Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Autonomous Crane Control (Anti-Swing Controller)

Mohd Sohaimi, Mohd Azrul Adha (2007) Autonomous Crane Control (Anti-Swing Controller). Universiti Teknologi PETRONAS. (Unpublished)

[img] PDF
Download (945Kb)

Abstract

The main objective for this project is to design controller forthe3DCrane Model that helps to overcome the swinging phenomena during the movement of the crane. 3D Crane model is a simulation or a mini model of the real life autonomous gantry crane that industries, suchas portand factories, usesto carries heavy loads. Cranes behavior is similar to pendulum where movement and friction on the load will create a swinging effect on it. In these industries, swinging of the load will affected their productivity, efficiency and most importantly the safety. So by having a controller that have the ability to overcome the swinging effect, this will optimize the productivity, efficiency and also the safety. In designing the "anti-swing" controller, a lot of problems encounter especially when dealing with 3 direction non-linear models. To understand the 3D Crane Model's capability and ability also will take a lot of time. This project will require knowledge in all types of controllers since the best controller out of all the controllers are needed to be use. As for the first part of this project, a PID controller is selected. Then a Fuzzy Controller are designed to compare with PID Controller to see which has better accuracy and precision in reducing the crane's swinging effect.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Power Electronics - Power Electronics - Control Devices
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 22 Oct 2013 14:38
Last Modified: 25 Jan 2017 09:45
URI: http://utpedia.utp.edu.my/id/eprint/9479

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...