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ABSTRACT 
 

The adsorption of heavy metals ion (Pb2+ and Cd2+) onto three types of adsorbents; 

bentonite, oil-palm solid waste and Amberlite XAD polymeric adsorbents is described in 

this report. The studies were done in batch, as the samples were mixed with a dosage of 

2.5g/l of each adsorbent and shake at 150rpm until it reaches equilibrium. Kinetics 

studies show that bentonite is the best adsorbent, while oil-palm solid waste and 

Amberlite XAD polymeric adsorbents are comparable. The adsorption isotherm 

parameters were calculated and fitted into Langmuir isotherm and Freundlich isotherm. 

All adsorption can be described by Freudlich isotherm with the highest degree of fit of 

lead on OPEFB (0.954) and cadmium on XAD16 (0.99). The effect of pH is examined 

over the range of 1-5.5. The adsorption of Pb2+ and Cd2+ increase with increasing pH and 

bentonite was highly affected by the increment. Finally, the adsorbents were analyzed by 

using FTIR to get the infrared spectra, and the functional groups were determined while, 

the infrared spectra for Amberlite XAD polymeric adsorbents were acquired from 

product data sheets. 

 

 

 

 

 

 

 

 

 

 



 

ii 

 

 

ACKNOWLEDGEMENT 

 

 

In the name of Allah, the Most Gracious and the Most Merciful.  Alhamdulillah, with his 

willing, I am able to complete my Final Year Research Project.   It is a great pleasure and 

gratitude for me to acknowledge the people who have help, guide and support me in 

completing this project. 

 

First and foremost, special thanks to my supervisor, AP Dr M. Azmuddin Bin Abdullah, 

for being very helpful, supportive and considerate while working under him. The same 

goes to my co-supervisor, Mr. Amir Amanaat Ali Khan for his guidance and effort to 

work very closely with me till the end. I would also like to express my utmost 

appreciation to the chemical lab technicians, especially to Mr Fazli, Mr Jailani, Mrs 

Hasneyza, Mr. Shaharudin, Mrs Azriha and Miss Azimah for their assistance during the 

laboratory works. Not forgotten also my utmost appreciation to mechanical lab 

technician, Mr Omar for assisting me with the grinder.  

 

Heartfelt appreciation dedicated to my dearest parents and family for their never-ending 

support and gave me courage and motivation throughout my journey of study in 

Universiti Teknologi PETRONAS.  Not forgetting to all my friends and colleagues, thank 

you very much for your help either directly or indirectly in making this project successful 

and meet the objectives. 

 

 

 

 

 



TABLE OF CONTENTS 
 
ABSTRACT . . . . . . . . . i 
 
ACKNOWLEDGEMENT . . . . . . . ii 
 
TABLE OF CONTENT . . . . . . . iii 
 
LIST OF FIGURES . . . . . . . iv 
 
LIST OF TABLES . . . . . . . v 
 
CHAPTER 1:  INTRODUCTION . . . . . 1 
    1.1  Introduction . . . . . 1 
    1.2 Problem Statement . . . . 1 
    1.3 Objectives . . . . . 2 
    1.4  Scope of Work . . . . 2 
      
CHAPTER 2:  LITERATURE REVIEW . . . . 3 
    2.1 Introduction . . . . . 3 

2.2       Impact of Lead and Cadmium on Health and 
Environment . . . . . 4 

    2.3       Effluent Limits . . . . 8 
    2.4  Heavy Metal Treatment Techniques . . 9 
    2.5 Adsorption, Ion Exchange and Isotherm . 10 
    2.6  Adsorbents  . . . . . 14 
 
CHAPTER 3:  METHODOLOGY . . . . . 21
    3.1 Resins and Reagent . . . . 21 
    3.2 Adsorbent Preparation and Pre-Treatment  . 21 
    3.3 Characterization of Palm-oil Biomass . 22 
    3.4 Kinetic Studies . . . . 22 
    3.5 Adsorption Isotherm . . . . 23 
    3.6 Influence of pH on metal adsorption . . 23 
 
CHAPTER 4:  RESULT AND DISCUSSION . . . 25 
    4.1 Kinetic Studies . . . . 25 
    4.2 Adsorption Isotherm . . . . 26 
    4.3 Effect of pH . . . . . 32 
    4.4 Adsorbent Characterization . . . 34 
 
CHAPTER 5:  CONCLUSION AND RECOMMENDATION . 38
         
REFERENCES . . . . . . . . 40 
 
APPENDICES . . . . . . . . 42 



LIST OF FIGURES   

Figure 2.1  Lead Metals        4 

Figure 2.2  Cadmium Metals       6 

Figure 2.3  Adsorption inside adsorbent pores     11 

Figure 2.4 Bentonite Clay       15 

Figure 2.5 Palm-oil Empty Fruit Bunch      18 

Figure 2.6 Amberlite XAD4 resin beads      20 

Figure 3.1 FTIR (Shimadzu)       22 

Figure 3.2 AAS (Shimadzu)       23 

Figure 3.3 Experimental procedures for kinetic studies, adsorption isotherm  

and effect of pH.       24 

Figure 4.1 Linear plot for the sorption of Pb(II) onto Na-Bentonite, OPEFB  

and Amberlite XAD16 (Langmuir and Freundlich)   28 

Figure 4.2 Langmuir and Freundlich equilibrium curves for sorption of Pb(II) onto 

Na-Bentonite, OPEFB and Amberlite XAD16   29 

Figure 4.3 Linear plot for the sorption of Cd(II) onto Na-Bentonite, OPEFB  

and Amberlite XAD16 (Langmuir and Freundlich)   30 

Figure 4.4 Langmuir and Freundlich equilibrium curves for sorption of Cd(II) onto 

Na-Bentonite, OPEFB and Amberlite XAD16   31 

Figure 4.5 Effect of pH on Pb(II) sorption onto Na-Bentonite, OPEFB and 

Amberlite XAD16       33 

Figure 4.6 Effect of pH on Cd(II) sorption onto Na-Bentonite, OPEFB and 

Amberlie XAD16       33 

Figure 4.7 FTIR spectra for OPEFB      34 

Figure 4.8 FTIR Spectra for OP Kernel      35 

Figure 4.9 FTIR Spectra for Na-Bentonite     35 

Figure 4.10 IR Spectra for XAD4       36 

Figure 4.11 IR Spectra for XAD7       36 

Figure 4.12 IR Spectra for XAD16      37 

 

 



LIST OF TABLES 

 

Table 2.1 Lead Characteristics       4 

Table 2.2 Cadmium Characteristics       6 

Table 2.3 Parameter Limits of Effluents of Standards A and B  9 

Table 2.4 Air Impurities Emission Limit     9 

Table 2.5 Summary of the treatability of physico-chemical treatments for 

inorganic effluents       10 

Table 2.6 Technical Data for Bentonite      16 

Table 2.7 Key properties of Amberlite      19 

Table 4.1 Kinetic Studies of Pb(II) and Cd(II) on adsorbents   25 

Table 4.2 Experimental Data of Pb(II) sorption on Na-Bentonite, OPEFB  

and Amberlite XAD16      27 

Table 4.3 Langmuir and Freundlich isotherm parameters for Pb(II) sorption on 

Na-Bentonite, OPEFB and Amberlite XAD16   27 

Table 4.4 Experimental Data of Cd(II) sorption onto Na-Bentonite, OPEFB  

and Amberlite XAD16      29 

Table 4.5 Langmuir and Freundlich isotherm parameters for Cd(II) onto Na-

Bentonite, OPEFB and Amberlite XAD16    29 

Table 4.6 Experimental data for the sorption of Pb(II) and Cd(II) onto Na-

Bentonite, OPEFB and Amberlite XAD16 in the function of pH 32 

Table 4.7 Functional Groups       37 

 

 

 

 

 

 

 

 



 

1 
 

CHAPTER 1 

INTRODUCTION 
 

Nowadays, we were facing a huge environmental impact on our planet. As the 

manufacturing industries keep rising, so is the increment of toxic waste generation. 

