num Views ~ application.getViewCount();
chat.print("There is/are"+ numViews +" view(s).");
View
The View module is an object that represents a 2-D rendered window that is being used to image a 3-D
world. The module properties include the size of the rendered area and the current mouse coordinates
relative to the view. The View module also contains an array of cameras that are being used to image the
world onto the 2-D view plane
type
The type of the application returned at "View".
if(foo.type ~'View') { ... }
image Width
The width of the current rendered view in pixels.
view~ application.getView(O);
chat.print("Current rendered image width~"+ view.imageWidth);
imageHeight
The height of the current rendered view in pixels.
view~ application.getView(O);
chat.print("Current rendered image height~"+ view.imageHeight);
mouseX
screen, with the value increasing as the cursor goes to the right.

view= application.getView(O);
stageModel.getSolidObject(O).rootPrimitive.onClick = function()
{
chat.print("You clicked down at X-coordinate: "+ view.mouseX);
}
mouseY
TheY coordinate of the pixel that the mouse cursor is over in the rendered view. 0 represents the top of
the
screen, with the value increasing as the cursor goes down the screen.
view = application.getView(O);
stageModel.getSolidObject(O).rootPrimitive.onClick =function()
{
chat.print("You clicked down at Y-coordinate: "+ view.mouseY);
}
mouselnitialized
This is a boolean property which will return 'true' when the mouse is over the render view area.
view = application.getView(O);
if(view.mouselnitialized) {/*ready to track mouse*/}
Methods
getCamera(index)
Function that returns a reference to the camera for given numerical index
camera= view.getCamera(O);
getCameraCount()
Function that returns the number of cameras associated with rendering this view. (Currently exactly one.)
numCameras = view.getCameraCount();
trigger Redisplay()
Forces the view to be fully redrawn during the next time step. This may be necessary when changing the
appearance of Viewpoint objects.
view = application.getView(O);
view.triggerRedisplay();
Button
Button(label)
creates a Button with the specified label (optional). The Button will not be added to the Control Panel
until you
call add().
takePicture = Button("Say Cheese");
Toggle(label)
creates a Toggle with the specifi ed label (optional). The Toggle will not be added to the Control Panel
until you
call add().
fogToggle = Toggle("Fog Enabled");
Properties
state
true if the button or toggle is down/checked, false if it is up/unchecked.
II !nit the toggle to ref! ect the current fog state.
fogToggle.state = fog.active;
enabled
If false, the button or toggle will not respond to clicks.
II Don't let the user change the fog right now.
fogToggle.enabled = false;
label
the button or toggle's current label
button.label ="Try Again!";
Methods
add()

adds the button or toggle to the control panel associated with the current world. The toggle itself is
returned as a
convenience.
fogToggle ~ Toggle("Fog Enabled").add(};
remove()
removes the button or toggle from whatever control panel it is currently in.
fogToggle.remove();
Callbacks
onC!ick(state)
is called when the button is pressed or when the toggle state changes (either due to the user clicking on it,
or iftoggle.state is changed by JavaScript code).
fogToggle.onClick ~ function(state)
{
fog.active = state;
}
Callbacks
on Change(value)
Is called when the slider's value changes (either because the user moves it or if slider.value is changed by
the
script).
fogNearSlider.onChange ~ function(value) { fog.near ~value; }
PrintDevice & Object Synchronization
The PrintDevice is an object which is used to direct text strings to a destination, such as the chat window.
Global Properties
chat
A PrintDevice representing the chat window in the Atmosphere Player.
chat.print("Hello World");
Properties
avatariD
A GUID for your avatar in the current world. This property will allow you to send messages to your
remote avatar more easily. Note that it is not possible to obtain the GUID of another avatar.
myCurrentA vatariD = avatariD;
isConnected
This property will return true once a connection with the server has been established.
if (isConnected) { ... }
worldiD
A GUID for the world you are currently visiting.
myCurrentWorldiD ~ worldiD;
Methods
input(a, b, c, ...)
print(a, b, c, ...)
Prints the specified strings or values. Note that this method is not available for your Remote Avatar
script.
status.print("All is well.");
createSharedObject(str objectName)

chat.onConnect ~ function()
{
chat.createSharedObject("myGlobe");
}
getSharedProperty(str objectName, str property Name)
This method is a local check of the property value; it does not communicate with the server
chat.getSharedProperty("myGlobe","isSpinning");
requestSharedProperty(str objectName, str propertyName)

setSbaredProperty(str objectName, str propertyName, str Value)

