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ABSTRACT

The objective of the project is to implement the ALU of an 8 bit register-based CPU
on FPGA. The success of this project will be an asset to the education of computer
architectures. Exposure to FPGA design will also become invaluable as the demand
for embedded system increases. The scope of study involves gaining understanding of
the architecture of the CPU and mastering HDL for FPGA design. The methodologies
outlined include functional and timing analysis of the ALU, construction of test jigs
for hardware interface with UP2 development board, hardware tests and
troubleshooting, programming TTL components in Verilog, construction of interface
with TTL CPU, interfacing with TTL CPU and implementing the control card on
FPGA. A functional ALU was implemented on FPGA. Static tests have shown that
the ALU unit is functioning.
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CHAPTER 1
INTRODUCTION

Computers have become a requisite. As a result of the boundless capabilities of
modern computers, they are thought to be very convoluted and intellectual devices.
The thought of building a computer is inconceivable. Essentially, the microprocessor
or central processing unit (CPU) of a computer is made out of simple commands to
move data around, perform simple math (add, subtract, multiply, and divide), bring
data into the CPU from the outside world, and send data out of the CPU to the outside
world. The power of the computer only surfaces with its ability to execute these
simple instructions expeditiously. As its complexity increases many folds in a matter
of months, it becomes a technology that is inexplicable. It is the aim of the project to
go down to basics by starting from scratch _an_d building a minicomputer and
understanding the architecture of it. An 8 bit register-based CPU on TTL chips has
already been implemented. The challenge is to implement the arithmetic logic unit
(ALU) into a single chip in Field Programmable Gate Array (FPGA).

1.1 Background of Study

The goal is to implement the arithmetic logic unit (ALU) of an 8 bit register based
CPU on FPGA. By 8 bits, it means the CPU can process information 8 bits at a time.
For example it can subtract or add two 8 bit numbers at one instruction cycle. An
FPGA is a semiconductor device containing programmable logic components and
programmable interconnects. The programmable logic components can be
programmed to duplicate the functionality of basic logic gates such as AND, OR,

XOR, NOT or more complex combinational functions such as decoders.

A hierarchy of programmable interconnects allows the logic blocks of an FPGA to be
interconnected as needed by the system designer, somewhat like a one-chip
programmable breadboard. FPGAs are generally slower than their application-

specific integrated circuit (ASIC) counterparts, can't handle as complex a design, and



draw more power. However, there are several advantages such as a shorter time to
market, ability to re-program in the field to fix bugs, and lower non-recurring
engineering costs. This propels the aspiration to develop the ALU of the CPU on
FPGA (a single chip) as the initial step.

1.2 Problem Statement

The main aim of the project is to implement the ALU in FPGA. It is envisaged that
this would open up opportunities for further research in computer architecture. In
addition, it also eases the teaching of computer architecture related courses as they
present the most basic computer architecture. The first step that has been taken is to
construct the whole CPU in TTL chips. That has already been achieved. It would then
serve as a testbed for the chip that is to be implemented in FPGA. The next step now
is to implement the ALU in FPGA.

1.3 Objective and Scope of Study

The objective of the project is to implement the ALU of an 8 bit register based CPU
on FPGA. The CPU that we are targeting to implement our ALU on runs at 3MHz
and is similar in capabilities and performance as the 8086. The ALU works on both 8
bits and 16 bits operations. To accomplish these objectives, one has to gain a
thorough understanding on the architecture of the ALU to enable one to simulate and
test run each part of the ALU separately. The conception enables one to know the
expected results of a successful simulation. Next, one is required to master the

hardware description language (HDL) to implement the ALU on FPGA.



CHAPTER 2
LITERATURE REVIEW

2.1 Microprocessor

A microprocessor or CPU executes a collection of machine instructions that tell the

processor what to do. A microprocessor does a few basic things[1]:

1. Utilizing its ALU (Arithmetic/Logic Unit), a microprocessor can perform
mathematical operations like addition, subtraction, multiplication and
division.

2. A microprocessor can move data from one memory location to another and a

microprocessor can make decisions and jump to a new set of instructions

based on those decisions.

There may be very sophisticated things that a microprocessor does, but those are its
three basic activities. A microprocessor comprises of registers as temporary storage
area, buses to transfer data and select memory areas and control lines to control all the

blocks inside the microprocessor so that the instruction are executed correctly.

2.2 Arithmetic Logic Unit

The ALU of the computer’s CPU is part of the execution unit[1]. Generally it
performs a wide variety of mathematical and logical operations in two’s complement.
It gets data from processor registers to be processed before storing them into ALU
output registers. The control unit controls the ALU by instructing the ALU on which

operations to perform. Most ALUs can perform the following operations[1]:

e Aritmetic operations {addition, subtraction, sometimes muitiplication etc.)
e Bitwise logic operations (AND, NOT, OR, XOR)

e Bit-shifting operations



More complex arithmetic operations are usually performed in software like division
and floating point operation[1]. The inputs to the ALU are the data to be operated on
(called operands) and a code from the control unit indicating which operation to
perform. Its output is the result of the computation. The ALU also takes or generates
as inputs or outputs a set of condition codes from or to a status register. These codes

are used to indicate cases such as carry-in or carry-out, overflow, divide-by-zero, etc.



CHAPTER 3
METHODOLOGY

The target minicomputer that the ALU is to be implemented upon runs on 3 MHz,
supports user and supervisor modes, address translation via hardware page table, 6
external interrupts and up to 8MB of memory. The data bus is 8 bits wide and internal
CPU data paths are 16 bits. The ALU can operate on both 8 and 16 bits operations.
The block diagram of the CPU is shown in Figure 1. The portion enclosed in dotted
lines is the ALU of the CPU.

E AR w DataBus(&-bms) g
Dewvices ROM
[Fi 7 ST Audiess Bus 22 bis):
Low 11 High 11 ¢
Fault :
Lo l—  FTB  |ep——ti
9 Page Table -
‘ (16-bit entries) l
Low 4 " Highs :
, &

Figure 1: Block diagram of CPU
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Firstly, the Quartus 2 software is installed and familiarization with the basic
development environment begins. Schematic entry is being chosen over HDL
programming as a start. Schematic entry was tried with simple circuits and gradually
moving to the actual schematic that has to be built. The ALU subpart of the circuit
was drawn first. Next, functional analysis is performed on it and errors are

troubleshooted until the schematic is found to be working as expected.

The same is performed on the MSW, general registers, special registers, and MDR.
Full functional analysis has also been performed and preliminary results show that it
is functioning as expected. Preliminary timing analysis has also been carried out and
no error was recorded. Next, the bidirectional buffer that cannot be drawn with
schematic entry was programmed using verilog. It was then integrated into the

schematics for hardware tests. Next, test rigs were built to interface with the UP2



board for hardware tests. Hardware tests have been carried out and have been verified
to be working. Next, the interface with the TTL CPU is constructed. Interfacing is
then performed. Then each TTL chip was replaced in verilog to gain familiarity with

the language. The control card was also coded.