Industries such as metals and electroplating, release a huge amount of toxic compound 

especially heavy metals. Even in small doses, these trace materials can give huge impact 

on the health of human and the environment. 

 

However, major industrial companies have taken corrective measure in order to make 

sure that their discharge would be at the acceptable level stated in a countries law. Some 

technique can be applied to remove metals and one of it is adsorption. Studies have been 

done in identifying a lot of adsorbents that can be used for this purpose, either from 

nature or commercially synthesis. 

 

1.1 Problem Statement 

A lot of studies have been done in order to find alternative and the best adsorbent for the 

purpose of removing heavy metals from waste stream. Company such as Rohm and 

Haas has produced synthetic and commercially-available adsorbent such as Amberlite 

XAD™ that they believe can do the job effectively, but we still need to determine its 

suitability in adsorbing heavy metal. However, researches were still being pursued in 

order to find an alternative adsorbent from the nature. 

 

Waste such as oil-palm empty fruit bunch (EFB) and kernel are one of those alternatives. 

They are abundant and cheap as it is considered as non-valuable by-product from palm-

oil producer (especially Malaysia). Bentonite, a type of clay was also another natural, 

mined adsorbent. Therefore, a research has to be layout to identify the adsorption 

capability of these adsorbents (both natural and commercial adsorbents) and do the 

comparison between natural and synthetic adsorbents. 
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2.1 Objective 

The objectives of this project are to study the Lead (II) and Cadmium (II) sorption into 

three types of adsorbents, bentonite, oil-palm solid waste and the commercial adsorbents 

and to compare between them. The sorption would be in batch experiment, with initial 

metal concentration and pH as the function. To study the sorption behavior, both, kinetic 

and equilibrium models would be tested. 

  

2.2 Scope of Work 

The project works are comprised of: 

• Adsorbent preparation and pre-treatment. 

• Characterization of adsorbent. 

• Kinetic studies to identify the adsorbent metal uptake capacity. 

• Adsorption isotherm test by varying the initial metal concentration. 

• Study the effect of pH on adsorption. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Introduction 

After the Industrial Revolution Era occurs in Europe, human have been erecting 

manufacturing facilities and factories in order to mass produce goods and products. As 

time goes on, small-scale factory have become larger and more advance and 

sophisticated equipment have been used. 

 

Nowadays, factories have shroomed rapidly in most modern and developing countries, 

and Malaysia was not excluded. Each factory, besides producing beneficial and high 

quality products, also produces bad by-products. The effluents that contains a lot of toxic 

material, has nowhere to go as to be discharge into the main water stream, which will 

finally reach us as tap water. Realizing this, governments and factories management 

involves has taken best endeavor to reduce the impact of the effluent to a safer level, 

through enforcements (law and act) and remediation (waste treatment). 

 

Different industries discharge different effluent. But major industries would discharge 

effluents that contain heavy metal. These constituents are so toxic even at trace level. 

Such metals are lead (Pb), copper (Cu), Iron (Fe), Mangan (Mn), Cobalt (Co), Nickel 

(Ni), Zinc (Zn), Cadmium (Cd), Mercury (Hg), Aluminium (Al) and Chromium (Cr). 

 

Beside from being discharge into the water stream, these metals may exist in the air and 

soil. All the metals will end up to us, human. The heavy metals in soil will be absorbed 

by plants. Herbivores (cattle, cow, goat etc) will eat the plant and now receiving the 

metals. Lastly, human eats these animals. 

 

In order to control and stop these metals from reaching us, it is important to come up 

with effective remediation techniques and also alternatives to the current practices. 
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2.2 Impact of Lead and Cadmium on Health and Environment 

2.2.1 Lead 

 

 
Figure 2.1 - Lead metals 

 

Atomic Number 82 
Atomic Mass 207.2 g/mol 
Electronegativity according to Pauling 1.8 
Density 11.34 g/cm3 at 20 oC 
Melting Point 327 oC 
Boiling Point 1755 oC 
Vanderwaals radius 1.54 Ǻ 
Ionic radius 1.32 Ǻ (+2); 0.84 Ǻ (+4) 
Isotopes 13 

Table 2.1 - Lead Characteristics 

 
Lead is a bluish-white lustrous metal. It is very soft, highly malleable, ductile, and a 

relatively poor conductor of electricity. It is very resistant to corrosion but tarnishes 

upon exposure to air. Lead isotopes are the end products of each of the three series of 

naturally occurring radioactive elements. 

 

2.2.1.1 Production and Application 

Lead from mining usually exists as a by-product when ore of zinc, silver and copper are 

processed. The main lead mineral is in Galena (PbS) and there are also deposits in 

Cerrussite and Anglessite which are mined. 

 

In 1989, 155 mines in 35 countries produce 2.21 million tons of lead in concentrate. It is 

mined in Australia, which produces 19 % of the world’s new lead, follows by the USA, 

China, Peru and Canada. Some are also mined in West Germany. World production of 
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new lead is 6 million tons per year and workable reserves total are estimated 85 million 

tones, which is less than 15 years supply (Lead Properties, lenntech.com). 

 

Since 1970, the world demand for lead’s unique chemical, physical and electrical 

properties has increased by 25 % to a record level of 5627 millions tones in 1990. 

 

Lead is a major constituent of the lead acid battery used extensively in car batteries. It is 

used as a coloring element in ceramic glazes, as projectiles, in some candles to threat the 

wick. It is the traditional base metal for organ pipe and it is used as electrodes in the 

process of electrolysis. One of its major uses is in the glass of computer and television 

screens, where it shields the viewer from radiation. Other uses are in sheeting, cables, 

solders, lead crystals glassware, ammunitions, and bearings and as weight in sport 

equipment. Tetraethyl lead (PbEt4) was once use in petrol, but later removed as to 

environmental concern. 

 

2.2.1.2 Sources of Contamination. 

For lead contamination, we may see it as nature release (through volcanic emission and 

geological weathering) but the majorities are caused by human activity. Soil and water 

contamination was due to effluent discharge by industries (refining, manufacturing etc) 

that uses lead such as car batteries and electroplating. Lead contamination in water may 

also being by corrosion of leaded pipeline in water transporting system and through 

corrosion of leaded paints. 

 

Leaded fuel burning also contributes to lead particulates in air. Other human activities 

such as industrial processes and solid waste combustion also contribute. 

 

2.2.1.3 Health and Environmental Impact of Lead 

Lead is one out of four metals that have the most damaging effects on human health. It 

can enter human body as food (65%), water (20%) and air (15%). It will be absorbed 

through lung and gastrointestinal tract and deposited in cell and bones. Unabsorbed lead 

will excrete through urine and faeces. 
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Lead can cause several unwanted effects such as: 

• Disruption of the biosynthesis of hemoglobin and anemia. 

• A rise in blood pressure. 

• Kidney damage 

• Miscarriage and subtle abortion 

• Disruption of nervous systems. 

• Brain damages. 

• Declined in fertility of men through sperm damage 

• Diminishing learning abilities of children 

• Behavioral disruptions of children, such as regression, impulsive behavior and 

hyperactivity. 

