
To Design a Bipedal Robot

By

Hamdi bin Mohd Daud

Aproject dissertation submitted in partial fulfillment of
the requirements for the

Bachelor of Engineering (Hons)
(Electrical &Electronics Engineering)

December 2007

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

n

Approved:

CERTIFICATION OF APPROVAL

To Design a
Bipedal Robot

by

Hamdi Bin Mohd Daud

Aproject dissertation submitted to the
Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS
in partial fulfilment ofthe requirement for the

Bachelor of Engineering (Hons)
(Electrical &Electronics Engineering)

Ms IlfenT Bt Mohd Nawi

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH,PERAK

December 2007

in

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sourcesor persons.

HarfiaTBin Mohd Daud

IV

ABSTRACT

The design of abipedal robot literally involves walking gait and control of balance.
Controlling the direction of balance for atwo legged walking robot typically means
mimicking the human form and its walking locomotion. The ultimate aim is to
maintain an upright torso while advancing one leg in front of the other continuously
without falling. The bipedal structure forces the writer to consider acombination of
factors such as weight balancing, mechanism and degrees of freedom before
designing the robot prototype. The writer has to apply fundamental knowledge about
servo motor actuator, pulse width modulation, and PIC programming in
accomplishing the project Independent work through self-discipline, self-
management and job co-ordination also needed to be exercise while undertaking the
project This report consists of five important chapters that cover the project
introduction, review of related literature, project methodology, discussion of result,
and finally the conclusion. The introductory part briefly discusses the background
study ofthe project and the existing studies on designing abipedal robot, more focus
on the problem statement that covers problem identification and the significant of
the projects, as well as the objectives of the project are stated and it describes more
on the relevance and the feasibility of the project within the scope and time frame
given. The review of related literature on the project is enclosed in chapter two while
the project methodology is covered in chapter three of the report. Findings related to
the project along with its discussions are stated in chapter four of the report together
with the conclusion and references used during the research works.

ACKNOWLEDGEMENTS

In Thename of Allah the Beneficent, the Merciful

An utmost gratitude to Ms Illani Bt Mohd Nawi for allowing the writer to do aFinal
Year Project under her supervisions. Even with a tight time schedule, support and
good advices were always given which is the key factor of finishing the project in
time. Without her relentless effort to guide and supervise, the project will not have

been successful.

Also thanks to Dr Taj Mohammad Baloch as the student advisor for this project. His
advice and recommendation for this project helped the writer to conduct this project

smoothly.

Special thanks to Mr. Muhamad Aidil Jazmi for the references of his project as a
guideline for the writer to understand and meet this project requirement. He has
given numerous inspirations for the writer to carry on the project and been very
helpful in assisting the writer in alot of difficult time.

Last but not least, an utmost gratitude to father Hj Mohd Daud Bin Hj Yaakob and
mother Hjh Hamidah Bt Mohamad which has brought the writer up and be good role
models throughout these years.

Also the writer is very grateful to friends who have been supportive during the
period of this project were held. Not to forget to all others who have help in the
project directly and indirectly and might not be mentioned here.

