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Abstrak

Pada kebiasaannya, sistem penyambungan automatik beroperasi bagi kerosakan kekal,

separa kekal ataupun kerosakan sementara terhadap talian penghantaran tanpa

membezakan mana-mana kerosakan selepas membenarkan beberapa lengahan masa

yang telah dianggarkan. Penyambungan terhadap talian tanpa kerosakan yang

diketahui bukan sahaja menyebabkan ketidakstabilan dan ketidaklarasan tetapi juga

mendatangkan kerosakan kepada sistem peralatan yang digunakan. Tesis ini

memfokuskan mengenai cara-cara untuk membezakan kerosakan sementara terhadap

kerosakan kekal, dan seterusnya menentukan dengan tepat 'fault extinction time' di

dalam talian EHV voltan terlesih tingsi bagi menghasilkan suatu penyelesaian

terhadap 'self-adaptive automatic reclosing scheme'. Pengenalpastian kerosakan yang

melibatkan penyambungan ialah melalui pengoptimuman 'artificial neural network'

yang terlibat dengan 3 algoritma berkenaan iaitu 'Standard Error Back-Propagation',

'Levenberg Marquardt' dan 'Resilient Back-Propagation'. Di samping itu, metodologi

Taguchi digunakan untuk mengoptimumkan parameter-parameter yang digunakan

dan juga bagi menentukan bilanganneuron tersembunyi dalam 'neural network'. Bagi

tujuan mendapatkan data bagi 'neural network', suatu julat kerosakan disimulasikan

berdasarkan kepada 2 kajian kes; 'single machine -infinite bus model' (disambungkan

melalui taun penghantaraan EHV) dan TEEE 9-bus electric system'. Spektrum bagi

data voltan rosak kemudiannya dianalisis menggunakan Fast Fourier Transform, dan

didapati bahawa AT dan empat komponen harmonic yang pertama mewakili keadaan

bagi setiap kerosakan. Bagi setiap kajian kes, 'neural network' dibekalkan dengan

tenaga AT ternormal, manakala harmonic teringkas dan empat harmonic terawal

dilatih dengan menggunakan satu set data latihan efektif dan disahkan dengan

menggunakan data ujian yang diperoleh daripada signal kerosakan voltan terhasil

daripada TEEE 14-bus electric system model'. Keputusan akhir menunjukkan sejauh

mana penggunaan 'self-adaptive automatic reclosing scheme' yang telah dibangunkan

ini. Ini menunjukkan bahawa adalah tidak mustahil untuk mengelakkan

penyambungan sebelum terjadinya apa-apa kerosakan terhadap talian penghantaran

(sama ada kekal ataupun sementara).
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Abstract

Conventional automatic reclosures blindly operate for permanent, semi-permanent or

transient faults on an overhead line without any discrimination after allowing some

estimated time delay. Reclosing onto a line with uncleared fault often results in, not

only loss of stability and synchronism but also damage to system equipments, as a

consequence. The thesis focuses on methods to discriminate a temporary fault from a

permanent one, and accurately determine fault extinctiontime in an extra high voltage

(EHV) transmission line in a bid to develop a self-adaptive automatic reclosing

scheme. The fault identification prior to reclosing is based on optimized artificial

neural network associated with three training algorithms, namely, Standard Error

Back-Propagation, Levenberg Marquardt and Resilient Back-Propagation algorithms.

In addition, Taguchi's methodology is employed in optimizing the parameters of each

algorithm used for training, and in deciding the number of hidden neurons of the

neural network. To get data for training the neural networks, a range of faults are

simulated on two case studies -single machine -infinite bus model (connected via

EHVtransmission line) and a benchmark IEEE 9-bus electric system. The spectra of

the fault voltage data are analyzed using Fast Fourier Transform, and it has been

found out that the DC, the fundamental and the first four harmonic components can

sufficiently and uniquely represent thecondition of each fault. In each case study, the

neural network is fed with the normalized energies of the DC, the fundamental and

the first four harmonics of the faulted voltages, effectively trained with a set of

training data, and verified with a dedicated testing data obtained from fault voltage

signals generated on IEEE 14-bus electric system model. The results show the

efficacy of the developed adaptive automatic reclosing scheme. This effectively

means it is possible to avoid reclosing before any fault on a transmission line (be it

temporary or permanent) is totally cleared.
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CHAPTER ONE

INTRODUCTION

1.1. BACKGROUND

An electric power system comprises of generation, transmission and distribution of

electric energy. Studies show electrical power distribution systems were first

introduced towards the end of the last century. In comparison to today's systems, they

were relatively simple, usually consisting of small generating stations that provided

the needs of their immediate vicinities. As demand increased and growth in power

systems blossomed, larger systems are introduced, where widely scattered and

numerous substations and generatingplants are connected by transmission lines into a

huge network [P.M. Anderson and A.A. Fouad, 2003]. The direct benefit of these

connections is to enable the transfer of electric power from the producer to the

consumer across regions.

In particular, Extra High Voltage (EHV) transmission lines (whose line-to-line

voltage level lies between 345 kV and 765 kV) are designed to transfer large amount

of power from one location to another over a long distance. The length exposed to the

environment is a major reason for occurrence of faults on the lines. A fault on an

EHV transmission line affects the stability of the overall power system, which

sometimes leads to permanent damage of equipments. For this reason, the proper

functioning of a modern power system is heavily dependent upon the healthy

operation of the transmission lines within it. In other words, transmission line should

be adequately protected to avoid damage to equipments while maintaining the

continuity ofsupply.

A power system, most of the time, operates in a steady state but disturbances,

temporary and permanent, occur occasionally by the presence of large number of

components which are susceptible to failures caused due to natural calamities, human



errors and aging [Leonard L. Grigsby, 2007]. Faults cause large amounts of currents

to flow in the components that would burn out if current flows are not promptly

interrupted. Basically, the voltages ofthe faulted phases decrease on the occurrence of

a fault, but the currents shoot up. Therefore, faults, if not detected and eliminated

quickly, may cause severe reduction in system voltage, loss of synchronism, loss of

revenue and may damage the equipment permanently. They can be minimized by

proper power system planning and using sophisticated equipment but the occurrence

of faults cannot be eliminated fully. It is, therefore, necessary to protect power

systems from faults.

1.2. POWER TRANSMISSION LINE FAULTS AND PROTECTION

Many items of equipments in power system grid are very expensive, and so the

complete power system represents a very large capital investment [P.M. Anderson,

1999]. To maximize the return on this outlay, the system must be utilized as much as

possible within the applicable constraints of security and reliability of supply. Safety

and reliability are two ofthe most important aspects of electric power supply systems.

More fundamental, however, is that the power system should operate in a safe manner

at all times.

Recently, increasing transmission requirements and environmental pressures are

forcing utilities to increase loading on existing transmission networks as an alternative

to system reinforcements. Consequently, increased loading inevitably results in a

reduction in the transient stability margins of the system. This requires fast fault

clearing times because of the reduced stability margins. Particularly, EHV

transmission lines are vulnerable to such types of instabilities and irregularities. This

is due to the fact that EHV transmission lines span over long distances and are usually

connected to huge power stations and/or substations.

When today's EHV transmission lines are exposed to treacherous weather, they are

very likely to be subjected to faults. Insulator failure may result in short circuits



among phases and ground conductors. A lightning strike may break down the

dielectric betweenphases and cause a short circuit between the phases and the ground

conductors via arcing. A fault occurring on the transmission line may subsequently

lead to a collapse at the system level if it is improperly handled. No matter how well

designed, faults will always occur on a power system, and these faults may represent a

risk to life and/or property. Figure 1.1(a) shows an onsetofa fault on an overhead line

[Laszlo Prikler, et al. 2002].

The destructive power of a fault arc carrying a high current is very great; it can burn

through copper conductors or weld together core laminations in a transformer or

machine in a very short time - some tens or hundreds of milliseconds. Figure 1.1(b)

provides an illustration of the consequences of failure to provide appropriate

protection [Laszlo Prikler, et al. 2002]. Even away from the fault arc itself, heavy

fault currents can cause damage to plant if they continue for more than a few seconds.

Figure 1.2 shows sample voltages and current waveforms recorded before, during and

after a fault on a model transmission line. The provision of adequate protection to

detect and disconnect elements of the power system in the event of a fault is therefore

an integral part of power system design. Only by so doing can the objectives of the

(a) (b)

Figure 1.1: An onset of transmission linefault (a) andits consequence (b)

[Laszlo Prikler, et al. 2002]



Figure 1.2: Sample voltage and current waveforms before, during and after a fault

power system be met and the investment be protected. So, proper operation and

protection of EHV transmission lines to minimize the consequences of faults is

unquestionable.

Protective relays are installed at various places in the power system to detect faults

and isolate the faulted part from the remaining system. Depending on the application,

relays receive voltages and/or currents as inputs from a power system via voltage and

current transformers. Figure 1.3 is a typical power system protective relaying for EHV

transmission line. In modern transmission lines, distance relaying is a well established

technique for protecting the transmission lines against electrical fault conditions. By

monitoring the line voltage and current as measured at the relaying point, the distance

relay compares the system impedance with a pre-set reference representing the

impedance ofthe protected line, and decides whether or not a fault condition exists on

that line. If a fault is detected, the relay output provides instruction to the relevant

circuit isolation equipment to disconnect the faulted section.

On the other hand, the continuity of supply is another key issue that has to be taken

into consideration in power systems. To meet this condition, it is required that a

transmission line, isolated following a fault occurrence, be reclosed within possible



short duration oftime. This in turn improves not only the continuity ofsupply but also

the maintenance of the power system stability and synchronism, particularly to EHV

systems.

CT: Current Transformer

CB: Circuit Breaker

CVT: Capacitor Voltage
Transformer

Transmission line relay

Transmission

Fault

Communication

Channel

Figure 1.3: Transmission line protective relaying schematic diagram

1.3. CONVENTIONAL AUTO-RECLOSURE SCHEME IN EHV LINES

An auto-redosure is a mechanism that can automatically close a circuit breaker after

it has been opened due to a fault on a transmission line; this re-energizes the power

transmission line. As explained in Section 1.2, a transmission line is protected by

tripping its circuit breakers following a fault. Allowing an isolated transmission line

for a prolonged time usually results in adverse affects on the continuity of supply and

stability ofthe system. Thus, automatic reclosing ofthe faulted transmission line is an

imperative concern in modern transmission lines. The most important consideration in

the application of auto-reclosing to EHV transmission lines is the maintenance of

system stability and synchronism. Hence, to improve the continuity of supply and the

maintenance ofpower system stability and synchronism, particularly to EHV systems,

automatic reclosure (or simply auto-reclosure) schemes have been introduced for

many years. These schemes have significantly enhanced the stability and reliability of

power industries.

However, auto-reclosures have certain drawbacks that necessitate considerable

attention. An automatic reclosure acts for permanent, semi-permanent or temporary



faults on an overhead line without any discrimination after allowing some estimated

time delay prior to reclosing. A closing decision is usually issued after the fault

occurred considering a certain fixed time delay, which is deliberately set to allow a

transient fault to fully extinguish so that reclosing will be safe. For a temporary fault,

subsequent re-energizing of the line will usually be successful. However, if it is a

permanent or a semi-permanent fault, excessive breaking duty is undesirably applied

to the breaker unit resulting in potential damage to the system, in general. Besides, the

faults on transmission lines, particularly temporary faults, are extremely random in

nature whose arcing duration lasting from a few milliseconds to several seconds or

minutes. Thus, the estimated time delay is not sometimes long enough to allow a

transient fault or semi-permanent fault to vanish before reclosing which leads to a

fault arc re-strike followed by other severe consequences. Or, the fixed time delay is

excessively long where unnecessary delay is introduced after arc dionization. This

results in a further short duration fault (like lightning storms) that occurs during the

time delay be judged to be a repeat of the original temporary fault, and a further

reclose is locked out. In this situation, it is very inefficient to have a fixed time delay

before reclosing is taken place. In any case, reclosing before a fault is totally cleared

potentially brings about possible damage of system equipments. Therefore,

discrimination of temporary fault from the permanent fault, and accurate

determination of fault extinction time is highly demanded before any reclosing action

is taken. This thesis outlines a method to resolve this problem based on artificial

intelligence for the fault identification. The details of the proposed method will be

discussed in Chapter 2.

1.4. MOTIVATION

Nowadays, the demand for a power quality increase forces utilities to meet an

acceptable level of the fundamental parameters of electrical energy. A continuous

power supply is most important to consumers of electricity. Thus, an auto-reclosure

(AR) technique has become an acceptable means for restoring transmission lines after

fault clearance and improving stability of particularly EHV transmission systems. In
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other words, automatic reclosing of the tripped line offers a substantial improvement

on the reliability, stability and security of the overall power system. These

improvements are based on the assumption that majority of faults on a transmission

line are transient in nature (i.e. once the fault arc has been extinguished by isolating the

line under fault, it does not restrike). However, acute system stability conditions result

in a necessity of improving AR schemes used so far. The risk ofunsuccessful reclosing

emanates if the line under fault is exposed to an elongated arc or permanent fault;

hence, the reliability, stability and security of the power system grid are put in danger.

Hitherto, utilized AR methods often lead to a multiple restrike of the fault path in the

case ofa permanent fault occurred. Moreover, the isolated transmission line is reclosed

after a fixed time referred to as a dead time, which is of the order of about 0.5 s. A

strategy of increasingthe dead time guarantees (non-optimal) safety margin preventing

a restrike ofthe fault, yet then the power system stability can be endangered.

One of the challenges in auto-reclosure applications is to prevent the breaker on a

transmission line from reclosing before the fault extinguishes or during a permanent

fault case. Basically, conventional reclosures operate for permanent and transient faults

without any discrimination i.e. whenever there is a fault on a certain part of a power

system transmission line, the common practice is to automatically reclose circuit

breakers after some estimated delay into the faulted system regardless of the fault

nature (permanent or transient). This is due to the fact that existing AR schemes

practice employing fixed dead time (the time delay required prior to reclosing). Thus,

closing decision is issued following circuit breaker opening [Kothari and Nagrath

(2004)]. For a temporary fault whose extinction time is less than the fixed time delay

used by the AR system, subsequent re-energizing ofthe linewill usually be successful.

However, if it is a permanent fault or an extendedarcingfault, excessive breakingduty

is undesirably applied to the breaker unit resulting in not only an unsuccessfiil

reclosure but also possible shock and damage to the system in general.

Reclosing applications under permanent fault and/or without arc extinction provides

added power system damage and compromises system stability and can jeopardize

power system operation if the fault condition has not disappeared before the reclosing

attempt; that is, the breaker closes under fault condition, making the power system
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prone to instability and damage. In the case ofpermanent fault, reclosing could lead to

even worse damage of power system equipments. It is obvious this adversely affects

the power system stability and eventually results in loss of synchronism, particularly

in EHV systems.

Ideally, it is required the breaker to close if and only if there is no fault on the line.

Accurate determination of the arc extinction time also prevents reclosing under fault

conditions and optimizes the dead time (this is discussed in detail in Chapter 2). In

any case, reclosing before a fault is totally cleared would potentially bring about

irreparable damage to system equipments. Discrimination oftemporary fault from the

permanent one and accurate determination of fault extinction time is highly demanded

before any action is executed. To mitigate these inconveniences, some features have

to be introduced to auto-reclosure schemes.

Thus, it is of no question to develop a method to identify whether or not the fault is

cleared prior to reclosing order to circuit breaker. The fault extinction time (also

known as dead time) should as well be accurately determined in order to avoid

reclosing into an uncleared temporary fault.

1.5. OBJECTIVE OF THE THESIS

The following are the major objectives ofthis study.

• To develop a knowledge-based and self-adaptive auto-reclosure scheme that

is able to identify type of fault (temporary from permanent) in a transmission

line, and inhibit reclosing ofpower system grid onto a line under fault. This is

supported by an optimized neural network.

• To precisely determine the fault extinction time for a temporary fault so as to

alleviate early reclosing while the fault is not completely extinguished.

• To employ Taguchi's methodology, a smart-way optimization technique, in

optimizing values ofkey parameters associated with neural network training.



To improve and enhance the stability and the protection ofa power system so

as to add significant value to the quality and reliability of the power system

upon modifying the conventional auto-reclosure with the proposed auto

reclosure scheme.

1.6. SCOPE OF THE THESIS WORK

The schematic diagram of the proposed automatic reclosure is shown in Figure 1.4.

The figure illustrates the series of tasks carried out to realize the proposed method of

automatic reclosing. Data acquisition process from Capacitor Voltage Transformer

(CVT) is followed by signal pre-processing (which includes FFT analysis and

normalization). ANN processing and optimization tasks are executed in succession.

The start andactivation logics are included for the purpose of initiating and activating

the outputs of the whole process, respectively.

The functional steps for identification of a permanent from a temporary fault or vice-

versa, or detection of exact temporary fault extinction time are shown in Figure 1.5.

This Figure summarizes the processes that are handled by the proposed AR scheme

while it sorts out what type of fault occurred on the transmission line.

The scheme process, shown in Figure 1.5, is initiated whenever the start logic is

activated i.e. when there is a fault on a transmission network. In this process, one

sample i.e. one full cycle at the power frequency is passed to the feature extraction

process, which measures the energy contained in the DC, fundamental and the first

four harmonic components. These features are passed to the ANN input layer which

scales the values to fall within a suitable range for the activation function used. The

ANN calculates a scaled output value in a range of 0 to +1 or -1 to +1 that indicates

the class in which the network considers the input to be. The window of data from

which the features are calculated is then moved on by the next cycle. Included in the

scheme is a timer (activation logic) which causes the relay to lock out if reclosure is

not initiated within a prescribed time and send a reclose signal to circuit breaker if

ever identified as safe.
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Basically, the following work is carried out to meet the objectives of the thesis.

Performing extensive literature review.

Modeling a power system network using MATLAB software package in

which a specified EHV transmission line with series and parallel

compensators are connected in a bid to represent most modern

transmission systems and distributed line model is employed to calculate

transmission parameters.
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• Simulating several faults (both permanent and transient) by varying

different factors that have significant influence on the faults; typically,

fault inception, fault resistance, fault duration and location

• Analyzing and processing the fault voltage signals using Fast Fourier

Transform (FFT) to make them ready as inputs to the neural network

• Finding optimal neural network using Taguchi's methodology that is able

to furnish the desired output with negligible error during identification of

fault and decision-making

• Applying three different algorithms, namely, Error Back-Propagation

(EBP), Levenberg Marquardt (LM) and Resilient Back-Propagation

(RPROP), to spot out the best training algorithm for the proposed neural

network.

• Finally, putting forward a real implementation of the proposed auto

reclosure for practical applications.

In a practical system, the output of the network would be compared with a threshold

value over some period of time, i.e. some number of consecutive outputs of the

network, and then a decision would be made whether to reclose, or lock out.

1.7. CONTRIBUTION OF THE THESIS

This thesis mainly focuses on developing an adaptive auto-reclosure which provides a

prompt solution for improper reclosing action of a conventional auto-reclosure onto a

faulted line in EHV systems. This is achieved by using an optimized ANN algorithm

which effectively distinguishes a temporary fault from permanent, and takes

appropriate decision, either to allow or block reclosing action.

Three different training algorithms, namely, Error Back-Propagation (EBP),

Levenberg Marquardt (LM) and Resilient Back-Propagation (RPROP), have been
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utilized as training means for the neural network. The parameters decisive in the

application of ANN throughout the process are optimized using Taguchi's

Methodology, a powerful and robust process optimization technique. The theoretical

details of the neural network, algorithms and Taguchi's Methodology are discussed in

the next Chapters.

In the case of temporary faults, a method using ANN is developed to accurately

determine fault extinction time (dead time). This offers tremendous advantages such

as increased rate of successful reclosure, improved system stability and a reduction in

system-equipment damage under a permanent fault. The technique proposed in this

report transforms the conventional auto-reclosure system which is based on 'restore

service' into 'reclose only if safe'.

1.8. OUTLINE OF THE THESIS

This thesis is organized in five Chapters. The first Chapter provides a brief review of

areas relevant to the thesis work and outlines the material presented in the thesis. The

problems associated with conventional auto-reclosures are also introduced in this

Chapter. The motivation, objectives of the thesis, and methodology used in the thesis

are clearly presented in the first Chapter.

The second Chapter brings in previous research works that used different approaches

to solve the problems associated with conventional auto-reclosure. The subjects of

auto-reclosure and artificial intelligence are discussed in detail in this Chapter. Also, a

briefdescription ofthe properties and behaviors oftransmission line faults isreported.

The third Chapter introduces artificial intelligence specifically artificial neural

networks (ANNs) and the algorithms used in this thesis to train the ANN, typically,

the standard Error Back-Propagation (EBP) algorithm, the Levenberg Marquardt

(LM) algorithm, and Resilient back-PROPagation (RPROP). This Chapter also

elucidates the concepts associated with Taguchi's Methodology (TM) and its

application as an optimizationtool in the thesis.
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The fourth Chapter presents a technique which is used to discern a temporary fault

from a permanent fault based on optimized artificial neural network. Simulations,

carried out in MATLAB -SimPowerSystems by varying different parameters like

transmission line length, fault type, fault resistance and fault inception angle, so as to

generate a set of fault data for training, testing, and validating the neural network are

also presented in this Chapter.

Discussion, summary of the thesis and conclusions drawn from the whole work are

presented in Chapter 5. Recommendations are also reported in this Chapter.
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CHAPTER TWO

LITERATURE REVIEW AND THEORETICAL INTRODUCTION TO

AUTORECLOSURE SYSTEM

2.1. INTRODUCTION

This Chapter presents theoretical reviews of automatic reclosing technique including

its history, principles of operation, associated transmission line faults, modes of

operation, operating features, its benefits and existing challenges. Previous works to

improve the performance of conventional reclosing technique are discussed in detail.

The Chapter concludes with explanations about the proposed reclosing scheme to

mitigate the existing problems of automatic reclosing, and the methods developed in

this thesis to improve the successful rate of automatic reclosing are introduced.

2.2. HISTORY OF AUTOMATIC RECLOSING

Automatic reclosing was first applied in the early 1900's [IEEE PSRC, 1984] on

radial feeders protected by instantaneous relays and fuses. These schemes reclosed the

power system circuit two or three times prior to lockout, with a 73 % to 88 % success

rate on the first reclose actions, and covered both radial and looped circuits,

predominantly at distribution voltages, but also including 154 kV.

It was reported in [Jackson, et al. 1979] that high-speed reclosing (HSR) was first

used by AmericanElectric Power System in 1935 as a means to defer construction of

redundant transmission lines. System continuity was maintained on these radial lines

by rapidly reclosing a single line rather than providing a second, redundant path for

power to flow.

Modern systems, with single radial lines to transmit power from one point to another,

are usual. It is also more common to have a network with parallel transmission lines.
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HSR is used more for maintaining system stability and synchronism than for point-to-

point continuity. The development of high-speed breakers for transmission lines by

the late 1930's led to the application of high-speed reclosing (HSR) on these lines,

resulting in improved system stability. Probability studies of the insulator flashover

were initiated to determine minimum reclosing times that still permitted enough time

for arc de-ionization. Early applications of HSR on multi-terminal lines tripped all

terminals and then reclosed the circuit breaker at high-speed at one terminal. If this

high-speed recloser was successful, the remaining terminals were reclosed with time

delay to complete the circuit [IEEE PSRC, 1984].

The preceeding historical information touches on a number of reasons for using auto

reclosing in transmission systems, particularly on EHV lines. The various advantages

are discussed in Section 2.7. This does not, however, mean that auto-reclosing

techniques implemented in modern transmission and sub transmission systems

flawlessly work throughout the system. There have been some misdeeds of the

conventional auto-reclosure technique observed in its application so far. Details of

some ofthe disadvantages ofconventional auto-reclosure are reported in Section 2.8.

2.3. EHV TRANSMISSION LINE FAULTS -AN OVERVIEW

In an electric power system comprising of different complex interacting elements,

there always exists a possibility of disturbance and fault. Faults, typically on EHV

transmission system, fall into one of the following two categories: temporary (also

known as transient) and permanent.

A transient feult is a fault which is cleared by the immediate tripping of one or more

circuit breakers to isolate the fault, and does not recur when the line is re-energized

after certain delay time. Transient faults are commonly caused by lightning and

temporary contact with foreign objects. The immediate tripping ofone or more circuit

breakers clears the fault. Subsequent re-energizing (reclosing) of the line is usually

successful. Various studies have shown that anywhere from 70 % to 90 % of faults on

most overhead lines are transients (temporary faults) [IEEE Power System Relaying
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Committee, 2003]. Since electrical power systems contain passive elements in the

form of inductances and capacitances of electrical components and inertia of rotating

machines, any abrupt change in such systems will give rise to such type of faults.