 

Lead in the water can affect sea life-cycle. Phytoplankton’s body function can be 

disturbed when lead intervene and phytoplankton is an important sources of oxygen 

production in seas and many larger sea animals eat it. Therefore lead can disrupt marine 

ecology. Lead in soils can affect soil organism and adsorbing plant.  

 
2.2.2 Cadmium 
 
 

 
Figure 2.2 - Cadmium metals 

 
Atomic Number 48 
Atomic Mass 112.4 g/mol 
Electronegativity according to Pauling 1.7 
Density 8.7 g/cm3 at 20 oC 
Melting Point 321 oC 
Boiling Point 767 oC 
Vanderwaals radius 1.54 Ǻ 
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Ionic radius 0.97 Ǻ (+2) 
Isotopes 15 

Table 2.2 - Cadmium Characteristics 

 
Cadmium is a lustrous, silver-white, ductile, very malleable metal. Its surface has a 

bluish tinge and the metal is soft enough to be cut with a knife, but tarnishes in air. It is 

soluble in acids but not in alkalis. It is similar in many respects to zinc but it forms more 

complex compounds. 

 

2.2.2.1 Production and Application 

Cadmium can exist as by-product when ore of zinc, lead and copper were extracted. 

From smelting the ore, Sphelerite (ZnS), in which CdS is its impurities, the cadmium 

content varies from mine to mine ranging from 0.07% to 0.83% with average of 0.23%. 

Approximately 3 kg of cadmium will be produced for every ton of refined zinc. (M. 

Ursinyova et. al., 2000). The main mining countries are Canada, USA, Australia, 

Mexico, Japan and Peru. 

 

The principal applications of cadmium fall into five categories: 

• Protective plating on steel (only 0.05mm thick will provide complete protection 

against the sea) 

• Stabilizer for polyvinyl chloride. 

• Pigments in plastics and glasses. 

• Electrode material in Nickel-Cadmium batteries. 

• Component of various alloys. 

(M. Ursinyova et. al. 2000) 

 

2.2.2.2 Source of Contamination 

About 10-15% of natural cadmium emissions arise from volcanic activity. The rest are 

mainly from human activity. Waste effluent from metal and steel industries is the major 

contributor for water and soil contamination, while for air contamination, smoking 

release 2 – 4 µg of cadmium. 
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2.2.2.3 Health and Environmental Impact of Cadmium 

Human uptakes of cadmium are mainly from food and inhalation (factory emission and 

smoking). Examples of rich-cadmium foodstuff are liver, mushrooms, shellfish, mussels, 

cocoa powder and dried seaweed. 

 

Tobacco smoker, when inhaling the smoke, absorbed about 25-30% of cadmium release 

which is 1 – 2 µg. 

 

Cadmium absorbed will be stored in liver and kidney where more than half of the 

cadmium body burden is deposited. This will then be excreted from the body via urine 

and faeces but very slow, comprise only about 0.01 – 0.02% of total body burden of 

cadmium in human beings. 

 

In clinical evaluation, adverse effects of excessive cadmium exposure may include the 

following: 

• Acute exposure: gastroenteritis (ingestion only), bronchitis (inhalation only), 

interstitial pneumonitis (inhalation only), pulmonary edema (inhalation only). 

• Chronic exposure: proteinuria, osteomalacia (itai-itai disease), pulmonary 

fibrosis (inhalation only), liver damage, hypertension, lung cancer, prostatic 

cancer, wild anemia, yellow discoloration of front teeth, anosmia. 

(Agency for Toxic Substances and Disease Registry, 1990) 

 

2.3 Effluents Limits 

DOE (Department of Environment) is a regulatory body established in Malaysia in 

concern of environmental issues. Their main role is to enforce and make sure that all of 

the effluent discharge of every industry shall not exceed the limits stated in the Act. 

 

There are a few regulations in Environmental Quality Act (EQA) 1974, which have 

relation with lead and cadmium release into air, water and soils. The regulations are: 

• Environmental Quality (Sewage And Industrial Effluents) Regulations 1979 - 

P.U. (A) 12/79, (Third Schedule) 
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Parameter Unit Standards 
A B 

Cadmium mg/l 0.01 0.02 
Lead mg/l 0.10 0.50 

Table 2.3 - Parameter Limits of Effluents of Standards A and B 

 
(Standards A consist of areas upstream of surface or above subsurface water supply 

intakes, for the purpose of human consumption including drinking. Such area is stated in 

Fourth Schedule in the regulation. Other area is considered Standard B). 
 

• Environmental Quality (Clean Air) Regulations 1978 - P.U.(A) 280/78, 

(Regulations 26) 

Substance Cadmium Lead 
Standard A 0.025 0.04 
Standard B 0.015 0.025 
Standard C 0.015 0.025 

Table 2.4 - Air Impurities Emission Limit 

 

2.4 Heavy Metal Treatment Techniques 

Different treatments for wastewater laden with heavy metals have been produced in 

recent years to decrease the amount of wastewater produced and to improve the quality 

of the treated effluent. Some physico-chemical treatment techniques are chemical 

precipitation, coagulation-flocculation, flotation, ion-exchange and membrane filtration. 

(T.A. Kurniawan et. al., 2006). These techniques have their advantages and limitations 

in its applications, therefore it is advisable to choose the best techniques upon treatment 

requirement and strict effluent discharge limits. 

 

Table 2.5 show the summary of all techniques in practice. The techniques which been 

used in this project works (ion-exchange) are chosen because of capability of removal 

100% of heavy metals in waste stream, and ensure that the strict regulatory limits are 

abide. High operational cost are due to cost to built column (usually ion-exchange resin 

would be packed inside a column) and the cost of commercial adsorbent. However, if 

natural adsorbent can be proved to be comparable to the commercial adsorbent, the cost 

can be reduced. 
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Type of treatment Target of removal Advantages Disadvantages 
Chemical 
precipitation 

Heavy metals, 
divalent metals 

Low capital cost, 
simple operation 

Sludge generation, 
extra operational 
cost for sludge 
disposal 

Coagulation–
flocculation 

Heavy metals and 
suspended solids 

Shorter time to 
settle out suspended 
solids, improved 
sludge settling 

Sludge production, 
extra operational 
cost for sludge 
disposal 

Dissolved air 
flotation 

Heavy metals and 
suspended solids 

Low cost, shorter 
hydraulic retention 
time 

Subsequent 
treatments are 
required to improve 
the removal 
efficiency of heavy 
metal 

Ion exchange Dissolved 
compounds, 
cations/anions 

No sludge 
generation, less 
time consuming 

Not all ion 
exchange resin is 
suitable for metal 
removal, high 
capital cost 

Ultrafiltration High molecular 
weight compounds 
(1000–10000 Da) 

Smaller space 
requirement 

High operational 
cost, prone to 
membrane fouling 

Nanofiltration Sulphate salts and 
hardness ions such 
as Ca(II) and Mg(II)

Lower pressure than 
RO (7–30 bar) 

Costly, prone to 
membrane fouling 

Reverse osmosis Organic and 
inorganic 
compounds 

High rejection rate, 
able to withstand 
high temperature 

High energy 
consumption due to 
high pressure 
required (20–100 
bar), susceptible to 
membrane fouling 

Table 2.5 - Summary of the treatability of physico-chemical treatments for inorganic effluents 

 
2.5 Adsorption, Ion Exchange and Isotherm 

2.5.1 Adsorption 
 
Adsorption is the accumulation of atoms or molecules on the surface of a material. This 

process creates a film of the adsorbate on the adsorbent’s surface. It is different from 

absorption, in which a substance diffuses into a liquid or solid to form a solution. The 
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term desorption is the reverse process while sorption encompasses both processes. 