Use this method to set the shared property value. This method must be called only after 'objectName' and
'propertyName' are known to exist.
chat.setSharedProperty("myGlobe" ,"isSpinning", "true");
Callbacks
filterlnput(textlnput)
{
if (msg.match(/APING !/))
{
chat.print('PONG! ');
return true; //Don't send the "PING!" on to the server.
}
else
{
return false; //Otherwise, let the message pass.
}
}
filterOutput(textOutput)
chat.fi lterOutput ~ function(msg)
{
II If the message string contains "MyCoolWave", trigger my
II remote avatar to wave, and strip the "MyCoolWave" text
II out of the message before sending it to the chat
if (msg.match(/MyCoolW ave{))
{
do Wave(); II Run my wave
msg ~ msg.replace(/MyCoolWave/, "");
II Strip out "MyCoolWave"
}
return msg;
}
on Connect()
A callback which is processed when server connection is established. Call createSharedObject() in this
function
to establish the objects that will be synchronized. Note that timing limitations exit for script processing,
and
attempting to induce extensive server callbacks may fail.
chat.onConnect ~ function()
{
chat.createSharedObject("myGlobe");
}
onSharedPropertyChange(str objectName, str propertyName, str Value)
This is the main callback which occurs when any visitor updates a property value for any shared object.
chat.onSharedPropertyChange ~ function(objNarne, objProp, objV alue) { ... }
Math
Rotation
Global Methods
Rotation(various ...)
Creates a new Rotation(rotational transformation object). The following parameter styles are understood:
• Rotation() - The identity Rotation(no rotation at all)
• Rotation(' X', .7)- Rotate by .7 radians around X.
• Rotation('Y', .3)- Rotate by .3 radians around Y.
• Rotation(' Z', .9) - Rotate by .9 radians around Z.
• Rotation('XZY', .7, .9, .3)- Rotate around Y by .3, Z by .9, then X by .7
(Rotations are processed from right to left.)
• Rotation(vec, angle)- Rotate around Vector 'vee' by 'angle' radians.
• Rotation(rl, r2)- Rotate by Rotation r2, then by Rotation rl (think 'rl ofr2')

• Rotation(' X', .7, r2)- Rotate by Rotation r2, then around X by .7
• Rotation(rl.toString())- decoding from an encoded string.
• Rotation(rl, r2.toString(), 'X', .7, ...)-Any number of concatenations are allowed.
critter.orientation = Rotation('Y', critter.yRotation);
Properties
inverse
The inverse (opposite) of the rotation.
II Relative rotation from a to b
rel = Rotation(b, a.inverse);
type
Returns the type of object as a string ('Rotation').
tempObject = Rotation('X', .7);
chat.print(tempObject.type); //Returns 'Rotation'
Methods
blend(b, fraction)
Returns a rotation that is the interpolation between a and b according to the specified fraction (0 .. 1)
II 10% of the way from a to b
c = a.blend(b, .I);
map(vee)
Returns a Vector that results from rotating 'vee' by this Rotation
forward= orientation.map(Vector(O.O, 0.0, -1.0));
mapAxis(axis)
Returns the specified axis(O, I, 2 ~ x, y, z) rotated by this Rotation
forward= orientation.mapAxis(2).negate();
power(pow)
Raises the Rotation to the specifi ed power
II b rotates 2.5 times as far as a.
b = a.power(2.5);
toString()
box.rotation = Rotation(newRotation.toString())
newRotation = currentRotation.toString()
Transform
A Transform is a geometric transformation composed of an arbitrary rotation followed by a translation.
Global Methods
Transform(various .••)
Creates a new Transform(spatial transformation object). The following parameter styles are understood:
• Transform()- The identity transformation (no rotation or translation)
• Transform(translateVec)- Translate by the given Vector
260 APPENDIX E
• Transform(rotor) - Rotate by the given Rotation
• Transform(translateVec, rotor) - a translation of a rotation
• Transform(tfml, tfrn2)- tfrnl oftfrn2 (apply tfrn2, then tfrnl)
• Transform(trans!, tfm2, rot3, tfrn4, ...)-Any number of concatenations are allowed.
In this manner, multiple iterations of transforms are not in absolute coordinates, but are added relatively
• Transform(tl.toString())- decoding from an encoded string.
critter. transform = Transform(critterS pot, Rotation('Y', critter.yRotation));
Properties
inverse
The inverse (opposite) of the transform.
II Relative transformation from a to b
rel = Transform(b, a.inverse);
rotation
The rotational component (Rotation) of the Transform.
II Normals only rotate.
newNorm = tfm.rotation.map(oldNorm);
translation