Depending upon the duration of the transients, they are generally classified into three

groups.

Ultra-fast transients- These types of transients are caused either by lightning or by

the abrupt but normal network changes resulting from regular switching operations.

These transients are entirely electrical in nature and they generally last only for a few

milliseconds. Such transients give rise to high voltages much higher than the nominal

system voltages.

Medium-fast transients- These transients occur due to abrupt short-circuit in the

system causing abnormal changes in the system. They are also entirely electrical in

nature, and are responsible for excessive currents in the system. Short-circuit

transients last in the system for a longer period, and are of greatest practical

importance for nearly 10 cycles of the power frequency source voltage (i.e. for about

200 milliseconds in a 50 Hz system).

Slow transients- These are electromechanical in nature causing mechanical

oscillations of rotors of synchronous machine. Such oscillations may cause instability

of the interconnected power systems by putting some or all of the synchronous

machines out of synchronism. These transients exist in the system for a much longer

period ranging from a fraction ofa second to a second or more.

On the other hand, permanent faults, which account for the remaining 10 % to 30 %,

are those that do not vanish upon tripping and reclosing [IEEE Power System

Relaying Committee, 2003]. These faults are classified as semi-permanent and

permanent. A small tree branch falling on the line could cause a semi-permanent fault.

The cause of the fault would not be removed by the immediate tripping of the circuit,

but could be burnt away during a time-delayed trip. EHV overhead lines in forest

areas are prone to this type of fault. Permanent faults, such as broken conductors, and

faults on underground cable sections, must be located and repaired before the supply
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can be restored. Equivalently saying, auto-reclose application to a line under fault

would mean aggravating the fault condition; and hence, permanent faults should be

cleared before any action ofautomatic recloser.

2.4. PRINCIPLES OF AUTOMATIC RECLOSING (AR)

2.4.1. Definitions ofTerms Associated with AR

Before discussing the issues involved in the application of auto-reclosing schemes, it

is useful to define some of the terms in common usage. The majority of these

definitions are taken from reference [IEEE Std., 1992], IEEE Standard Definitions for

Power Switchgear, IEEE Std.C37.100-1992. Several of the terms defined below are

illustrated in Figures 2.1 and 2.2, which show the sequence ofevents in a typical auto

reclosing operation, where the circuit breaker makes one attempt at reclosure after

tripping to clear a fault. Two conditions are shown in Figures 2.1 and 2.2: an

unsuccessful reclosure followed by lockout of the circuit breaker if the fault is

permanent, and a successful reclosure in the event oftransient or temporary fault. The

detailed description of the operation principles of auto-recloser for both types of faults

is discussed in the next Sections.

Dead Time {of a circuit breaker) —The dead time of a circuit breaker on a reclosing

operation is defined in IEEE Std. C37.100-1992 as the interval between interruption

in all poles on the opening stroke and reestablishment of the circuit on the reclosing

stroke. The dead time ofan arcing fault on a reclosing operation is not necessarily the

same as the dead time ofthe circuit breakers involved, since the dead time ofthe fault

is the interval during which the line under fault is de-energized from all terminals.

The choice of high-speed versus delayed auto-reclosing has a direct effect on the

amount of dead time, as will be explained later in this Chapter.

Dead Time {ofa reclosing relay) -The dead time of a reclosing relay is similar to the

dead time of a circuit breaker. It is the amount of time between the auto-reclose
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scheme being initiated (e.g., by the operation of a protective element) and the

operation ofthe 'reclose' contacts, which energize the circuit breaker closing coil.

Arcing time {ofa mechanical switching device) —This is the interval of time between

the instant of the first initiation of the arc and the instant of final arc extinction in all

poles

Reset Time -Reset or reclaim time of an automatic circuit recloser is defined in IEEE

Std. C37.100-1992 as the time required, after one or more counting operations, for the

counting mechanism to return to the starting position. In an auto-reclosing relay, the

reset time is the time following a successful closing operation, measured from the

instant the auto-reclose relay closing contacts make, which must elapse before the

auto-reclose relay initiates a new reclosing sequence in the event of a further fault

incident.

Breaker reclosing time - This is the elapsed time between the energizing of the

breaker trip coil and the closing of the breaker contacts to reestablish the circuit by the

breaker primary contacts on the reclose stroke (i.e. breaker operating time plus

breaker dead time).

Closing time {of a mechanical switching device) -This is the interval of time

between the initiation of the closing operation and the instant when metallic

continuity is established in all poles. Equivalently saying, this is the time interval

between the energization of the closing mechanism and the making of the contacts.

This time highly depends on the type of the circuit breaker. Figure 2.3 illustrates the

performance of modern HV and EHV circuit breakers in this respect. Older circuit

breakers may require longer times than those shown.

De-ionizing time —This represents the time following the extinction of an overhead

line fault arc necessary to ensure dispersion of ionized air so that the arc does not re

strike when the line is re-energized.

Operating time {circuit breaker) —This refers to the time from the energizing of the

trip coil until the fault arc is extinguished.
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Table2.1: Typical circuitbreaker trip-close operation times (inseconds)

Oil

11 kV

Vacuum

15 kV

Oil

132 kV

Air

400 kV

SF6

132 kV

SF6 400

kV

ti 0.06 0.038 0.03 0.035 0.04 0.02

h. 0.1 0.053 0.06 0.045 0.07 0.05

h 0.08 0.023 0.2 0.0235 0.03 0.01

u 0.16 0.048 0.35 0.065 0.08 0.06

u 0.24 0.28 0.55 0.3 0.11 0.07

u 0.02 0.07 0.01 0.02 0.12 0.04
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Operating time (protection) -This is the time from the inception of the fault to the

closingof the trippingcontacts. Where a separate auxiliary tripping relay is employed,

its operating time is included.

Reset time {of an automatic circuitrecloser) -This is the time required, after one or

more counting operations, for the counting mechanism to return to the starting

position.

System disturbance time -This corresponds to the time betweenthe inception of the

fault and the circuit breaker contacts making on successful reclosing.

Delayedauto-reclosing -This is auto-reclosing of a circuit breaker after a time delay

that is intentionally longer than for high-speed auto-reclosing. The application of
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delayed auto-reclosing particularly to EHV systems is discussed in detail in Section

2.5.

High-speed auto-reclosing -This is auto-reclosing of a circuit breaker after a

necessary time delay (typically less than one second) to permit fault arc de-ionization

with due regard to coordination with all relay protective systems. This type of auto

reclosing is generally not supervised by voltage magnitude or phase angle. The

concept of high-speed auto-reclosing and application to EHV systems is explained in

Section 2.3.

Single-shot reclosing - It is an operation sequence that provides only one reclosing

operation followed by lockout of thecircuit breaker occurring on subsequent tripping.

2.4.2. Automatic Reclosing Scheme on EHV Transmission Systems

It is well realized that transient faults which are most frequent in occurrence do not

usually result in permanent damage to the system as they are transitory in nature.

These faults disappear if the line is disconnected from the system momentarily in

order to allow the arc to extinguish. After the arc path has become sufficiently de-

ionized, the line is reclosed to restore normal service. Not always, reclosing couldalso

be achieved with semi-permanent faults but with delayed action, e.g. a small tree

branch falling on the line, in which case the cause of the fault would not be removed

bythe immediate tripping of thecircuit breaker but could be burnt away during a time

delayed trip, and thus the line is reclosed to restore service. Now, should the fault be

permanent, reclosing is of no use, as the fault still remains on reclosing and the fault

hasto be cleared manually. However, ifthe fault does not disappear after the first trip

and closure, double or triple-shot reclosing is used in many cases before pulling the

line out ofservice.

Unlike the medium/high voltage transmission lines (where the main aim of auto

reclosure is to restore service), the most important consideration in the application of

auto-reclosing to EHV transmission lines is the maintenance of system stability and

synchronism. When a line is fed from bothends as in Figure 2.4, the generators at the

two ends of the line drift apart in phase. In EHV circuits where the fault levels
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associated are extremely high, it is essential that the dead time be kept to a few cycles

so that the generatorsdo not drift apart. On occurrence ofthe fault, the breakersat the

two ends must bereclosed simultaneously before the generators drift too far apart for

synchronism to be maintained. Such a reclosure increases the stability limit
considerably.

The stability and synchronism issues involved are, however, dependent on whether

the transmission system is weak, for example, with two power systems connected by a

single tie line, or, conversely, highly interconnected (strong), in which case

maintaining synchronism during auto-reclosing is much easier. With a weak system,

loss of a transmission link may lead quickly to an excessive phase angle across the

circuit breaker (CB) used for re-closure, thus preventing a successful re-closure. In a

relatively strong system, the rate of change of phase angle will be slow, so that

delayed auto-reclose can be successfully applied.

An illustration is the interconnector between two power systems, as shown in

Figure 2.4a. The power-angle curves during normal and fault system condition are

shown in Figure 2.4b [Kimbark and Wilson, 1998]. Under healthy conditions, the

amount of synchronizing power transmitted P crosses the power vs. angle curve OAB

at point X, showing that the phase displacement between the two systems is 0O. Under

fault conditions, the curve OCB is applicable, and the operating point moves to Y.

Assuming constant power input to both ends of the line, there is now anaccelerating

power XY. As a result, the operating point moves to Z, with an increased phase

displacement, Qu between the two systems. At this point, the circuit breakers trip and

break the connection. The phase displacement continues to increase at a rate

dependent on the inertia of the two power sources. To maintain synchronism, the

circuit breaker must be reclosed before the phase angle exceeds 02. This angle is such

that the area (2) stays greater than the area (1), which is the condition for maintenance

ofsynchronism [Anderson and Fouad, 1977].

The example, given in Figure 2.4 for a weak system, shows that the successful

application of auto-reclosing in such a case needs high-speed protection with short

dead time and high speed circuit breakers. On strong systems, synchronism isunlikely
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to be lost by the tripping out of a single line. For suchsystems, an alternative policy

of delayed auto-reclosing is adopted. This enables the power swings on the system

resulting from the fault to decay before reclosure is attempted. The various factors to

be considered when using EHV auto-reclose schemes are now dealt with. High-speed

and delayed auto-reclose schemes are discussed separately in the following sub

sections.
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Figure 2.4: Effectofhigh-speed three-phase auto-reclosing on system stabilityfor a
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2.4.3. High Speed Auto-reclosing on EHV Transmission Systems

The first requirement of high-speed auto-reclosing application is knowledge of the

system disturbance time that can be tolerated without loss of system stability. This
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normally requires transient stability studies to be conducted for a defined set ofpower

system configurations and fault conditions. High speed reclosure in extra high voltage

circuits improves the stability to a considerable extent on single-circuit ties. However,

the successful application of high speed auto-reclose to high voltage systems

interlinking a number ofsources depends on the following factors:

• The maximum time available for opening and closing the circuit breakers

at each end ofthe faulty line, without loss ofsynchronism.

• The time required to de-ionize the arc at the fault, so that it does not

restrike when the breakers are reclosed.

• The speed ofoperation on opening and closing ofthe circuit breakers.

• The probability of transient faults, that allows high speed reclosure of the

faulty lines.

Some of these conditions are conflicting, e.g. the faster the breakers are reclosed the

greater the power that can be transmitted without loss of synchronism, provided that

the arc does not restrike. But here, the probability of arc restriking is greater. An

unsuccessful reclosure is more detrimental to stability than no reclosure at all

specially in EHV systems. For this reason, the time allowed to de-ionize the line must

not be less than the critical time for which the arc hardly ever restrikes. The reduction

of reclosing time obtained by high speed relaying is, however, preferred as it reduces

the duration of arc. Indeed, the increase in power limit due to reclosing is much

greater with very rapid fault clearing than with slower fault clearing. For best results,

the circuit breakers at both ends of the faulty line must be opened simultaneously.

Any time during which one circuit breaker is open in advance of the other represents

an effective reduction of the breaker electrical dead time and may well jeopardize the

chances of a successful reclosure.

To determine the electrical dead time for circuit breaker used in a high speed auto-

reclose scheme, it is essential to know the time interval during which the line must be

kept de-energized in order to allow for the complete de-ionization of the arc and

ensure that it will not restrike when the line is reconnected to the system. The

deionization time ofan arc is discussed in the following Sections.
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With knowledge of protection and circuit breaker operating characteristics and fault

arc de-ionization times, the feasibility of high-speed auto-reclosing can then be

assessed. These factors are discussed in the following subsections.

2.4.3.1. Protection Characteristics

The use of high-speed protection equipment, such as distance or unit protection

schemes, giving operating times of less than 50 ms, is essential. In conjunction with

fast operating circuit breakers, high-speed protection reduces the duration of the fault

arc and; thus, the total system disturbance time. It is important that the circuit breakers

at both ends of a fault line be tripped as rapidly as possible. The time that the line is

still being fed from one end represents an effective reduction in the dead time, and

may well jeopardize the chances of a successful reclosure. When distance protection

is used, and the fault occurs near one end of the line, special measures have to be

adopted to ensure simultaneous tripping at each end.

2.4.3.2. Fault Arc De-ionization

It is important to know the time that should be allowed for complete de-ionization of

the arc, to prevent arc re-striking when the voltage is re-applied. The de-ionization

time of an uncontrolled arc, in free air depends on the circuit voltage, conductor

spacing, fault currents, fault duration, wind speed and capacitive coupling from

adjacent conductors. Of these, the circuit voltage is the most important, and as a

general rule, the higher the voltage, the longer the time required for deionization.

Typical values of de-ionization time for an arc in free air are shown in Table 2.2

[ABB, 1994 and Basler Electric, 1998].

If single-phase tripping and auto-reclosing is used, capacitive coupling between the

healthy phases and the faulty phase tends to maintain the arc and hence extend the

dead time required. This is a particular problem on long distance EHV transmission

lines. Accurate determination of the fault de-ionization time is required to alleviate

the problems that arise due to reclosing onto a line under fault.



2.4.3.3.

Table 2.2: Fault arc de-ionization times

Line Voltage
(kV)

Minimum de-ionization

time (seconds)

66 0.2

110 0.28

132 0.3

220 0.35

275 0.38

400 0.45

525 0.55

Characteristics ofCircuit Breaker
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The high fault levels involved in EHV systems imposes a very severe duty on the

circuit breakers used in high-speed auto-reclose schemes. The accepted breaker cycle

of break-make-break requires the circuit breaker (CB) to interrupt the fault current,

reclose the circuit after a time delay of greater than 0.2 s and then break the fault

current again if the fault persists. But this practice usually endangers the expensive

equipments in the power system grid.

The types of circuit breaker commonly used on EHV systems are oil, air blast and

SF6 types. Oil circuit breakers are used for transmission voltages up to 300 kV, and

can be subdivided into two types: 'bulk oil' and 'small oil volume'. The latter is a

design aimed at reducing the fire hazard associated with the large volume of oil

contained in the bulk oil breaker. The operating mechanisms of oil circuit breakers are

of two types, 'fixed trip' and 'trip free', ofwhich the latter is the most common. With

trip-free types, the reclosing cycle must allow time for the mechanism to reset after

tripping before applying the closing impulse. Special means have to be adopted to

obtain the short dead times required for high-speed auto-reclosing. Various types of

tripping mechanism have been developedto meet this requirement. The three types of

closing mechanism fitted to oil circuit breakers are solenoid, spring and pneumatic.

Circuit breakers with solenoid closing are not suitable for high-speed auto-reclose due

to the long time constant involved. Spring, hydraulic or pneumatic closing

mechanisms are universal at the upper end of the EHV range and give the fastest
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closing time. Figure 2.3 and Table 2.1 show the operation times for various types of

EHV circuit breakers, including the dead time that can be attained.

Air blast breakers have been developed for voltages up to the highest at present in use

on transmission lines. They fall into two categories: pressurized head circuit breakers

and non-pressurized head circuit breakers

In pressurized head circuit breakers, compressed air is maintained in the chamber

surrounding the main contacts. When a tripping signal is received, an auxiliary air

system separates the main contacts and allows compressed air to blast through the gap

to the atmosphere, extinguishing the arc. With the contacts fully open, compressed air

is maintained in the chamber. Loss of air pressure could result in the contacts

reclosing, or, if a mechanical latch is employed, restriking of the arc in the de-

pressurized chamber. For this reason, sequential series isolators, which isolate the

main contacts after tripping, are commonly used with air blast breakers. Since these

are comparatively slow in opening, their operation must be inhibited when auto

reclosing is required. A contact on the auto-reclose relay is made available for this

purpose. Non-pressurized head circuit breakers are slower in operation than the

pressurized head type and are not usually applied in high-speed reclosing schemes.

Most EHV circuit breaker designs now manufactured use SF6 gas as an insulating and

arc-quenching medium. The basic design of such circuit breakers is in many ways

similar to that of pressurized head air blast circuit breakers, and normally retains all,

or almost all, oftheir voltage withstand capability, even if the SF6 pressure level falls

to atmospheric pressure. Sequential series isolators are therefore not normally used,

but they are sometimes specified to prevent damage to the circuit breaker in the event

of a lightning strike on an open ended conductor. Provision should therefore be made

to inhibit sequential series isolation during an auto-reclose cycle.

2.4.3.4. Choice of Dead Time

At voltages of 220 kV and above, the de-ionization time will probably dictate the

minimum dead time, rather than any circuit breaker limitations. This can be deduced

from Table 2.2. The dead time setting on a high-speed auto-reclose relay should be
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long enough to ensure complete de-ionization of the arc or there should be a means to

accurately determine the dead time so that improper reclosing is avoided. On EHV

systems, an unsuccessful reclosure is more detrimental to the system than no reclosure

at all. So, the choice of dead time is pivotal to avoid the detrimental effect on the

system due to automatic reclosing before a fault extinguishes. A method developed to

accurately determine the de-ionization time is discussed Section 2.11.

2.4.3.5. Choice of Reclaim Time of a Circuit Breaker

Where EHV oil circuit breakers are concerned, the reclaim time should take account

of the time needed for the closing mechanism to reset ready for the next reclosing

operation. Reclosing before the closing mechanism resets categorically results in not

only unsuccessful reclosure but also damage to the system, in general.

2.4.3.6. Number of Shots

High-speed auto-reclosing on EHV systems is customarily single shot followed by the

locked out ofcircuit breakers after one unsuccessful attempt. However, multiple shots

are still implemented in many EHV systems. There is no doubt about it; repeated

reclosure attempts with high fault levels would have serious consequences on system

stability.

2.5. SINGLE-PHASE AUTO-RECLOSING IN EHV TRANSMISSION

SYSTEMS

Single phase to earth faults account for the majority of overhead line faults. When

three-phase auto-reclosing is applied to single circuit interconnectors between two

power systems, the tripping of all three phases may cause the two systems to drift

apart in phase, as described in Section 2.3.2. No interchange of synchronizing power

can take place during the dead time. If only the faulty phase is tripped, synchronizing

power can still be interchanged through the healthy phases. Any difference in phase

between the two systems will be correspondingly less, leading to a reduction in the

disturbance on the system when the circuit breaker recloses.
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For single-phase auto-reclosing, each circuit breaker pole must be provided with its

own closing and tripping mechanism; this is normal with EHV air blast and SF6

breakers [IEEE Power System Relaying Committee, 2003]. The associated tripping

and reclosing circuitry is therefore more complicated, and, except in distance

schemes, the protection needs the addition ofphase selection logic. On the occurrence

of a phase-earth fault, single-phase auto-reclose schemes trip and reclose only the

corresponding pole of the circuit breaker. The auto-reclose function in a relay

therefore has three separate elements, one for each phase. Operation of any element

energizes the corresponding dead timer, which in turn initiates a closing pulse for the

appropriate pole of the circuit breaker. A successful reclosure results in the auto-

reclose logic resetting at the end of the reclaim time, ready to respond to a further

fault incident. If the fault is persistent and reclosure is unsuccessful, it is usual to trip

and lock out all three poles of the circuit breaker. The above describes only one of

many variants. Other possibilities are:

• three-phase trip and lockout for phase-phase or 3-phase faults, or if either of

the remaining phases should develop a fault during the dead time

• use ofa selector switch to give a choice ofsingle or three-phase reclosing

• combined single and three-phase auto-reclosing; single phase to earth faults

initiate single-phase tripping and reclosure, and phase-phase faults initiate

three-phase tripping and reclosure

Modern numerical relays often incorporate the logic for all of the above schemes, for

the user to select as required. The advantages ofsingle-phase auto-reclosing are:

• The maintenance ofsystem reliability.

• On multiple earth systems, negligible interference with the transmission of

load. This is because the current in the faulted phase can flow through earth

via the various earthing points until the fault is cleared and the faulty phase

restored

The main disadvantage is the longer de-ionization time resulting from capacitive

coupling between the faulty and healthy lines. This leads to a longer dead time being
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required. Mai-functioning of earth fault relays on double circuit lines owing to the

flow of zero sequence currents also occurs. These are induced by mutual induction

between faulty and healthy lines.

2.6. DELAYED AUTORECLOSING ON EHV TRANSMISSION SYSTEMS

On highly interconnected transmission systems, where the loss of a single line is

unlikely to cause two sections of the system to drift apart significantly and lose

synchronism, delayed auto-reclosing can be employed. Dead times of the order of

5 s - 60 s are commonly used [IEEE Power System Relaying Committee, 2003]. No

problems are presented by fault arc de-ionization times and circuit breaker operating

characteristics, and power swings on the system decay before reclosing. In addition,

all tripping and reclosing schemes can be three-phase only, simplifying control

circuits in comparison with single phase schemes. In systems on which delayed auto

reclosing is permissible, the chances of a reclosure being successful are somewhat

greater with delayed reclosing than would be the case with high-speed reclosing.

Delayed reclosing cannot, however, be applied to weak systems as this will put

system stability in immense danger.

2.6,1. Operation Scheme of Delayed Auto-reclosing

Figure 2.5 shows a transmission line connecting two substations A and B, with the

circuit breakers at A and B tripping out in the event of a line fault. Synchronism is

unlikely to be lost in a system that employs delayed auto-reclose. However, the

transfer of power through the remaining tie-lines on the system could result in the

development of an excessive phase difference between the voltages at points A and B.

The result, if reclosure takes place, is an unacceptable shock to the system. It is

therefore usual practice to incorporate a synchronism check relay into the reclosing

system to determine whether auto-reclosing should take place.
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Figure 2.5: Network diagram

After tripping on a fault, it is normal procedure to reclose the breaker at one end first,

a process known as 'live bus/dead line charging'. Reclosing at the other end is then

under the control of a synchronism check relay element for what is known as 'live

bus/live line reclosing'. For example, if it is decided to charge the line initially from

station A, the dead time in the auto-reclose relay at A will be set at, say, 5 seconds,

while the corresponding timer in the auto-reclose relay at B will be set at, say, 15

seconds. The circuit breaker at A will then reclose after 5 seconds provided that

voltage monitoring relays at A indicates that the bus-bars are alive and the line is

dead. With the line recharged, the circuit breaker at B will then reclose with a

synchronism check, after a 2 second delay imposed by the synchronism check relay

element. If for any reason the line fails to 'dead line charge' from end A, reclosure

from end B will take place after 15 seconds. The circuit breaker at A will then be

given the opportunity to reclose with a synchronism check.

2.6.2. Synchronism Check Relays

In some cases, synchronism-check logic is incorporated with an auto-reclose relay as

means to prevent auto-reclosing when the phase angle difference has moved outside

specified limits. The synchronism check relay element commonly provides a three

fold check: phase angle difference, voltage and frequency difference. The phase angle

setting is usually set to between 20° - 45°, and reclosure is inhibited if the phase

difference exceeds this value. The scheme waits for a reclosing opportunity with the

phase angle within the set value, but locks out if reclosure does not occur within a

defined period, typically 5 s.

A voltage check is incorporated to prevent reclosure under various circumstances. A

number of different modes may be available. These are typically under voltage on

either of the two measured voltages, differential voltage, or both of these conditions.

31
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The logic also incorporates a frequency difference check, either by direct

measurement or by using a timer in conjunction with the phase angle check. In the

latter case, if a 2 second timer is employed, the logic gives an output only if the phase

difference does not exceed the phase angle setting over a period of 2 seconds. This

limits the frequency difference (in the case of a phase angle setting of 20°) to a

maximumof0.il % of 50 Hz, corresponding to a phase swing from+20° to -20° over

the measured 2 seconds. While a significant frequency difference is unlikely to arise

during a delayed auto-reclosing sequence, the time available allows this check to be

carried out as an additional safeguard.