CHAPTER 4
RESULTS AND DISCUSSION

4.1 Arithmetic and Logic Operations (ALO)

The whole schematic that performs the arithmetic and logic operations was drawn and
functional analysis was performed on it as a whole hopeful that the results could be
satisfactory during the preliminary simulation. Preliminary results have shown that
the waveform simulated for the Z bus is far from the theoretical value that was
calculated for the test values that are fired at the inputs. As the source(s) of error is
difficult to trace with so many connections, subsection of the ALO are being
troubleshooted separately as standalones. The selector was taken out for
troubleshooting first and it was found to work as expected. The selector is shown in

Figure 2.
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Figure 2: Schematic of selector



The expected results from the selector are shown in Table 1.

Table 1: Truth table of selector

ALUOP1 ALUOPO
S0 S1 S2 operation
A B
0 0 IR IR
0 1 0 1 1 AB
1 0 0 1 0 A minus B
1 1 1 1 0 Aplus B

Two waveform results of the selector are shown in Figure 3 and Figure 4. The lines
that are bold indicate a HIGH logic level.

Wavelorms

Figure 4: Output waveform of selector for ALUOP(00)

ALUOP (00) will give IR operation. This means that S0, S1, and S2 will take the
values from IR1, IR2, and IR3. Values of IR0, and IR4 — IR7 will not play any role in
this portion of the circuit. Thus referring to Figure 4, the results shown is as expected.
All possible input combinations have been simulated to work as the truth table shown

in Table 1,



Next, the 74382 and 74381 ALU parts are created as standalone to be performed

functional analysis. The coverage of the standalone is shown in Figure 3.

Flesnoazuzses

P T
i

\SAPRY GRS, and

m
o

Figure 5: Schematic of ALU chips standalone

Several logic and arithmetic operations were simulated with the ALU chips
standalone. Addition, AND and OR operation worked as expected. Test values for A
and B and their expected theoretical outputs are shown in Table 2. The truth table for
the resulting arithmetic and logic operation based on the inputs are shown in Table 3.
The last bit of the minus operation was found to be faulty. After examining the
datasheets again, it was discovered that the carry in input has to be force high for
active high operation. The simulated waveform results for the mentioned logic and

arithmetic operations are shown in Figure 6, 7, 8 and 9.

Table 2: Test values and theoretical results for ALU standalone

T 1 1 1 1 operation
o 0111 0 0 00 0 0 1 1 0 0 1 A
¢c o o1 0o 0 0 O O0C 1t 1 1 0 0 0 O B
o 1. 0 0 1t 0 0 O 1 0 0 0 1 0 0 1 add
o 0o 0o 1 0 ¢ 0 0 0O O O 1 0 0 0 0 and
o o1 ¢+ 1 0 0 o0O0C1 1 1 1 0 0 1 or
o 017 0 0 1 1 1t 1 0 1 0 1 0 0 1 minus

10



Table 3: Truth table of ALU standalone

S0 81 82 Operation
0 0 0 clear

1 0 0 B minus A
0 1 0 A minus B
1 1 0 Aplus B
1 0 1 OR

0 1 1 AND

Figure 6: Simulation waveform for addition of test values

Simulation Waveforms
Mas

Figure 7: Simulation waveform for AND operation of test values

11



simulation Waveforms

D171 DUG000T 1001
OGUTO0G00T T T0000

Figure 9: Simulation waveform for minus operation of test values

Since the ALU standalone chips are functioning as expected, the next step is to

implement the buffers in the ALU. The section of the circuit is shown in Figure 10.

Figure 10: Buffers in the ALU

The initial simulation results indicate that the bits are shifted to the right. It was
suspected then the cause of this could be due to the input from _DO_RSHIFT.
Therefore, DO_RSHIFT is forced low (initially it was force high) and the simulation
results become accurate. This verifies that DO RSHIFT is an active low input. The

simulation output waveform is shown in Figure 11.

12




OOTTO00T001 0107
TOTT000T001 0107

Figure 11: Simulation waveform of ALU buffers

After these few changes are made to the overall ALO circuit. Simulation was carried
out again and it functioned as expected except the USE_CARRY input is an invert
from the ‘carry in® of the ALU chips standalone. This is because there were
intermediate logic components being used in the overall circuit. That means that
USE_CARRY is active low while ‘carry in’ is active high. The whole ALO schematic
is shown in Figure 12. For the full waveform simulation, the truth table in Table 1 is
still valid. The test values used for L and R bus are still the same as Table 2. The L
bus will be fed to the A inputs and the R bus will be fed to the B inputs.

i e

=

Figure 12: ALO schematic as a whole

The output waveforms for several logic and arithmetic operations are shown in Figure

13, 14, and 15. The shift right input will shift the output waveform one bit to the

13



right. We used the result waveform of AND operation (Figure 13) and shift it to the

right by one bit. The simulation waveform is shown in Figure 16.

- :‘L Sﬂp m.:"

ALUOP
ALUC
_DOZRSHIFT
ALUDOP_SZ
ALUS

@ : - T Lo :

B L a0 00773 GO0 TI0N i
MSWT : ;
R a0l BOCOROON 16000~ 00111 60000011001 |
3 LiSE_CARRY 1
z BOEC 00100111101016G1

Figure 14: Simulation waveform for minus operation of test values of whole
ALO
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Gimulation Wavelorms
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Figure 16: Simulation waveform for AND operation shifted one bit to the right
of test values of whole ALO

42 MSW

Next, the schematic of MSW is being drawn in Quartus 2 (Figure 17). The MSW
deals mainly with the ALU flags (carry, zero, sign and overflow), control flags (Mode

for supervisor of user), paging and interrupts enable.
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Figure 17

All possi

ble combinations of input have been tested to work accurately. One output

waveform has been shown in Figure 18.
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Figure 18: Simulation waveform of MSW

4.3 General Registers

Schematic of general registers have also been drawn. Refer to Appendix A.

The functional analysis of the general registers is much more straightforward than for
ALU and MSW. It is generally just choosing which entity to drive the L bus at any

particular time. One simulation output waveform is shown in Figure 19.

Figure 19: Simulation waveform of general registers

17



4.4 Special Registers

The special registers schematic is shown in Figure 20. It is also a rather simple

schematic and the output waveform is shown in Figure 21.
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Figure 20: Schematic of special registers

Figure 21: Simulation waveform of special registers

45 MDR

MDR The schematic for MDR has been shown in Figure 22. There is a missing
component in the schematic which is the 74F245 which is an octal bidirectional
transceiver with 3-state outputs. In the original design, this chip plays the role of a
bidirectional buffer between the data bus and the MDR. The IC is not available in the

schematic entry library. Therefore, the component will be included in the design in
HDL.

18
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Figure 22: Schematic of MDR

The 16 bits that will be loaded into L, R and data busses will depend on the input of
XL_MDR_HI and XL MDR_LO whose combination will select input from either the
8 bits data bus (D bus) or 16 bits Z bus or the combination of both (see Table 4).

Table 4: Selection of input to MDR

XL_MDR_HI XL_MDR_LC Higher 8 bits Lower 8 bits
0 0 Zbus Z bus
0 1 - D bus
1 0 D bus Z bus
1 1 D7 D bus

The simulation output waveform is shown in Figure 23. When bidirectional busses
are being used, input must not be driven strong high or low because if output to the
busses contradict with the input values error will be produced. Therefore to avoid
producing any errors, weak low or high is being used for input. Weak low is indicated

by L and weak high, H whereas strong high is 1 and strong low 0 (see Figure 23)

19
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Figure 23: Simulation waveform of MDR

4.5.1 Bidirectional Buffer in Verilog

As the components library in Quartus 2 does not contain the 74245 bidirectional

buffer. It has to be written in verilog. The code written is appended in Appendix B.