(Adsorption, Wikipedia) 

 

 

Figure 2.3 - Adsorption inside adsorbent pores. (www.norit-americas.com) 

 
Figure 2.3 shows how adsorption happens on the surface of adsorbent. First, the particle 

will travel inside the pores until it reach to the point where it cannot go further, when the 

pore is smaller than the particle. From this point, the particle will accumulate until it fills 

up the whole pore volume. As adsorption happens, the adsorbate may tend to free itself 

from the adsorbent by desorption. 

 

The sorption ability of different sorbents is strongly dependent on the available surface 

area, polarity, contact time, pH, pore size and the degree of hydrophobic nature of the 

adsorbent and adsorbate. Equilibrium condition is attained when the concentration of 

solute remains constant, as a result of zero net transfer of solute adsorbed from adsorbent 

surface. (M.A. Abdullah et. al, 2008) 

 

2.5.2 Ion Exchange 

Ion exchange is an exchange of ions between two electrolytes or between an electrolyte 

solution and a complex. In most cases the term is used to denote the processes of 
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purification, separation, and decontamination of aqueous and other ion-containing 

solutions with solid polymeric or mineralic 'ion exchangers'. 

 

Typical ion exchangers are ion exchange resins (functionalized porous or gel polymer), 

zeolites, montmorillonite, clay, and soil humus. Ion exchangers are either cation 

exchangers that exchange positively charged ions (cations) or anion exchangers that 

exchange negatively charged ions (anions). There are also amphoteric exchangers that 

are able to exchange both cations and anions simultaneously. However, the simultaneous 

exchange of cations and anions can be more efficiently performed in mixed beds that 

contain a mixture of anion and cation exchange resins, or passing the treated solution 

through several different ion exchange materials. 

 

Ion exchangers can be unselective or have binding preferences for certain ions or classes 

of ions, depending on their chemical structure. This can be dependent on the size of the 

ions, their charge, or their structure. Typical examples of ions that can bind to ion 

exchangers are: 

 

• H+ (proton) and OH− (hydroxide) 

• Single charged monoatomic ions like Na+, K+, or Cl− 

• Double charged monoatomic ions like Ca2+ or Mg2+ 

• Polyatomic inorganic ions like SO4
2− or PO4

3− 

• Organic bases, usually molecules containing the amino functional group -NR2H+ 

• Organic acids, often molecules containing -COO− (carboxylic acid) functional 

groups 

• Biomolecules which can be ionized: amino acids, peptides, proteins, etc. 

 

Ion exchange is a reversible process and the ion exchanger can be regenerated or loaded 

with desirable ions by washing with an excess of these ions. (F. Helfferich, 1962). 
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2.5.3 Langmuir Isotherm 

In 1916, Irving Langmuir published a new model isotherm for gases 

adsorbed on solids, which retained his name. It is a semi-empirical 

isotherm derived from a proposed kinetic mechanism. It is based on four 

assumptions: 

• The surface of the adsorbent is uniform, that is, all the adsorption sites are 

equivalent. 

• Adsorbed molecules do not interact 

• All adsorption occurs through the same mechanism. 

• At the maximum adsorption, only a monolayer is formed; molecules of adsorbate 

do not deposit on other, already adsorbed, molecules of adsorbate, only on the 

free surface of the adsorbent. (Adsorption, Wikipedia) 

 

Langmuir model is the simplest theoretical model for monolayer adsorption onto a 

surface with finite number of identical sites. It is originally developed to represent 

chemisorptions on a set of distinct, localized adsorption sites. Langmuir has developed a 

theoretical equilibrium isotherm relating the amount of gas adsorbed on a surface due to 

the pressure of gas. 

 

The general Langmuir equation is as follows (M.A. Abdullah et. al, 2008): 

Qe =   KLCe                          (1) 
        1 + αLCe 
 

When, the equation was linearized it becomes: 

Ce = αLCe + 1                       (2) 
Qe       KL    KL 
 

In linear form, we can determine the isotherm parameters; αL, KL, and also R2 that 

describe the degree of fit of the isotherm, by plotting Ce against Ce/Qe. The isotherm 

parameters are used in equation 1 and thus obtained the Langmuir isotherm model. The 

higher the degree of fit, R2, the better the model would be. 
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2.5.4 Freundlich Isotherm 

Freundlich expression is an empirical equation applicable to non-ideal sorption on 

heterogeneous surface as well as multilayer sorption. The model is given as 

Qe = KFCe
1/n (3) 

 

If the concentration of solute in the solution at equilibrium, Ce, is raised to the power of 

1/n, with the amount of solute adsorbed being Qe, then Ce
1/n/Qe is constant at a given 

temperature. KF indicates relative indicator of adsorption capacity, while the 

dimensionless, 1/n, is indicative of the energy or intensity of the reaction and suggests 

the favorability and capacity of the adsorbent/adsorbate system. According to the theory, 

n > 1 represents favorable adsorption conditions. Eq. (3) is linearized into logarithmic 

form for data fitting and parameter evaluation as follows: 

log Qe = log KF +(1/n)log Ce (4) 

 

By plotting log Qe versus log Ce, constant KF and exponent 1/n can be calculated. (M.A. 

Abdullah et. al. 2008) 

 

2.6 Adsorbents 

In order to remove metal from waste stream through adsorption / ion-exchange, 

scientists and researchers are continually finding more and more adsorbent, derived from 

natural sources. S.K.R Yandanaparthi et. al. has listed a wide range of adsorbent that can 

remove lead and cadmium, which is in interest with this project. Following are some of 

the adsorbent in interest (natural and commercial). 
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2.6.1 Bentonite (Sodium Bentonite) 

 

 
Figure 2.4 - Bentonite Clay 

 

Sodium bentonite is a natural soft clay substance that belongs to the mineral group 

composed of essentially of the montmorillonite and is formed from the weathering and 

aging of volcanic materials (ashes), most often in the present of water. It is a free-

flowing powder containing sodium and has strong swelling properties, high thermo 

stability, high plasticity and tensile strength. A good quality bentonite should be 

grey/cream in color. It has a very fine velveteen feel and is odorless and non-staining.  

 

Bentonite is quite cheap as it is price at USD7.50 per 100 pound (USD0.17/kg). 

(malibuwater.com) 

 

Table 2.6 shows the technical data for bentonite (Bentonite PDS, bentonite.co.uk) 

Properties Value 
Moisture content 6 – 10 % 
Montmorillonite content 75 - 85 % 
Consumption 72 – 96 mg/l 
Alkalinity pH 9.2 – 10.2 
Compression 0.7 – 0.9 kg/cm2 
Wet tensile 0.24 – 0.35 N/cm2 

Mineral Content 
Silica 61.4 % 
Aluminium 18.1 % 
Iron 3.5 % 
Sodium 2.3 % 
Magnesium 1.7 % 
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Calcium 0.04 % 
Titanium 0.02 % 
Potassium 0.01 % 

Table 2.6 - Technical Data for Bentonite 

 

2.6.1.1 Source of Bentonite 

In 2005, U.S. was the top producer of bentonite with almost one-third world share 

followed by China and Greece, reports the British Geological Survey. 

 

The absorbent clay was given the name bentonite by Wilbur C. Knight in 1898 - after 

the Cretaceous Benton Shale near Rock River, Wyoming. Other modern discoveries 

include montmorillonite discovered in 1847 in Montmorillon in the Vienne prefecture of 

France, in Poitou-Charentes, South of the Loire Valley. 