The translational component (Vector) of the Transform.
shadowPosition = tfm.translation.change(l.O, 0.0);
Methods
blend(Transform b, 11 oat fraction)
Returns a Transform interpolated the specified fraction (0.0 to 1.0) from a to b.
II !0% of the way from a to b
c = a.blend(b, 0.1);
map(vec)
Returns Vector 'vee' rotated and translated by this Transform.
forward= orientation.map(Vector(O.O, 0.0, -1.0));
power(pow)
Raises the Transform to the specifi ed power.
II b transforms 2.5 times as far as a.
b = a.power(2.5);
to String()
approach:
box. transform = Transform(newTransform.toString())
newTransform = currentTransform.toString()
Vector
Global Methods
Vector(various ...)
Creates a new Vector (direction or position object). The following parameter styles are understood:
• Vector()- The zero vector <0.0, 0.0, 0.0>
• Vector(x, y, z) - The vector <x,y,z>
• Vector([x, y, z])- The vector <x, y, z>
• Vector(v.toString())- decoding from a string-encoded Vector
Also note that anywhere a Vector is accepted as a parameter, an Array of three numbers, [x, y, z] or [r, g,
b],
will generally also be understood. (The exception is that you cannot dispatch Vector methods this way, so

Vector(!, 2, 3).add([4, 5, 6]);" is valid, but "v =[I, 2, 3].add([4, 5, 6]);" is not.)
critter.position = Vector(5.0, fl oorHeight, 17 .0);
Properties
[n)
[0 .. 2) return the x, y, z orr, g, b components (read only)
verticalSpeed =velocity[!];
fogBlue = fog.color[2];
x, y, z
Returns the x, y, or z component (read only)
verticalS peed= velocity.y;
r, g, b
Returns the r, g, orb component (read only)
fogRed = fog.color.r;
length
The length of the vector.
262 APPENDIX E
if (a.subtract(b).length < minDistance) { ... }
negated
The negative (opposite direction) of the vector.
b = a.negated;
normalized
The normalized (length== I) version of the vector.
b = a.normalized;
Methods
add(B)
Returns the sum of this Vector with Vector B

position= position.add(moveVec);
subtract(V ector)
Returns this Vector minus Vector B
hereTo There= there.subtract(here);
change(index, value)
Returns a new vector with the specifi ed element (0 <index <= 2) changed. It is not possible to modify a
component directly except using this method.
II Set y = fl oorHeight.
shadowPlace = position.change(l, fl oorHeight);
scale(s)
Returns a scaled vector, such that a.scale(s).length() == a.length()*s
moveVec = veloci(Y.scale(deltaTime);
same(B)
Returns true if this Vector is equal to Vector B
if(!newPosition.same(oldPosition)) { ... }
dot(B)
Returns the dot product of this Vector with Vector B. (The dot product of vectors A and B is by defi
nition the
cosine of the angle between A and B, times the lengths of both A and B.)
aim Quality=
aim V ec.dot(targetPosition.subtract(myPosition).normalize())
cross(B)
up Vee = rightVec.cross(forwardVec);
addScaled(B, scale)
Returns the sum of this Vector with a scaled version of Vector B.
II Same as c = a.add(b.scale(.3)); but faster
c = a.addScaled(b, .3);
blend(B, fraction)
Returns a Vector interpolated the specified fraction from this Vector to Vector B.
II 50% blend gives average.
midPoint= minPoint.blend(maxPoint, .5);
approach:
temp Vector= Vector(newVector.toString())
new Vector= currentVector.toString()
Effects
Fog
Global Properties
fog
This is the global fog effect for the current world.
II Display current fog settings
dump(fog);
Properties
active
Specifi es whether the fog is active.
264 APPENDIX E
fog.active = true;
color
The color Vector of the fog.
II Bluish fog
fog.color= [.8, .8, 1];
dropOff
The fog drop-off style (O=hard; 1 =linear; 2=1/Z-squared).
II Linear style
fog.dropOff= 1;
far
The distance at which objects are completely obscured by the fog.

fog.far ~ 100;
near
The distance at which the fog starts.
fog.near ~ 10;
Glare
Global Properties
glareEffect
Represents the glare SceneGroup for the camera.
II Display current glare settings
dump(glare);
Properties
active
Specifies whether the glare effect is active (default is false)
glareEffect.active ~true;
brightness
glareEffect.brightness ~ 1.0;
color
An array ofthree f1 oats representing the scales of the color of the glare in RGB values. glareEffect.color
~ [0.5, 0.7, 1.0];
nonlinearity
glareEffect.nonlinearity ~ 0.5;
radius
glareEffect.radius ~ 16;
Sound
Global Methods
Sound(uri)
Creates a new Sound in the current world from the specifi ed URL (but does not start playing the sound).
windSound ~ Sound("http:llmyDomain.com/myHomePagelwind.wav");
Properties
active
Is the sound playing?
II Pause the wind
windSound.active = false;
far
The distance beyond which the sound will not be audible.
windSound.far ~50.;
near
The distance within which the sound will always be at maximum value. For each additional multiple of
minDistance, the sound loudness will decrease by half.
windSound.near ~ 2.5;
position
The absolute position vector of the sound in the world or null if the sound is ambient. When switching
from
ambient to positional or vice versa, you must call play() to restart the sound in the new mode.
II Wind sounds coming from 'outside'
windSound.position ~ window.position;
repeats
How many times should the sound repeats (0 ~ forever). Cannot be changed while the sound is playing.
II knockSound.play() plays knock knock knock!
knockSound.repeat ~ 3;
URL
The URL from which the sound was created (translated to an absolute URL).
chat.print("Now playing:"+ windSound.URL);
volume
The (maximum) volume of the sound, from 0 to I.
windSound.volume ~ .5;