4.6 Integrated ALU

The separate ALU schematics are combined into an integrated schematic to carry out

functional analysis. The integrated schematic is appended in Appendix A.

Preliminary results were unsuccessful and many errors were listed. These errors have

been corrected and among them are:

1. The logic contention errors occurred because input and output buses are of a
different logic value.

2. During integration some non-existent connections have been established and
this has been corrected.
The registers to any busses can only be enabled one at a time.

4. L, R, Z and D busses have to be set as bidirectional.
Output cannot be obtained immediately. Each process has to be run

separately. In the real operation of a microprocessor, a microcode will control
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the operation of the ALU. Since the microcode is not available to simulate it,
simulation of each processes are done manually. For example, data are loaded
in the D bus first and buffered into L and R busses which will be fed to the Z
bus for ALU operation. During the next process, the previous buffers have to
be disabled and current related registers have to be enabled. After ALU
operation, the output in Z bus have to be loaded in L. bus which again required
the previous bus to be disabled. As the operation is a feedback loop, the output

waveform is very complicated.

. Logic level must be specified for bidirectional node even if the tri-state that
feeds the bidirectional node is always enabled. A constant logic level of high
impedance (z), weak low (1), or weak high (x) for the channel can be
specified. If a logic level is not specified, the simulator will assume the logic

level is forcing unknown (), that typically produces unexpected results.

. If a tri-state buffer that feeds a bidirectional node is enabled, the logic level of
the bidirectional node must be high impedance (z) or a weak signal—for
example, weak low (1), weak high (), or weak unknown (w). If the
bidirectional node does not have the correct logic level, the Simulator could
produce an error if there is logic contention. For example, if the logic level at
the output of the tri-state buffer is different— strong high (1)}—from the logic
level that the bidirectional channel drives in—strong low (c), the Simulator

produces an €rror.

. If the tri-state buffer that feeds a bidirectional node is disabled, the logic level
of the bidirectional node must not be high impedance (z), because the
Simulator propagates a forced unknown (x) logic level. If the logic level of the
bidirectional node is any of the weak signals, for example, weak low (1), weak
high (8), or weak unknown (w), the Simulator uses them as strong signals once

the signals propagate through the device.

. The input channel cannot be wriften to by the simulator. Thus, if an output
node named "a" and an input channel named "a" exist in the waveform,

simulation will fail.
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The output waveform is shown in Figure 24.
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Figure 24: Output waveform of integrated ALU

4.7 Timing Analysis

Timing analysis was performed on the integrated ALU schematic. The result of the
analysis is shown in Figure 25 and Figure 26. No error was indicated during the

timing analysis. The compilation was successful.
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Figure 25: Timing analyzer summary
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Figure 26: Timing analyzer messages

4.8 Testrig

Test rigs are built to ensure that the hardware results are coherent and functionally
working as the software simulation results. The conceptualized test rig is to interface
the expansion slots of the UP2 board (Fig 28) with external circuits of purely LEDs
and switches as mputs and outputs The switches will be used to trigger input pins and
LEDs to display output pins logic level from the UP2 board. The 3 three expansion
slots can support 60 pins each. However, 60 pins interfacing components were not
found and the more common 40 pins interface was constructed instead. Three test

circuits were constructed (Figure27) for each of the three expansion slots.
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Figure 28: UP2 board

IDE cables were made to interface the flex expansion slots with the three test rigs.

4.9 MDR on test rig

The MDR module is programmed for hardware tests. Results were observed on L bus
and seen through lighted LEDs (see Appendix C). The MDR module is fully
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functional on the test rig

4.10 ALU on test rig

The ALU module is also tested in the test rig and was verified to be functional. A

picture is appended in Appendix C.

4.11 Integrated ALU on test rig

Pin assignments are made before final recompilation. The software file is

programmied into the UP2 board to be interfaced with the test rig. Each switch is set

to the default position of either logic 0 or 1. The test procedures that were used are

outlined below:

[y

. Register T1 and T2 in MDR are cleared (COMMIT = positive pulse)

Immediate value is asserted at DBUS (01100110)

Two-way buffer direction is selected as B to A ( RW = low)

The buffer is then enabled, immediate data on DD bus { DMA_ACK = high)
MUX 2 is set to flow D into register T2 (XL_MDR_LO = high)

Load register T2 with immediate data (L_MDR_LO = positive pulse)

MUX 1 is set to flow D into register T1 (XL, MDR_LO = low, XL. MDR_HI
= high)

Load register T1 with immediate data (L_MDR_HI = positive pulse)

Buffer 1 and buffer 2 are set to assert both bus R and L with the same content
of bus T as right and left operand into the ALU — 0110011001100110
(_ER_MDR = low, EL__MDR = low), content of bus L which is already

connected to LEDs can be viewed

10. ALU operation is set to ADD (ALUOPO = high, ALUOP1 = high)

11. Use of carry is prohibited (USE_CARRY = low)

12. ALU operation size selected as 16 bits (ALUOP_SZ = low)
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13,

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

235.

26.

Result is not shified right by one bit (_DO_RSHIFT = high), result of the

bitwise addition of the same operands with a carry in is now on the Z bus)

Result is then stored into one of the registers, selectively register C (L_C =

positive pulse, clock in)

To read the content of register C, first disable the buffering of operand into
bus L by buffer2 (_ EL. MDR = high)

Read the content of register C through bus L ( EL_C = low), result of the
addition can now be viewed through the LEDs

Reading the flags ( SET_FLAGS = low, L MSW = positive pulse)
ALU operation now replaced with AND and minus in step 10 and repeat steps
11-17

Results are right shifted in step 13 and steps 14 — 17 are repeated

8 bit operations is then chosen (ALUOP_SZ = high) in step 12 and steps 13 —

17 are repeated

Carry-in in step 11 is set to high (USE_CARRY = high) and steps 12 ~ 17 are

repeated

General register used in step 14 is tested one at a time with 6 other general
registers (A, B, DP, SP, SSP, PC). Step 15 — 17 is repeated with step 16

replaced by the enable of the respective register
_Set_flags set high in step 17 and flags are read

The paging enable, interrupts enable, mode (supervisor/user), and data
checked are tested by varying the inputs of L MODE, L PAGING,
L_FAULT, MEMREF, xCODE_PTB, and L._EI.

Special registers are also tested by varying IMMVAL and observe output in R

bus

Memory address register are also checked at the MAR bus.

The test procedures covers a comprehensive test on all input and output pins.
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4.11.1 Troubleshooting

Initially no output was observed in procedure 9. Not all pins are assigned on hardware
as the interface cannot accommodate all pins at once. The initial assumption is that
the choice of assigned pins could affect the test rig results. Software simulation that
was performed successfully encompasses all the pins and they were set to the correct
logic level. But the test rig has pin limitation constraints. Therefore, to ensure that the
choice of pin will not affect its functionality, software simulation is performed with
only the assigned pins. The choice of assigned pins is changed until the functional
simulation is coherent. Once functional simulation is successful, timing simulation is
performed but was unsuccessful. The values on the busses were of unknown logic

level (Fig.29).