 

Most high-grade natural sodium bentonite is produced from the western United States in 

an area between the Black Hills of South Dakota and the Big Horn Basin of Wyoming. 

Mixed sodium/calcium bentonite is mined in Greece, Australia, India, Russia and the 

Ukraine. In the United States, calcium bentonite is primarily mined in Mississippi and 

Alabama. Other major locations producing calcium bentonite include Germany, Greece, 

Turkey, and China. (Bentonite, Wyoming Geological Survey) 

 

 

2.6.1.2 How bentonite works as adsorbent?  

Bentonite is very unusual in the fact that once it becomes hydrated, the electrical and 

molecular components of the clay are rapidly changed and produce an “electrical 

charge”. Its highest power lies in the ability to adsorb toxins, impurities, heavy metals 

and other contaminants. Bentonite clay’s structure assists it in attracting and soaking up 

poisons on its exterior wall and then slowly draw them into the interior center of the clay 

where it held in a sort of repository. 

 

To state it in other way, “Bentonite is swelling clay. When it becomes mixed with water 

it rapidly swells open like a highly porous sponge. From here, toxins are drawn into the 
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sponge through electrical attraction and once there, they are bound. (Bentonite, 

botanical.com) 

 

2.6.1.3 Application of bentonite 

Much of bentonite's usefulness in the drilling and geotechnical engineering industry 

comes from its unique rheological properties. Relatively small quantities of bentonite 

suspended in water form a viscous, shear thinning material. Most often, bentonite 

suspensions are also thixotropic, although rare cases of rheopectic behavior have also 

been reported. At high enough concentrations (~60 grams of bentonite per liter of 

suspension), bentonite suspensions begin to take on the characteristics of a gel (a fluid 

with a minimum yield strength required to make it move). For these reasons it is a 

common component of drilling mud used to curtail drilling fluid invasion by its 

propensity for aiding in the formation of mud cake. 

 

Bentonite can be used in cement, adhesives, ceramic bodies, and cat litter. Bentonite is 

also used as a binding agent in the manufacture of taconite pellets as used in the 

steelmaking industry. Fuller's earth, an ancient dry cleaning substance, is finely ground 

bentonite, typically used for purifying transformer oil. Bentonite, in small percentages, is 

used as an ingredient in commercially designed clay bodies and ceramic glazes. 

Bentonite clay is also used in pyrotechnics to make end plugs and rocket nozzles. 

 

The ionic surface of bentonite has a useful property in making a sticky coating on sand 

grains. When a small proportion of finely ground bentonite clay is added to hard sand 

and wetted, the clay binds the sand particles into a moldable aggregate known as green 

sand used for making molds in sand casting. Some river deltas naturally deposit just 

such a blend of such clay silt and sand, creating a natural source of excellent molding 

sand that was critical to ancient metalworking technology. Modern chemical processes 

to modify the ionic surface of bentonite greatly intensify this stickiness, resulting in 

remarkably dough-like yet strong casting sand mixes that stand up to molten metal 

temperatures. 
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Bentonite also has the interesting property of adsorbing relatively large amounts of 

protein molecules from aqueous solutions. It is therefore uniquely useful in the process 

of winemaking, where it is used to remove excessive amounts of protein from white 

wines. Were it not for this use of bentonite, many or most white wines would precipitate 

undesirable flocculent clouds or hazes upon exposure to warmer temperatures, as these 

proteins denature. It also has the incidental use of inducing more rapid clarification of 

both red and white wines. 

 

Aside from industrial uses, bentonite is also use as one of the most effective and 

powerful healing clay used to treat both internal and external maladies. Bentonite can be 

used externally as a clay poultice, mud pack or in the bath and in skin care recipes. 

Internally, it can add to water or glazed upon food to help those with sensitive palates. 

(Bentonite, botanical.com) 

 

2.6.1 Palm-oil empty fruit bunch and kernel. 

This adsorbent has been considered as waste after they have extracted the oil from it. 

However, a lot of researches have shown that agricultural waste can be used as 

adsorbent when in the form of activated carbon. 

 

Figure 2.5 - Palm-oil Empty Fruit Bunch 

Malaysia as on the main producer of palm-oil, have an abundant supply of this waste. 

Therefore, it is low cost (or more likely ‘no cost’), as compared to commercial 

adsorbent. It’s usage as adsorbent can become an alternative choice for today’s toxin 

removal. Instead of dumping it to the landfills straight away, why don’t we use it to the 
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fullest extend? Although its absorbency and capacity are being believed as to not rival 

the commercial adsorbent, it can be considered a wise choice due to its benefits.  

 

2.6.2 Amberlite XAD4, XAD7 and XAD16™.  

Amberlite XADs are the registered trademark of Rohm and 

Haas Co. It is a polymeric adsorbent supplied as insoluble 

white beads. It is nonionic, hydrophobic, cross-linked 

polymer which derives its adsorptive properties from its 

patented macroreticular structure (containing both a continuous polymer phase and a 

continuous pore phase), is high surface area, and aromatic nature of its surface. It 

characteristics pore size distribution makes them an excellent choice for the adsorption 

of organic substances of relatively low to medium molecular weight. It can be used in 

column or batch operation. 

 

Table 2.7 shows the key properties of each Amberlite products and its price. (Rohm and 

Haas Co., sigmaaldrich.com) 

Product Amberlite XAD-4 Amberlite XAD-7 Amberlite XAD-16 
Surface Area 725 m2/g 450 m2/g 800 m2/g 
Avg. pore diameter 40 Å 90 Å 100 Å 
Wet Mesh Size 20 – 60 20 - 60 20 – 60 
Price USD160.50 / kg USD148.00 / kg USD212.50 / kg 

Table 2.7 - Key properties of Amberlite 

 

Based on the key properties shown above, Amberlite XAD-16 seems to be the best 

adsorbent due to its largest surface area and pore diameter. Even thought they are claim 

to be best in adsorbing contaminant, high price for this solvent will increase the 

operating cost in removing heavy metals and therefore, an alternative adsorbent that 

have comparable adsorption performance can be used and lower the cost.  
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Figure 2.6 - Amberlite XAD 4 resin beads. 
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CHAPTER 3 

METHODOLOGY 

 
3.1 Resin and reagent 

Three natural adsorbent and three synthetic adsorbent has been used in this work. Raw 

palm-oil empty fruit bunch and kernel were collected from the palm-oil mill in Tronoh 

(Perak, Malaysia) as waste in August 2009. Bentonite, a type of clay that consists of 

high montmorillonite content (75-85%) was also nature adsorbent used. Synthetic 

adsorbent, Amberlite XAD4, XAD7 and XAD16 were purchased from Sigma Aldrich 

Co. 

 

Analytical reagent grade Cd2+ and Pb2+ as nitrates were purchase from Merck Co and 

Systerm, respectively. 

 

3.2 Adsorbent preparation and pre-treatment 

Samples of palm-oil empty fruit bunch and kernel were washed with tap water for 

several times to remove impurities. Then, it was oven dried at 60oC for an overnight. 

The dried solids were then crushed and grinded with grinder, and sieved (size fraction of 

0.5 – 1.0mm) and stored in polyethylene bottles until use. 

 

To convert natural bentonite into sodium bentonite, 20g of bentonite was mixed with 

750ml of 1M of NaCl solution, and continuously stirred for 12 hours. Then, the liquid 

was discarded and the solid was taken. Again, the solid sample was contacted with fresh 

750ml of 1M NaCl solution and stirred for another 12 hour. This was performed to 

ensure complete conversion of the clay into its homoionic form. 