2.7. OPERATING FEATURES OF AR SCHEMES IN EHV SYSTEMS

The extensive use of auto-reclosing has resulted in the existence of a wide variety of

different control schemes. Some of the most important variations in the operating

features ofAR schemes in EHV systems are explained in the following subtopics.

2.7.1. Initiation of Auto-reclosing

Modern auto-reclosing schemes are invariably initiated by the tripping command of a

protection relay function. Some older schemes may employ a contact on the circuit

breaker. Modern digital or numerical relays often incorporate a comprehensive auto-

reclose facility within the relay, thus eliminating the need for a separate auto-reclose

relay and any starter relays.

2.7.2. Type of Protection

In most cases, the auto-reclose relay provides a means of isolating the instantaneous

relay after the first trip. In older schemes, this may be done with a normally closed

contact on the auto-reclose starting element wired into the connection between the

instantaneous relay contact and the circuit breaker trip coil. With digital or numerical

relays with in-built auto-reclose facilities, internal logic facilities are normally used.
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With certain supply authorities, it is the rule to fit tripping relays to every circuit

breaker. If auto-reclosing is required, electrically reset tripping relays must be used,

and a contact must be provided either in the auto-reclose logic or by separate trip

relay resetting scheme to energize the reset coil before reclosing can take place.

2.7.3. Dead Timer

This will have a range of settings to cover the specified high-speed or delayed

reclosing duty. Any interlocks that are needed to hold up reclosing until conditions are

suitable are mostly connected into the dead timer circuit.

2.7.4. Reclosing Impulse

The duration of the reclosing impulse must be related to the requirements of the

circuit breaker closing mechanism. On auto-reclose schemes using spring-closed

breakers, it is sufficient to operate a contact at the end ofthe dead time to energize the

latch release coil on the spring-closing mechanism. A circuit breaker auxiliary switch

can be used to cancel the closing pulse and reset the auto-reclose relay. With solenoid

operated breakers, it is usual to provide a closing pulse of the order of 1-2 seconds, so

as to hold the solenoid energized for a short time after the main contacts have closed.

This ensures that the mechanism settles in the frilly latched-in position. The

pneumatic or hydraulic closing mechanisms fitted to oil, air blast and SFg circuit

breakers use a circuit breaker auxiliary switch for terminating the closing pulse

applied by the auto-reclose relay.

2.7.5. Anti-Pumping Devices

The function of an anti-pumping device is to prevent the circuit breaker closing and

opening several times in quick succession. This might be caused by the application of

a closing pulse while the circuit breaker is being tripped via the protection relays.

Alternatively, it may occur if the circuit breaker is closed on to a fault, and the closing

pulse is longer than the sum of protection relay and circuit breaker operating times.

Circuit breakers with trip free mechanisms do not require this feature.



34

2.7.6. Reclaim Tinier

Electromechanical, static or software-based timers are used to provide the reclaim

time, depending on the relay technology used. If electromechanical timers are used, it

is convenient to employ two independently adjustable timed contacts to obtain both

the dead time and the reclaim time on one timer. With static and software-based

timers, separate timer elements are generally provided.

2.7.7. Circuit Breaker Lockout

If reclosure is unsuccessful the auto-reclose relay locks out the circuit breaker. Some

schemes provide a lockout relay with a flag, with provision of a contact for remote

alarm. The circuit breaker can then only be closed by hand; this action can be

arranged to reset the auto-reclose relay element automatically. Alternatively, most

modern relays can be configured such that a lockout condition can be reset only by

operator action. Circuit breaker manufacturers state the maximum number of

operations allowed before maintenance is required. A number of schemes provide a

fault trip counting function and give a warning when the total approaches the

manufacturer's recommendation. These schemes will lock out when the total number

of fault trips has reached the maximum value allowed.

2.7.8. Manual Closing of a Circuit Breaker

It is undesirable to permit auto-reclosing if circuit breaker closing is manually

initiated. Auto-reclose schemes include the facility to inhibit auto-reclose initiation

for a set time following manual CB closure. The time is typically in the range of 2-5

seconds.

2.7.9. Multi-Shot Schemes in EHV Systems

Schemes providing up to three or four shots, timing circuits are often included in an

auto-reclose relay to provide different, independently adjustable, dead times for each

shot. Instantaneous protection can be used for the first trip, since each scheme

provides a signal to inhibit instantaneous tripping after a set number of trips. The
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scheme resets if reclosure is successful within the chosen number of shots, ready to

respond to further fault incidents.

2.8. BENEFITS OF AUTOMATIC RECLOSING

As stated in the previous Chapter, the intent of auto-reclosing on transmission

systems, other than the maintenance of stability, is to return the system to its normal

configuration with minimum outage of the line and with the least expenditure of

manpower. System restoration becomes increasingly important when applied to lines

that interconnect systems, and are critical for reliable power exchange between the

systems. Individual utility policy and system requirements dictate the complexity and

variety ofautomatic reclosing schemes in service today.

Instantaneous tripping on EHV systems reduces the duration of the power arc

resulting from an overhead line fault to a minimum. The chance ofpermanent damage

occurring to the line and terminal equipments is reduced. However, the application of

instantaneous protection may result in non-selective tripping of a number of circuit

breakers and an ensuing loss of supply to a number of healthy sections. Auto

reclosing allows these circuit breakers to be reclosed within a few seconds. With

transient faults, the overall effect would be loss of supply for a very short time but

affecting a larger number of consumers. If only time-graded protection without auto-

reclose was used, a smaller number of consumers might be affected, but for a longer

time period.

The main use ofan auto-reclose scheme is to re-energize a line after a fault trip which

permits successful re-energization of the line. Sufficient time must, however, be

allowed after tripping for the fault arc to de-energize prior to reclosing; otherwise, the

arc will re-strike. Such schemes have been the cause of a substantial improvement in

continuity of supply. A further benefit, particularly to EHV systems, is the

maintenance of system stability and synchronism. A typical single-shot auto-reclose

scheme is shown in Figures 2.1 and 2.2. Figure 2.1 shows a successful reclosure in the
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event of a transient fault, and Figure 2.2 an unsuccessful reclosure followed by

lockout ofthe circuit breaker if the fault is permanent.

The preceding historical information touches on a number of reasons for using auto

reclosing on transmission systems [IEEE Power System Relaying Committee, 2003].

Following is a summary ofreasons for using auto-reclosing:

• Minimizing the interruptionofthe supply to customer; hence, improvement of

supply continuity

• Maintenance of system stability and synchronism (due to high-speed tripping

and auto-reclosing on overhead transmission lines)

• Restoration of system capacity and reliability with minimum outage and least

expenditure ofmanpower (reduction ofsubstation visits)

• Restoration ofcritical system interconnections

• Restoration ofservice to critical loads

• Higher probability ofsome recovery from multiple unforeseen outages

• Reduction of fault duration, resulting in less fault damage and fewer

permanent faults

• Ability to run substations unattended, minimizing substation visits resulting in

saved wages

• Relief for system operators in restoration during system outages

2.9. CHALLENGES IN CONVENTIONAL AUTORECLOSURE

Basically, the application of auto-reclosing requires the evaluation of many factors.

These factors vary considerablydepending upon the system configuration, the system

components, and the reclosing philosophy utilized by the protection engineer or

company. The following factors are offundamental concerns:

• The benefits and possible problemsassociated with reclosing

• The choice ofdead time
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• The choice of reset time

• The decision to use single- or multiple-shot reclosing

Some of the benefits associated with auto-reclosing are noted in Section 2.7. These

benefits must be incorporated with any potential problems that may arise when

applying auto-reclosing.

With a conventional circuit breaker, a transient fault would open the breaker,

disabling the line until a technician could manually close the circuit breaker. But an

auto-reclosure makes several pre-programmed attempts to re-energize the line. If the

transient fault has cleared, the auto-reclosed circuit breaker remains closed and

normal operation of the power line resumes. If the fault is some sort of a permanent

fault (downed wires, tree branches lying on the wires, etc.), the auto-reclosure will

exhaust its pre-programmed attempts to re-energize the line and remain tripped off

until manually commanded to try again. One of the challenges in auto-reclosure

applications is to prevent the breaker on a transmission line from reclosing before the

fault extinguishes or during a permanent fault case. Reclosing under fault provides

added power system damage and compromises system stability. Hence, there has to

be a means to identify the type ofa fault on the transmission and accurately determine

the fault extinction time to avoid improper reclosing. The previously reported means

to tackle this problem are discussed in the following section (Section 2.9).

In power industry, although auto-reclosing success rates vary from one system to

another, the majority of faults on a transmission line can be successfully cleared by

the proper use of tripping. This de-energizes the line long enough for the fault source

to pass and the fault arc to de-energize, then automatically recloses the line to restore

service. Thus, auto-reclosing can significantly reduce the outage time due to faults

and provide a higher level ofservice continuity to the customer.

Various studies have shown that 70 % to 90 % of faults on most overhead lines are

transients in which automatic reclosing following the protection process is usually

successful. Whereas, the remaining 10 % to 30 % of faults are of semi-permanent or
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permanent in nature. In this case, an immediate de-energizing of the line and

subsequent auto-reclosing does not clear the fault.

2.10. PREVIOUS WORKS ON INHIBITING RECLOSE ACTION ON TO

FAULTS

2.10.1. Modification on the Dead Time

There are several approaches set forth to prevent the damaging conditionswhich arise

from reclosing while a fault on a transmission line is not cleared fully. One of the

most common approaches is to add shunt and neutral reactors [Ban G., 1999] and

[Kimbark, 1964] to suppress the secondary arc present during the pole-open condition

and have a dead time (open phase interval) long enough to allow for arc suppression

and air de-ionization. Another approach is to increase the dead time and expect the

secondary arc to be self-extinguished. Unfortunately, extending the fault clearing time

can lead to instability in the system. None of these approaches verify cessation of the

arc before the breaker pole recloses. Moreover, these two approaches cannot

guarantee an unprecedented complete protection during high impedance fault or

permanent faults, in general.

2.10.2. Sensing High-Resistance Earth Faults to Block Auto-Reclosing

Most of the time, normal protection relays face difficulty to pick up when high-

impedance faults occur on a transmission line. This situation has become increasingly

problematic in the era ofpowertransmission line protection. Recently, it is a common

practice to fit sensitive earth-fault protection to supplement the normal protection in

order to detect high resistance earth faults. This protection cannot possibly be stable

on through faults, and is therefore, set to have an operating time longer than that of

the main protection. This longer time may have to be taken into consideration when

deciding on a reclaim time. A broken overhead conductor in contact with dry ground

or a woodfence maycause this typeof fault. It is therefore common practice to use a

contact on the sensitive earth fault relay to block auto-reclosing, and lock out the
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circuit breaker [Aucoin and Jones, 1996]. This approach appreciably solved the

handicap nature of protection relays for high-impedance earth faults. However, the

extended delay of the operating time may be unsafe and may aggravate the situation

in some circumstances, particularly when dealing with EHV systems. Moreover, due

to the random nature of faults on transmissions, it is hard to say to what extent the

method would be effective and robust.

2.10.3. Development of Adaptive Autoreclosure

Recent studies reported development of adaptive auto-reclosure system, an approach

to curb the previously stated setbacks of conventional auto-reclosure, using diverse

methodologies. The methodologies used in this regard, in general, fall in to either of

the two approaches: pure mathematical based and artificial intelligence based. Both

approaches are separately discussed in the following subsections.

2.10.4. Adaptive Autoreclosure Based on Mathematical Algorithms

Different mathematical manipulations, models and/or algorithms have been suggested

to develop an adaptive auto-reclosure system. A single-phase auto-reclosure was

proposed based on investigating the differential approach of zero sequence power

during the secondary period of arcing faults [N.I. Elkalashy, et al. 2007]. However,

this scheme requires communication channels at both the line terminals. Moreover,

the work did not prove that the method developed works for the vast types offaults on

a transmission line.

It has been reported in [M.E. Golshan, et al. 2005 ] that an adaptive auto-reclosure

based on tracking harmonic distortion index (HDI) from the behavior of the low

frequency components of the faulted phase voltage or sound current signals as a

means to avoid the improper reclosing of conventional auto-reclosure and boost

successful reclosing. And, a decision-making index is defined based on properties of

the tracked HDI.

Another approach [KJ. Zoric, et al. 1997] developed an adaptive auto-reclosure based

on estimating arc voltage minimal-maximal amplitude, and compared it with a pre-
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defined threshold value for distinguishing a temporary from a permanent fault.

However, determining the threshold value is a problem because it depends on fault

conditions and transmission line characteristics.

Other algorithms are based on magnitude of the induced voltage on the faulted phase

owing to capacitive and electromagnetic coupling of the faulted phase and sound

phases. In [Yaozhong, et al. 1989], the induced voltage magnitude has been used to

identify transient and permanent faults.

Detecting amplitude of a resonant component has been reported a useful ingredient in

the identification of transient and permanent faults [Zengping, et al. 2006]. According

to this report, in the case of a permanent fault, after the secondary arc extinguishes,

the voltage at the end of the opened phase is a power frequency voltage. However, in

case of a temporary fault, the voltage consists of not only a power frequency

component but also a resonant component. This method may, however, be flawed for

high impedance permanent faults that closely resemble to the temporary faults.

In [Sang-Pil Ahn, et al. 2001], a tracked RMS value of a faulted phase voltage

waveform has been used to determine the final arc extinction time. Accordingly, when

the difference value betweenthe present and previous RMS values at each time step is

greater than a prescribed threshold, successful reclosing can be made. If difference

values do not exceed the threshold after a sufficient time delay, the fault is permanent

and reclosing will not be permitted.

[P.K. Aggarwal et al. 1993] also demonstrated an adaptive auto-reclosure technique

based on defining and identifying the waveform patterns of the voltage transients

following initial breaker opening. The decision making of this method is based on

comparing a streaming voltage sample values to a pre-determined threshold voltage.

If the voltage compared with the threshold is less than the threshold, the fault is

considered to be transient, and reclosing can be triggered. This may give sense to

some extent. Due to the tremendous causes offaults on a transmission line, there is no

guarantee that the method would apply to all types offaults.
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A study on an adaptive single phase reclosing scheme on EHV/UFTV transmission

lines based on calculation of Bergeron model by utilizing harmonics energy ratio to

identify arc extinguishment [Li Bin, et al. 2008], by considering a secondary arc

model rooted in gray-box model [Alessandr,et al. 2008], and by distinguishing

transient faults from permanent faults based on the carrier channel of carrier

protections of EHV transmission lines [Huang Qiang, et al. 2002] are reported in
recent times.

A different approach for adaptive AR with reference to power system stability based

on multi agent system using Java agent development framework has been also

proposed [You-Jin Lee, et al. 2008]. A self-adaptive auto-reclosure criterion using

dual-window transient energy ratio (ER) for transmission line is proposed, and a

novel concept of close-opening - open-closing morphological gradient (COOCG) is
put forward [Xiangning Lin, et al. 2008].

More to come, a numerical algorithm for determining adaptive dead time, and

blocking automatic reclosing during permanent faults on overhead lines which is

based on terminal voltage input dataprocessing has been proposed [Radojevic, et al.

2008]. In this case, the decision if ever to reclose is determined by the total harmonic

distortion factor of the fault voltage signal that is calculated by discrete Fourier

transform (DFT).

However, themathematical optimizations so far failed to encompass all possible types

of faults that occur on a transmission line. In other words, a model developed based

on certain assumptions may fail at some point due to the uncertainties and

randomness of faults on a transmission system. Most of the approaches discussed

exhibit wide range limitations due to many causes of faults e.g. high-impedance

permanent faults that closely resemble to arcs may not be categorically identified.

Mostly, it is difficult to say how robust those approaches would be because they are

developed under certain assumptions. Moreover, most of the methods do not consider

the suppression effect of shunt reactors. And, since transmission lines are currently

series-compensated to boost their loading capacity; the effect of series compensators

is not taken into consideration
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2.10.5. Artificial Intelligence (Al) Based

Application of artificial intelligence, which includes expert systems (ES), artificial

neural network (ANN), genetic algorithm (GA), fuzzy logic (FL), etc, has recently

become evident in solving power system problems. AI's have been crucial in solving

long standing problems in the area ofpower system protection, control and planning.

The detail description of artificial intelligence and different algorithms implemented

in this thesis is presented in the next Chapter.

Recently, faults on EHV lines have been classified as phase to ground fault, two

phases to ground fault, three phases to ground fault, etc using radial basis function

neural networks (RBFNN) up on utilizing faulted voltage and current signals at the

receiving end ofthe line only [M. Joorabian, et al. 2004]. The application of ANNs in

classifying faults paved the way to the developments of methods to identify

permanent faults from temporary ones. For instance, recent studies proposed a new

adaptive auto-reclosure of transmission system for different levels of voltages - High

Voltage (HV) as in [A.I. Megahed, et al. 2006], Medium Voltage (MV) as in [V.V.

Terzija, et al. 2004] and EHV as in [Lukowicz, 2004]. The data presented to the

neural networks for identification purpose (training, testing and validation) were taken

from extracted features ofa real time one terminal voltage and/ or current signals.

An auto-reclosure which utilizes ANN as a pattern classifier and different harmonic

components of positive sequence of voltage as inputs to ANN is developed by

[Khorashadi-Zadeh, 2005]. Similarly, a research group [El-Hadidy, et al. 2004]

suggested a single-phase AR technique which uses information extracted from

residual voltage of a tripped phase using Discrete Wavelet Transform (DWT) as input

to an ANN for classification.

[Yu and Song, 1998] carried out a research on wavelet analysis and neural network

based adaptive single-pole auto-reclosure scheme for EHV transmission systems.

Wavelet analysis is used to analyze and extract the features of the transient and

permanent faults. The decision is made by the help of a supervised training neural

network fed with the extracted features.
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None of the above reports, adopted to alleviate the previously mentioned problems of

AR, showed any means to optimize the parameters which are very decisive in training

process of the neural network. Almost all parameters have been selected randomly

which is ineffective, and may not guarantee the desired outcome. Moreover, the

validity of the algorithms, developed in each report, seems to have major concerns of

generalizations. It is not clearly put in place how far each approach would go in depth

ofthe problems stated earlier.

2.11. PROPOSED TECHNIQUE

This thesis mainly focuses on developing an adaptive auto-reclosure which provides a

prompt solution for the improper reclosing action of a conventional auto-reclosure on

to a line under fault, particularly in EHV systems. This is achieved with the help of an

optimized and well-trained artificial neural network algorithm which effectively

discerns a temporary from a permanent fault, and takes appropriate decision, either to

allow if safe or block in severe and uncleared fault conditions.

Fault data are gathered by generating a number of faults on three power system

models, namely, SMIB, IEEE 9-bus and IEEE 14-bus electric systems. Three

different training algorithms (Error Back-Propagation, Resilient Back-Propagation

and Levenberg Marquardt) are employed as a training means for the neural network.

The parameters of each of these algorithms and the number of hidden neurons are

optimized using Taguchi's methodology, a powerful and robust optimization

technique.

In the case of temporary faults, a method using ANN is developed to accurately

determine fault extinction time. This is due to the fact that the trained ANN has the

ability to detect a fault when it extinguishes out (i.e. when secondary arc vanishes).

The techniques adopted in this thesis offer tremendous advantages such as increased

rate of successful reclosure, improved system stability and a reduction in system

equipment damage under a permanent or elongated arcing fault, etc.
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2.12. SUMMARY

In this Chapter, theoretical review of automatic reclosing technique including its

history, principles of operation, associated transmission line faults, modes of

operation, operating features, its benefits and existing challenges have been dealt in

Sections 2.1 through 2.9. Previous works to improve the performance of conventional

reclosing technique have been also discussed in detail. In connection to these, the

drawbacks and disadvantages of the previously proposed works with regard to the

automatic reclosing flaws have been pointed out in Section 2.10. The Chapter

concluded with the proposed method to mitigate the existing problems of automatic

reclosing.
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CHAPTER THREE

ARTIFICIAL NEURAL NETWORKS AND TAGUCHI'S OPTIMIZATION

METHODS -THEORETICAL REVIEW

3.1. INTRODUCTION

Various optimization techniques have been applied to solve power system problems

so far. Among these, mathematical optimization methods have been used over the

years for many power systems planning, operation, and control problems.

Mathematical formulations of real-world problems are derived under certain

assumptions, and even with these assumptions, the solution to problems in large-scale

power systems is not simple. On the other hand, there are many uncertainties in power

system problems because power systems are large, complex, and geographically

widely distributed. It is desirable that solutions of power system problems should be

optimum globally, but solutions searched by mathematical optimizations are usually

optima locally. These facts make it difficult to deal effectively with many power

system problems through strict mathematical formulation alone.

Artificial intelligences have been widely applied to solve many real world problems.

The wide applications of artificial intelligence have led many researchers to

investigate its applications in power system engineering [S. Kak, 1998]. Therefore,

artificial intelligence (Al) techniques such as expert systems (ES), artificial neural

network (ANN), genetic algorithm (GA) and fuzzy logic, which promise a global

optimum or nearly so, have emerged in recent years in power systems as a

complement tool to mathematical approaches. Artificial Intelligences are among the

techniques widely used in power systems in recent years which have clearly

demonstrated their ability in solving some long standing problems where conventional

techniques have had difficulty or have been unable to meet functional requirements.

They have been proposed and implemented for different applications in power

systems including fault detection and classification, fault direction discrimination,

fault location, machine diagnosis, power system control and protection, etc. [R.C.

Bansal, 2005]. In general, recent works on wide areas of power system prove the
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versatility of AI's in solving power system problems. The detailed explanation of

each of the above-mentioned artificial intelligence tools (other than ANNs), and their

applications to electric power systems is beyond the scope of this thesis.

As mentioned in Chapter 2, ANNs have been employed in this research work for

tackling the problem which this thesis is based on. But before the detailed use of

ANNs in this study are presented, it is imperative to present a brief review of ANNs.

This Chapter presents a theoretical review of ANNs, discusses the details of three

algorithms selected for training the neural network, namely, standard Error Back-

Propagation (EBP), Levenberg-Marquardt (LM) and Resilient Back-Propagation

(RPROP). In addition, it gives details about the useful optimization technique -

Taguchi's Methodology (TM), which is helpful in optimizing certain parameters of

the neural network and its training algorithm.

3.2. ARTIFICIAL NEURAL NETWORKS

3.2.1. Basic Concepts

An ANN is a powerful data modeling tool that is able to capture and represent

complex input/output relationships. The motivation for the development of neural

network technology is stemmed from the desire to develop an artificial system that

could perform intelligent tasks similar to those performed by the human brain. This is

based on a parallel distributed information processing structure consisting of

processing units or neurons each of which perform two functions: aggregation of its

inputs from other neurons or the external environment, and generation of an output

from the aggregated inputs. These units, working in unison to solve specific problems,

are interconnected via unidirectional signal channels called connections. In other

words, an ANN is an interconnected group of artificial neurons that uses a

mathematical or computational model for information processing based on a

connectionist approach to computation. Each processing unit has a single output

connection that branches into as many collateral connections as desired; each carries

the same signal - the processing element output signal, which can be of any
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mathematical type desired. A connection between a pair of neurons has an associated

numerical strength called synaptic weight [R.D. Reeds and RJ. Marks, 1999].

Neural networks are different from conventional computing or statistical systems. As

stated earlier, the networks were inspired by the structure and operation of biological

neurons. They are composed of many simple elements called neurons (processing

units) that are interconnected by links and act like axons to determine an empirical

relationship between the inputs and outputs ofa given system. Knowledge is stored in

the topology of the network itself rather than in explicitly coded data structures. The

simple processing units or artificial neurons, joined through numerous

interconnections, are usually organized into groups called layers. The input layer is

connected to the output layer through junctions with a hidden layer or a number of

hidden layers.

Basically, one of the most popular neural network paradigms is the feed-forward

neural network. In a feed-forward neural network, the neurons are usually arranged in

layers [Battiti R., 1992]. A feed-forward neural network is denoted

asNj x A^ x...xNi x...NM xN0> where:

• Nj represents the number of input units;

• M represents the number ofhidden layers;

• Nt represents the number ofunits from the hidden layer, i = 1, 2, ..., M;

• N0 represents the number ofoutput units.