Thank you for all the supports given and only god may repay them

VI

TABLE OF CONTENTS

LIST OF FIGURES 1X

LIST OF ABBREVIATIONS x

CHAPTER 1INTRODUCTION • l
1.1 Background ofstudy 1
1.2 Problem Statement *

1.2.1 Problem Identification *

1.2.2 Significance ofthe Project 2

1.3 Objective 2
1.4 Scope of Study 2

CHAPTER 2LITERATURE REVIEW 3
2.1 Biped Walking 3

2.1.1 Static Walking 3
2.1.2 Dynamic Walking 5

2.2 Degree ofFreedom 5
2.3 Mechanical Actuator '

2.3.1 Servo Motor 7

2.4 Pulse Width Modulation ll

CHAPTER 3METHODOLOGY 12
3.1 ProjectProcedure - lJ

3.2 Material 13
3.3 Tools and Software 14

CHAPTER 4RESULT AND DISCUSSION 15
4.1 Bipedal Model Description 15

4.1.1 Robot Design and Degree ofFreedom 15

4.1.2 Mechanical • 17

4.1.3 Electrical 19

4.2 System Description 21
4.2.1 Servo Controller 21

4.2.2 Walking Controller 25
4.3 Discussion 26

4.3.1 Servo Controller CProgram 26

vn

4.3.2 Walking Controller CProgram 28

4.3.3 Computer Instruction CProgram 29
CHAPTER 5CONCLUSION AND RECOMENDATION 31

REFERENCES 32
APPENDICES 34

Appendix APROJECT GANTT CHART 35
Appendix BBIPEDAL ROBOT SCHEMATIC BOARD 36
Appendix CFUTABA S3001 STANDARD SERVO
SPECIFICATION 37
Appendix DPIC 16F877 DATA SHEET 3«
Appendix EMAX232I DUAL DRIVERS/RECEIVERS DATA
SHEET 39
Appendix FSERVO CONTROLLER CPROGRAM 40
Appendix GWALKING CONTROLLER CPROGRAM 44
Appendix HCOMPUTER INSTRUCTION CPROGRAM 50

vm

LIST OF FIGURES

Figure 1: Static walking and condition to be in stable position 4
Figure 2: The projection ofcenter of gravity in static walking 4
Figure 3: The center of gravity in static walking (front view) 5
Figure 4: Types ofplanar mechanical linkage &relation with Degree ofFreedom 6
Figure 5 : Common servo motor '

Figure 6: Input pulse signal and servo motor output position 8
Figure 7: Effect of duty cycle in pulse width modulation 11
Figure 8: Flowchart ofprocedures done 12
Figure 9:Obtained Futaba S3001 servos - • 13
Figure 10 :Obtained PIC 16F877 microcontroller 14
Figure 11: Joints and links of the robot leg - -15
Figure 12 :Degree of freedom in x-y-z plane 16
Figure 13 : 1mm L-shape stainless steel frame 17
Figure 14 : 10 obtained Futaba S3001 servos 17
Figure 15: Bipedal Leg Prototype (Front view) 18
Figure 16 :Bipedal Leg Prototype (Rear view) 18
Figure 17 :Schematic board for controller with2PIC 16F877 - 19
Figure 18 :Circuit testing for PCB implementation 20
Figure 19 :Printed Circuit Board layout for the circuit schematic 20
Figure 20 :Walking Controller and Servo Controller association 21
Figure 21: PWM output from servo controller - 22
Figure 22 :Servo controller program flowchart 24
Figure 23 :Flowchart for walking controller program 25
Figure 24 :Servo Controller pulse width modulation generator 27
Figure 25 :Servo variable representation on the bipedal robot 28

IX

LIST OF ABBREVIATIONS

AC - Alternate Current

DC - Direct Current

DOF- Degree Of Freedom

EEPROM- Electrically Erasable Programmable Read-Only

EIA - Energy Information Administration

MHz -Megahertz

ms - milliseconds

us - microseconds

PWM- Pulse Width Modulation

PIC - Programmable Intelligent Computer

PCB - Printed Circuit Board

RAM- Random Access Memory

+ve - Positive

-ve - Negative

x

CHAPTER 1

INTRODUCTION

1,1 Background of study

This project is about designing abiped robot that can walk. By definition, bipedal is
standing or moving for example by walking, running, or hopping, with only two
appendages which are typically legs. An animal or machine that usually moves in a
bipedal manner is known as abiped, meaning "two feet" [12]. As for walking, one
ofthe robot feet should be in front ofanother, wilh at least one foot on the ground at
any time. This walking exercise usually is an active process, requiring constant
adjustment of balance.

For nearly the whole of the 20th century, bipedal robots were very difficult to
construct [12]. Robots which could move usually did so using wheels, treads, or
multiple legs. Increasingly cheap and compact computing power, however, has made
two-legged robots more feasible. The introduction of ASIMO [9], developed by
Honda and Kondo Robot [10] by Kondo made us realize what we are capable of.

1.2 Problem Statement

1.2.1 Problem Identification

In recent years the interest to study the bipedal walking has grown and the
demand for build bipedal robots has increase. Bipedal robots are more versatile
than conventional quadruped or wheeled robots, but they tend to tip over easily.
To solve this problem, the stability of a biped robot needs to be maintained
during walking.