 

To remove the excess NaCl and Cl- ion (that could impregnated in the solid phase), the 

solid was filtered and wash several times with distilled water until a negative test for Cl- 

was achieved (absence of Cl- as detected by titrating the filtrate with AgNO3). Finally, 

the pH of the dispersion was around 8 and Na+-exchanged bentonite particles were 
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obtained. The material was then dried at room temperature for 24 hour or oven dried at 

60oC. 

 

3.3 Characterization of palm-oil waste biomass 

FTIR (Fourier Transform Infrared) was used to identify the chemical groups present in 

the adsorbents (except for Amberlite XAD’s). The samples were examined using a 

Shimadzu spectrophotometer within range of 400 - 4000cm-1. 

 
Figure 3.1 – FTIR (Shimadzu) 

 
3.4 Kinetic studies 

The experiments were carried out at natural pH (between 4 – 4.3 for lead and 4.6 – 5.3 

for cadmium). 0.25g of adsorbent were mixed into 100ml of 2mmol/l solution of 

Pb(NO3)2 and Cd(NO3)2.4H2O, separately. Both mixtures were stirred in rotary shaker at 

150rpm for 4 hour. Then, the mixtures were filtered and the filtrate was analyzed for the 

remaining metal concentration by AAS. The experiment was repeated for each of the 

adsorbent. 

 

The metal uptake at each moment was calculated from the equation: 

Qe = V(Ci – Ce)         (5) 
                  M  
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Where V is the volume of metal solution, Ci is the initial metal concentration, Ce is the 

concentration of metal in solution at given time, and M is the mass of sorbent (dry 

weight). 

 

3.5 Adsorption isotherm 

Twelve lead (II) solution of several concentrations from 0.5 to 9.65 mmol/l (165.5 to 

3080mg/l) and eight cadmium (II) solutions, from 0.1 to 2.9 mmol/l (30.8 to 894.5mg/l) 

in sample of 40 ml was prepared by dissolving Pb(NO)3 and Cd(NO)3.4H2O respectively 

in distilled water. The samples (at pH 4.5 +0.1) were then added with 0.1g of adsorbent 

and stirred in a rotary shaker at 150 rpm for 4 hours until equilibrium are reached. Then, 

the mixture was filtered and the filtrate was analyzed for the remaining metal 

concentration by AAS. The experiment was the repeated with the chosen adsorbent 

(based on metal uptake by previous experiment), which is one from palm-oil waste, 

bentonite and one from Amberlite. 

 

The amount of metal adsorbed at equilibrium, Qe, which represents the metal uptake, 

was calculated from the difference in metal concentration in the aqueous phase before 

and after adsorption, according to an equation formally identical to Eq. 3. 

 

 
Figure 3.2 – AAS (Shimadzu) 

 

3.6 Influence of pH on metal adsorption 

A batch of 0.1g of adsorbent was mixed in 40ml of 2.41mmol/l solution of lead (II) and 

cadmium (II) separately. The pH of the solutions was varied with a range of 1 to 5.5, by 

addition of NaOH and HNO3 solution. The mixture was stirred in a rotary shaker at 
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150rpm for 4 hour. It was filtered and the filtrate was analyzed by AAS. The experiment 

was repeated for the three adsorbent, as mention in the adsorption isotherm experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3 – Experimental procedures for kinetic studies, adsorption isotherm and effect of pH. 
 

Mixing adsorbents into Pb(II) and 
Cd(II) Nitarate solution 

Shake at 150 rpm for 4 hour 

Filtering samples Sample ready to be analyzed by AAS
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CHAPTER 4 

RESULTS AND DISCUSSION 

 
4.1 Kinetic Studies 
Parameters: 

pH (Natural pH) – Lead = 4 - 4.3; Cadmium = 4.6 – 5.3 

Adsorbent = 0.25g of Na-Bentonite, OPEFB, OP Kernel and Amberlite XAD4, XAD7 

and XAD16 

Sorbate = 100ml of 662.4ppm of Pb(II)NO3 and 616.9ppm of Cd(II)NO3 

Formula: 

Qe = V x (Ci – Ce)   Qe = metal adsorbed/adsorbent 
      Ms 
 
Sorbate Adsorbent (Ci), ppm (Cme), ppm (Qe), mg/g % Adsorbed 

Pb(II) 

Na-Bentonite 662.4 149.444 205.1824 77.43 
OP Kernel 662.4 292.949 147.7804 55.77 
OPEFB 662.4 286.046 150.5416 56.82 
XAD 16 662.4 289.899 149.0004 56.24 
XAD 7 662.4 312.371 140.0116 52.84 
XAD 4 662.4 305.309 142.8364 53.91 

Cd (II) 

Na-Bentonite 616.9 222.189 176.0844 66.45 
OP Kernel 616.9 294.804 147.0384 55.49 
OPEFB 616.9 285.819 150.6324 56.85 
XAD 16 616.9 297.87 145.812 55.03 
XAD 7 616.9 301.83 144.228 54.43 
XAD 4 616.9 304.86 143.016 53.97 

Table 4.1 - Kinetic Studies of Pb(II) and Cd(II) on adsorbents. 

From the data shown in Table 4.1, we can compare the adsorbents based on metal 

uptake; Qe, shown by these sequences: 

Pb (II) : Bentonite > OPEFB > XAD16 > OP Kernel > XAD4 > XAD7 

Cd(II) : Bentonite > OPEFB > OP Kernel > XAD16 > XAD7 > XAD4 

From the sequences, we can determine that bentonite is the best adsorbent for both 

Pb(II) and Cd(II). Oil-palm solid wastes are comparable to Amberlite XAD’s in 

adsorbance efficiency. Among Amberlite XAD, XAD16 are better than XAD4 and 7. 
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Surface area and pore size are the main factor of adsorption capacity. Pb(II) and Cd(II) 

ions are smaller (1.32 Ǻ and 0.97 Ǻ, respectively) than the pore size of XAD resins 

(100Ǻ). Too large a pore diameter could render part of the inner adsorbent surface 

wasted, and the molecules ion initially adsorbed were prone to desorption at the same 

time, thus result in lower metal uptake than Na-Bentonite. In addition, the nature of 

XAD resins which is nonionic and hydrophobic may make the adsorption not favorable. 

Among XAD resins, XAD16 have the most surface area, 800m2/g.   

 

4.2 Adsorption Isotherm 
Parameters: 

pH = 4.5 +/- 1 

Adsorbent = 0.1g of Na-Bentonite, OPEFB and Amberlite XAD16 

Sorbate =  

Pb(II) = 12 samples in 40ml, range from 0.5mmol/l (165.6ppm) to 9.65mmol/l 

(3080ppm) 

Cd(II) = 8 samples in 40ml, range from 0.1mmol/l (30.8ppm) to 2.9 mmol/l (894.5ppm) 

Equation: 
Qe =   KLCe                 : general Langmuir equation (1) 
        1 + αLCe 
 
Ce = αLCe + 1              : linearized Langmuir equation (2) 
Qe       KL    KL 
 
Qe = KFCe

1/n  : general Freundlich equation (3) 
 
Log Qe = logKF + (1/n)logCe  : linearized Freundlich equation (4) 
 

Pb(II) 
(Ci), ppm 

Na-Bentonite OPEFB Amberlite XAD16 
(Ce), ppm (Qe), ppm (Ce), ppm (Qe), ppm (Ce), ppm (Qe), ppm 

165.6 16.694 59.2624 48.798 46.7208 54.737 44.3452 
430.5 55.219 150.1124 172.559 103.1764 168.385 104.846 
695.5 158.433 214.8268 267.426 171.2296 269.192 170.5232 
960.4 215.097 298.1212 370.961 235.7756 379.469 232.3724 
1225.4 98.559 450.7364 518.318 282.8328 566.956 263.3776 
1490.3 381.877 443.3692 552.188 375.2448 567.277 369.2092 
1755.2 569.364 474.3344 643.684 444.6064 721.376 413.5296 
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2020.2 624.422 558.3112 712.066 523.2536 707.09 525.244 
2285.1 680.925 691.67 683.814 640.5144 762.951 608.8596 
2550.1 750.43 719.868 842.889 682.8844 854.286 678.3256 
2815.0 559.893 902.0428 857.336 783.0656 1031.019 713.5924 
3080.0 914.481 866.2076 966.65 845.34 761.024 927.5904 

Table 4.2 - Experimental Data of Pb(II) sorption on Na-Bentonite, OPEFB and Amberlite XAD16. 
 