The feed-forward neural networks are the first and simplest type of neural networks.

In this network, the information moves in only one direction which is forward from

the input nodes, through the hidden nodes and to the output nodes. The connections

are formed by connecting each of the nodes in a given layer to all of the neurons in

the next layer. In this way, every node in a given layer is connected to every other

node in the next layer. Usually there are at least three layers [Yam and Chow, 1999]

to a feed-forward network which are an input layer, a hidden layer, and an output

layer. By convention, the input layer does not count, since the input units are not

processing units, they simply pass on the input vector x. It is where the data is fed into

the network via the hidden layer. The hidden layer, in turn, feeds into the output layer.
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The actual processing in the network occurs in the nodes of the hidden layer and the

output layer. Units from the hidden layers and output layer are, however, processing

units. Multiple layers arrangement of a typical and fully connected 2-layer feed

forward interconnected neural network with 5x7x1 structure is shown in Figure 3.1.

It consists ofan input layer, an output layer, and one hidden layer with different roles.

Each connecting line has an associated weight, and each processing unit has an

activation function, y(*X linked with it.

INPUT ,

DATA \

Input to

hidden

weights

Hidden to

outputweights

Figure 3.1: A 5x7x1feed-forward neural network

OUTPUT

DATA

Activation Functions —Activation functions are functions needed specially to

introduce nonlinearity for the hidden units into the network. Without nonlinearity,

hidden units would not make networks more powerful than just plain networks (which

do not have any hidden units, just input and output units). The reason is that a linear

function of linear functions is again a linear function. However, it is the nonlinearity

(i.e. the capability to represent nonlinear functions) that makes multilayer networks so

powerful. Some of the nonlinear functions frequently used in neural networks are

shown in Table 3.1. For some learning algorithms, the activation function must be

differentiate, and it helps if the function is bounded; the sigmoid functions such as

logistic, hyperbolic tangent and Gaussian function are the most common choices.
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Functions such as hyperbolic tangent or arctangent that produce both positive and

negative values tend to yield faster training than functions that produce only positive

values such as logistic, because of better numerical conditioning. Another benefit

from these functions is typically the squashing effect to the output of each unit which

an activation function is associated with. In other words, they limit the output of each

processing unit to a range between either 0 and 1 or -1 and 1 depending on the kind of

activation function used.

Table 3.1: Some activationfunctions ofartificial neural networks

Function

Linear

Logistic

Definition

X

1

Range
(-CO,+CO)

(0,+l)

l + e~x

Hyperbolic tangent
ex-e~x (-1,+1)

ex+e~x

Negative exponential e~x (0, +CO)

Inverse tangent

Softmax

arctan(x)

ex

(-tu/2,+ 7t/2)
(0,+l)

5>*
T T *i

X (0,+l)
Unit sum

£*
Square root Vx

(0,-h»)

Sine sin(x)

-l;;c<-l
[0.+1]

t-1,+1]

Ramp x;-l <x <+l

+ \;x>+\

Step (threshold)
0;x<0

+ l;x>0

[0,+l]

For hidden units, sigmoid activation functions are usually preferable to threshold

activation functions. It has been verified that networks with threshold units are

difficult to train because the error function is stepwise constant, hence the gradient

either does not exist or is zero, making it impossible to use back-propagation or more
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efficient gradient-based training methods Even for training methods that do not use

gradients —such as simulated annealing and genetic algorithms —sigmoid units are

easier to train than threshold units. This is due to the fact that with sigmoid units, a

small change in the weights will usually produce a change in the outputs, which

makes it possible to tell whether that change in the weights is good or bad. With

threshold units, a small change in the weights will often produce no change in the

outputs. Details of these terminologies will be discussed in the next Subsections.

For the output units, an activation function suited to the distribution of the target

values is usually chosen. For instance,

• For binary (0/1) targets, the logistic function is an excellent choice.

• For categorical targets using 1-of-C coding, the softmax activation function is

the logical extension of the logistic function.

• For continuous-valued targets with a bounded range, the logistic and

hyperbolic tangent functions can be used, provided that either the outputs are

scaled to the range of the targets or the targets to the range of the output

activation function. Technically speaking, scaling means multiplying by and

adding appropriate constants.

• If the target values are positive but have no known upper bound, an

exponential output activation function is usually used.

• For continuous-valued targets with no known bounds, the linear activation

function is used [Jordan, 1995],

3.2.2. The Mathematical Model of ANN

When creating a functional model of the biological neuron, there are three basic

components of importance. First, the synapses of the neuron are modeled as weights.

The strength of the connection between an input and a neuron is noted by the value of

the weight. Negative weight values reflect inhibitory connections, while positive

values designate excitatory connections [S. Haykin, 1998)]. The next two components

model the actual activity within the neuron. This is demonstrated by the single neuron

connection phenomenon as in Figure 3.2. The output from a given neuron is

calculated by applying a transfer function to a weighted summation of its input to give
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an output, which can serve as input to other neurons, as shown in Equation (3.1).

Thus, an adder sums up all the inputs modified by their respective weights, which is

referred to as linear combination. Finally, an activation function, usually associated to

each processing unit in the neuralnetwork, controls the amplitude of the output of the

neuron. As mentioned previously, the activation function acts as a squashing function,

such that the output of a neuron in a neural network is between certain values. An

acceptable range of the output, which depends up on the activation, lies between 0 and

1 (refer to Equation (3.1)) or between-1 and+l[Gharbi, 1997].

fij

x}

X2

x3 ^ x J unit

Xi

Figure 3.2: A single processing unit

A simple yet useful mathematical model which shows the net input toy* processing

unit is given by Equation (3.1).

netJ=^d-wvxi+fiJ (3.1)

where xf 's are the outputs from the previous layer, wy is the weight (connection

strength) of the link connecting unit / to unit j, and fi} is the bias of unitj, which

determines the location of the activation function on the x-axis. When logistic

activation function is employed, the activation output value ofunity is represented by

Equation (3.2). As a matter of fact, net/ is now mapped in to a value aj which is

squashedas a result ofthe activation fiinction into 0 < a,j< 1.
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a, =f(netf) =
l + e

(3-2)

3.2.3. Classification of ANNs

ANNs can be classified as either feed-forward, recurrent, modular, and stochastic or

many others, depending on how data is processed through the network. Another way

ofclassifying ANNs is by their method of learning, as some ANN employs supervised

learning while others are referred to as unsupervised or self-organizing. Yet, there are

other categories of ANNs which impart reinforcement learning method. Each of these

categories is explained below.

SupervisedLearning orAssociative Learning -The supervised ANN requires a set of

inputs and matching output patterns provided for its training. During the training, the

output from the ANN is compared with the desired output (target) and the difference

(error) is reduced by employing some training algorithms. This training is repeated till

the actual output acquires an acceptable level. These input-output pairs can be

provided by an external teacher, or by the system which contains the neural network

(self-supervised) as shown in Figure 3.3. The most common neural network model,

feed-forward network multilayer perceptional (MLP), is known as a supervised

network because it requires a desired output in order to learn. The goal ofthis type of

network is to create a model that correctly maps the input to the output using

historical data so that the model can then be used to produce the output when the

desired output is unknown.

Input
Features

Neural

Network

Weight/Bias
adjustment

Supervised
Learning Algorithm <h

Error

vector

Output
Features

Figure 3.3: Supervisedneural network learning scheme
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Unsupervised Learning or Self-organization -The artificial neural network which

does not require a supervisor or teacher for training is in this category. In competitive

or unsupervised learning units of the output layer compete for the chance to respond

to a given input pattern. In this paradigm, the system is supposed to discover

statistically salient features of the input population. Unlike the supervised learning

paradigm, there is no a priori set of categories into which the patterns are to be

classified; rather the system must develop its own representation of the input stimuli.

Reinforcement Learning —This type of learning may be consideredas an intermediate

form of the above two types of learning. Here, the learning machine does some action

on the environment and gets a feedback response from the environment. The learning

system grades its action good (rewarding) or bad (punishable) based on the

environmental response and accordingly adjusts its parameters. Generally, parameter

adjustment is continued until an equilibrium state occurs, following which there will

be no more changes in its parameters. The self-organizing neural learning may be

categorized under this type of learning.

3.2.4. Normalization and ANN Training

Normalization —is a process of scaling the numbers in a data set into a specified

range, to improve the accuracy of the subsequent numeric computarange,

computations. Normalization of input and output data is very critical. The values in

the external data files are not always well suited for directly copying to network

activities. This is because the activities in the network are normally in the range

[-1,1], and if some activities differ significantly from this behavior, training

performance is often degraded. Hence, without normalization, there is a tendencythat

the signal or value of large magnitude will be too dominating. If the input and output

variables are not of the same order of magnitude, some variables may appear to have

more significance than they actually do. The training algorithm has to compensate for

order-of-magnitude differences by adjusting the network weights, which is not very

effective in many of the training algorithms such as back propagation algorithm. For

example, if one input variable has a value of thousands and other input variable has a
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value in tens, the assigned weight for the second variable entering a node of hidden

layer 1 must be much greater than that for the first. In addition, typical transfer

functions such as a sigmoid function, or hyperbolic tangent function, cannot

distinguish between twovalues of inputs whenbothare very large, because bothyield

identical threshold output values of 1.

In general, proper normalization of particularly input data makes training algorithms

numerically robust and leads to a faster convergence. The common normalization

method is to normalize eachpattern in such a way that the minimum value is mapped

to -1 and the maximum value is mapped to +1. In this report, the input data patterns

are normalized between between -1 and +1.

Training (Learning) -is the process of modifying the weights of a neural network in

order to produce a network that performs some function. The goal of learning is to

create a model that correctly maps the input to the output using historical data so that

the model can then be used to produce the output when the desired output is unknown.

This is met by adjusting all the connection weights and biases of the network, so that

the calculated outputs may be approximated by the desired values.

Basically, the development of ANN involves two phases: training or learning phase

and testing phase. Neural networks develop information processing capabilities by

learning from examples called training set (a collection of input-output patterns that

are used to train the network). Hence, the network learns by a process involving the

modification of the connection weights between neurons and layers. As soon as the

network has learnt the problem, it is tested with new unknown patterns, and its

efficiency is checked.

As mentioned previously, learning techniques can be either supervised or

unsupervised. Supervised learning requires a set of examples for which the desired

network response is known. The learning process consists then in adapting the

network in a way that it will produce the correct response for the set ofexamples. The

resulting network should then be able to generalize (give a good response) when

presented with cases not found in the set of examples. Whereas, in unsupervised

learning, the neural network is autonomous; it processes the data it is presented with,
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finds out about some of the properties of the data set, and learns to reflect these

properties in its output. What exactly these properties are, that network can learn to

recognize, depends on the particular network model and learning method.

The supervised learning type has been utilized in this study. Hence, all explanations

following this will be based on this category.

The objective of different supervised learning algorithms is the iterative optimization

of a so called error function representing a measure of the performance of the

network. For obvious reason, the training process requires a proper set of data, i.e.

input and target output, and a proper mapping of the input to the output. The error

function that is usuallyused for training process is defined as the mean square sum of

differences between the values of the output units of the network and the desired

target values, calculated for the whole input pattern set. More specifically, the error

for a pattern/? is given by Equation (3.3):

£,=IX,-^)2 (3.3)

where dpj and apj are the target and the actual response values of7th output neuron

corresponding to the patternp.

Thus, the total mean square error and the root mean square error (a typical

performance function that is used for training feed forwardneural networks) are given

as in Equations (3.4) and (3.5), respectively.

RMSE= —^— (3.5)

where P is the number ofthe training patterns and No is the number ofoutputs.

Duringtraining process, a set ofpatternexamples is used, each example consisting of

a pair with the input and correspondingtarget output. The patterns are presented to the

network sequentially, in an iterative manner, the appropriate weightcorrections being
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performed during the process to adapt the network to the desired behavior [Demuth

and Beale, 2002]. This iteration process continues until the connection weight values

allow the network to perform the required mapping. Each presentation of the whole

pattern set is named an epoch. The iteration process is governed by different types of

training algorithms which will be discussed in the following subsection.

3.2.5. Training Algorithms

3.2.5.1. Error Back-Propagation (EBP) Algorithm

One of the most popular supervised learning algorithms for feed-forward neural

networks is error back-propagation [Minai A., 1990] and [Battiti R., 1992]. It is a

supervised learning method, a multilayer feed-forward network with hidden layers

between the input and output, and is an implementation of the delta rule [Osman and

AI-MArhoun, 2002]. It requires a teacher that knows, or can calculate, the desired

output for any given input. It is the most useful algorithm for feed forward networks

(networks that have no feedback or simply, that have no connections that loop).

With back-propagation, the input data is repeatedly presented to the neural network.

With each presentation, the output of the neural network is compared to the desired

output, and an error is computed. This error is then fed back (back-propagated) to the

neural network and used to adjust the weights such that the error decreases with each

iteration and the neural model gets closer and closer to producing the desired output.

The simplest implementation of back propagation learning algorithm is the network

weights and biases updates in the direction of the negative gradient that the

performance function decreases most rapidly. Thus, the minimization of the error

function is carried out using a gradient-descent technique. The necessary corrections

to the weights ofthe network for each moment t are obtained by calculating the partial

derivatives of the error function in relation to each weight wtj. A gradient vector

representing the steepest increasing direction in the weight space is thus obtained. The

next step is to compute the resulting weight update. In its simplest form, the weight

update is a scaled step in the opposite direction of the gradient. Hence, the weight

update rule is given by Equation (3.6).
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dE
A/,wff(0 = -*7*-=-£-(0 (3-6)

dwu

where n is a parameter determining the step size, and is called the learning rate whose

value is usually selected with in the range of 0 and 1 i.e. 77 e (0,1). A momentum is

usually used with the idea of incorporating in the present weight update, some

influence of the past iteration. Thus, the weight update rule becomes as in Equations

(3.7) and (3.8).

9EnApwv(t) =^j*-^-(t)+a*Apwv(t-l) (3.7)

"V <* + !) = w* CO + A™v CO (3-8)

where a is the momentum term and determines the amount of influence from the

previous iteration to the present one, and 77 is the learning rate. Both these parameters

are useful ingredients in the overall performance of the neural network training;

hence, their values should be carefully chosen. The overall flow chart of error back-

propagation is depicted in Figure 3.4.

Figure 3.4 implies that the errors (and therefore the learning) propagate backwards

from the output nodes to the inner nodes as the long as the stopping criterion

(minimum error or maximum number of epochs) is not satisfied. So, technically

speaking, back-propagation is used to calculate the gradient of the error of the

network with respect to the network's modifiable weights. And, the weight updates are

based on the equations explained previously (Equations 3.7 through 3.9).

It is important to note that back propagation networks are necessarily multilayer

perceptron (usually with one input, one hidden, and one output layer). In order for the

hidden layer to serve any useful function, multilayer networks must have non-linear

activation functions for the multiple layers: a multilayer network using only linear

activation functions is equivalent to some single layer, linear network. Non-linear

activation fiinctions that are commonly used are included in Table 3.1 of Subsection

3.2.1.
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Figure 3.4:A trainingprocessflowchart oferror backpropagation algorithm

Other than the standard error back propagation algorithm, there are various back

propagation algorithms such as Scaled Conjugate Gradient (SCG), Levenberg-

Marquardt (LM) and Resilient Back-propagation (RPROP). These algorithms proved

a much improved training performance overthe standard EBP, andare more practiced

nowadays. Among these, LM is the fastest training algorithm for networks of

moderate size, and it has the memory reduction feature to be used whenthe training

set is large. LM and RPROP willbe discussed in detail in the following subsections.

3.2.5.2. The Resilient Back-propagation algorithm (RPROP)

RPROP algorithm is a local adaptive learning scheme, performing supervised batch

learning in feed-forward neural networks. It is a very promising algorithm for feed

forward neural networks, introduced by [M. Riedmiller, 1993]. The basic principle of

RPROP is to eliminate the harmful influence of the size of the partial derivative on

the weight step. As a consequence, only the sign of the derivative is considered to
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indicate the direction of the weight update. To achieve this, for each weight wjy, its

individual update-value Ay{t) is introduced which solely determines the size of the

weight-update.

A second learning rule is introduced. This determines the evolution of the update-

valueAtj{t). This estimation is based on the observed behavior of the partial

derivative during two successive weight-steps as in Equation (3.9).

vo=-

t,+-Av(t-i), if |^(o-!^-i)>o

7--A,(/-l), if -j^(ty-?EL(t-Y)<0

A,(?-l), else

(3.9)

where 0 < rf < 1< 77*. In words, the adaptation rule works as follows. Every time the

partial derivative of the corresponding weight wi} changes its sign, which indicates

that the last update was too big and the algorithm has jumped over a local minimum,

the update-value Ajj (?) is decreased bythe factor rf. Ifthe derivative retains its sign,

the update-value is slightly increased in order to accelerate convergence in shallow

regions.

Once the update-value for each weight is adapted, the weight-update itself follows a

very simple rule: if the derivative is positive (increasing error), the weight is

decreased by its update-value, if the derivative is negative, the update-value is added

as shown in Equations (3.10) and (3.11).

Aw„(0 = '

-Av(t\ if
dE

dw;.
(0>o

M0» if
dE

dwsl
(0<o

0, else

wtJ (/-hi)- w& (O + A.-wiy CO

(3.10)

(3.11)
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However, there is one exception. If the partial derivative changes sign, that is the

previous step was too large and the minimum was missed, the previous weight-update

is reverted as in Equation (3.12).

Anv(0 =-AWff(*-l) if -^-(O-^(*-l)<0 (3.12)

Due to that 'backtracking' weight-step, the derivative is supposed to change its sign

once again in the following step. In order to avoid a double punishment ofthe update-

value, there should be no adaptation of the update-value in the succeeding step. In

practice, this can be done by setting dE ^ i)=q in the A/y update-rule above. The

partial derivative ofthe total error is given by Equation (3.13).

Hence, the partial derivatives of the errors must be accumulated for all P training

patterns. This means that the weights are updated only after the presentation of all

training patterns.

[M. Riedmiller, 1994] introduced a weight-decay parameters. This parameter

determines the relationship of two goals, namely, to reduce the output error (the

standard goal) and to reduce the size of the weights (to improve generalization). The

composite error function is given by Equation (3.14).

E=~± £<«**-«„>'+T^-Z^ (3-14)

The weight-decay parameter a denotes the exponent, to allow comfortable input of

very small values. Hence, a choice of a = 4 corresponds to a ratio of weight decay

term to output error of 1:10000.

Parameter Settings —In order to reduce the number of freely adjustable parameters,

often leading to a tedious search in parameter space, the increase and decrease factors

rf and 77" are set to values: rf< 1.0 and ?/+>1.0. At the beginning of the
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algorithm, all update-values Ajy areset to an initial value A0 whose value is adapted

as learning proceeds. It is evident that carefiil choice ofthese parameters improves the

training performance of learning ability of the neural network. In addition, to prevent

the weights from becoming too large, the maximum weight-step determined by the

size of the update-value is limited. The upper bound is set to A^, which is set

somewhat arbitrarily to Amax = 50.0. Usually, the convergence is rather insensitive

to this parameter as well. Theminimum stepsize is constantly fixed to A^ =\e~6.

The following pseudo-code fragment shows the kernel of the RPROP adaptation and

learning process. The minimum (maximum) operator is supposed to deliver the

minimum (maximum) of two numbers; the sign operator returns +1 if the argument is

positive, -1 ifthe argument is negative and 0, otherwise.

V/,7':A,(0-A0;V7,7:-— (/-1) = 0

REPEAT

dE
Compute Gradient (/)

dwtJ

For all weights and biases {

IF
dE dE
— (f-1)*—(0>o
dwiJ dwy

THEN {A,(0 =min(A,(/-l)*7+,Amax)

A^ (O = -signi— CO) * \ CO&wtJ

AWiJ. (* +1) = Awff (O + Awff CO

dE dE
^—(>-!)=— (0dwy dw0.

}



ELSE IF
dE dE

(,_1)* (0<0
dw dw

THEN{A,(0 = max(A,(/-l)*77^,Amin)

dE
-(*-!) = 0

dw;

ELSE IF
3E dE

(/-!)*-—(0 = 0
5w Sw;.

as
THEN {Aw, (0 - ~sign{—~ CO) * A, (*)

Aw?(f +1) = Aw, CO + Aw? (?)

dw. dw:.
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}

UNTIL (convergence criterion is met)

To sum up, the basic principle ofRPROP is the direct adaptation of the weight update

value Ay. In contrast to learning rate based algorithms (as for example gradient

descent), RPROP modifies the size of the weight step directly by introducing the

concept of resilient update-values. As a result, the adaptation effort is not blurred by

unforeseeable gradient behavior. Due to the clarity and simplicity of the learning

laws, there is only a slight expense in computation compared with ordinary back-

propagation. Besides fast convergence, one of the main advantages of RPROP lies in

the feet that for many problems no choice of parameters is needed at all to obtain

optimal or at least nearly optimal convergence times.

Another often discussed aspect of common gradient descent is that the size of the

derivative decreases exponentially with the distance between the weight and the

output-layer, due to the limiting influence of the slope of the activation function.
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Consequently, weights far away from the output layer are less modified and do learn

much slower. Using RPROP, the size of the weight step is only dependent on the

sequenceof signs, not on the magnitude of the derivative. For that reason, learning is

spread equallyall over the entire network; weights near the input layer have the equal

chance to grow and learn as weights near the output layer.

3.2.5.3. The Levenberg Marquardt (LM) Algorithm

The Levenberg-Marquardt algorithm is an iterative technique that locates the

minimum of a multivariate fiinction that is expressed as the sum of squares of non

linear real-valued functions. It has become a standard technique for non-linear least-

squares problems [H.D. Mittelmann, 2004], widely adopted in a broad spectrum of

disciplines. LM can be thought ofas a combination ofsteepest descent and the Gauss-

Newton method [K. Madsen, 2004]. When the current solution is far from the correct

one, the algorithm behaves like a steepest descent method: slow, but guaranteed to

converge. When the current solution is close to the correct solution, it becomes a

Gauss-Newton method. Next, a short description of the LM algorithm based on the

material in [K. Madsen, 2004] is supplied.

Gradient-based training algorithms, like back-propagation, are most commonly used

by researchers. They are not efficient due to the fact that the gradient vanishes at the

solution. Hessian-based algorithms used [Bartolac et al., 1993] allow the network to

learn more subtle features of a complicated mapping. The training process converges

quickly as the solution is approached, because the Hessian does not vanish at the

solution. The LM algorithm is basically a Hessian-based algorithm for nonlinear least

squares optimization, and is widely accepted as the most efficient one in the sense of

realization accuracy.

In LM algorithm, the performance index F{w) to be minimized is defined as the sum

of squared errors between the target outputs and the actual outputs as in

Equation (3.15).

FW-TLTLK-eJ (3-15)
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where w= [w} w2 ... wN]T consists ofall weights of the network, dkp is the desired
value of the A* output and the plh pattern, okp is the actual (target) value of the klh
output and the//'' pattern, A?" is the number ofweights, P is the number ofpatterns, and
K is the number of network outputs. Equivalently, Equation (3.15) canberewritten as

in Equation (3.16).

F(w) = etE (3.16)

where E is the cumulative error vector given by E = [en ... eki, e12 ... ek2, ... e1P... e^f
for all patterns, and ekp = dkp - o¥, k = 1, 2... K, p = 1, 2 ... P. And, the increment of

weights Aw, as dictated by Levenberg Marquardt, can be obtained as in

Equation (3.17).

Avu = [JTJ -+- JUT1 JTE (3.17)

where J is Jacobian matrix defined as in Equation (3.18), X is learning parameter

which is to be updated using either a decay ratey? (0 < J3 <1) or an increment X+ and

decrement X factors depending on the outcome; / is identity matrix. The updated
weightsare expressed by Equations (3.19) and (3.20).

/Cw) =

de2t

Sen
div2

dg2i

dw2 '"

dwN

d\vN

de±P 9etP de1P

de2P
dw2
de2P

dwN
fle2P

dw^ dw2 awR

deKP deKP de.<KP

Wt+l = Wt + Aw,

^r+i ="wt +LJtTJt +AtI]lJtTEt

(3.18)

(3.19)

(3.20)
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Figure 3.5 shows the flowchart for training a neural network using Levenberg-

Marquardt algorithm.
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Figure 3.5: Trainingflowchart ofLM algorithm

The steps involved in the training, which can also be inferred from Figure 3.5, are

summarized as follows:

• Initialize the weights and parameter X.