Length of applied enable signal was extended to longer than the worse setup time of
the timing report. 100ns pulse length was used. R bus could now register logic levels

but not L bus. Some signals are in ‘X’ state and Z bus is in ‘U’ state (see Figure 29).

Rl

_Fi[5]"m|.ié B

R4} 1esuk

A3 esuk

Figure 29: Waveform of unknown logic levels
Since R bus was successfully registered in the timing simulation, pins were assigned

to hardware to test if R bus could be displayed with the LEDs in the test rig. However
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no results were obtained. It was later ascertained that the IR pins that were omitted in

pin assignment resulted in Z bus contention with software simulation. This means that

IR pins cannot be omitted from hardware pin assignment (see Figure 30).
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Figure 30: Waveform of logic contention

Pins were rearranged pins in a more organized approach in the pin planner and tests
were reconducted while ensuring all logic levels of the default condition in the test rig
switches are accurate. No results were observed yet. Unassigned pins (pins not
connected to the test rig) in pin planner were set as reserved pins. Compilation fails.
This indicates that Quartus 2 automatically assign unassigned inputs/outputs to other
pins not user-assigned. Therefore pins that are not interfaced but were automatically
assigned as input/output pins by the program are left in a floating condition (or driven
to the wrong logic state by switches thought to be unused) and could affect the test

results and cause logic contention error.

The source of error could also be the test rig itself. There are possibilitics that some
switches have trouble registering the logic levels to the UP2 board even though it is at
the correct logic level. Tests were conducted on each swiich by constructing a register
in schematics that output the logic level of each switch to a particular LED in the test

rig when enabled. Some inputs/outputs did not display expected results. The cause of
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this could be the pins in the UP2 board are faulty, or the LEDs/switches in the test rig
are faulty. Pin assignments were avoided at these designated pins. Finally, results
were observed in the LEDs that represent the L bus (Fig 31) (test procedure 9).

However when ALU operations are performed, the results observed in general

registers are inaccurate (test procedure 16).

Figure 31: L bus values of MDR in integrated ALU

After numerous tests, it is observed that occasionally some input switches do not
function as expected. This means, the right logic level could not be input to the UP2
input pins. However when it does, the test rig verified the functionality of the
integrated ALU. Pictures are appended in Appendix C (Fig 42,45). The test results
obtained are accurate and shown in Table 5. Changing ALU size to high (8 bits) turns
the mode of operation to 8 bit and flags are read based on the 8 bits results. Setting
Carry_in to high will result in an output higher by 1 bit for arithmetic operations.
Setting SET FLAGS to high makes the flags output the upper four bits of Z bus.
Other than results shown in the table, the registers in MSW that output the paging
enable, interrupt enable and mode (user/supervisor) were also tested for functionality.
The memory data registers was also tested to output the loaded values. The other
general registers (A,B,PC,SSP,DP,PC,SP) were also used to replaced C register to

ensure that they work as expected.
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The inconsistencies of test results were further investigated. Sometimes, data values
cannot effectively load into the respective busses. One possible deduction was the
bounce-back effect of the mechanical switch used that especially when used as clock
signal. This will cause a few clock signal to pass and might result in the wrong set of
data latched. Therefore a debouncer module is implemented in the design. The codes

are attached in Appendix B.

Unused 170 pins should remain unconnected as tying it to Ve or ground could create
contention that can damage the output driver of the device. Unused dedicated inputs
should also be tied to the ground plane. Otherwise, pins may “float” in an
indeterminate state, possibly increasing the DC curtent in the device and introducing
noise. Other UP2 boards have been used. Interface is seldom successful with new
boards because their flex expansion holes were larger and thus the connections with
the test rigs become unreliable. This prompted the effort to solder the expansion slots

to the interface to ensure reliability of connection.

4.12 Interface with TTL CPU
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Figure 32: Left backplane
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Figure 33: Right backplane

The interface with the TTL CPU is made to a connectionless veraboard. The interface
is made to connect to the backplanes of the TTL CPU (Figure 32,33). 60 pins
interface components which were initially unavailable was successfully sourced. IDE
cables will connect the UP2 board to the veraboard and interfaced with the
backplanes of the TTL CPU with 3 rows edgé'connectc')rs. Connections are made by
wire wrapping. Precautions not taken in the test rig were taken into account in the
construction of the interface. The interface is shown in Appendix C (Figure 46,47).
The size of the veraboard was cut to match the size of the TTL ALU card. However,
the TTL CPU casing was designed in such a way that the thickness of the slot can
only fit a particular PCB board. Therefore, an additional interface was constructed to

be connected (see Appendix C).

During interfacing, the boot loader fails to upload the program to the PC. Deductions
of possible causes include the previously mentioned data integrity during
transmission, error in wire wrapping interface, and the differing operating
requirements of the TTL CPU and the FPGA which is CMOS based. In addition, the
discrepancies of speed of these two technologies could also be the cause. Significant

propagation delay is sometime observed during tests conducted in test jig which
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highly likely is due to the long interface connections. Since the CPU is operating at
IMhz, the built interface of the ALU card on FPGA will not be able to support it.
Therefore, the next approach adopted was to load the Fibonacci program into the
device card instead of the boot loader. Successful loading of the program should
display the Fibonacci series. First, the original ALU card is used. However the
program fails to output the Fibonacci series in the L bus. If the program did not work
as expected on the original TTL ALU card, it is highly unlikely to function with the
FPGA version. However, the L bus values observed as the manual clock is being
clocked is similar for both the TTL ALU and the ALU card on FPGA.

4.13 TTL components in verilog

Each TTL chip that was previously entered as schematics have been programmed in
Verilog with its functionality verified through software simulation. All the chips were
coded except for the ALU chip and the carry-lookahead-generator which was
combined and coded in a top down approach. The codes were appended in Appendix
B.

4,14 Control eard in verilog

The control card is also programmed in Verilog as separate modules into the
microcode section, field decode section, field decode 2 section, and faults and
interrupts section. The schematics are aftached in Appendix A and the codes are

appended in Appendix B.
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CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The objective of the project is to implement the ALU of an 8 bit register-based CPU
on FPGA. This would facilitate further research in computer architecture. The
methodologies employed begin involves schematic entry into Quartus 2, simulations,
synthesis of design, constructing the test jig, performing tests on the test jig,
troubleshooting, constructing the interface with TTL, interfacing with TTL CPU,
replacing schematic entry with Verilog HDL and also the implementation of the
control card in FPGA. The issues that caused simulation to fail have been solved. The
solutions include ensuring registers to a bus is only enabled one at a time and weak
signals have to be specified for bidirectional nodes, among others. The test jig
constructed is a set of generic switches and LEDs. Errors that have been resolved
during testing include assigning pins that has to be driven a logic level to the test jig,
disconnecting unused I/0 pins, tying unused dedicated input pins to ground, soldering
the interface and implementing a debouncer module in the design to address bounce-
effect of mechanical switch used for clock signals. A detailed test was carried out to
test the functionality of the ALU. The details are described in Chapter 4.8 until
Chapter 4.11. The test results verified that the ALU is successfully implemented on
FPGA.