Langmuir 
Parameter Na-Bentonite OPEFB Amberlite XAD16 
KL 0.002639 0.00064 0.000628 
αL 0.002486 -0.00022 -0.00014 
R2 0.702 0.141 0.0039 

Freundlich 
Parameter Na-Bentonite OPEFB Amberlite XAD16 
1/n 0.599 1.008 1.017 
KF 0.01367 0.000703 0.000639 
R2 0.863 0.954 0.929 

Table 4.3 – Langmuir and Freundlich isotherm parameters for Pb(II) sorption on Na-Bentonite, 
OPEFB and Amberlite XAD16. 
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Figure 4.1 - Linear plot for the sorption of Pb(II) onto Na-Bentonite, OPEFB and Amberlite XAD16 

(Langmuir and Freundlich). 
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Figure 4.2 – Langmuir and Freundlich equilibrium curves for sorption of Pb(II) onto Na-Bentonite, 

OPEFB and Amberlite XAD16. 
 
 

Cd(II) 
(Ci), ppm 

Na-Bentonite OPEFB Amberlite XAD16 
(Ce), ppm (Qe), ppm (Ce), ppm (Qe), ppm (Ce), ppm (Qe), ppm 

30.8 5.718 10.0328 1.7755 11.6098 6.3815 8.5674 
154.2 23.48115 52.2875 54.42976 39.908 54.96029 39.6958 
277.6 50.792 90.7232 131.1478 58.508 126.1036 60.5986 
401 84.84 126.464 139.54 104.584 153.704 98.9184 

524.4 126.415 159.194 219.1525 122.099 239.3003 114.0398 
647.74 211.3679 174.5488 282.5053 146.0938 289.0501 143.47596
771.12 294.877 190.4972 373.6905 158.9718 372.4475 159.469 
894.5 341.5795 221.1682 395.291 199.6836 426.1251 187.34996

Table 4.4 - Experimental Data of Cd(II) sorption onto Na-Bentonite, OPEFB and Amberlite 
XAD16. 

Langmuir 
Parameters Na-Bentonite OPEFB Amberlite XAD16 
KL 0.002379 0.001097 0.00077 
αL 0.00832 0.004021 0.002051 
R2 0.968 0.559 0.765 

Freundlich 
Parameters Na-Bentonite OPEFB Amberlite XAD16 
1/n 0.708 0.512 0.8 
KF -2.364 0.0073 0.00148 
R2 0.934 0.933 0.990 

Table 4.5 – Langmuir and Freundlich isotherm parameters for Cd(II) onto Na-Bentonite, OPEFB 
and Amberlite XAD16. 
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Figure 4.3 - Linear plot for the sorption of Cd(II) onto Na-Bentonite, OPEFB and Amberlite XAD16 

(Langmuir and Freundlich). 
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Figure 4.4 – Langmuir and Freundlich equilibrium curves for sorption of Cd(II) onto Na-Bentonite, 

OPEFB and Amberlite XAD16. 

Table 4.2 and 4.4 shows the experimental data of Pb(II) and Cd(II) respectively. Table 

4.3 and 4.5 shows the isotherm parameters (Langmuir and Freudlich) for Pb(II) and 

Cd(II) respectively, achieved by plotting the linearized Langmuir equation (2) and 

linearized Freundlich equation (4) (Figure 4.1 and 4.3). Then, the isotherm parameters 

were put into the general Langmuir equation (1) and Freundlich equation (3) to get the 

theoretical qe. The Langmuir and Freundlich isotherm model was shown in Figure 4.2 

and 4.4. 
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Based on these results, Freundlich isotherm show the highest degree of fit on all 

adsorbent compared to Langmuir isotherm. These proves that all of the adsorptions can 

be best described by Freundlich isotherm. XAD16 shows the highest degree fits for 

Cadmum (0.99) and OPEFB shows the highest degree fits for Lead (0.954). These 

results also shows that the adsorption happen in multilayer and removed the assumption 

of monolayer adsorption. 

 

4.3 Effect of pH 
Parameters: 

pH = 1 - 5.5 

Adsorbent = 0.1g of Na-Bentonite, OPEFB and Amberlite XAD16 

Sorbate = 2.41mmol/l of Pb(II)NO3 (798.1ppm) and Cd(II)NO3 (743.4ppm) in 40ml 

 

Sorbate pH 
Na-Bentonite OPEFB XAD16 

(Cme), 
ppm 

(Qm), 
ppm 

(Cme), 
ppm 

(Qm), 
ppm 

(Cme), 
ppm 

(Qm), 
ppm 

Pb(II) 

1 87.419 284.2724 337.629 184.1884 415.728 152.9488
2 148.997 259.6412 341.692 182.5632 409.841 155.3036
3 186.788 244.5248 355.476 177.0496 401.084 158.8064
4 234.572 225.4112 360.456 175.0576 390.952 162.8592

4.5 257.736 216.1456 377.196 168.3616 389.504 163.4384

Cd(II) 

1 396.299 138.8404 385.6673 143.0931 391.3886 140.8046
2 367.6922 150.2831 394.8036 139.4386 393.0961 140.1216
3 288.8357 181.8257 368.0345 150.1462 394.1638 139.6945
4 316.788 170.6448 361.331 152.8276 366.6246 150.7102

5.5 N/A N/A 357.146 154.5016 355.3976 155.201 
Table 4.6 - Experimental data for the sorption of Pb(II) and Cd(II) onto Na-Bentonite, OPEFB and 

Amberlite XAD16 in the function of pH. 
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Figure 4.5 - Effect of pH on Pb(II) sorption onto Na-Bentonite, OPEFB and Amberlite XAD16. 

 
Figure 4.6 - Effect of pH on Cd(II) sorption onto Na-Bentonite, OPEFB and Amberlie XAD16. 

 
The adsorption of Pb(II) and Cd(II) onto Na-Bentonite, OPEFb and Amberlite XAD16 

as a funcion of pH are shown in Figure 4.5 and 4.6. It can be seen that the adsorption of 

Pb(II) and Cd(II) are pH-dependent, mostly on Na-Bentonite. The uptake of Pb(II) and 

Cd(II) on Na-Bentonite is better at all pH compared to OPEFB and XAD16. 
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For Na-Bentonite, the adsorption of Pb(II) and Cd(II) increase with increasing pH. This 

is due to at lower pH, more H+ exist and compete with metal ions. This means that at 

higher H+ concentration, the bentonite surface becomes more positively charged thus 

reducing the atraction between surface and metal cations. In addition, due to removal of 

metals by recipitation above pH5, metals were removed by both adsorption and 

precipitation. (Liu Yun et. al, 2006)  

 

4.4 Adsorbent Characterization 

Adsorbents functional group has been observed by analyzing with FTIR. Infrared 

spectra for Amberlite XAD4, 7, and 16 were taken from product data sheet issued by 

Rohm and Haas. The infra-red spectrums are shown in Figure 4.7 – 4.12. Table 4.7 list 

the functional group for OPEFB, OP Kernel and Na-Bentonite. 