• Present all inputs to the network and compute the corresponding network

outputs and errors. Compute the mean square error over all inputs as in

Equation (3.16).

• Compute the Jacobian matrix, J(w) where w represents the weights and biases

ofthe network.

• Solve the Levenberg-Marquardt weight update equation (Equation 3.17) to

obtain Aw.
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• Recompute the weight update using Equations (3.19) and (3.20), and evaluate

the error at the new weight vector. If the error has increased as a result of the

update, then retract the step (i.e. reset the weights to their previous values) and

increase Xby a factor of X+ (usually taken to be 10). Then go to step 3 and try

an update again. If the error has decreased as a result of the update i.e. if this

new error is smaller than that computed in step 2, then accept the step and keep

the weights at their newvalues, reduceXby a factor ofX and go back to step 2.

Note: the parameters X and A+ are called decrement and increment factors

respectively, are predefined values set by the user.

• The algorithm is assumed to have converged when the norm of the gradient is

less than some predetermined value, or when the error has been reduced to

some error goal.

Alternatively, the following lines of steps are also equally practiced by many scholars

for training an artificial neural network using LM algorithm. The idea is similar to the

steps mentioned earher, except that a new parameter called decay rate p is introduced

here. In particular, X is multiplied by decay rate p (0 < p < 1) whenever F(w)

decreases, whereas Xis divided by p whenever F(w) increases in a new step. In short,

the steps followed by this method are shown below.

• Initialize the weights and parameter X;

• Compute the sum ofthe squared errors over all inputs F{w) ;

• Obtain the increment ofweights Aw;

• Recompute the sum of squared errors F{w); using w + Aw as the trial w, and

evaluate

IF {trial F{w) < F{w) in step 2} THEN:

{w = w + Aw ;

X= X*p (0< p <1); Go back to step 2}

ELSE: {X= X/P; Go back to step 4} END IF

The first approach has been followed in this thesis for training the neural network.
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3.2.6. Advantages and Applications ofANN in Power Systems

In order to find a relationship between input and output data derived from a system, a

more powerful method than the traditional ones are necessary. ANN is an especially

efficient algorithm to approximate any function with finite number of discontinuities

by learning the relationships between input and output vectors [Bozorgmehry et al.,

2005] and [Hagan et al., 1996]. These algorithms can learn from the experiments, and

also are fault tolerant in the sense that they are able to handle noisy and incomplete

data. The ANNs are able to deal with non-linear problems, and once trained can

perform estimation and generalization rapidly [Sozen et al., 2004]. They have been

used to solve complex problems that are difficult to be solved if not impossible by the

conventional approaches, such as control, optimization, pattern recognition,

classification, and so on, specially it is desired to have the minimum difference

between the predicted and observed (actual) outputs [Richon and Laugier, 2003].

The main advantages ofANN are summarized as follows:

• Neural networks are generally fast processing units. Though the neural

network training is generally computationally expensive, it takes negligible

time to take decision based on the training.

• Neural Networks possess learning ability, and represent a complex input-

output relationship in a simple, yet efficient way.

• Neural networks adapt to certain data and do not need to be reprogrammed.

• Neural networks are by and large robust —insensitive to noise factors.

• Neural networks are appropriate for non-linear modeling.

• A neural network can perform tasks that a linear program cannot.

• When an element of the neural network fails, it can continue without any

problem by their parallel nature.

• Neural networks can be implemented in any application without any problem.

Neural networks now operate well with modest computer hardware. Although neural

networks are computationally intensive, the routines have been optimized to the point

that they can now run in reasonable time on personal computers. Neural networks

build informative models while the more conventional models fail to do so. Basically,
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an ANN is configured for a specific application, such as forecasting and prediction or

reconstruction/recognition through learning process that involves adjustments to the

synaptic connections that exist between neurons, hence, can handle complex

interactions. Because of handling very complex interactions, the neural networks can

easily model data, which are too difficult to model traditionally [Osman and Al-

Marhoun, 2002]. The neural networks built models are more reflective of the data

structure and are significantly faster.

In power system, mathematical optimization (algorithmic) methods have been used

over the years for many power systems planning, operation, and control problems.

Mathematical formulations of real-world problems are derived under certain

assumptions, and even with these assumptions; the solution of large-scale power

systems is not simple. On the other hand, there are many uncertainties in power

system problems because power systems are large, complex, and geographically

widely distributed. More recently deregulation of power utilities has introduced new

issues into the existing problems. It is desirable that solution of power system

problems should be optimum globally, but solution searched by mathematical

optimization is normally optimal locally. These facts make it difficult to deal

effectively with many power system problems through strict mathematical

formulation alone.

The electric power industry is currently undergoing an unprecedented reform. One of

the most exciting and potentially profitable recent developments is increasing usage

of artificial intelligence techniques. Networks have been used in a board range of

applications including: pattern classification, pattern recognition, optimization,

prediction and automatic control. Consequently, the application of ANNs in different

power system operation and control strategies has led to acceptable results [K.

Warwick, et al., 1997], [G. Rolim, et al., 2003] and [R. Lukomski, et al., 2003].

Recent developments in the area of Al applications to power systems have showed

that the following fields have attracted the most attention in the past five years: fault

diagnosis/fault location, transient stability, security assessment, load forecasting,

economic dispatch and harmonic analyzing. In general, it has been repeatedly verified



69

by a number of scholars that neural networks can solve complex power system

problems in the easiest and most attractive way.

3.3. OPTIMIZATION METHOD -TAGUCHI'S METHODOLOGY

Taguchi's method, pioneered by Dr. Genichi Taguchi and developed as a standardized

optimization technique of control parameters in process, is based on the statistical

analysis of data and offers a simple means of analysis and optimization of complex

systems. Taguchi method is a scientifically disciplined mechanism for evaluating and

implementing improvements in products, processes, materials, equipment, and

facilities. These improvements are aimed at improving the desired characteristics and

simultaneously reducing the number of defects by studying the key variables

controlling the process and optimizing the procedures or design to yield the best

results.

TM is a statistical method for analyzing experimental data for determining and

optimizing the effects and levels of the various factors (parameters) involved in a

system, allowing this to be done within less experimentation than in traditional

methods. It merges statistical and engineering techniques to increase efficiency and

productivity, and minimize costs of products, and manufacturing processes. TM

further incorporates a method called parameter design for deciding the best optimal

values (levels) of variable control factors which effect final product quality or cost.

TM achieves this by experimenting on orthogonal arrays of the control factors of the

system, and considering the variation of various noise sources. Basically, selection of

an optimal set ofvalues can reduce or minimize the effects of factor errors.

The method is applicable over a wide range of engineering fields that include

processes that manufacture raw materials, sub systems, products for professional and

consumer markets. In fact, the method can be applied to any process be it engineering

fabrication, computer-aided-design, banking and service sectors etc. It has been

verified that it greatly improves engineering productivity [H. R. Lochner, 1990].
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Figure 3.6: A schematic diagram demonstrating the use ofTaguchi's experiment on

various control parameters to minimize the error.

Taguchi method is useful for tuning factors in a given process, that significantly

influence the quality of output/product of the process, for best results with minimum

error. Figure 3.6 is a schematic diagram demonstrating the use of Taguchi's

experiment on various control parameters to minimize the overall error of a system or

process. The diagram signifies that the various control parameters are considered to

greatly affect the output/product of the system or process. Hence, by fine-tuning the

values of these parameters by applying Taguchi's method, an optimal combination

from a set oftheir pre-determined levels, which offers minimum error, is selected.

In general, the total number of combinations is given as in Equation (3.21).

Nc = U (3.21)

where Nc = total number of experiments (combinations)

L = number of levels for each factor

P = number offactors (parameters).

If, for example, there is an experiment requiring 21 factors at 4 different levels, it

would require 421 experiments (= 4.3 x 1012) to investigate all the possible

combinations. Using Taguchi methods, however, only 64 experiments are required.

For this reason, such an array is called a L64 orthogonal array, a type of experiment
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where the columns for the independent variables are "orthogonal" to one another. The

benefits ofsuch experimentation include:

• Conclusions valid over the entire region spanned by the control factors and

their settings;

• Large saving in the experimental effort; and

• Easy analysis.

TM is a handy tool to optimize some decisive parameters in neural networks to

effectively hit the target. For instance, the usual practice to set the number of hidden

layer neurons is 'trial and error'. This practice, however; is inefficient and may not

deliver the optimal solution. In the content of this work, Taguchi's method is used to

optimize the neural network's control parameters of each training algorithm used.

Specifically, the control parameters used in EBP algorithm are number of hidden

neurons {h), learning rate (n) and momentum term (a). Whereas, number of hidden

layer neurons (/*), decay rate (p), and learning parameter (X) are used in LM

algorithm. And, the control parameters used in RPROP algorithm are initial update

value (Ao), increase factor (n+), decrease factor (rf), decay factor (a) and number of

hidden layer neurons (h). Among combinations of certain levels of the control

parameters, the one with the smallest output error is selected after the Taguchi's

experiments.

The standard eight step procedures which Taguchi proposed to apply his method for

optimizing any process are as follows:

• Identify the main function, side effects, and failure mode

• Identify the noise factors, testing conditions, and quality characteristics

• Identify the objective function to be optimized

• Identify the control factors and their levels

• Select the orthogonal array matrix experiment

• Conduct the matrix experiment

• Analyze the data; predict the optimum levels and performance, and

• Perform the verification experiment and plan the future action.
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3.4. SUMMARY

In this Chapter, a review of artificial neural networks fundamental network elements

topology, their applications in power system areas have been discussed. And, some of

the main training methodologies specifically employed in this study, and data pre

processing and post-processing approaches, that help obtain required results from the

neural network, have been described in detail. In addition, in depth analyses of

information on Taguchi's methodology, the procedures followed and its application in

our study have been also discussed.
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CHAPTER FOUR

MODEL POWER SYSTEM SIMULATIONS AND DATA GATHERING

4.1. INTRODUCTION

As explained in the previous Chapters, the study is exclusively based on simulation of

model power system network while due attention is given for validation of the work

with IEEE benchmark electric system network. The simulation process encompasses

simulations of model power system network and neural network. The latter is

discussed in the next Chapter. The overall flow of the simulation work is shown in

Figure 4.1.
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Figure 4.1: Schematic outline ofthe simulation work
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Figure 4.1 illustrates an insight of the system simulation and other intermediate

processes. To generate sufficient number of data patterns for training the neural

network, simulation of a single machine infinite bus (SMIB) power system model by

generating a number of faults on the transmission line followed by capturing signal

from Capacitor Voltage Transformer (CVT) are performed. The signal conditioning

and feature extraction processes are carried out by applying anti-aliasing filter and

Fast Fourier Transform respectively. However, anti-aliasing filter, commonly used in

practical digital sampling systems to avoid acquiring bad data due to noise factors, has

been skipped; yet, many technical articles advised using anti-aliasing filters in

practical implementation [Math H. J. Bollen, et al. 2006].

Following the feature extraction, selection of decisive features which are adequate for

the neural network to identify one fault from the other, and deciding the number of

data patterns required for sufficiently training the neural network are done. Then, the

data pass through normalization process (which is discussed later in next Chapter),

and get break up into sets oftraining, testing and validation data.

On the other hand, the selection of suitable algorithm for training the neural network

is mandatory. To get the neural network effectively trained, and obtain reasonable

outcome with high accuracy, optimization of key parameters of the algorithm and

neural network is required which is met by using a robust system parameters design

methodology -Taguchi's method (Details are discussed in the previous Chapters).

The final steps in the whole process are training, testing and validating the neural

network for perfection, the return being a fully functional neural network which can

make accurate decisions whenever is required.

The simulation results based on SMIB model are validated by following the same

process using benchmark IEEE 9-bus and 14-bus electric power systems. This

Chapter addresses the major power system simulation case studies on SMIB and IEEE

9-bus system models, particularly, for obtaining data patterns for effectively training

the neural network. Moreover, a number of faults are also generated on IEEE 14-bus
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electric power system model for testing the robustness and effectiveness ofthe trained

neural networks in the previous models.

4.2. CASE STUDY I: A SINGLE MACHINE - INFINITE BUS SYSTEM

4.2.1. Introduction

In the first stage of the research work, a single machine connected via an EHV

transmission line to an infinite bus system was considered for simulation purpose.

Before the details of simulation results of the considered system are discussed, it is

important that the concept of infinite bus be understood.

In solving power system problems, it is common practice to assume one bus, usually

the receiver bus, as an infinite bus, as shown in Figure 4.2. An infinite bus is

characterized by the following properties [AtifZaman Khan, 1998 ].

• It has infinite capacity. The capacity of the generators directly connected to

the infinite bus is so large compared to the amount of power supplied by a

transmission system so that a fault at any point on the transmission system will

not cause the receiver end bus voltage to decrease appreciably.

• It is not affected by external fault. Any fault on the transmission system

changes the loading on the generators at the receiver end to a very small

percentage; thus, the change in rotor speed above or below synchronous speed

is negligible. Rotor positions of the synchronous machines directly connected

to the infinite bus are considered to change insignificantly. Under such

circumstances, the fault causes a change in operating angle of the generator

rotors at the sending end ofthe transmission system only.

• It has constant bus voltage andfrequency. All generators, when loaded onto a

power system, will to some degree alter the system's voltage and frequency.

However, when a small generator is loaded on a large system, it will have

negligible effects on the voltage and frequency. Thus, an infinite bus absorbs

or supplies any amount of real and reactive power from or to the transmission
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system without change in bus voltage. As a result, an infinite bus is considered

as an ideal voltage source.

Transmission Infinite Bus

<S^H— H—^
Sending . .

End Receiving
End

Figure 4.2: Single machine infinite bus (SMIB)power system

The concept seems to be ideal. However, the simplicity and overall usefulness of

SMIB model continues to find wide use by scholars in power system studies [H.F.

Wang, et al. 1997]. It has been repeatedly proven that this model is capable of

providing reliable results and outstanding approximations while dealing with a

complex power system grid [Sidhartha Panda, et al. 2007].

4.2.2. Fault Simulations on SMIB Electric Power System Model

As mentioned before, Figure 4.3 shows SMIB model with a 400 kV transmission line

connecting the generator and the infinite bus. This model is primarily considered in

the simulation. Since transmission lines are currently series-compensated to boost

their loading capacity, it was essential to take a series and parallel compensated

transmission line for the intended research work. A standard flat transmission line

tower configuration, whose details of all parameters are given in Appendix A, is set

up for simulation. Added to this is that the frequency-dependent distributed model is

used to represent the line, and for computing the transmission line parameters. The

physical configurations of transmission line conductors and towers are described to

the simulation software, and the frequency-dependent parameters of the line are

calculated via MATLAB SimPowerSystems from the constant line parameters.

The model shown in Figure 4.4 is set up in MATLAB Simulink with a generator,

rated at 1200 MVA and 13.8 kV with reactance to resistance (X/R) ratio of 20. The

sending end is connected via a 400 kV transmission line to the receiving end with

surge impedance loading (SIL) of 15000 MVA [Kimbark, et al. 1998]. The model is

simulated by generating several faults (including line to ground and line to line) using
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MATLAB SimPowerSystems simulation software. The faults are generated at

different locations with variable fault resistance and fault duration. Throughout the

simulation, the ground resistivity is taken to be 100 (im which is practically

acceptable.

6*200 MVA,

13.8 kV, 6*200 MVA,
X/R-20 • 13.8/400 kV

c™o)—i—3£r

100 MW.

Series and parallel
compensated 300 km

Transmission line CB

CVT

CT

-0

Measurements

To co-bus

Figure 4.3: Single linediagram ofline model usedin the study
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Figure 4.4: A setup ofSMIB model in Simulink

The simulation of faults is based on realistic faults model described in [A. T. Johns, et

al. 1994], where a time dependent dynamic resistance representation of a primary arc

and improvements to the dynamic conducting characteristics of secondary arc models

are adopted with emphasis on an empirical approach which is used to determine the

parameters of the models. Fault voltage and current signals are taken from

measurements as shown in Figure 4.3. A typical single phase-to-ground temporary

fault generated at 50 kmaway from the sending end is shown in Figure 4.5. Figure 4.6

demonstrates the permanent fault voltage waveform for three phases to ground fault

generated at midpoint in the transmission line. Extensive study on various fault

waveforms are conducted by taking in to consideration different factors that have
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significant influence on faults; typically, fault inception, fault resistance, fault

duration and location.

Fault Distance -Different types offaults are applied at 10 km intervals on the 300 km

long transmission line. As far as the location is concerned, the faults are observed to

have more total harmonic distortion near the sending end thanthosenearthe receiving

end.

0.15 0;2 0.25

time (seconds)

Figure 4.5: Temporary a-phase-to-groundfault voltage waveform

0.15 0.2 0.25

time (seconds)

Figure 4.6: Permanent three-phase-to-groundfault voltage waveform

Fault Types -The types of faults applied on the transmission lines are:

• Single phase to ground fault,

• Double phase fault,

• Double phase to ground fault, and

• Three phase fault.
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Fault Resistance -The intensity of the fault decreases with the increase in the value

of fault resistance. The cases were simulated by assuming dynamic representation of

fault resistance as based on the reference [A. T. Johns, et al. 1994].

Fault Inception Angle —Fault cases are developed with the fault inception angle

equal to 90° and 0°.

In general, this study endeavored a lot to represent the possible faults that potentially

occur in a power transmission system.

4.2.3. Feature Extraction and Selection

ANN solutions often employ a pre-processing stage of feature extraction. The aim of

feature extraction is to extract valuable information from certain data, in this case the

simulated fault voltage waveforms, which can be used to identify and classify the

input data with sufficient accuracy. In general, feature extraction is an important pre

processing step as selected features must characterize properly a variety of power

systems fault conditions.

For obvious reasons, the simulated fault voltage waveforms should undergo some

form oftransformation so as to help extraction of important features oftemporary and

permanent faults. Most of the earlier approaches using ANN were based on

comparing voltage or current values with a preset threshold, measuring total harmonic

distortion or peak voltage, etc. and features were taken from the time domain analysis

of fault voltages or currents (for more details, please refer to Section 2.10 of

Chapter 2). A closer investigation of all sorts of fault waveforms showed that time

domain analysis is not viable to use it as feature extracting method; nor are the time-

domain waveforms convenient to feed directly as input to a neural network. The faults

generated on a system contain a wide range of frequency components. Hence, certain

parameters of the identified characteristics must be extracted to fully represent the

state of the transmission line. From an analysis point of view, the most distinct

characteristics of the waveforms are those associated with the variation of the

frequency components over time. Thus, the frequency domain decomposition of

features is adopted. The sequential spectral analysis of the fault voltage waveforms is



80

made by Fast Fourier Transform (FFT). FFT processing has been adopted in this work

because of its faster, efficient and more reliable signal processing ability over Discrete

Fourier Transform. Hence, FFT is used to examine the simulated fault voltage

waveforms in frequency model for the feature extraction scheme.

The other challenge here is feature selection process. This is a process of finding the

most significant variables (in this case, the harmonic components), eliminating

redundancy (from the simulated faults) and reducing the dimension of the pattern

vector which simplify the amount of resources required to describe a large set of data

accurately. When performing analysis of complex data, one of the major problems

stems from the number of variables involved. Analysis with a large number of

variables generally requires a large amount of memory, and computation power or a

classification algorithm which overfits the training sample, and generalizes poorly to

new samples. This means when the number of inputs is large, but the number of

training examples is relatively small, it may result in poor generalization performance.

In any way, the data should be rendered into a form which makes the ANN more

effective at making decisions and making computation easier and faster. To facilitate

the decision making process ofthe proposed adaptive auto-reclosure scheme, the fault

voltage waveforms are separated into sets of one cycle windows. An extensive series

of studies using spectrum analysis has shown that for each cycle, certain frequency

components can be selected as the potential features. This process is carried out by

taking information from the energy of the harmonics of the fault voltages. In this

study, the following six parameters of the fault voltage have been clearly identified as

those representing the most significant features of the state ofthe transmission lines:

• DC component, • Third harmonic component,

• Fundamental component, • Fourth harmonic component,

• Second harmonic component, • Fifth harmonic component.

These features are selected because of their importance in the overall fault voltage

waveforms. The features are then used as inputs to the neural network. An extensive
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series of test results have clearly shown the effectiveness of selecting these specific

features.

Typical FFT signals for corresponding temporary single-phase-to-ground and

permanent three-phases-to-ground fault voltages are shown in Figures 4.7 and 4.8

respectively.
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Figure 4.7: FFTofvoltage signalfor single-phase-to-ground temporaryfault

Table 4.1 represents some of the data patterns extracted from the FFT spectra of the

fault voltage signals.



— Signal to analyze
Sj Display selected signst *V_J> Dfsptay FFT window

Selected signal: ZO cycles. FFTwindow (in red): 1 cycles

— FFT analysis

~m O.OOS -

amental (50Hz) = 0.0492 . THD= 65.99%

2 3 4

Harmonic order

Figure 4.8: FFT ofvoltage signalfor three-phases-to-groundpermanentfault

Table 4.1: Some simulated data patterns for training ANNand the target values

DC 50 Hz 100 Hz 150 Hz 200 Hz 250 Hz Target

Temporary fault data pattern

0.537762 6.090184 1.166236 2.624032 0.157442 1.749355 1

1.986682 10.81445 1.985379 4.467102 0.268026 2.978068 1

4.014074 18.54088 0.594530 1.337692 0.080262 0.891795 1

2.339997 16.76247 0.209368 0.471079 0.028265 0.314053 1

Fault free (cleared fault) cata patterns

6.847229 16.15522 0.041376 0.093095 0.005586 0.062063 0

5.925262 16.21791 0.007813 0.017579 0.001055 0.011719 0

4.770965 16.22556 0.006001 0.013502 0.000810 0.009001 0

4.523346 16.22684 0.005688 0.012798 0.000768 0.008532 0

Permanent fault data patterns

0.008609 0.279653 0.064918 0.146066 0.008764 0.097377 1

0.054321 0.150095 0.000888 0.001998 0.000120 0.001332 1

0.027465 0.150511 0.000448 0.001008 0.000060 0.000672 1

0.013359 0.150602 0.000240 0.000539 0.000032 0.000359 1

82
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The FFT output features clearly showed the differences in the spectra ofboth types of

faults, and are useful features for the ANN to recognize the fault type. When the

frequency spectra for different waveforms of data were examined, some important

differences were noticed. For instance, there is more high frequency energy while a

temporary fault exists than when the fault has been extinguished (or while system is

healthy). Higher harmonic components of temporary faults are higher in magnitude

than those ofpermanent and cleared faults while the DC and fundamental components

in temporary fault samples are mostly lower than that of their consequent

extinguished samples i.e. cleared fault cases contain higher system frequency

component and smaller harmonic components. Figure 4.9 shows the energy contained

in each harmonic component for seven temporary fault samples (taken immediately

after fault inception) and corresponding seven cleared fault samples (taken one cycle

after the fault has been extinguished). The stacked column representation of

temporary and cleared fault patterns as shown in Figure 4.9 and the data patterns in

Table 4.1 clearly illustrate the differences previously mentioned.
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Figure 4.9: A stacked column representation oftemporary and clearedfault patterns
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12 3 4 5 6 7

Temporary fault Examples

Figure 4.10: A stacked column representation oftemporaryfaultpatterns

On the other hand, the permanent fault waveforms contain smaller fundamental

frequency component and harmonic components than their temporary counterparts.

To have a closer investigation of the variations ofharmonic components and to easily

identify the differences, the data patterns are separately plotted with stacked column

representation as shown in Figures 4.10 through 4.12.
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Figure 4.11: A stacked column representation ofclearedfaultpatterns
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Figure 4.12: Stacked column representation ofpermanentfaultpatterns

A total of43 patterns have been readied for training the neural network. Among these

patterns, 13 are taken from temporary faults, 13 are taken when the temporary faults

extinguish, and the rest 17 are from permanent faults. In addition to this, 23 different

data has been reserved for testing the neural network after it has been fully optimized

through training. The following Chapter discusses about the issues in the neural

network simulation (optimization + learning) phase.

4.3. CASE STUDY II: IEEE 9-BUS ELECTRIC POWER SYSTEM

4.3.1. Introduction

Figure 4.13 shows the benchmark IEEE 9-bus electric power system model whose

data are taken from [Anderson and Fouad, 2003]. This model has been previously

successfully used in wide range ofpower system analysis. The model consists of three

generators, six transmission lines, three transformers and three loads. The

transmission line extending from busbar 8 to busbar 7 is the line of interest for

simulations during the study. For more generality, it is empirical to consider the

transmission line as series and parallel compensated. Moreover, a standard flat

transmission line tower configuration is considered during the simulation and the



frequency dependent distributed model is used to represent the line.