Interface with TTL CPU is successfully constructed. Interface has not been successful
yet and initial deduction for the cause include the discrepancies in speed of the FPGA
and the TTL CPU. Schematic entry was replaced by verilog HDL codes. The control
card has also been coded and simulated in individual modules. In conclusion, the

ALU of the 8-bit register based CPU was successfully implemented on FPGA.
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5.2 Recommendations

e Perform troubleshooting using oscilloscope to verify deductions made on
interface

e Implement memory and device card on FPGA

¢ Design own computer architecture and implement using top down approach

» Measure performance difference by implementing different computer

architecture
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APPENDIX A - SCHEMATICS
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APPENDIX B — VERILOG CODES

Bidirectional Buffer in Verilog

module tristate_buffer(out,in,en)
Parameter SIZE = 8;
output out;
input in, en;
reg [SIZE-1:0] out;
wire [SIZE-1:0] in;

wire en;
always @ (in or en)
begin
if (en === 1}
out = in;
else if {(en === ()
out = ‘bz;
else
cut = ‘bx;
end
endmodule

module enabled register (di, do, enable, clk)
parameter SIZE = §;
input di, enable, clk;
output do;
reg [SIZE-1:0] do:
wire [SIZE-1:0] di;
wire enable;
wire clk;
always @ (posedge clk)
if (enable)
do = di;

endmodule

module rw register(bus, rd, wr, clk)
parameter SIZE = 8;
inout bus:;
input rd, wr, clk;
wire [8TZE-1:0] bus;
wire [SIZE-1:0] do:
wire rd, wr;

enabled register #SIZE rl{bus,do,wr,clk);
tristate_buffer #SIZE bkl (bus,do, rd);

endmodule

T4F273 in veriloeg
module reg273

{
D, clk, clear, @
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)i
// Port Declaration

input [7:0] D;
input clk;

input clear:;
output [7:0] Q:

reg Q;

always @{posedge clk or negedge clear)

begin
if (clear == 0)
Q <= 8'b0;
else
Q <= D:
end
endmodule

7474 in Verilog

module flipflop7474
(

d, clk, s, r, 9, 9 b

):
// Port Declaration

input d;
input c¢lk;
input s;
input r;
output g;
output q_b;

reg 4, d_b;
always @ (posedge clk or negedge s or negedge r)
begin

if (s == 0}begin

#4 g <= 1'bl;
#3 g b <= 1'b0;

end else if ( r == )} begin
#4 g <= 1'b0;
#3 g b <= 1'bl;

end else begin
$4 g <= d;
#2 g b <= ~d;

end

end

endmodule
74F374 on Verilog

module reg374
{
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D, CK, 0OC, Q
)i
// Port Declaration

input [7:0] D;
input CK;
input CC;
output [7:0] Q;

reg Q;

always @ (posedge CK or posedge 0OC)
begin
if (OC == 1)
Q <= B8'bz;
else if (OC == 0)
#5 Q <= D;
else
Q0 <= B'bx:
end

endmodule
74F244 on Verilog

module buf244
(

A, en, Y
Y

// Port Declaration

input [7:0] A:;
input en;
output [7:0] Y;

reg Y;
wire A, en;

always @(A or en)

begin
if {(en === 0)
Y <= A;
else if (en === 1)
Y <= B'bz;
else
Y <= 8'bx;
end
endmodule

74F153 on Verilog

module muxl53

{
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sel, i0, i1, i2, i3, ¥

)7
// Port Declaration

input [1:0] sel;
input i0;
input il;
input i2;
input i3;
output Y;

wire i0, i1, i2, i3, sel:
reqg Y;

always @ (i0 or il or iZ or i3 or sel}

begin
case (sel)
200
Y <= i0;
2'b01
Y <= il;
2'b10
Y <= 1i2;
2'bll
Y <= 13;
default:
Y <= 1'b0;
endcase
end
endmodule

module muxl57
(
A, B, 8, Y
Y
// Port Declaraticn

input [3:0] A;
input [3:0] B;
input S;

output [3:0] Y;
wire A, B, S;

reg [3:0]Y;
always @(A or B or 5)
begin
if (8 == 1'b0)
Y <= A;
else
Y <= B;
end
endmodulie
ALU module
module aluchip (Sel, A, B, Cin, _DO RSHIFT, F, v,
input [2:0] Sel;
input [15:0]) A, B;
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input Cin, _DO_RSHIFT;

output {15:0] F:

output V,C,;5,2;

reg F,v,c,8,2,Cc_out;
reg [15:0] out;

always@({Sel,A,B,Cin, DO _RSHIFT)

begin

case (Sel)
3'b000: out = 16"h0000;
3'p001:
begin
out = A"B;
z = out==0;
end
3'b010:
begin
{c_out,out} = A+(~B)+1'bl;
z = out==0;

s = out[l5];

¢ = ~Cc_oul;

v = ¢_out”out [15]"A[151"B[15];

end

3'h011:

begin

out = A&B; z = out==0;

end

3'h100:

begin

{c_out,cut} = B+(~A)+1'bl; z = out==0; s = out[l53]; ¢
~c_out; v = ¢_out®out[15]17A{15]1"B{15];

end

3'b1l01:

begin

out = A|B; z = out==0;

end

3'b11i0:

begin

{crout} = A+B+Cin;

z = out==0;

s out[15];

v crout [151~A[15]1~B[15];

end

3™111: out = L&'hFFFF;

fl

endcase

if(_ DO _RSHIFT)

F = {out > 1);
else
F = out;
end
endmedule
bebouncer

module debouncer

(
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set, clear, Q, Qb

input set;
input clear;
ocutput Q;
cutput Q b;
reg Q, Q b;

nand (Q, set,Q b);
nand (Q_b,clear,Q);
endmodule
74151 (Multiplexor)

module muxlSl

(
D, sel, W, Y);
input [7:0] D;
input [2:0] sel:
output W;
output Y;

reg Y, W;

always @ {D or sel)

begin
case (sel)
3'b000 Y <= D[0];:
3'b001 Y <= D[1]:
37010 Y <= D[2]:
3'b011 Y <= DI[3];
3'p100 Y <= D[4];
3101 1 Y <= D[5];
3'bll0 t Y <= D[6];
3'bl11 1 Y <= D[7];
default : ¥ <= D[0]:
endcase
W <= ~%¥;
end
endmodule

74138 {Decoder)

module decl3s
{

A, Gl, G2A, G2B, Y0, Y1, Y2, Y3, Y4, Y5,
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input [2:0] A;
ilnput G1;
input G2a;
input G2B;
output YO0;
output Y1;
output Y2;
output ¥3;
output Y4;
output Y5;
cutput Yé&;
output Y7;

reg YO0, Y1, Y2, ¥3, Y4, ¥5, Y6, Y7;

always @ (Gl or G2A or GZB or A)
begin
if (Gl && !G2A && !GZB) begin
Y0 <= (A == 3'b000) ? 1'b0:1"bl;