Methods
pia yO
Plays the sound from the begining.
windSound.play();
stopO
Stops the sound from playing.
ADOBE ATMOSPHERE 267
User Guide
windSound.stop();
Event Handlers
CollisionEventHandler
A CollisionEventHandler is ao object that cao be used to specify what happens when two or more
physical objects collide with each other.
Global Methods
CollisionEventHandlerO
Creates a new CollisionEventHaodler (which possesses on Collision and filtering methods).
boxEvents ~ CollisionEventHaodler();
Local Callbacks
onCollision(PhysicalModelA, PhysicalModeiB, normaiRelative Velocity)
boxEvents.onCollision ~ function(physicalModelA, physicalModelB, norma!RelativeVelocity)
{
if((physicalModelA.getParent() ~~player) II
(physicalModelB.getParent() ~~player))
{
chat.print("This collision involved the Player!");
}
}
Local Methods
setFilterNoPhysicalModeiO
Specifi es that the collision event handler should respond to all collisions between all physical models
(that is, do
not limit the event handler to aoy specific SceneGroups).
268 APPENDIX E
boxEvents.setFilterNoPhysicalModel();
setFilterPhysicaiModei(PhysicaiModel)
Specifi es that the collision event handler should respond to all collisions for a single physical model.
boxEvents.setFilterPhysicalModel(boxPhysicalModel);
setFilterPhysicaiModels(PhysicaiModel, PhysicaiModel)
Specifies that the collision event handler should be limited to collisions between two physical models.
boxEvents.setFilterPhysicalModel(boxPhysicalModel, conePhysicalModel);
KeyEventHandler
Global Methods
KeyEventHandler()
II create a new handler
myEventHandler ~ KeyEventHandler();
ADOBE ATMOSPHERE 269
User Guide
Local Callbacks
onEvent(keyEvent)
A method which defines what will happen when a key event occurs. A 'KeyEvent' object is returned
which
possesses the key code for the key pressed, as well as several other properties.
myEventHandler ~ KeyEventHandler();
myEventHandler.setFilterOnKeyDown();
myEventHandler .onEvent ~ function(keyEvent)
{

chat.print("Key Code~"+ keyEvent.keyCode);
}
The additional 'keyEvent' properties are as follows:
keyCode II the numeric value ofthe key pressed (see table below)
KeyDown II true for key down event, and false for key up
metaKey!Down II true if 'Shift' key was also held down during key event
metaKey2Down II true if 'Ctrl' key was also held down during key event
metaKey3Down II (currently not used)
metaKey4Down II (currently not used)
See the description for KeyEvent below for more details.
Local Methods
By default, a KeyEventHandler responds to all key events. Filtering Methods are therefore provided
below to
limit the scope of key events and allow customized responses.
setFilterEventQ
Causes the handler to respond to all keyboard events.
myEventHandler ~ KeyEventHandler();
myEventHandler.setFilterEvent();
myEventHandler.onEvent ~ function(keyEvent)
{
chat.print("Key Code~"+ keyEvent.keyCode);
}
setFilterOnKeyDown()
Causes the handler to respond to all key down events only.
myEventHandler ~ KeyEventHandler();
myEventHandler.setFilterOnKeyDown();
myEventHandler.onEvent ~ function(keyEvent)
{
chat.print("Key down key code ~ " + keyEvent.keyCode);
}
setFilterOnKeyUp()
myEventHandler ~ KeyEventHandler();
myEventHandler.setFilterOnKeyUp();
myEventHandler.onEvent ~ function(keyEvent)
{
chat.print("Key up key code ~ " + keyEvent.keyCode);
}
Key Event
Properties
keycode
the numeric value of the key pressed (see table below)
keydown
true for key down event, and false for key up
metaKeylDown
true if 'SHIFT' key was also held down during key event
metaKey2Down
true if 'CTRL' key was also held down during key event
metaKey3Down
(currently not used)
metaKey4Down
(currently not used)
MouseEventHandler
Global Methods
MouseEventHandlerQ
Creates a new MouseEventHandler which may be set to process all mouse events(default), or be limited
to a specifi c primitive, viewpoint object, or physical model.