Load

($h-H£
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m

(3
Figure 4.13: Single line diagram ofan IEEE 9-bus system used in the study

4,3.2. Fault Simulations on IEEE 9-Bus Electric Power System Model

Before the ANN implementation, time domain simulations considering several

contingencies are carried out for the purpose of gathering the training data sets.

Simulations are carried out by using MATLAB-based SimPowerSystems software

package. The model is set up in Simulink as in Appendix D, and is simulated by

generating several faults in the 240 km long transmission line extending from busbar

8 to busbar 7. Certain parameters including fault models are kept the same as that of

SMIB model. An extensive study on various fault waveforms is conducted by taking

into consideration factors that have significant influence on the faults -fault inception,

fault resistance, fault duration and location. Fault voltages are taken from

measurements at busbar B8 and line capacitor voltage transformer (CVT) as shown in

Simulink setup in Appendix D.

A typical single-phase-to-ground temporary fault voltage signal generated at mid way

from the sending end is shown in Figure 4.14. And, Figure 4.15 demonstrates

permanent fault voltage waveform for three-phases-to-ground fault generated at

midpoint ofthe line.

-•

^^-HS>
Load

7

86



87

x 10
1r

I °
o

> -0.5

-1

\MAA.AAAM/VVWww\AAAAAAAAAA^^^WWWXA/~\s~^~

r r <• r r

0.1 0.2 0.3 0.4 0.5

time (seconds)

0.6 0.7

Figure 4.14: A temporary single-phase-to-groundfault voltage
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Figure 4.15: Apermanent three-phase-to-groundfault voltage

4.3.3. Feature Extraction

Before the ANN implementation, time domain simulations considering several

contingencies are carried out for the purpose of gathering the training data sets, which

is termed as feature extraction. The feature extraction process is done in the same way

as in SMIB model. A total of 100 different data patterns are extracted from 70 faults,

30 of which are temporary and the remaining 40 are of permanent type. The other 30

data patterns have been extracted from sample voltage waveforms when the fault has

been extinguished. As mentioned previously (refer to SMIB simulations), the

extraction of features is carried out by taking information from energies ofharmonics

of the fault voltages which is handled with Fast Fourier Transform (FFT). FFT is

employed to examine the simulated fault voltage waveforms for feature extraction

scheme. A typical FFT signal analyzed from a single cycle of a temporary fault

voltage waveform is shown in Figure 4.16.
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Similar to the previous case study, the following six parameters of faulted voltage
waveform have been clearly identified as those representing the most significant
features ofthe state ofthe fault for further investigation:

DC component,

Fundamental component

Secondharmonic component,
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.£. DsBBy selectee signal Q DisplayFFTwindow
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Figure 4.16: FFT analysis ofasample takenfrom temporary 2-phase-to groundfault

The FFT analyses, like that ofprevious model -SMIB, show the differences in the
spectra of the faults in consideration. The differences in magnitude of the energies of
harmonic components were crucial in the overall feature extraction and selection of
key features. From the spectral (FFT) analysis of the fault voltage waveforms, the
following conclusions can be drawn:

• There is more high frequency energy while a temporary fault exists than when
the fault has extinguished. A stacked column plot of energies of harmonic
components versus sample data patterns is shown in Figure 4.17. This
strengthens the fact that there are higher harmonic components in temporary
faults before they vanish out.
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Cleared faults mostly contain higher system (fundamental) frequency component

and DC component than temporary faults. This can be best understood from

Figures 4.17 and 4.18.

Permanent faults contain smaller fundamental component and harmonic

components than temporary ones. This is illustrated by Figures 4.18 and 4.19.
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Figure 4.17: Stacked column representation oftemporary and clearedfault data

Figure 4.18 shows the energy contained in each harmonic component for 60 different

temporary fault samples from which 30 of the sample data are obtained by

immediately examining the first cycle after the fault inception and the remaining 30

data are taken from the 10th cycles where the faults fully extinguish. In other words,

each of the temporary faults starts 2 cycles after initiation of simulation, lasts for

about 3 to 5 cycles, and fully extinguishes after 8th cycle. The 3rd and 10th or 11th

cycles of voltage waveforms are taken as samples for training ANN. Some of the

extracted features for all types of faults (temporary, cleared and permanent) are shown

in Appendix C. As mentioned earlier, (For FFT results of temporary fault before and

after extinction, refer to Appendix E). Both temporary and cleared fault sample data

are also plotted individually in Figures 4.19 and 4.20.
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Figure 4.18: Energies of temporary and clearedfaultsamples vs. location offault
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On the other hand, Figure 4.21 illustrates a plot of the energy contained in each

harmonic component for permanent fault samples with increasing fault location from

the sending end. Similar to the case of temporary faults, permanent fault data have

been taken twice -immediately after the fault inception and ten cycles after the fault
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inception. Unlike to the temporary fault case, the two cases more or less have the

same features. This is due to the fact that a permanent fault persists for a longer time

as opposedto the transient fault case whichusuallyvanishes shortly following a trip.
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The variations in spectra of the sample waveforms of all sorts of faults (temporary,

cleared and permanent) manifest the need for efficient way of training the neural
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network. Table 4.2 tabularizes the maximum and minimum values of the selected 6

input features.

Table 4.2: Maximum and minimum values offeatures extracted

DC 50 Hz 100 Hz 150 Hz 200 Hz 250 Hz

Maximum 6.391146 17.651679 2.466465 3.380952 0.332973 2.253968

Minimum 0.001266 0.150557 0.000010 0.000022 0.000001 0.000015

4.4. CASE STUDY III: IEEE 14-BUS ELECTRIC POWER SYSTEM

4.4.1. Introduction

As a means ofvalidation to the previous works, the research work was continued with

an IEEE 14-bus electric power system model. This benchmark model has been used

extensively by scholars to investigate wide range power system problems [Anderson

and Fouad, 2003]. As shown in Figure 4.22, the system has 2 generators and 3

synchronous compensators and 9 loads connected at its 14 buses.
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Figure 4.22: IEEE 14-bus system
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The data for this model are taken from [M.A. Pai, 2005] for simulation purposes.

And, the line under consideration is the 200 km long transmission line connecting bus

1 to bus 5.

4.4.2. Fault Simulations on IEEE 14-Bus Electric Power System

The IEEE 14-bus model is further investigated by generating 12 distinct faults which

are recorded by varying the location of fault, measured from bus 1, and fault inception

angle as shown in Table 4.3. Simulink setup of this model is presented in

Appendix F. The models of the faults utilized here are as per the models reported in

[A. T. Johns, et al. 1994], where a time dependent dynamic resistance representation

of a primary arc and improvements to the dynamic conducting characteristics of

secondary arc models are adopted with emphasis on an empirical approach which is

used to determine the parameters of the models. Unlike to the previous reported case

studies, high impedance faults (HIFs) are included in this study, just to find out how

the developed algorithm responds to these types of faults. The results are discussed

later.

Table 4.3: Generatedfaults and their variable parameter settings

0)

a

Fault type Fault

location

(km)

Inceptio

n angle

(°)

Ground

resistivity
(Q.m)

i AG (phase A to Ground - temporary) 10 0 100

2 AG HIF (phase A to Ground High Impedance
Fault - permanent)

10 0 100

3 ABG (Phases A and B to Ground -

temporary)

10 0 100

4 AG (phase A to Ground - temporary) 50 90 100

5 ABG (phases A and B to Ground - temporary) 50 90 100

6 ABCG (phases A, B and C to Ground -
permanent)

50 90 100

7 AG (phase A to Ground - permanent) 100 0 100

8 AG HIF (phase A to Ground High Impedance
Fault - permanent)

100 0 100

9 AB (phase A, B and C shot-circuited -
permanent)

100 0 100

10 AG (Phase A to Ground - temporary) 150 90 100
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11 ABG HIF(phases A and B to Ground High
Impedance Fault - permanent)

150 90 100

12 ABG (phases A and B to Ground - temporary) 150 90 100

High impedance faults are kind of faults that do not draw enough current to cause

conventional protective devices to operate; therefore, high impedance faults represent

one of the most difficult protection problems in power system today [A. F. Sultan, et

al. 1992]. These faults often occur when an overhead conductor breaks and falls on

high impedance surface such as asphalt road, sand, cement, grass or tree. When these

types of faults happen, energized high-voltage conductors may fall within reach of

personnel; yet may remain undetected and pose fire hazard. A sample high impedance

single phase to ground fault is illustrated in Figure 4.23.
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Figure 4.23: Recordedtemporary ABG-HIFfault (at 100 km) - IEEE 14-bus system

4.4.3. Feature Extraction and Selection

The feature extraction and selection processes are carried out in the same way as in

the previously reported models. That is, the fault voltage waveforms are fed into FFT

module for spectral analysis and energy contained in the DC, fundamental and the
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first four low frequency harmonics are utilized as inputs to a neural network. Each

generated fault has been analyzed twice (immediately after the fault inception and

after 8 cycles). This means 24 data (2x12 fault cases) have been prepared for further

analysis. For example, the generated temporary fault, shown in Figure 4.24 has been

examined at its 3rd and 10th cycles in which, for the latter case, the fault fully

extinguishes. Table 4.4 shows the data patterns collected by the feature extraction and

selection processes and their corresponding targets (where '0' represents cleared fault

while '1' does mean either permanent or uncleared temporary fault case). In this table,

the corresponding data taken at the 10th cycle of each fault cases are primed (i.e. x*

where x implies the fault case number) to differentiate them from those taken from 3r

cycle of respective fault case. Table 4.4 presents only 21 data patterns. The reason is

that the fault samples taken from the 10th cycle of each of the fault cases 7, 8 and 9

have been disregarded to avoid redundancy, i.e. the patterns obtained from the 10th

cycles of the fault cases have been much more similar to those taken from the 3

cycles.

rd

Figure 4.24: Recorded temporary ABGfault (at 50 km) —IEEE 14-bus system

Table 4.4: Extracted datapatterns (immediately afterfault inception and10' cycles)

Case

Features Neural

outputDC 50 Hz 100 Hz 150 Hz 200 Hz 250 Hz

1 0.543451 6.132426 1.201243 2.589324 0.145265 1.842311 1

1* 4.770965 16.22556 0.006001 0.013502 0.000810 0.009001 0

2 1.243620 10.43259 0.114500 0.154326 0.009260 0.102884 1

2' 1.199520 11.03224 0.124321 0.142657 0.010433 0.104533 1

3 0.702544 4.025434 0.364326 0.804365 0.050254 0.542546 1
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3' 5.032634 16.22413 0.006353 0.014295 0.000858 0.009530 0
4 1.104321 4.265762 0.432254 0.940436 0.054353 0.625435 1

4' 5.310360 16.22248 0.006762 0.015214 0.000913 0.010143 0
5 2.012453 9.998432 2.013432 3.992435 0.239546 2.661623 1

5' 5.606986 16.22053 0.007248 0.016308 0.000978 0.010872 0

6 0.000243 0.195432 0.000004 0.000069 0.000004 0.000046 1
6' 0.006010 0.163493 0.000335 0.000542 0.000033 0.000361 1

7 0.007943 0.302546 0.070453 0.163484 0.009809 0.108989 1

8 0.030154 0.160254 0.000501 0.001016 0.000061 0.000677 1

9 0.015465 0.148974 0.000302 0.000493 0.000030 0.000328 1

10 2.414311 16.43243 0.211532 0.462433 0.030143 0.308288 1

10' 5.925262 16.21791 0.007813 0.017579 0.001055 0.011719 0

11 1.105239 15.00868 0.104325 0.203146 0.012189 0.135430 1

11* 1.053925 14.14982 0.150010 0.210156 0.000116 0.140104 1

12 4.143260 17.42615 0.612623 1.421363 0.081321 0.947575 1

12' 6.847229 16.15522 0.041376 0.093095 0.005586 0.062063 o

4.5. SUMMARY

This Chapter discussed about fault simulations on three different power system
models. And, aspects ofthe waveform capturing methods (from fault voltage signals
generated on a specified transmission line of each model), feature extraction and

selection have been explained plainly in separate sections of this Chapter. Ways of
gathering a number of data patterns each of them possessing painstakingly and
reasonably selected features have been also reported. The features (including the DC,

fundamental, 2nd, 3rd, 4th and 5th harmonic components), which sufficiently and
uniquely represent the condition ofeach fault, have been extracted using Fast Fourier

Transform. A total of 43 data patterns plus 23 dedicated testing data, obtained from

generating a number of faults on SMIB system model, have been prepared for further

processing. From the IEEE 9-Bus system model fault simulations, 100 fault data

patterns have been extracted and readied for training, testing and validating the neural

network at hand. On the other hand, the fault data patterns including high impedance

faults (HIFs) acquired from IEEE 14-bus electric power system model are exclusively
employed for testing the trained and optimized neural network in both SMIB and

IEEE 9-bus electric power system models. The neural network related simulations,
optimization and analysis arediscussed inthe next Chapter (Chapter 5).
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CHAPTER FIVE

DESIGN AND OPTIMIZATION OF ANN USING TAGUCHI'S

METHODOLOGY AND TEST RESULTS

5.1. INTRODUCTION

Ways of obtaining fault data patterns (a total of43 training and 23 testing from SMIB

power system model, and 100 patterns from IEEE 9-bus model) for effectively

training, testing and validating the neural networks under consideration have been

shown in Chapter 4. In addition, 21 fault data patterns including high impedance

faults, generated on IEEE 14-bus model, have been made ready for testing purpose.

Following this is neural network simulation that encompasses training, optimization,

testing, validation and other neural network related works.

The process followed in the optimization of key parameters of training algorithms

(EBP, LM and RPROP) with the help of Taguchi's methodology on both power

system models is thoroughly discussed in this Chapter. In the end, testing results of

the optimized neural network in SMIB system model and a means on how to

accurately determine the fault extinction time are reported.

5.2. ANN SIMULATION AND TAGUCHI'S EXPERIMENTS WITH DATA

FROM SMIB MODEL -CASE STUDY I

5.2.1. Method ofTraining Neural Network

During training, the performance ofANN models does not depend only on the size of

the neural network that is chosen for the problem in hand, but it also depends on the

problem complexity. The problem complexity in turn depends on the type of

functional mapping, accurate and sufficient training data acquired and their effective

way of presentation to ANN during training. During the training phase of ANN,

unknown neural network weights are to be determined.
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The training process is carried out based on the fact that the targetor the outputofthe

neural network is considered to be ' 1' whenever there is a fault and '0' when the fault

is cleared i.e. temporary and permanent fault sample patterns are mapped to ANN

output of' rand cleared fault patterns to ANN outputof'0' as shown in Figure 5.1.
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Figure 5.1: Aplot ofharmonic components ofdatapatterns and their corresponding

neural network outputs

Three algorithms have been used for accurately mapping the input data patterns to

their corresponding output patterns which allows the neural network generate efficient

mappings, make reasonal inference and classification work based on its knowledge.

To facilitate this process, each of the algorithms are coded in MATLAB software with

a graphical user interface (GUI) as in Figures 5.2 and 5.3, from which most of the

important parameters are varied.
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Figure 5.2 is specifically designed to handle the learning process using error back

propagation algorithm. This user friendly GUI gives options for varying the learning

rate, momentum term and number of hidden neurons which are the most important

parameters for effective training process. Additionally, tolerance and speed of
simulation can also be varied to convenient values by a user.

H GUI K)ROPTIMIZATION

Background Colo

Simulation Speed Selector

NEURAL NETOWRK FOR ADAPTIVE

SSEVs logo(eiiochspWfiMti*iO[Ke = O.Offl)l
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Figure 5.2: A GUIfor training neural network
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Figure 5.3: A generalizedGUIfor training neural network

The GUI in Figure 5.3 is, however, well suitable to all of the algorithms. Almost all

the parameters ineach algorithm can be controlled from this GUI including dropdown
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buttons for transfer function and optimization algorithm selection, and normalization

technique. Besides, the GUI reads inputpatterns from a specifiedexcel file and allows

user to select number of inputs.

5.2.2. Normalization of Input Data

Normalization is a process of scaling the numbers in a data set into a specified range,

to improve the accuracy of the subsequent numeric computations. Normalization of

input and output data is very critical. The values in the external data files are not

always well suited for directly copying to network activities. This is because the

activities in the network are normally in the range [-1, 1], and if some activities differ

significantly from this behavior, training performance is often degraded. Hence,

without normalization, there is a tendency that the signal or value of large magnitude

willbe too dominating. Proper normalization of particularly input data makes training

algorithms numerically robust and leads to a faster convergence. The training

performance also depends on the effective way of presentation of data, in which

normalization has to be considered. The common normalization method is to

normalize each pattern in such a way that the minimum value is mapped to -1 and the

maximum value is mapped to +1. Equation (5.1) suggests a method for scaling a

dataset.

Here, xki is the z* element of the k^ scaled input data vector; Xki is the r* element of
the raw data vector; Xkmin is the minimum raw data value; Xkmax is the maximum raw

data value; {Xk max - Xk „/„) is the divsor, normalizing the raw input vector to user-

defined range; Ht is the highest desired input value; L0 is the lowest desired input

value, defining the minimum value to be presented to the neural network; and

{Hi - To) is the scaling factor mapping the raw data into the desired input range. For

example, to scale raw data patterns in the range 0 to 1, we set #, = 1, and L0 = 0. To

scale raw data patterns in the range -1 to+1, weseti^= 1, andZ0 = -l.

Equation (5.1) is adopted in this thesis so that the input data patterns are normalized

between-1 and+1.
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5.2.3. Choice ofTransfer Function

One more big concern that has to be taken into consideration before starting training

the neural network is the choice of transfer (also known as activation) function. As

stated in Chapter 3, if the right transfer functions are not selected, the training process

may be affected, hence, proper mapping of the input with the target outputs may be

degraded. After closely studying the effects of each transfer function (one or hybrid)

on the overall training performance, 'tansig - tansig' transfer function combination,

adopted in this thesis, has given the best results, and worst training performance have

been observed when the hybrid 'purlin - tansig' transfer functions have been utilized

in the hidden and output layers of the neural network (For details of transfer

functions, refer to Chapter 3).

5.2.4. Application ofTaguchi's Methodology for Optimization

As comprehensively explained in Chapter 3, Taguchi's method has been extensively

used in optimizing the parameters which strongly influence the training performance

of a neural network. Most of these parameters are stated earlier in the same Section.

The basic interest here is, however, to present the detailed optimization procedures

followed to tune up the training parameters by employing Taguchi's methodology

(For detail description, refer to previous Chapters).

To setup Taguchi's experiments, certain levels of each parameters are considered. The

choice of these levels does not stand from scratch but it is based on recommended

range of values for each control parameter in each algorithm. The performance can be

measured by several ways such as tracking root mean square error {RMSE), percent

error index {% EI), accuracy, etc. The first two are shown as in Equations (5.2) and

(5-3). pi^w
RMSE = '

Root mean square error, (5.2)

where E is the system error; P is number of patterns, and K is number of network

outputs.
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VV||r —a ||
Error Index (EI), <yoEI = p=1 */' g^ *100% (5.3)

WHr II

where T^ and A& are target and actual values for />* pattern and kth output
respectively; P is number of patterns; andK is number of network outputs.

None of the above approaches takes the speed of training process into account. Time

is an important factor in training. As a matter of fact, fast convergence is required

during training. For this reason, it is required that the training process time (or

equivalently saying the number of epochs) be small while maintaining minimum

overall error. A new performance measuring index obtained by multiplying the

percent EI by the number of epochs, as in Equation (5.4), is used in this report. This

approach considers the combined effect of both % EI and time by effectively

assessing the error index over time.

where s is the modified error index over time, n is the number of epochs (or iterations)

a neural networktook for training, andEI is the overall error index aftertraining.

In this report, Equation (5.4) is adopted to measure the performance of each

combination in Taguchi's experiments. Combinations offactors and levels identical to

the number of Taguchi's orthogonal arrays [Lochner, 1990] are set up and the

corresponding error index{EI) is obtained for each of them. After all, the objectiveof

Taguchi's experiment is to find parameter combinations with minimum error index

based on the notion of Taguchi - "smaller-the-better - SB". This is to mean the

smaller the mean square error, the better the classification performance of the neural

network used in the study. For clarification purpose, Taguchi's experiment of LM

algorithm is presented in this thesis. The control parameters for this algorithm are

initial learning parameter {X0), increment factor (A,+), decrement factor (AT) and

number of hidden units {h). The corresponding levels are shown in Table 5.1. With

number of levels L and control parameters P, there areif number of combinations; in
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this case, 4 = 256 possible combinations. There are two ways in which the optimal

combination which gives the least error (out of these 256 different combinations) is

determined. One way is to conduct experiment on each and every combination,

compare the errors and pickup the one with the least error. It is probablycumbersome

to check all the combinations to come up with the optimal values of the parameters

(especially when the number ofall combinations is too big).

The second way is by using a systematic approach that reduces the number of

experiments to be carried out, largely saves the experimental effort and eases overall

analysis. Taguchi's proposal reasonably reduces the number of experiments, yet

sufficient to make valid conclusions over the entire region spanned by the control

factors and their levels. Taguchi's experiments reduce the number of experiments

required to find the best level for each factor [Lochner H.R., 1990]. The method

works by calculating the statistical properties of orthogonal arrays. For instance, in

this study, it is required to perform experiments on only 16 orthogonal arrays as in

Table 5.2 based on Taguchi's proposal.

As stated earlier, the detailed steps of Taguchi's experiment for LM algorithm are

presented in this report. Four levels, corresponding to the four controlparameters: Ao,

X , X andh, have been selected as shown in Figure 5.4, and the corresponding values

set for the levelsof each of the four control parameters are depicted in Table 5.1. The

challenge here is to obtain a set of values ofeach of the parameters, out of their four

level settings, that gives the minimum error. In Table 5.2, the modified error indices

(s) for each experimental run are shown in its last column.

Table 5.1: Controlparameters andtheir corresponding levelsfor LMA

Controlparameters

level h r X h

1 0.001 2 0.5 4

2 0.01 5 0.2 6

3 0.1 10 0.1 8

4 1.0 20 0.05 10
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Figure 5.4: Schematic ofTaguchi's experimentation on selectedparameters ofLM

Table 5.2: Lie Orthogonal arraysfor 4 parameters each with 4 Levelsand their

corresponding error index andepochsfor LMalgorithm

Experiment Control Parameters % Error

Index, EI (%)
Epoch

(n)
£

Xo r r h

1 1 i i 1 0.0126 11 0.1386
2 1 2 2 2 0.0197 16 0.3152
3 1 3 3 3 0.0981 16 1.5696
4 1 4 4 4 0.0198 10 0.1980
5 2 1 2 3 0.0123 16 0.1968
6 2 2 1 4 0.0169 34 0.5746
7 2 3 4 1 0.0139 9 0.1251
8 2 4 3 2 0.0163 11 0.1793
9 3 1 3 4 0.0468 23 1.0764
10 3 2 4 3 0.0136 16 0.2176
11 3 3 1 2 0.0549 48 2.6352
12 3 4 2 1 0.0472 16 0.7552
13 4 1 4 2 0.0167 10 0.1670
14 4 2 3 1 0.2795 24 6.7080
15 4 3 2 4 0.1347 27 3.6369
16 4 4 1 3 0.2520 58 14.616
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To find the optimal combination of levels, the effect of each level in each factor is

obtained by averaging the resulting error indices which contain the same level and

factor. For example, the net percent error indices (equivalently saying, the net

contribution of that level to the error index) for level 2 of X0 and level 2 of h are

calculated in the following ways:

,g . (0.0123 + 0.0169 + 0.0139 + 0.0163) rt rt„ Ae>
*-»(4))fav«/2=- ~ ^ = 0.01485

4

e - W!ml2 =(00197 +0.0163 +0.0549 +0.Q167) =Q̂
4

Table 5.3 shows the effective error indices for all the levels in each factor, calculated

in the samewayas demonstrated earlier. From this table, it is inferred that the optimal

combination of parameters with smallest effective EI is A,0 X+ X' h = {2 1 4 2}. This

means the optimal combinations of parameters is achieved when the parameters are

set as: A,0 = 0.01, X+ = 2, X' = 0.05 and h = 5."The optimization is not still over. As

stated earlier, in addition to % EI, the number of epochs (iterations) is a decisive

factor in the overall training process. It is required that training be achieved after a

few iterations. Thus, considering the number of iterationas an objective function, the

combination of parameters which gives less numerical iterations to yield the output is

Ao X+ X' h = {1 1 4 1} as shown in Table 5.4. Equivalently saying, a network whose

parameters are set as X0 = 0.001, X+ = 2, X' = 0.05 and h = 4 converges more quickly

than any other combination, hence, the best combination ofparameters.