Yl <= (A == 3'b001) ? 1'b0:1'bl;
Y2 <= {A == 3'b010) ? 1'00:1'bl;
Y3 <= (A == 3'b011) ? 1'b0:1'D1;
Y4 <= (A == 3'b100) ? 1'b0:1'bl;
¥5 <= (A == 3'0101) ? 1'b0:1'bl;
Y6 <= (A == 3'h110} ? 1'b0:1'bl;
Y7 <= (A == 3'b11l1l) ? 1'b0:1'bl;
end
else
begin
{Y0,Y1,¥2,Y3,Y4,¥Y5,Y6,Y7} <= 8'b11111111;
end
end
endmecdule

74240 (Tri-state buffer)

module buf240
{

A, en, Y

input [7:0] &;
input en;
output {7:0] ¥;

reg Y;
wire A, en;

always Q@ (A or en)

begin
if {en === 0)
Y <= ~A;
else 1if (en === 1)
Y <= 8'bz;
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else
Y <= 8'bx;
end

endmodule
7485 (Comparator)

module comp7485
{

A, B, eq, A gt B, A 1t B

input [3:0] A;
input [3:0] B;
cutput eq;

output A gt B;
output A 1t B;

reg eq, A gt B, A 1t B;

alwzays@ (A or B)
begin

if (A > B}
begin

eq <= 0;

A gt B <= 1;
A 1t B <= 0;
end

else if (A < B)
begin

eq <= 0;

A gt B <= 0;
A 1t B <= 1;
end

else

begin

eq <= 1;

A gt B <= 0;
A 1t B <= 0;
end

end

endmodule

74472 (512x8 (4096 bits)

module rom4d72

(

A, CE, ©

PROM)
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input [8:0] A;
input CE;
output [7:0] O;
reg [7:0] O;
always @ (A,CE)
begin

if (CE == 1)}

0O <= 8'bz;

else
begin

case (A)

/*Insert prom bits here. Below are test bits*/

@'b00G00000C: O <= 8'H(CC0O0CC00;
$'b000000001: O <= 8"'L0O0COCCOL;
9'b000C00010: O <= 8'LO0COOC10;
9'b000000011: O <= 8'b00000011;
9111111100 O <= B'b11111100;
9'v111111101: O <= B8'b11111101;
9'p111111110: O <= 8'b11111110;
C

9'b111111111: <= 8'b131111111;
default: O <= 8'b11111111;
endcase

end

end

endmodule

74148 (8-line to 3-line priority encoder)
module encld8

{
ET, Data, EC, GS, A

)

input EI;

input [7:0] Data;
output EO;

output GS5;
cutput [2:0] A;

reg [2:0] A;
assign GS = &Data | EI;
assign EQ = ~&Data | EI;

always@(Data,ET)}

if(EI) A=7;

else

begin

casex (Data)

8'bOxxxxxxx :A=0;
8'bl0xxxxxx :A=1;
8'bll0xxxxx :A=2;
8'D1l110xxxx :A=3;
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8'bl11110xxx :A=4;
8'h111110xx :2=5;
8'01111110x :RA=6;
8'©11111110 :A=7;
default 1A=T7;
endcase
end

endmodule

Microcode section of contrel card

module microcode (INIT INST, DBUS, IR, NEXT, _NEXTO, ENCODER,
_RESET, CLKM,

CODE_PTB,RUSER_PTB,LATCH SZ,USE_CARRY,ALUCP,ALUOP_S$Z,RIMMVAL, ER,
EL, MISC, XL_PAGING, XL MODE, PRIV, XL MDR HI, XL MDR 1O, XL MAR,
LATCH, E_MDR_LO, _E MDR HI, DMA ACK, FP WRITE, R _RW, MSWC, MSWZ,
MSWS, MSWV, DO BRANCH, FAULT PENDING

i

output [7:0] IR, NEXT;
output

_NEXTO,CODE_PTB,RUSER_PTB,LATCH SZ,USE CARRY,ALUCP SZ,XL PAGIN
G, XL MODE, PRIV;

output XL _MDR _HI, XL MDR _LO, XL MAR, E MDR LC, _E MDR HI,

R_RW;

output [1:0] ALUCP, RIMMVAL,ER;

output [3:0] EL, MISC, LATCH;

input INIT INST, RESET, CLKM, DMA ACK, FP WRITE, MSWC,
MSWZ, MSW3, MSWV, DO _BRANCH, FAULT PENDING;

input [7:0] DBUS;

input [3:0] ENCODER;

wire [7:0]A, ROM1, ROMZ2, ROM3, ROM4, ROM5;

wire

IR, B, NEXTO,NEGATE ER,EMDRHI,EMDRLO,wl,w2,w3,w4,w5,w6,w7,wd,wd,wl0,w
11,wl2,NEXT,W,Y;

reg wl2,w3;

reg273 U19(DBUS, INIT INST, 1, IR);

mux153 U1Sb({B, NEXTO}, 0, IR[7], 0, NEXT[7], A[7]);

mux153 Ulba{{B, NEXT0}, 0, IR[6], 0, NEXT[6], A[6]):

mux153 Ul6b({B, NEXTO}, 0, IR[S5], 0, NEXT[S], A[5]);

muxi53 Ul6a({B, NEXTO}, 0, TR[4], 0, NEXT[4], A[4]);

mux153 Ul7b({B, NEXT0), ENCODER[3], IR[3], ENCODER[3], NEXT[3],
A[31);

mux153 Ul7a({B, NEXTO}, ENCODER[2], IR[2], ENCODER[2], NEXT[Z],
BA[21);

mux153 U18B({B, NEXTO0}, ENCODER[1], IR[1], ENCODER[1}], NEXTI[1],
A[1]);

mux153 Ul8a ({B, NEXTO}, ENCODER[O0], IR[0], ENCODER[0], NEXT{0],
A[O1);

romd72 Ul{{B,A[7:0]1}, C, ROM1}:
romd72 UZ2{({B,A[7:01}, 0, ROMZ)};
romd472 U3 ({B,A[7:0]}, 0, ROM3);
romd472 U4 ({B,A[7:0]}, 0, RCOM4);
romd72 US({B,A[7:0]1}, 0, RCMH);
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regz73 ULQ (ROM1, CLKM, _RESET,