 

 
Figure 4.7 - FTIR spectra for OPEFB 
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Figure 4.8 - FTIR Spectra for OP Kernel 

 
Figure 4.9 - FTIR Spectra for Na-Bentonite 
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Figure 4.10 - IR Spectra for XAD4 (XAD PDS) 

 

 
Figure 4.11 - IR Spectra for XAD7 (XAD7 PDS) 
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Figure 4.12 - IR Spectra for XAD16 (XAD16 PDS) 

OPEFB OP Kernel 

cm-1 Functional 
Group Bond cm-1 Functional 

Group Bond 

669.25 acid chlorides C-Cl stretch 669.25 acid 
chlorides C-Cl stretch 

771.47 aromatics C-H bend 
(mono) 771.47 aromatics C-H bend 

(mono) 

896.84 anhydrides C-O stretch 875.62 aromatics C-H bend 
(meta) 

1051.13 alcohols C-O stretch 1047.27 alcohols C-O stretch 
1247.86 ketones C-C stretch 1247.86 ketones C-C stretch 

1654.81 alkenes C=C stretch 
(isolated) 1751.24 esters C=O stretch 

2360.71 Carboxylic 
acid O-H stretch 2360.71 Carboxylic 

acid O-H stretch 

2920.03 alkanes C-H stretch 2921.96 alkanes C-H stretch 
3377.12 alcohols O-H stretch 3407.98 alcohols O-H stretch 

Na-Bentonite 
cm-1 Functional Group Bond 

520.74 alkyl halides C-Br stretch 
794.62 amines N-H (oop) 
1045.35 alcohols C-O stretch 
1637.45 alkenes C=C stretch (isolated) 
3450.41 amines N-H stretch 

Table 4.7 - Functional Groups 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

The equilibrium adsorption for Pb(II) and Cd(II) onto bentonite, oil-palm solid waste and 

Amberlite XAD polymeric adsorbents has been  studied and the comparison between the 

adsorbent has done. Bentonite has proved to be the best adsorbent to remove lead and 

cadmium from waste stream, while oil-palm solid wastes are comparable to Amberlite 

XAD polymeric adsorbents. However, as the polymeric adsorbents incur high cost, oil- 

palm solid wastes are more preferable. 

 

Based on linear method, all adsorption can be best described by Freundlich isotherm 

means multilayer adsorptions occur. For lead, OPEFB shows the highest degree of fit 

(0.954) and for cadmium, XAD16 shows the highest degree of fit (0.99)  

 

pH has proved to pose significantly as a function as the metal uptake increase with 

increasing pH. Furthermore, at higher pH than 5.0, metal precipitation will also occur. 

 

The functional group of the adsorbents had been identified by FTIR analysis.  

 

5.2 Recommendation 

Improvement can be done to make the experiment more efficient and produces good 

results: 

• The initial concentration variation for adsorption isotherm studies should be 

lowered, so that the samples concentration (equilibrium) will be lower than the 

standards prepared for AAS and AAS can give more accurate readings. 

• If the samples concentration are high, dilution should be done to make sure that 

the samples concentration should be lower than standards. 
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• pH meter must be calibrated correctly, to avoid inaccurate pH reading, and thus 

effect the experiments. 

• The adsorption of metals as a function of time should be carried out to determine 

the maximum capacity of each adsorbent. 

• More studies on oil-palm solid waste to be carried out in order to further 

characterize it such as pore size, surface area etc. 
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APPENDICES 

(A) Infrared Spectroscopy 

IR Absorptions for Representative Functional Groups 
Functional Group  Molecular Motion  Wavenumber (cm‐1) 

alkanes 

C‐H stretch  2950‐2800 

CH2 bend  ~1465 

CH3 bend  ~1375 

CH2 bend (4 or more)  ~720 

alkenes 

=CH stretch  3100‐3010 

C=C stretch (isolated) 1690‐1630 

C=C stretch (conjugated)  1640‐1610 

C‐H in‐plane bend  1430‐1290 

C‐H bend (monosubstituted)  ~990 & ~910 

C‐H bend (disubstituted ‐ E)  ~970 

C‐H bend (disubstituted ‐ 1,1)  ~890 

C‐H bend (disubstituted ‐ Z)  ~700 

C‐H bend (trisubstituted)  ~815 

alkynes 

acetylenic C‐H stretch  ~3300 

C,C triple bond stretch  ~2150 

acetylenic C‐H bend  650‐600 

aromatics 

C‐H stretch  3020‐3000 

C=C stretch  ~1600 & ~1475 

C‐H bend (mono)  770‐730 & 715‐685 

C‐H bend (ortho)  770‐735 

C‐H bend (meta) ~880 & ~780 & ~690

C‐H bend (para)  850‐800 

alcohols  O‐H stretch  ~3650 or 3400‐3300 
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C‐O stretch 1260‐1000 

ethers 
C‐O‐C stretch (dialkyl)  1300‐1000 

C‐O‐C stretch (diaryl)  ~1250 & ~1120 

aldehydes 
C‐H aldehyde stretch  ~2850 & ~2750 

C=O stretch ~1725 

ketones 
C=O stretch  ~1715 

C‐C stretch  1300‐1100 

carboxylic acids 

O‐H stretch  3400‐2400 

C=O stretch  1730‐1700 

C‐O stretch  1320‐1210 

O‐H bend  1440‐1400 

esters 

C=O stretch  1750‐1735 

C‐C(O)‐C stretch (acetates)  1260‐1230 

C‐C(O)‐C stretch (all others)  1210‐1160 

acid chlorides 
C=O stretch  1810‐1775 

C‐Cl stretch  730‐550 

anhydrides 
C=O stretch  1830‐1800&1775‐1740 

C‐O stretch  1300‐900 

amines 

N‐H stretch (1 per N‐H bond)  3500‐3300 

N‐H bend 1640‐1500 

C‐N Stretch (alkyl)  1200‐1025 

C‐N Stretch (aryl)  1360‐1250 

N‐H bend (oop)  ~800 

amides 

N‐H stretch  3500‐3180 

C=O stretch  1680‐1630 

N‐H bend  1640‐1550 

N‐H bend (1o)  1570‐1515 

alkyl halides  C‐F stretch  1400‐1000 
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C‐Cl stretch 785‐540 

C‐Br stretch  650‐510 

C‐I stretch  600‐485 

nitriles  C,N triple bond stretch  ~2250 

isocyanates  ‐N=C=O stretch ~2270 

isothiocyanates  ‐N=C=S stretch  ~2125 

imines  R2C=N‐R stretch  1690‐1640 

nitro groups 
‐NO2 (aliphatic)  1600‐1530&1390‐1300 

‐NO2 (aromatic)  1550‐1490&1355‐1315 

mercaptans  S‐H stretch  ~2550 

sulfoxides  S=O stretch  ~1050 

sulfones  S=O stretch  ~1300 & ~1150 

sulfonates 
S=O stretch  ~1350 & ~11750 

S‐O stretch  1000‐750 

phosphines 
P‐H stretch  2320‐2270 

PH bend  1090‐810 

phosphine oxides  P=O  1210‐1140 
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