1.2.2 Significance oftheProject

This project contributes to alot variety of purposes, from the investigation of the
theories on bipedal walking to the design ofhumanoid robot. Nowadays alot of
robots were design to help with human live. With an advance bipedal walking,
robots can surpass the limitation faced before by walking steadily, climbing
steps, become more versatile and reach further more by evolving to humanoid
robot. The design also can be used for disable person that lost their freedom to

move freely and improve theirliving.

1.3 Objective

Generally the main objective of this project is to design a prototype of a bipedal
robot using aPIC microcontroller. The robot should be able to walk, tilt and bend
the two legs given. The bipedal robot must be controlled using suitable PIC
microcontroller to achieve the objective mentioned. The specifications of the
prototype are that it shall be around 0.5 meter in height covered from feet to waist,
mounted microcontroller circuit programmed to perform the task required by the
robot to walk without falling. In addition the PIC microcontroller can also be
programmed to read any sensor that is required to accomplish the goal. The fully
working prototype can be reconfigured to follow certain order, such as avoiding any
blockage or even dancing.

1.4 Scope of Study

After consideration ofall the necessary procedure and problems that might occurs,
this project has been divided into two categories, which are hardware development
and software development. The hardware covers the entire prototype mechanical and
electrical component while the software mainly focuses on the system architecture
or microcontroller programming. In the first semester, the author will be involved
mainly in hardware research. For the second semester, the author will continue on
the hardware and software development. Experimentation and testing is necessary to
avoid any project setback. Good project management technique and usage of time
constraint efficiently must be adopted in order to complete the project.

CHAPTER 2

LITERATURE REVIEW

In order to obtain relevant and beneficial information regarding this project, the

author carried out some relevant literature review, such as by referring journals,

websites and etc. The information is very important for the development of the

system as it provides theories, concepts as well as techniques that be utilized

throughout this project.

2.1 Biped Walking

Inorder to understand the mechanical bipedal robots mechanics design, is necessary

first to understand the biped walking process or biped locomotion. This area has
been studied for a long time, but until this past few years, new generation of robots
that walk on two legs were introduced thanks to the fast development ofcomputers

and microcontroller.

First, there were robots that used static walking. The control architecture had to
make sure that the projection of the center of gravity on the ground was always
inside the foot support area. This approach is the basic and the first step throughout

bipedal development.

2.1.1 Static Walking

Static walking assumes that the robot is statically stable [8]. This mean that, at
any time, if all motion is stopped the robot will stay indefinitely in a stable
position. It is necessary that the projection of the center of gravity ofthe robot on
the ground must be contained within the foot support area (see Fig. 1,2 and 3).
This condition can be achieved by widening the support area ofthe foot surface

to support the whole body weight or increasing the foot weight to support the
balance ofthe upper body. Also, walking speed must be low so that the inertia

forces are negligible-

Singlesupportphase

Stable position

Double supportphase

Stable position

Unstable position

Figure 1 : Static walking and condition to be in stable position J8]

Biped with static walking requires large feet, strong ankle joints and can achieve
only slow walking speeds. The technique adopted is based on the principle that
the important aspect in the static walking locomotion is not the perfect respect of
agiven trajectory, but the displacement of the body from one point to another
without falling.

MOVEMENT OF

a \ m\ cENTRE 0F
1 \ msl GRAVITY

ROBOT f] \ /
MOVEMENTO

Figure 2 : The projection ofcenter ofgravity in static walking [7]

4

AlA

Center of

gravity

Double support
stance

Single support
stance

Figure 3 : The center ofgravity in static walking (front view).

2.1.2 Dynamic Walking

Dynamic walking of a biped allows the center of gravity of the robot to be
outside the support region for limited amounts of time. There is no absolute
criterion that determines whether the dynamic walking is stable or not. Indeed a

biped can be designed to recover from different kinds of instabilities, depending
on the walking surfaces. However, dynamic walking condition can only be
achieved if the robot has active ankle or knee joints that are used to stabilize the
robot body along with a stabilizer sensor [8J, which required a lot of funding in
research. To keep this research in adequate budget, the student will only limit the

study on static walking.

2.2 Degree of Freedom

Asystem with several body parts would have a combined Degree Of Freedom
(DOF) that is the sum of the DOFs of the bodies, less the internal constraints they
may have on relative motion. The term degree of freedom is used to describe the
number ofparameters needed to specify the spatial pose ofa linkage [13].