{CODE_PTB, RUSER_PTE,NEGATE_BR, LATCH_S7,USE_CARRY,ALUOP,ALUCP_SZ});
regz273 US(ROM2, CLKM, RESET, {RIMMVAL,ER, EL});

reg273 U8 (ROM3, CLKM, _RESET, {MISC,XL PAGING, XL MCDE, PRIV,
EMDRHT}) ;

reg273 U7 (ROM4, CLKM, _RESET, {EMDRLO,XL_MDR HI, XL MDR 10, XL MAR,
LATCH}} 5

reg273 U6(RCMb, CLKM, _RESET, NEXT);

not Ul4C(_E_MDR_LO, EMDRLO) ;
not Ul4B( E MDR_HI,EMDRHI) ;

or U61B(wl, DMA ACK, _FP WRITE);
nand U25A (R_RW, F_MDR 10, _E MDR_HI, wl);

nor U20 (w2, NEXT[7], NEXT[6], NEXT[5], NEXT[4], NEXT[3], NEXT[2],
NEXT[1], NEXT([O0]1};
not U21 (w3, w2);

not Ul4E (w4, MSWC);

or U13C {wb, wd, MSWZ);
xor UlZ2B (w6, MSWS, MSWV):;
not Ul4A (w7, MSWZ};

or Ul3R (w8, MSWZ, w6);

muxl51 U1l {({w7,MSWZ,w>,wd,w8,MSWZ , MSWZ}, IR[6:4], W, Y);

xor Ul2A (w9, Y, NEGATE BR);
or Ul3A (wlO, _DO BRANCH, w9);

not U14D {wll, FAULT_ PENDRING);
and U44B { NEXTO, w3, wl0, wll);

nand U24 (wl2, NEXT[7)], NEXT[6], NEXT[5], NEXT[4], NEXT[3], NEXT[2],
NEXT[1], NEXTI[OQ]):
or U6lD (B, wl2, FAULT_ PENDING) ;

endmodule

Field Decode of control card

module fieldec ( EL, IR, MISC, _SYSCALL, HALT, BKPT, _TRAPO,
_E_PTE, _SET_FLAGS, DO_RSHIFT, _DMA ACK, _DO_BRANCH, CLR TRAP,
RL_IE, CLKM, RINIT_INST, R_I, PTE, RCOMMIT, FP_L,_ EL MAR, EI MSW,
_EL_C, _EL_PBC, _EL DP, EL 8P, _EL A, _EL B, EL MDR, _EI _SSP,
_EL TPC, EL FCODE, -
RL_FPL, _ER_MDR, _ER_IMM, LATCH, CLKS, FAULT PENDING, RL_MDR,

RI, PTB, LATCH_S$Z,RL_B_LO, RL_A_LO, RL_SP, RL_DP, RL PC, RIL C,
RL_MSW, RI,_SSP, MSWM, ER, _STOP_CLK

}:

input [7:0] IR;

input [3:0] EL, MISC, FP L, LATCH;

input [1:0] ER;

input CL¥M, _STOP_CLK, CLKS, FAULT PENDING, LATCH SZ, MSWM;

output _S8YSCALL, _HALT, BKPT, _TRAPO, E PTE, _SET FLAGS,
_DO_RSHTFT, _DMA ACK, _DC_BRANCH;

output _CLR_TRAP, RL_TIE, RINIT_INST, R I_PTE, RCOMMIT, EL MAR,

_EL MSW, _EL C, EL PC, I DB,
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_EL SPp, EL A, _EL_B, _EL_MDR, _EL_SSP, _EL TPC,
_EL_FCODE, RL_FPL, ER MDR, ER IMM,
RL_MDR, RL_PTB, RL_B_LO, RL A LO, RL_SP, RL_DP, RL PC,
RL_C, RL_MSW, RI_SSP;

wire wl, w2, w3, w4, w5, wé, w7, w8, w9, wl0, wll, wl2, wl3,
wld, wl5, wle, wl7, wl8, wl9,w20,w21,
w2z, w23, w24, w25, _SET_FLAGS, E PTE, _DMA ACK, eq,
A gt B, A 1t B, RL_A 1O, RL_B_LO, RL_SP;

wire [3:0] ¥, out, result;

wire [7:0] con, conB;

nand UZ1B (wl, EL(3), EL[2], EL[1], ELI[O]1);
muxl157 037 ({2'b0l,IR([{1],IR[0]}, EL, wl, ¥Y);

decl38 U33 (MISC[2:0], 1'bl, MISC[3], 1'b0, w2, _S8YSCALL, _HALT,
_BKPT, _TRAPO, E PTE, SET FLAGS, w3);

decl38 U32 (MISC[2:0], MISC[3], 1'b0, 1'b0, _DO RSHIFT, _DMA ACK,
w&, DO BRANCH, w7, wb, w4, wB);

nor U38C (w9, CLKM, SET FLAGS);
or U40A (wl0, w9, w22);

not U39C (w24, FAULT_PENDING) ;
and U41B (RL_MSW, w24, wl0);

or U40D (_CLR TRAP, CLEM, w7};
nor U38A (RL_IE, CLKM, w6);

nor U388 (RINIT_INST, CLKM, w3);
or U40B (R_L_PTE, CLKM, F_PTE);

and U41lA (wll, w3, wb);
nor U380 {(RCOMMIT, CLEKM, wll):

nand U22C (wl2, _STOP_CLK, DMA ACK);
muxl57 U34 (Y, FP L, wl2, out};

decl38 U31 {out[2:0], 1'bl, out[3], 1'b0, EL MAR, KI, MSW, EL C,
_EL PC, FEL DP, EIL SP, EL A, &L B);

decl38 U30 (out[2:0], out(3], 1'b0, 1'b0, _EL_MDR, wl3, _EI_SSP,
_EL_TPC, EL FCODE, wld, wl3, wl6);

nor U43A (wl7, FP_L[2], FP_L[1]);
and U44A (w18, FP_L[0], FP _L[3]);

comp7485 U3L (out, FP_L, eq, A gt B, & 1t B);
and U60C (wl%, eg, CLKM):;

or U40C (RL_FPL, wil8, wl9);

assign _ER_MDR = ER[0];
not U398 ( ER IMM,ER[C]);

nand U424 (w20, LATCH[3], LATCH[2], LATCHI[1l], LATCHIO]);
muxl57 U36 ({1'b0,IR[2:0]}, LATCH, w20, result);
nct Ul4dF (w2l, result[3]);

decl28 U27 (result[2:0], CLKS, result{3], FAULT PENDING, con[0],
confl], con[2], con{3]), con[4], con[5], con[6], con[7]}:

decl38 U226 {result{2:0}, CLKS, w2l, FAULT PENDING, conB[0], conB[1],
conB[2], conB[3], conB[4], conB[5]}, conB[6], conB[7]);

xor Ul2C (RL_PTB, conB[l]l, 1'bl);
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xor Ul2D (RL_MDR, conB[0], 1'bl);

buf240 U2% {con, 1'b0, {RL_B LO, RL_A 10O, RL_SP, RL DP, RL PC, RL_C,
w22, w23}):;

and U23B (RL_A_HI, RL_A 1O, LATCH SZ):

and U23C (RL_B_HI, RL_B LO, LATCH_SZ);

not U3%A (w25, MSWM);
and U23D (RL_SSP, w25, RL SP);

endmodule

Field decode 2 of control card

module fieldec2 (XL MODE, CLKS, XI_PAGING, XL MDR LO, XL MDR HI,
XL _MAR, R_RW, FAULT PENDING, RI_MDR, RL PTB,RL_FAULT,I_ MODE,

L _PAGING, CLKM, L MDR 1O, L MDR HI, L MAR, RW, WR, L PTB, I FAULT,
IL_MARL,

COMMIT, I, FPL, L A HI, I B HI, I _8S?, L C, L_PC, L_DP, L_SP, L A ILO,
L B LO, L MSW, INIT INST,L IE, L PTE, RIMMVAL, RCOMMIT, RL_FPL,
RL A HI, RL_B HI, RL SSP, RL C, RL PC, RL DP, RL 5P, RI, A 10,
RL_B_LO,