II specify that the main world geometry, or 'stage' will receive click events
myEventHandler = MouseEventHandler();
myEventHandler.setFilterOnClick(stageModel.getSolidObject(O));
myEventHandler.onEvent = function(mouseEvent, what)
{
chat.print("Object = " +what);
}
Local Callbacks
onEvent(mouseEvent, what)
A method which defines what will happen when a mouse event occurs. A 'mouseEvent' object is
returned which
possesses numerous properties, and the object under the mouse is returned as the second argument 'what'.
myEventHandler = MouseEventHandler();
myEventHandler.setFilterOnClick(stageModel.getSolidObject(O));
ADOBE ATMOSPHERE 273
User Guide
myEventHandler.onEvent = function(mouseEvent, what)
{
chat.print("Object = " +what);
dump(mouseEvent);
}
If the above onEvent function is called as shown, a 'dump' of the mouseEvent will return the following
properties, which can in turn be used to control other logic for the event:
buttonLeftDown II true or false state of the left mouse button
buttonMiddleDown II true or false state of the middle mouse button
buttonRightDown II (currently always false)
clickDown II true for mouse down event, and false for mouse up
clickEvent II acts as a 'type' identifier, and returns true for all click events
clickUp II true for mouse up event, and false for mouse down
metaKey!Down II true if'Shift' key was also held down during click event
metaKey2Down II true if'Ctrl' key was also held down during click event
metaKey3Down II (currently not used)
metaKey4Down II (currently not used)
x II the x-axis pixel position of the mouse during the click event
y II they-axis pixel position of the mouse during the click event
Local Methods
setFilterOnClick(object)
Causes the specified object (Primitive, Viewpoint Object, or SceneGroup) to return an 'OnClick' mouse
event.
chair= theStage.getPrimitive("chair");
myEventHandler.setFilterOnClick(chair);
274 APPENDIX E
setFilterOnMouseOver(object)
Causes the specified object (Primitive, Viewpoint Object, or SceneGroup) to return an 'OnMouseOver'
mouse
event.
chair= theStage.getPrimitive("chair");
myEventHandler.setFilterOnMouseOver(chair);
setFilterOnMouseMove(object)
Causes the specifi ed object (Primitive, Viewpoint Object, or SceneGroup) to return an 'OnMouseMove'
mouse
event.
chair= theStage.getPrimitive("chair");
myEventHandler .setFilterOnMouseMove(chair);
setFilterOnMouseOut(object)
chair= theStage.getPrimitive("chair");

myEventHandler.setFilterOnMouseOut(chair);
setFilterEventQ
Specifi es that no events should be fi ltered, and all user mouse events (click, over, out, move) should
return the
event object inclusive with all it's properties. Note that using this method will cause the second argument
of the
onEvent callback to return 'undefined'.
myEventHandler.setFilterEvent();
Copyright ©2002 Adobe Systems Incorporated. All rights reserved.
MouseEvent
Local Callbacks
onEvent(mouseEvent, what)
myEventHandler = MouseEventHandler();
myEventHandler.setFilterOnClick(stageModel);
myEventHandler.onEvent = function(mouseEvent, what)
{
chat.print("Object ="+what);
dump(mouseEvent);
}
If the above onEvent function is called as shown, a 'dump' of the mouseEvent will return the following
properties, which can in tum be used to control other logic for the event:
buttonLeftDown II true or false state of the left mouse button
buttonMiddleDown II true or false state of the middle mouse button
buttonRightDown II (currently always false)
clickDown II true for mouse down event, and false for mouse up
clickEvent II acts as a 'type' identifier, and returns true for all click events
click Up II true for mouse up event, and false for mouse down
metaKey!Down II true if 'Shift' key was also held down during click event
metaKey2Down II true if 'Ctrl' key was also held down during click event
metaKey3Down II (currently not used)
metaKey4Down II (currently not used)
x II the x-axis pixel position of the mouse during the click event
y II they-axis pixel position of the mouse during the click event
OverlapEventHandler
Global Methods
OverlapEventHandlerO
Creates a new OverlapEventHandler (which possesses onEnter, onLeave, and fi ltering methods).
276 APPENDIX E
buildingOverlap = OverlapEventHandler();
Local Callbacks
onEnter(PhysicalModelA, PhysicalModelB)
buildingOverlap.onEnter = function(physicalModelA, physicalModeiB)
{
if(physicalModelA.getParent().type =="Player" II
physicalModeiB.getParent().type == "Player")
{
chat.print("The Player has entered the building.");
}
}
onLeave(PhysicalModeiA, PhysicalModelB)
buildingOverlap.onLeave = function(physicalModelA, physicalModeiB)
{
if(physicalModelA.getParent().type =="Player" II
physicalModeiB.getParent().type == "Player")
{
chat.print("The Player has left the building.");