Mechanical linkages are aseries ofrigid links connected with joints to form aclosed
chain, or a series of closed chains. Each link has two or more joints, and the joints
have various degrees of freedom to allow motion between the links. A linkage is
called a mechanism if two or more links are movable with respect to a fixed link.

Mechanical linkages are usually designed to take an input and produce a different
output, altering the motion, velocity, acceleration, and applying mechanical
advantage.

The most common linkages have one degree offreedom, meaning that there is one
input that produces one output motion. Most linkages are also planar, meaning all
the motion takes place in one plane. Spatial linkages (non-planar) are more difficult
to design andtherefore not as common.

Kutzbach-Gruebler's equation is used to calculate the degrees of freedom of
linkages. The number of degrees of freedom in a linkage is also called mobility.
Figure 4shows asimplified version of the Kutzbach-Gruebler's equation for planar
linkages:

m = 3(n - 1) - 2j

m = mobility = degrees of freedom

77, = number of links (including a single ground link)

3 = number ofmechanical joints (pin or slider joint)

Truss Four-bar linkage Crank-slider
n=3, f=3, m=0 n=4, f=4t m=l n=4, f=4f m=1

Five-bar linkage
n=5, f=5, m=2

Figure 4 : Types of planar mechanical linkage and relation with
Degree of Freedom [13]

2.3 Mechanical Actuator

Electrical actuators are required in any bipedal robot design for body part

movements. Electrical actuators are electro-mechanical hardware such as solenoids

and servo motors. Depending on the mode ofpowering and controlling, they can be
controlled directly by a computer platform attached to a servo controller board or
autonomously by a dedicated PIC. The main principle behind every electrical
actuator is that motion is induced by the application of an electrically created
magnetic field to a ferrous core. The strength and direction of the magnetic field
determines the speed and direction ofrotation ormotion.

2.3.1 Servo Motor

Servo motors are geared dc motors with positional control feedback and are used
for position control The shaft of the motor can be positioned or rotated through
180 degrees. They are commonly used in the hobby market for controlling model
cars, airplanes, boats, and helicopters.

Figure 5 : Common servo motor [11]

Servo motors are available in a number ofstock sizes. Standard servo typically
has 3wire outlets, which is differentiate by 3different colors varies to particular
manufacturers. Ideally two of them are for power, ranging from 4to 6volts and
ground. The third wire feeds a position control signal to the motor, and the
control signal is a variable-width pulse.

Servo Motor Control

The servo motor has some control circuits and a potentiometer that is

connected to the output shaft [14]. The amount ofpower applied to the motor
is proportional to the distance it needs to travel. So, ifthe shaft needs to turn
a large distance, the motor will run at full speed. Ifit needs to turn only a
small amount, the motor will run at a slower speed. This is called
proportional control. The angle is determined by the duration of apulse that
is applied to the control wire. This is called Pulse Coded Modulation. A
neutral, midrange positional pulse is a 1.5ms pulse, which is sent 50 times a
second (20 ms period) to the motor. This pulse signal will cause the shaft to
locate itself at the midway position of 90 degrees. The shaft rotation on a

servo motor is limited to approximately 180 degrees (+/-90 degrees from

center position). A 1ms pulse will rotate the shaft all the way to the left,
while a2ms pulse will turn the shaft all the way to the right By varying the
pulse width between 1and 2ms, the servo motor shaft can be rotated to any
degree position within its range.

Pulse Width 1 -2 ms

n_n.

Period 20ms

1 ms Pulse JLJLJLfl
©1 ms Pulse Train

Servo Motor Position
Left

1.5 ms Pulse JLJLJLJ ©
1,5 ms Pulse Tram
Servo Motor Position
Midrange

PI n n I! (-»~) Servo Motor Position2ms Pulse -J I—ll—I*—I l W Right

Figure 6 : Input pulse signal and servo motor output position

Servo Motor Selection

In choosing a suitable servo motor for this project, various servo motor

specifications were researched. Servos are distinguished by a number of
aspects and performance features that should be considered.

Price

In this project, at least 10 servos for 10 degree offreedom are needed
to make the robot walk. To avoid short in budget, it is suggested that

the price of each servo is lower than RM50 so that the total cost of

the servos will not exceed RM500.