RL MSW, RINIT INST, RL_IE, R_L_PTE, IMMVAL);

input XL _MODE, CLKS, XL PAGING, XL MDR LO, XL _MDR HI, XL MAR,
R_RW, FAULT PENDING, RL MDR, RL_PTB,RL_FAULT, RCOMMIT,
RL_FPL, RL,_ A HI, RL B HI, RL SSP, RL C, RL PC, RL DP,
RL SP, RL_A LO, RL_B_LO,RL MSW, RINIT INST, RL IE,

R L PTE;
input [1:0] RIMMVAL:;
output L_MODE, L_PAGING, L _MDR 1O, L, MDR HI, L MAR, _RW, _WR,

L_PTB, I_FAULT, CLKM, L_MAR1,COMMIT, L_FPL, I A HI,
L B HI, L 8sP, L C, L PC, L DP, L SP, L. A 10, L B LO,
L_MSW, INIT INST,L_IE, L PTE;

output [1:0] IMMVAL;

wire wl, w2, W3, w4, W5, W6, CLKM, L MARI, COMMIT,L FPL,
L_MAR1, COMMIT, IL_FPL, L A HI, L_B HI, L SSP, L _C, L PC,
L DP, L SP, L_A LCO, L B LO, L_MSW,INIT INST, L_IE,
L_PTE;

and U59C (L_MODE, XIL_MODE, CLKS);
and US9D (L _PAGING, XL PAGING, CLKS);
and U60A (W1, XL MDR LO, CLKS);

and U60B (W2, XL MDR_HI, CLKS);

nand U62A (W3, XL MAR, CLKS);

nand U62C (CLKM, CLKS, CLKS3);
nand U62B (W4, R_RW, CLKS);
or U61lC (W5, W4, FAULT_ PENDING);

or U49D (I, MDR_T.O, W1, RL_MDR);
or U61A (L MDR _HI, W2, RL_MDR);
nor U43D (L _MAR, W3, FAULT PENDING);

buf244 U&3 ({RIMMVAL, R_RW, W5, RL PTB, 1'b0, RL_FAULT, CLKM}, 1'b0,
{IMMVAL, RW, _WR, L_PTB, W&, L_FAULT, CLKM});

assign L_MAR]

CLEKM;

assign COMMIT RCCMMIT;
assign L _FPL = RL_FPI;
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assign L A HI = RL_A HI;
assign L_B HI = RL_B_HI;
assign L_S8P = RL_SSP;
assign L_C = RL C;
assign L_PC = RL_PC;
assign L_DP = RL _DP;
assign L_SP = RL_SP;
assign L A LO = RL A LO;
assign L B _LO = RL B LO;
assign L_MSW = RL MSW;
assign INIT_INST = RINIT_INST;

assign L IE

= RL_IE;

assign L:PTE = R _L PTE;

endmodule

Faults and Interrupts

module interrupts (_IRQ0O, _IRQl, IRQ2, IRQ3, TRQ4, TIRQ5, RESET,
_DMA_REQ, MSWE, CLK M, _EL_FCODE, CLKM, TRAPO, MSWM, PRIV, MSWV,
ENCODER, RL_FAULT, FAULT PENDING, L, _NEXTO0, CLKS, CLR _TRAP, NP,
_NW, _BKPT, SYSCALL):

input

output
output
output

wire

_IRQO, _IRQ1l, _TRQ2, _IRQ3, _IRQ4, IRQS, RESET,
_DMA_REQ, MSWE, CLK M, _EIL_FCODE, CLKM, TRAPO, MSWM,
PRIV, MSWV, NEXTO, CLKS, CLR TRAP, NP, _NW,

_BKPT, SYSCALL;

RL_FAULT, FAULT PENDING;
[15:0] L;
[3:0] ENCODER;

ql, @2, g3, g4, 5, g6, RL_FAULT, FAULT PENDING, Wl, W2,
W3,W4,W5,W6,W7,W8, W9, W10, Wil,Wl2,Wl3,Wl4, W15, Wl6, W17, W18
(W19, W20,W21,W22,W23,W24,W25,W26,W27,W28, W29, W30, W31,W32
,W33,W34,W35,W36,W37,W38;

wire [3:0]wai, bai, ENCODER, ocut, A, B;

wire [7:0]

not US53D (Wl
not US3C (W2
not U53B (W3
not US3A (W4
not U39F (W5
not U3%E (W6

and U54D (W7
and U54C (W8
and U54B (W2
and U54A (Wl
and U41D (Wl
and U41C (W1l

flipflop'7474
flipflop7474
flipflop7474
Flipflop7474
flipflop7474
flipflop7474

Q;

» _IRQO);
r _IRQ1l};
r _IRQZ2};
, _IRQ3);
. _IRQ4);
14 _IRQ5)F

, _RESET, W13);
, _RESET, W14);
, _RESET, W15);
0, _RESET, W16);
1, _RESET, W17);
2, _RESET, W18);

U51a (1'kl, W1, 1'bl, W7, gl, W19);
U528 (1'kl, W2, 1'bl, W8, g2, W20);
U50A (1'bl, W3, 1'bl, W9, g3, W21l);
U50B (1'bi, W4, 1'bl, W10, g4, W22);
U51E {(1'bl, W5, 1'bl, Wll, gb, W23};
UsZB {1'bl, We, 1'bl, W12, g6, W24);
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reg273 U ({_DMA REQ, W19, W20, W21, W22, W23, W24, MSWE}, CLK M,
_RESET, Q);

not US3F (W25, NEXTO);

or U49C (W26, W25, FAULT PENDING);
and U598 (RL FAULT, CLKS, W26);
and U59A (W27, CLR _TRAP, RESET);

reg273 U56 ({wai,ENCODER} , RL FAULT, W27, {bai,out}):
buf244 U557 ({3'b0, out, 1'bC}, _EL FCODE, L{7:0]):
buf244 U538 ({8'b0}, _EL FCODE, L[15:8]);

decl38 U45 (out[2:0], CLKM, out[3], out[3], W29, W18, W17, W16, W15,
Wwl4, W13, W28);

not US3E (W30, _TRAPO);
nand U48D (W31, MSWM, PRIV):
nand U48C (W32, MSWV, W30}

encl48 U46 (1'b0, {1'bl, NP, NW, BKPT, W3l, W32,1'bl, SYSCALL},
FAULT PENDING, W34, A);
encl48 U47 (W35, {Q[7:11,1'b0}, W36, W37, B);

not U39D (ENCODER[3], W34);

nand U22D (ENCODER[2]1, A[2], B[21);
nand U488 (ENCODER[1], A[l], B[11);
nand U48A (ENCODER{O], A[0], B[O0]);

nor U43C (W38, QI[7], Q[71);
nor U43B (W33, W38, QI[0]);
or U49A (W35, W33, FAULT_PENDING);

endmodule
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APPENDIX C - PICTURES

Figure 40: A working MDR module on test rig
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Figure 41: AND operation of ALU module

Figure 42: Minus operation of ALU module
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Figure 43: AND operation of integrated ALU with both carry and overflow
lighted

Figure 44: Add operation of integrated ALU with sign lighted
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Figure 45 : Minus operation of integrated ALU with zero flag lighted

Figure 46: Results in L, R and Z busses
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Figure 48: Top view of interface
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Figure 50: Top view of final interface
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