}
}
Local Methods
setFilterNoPhysicalModeiO
Specifi es that the overlap event handler should respond to all overlaps between all physical models (that
is, do
not limit the event handler to any specific SceneGroups).
buildingOverlap.setFilterNoPhysicaiModel();
setFilterPhysicaiModei(PhysicalModel)
Specifi es that the overlap event handler should respond to all overlaps for a single physical model.
buildingOverlap.setFilterPhysicalModel(boxPhysicaiModel);
setFilterPhysicaiModels(PhysicaiModel, PhysicaiModel)
Specifies that the overlap event handler should be limited to overlaps between two physical models.
buildingOverlap.setFilterPhysicalModel(boxPhysicalModel, conePhysicalModel);
ADOBE ATMOSPlffiRE 277
User Guide
Copyright ©2002 Adobe Systems Incorporated. All rights reserved.
Scene Objects
Actor
Global Properties
theActor
The global object representing the person navigating.
dump(theActor); II Display the user's properties
Properties
type
The object's type. Returns "theActor".
if(foo.type ~~ 'theActor') { ... }
avatarURL
278 APPENDIX E
chat.print("Current avatar~"+ theActor.avatarURL);
show Avatar
A fl ag that determines whether the avatar is rendered.
II Hide the avatar
theActor.showAvatar ~false;
position
the position as a Vector object
theActor.position ~ Vector(lO, 5, -25);
transform
the Transform representing the combined position and orientation.
theActor. transform ~ entryPoint.transform;
worldSpacePosition
The worldSpacePosition of the object as a Vector.
II set the worldSpacePosition of the object to a known anchor
myObject.worldSpacePosition ~ myAnchor3.worldSpacePosition;
worldSpaceTransform
The worldSpaceTransform is the combined worldSpacePosition and worldSpaceOrientation of the object.
II set the worldSpaceTransform of the object to a known anchor
myObj eel. worldSpaceTransform ~ my Anchor3. worldS pace Transform;
facing
a Vector pointing the direction the Actor is facing
function moveActorForward(direction, distance)
{
actor.position ~ theActor.position.addScaled(actor.facing, dist);
}
worldSpaceFacing
a Vector pointing the direction the Actor is facing, in world space coordinates.

function moveActorForward(direction, distance)
{
actor.position ~ theActor.position.addScaled(actor.worldSpaceFacing, dist);
}
bodyYaw
The rotation angle about theY axis in radians.
angle~ theActor.bodyYaw;
headPitch
The pitch or tilt ofthe head relative to the body in radians.
ADOBE ATMOSPHERE 279
User Guide
pitchAngle ~ theActor.headPitch;
velocity
the Actor's velocity Vector in the World coordinate frame
theActor.velocity ~ Vector(O, 10, 10); II Jump up and forward
acceleration
An acceleration vector which is applied to the Actor.
II Apply an acceleration in the X direction (continuous).
theActor.acceleration ~ Vector(20, 0, 0);
worldSpaceVelocity
the Actor's velocity Vector in the World coordinate frame.
theActor.worldSpaceVelocity ~ Vector(O, 10, 10); II Jump up and forward
worldSpaceAcceleration
An acceleration vector which is applied to the Actor (in world space coordinates).
II Apply an acceleration in the X direction (continuous).
theActor.worldSpaceAcceleration ~ Vector(20, 0, 0);
bodySpace Velocity
A vector that represents the velocity of the actor relative to the world.
if (theActor.bodySpaceVelocity.length > 20)
{
chat.print("The actor is moving fast.");
}
targetVelocity
A velocity that the actor tries to match when at rest. This may be set to non-zero when trying to track a
moving
object.
theActor.targetVelocity ~ Vector(O.O, 0.0, 1.0);
targetWorldSpace Velocity
A velocity that the actor tries to match when at rest, in world space coordinates. This may be set to non­
zero
when trying to track a moving object.
theActor.targetWorldSpaceVelocity ~ Vector(O.O, 0.0, 1.0);
forwardSpeed
the Actor's forward velocity, facing the Actor's current direction for this rendered frame
theActor.forwardSpeed +~ 20; II Jump straight forward
lateraiSpeed
the Actor's lateral velocity, facing the Actor's current direction for this rendered frame
theActor.JateralSpeed +~ 20; II Jump straight to the right
280 APPENDIX E
verticalS peed
the Actor's vertical velocity, facing the Actor's current direction for this rendered frame
theActor.verticalSpeed +~ 20; II Jump straight up
enable V erticalThrusters
If enable Vertical Thrusters is set to true, then holding down the shift key while using the up-arrow key
reverses the direction of gravity. If gravity is off then the up and down arrows affect the actor's vertical
velocity.