As stated in the preceeding Chapter, an objective function to get a compromise of the

% EI and number of iterations («) is proposed as in Table 5.2. A column of simple

geometric product % EI and n (which is the modified error index, a) is formed as in

Table 5.2. This product is used to find the optimal combination of parameters which

takes care of the effects of % EI and n. Table 5.5 shows the effect of each level in

each parameter for the error index e calculated in the same way as in Table 5.3.

Following this step, the optimal combination of parameters is {2 1 4 2} which

corresponds to Xo= 0.01, X+= 2, X' = 0.05 and h = 6.



Table 5.3: Average %EIfor eachfactor and level in LM

levels Control Parameters

Xo r X h

1 0.037550 0.022100 0.084100 0.088300

2 0.014850 0.082425 0.053475 0.026900

3 0.040625 0.075400 0.110175 0.094000

4 0.170725 0.083825 0.016000 0.054550
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Table 5.4: Average epochs (n)for each

factor and level in LM

Table 5.5: Average sfor eachfactor and

each level in LM

levels Control Parameters lev

els

Control Parameters
Xo X+ x- h Ao X+ A," h

1 13.25 15.00 37.75 15.00 1 0.5553 0.3947 4.4911 1.931
2 17.50 22.50 18.75 21.25 2 0.2689 1.9538 1.2260 0.824
3 25.75 25.00 18.50 26.50 3 1.1711 1.9917 2.3833 4.150
4 29.75 23.75 11.25 23.50 4 6.2819 3.9371 0.1769 1.371

In a similar way, parameters for Resilient Back-Propagation (RPROP) algorithm

(Ao, r|~, r|+, a and h) are optimized by conducting Taguchi's experiments on 16

orthogonal arrays, Li6. Table 5.6 shows the five control parameters of RPROP

training algorithm, each with four levels. When Taguchi's methodology is applied to

this case, the results are obtained as shown in Table 5.7 from which it can be observed

that Ao rf n ct/z = {2 2323} makes the optimal combination vector with minimal

error index s.

Table 5.6: Controlparameters andtheir corresponding levelsfor RPROP

levels Control Parameters

Ao •n'
+

r\ a h

1 0.01 0.4 1.2 0.001 4

2 0.07 0.5 1.5 0.01 6

3 0.13 0.6 1.8 0.1 8

4 0.20 0.8 2.0 1.0 10



Table 5.7: Average sfor eachfactorandeach levelfor RPROP
levels Control Parameters

A0 Tf
+

TI a h
1 0.13093 0.17195 0.26005 0.11878 0.14198

2 0.06123 0.04370 0.09113 0.07893 0.11990

3 0.07858 0.10173 0.04245 0.14498 0.07210

4 0.16685 0.12020 0.04395 0.09490 0.10360
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Like the other two algorithms, Error Back-Propagation (EBP) algorithm parameters

(n, a and h) each with four levels, as in Table 5.8, are optimized by setting up Li6

Taguchi's orthogonal arrays and experimenting on them. The results from the

experiment, as in Table 5.9, show that n4 oc2 h3 or simply 4 2 3, which corresponds to

a learning rate, r\ = 0.4, momentum term, a = 0.2 and h = 8 hidden neurons, gives the
optimal solution.

Table 5.8: Controlparameters and

theircorrespondinglevelsfor EBP

levels Control Parameters

Tj a h

1 1.0 0.1 4

2 0.8 0.2 6

3 0.6 0.4 8

4 0.4 0.6 10

Table 5.9: Average sfor eachfactor

and each levelfor EBP

levels Control Parameters

T) a h

1 3.7944 3.0456 3.4429

2 4.1783 2.7493 3.7054

3 3.3530 5.0026 2.0677

4 3.0869 3.6151 5.1966

Acomparison ofthe three algorithms shows that both LM and RPROP yield accuracy
greater than 99 % and guarantee fast convergence. Whereas, EBP is by far

substandard to the other two algorithms as far as accuracy and fast convergence are

concerned. This is clearly shown in Table 5.10. An accuracy of96.8699 % is attained

after 10,000 iterations when EBP is used. Whereas, the network required only 2
iterations to converge during the training process by using LM algorithm. Figure 5.5

illustrates how the training performance has been improved after optimization of

parameters with Taguchi's method. The convergence criteria were met after 2

iterations with mean square error of0.0000001.
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Table 5.10: Accuracy and convergence rate of the three algorithms
Algorithm Optimal

combination

Tuned Values Iterations Accuracy

(%)
EBP 423 r| = 0.4, a = 0.2, h = 8 10000 96.8699

LM 21 42 ^o=0.01A+=2,V = 0.05,
h = 6

2 99.9999

RPROP 22323 Ao= 0.07, if= 0.5, tj+= 1.8,
a = 0.01./* = 8

10 99.9989

The optimally trained neural network istested with a separate 23 testing dataset. The

responses (results) to the testing data of each training algorithm are shown in

Appendix B. A maximum of 0.0028 % error has been noticed, which is quite a small
figure for practical reasons.
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Figure 5.5: Training Performance before andafter optimization

5.3. ANN SIMULATION AND TAGUCHI'S EXPERIMENTS WITH DATA

FROM IEEE 9-BUS POWER SYSTEM MODEL

5.3.1. Method ofTraining Neural Network and Normalization

In the previous work, the power system model used in the study of adaptive auto

reclosure was based on a single generator connected via an EHV transmission line to

an infinite bus where the voltage is considered to be constant. The results obtained

from the first case study vindicate the efficacy of the developed AR scheme.
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However, the findings from the previous research works need to be verified with the

consideration of real or benchmark networks. Owing to this fact, a standard IEEE 9-

bus electric power system has been utilized to illustrate the capabilities and
effectiveness of the tool developed inearlier works (refer to Section 5.2).

Similar to the previous case study, the target or the output of the neural network is

considered to be '1' whenever there is a fault and '0' when the fault is cleared as

depicted in Figure 5.6.
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While training the ANN, the algorithms coded in MATLAB with interactive GUI's

from which key parameters are varied, are utilized again in this case study. In

connection to this, the hundred input data patterns are normalized between -1 and +1

for the reasons mentioned under Section 5.2 of this Chapter. They are also randomly

segregated into training, testing and validation data sets. Accordingly, 80 % of them

are dedicated for training purpose while the remaining 20 % are set for testing and

validation. The 'tansig - tansig' combination of transfer fiinction have been utilized in

this case study, similar to the previous SMIB case study.

5.3.2. Taguchi's Experimentation for Optimization

The next procedure is to setup Taguchi's experiments. To proceed further, there is a

need to select key parameters which influence the overall performance of the neural

network during or after training to a great extent. These parameters are identified and

certain levels of values (within previouslyrecommended range of each parameter) are

selected for each of them. Specifically, four levels of values of each parameter are set

and readied for Taguchi's experimentation.

As in the previous case study, the objective function, cited in Equation (5.4), is

adopted in this Section to measure the performance of the ANN for each combination

during the Taguchi's experiments. Combinations of control parameters and levels

identical to the number of Taguchi's orthogonal arrays are set up and the

corresponding percent error indices are determined accordingly [Lochner, 1990]. The

objective of Taguchi's experiment is to find, out of selected control parameters with

certain levels, as in Table 5.11, a combination of parameters which gives rise to

minimum error index and minimum number ofepochs after training the ANN. This is

based on the notion ofTaguchi -"Smaller-the-Better - SB"- which means the smaller

the error, the better the classification performance of the ANN is.

The procedures followed during the Taguchi's experiments are the same for all

algorithms. Hence, to avoid repetitions, Taguchi's experiment for LM algorithm is

presented in this report. As mentioned in Section 5.2 earlier, the identified control

parameters which have significant effect on the overall performance of the neural

network are initial learning parameter {XQ\ increment fiictor (A,+), decrement factor
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{X") and number of hidden units Qi). And, the corresponding 4 levels for each of these

4 control parameters are shown in Table 5.11. In this case, the number of total

combinations is 4 = 256 combinations. However, based on Taguchi's proposed

technique, it is required to conduct experiments only on 16 ofthe combinations which

correspond to Lie orthogonal arrays in this study as in Table 5.12. The values of the

control parameters considered during the Taguchi's experiments are shown in

brackets, and the modified error indices {s) for each Taguchi's experimental run are

shown in the last column ofTable 5.12.

Table 5.11: Control Parameters and Corresponding Levels

Algorithm Control parameters Levels

1 2 3 4

EBP

Momentum (a) 0.1 0.2 0.4 0.6

Learning rate (r)) 1.0 0.8 0.6 0.4

# ofhidden units Qi) 2 3 4 5

LM

Learning factor (Ao) 0.001 0.01 0.1 1.0

"20Increment factor (A/) 2 5 10

Decrement factor (V) 0.5 0.2

3 "

0.1 0.05

# ofbidden units {h) 2 4 5

0.20"

RPROP

Update value(Ao) 0.01 0.07 0.13

Increment factor (rj4) 1.2 1.5 1.8 2.0

Decrement factor (rf) 0.4 0.5 0.6 0.8

Learning rate (a) 0.001 0.01 0.1 1.0

# ofhidden units {h) 2 3 4 5

Table 5.12: Results ofTaguchi's experimentfor LM algorithm

Exp.# Control Parameters (CPs)
e

A-o r r h

1 1 (0.001) 1(2) 1 (0.5) 1(2) 0.45000

2 1 (0.001) 2(5) 2 (0.2) 2(3) 0.19350

3 1 (0.001) 3(10) 3 (0.1) 3(4) 0.30590

4 1 (0.001) 4(20) 4 (0.05) 4(5) 3.06000

5 2 (0.01) 1(2) 2 (0.2) 3(4) 0.10440

6 2 (0.01) 2(5) 1 (0.5) 4(5) 0.20200



7 2(0.01) 3(10) 4 (0.05) 1(2) 4.91000

8 2 (0.01) 4(20) 3(0.1) 2(3) 0.38930

9 3 (0.1) 1(2) 3(0.1) 4(5) 0.18270

10 3 (0.1) 2(5) 4 (0.05) 3(4) 23.62000

11 3(0.1) 3(10) 1(0.5) 2(3) 0.22680

12 3(0.1) 4(20) 2 (0.2) 1(2) 0.26400

13 4(1.0) 1(2) 4 (0.05) 2(3) 27.63000

14 4(1.0) 2(5) 3 (0.1) 1(2) 0.07810

15 4(1.0) 3(10) 2 (0.2) 4(5) 0.06160

16 4(1.0) 4(20) 1(0.5) 3(4) 0.28500
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The next step is to obtain the net effect of each level value in each factor which is

carried out by averaging the results which contain the same level and factor. For

example, X0 has its level set to 1 (where its value is 0.001) in the first four rows as

shown in Table 5.12 while the experiments are carried out. Correspondingly, there are

four different error indices, e, for each row. To find the net contribution of level 1 of

Xo, the effective error index is evaluated by averaging the error indices shown in bold

in Table 5.12, i.e.

,- . (0.4500 + O.19350 + 0.30590 + 3.06O00) „ M„c
& ~^> (AjJ/eve/i = — ~ —— = 1.00235

W level 4

(3.06000 + 0.2020 + 0.1827 + 0.06160)
= 0.87658

The effective error indices for the remaining levels of each factor are calculated in a

similar way as shown in Table 5.13. From Table 5.13, out of four levels of each

parameter, the levels which contributed less amount of effective error (shown in bold)

are selected. Hence, the optimal combination ofparameters with smallest effective e is

{A,o X+ X' h} = {1 4 2 4}. In other words, the optimal combination of parameters is

achieved when the values are set as: Xo = 0.001, A.+ =20, X'= 0.2 and h = 5.



Table 5.13: Average efor each CP and each level —LM

CPs Levels of CPs

1 2 3 4

Ao 1.00235 1.40143 6.07338 7.01368

A+ 7.09178 6.02340 1.37608 0.99958

r 0.29095 0.15588 0.23900 14.80500

h 1.42553 7.10990 6.07883 0.87658
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Similarly, parameters of RPROP (Ao, rf, n+, a and h) are optimized by conducting

Taguchi's experiments on 16 orthogonal arrays, Li6. Table 5.11 shows the five control

parameters ofRPROP algorithm each with four levels. When Taguchi's methodology

is applied, the results are obtained as shown in Table 5.14 where

{Ao rf T|+ ot h} = {4 3 2 1 2} makes the optimal combination vector with minimum s

outputs. This effectively means parameter values set A0 = 0.2, rf = 1.8, rj+ = 0.5, a =

0.001 and h ~ 3 give the best result compared to other sets ofvalues.

Table 5.14: Average sfor each CP and each level —RPROP

CPs Levels ofCPs

1 2 3 4

Ao 7.04674 11.86737 5.18010 4.31863

r\- 4.10020 12.17211 0.59085 11.54968

+

n 6.79093 0.38456 6.12983 15.10752

a 0.72512 8.77551 5.86965 13.04255

h 10.09145 0.12296 10.58538 7.61305

With regard to EBP algorithm (whose parameters are n, a and h, each with four levels

as in Table 5.11), experiments conducted on Li6 Taguchi's orthogonal arrays has

given rise to an optimal combination of r\i ct2 lu or simply {1 2 4} as in Table 5.15

where the optimal combination corresponds to n = 1.0, a = 0.2, and h = 5.

Table 5.16 summarizes the values of parameters optimized using Taguchi's

experiments for each algorithm implemented to train the neural network.



Table 5.15: Average sfor each CP and each level -EBP

CPs Levels of CPs

1 2 3 4

TI 1.73255 2.07115 3.23330 3.73593

oc 2.81043 2.39105 2.66540 2.90605

h 2.96128 2.99818 2.43473 2.37875
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Figures 5.7 and 5.8 illustrate the differences in training performances of ANN with

randomly selected parameters and with the optimized values of parameters, as in

Table 4.18, for LM and RPROP algorithms, respectively. It is evident to observe the

improvements to the training performance of the neural network achieved with the

help of Taguchi's method.

Table 5.16: Optimized values ofCPs andcorresponding accuracies

Algorithm Control parameters Level Tuned Values Iterations Accuracy

EBP

Learning rate (n) 1 1

10,000 94.79 %

Momentum (a) 2 0.2

# ofhidden units Qi) 4 5

LM

Learning factor (Ao) 1 0.001

1 -100%

Increment factor (A+) 4 20

Decrement factor {X') 2 0.2

# of hidden units Qi) 4 5

RPROP

Update value (A0) 4 0.2

5 -100%

Decrement factor (rf) 3 0.6

Increment factor Qf) 2 1.5

Learning rate (a) 1 0.001

# ofhidden units Qi) 2 3

On the other hand, a comparison of the three algorithms used in this case study also

shows that bothLM and RPROP yield accuracy greater than 99 % and guarantee fast

convergence. Whereas, EBP is by far substandard to the rest as far as accuracy and

fast convergence are concerned. An accuracy of 94.79 % is attained after 10,000

iterations when EBP is used. Whereas, using LM and RPROP algorithms, training
processtook only 1 and 5 iterations to converge, respectively.
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(a) (b)

Figure 5.7: Performance (a) beforeand (b) after optimizationfor LM algorithm

(a) (b)

Figure 5.8: Performance (a) before and (b) afteroptimizationfor RPROPalgorithm

5.3.3. Validation

Once a neural network has been trained and tested, the performance is validated

against an independent validation dataset, consisting of unused samples or patterns

from the application data. The validation set is distinct from, and independent of, both

the training and test sets; hence, it does not influence the method of training and



116

testing. Validation can also be used to determine when to stop training (when the error

for the validation data hits a minimum) [Masters, 1993] and [Reed, 1993]. Figures 5.7

and 5.8 show the trends of training, testing and validation curves with increasing

number of iterations. This is an important feature to know if the neural network is

properly and effectively trained, and is ready to classify a new input data.

A neural network, once trained and validated can be used on-line to process real-time

patterns (real time datasets) directly from the application environment (in this case,

the transmission system) and make bold decisions. This processing primarily involves

multiplication of the live input vectors by the already optimized network weight

vectors, which can often be done in real time, given the speed of today's

microprocessors.

5.4. TESTING RESULTS WITH DATA FROM IEEE 14-BUS MODEL

As stated earlier, the data collected from simulation of IEEE 14-bus have been

utilized for testing the previously developed neural network that has been optimized

for SMIB and IEEE 9-bus models. The test results show the robustness ofthe method

which showed a sound identification performance even for High Impedance Faults

(HIFs), which has not been considered in the previous models. The neural network

has not been trained with HIFs. But it can still map new data accordingly. Table 5.17

illustrates the results obtained by testing the already optimized and trained neural

networks in each of the previous case studies. The response of the neural network for

high impedance fault cases (see highlighted) has been outstanding except for EBP

algorithm which gave relatively poorer performance compared to LM and RPROP

algorithms. In Table 5.17, results which are shown in bold are the 'worst'

approximations in each algorithm; yet, quite enough to make decisions. A usual

practice in neural network is to set a minimum threshold of 0.8 (corresponding to an

output '1') for making decisions. The output from EBP still does not satisfy this

threshold. While the results show RPROP has comparable output for this application,

LM is exceptionally the most suitable algorithm as far accuracy and robustness are

concerned.
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Table 5.17: Test results ofoptimizedANNfor the data generatedfrom IEEE 14-bus

system

Case

Target Algorithm

EBP LM RPROP

1 1 0.9974 0.9999 0.9986

r
2

0 0 0025 0 0017 0 0019

0.7869 0.9200 0:8969

2* 0.8090 0.9893 0^8951
3 0.9972 0.9997 0.9987

3' 0 0.0027 0.0015 0.0023

4 0.9972 0.9997 0.9987

4' 0 0.0029 0.0012 0.0026

5 0.9974 0.9974 0.9974

5' 0 0.0029 0.0015 0.0026

6 1.0000 1.0000 1.0000

6' 1.0000 1.0000 1.0000

7 1.0000 1.0000 1.0000

8 1.0000 1.0000 1.0000

9 1.0000 1.0000 1.0000

10 0.7196 0.9952 0.9925

10' 0 0.0027 0.0013 0.0019

11 '0.8661 0.9673 0.9218

11' ' 0.9264 0.9865' 0>9434

12 0.9827 0.9996 0.9995

12' 0 0.0027 0.0014 0.0015

5.5. ACCURATE DETERMINATION OF FAULT EXTINCTION TIME

Accurate determination of dead time in the case of temporary faults is another main

objective of this work. The AR scheme developed using artificial neural network has

the ability to detect secondary arc extinction. This is due to the reason that the neural

network has been already trained with cleared fault data patterns obtained from

samples of voltage signals following the secondary arc extinction. Basically, a sample

fault pattern which is taken before the fault extinguishes is mapped to a neural

network output of '1'; whereas, a neural network output of '0' represents a sample

taken from a section ofthe voltage waveform where the fault is vanished out.
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Another fact with transmission line faults is that a temporary fault extinguishes out

after short time while a permanent fault persists. Thus the neural network output after

each sample taken from the fault voltage holds a pattern which assumes 111110000...

and 111111111... for temporary and permanent faults, respectively. In other words,

the output of neural network while examining a series of consecutive samples will go

from T to '0' immediately after secondary arc extinction. It is this feature that is

employed to accurately determine the fault extinction time. For the sake ofclarity, the

temporary and permanent fault signals are plotted against the neural network output as

illustrated in Figure 5.9.

Temporary fault

ANN OUTPUT

Permanent fault

-O.S

ANN OUTPUT

Figure 5.9: ANN outputpatternsfor temporary and permanentfaults

5.6. SUMMARY

Data pre-processing techniques and neural network training, testing and validation

works (before the data can be fed to the neural network) have been explained plainly

in this Chapter. The ANN training processes by using three algorithms (EBP, LM and

RPROP), the use of Taguchi's method for optimization of parameters which are

understood to pose significant impact on the performance of the neural network

during and post training process, and the steps Taguchi's experiments have been also

discussed. In addition, the features extracted from the faults generated on IEEE

14-bus system has been employed to test the efficacy of fault identification process
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using optimized neural network in the first two case studies (SMIB and IEEE 9-bus

system models). The results validate the usefulness of the method developed in terms

of fault identification, increasing rate of successful autoreclosing, and other aspects

such as improved stability, security ofpower system, etc.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1. CONCLUSIONS

The main objective of this thesis was to propose an adaptive auto-reclosure, based on

neural network, for protecting EHV transmission lines by enhancing the performance

of conventional auto-reclosure i.e. by increasing the rate of successful reclosure. A

technique which has been set forth to discern a temporary fault from a permanent fault

and accurately determine the fault extinction time of temporary fault case was

presented in Chapter 4. The logic for identifying the type of a fault on the

transmission line was handled by a well trained and optimized neural network based

on defining the pattern of fault voltage waveforms using FFT method as a means for

feature extraction.

To meet the objectives, a number of simulations have been carried out on three

different power system models -namely, Single-Machine-Infinite-Bus (SMIB), IEEE

9-bus, and IEEE 14-bus electric system to get input data features for the proposed

adaptive AR scheme based on neural network which helps identify temporary from

permanent. Illustrations of a number of simulations, which have been carried out on

SMIB, IEEE 9-bus and IEEE 14-bus power system models to demonstrate the

functionality of the proposed method, were reported in Chapter 4. Extraction of input

data features form simulated fault voltages were carried out by decomposing the

voltage signals into frequency spectra with the help of Fast Fourier Transform. After

allowing the features data set through pre-processing before being fed into neural

network, three algorithms -Levenberg Marquardt, Resilient Backpropagation and

Error Backpropagation algorithms, whose key parameters have been optimized by

Taguchi's methodology, were used for training the neural network.

The results, obtained from the optimized neural network based AR technique are quite

reasonable. The developed technique has proved its robust identification capability of

the type offault, and provided correct results by classifying different types of faults in
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to their own category (temporary, cleared or permanent). In Chapter 4, it has been

shown how accurately the fault extinction can be determined using the proposed

technique. The outcomes from SMIB model and the efficacy of the developed

methods in the realization of adaptive AR scheme have been exclusively validated by

performing similar simulation works on the benchmark IEEE 9-bus and IEEE 14-bus

electric systems.

Among the three algorithms used in this study, according to simulation results, LM

and RPROP have been identified as the best training algorithms during the fault

identification process. Yet, LM yielded better classification results than RPROP;

whereas, EBP was found substandard to the other two as far as overall training

performance, fast convergence and accuracy are concerned. Regarding the handy

optimization tool (Taguchi's method) employed in our study, it has been verified that

the optimal parameter combination determined by Taguchi's method yields the

maximum accuracy. The parameters decisive in the application of ANN throughout

the process have been optimized using Taguchi's Methodology, a powerful and robust

process optimization technique. Results and improvements to overall performance of

ANN (shown in Chapter 4) prove this fact. Hence, the ANN has been effectively

optimized, and testing results (refer to Chapter 4) show the technique developed in

this study has the ability to distinguish a transient from a permanent fault, and avoid

reclosing onto a line under fault.

Some of the contributions made by this thesis are summarized as follows:

• Avoiding improper reclosing action of a conventional auto-reclosure on to a

faulted line in EHV systems. The technique developed has the ability to

distinguish between a transient and a permanent fault.

Increased rate of successful reclosure by accurately determining the fault

extinction time (dead time).

Improved system stability and a reduction in system-equipment damage under

a permanent fault. The technique proposed in this report transforms the
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conventional auto-reclosure system which is based on 'restore service' into

'reclose only if safe'.

Improvements to power system security.

Improvements to ANN performance during and post-training performances by

using Taguchi's method.

6.2. RECOMMENDATIONS

The results of the thesis are fully based on simulations. Although the entire results

show the efficacy of the proposal, it has to still be verified by practically

implementing the method on a real-time network; hence, real-time data recorded over

time from real network transmission line faults.

The hardware part of the adaptive auto-reclosure technique with a couple of new

features —adaptive fault classification (temporary or permanent) and accurate

determination of fault extinction time —is yet to be realized in the future works. There

are a number ofways in the modern world which can realize the proposed AR scheme

e.g. using transputer card (parallel data processing micro-controller type devices) or

with micro-controller itself.