theActor.enableVerticalThrusters =true;
gravity
II Reduce gravity for this particular world.
theActor.gravity = 16;
forcedCollideSetting
If ignoreCollidePreference is set to true, the value of forcedCollideSetting determines whether collisions
are
enabled
II To force collisions to be on,
II independent of the control panel setting: theActor.ignoreCollidePreference =true;
theActor.forcedCollideSetting =true;
II To force collisions to be off
II independent of the control panel setting:
theActor.ignoreCollidePreference =true;
theActor.forcedCollideSetting = false;
ignoreCollidePreference
If set true, this overrides the user's collide preference and enables collisions based on the value of
forcedCollideSetting.
II To use the collide preference from the control panel:
theActor.ignoreCollidePreference = false;
II To force collisions to be on,
II independent of the control panel setting:
theActor.ignoreCollidePreference =true;
theActor.forcedCollideSetting =true;
II To force collisions to be off,
II independent of the control panel setting:
theActor.ignoreCollidePreference =true;
theActor.forcedCollideSetting = false;
forcedGravitySetting
If ignoreGravityPreference is set to true, the value of forcedGravitySetting determines whether gravity is
enabled
II To force gravity to be on,
II independent of the control panel setting:
theActor.ignoreGravityPreference =true;
theActor.forcedGravitySetting =true;
II To force gravity to be off,
II independent of the control panel setting:
theActor.ignoreGravityPreference =true;
theActor.forcedGravitySetting =false;
ignoreGravityPreference
II To use the gravity preference from the control panel:
theActor.ignoreGravityPreference = false;
II To force gravity to be on, independent of the control panel setting:
theActor.ignoreGravityPreference =true;
theActor.forcedGravitySetting = true;
II To force gravity to be off, independent of the control panel setting:
theActor.ignoreGravityPreference =true;
theActor.forcedGravitySetting = false;
keyLeftRightMovesEnabled
A flag that determines whether to use the built in navigation scheme for shift+left-arrow or shift right­
arrow.
II We wish to prevent such motion
theActor.keyLeftRightMovesEnabled =false;
keyUpDownMovesEnabled
A flag that determines whether to use the built in navigation scheme for shift+up-arrow or shift down­
arrow.

II We wish to prevent such motion
theActor.keyUpDownMovesEnabled = false;
keyForwardBackwardMovesEnabled
A fl ag that determines whether to use the built in navigation scheme for up-arrow or down-arrow.
II We wish to prevent such motion
theActor.keyUpForwardBackwardMovesEnabled =false;
keyLeftRightTurnsEnabled
A flag that determines whether to use the built in navigation scheme for left-arrow or right-arrow.
II We wish to prevent such motion
theActor.keyLeftRightTurnsEnabled = false;
keyUpDownTurnsEnabled
A fl ag that determines whether to use the built in navigation scheme for ctrl+up-arrow or ctrl down­
arrow.
II We wish to prevent such motion
theActor.keyUpDownTumsEnabled = false;
mouseLeftRightMovesEnabled
A fl ag that determines whether to use the built in navigation scheme for shift+ left-arrow or shift right­
arrow.
I I We wish to prevent such motion
theActor.mouseLeftRightMovesEnabled = false;
mouseUpDownMovesEnabled
A fl ag that determines whether to use the built in navigation scheme for shift+mouse-up or shift mouse­
down.
II We wish to prevent such motion
theActor.mouseUpDownMovesEnabled = false;
mouseForwardBackwardMovesEnabled
A fl ag that determines whether to use the built in navigation scheme for mouse-up or mouse-down.
II We wish to prevent such motion
theActor.mouseForwardBackwardMovesEnabled = false;
mouseLeftRightTurnsEnabled
A fl ag that determines whether to use the built in navigation scheme for mouse-left or mouse-right or ctrl
mouse-left or ctrl mouse-right.
II We wish to prevent such motion
theActor.mouseLeftRightTumsEnabled = false;
mouseUpDownTurnsEnabled
A fl ag that determines whether to use the built in navigation scheme for ctrl+ mouse-up or ctrl+mouse­
down.
II We wish to prevent such motion
theActor.mouseUpDownTumsEnabled =false;
keyMovelnsteadOfTurn
A flag that determines whether to move instead oftum the theActor when the left-arrow or right-arrow is
pressed. Default is false.
II Make the actor strafe
theActor.keyMovelnsteadOfTurn =true;
Methods
dist(position)
Returns the distance between the Actor and the provided position Vector.
if (theActor.dist(frog.position) < frog.fearRadius)
{
ADOBE ATMOSPHERE 283
User Guide
frog.jumpA wayFrom(theActor .position);
}
moveTo(Vector position)
target= stageModel.gefPrimitive("Target");
theActor.moveTo(target.position);