In addition to the above recommendations and future works, the following points are

suggested:

Initiation — Another issue here is the initiation of the new AR module which can be

done in a number of ways. The assumption made in this study is that data acquisition

from line CVT is enabled immediately after fault inception for fiirther investigations.

In addition to this, the initiation process can still be made by sensing the circuit

breaker opening or trip circuit initiation, which can reduce the processing load to

some extent. But these possibilities are left for future verification.
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Increasing Number of Examples — Test results from the study show the neural

network can robustly accomplish accurate identification process. Apart from over-

fitting problem, the general trend with neural networks is increasing examples

increases their performance. So, examples prepared for training the neural network

can be increased and the effect ofthe increase can be studied in the future.

Other Artificial Intelligence -Only ANNs have been utilized to propose and add

adaptive capability to the existing AR scheme. However, other artificial intelligence

techniques such as expert systems, genetic algorithm, artificial neural networks, fuzzy

logic, etc. can also be assessed, and the best one be selected.

Expanding Taguchi's Experimentation —Due to lack of available Design of

Experiment (DOE) software, Taguchi's experimentations, in this study, have been

limited to Lie Orthogonal Array (OA) matrices. If DOE software is readily available,

Taguchi's method can be fully utilized to encompass wider range ofvalues of several

factors (including new factors e.g. weight initializations which require very big OA

matrix). This will make wider range ofgeneralizations.
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APPENDIX A

DISTRIBUTED TRANSMISSION LINE PARAMETERS

Voltage level: 400-kV three-phase line-to-line RMS.
Transmission line length: 300 km
Conductors: Three bundles of4 Bersfort ACSR 1355 MCM conductors; two 1/2 inch-
diameter steel ground wires.
Note: Ytower and Ymin are the average heights ofconductors.

LINE GEOMETRY:

Frequency (Hz): 50.00
Ground resistivity (Q.m): 100.000
Number ofphase conductors (bundles): 3
Number ofground wires (bundles): 2

Conductor Phase

(bundle) number
X Ytower Ymin Conductor

(m) (m) (m) bundle type

1 1

2 2

3 3

4 0

5 0

-12.802

0.000

12.802

-8.992

8.992

20.726 20.726

20.726 20.726

20.726 20.726

32.918 32.918

32.918 32.918

1

1

1

2

2

CONDUCTOR AND BUNDLE CHARACTERISTICS:

Conductor Conductor Conductor Conductor Conductor Conductor

(Bundle) Outside T/D GMR DC resistance relative
Type Diam.(cm) ratio (cm) (Ohms/km) permeab.

3.556

1.270

0.375

0.500

1.427

0.495

0.043

3.107

Number ofconductor Bundle diameter (cm) Angle of conductor one (deg.)

1

64.658

0.000

R, L, AND C LINE PARAMETERS:

Resistance matrix R_matrix (ohm/km):

45.00

0.00



0.0890 0.0790 0.0773

0.0790 0.0915 0.0790

0.0773 0.0790 0.0890

Inductance matrix L_matrix (H/km):

1.6100X10-003 7.8539X10-004 6.4938 xlO-004
7.8539 xlO-004 1.6053 xlO'003 7.8539 xlO"004
6.4938 xlO"004 7.8539 xlO"004 1.6100xl0~°03

Capacitance matrix Cmatrix (F/km):

1.1661 xlO"008 -2.1268 xlO'009 -5.8362 xlO"010
-2.1268 xlO-009 1.2117 xlO"008 -2.1268 xlO-009
-5.8362 xlO"010 -2.1268 xlO"009 1.1661 xlO"008

Positive- & zero- sequence resistance [Rl Ro] (ohm/km):

[0.0114,0.2466]

Positive- & zero- sequence inductance [LI Lo] (H/km):

[8.6839 xlO"004, 3.0886 xlO"003]

Positive- & zero- sequence capacitance [CI Co] (F/km):

[1.3426 xlO"008, 8.5885 xlO"009]
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APPENDIX B

TRAINING DATA PATTERNS AND TESTING RESULTS OF NEURAL

NETWORK

1. Training Data Patterns Obtained from SMIB Model Simulation

Following are data patterns with target values for training ANN in SMIB study (

DC = DC component, T = Targets, FT = Fault Type, L = Location (km), D = Duration

of fault (cycles), TF = Temporary Fault, CF = Cleared Fault, PF =Permanent Fault,

A = phase A, B = phase B, C = phase C, G = Ground, HIF = High Impedance Fault).

DC 50 Hz 100 Hz 150 Hz 200 Hz 250 Hz T FT L D

0.295922 4.379843 0.580938 1.307111 0.078427 0.871407 1 TF (AG) 10 3

0.416842 5.235014 1.280322 1.965572 0.172844 1.522152 1 TF (ACG) 25 2

0.537762 6.090184 1.166236 2.624032 0.157442 1.749355 1 TF(AG) 50 3

0.659353 3.996999 0.355376 0.799596 0.047976 0.533064 1 TF (ABG) 75 3

0.675066 4.224059 0.373300 1.014067 0.050396 0.696414 1 TF(AB) 75 4

0.864639 4.146167 0.209866 0.867545 0.028332 0.500731 1 TF(AG) 100 4

1.069924 4.295334 0.415775 0.935493 0.056130 0.623662 1 TF(AG) 125 5

1.262222 8.452317 3.603709 3.545567 0.486501 1.817916 1 TF (AG) 150 3

1.986682 10.814449 1.985379 4.467102 0.268026 2.978068 I TF(AG) 175 6

2.339997 16.762474 0.209368 0.471079 0.028265 0.314053 1 TF (AC) 200 3

2.780251 15.372602 3.040255 2.091958 0.410434 1.106811 1 TF (ACG) 225 4

3.177036 17.651679 1.886911 0.904386 0.254733 0.820562 1 TF (AG) 250 4

4.014074 18.540884 0.594530 1.337692 0.080262 0.891795 1 TF (AG) 275 5

4.523346 16.226844 0.005688 0.012798 0.000768 0.008532 0 CF (AG) 10 3

4.647156 16.226204 0.027414 0.013150 0.003701 0.011968 0 CF (ACG) 25 2

4.770965 16.225564 0.006001 0.013502 0.000810 0.009001 0 CF (AG) 50 3

4.775648 16.225514 0.028209 0.013532 0.003808 0.012315 0

CF

(ABG) 75 3

5.032634 16.224133 0.006353 0.014295 0.000858 0.009530 0 CF (AB) 75 4

5.171497 16.223308 0.030759 0.014755 0.004152 0.013428 0 CF (AG) 100 4

5.310360 16.222483 0.006762 0.015214 0.000913 0.010143 0 CF (AG) 125 5

5.458673 16.221505 0.032858 0.015761 0.004436 0.014346 0 CF (AG) 150 3

5.606986 16.220527 0.007248 0.016308 0.000978 0.010872 0 CF (AG) 175 6

5.925262 16.217907 0.007813 0.017579 0.001055 0.011719 0 CF (AC) 200 3

6.126492 16.197885 0.085236 0.042327 0.011507 0.033420 0

CF

(ACG) 225 4

6.386246 16.186564 0.110855 0.055337 0.014965 0.042707 0 CF (AG) 250 4

6.847229 16.155221 0.041376 0.093095 0.005586 0.062063 0 CF (AG) 275 5
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0.000250 0.150707 0.000034 0.000076 0.000005 0.000051 1 PF (AG) 10 _

0.001032 0.150698 0.000236 0.000113 0.000032 0.000103 1 PF (ABG) 25 _

0.001083 0.150716 0.000088 0.000042 0.000012 0.000038 1 PF (ABC) 50 _

0.001270 0.150717 0.000016 0.000036 0.000002 0.000024 1

PF

(ABCG) 75

0.001500 0.150720 0.000053 0.000026 0.000007 0.000023 1 PF (ABG) 75 _

0.001729 0.150723 0.000007 0.000015 0.000001 0.000010 1 PF (AG) 100 _

0.001814 0.150689 0.000067 0.00015 0.000009 0.000100 1 PF (ABC) 125 _

0.003811 0.150673 0.000456 0.000219 0.000062 0.000199 1

PF

(ABCG) 150

0.005808 0.150657 0.000128 0.000287 0.000017 0.000191 1 PF (ACG) 175 _

0.008609 0.279653 0.064918 0.146066 0.008764 0.097377 1 PF (ABC) 200 -

0.009584 0.150630 0.000861 0.000413 0.000116 0.000375 1

PF

(ABCG 225

0.013359 0.150602 0.000240 0.000539 0.000032 0.000359 1

PF

(ABCG) 250

0.020412 0.150557 0.001617 0.000774 0.000218 0.000712 1 PF (ABC) 275 _

0.027465 0.150511 0.000448 0.001008 0.000060 0.000672 1 PF (ABG) 10 _

0.030132 0.193420 0.138529 0.049691 0.018701 0.109666 1 PF (ABC) 150 _

0.031465 0.214874 0.206738 0.074032 0.027910 0.164032 1 PF (ABC) 10 _

0.054321 0.150095 0.000888 0.001998 0.000120 0.001332 1 PF (ACG) 10 -

2. Responses of Optimized Neural Network to Testing Data Patterns in Case
Study I {T = Target, LM = Levenberg-Marquardt Algorithm)

DC SO Hz 100 Hz 150 Hz 200 Hz 250 Hz
T LM

0.344722 4.478543 0.578798 1.305881 0.076127 0.871244
1 1.000000

0.465642 5.333714 1.278182 1.964342 0.170544 1.521989
1 0.999973

0.586562 6.188884 1.164096 2.622802 0.155142 1.749192
1 0.999974

0.708153 4.095699 0.353236 0.798366 0.049876 0.532634
1 0.999974

0.723866 4.322759 0.371160 1.012837 0.052296 0.695984
1 0.999974

0.913439 4.244867 0.207726 0.866315 0.030232 0.500301
1 0.999974

1.118724 4.394034 0.413635 0.934263 0.058030 0.623232
1 0.999973

4.572146 16.010614 0.003548 0.011568 0.000788 0.008498
0 0.000027

4.695956 16.009974 0.025274 0.013161 0.003721 0.012110
0 0.000026

4.819765 16.009334 0.005791 0.013513 0.000830 0.009112
0 0.000024

4.488648 16.009284 0.027999 0.013543 0.003828 0.012131
0 0.000023

4.745634 16.007903 0.006143 0.014306 0.000878 0.009450
0 0.000022

4.884497 16.007078 0.030549 0.014766 0.004172 0.013432
0 0.000027

5.023360 16.006253 0.006552 0.015225 0.000933 0.010242
0 0.000028



0.008409 0.280653 0.064708 0.146077 0.008784 0.097417
1.000000

0.009384 0.151630 0.000871 0.000511 0.000120 0.000384
1.000000

0.013159 0.151602 0.000250 0.000520 0.000029 0.000389
1.000000

0.020212 0.151557 0.001627 0.000698 0.000195 0.000714
1.000000

0.027265 0.151511 0.000458 0.001042 0.000050 0.000686
1.000000

0.029932 0.194420 0.138539 0.048961 0.018642 0.110060
1.000000

0.031265 0.215874 0.206748 0.074043 0.026920 0.165402
1.000000

0.054121 0.151095 0.000898 0.002000 0.000131 0.001400
1.000000

0.001300 0.151720 0.000063 0.000030 0.000006 0.000019
1.000000
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APPENDIX C

SOME OF THE DATA PATTERNS FOR TRAINING ANN WITH TARGET

VALUES

(DC = DC component, T = Targets, FT = Fault Type, L = Location (km),

D = Duration of fault (cycles), TF = Temporary Fault, CF = Cleared Fault,

PF =Permanent Fault).

Input Features

T

TF

& Sample
cycle from
inception

L (% of
length
of line)

DC 50 Hz 100 Hz 150 Hz 200 Hz 250 Hz

0.438101 4.690590 0.745094 1.416558 0.100588 1.011441 1 TF 1st cycle 20%

4.585251 16.222300 0.035060 0.016998 0.004733 0.014832 0
CF 10th
cycle

20%

0.640740 4.146167 0.385575 0.867545 0.052053 0.578363 1 TF 1st cycle 40%

4.897615 16.221990 0.006883 0.015488 0.000929 0.010325 0
CF 10"1
cycle

40%

0.864639 10.109350 1.954640 1.821340 0.263876 1.111631 1 TF 1st cycle 60%

5.384517 16.212600 0.069976 0.029241 0.008030 0.024424 0
CF 10'"
cycle

60%

1.704775 17.207080 0.305659 0.687732 0.041264 0.458488 1 TF 1st cycle 80%

5.658947 16.186560 0.024594 0.055337 0.003320 0.036891 0
CF 10th
cycle

80%

2.758516 0.150709 0.000145 0.000069 0.000020 0.000063 1

PF 1st

cycle 5%

6.386246 0.165157 0.040264 0.017053 0.006400 0.032250 1

PF lO"1
cycle 5%

0.001266 0.150800 0.000012 0.000027 0.000002 0.000018 1

PF 1st

cycle 20%

0.013169 0.151009 0.021030 0.000659 0.000038 0.020045 1

PF 10th
cycle 20%

0.001495 0.150690 0.000065 0.000147 0.000009 0.000098 1 PFlst cycle 40%

0.016926 0.171995 0.069715 0.024982 0.009399 0.055101 1

PF101"

cycle 40%

0.002031 0.150857 0.000098 0.000223 0.000014 0.000151 1

PF 1st
cycle 60%

0.019918 0.182715 0.104178 0.037403 0.014064 0.082372 1

PF 10th
cycle 60%

0.003791 4.690590 0.745094 1.416558 0.100588 1.011441 1 TF 1st cycle 20%

0.025939 16.222300 0.035060 0.016998 0.004733 0.014832 0
CF 10th
cycle

20%
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APPENDIX D

A SET UP OF IEEE 9-BUS POWER SYSTEM MODEL IN SIMULINK
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APPENDIX E

FFT OUTPUTS OF TEMPORARY FAULT AFTER AND BEFORE

EXTINCTION

- Signal to analyze- '•
(a) Display selected signal (Q DisplayFFTwindow

x 1reelected signal: 40 cycles. FFTwindow On red): 1 cycles

- FFT analysis-
•1 ftntal (50Hz) =1.584e+005 , THD= 15.11%

12000 1 1 —
10000 • 1III

8000 • 1III
| 60001 1III •

4000 I 1Ilia!
2000 I 11 1 1 1 1• _Ji

1

1 • • • •
0 2 3 4 5

Harmonic order

p Signal to analyze —
ftt;< Display selected signal rj, Display FFT window

x -j reelected signal: 40 cycles. FFTwindow (in red): 1 cycles

— hi- I analysis— — _

FJ ftntal (50Hz) =2.203e+004 , THD= 16.99%

15000 •
gi 100001

5000 1 1 _

• J
1

1 • _
0 2 3 4 5

Harmonic order

(—Available signals-

Structure :

{Sig_93
Input:

jinput 1
Signal number;

i— FFT window-

Start time (s): [2/50

Number of cycles: 1

Fundamental frequency (Hz):

50

- FFT settings-
Display style:

[Bar(refedivetospecifiedba... -r \

Base value: It q •

Frequency axis:

.Harmonic order

Max Frequency (Hz):

Display

-Available signals-

Structure :

(Sig„B4

Input:

(input 1

si

i—FFT window-

Starttime (s): |1Q/Sfj

Numberof cycles: J1

Close

Fundamental frequency (Hz):

Display style :

JBar (relativeto specified ba... 'I
Base value: h n J

Frequency axis:

• 1
J

IHarmonic order

Max Frequency (Hz):

!30Q

|| Display {I | Close |
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APPENDIX F

A SET UP OF IEEE 14-BUS POWER SYSTEM MODEL IN SIMULINK
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APPENDIX G

MATLAB CODES

1. Part of the Graphical User Interface for EBP Algorithm

% Note this program is a GUI for the simulating Neural network proposed for %
ADAPTIVE AUTORECLOSURE

function GUIdemonew(fcn)

%demo ofuser interface construction

%this function CALLS ITSELF via GUI callbacks

% By default make the GUI
%This code detects the first entry into the function
%from the command line with no parameters
ifnargin == 0

fen = 'makeGUI';
end

%This is the main decision point of the function.
%The switch statement is executed once-per-fuction call
switch fen

%This code is executed ONCE when the ftmction enters with

%no arguments
case 'makeGUI'

% Determine the name of this function and store it in the

%flgure plotinfo variable.
%Since variables used in a function are not persistent after
%the function exits we will need to store the state-variables

%in a data structure associated with the persistent Figure-window.
%The plotinfo sturcture will be saved into the Figure's UserData
%area and retrieved from there as necessary.
plotinfo.myname = mfilename;

% ===Create main figure==:===============:=======
fig = figure(Tosition',centerfig(660,630),...

'ResizeVon',...
TSfumberTitleVoff,...
•NameYGUI DEMO FOR OPTIMIZATION',...
'InterruptibleVofP,...
'MenubarVnone',.-



set(gcf,'UserData',plotinfo);

case 'editNumHidden'

plotinfo=get(gcf, 'UserData');
plotinfo.NumHidden=str2num(get(plotinfo.si 1,'string'));
set(plotinfo.sl2,'value',plotinfo.NumHidden);
set(gcf,TJserData',plotinfo);

case 'editMCode'

edit backpropnew;
case 'rate'

plotinfo=get(gcf,'UserData');
plotinfo .dig 1=get(plotinfo .dlgboxl,Value');
n=plotinfi>.dlgl;
set(gcf,'UserData',plotinfo);

case 'editHelp'
edit ETEXT;

case 'editFunCode'

edit a2d;pause(4);

%

case 'dialog'
plotinfo=get(gcf,'UserData');
plotinfo.d!g=get(plotinfo.dlgbox,'value');
cho ice=p!otinfo.dig;
set(gcf,'UserData',plotinfo);

case 'edttl'

plotinfo=get(gcf,'UserData');
plotinfo.title=get(plotinfo.ttl,'string');
title(plotinfo.tMe);
set(gcf,'UserData',plotinfo);

case 'linemenul'

plotinfo=get(gcf, 'UserData');
set(plotinfo.line, 'LineStyle','—')

case plinemenu2'

plotinfo=get(gcf,'UserData');
set(plotinfo.line, 'LineStyle',':')

143



case 'linemenu3'

plotinfo=get(gcf, 'UserData');
set(plotinfo.line, 'LineStyle','-')

end

%=A utility to center the window on the screen=====:=======
function pos = centerfig(width,height)

% Find the screen size in pixels
screens = get^'ScreenSize1);
pos = [screen_s(3)/2 - width/2, screen_s(4)/2 - height/2, width, height];
o/o=====r=====================:=;:=:================
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2. Main Program for EBP Algorithm

tic % Start counting the time elapsed during simulation

% Load the input patterns /the energies of dc,50Hz, and the first 4 harmonics/
patterns —xlsread('input_data', 'sheet1*);

% The corresponding desired outputs
desired_out = xlsread('target'5'sheetr);

% Will hold a record of all sum-squared-errors. Nice to plot
sserec = [];sse_recl = [];sse__rec2 = [];sse_rec3 = [];
%variable parameters
etna, alpha,NumHidden,toIterance
% sse = 10; % A dummy initial sse. Must be large, for the "while" below
% %etha = 0.6; % Learning rate.
% %alpha = 0.2; % Momentum term
patterns = [patterns ones(size(patterns,l),l) ]
% Add a column of 1's to patterns to make a bias node
nunijnp = size(patterns,2) % No. of input nodes (including bias)
% Note: size(x,2) is Matlab for the no. ofcolumns in matrix x
num hid = 10; % No. ofhidden nodes (including bias node)
num_out = size(desired_out,2) % No. ofoutput nodes

%%%%%%% Giving the weights small initial values in range [-1,1]%
wl =(l-2*rand(num_inp,num_hid-l))

% Input to hidden weights. NB: no weights to bias hidden node

w2 = (l-2*rand(num_hid,num_out)) % Hidden-to-output weights
% Note: rand(rows,cols) is a matrix of random numbers of that size

dwl_last = zeros(size(wl)); % Last wl change, set to a zero matrix
dw2_last = zeros(size(w2)); % Last w2 change, set to a zero matrix



epoch = 0; % Initialise count of training epochs

%%% Main loop %%%%%%%%%%%%
while sse > tollerance % When sse is low enough, we'll stop

whip into hid = patterns * wl; % Pass patterns through weights
% Sigmoid ofweighted input
hid_act = l./(l+exp( - winp_into_hid));

% Add bias node

hidwithbias = [ hidact ones(size(hid_act,l),l) ];
% Pass hidden acts through weights
winp_into_out = hid_with_bias * w2;

% Sigmoid of input to output
out_act = l./(l+exp( - winp_into_out));

% Error matrix

output error = desired out - out act;
% Sum sqr error, matrix style
sse = trace(output_error'*output error);
sse_rec = [sse_rec sse]; % Record keeping

% delta=dE/do * do/dnet

deltas_out = output_error .* out_act .* (1-outact);
deltas_hid = deltas_out*w2' .* hid_with_bias.*(l-hid_with_bias);
deltas_hid(:,size(deltas_hid,2)) = [];

% Take out error signals for bias node
dwl = etha * patterns' * deltas hid + alpha * dwl_last;

% The key backprop step, in matrix form
dw2 = etha * hidwithbias' * deltas out + alpha * dw2 last;
wl = wl + dwl; w2 = w2 + dw2; % Weight update
dwl_last = dwl; dw2_last = dw2; % Update momentum records
epoch = epoch +1;

ifrem(epoch,50)==0
% Every 50 epochs, show how training is doing

disp([' Epoch ' num2str(epoch)' SSE' num2str(sse)]);
end

% Testing for convergence

ifepoch=1000
if[sse_rec(l,1000)>=l)

disp(' ');
disp(' ');
disp('Warning!! Training may not be successful!!!');
dispCN.B: It is diverging ');
disp('Please adjust your parameter combinations');
disp(' 1. learning rate,');
disp(' 2. momentum,');
disp(' 3. number ofhidden layers and/or');
disp(' 4. tolerance');
disp( 'Update, save and run it again');
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%k=waitforbuttonpress;
q = questdlg('Training might not converge. Do you want to

continue?',...
'Warning!*,,Yes,,'NoVdefault');

if(strcmp(q,'Yes')=l)
display('Running....');

else

k=waitforbuttonpress;
if(k==l||k==0)
quit;
end

end

end

end

end

%%%% End of main loop
% figure,
semilogx(sse_rec);xlabel('Log Epochs'); ylabel('Sum squared error
(SSE)*);grid on
title(['SSE Vs. log of epochs plot for tolerance = ', num2str(tollerance)]);
waitforbuttonpress;
iftepoch<1000)
%flgure;
for i=l:l:100

sse_rec1=[sse_rec1 sse_rec(1,i)];
end

plot(sse_recl); xlabel('Epochs'); ylabel('Sum squared error (SSE)');grid on
title(['SSE Vs. epochs plot for tolerance =
',num2str(tollerance)]);waitforbuttonpress;
% figure ;
for i=T00:l:epoch

sse_rec2=[sse_rec2sse_rec(l,i)];
end

plot((100:epoch),sse_rec2); xlabel('Epochs'); ylabel('Sum squared error
(SSE)');grid on
title(['SSE Vs. epochs plot for tolerance = ',num2str(tollerance)]);
else

%figure;
fori=l:l:100

sse_rec1=[sse_rec1 sse_rec(1,i)];
end

p!ot(sse_recl); xlabel('Epochs'); ylabel('Sum squared error (SSE)');grid on
title(['SSE Vs. epochs plot for tolerance =
',num2 str(to llerance)] );waitforbuttonpress;
%flgure;
for i=100:l:1000

sse_rec2=[sse_rec2 sse_rec(l,i)];
end
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plot((100:1000),sse_rec2); xlabel('Epochs'); ylabel('Sum squared error
(SSE)');grid on
title(['SSE Vs. epochs plot for tolerance =
',num2str(tollerance)]);waitforbuttonpress;
fori=1000:l:epoch

sse_rec3=[sse_jec3 sse_rec(l,i)];
end

% figure;
plot((1000:l:epoch),sse_rec3); xlabeI('Epochs*); ylabeI('Sum squared error
(SSEy^gridon
title(['SSE Vs. epochs plot for tolerance = ',num2str(tollerance)3);
end;
toe %Stop counting the time elapsed during simulation

% The end