transformTo(transform)
aochor ~ stageModel.getPrimitive("aochor");
theActor.transformTo(aochor.transform);
alignHeadAndBodyTo(Rotation)
Given the Rotation, aligns the body subject to the constraint that it can only rotate around the y-axis, aod
aligns
the head subject to the constraint that it cao only rotate around a horizontal axis relative to the body.
II Given a subject, align the actor to look at it
deltaPos ~ theActor.position.subtract(subject.position);
actorRange ~ Math.sqrt(deltaPos.x*deltaPos.x +
deltaPos.y*deltaPos.y +
deltaPos.z*deltaPos.z);
actorRangeXZ ~ Math.sqrt(deltaPos.x*deltaPos.x +
deltaPos.z*deltaPos.z);
actorPitch ~ Math.atao2(-deltaPos.y, actorRangeXZ);
actor Yaw~ Math.atao2(deltaPos.x, deltaPos.z);
targetOrientation = Rotation('YX', actor Yaw, actorPitch);
theActor.alignHeadAndBodyTo(targetOrientation);
getBodyOrientationO
Returns the Transform representing the actor's body orientation. Note that the actor's body does not tilt
upaod
down, only rotates around the world's y-axis.
II Calculate the actor's body's yaw
bodyOrientation ~ theActor.getBodyOrientation().map(V ector(O,O, I));
body Yaw ~ Math.atao2(body0rientation.z, bodyOrientation.x);
getHeadOrientationO
The Transform representing the orientation of the actor's head.
284 APPENDIX E
II Places the camera six feet behind the actor
offset~ Vector(O.O, 0.0, 6.0);
bodyRelativeOffset ~ theActor .getHeadOrientation() .map(offset);
camera.position ~ theActor.position.add(bodyRelativeOffset);
camera.orientation ~ theActor.getHeadOrientation();
setPosition(V ector or x,y,z)
II Place the actor at the exact location specifi ed.
target~ Vector(IO.O, 0.0, 6.0);
theActor.setPosition(target);
II or
theActor.setPosition(target.x, target.y, target.z);
getPositionAvoidingCollisions(Vector or x,y,z)
II Find a location as close to specifi ed target as possible,
II while avoiding collisions with the fl oor, etc.
target= anchor7.position;
theActor.getPositionAvoidingCollisions(target);
II or
theActor.getPositionAvoidingCollisions(target.x, target.y, target.z);
setPositionAvoidingCollisions(V ector or x,y ,z)
II Places the actor as close to specifi ed target as possible,
II while avoiding collisions with the fl oor etc.
target~ Vector(IO.O, 0.0, 6.0);
theActor.setPositionA voidingCollisions(target);
II or
theActor.setPositionAvoidingCollisions(target.x, target.y, target.z);
getSolidObjectCountO
Returns the solid object count for the Actor's SceneGroup currently in use. This is useful for modifYing
avatar

properties, such as dynamic lighting.
//get the actor SceneGroup geometry, and enable dynamic lighting
for (i = 0; i < theActor.getSolidObjectCount(); i++)
ADOBE ATMOSPHERE 285
User Guide
{
theActor.getSolidObject(i).useDynamicLighting =true;
}
getSolidObject(index)
Returns the SolidObject at the given index that is contained by the actor's SceneGroup.
//print actor height compared to the world
currentHeight = (theActor.getSolidObject(O).position[l]
- stageModel.getSolidObject(O).position[l]);
chat.print("Your avatar is currently this high: " + currentHeight);
getViewpointObjectCount()
Returns the Viewpoint object count for the Actor's SceneGroup currently in use. This is useful for
modifying
avatar properties, such as dynamic lighting.
for (i = 0; i < theActor.getViewpointObjectCount(); i++)
{
theActor.getViewpointObject(i).useDynamicLighting =true;
theActor.getViewpointObject(i).addDynamicHighlights =true;
}
getViewpointObject(index)
type
The object's type; returns "Anchor".
if(myObject.type =='Anchor') { ... }
name
Returns the name of the object as assigned in the Application.
if(myObject.name == 'myCoolObject') { ... }
loaded
Returns true once the object has finished loading.
286 APPENDIX E
if(myObject.loaded) { ... }
parent
A reference to the parent SceneGroup containing the object
myParent = myObject.parent;
position
The position of the object as a Vector.
II set the position of the object to a known anchor
myObject.position = myAnchor3.position;
orientation
The rotational orientation of the object (as a Rotation).
II set the orientation of the object to a known anchor
myObject.orientation = myAnchor3.orientation;
transform
The Transform is the combined position and orientation of the object.
II set the transform of the object to a known anchor
myObject.transform = myAnchor3.transform;
worldSpacePosition
The worldSpacePosition of the object as a Vector.
II set the worldSpacePosition of the object to a known anchor
myObject.worldSpacePosition = myAnchor3.worldSpacePosition;
worldSpaceOrientation
The worldSpaceOrientation of the object (as a Rotation).
II set the worldSpaceOrientation of the object to a known anchor

myObject.worldSpaceOrientation ~ myAnchor3.worldSpaceOrientation;
worldSpaceTransform
The worldSpaceTransform is the combined worldSpacePosition and worldSpaceOrientation of the object.
II set the worldSpaceTransform of the object to a known anchor
myObject.worldSpaceTransform ~ myAnchor3.worldSpaceTransform;