Torque

Torque delivered by the servo depends on the size and weight of the
robot. The servo needs to have enough power to do the job that is

needed. With the earlier robot design, it is predetermine that servo

with 3.5kg/cm torque should be able to lift a 500gram leg. Lighter
material is needed to reduce the weight of the robot to minimize the

torque required including the weight ofthe servo motor and circuits.

Weight

More powerful motors tend to be heavier and larger. To keep the
robot light, the servos needed to be light but delivered enough power
to move the joints of the robot. To miriimize the mass of the robot,
total weight ofall 10 servo needed is less than 500 gram, which is

less than 50 gram each.

Speed

The speed of the servo refers to the maximum speed at which itcan
turn. This is usually measured in seconds per 60°. Ifit is 0.5 seconds

per 60°, then itwill take 1.5 seconds to turn 180°. This feature is very
important in static walking as the robot needed to be balanced all the
time and operate in specific speed. However the speed of the servo

can be adjustedin controllerprogrammer

Voltage

A number of servos and other controller-compatible devices operate

at different voltages, such as 4.8, 6.0 or 7.2 volts. To avoid
complication in power supply circuit, itis very useful to obtain servos

that run at thesame voltage, which is possibly at 6V.

Gear Type

There are plastic, metal, and titanium gear types available. The nylon
gear is adequate for lower torque. It is very important not to force the
servo to overrun its limitation as it can damage the gear ofthe servo.

Size

The servo to act as the wrist or knee ofa legged robot, then its size

may be an issue. If the servo is small indeed, it is possible to install it
directly to the knee joint and if the servo is too big, mounting it at the
trunk ofthe robot is most likely and using something along the lines
oftendon-like wires to transmit its motion.

The scope of this project is to use PIC microcontroller and the student will
limit the electronic controllers for the electrical actuators to those that use
pulse width modulation, which can be generate easily by microcontroller.
The pulse width modulation technique enables acapable electrical motor to
adjust speed and direction of rotation based on the width ofpulses received

10

2.4 Pulse Width Modulation

Pulse width modulation (PWM) ofa signal orpower source involves the modulation

of its duty cycle, at constant frequency. The pulse duration can be varies by

changing the duty cycle as shown in Figure 7below. This type ofmodulation can be
used to controlsuch servo since it will respondto desiredpulse duration.

6V

ov

6V

OV

6V

OV

-rum-rui
20% Duty Cycle

ji_n_n_TLn
50% Duty Cycle

_ru~ir~Lnr
80% Duty Cycle

Figure 7 : Effect ofduty cycle in pulse width modulation

11

CHAPTER 3

METHODOLOGY

START

Preliminary Research

- Bipedal walking gait
- Robot designing and approach
- Research on suitable material

Development of the robot hardware

- Obtain required component
- Prototype modeling and assembly

- Circuit design

Development of circuit and algorithms

-Circuit fabrication

- Microcontroller Programming
-Software implementation on hardware

Analysis of results

END

Figure 8 : Flowchart ofprocedures done

12

3.1 Project Procedure

Researches on walking gait and suitable hardware to be implemented on the biped
robot were done as a preliminary step before making any decision toward robot
development and construction. The structure of the robot, including the leg, foot,
actuator, controller and electrical circuit are identified as hardware while the
programming language to control the robot movement is known as software. After
all the required hardware components were obtained and assembled together to
construct the bipedal robot prototype, the next step is to design the controller circuit
using suitable PIC microcontroller. Once the controller is designed and fabricated,
software development was continued with the controller programming. The next
step is to implement the programming into the controller by connecting all the inputs
and outputs connection and a few configurations were verified. Then experiment
shall be performed to test the prototype functionality and to identify any occurring
problem. If the prototype is not operational, modification on programming and
circuit test have to be done. Finally the result of the functional prototype will be

analyzed to maximize theperformance.

3.2 Material

Ten Futaba S3001 servos were successfully obtained for the project as shown in
figure 9. All the servos were ordered from Singapore though a Kyosho Toykar
hobby shop located at Berjaya Times Square, Kuala Lumpur.

Figure 9 : Obtained Futaba S3001 servos

13

1mm L-shape stainless steel frames were obtained from local hardware store. Two

PIC 16F877 microcontrollers were obtained from State Electronic Trading, a local

electronic store at Ipoh, Perak. Other electronic parts required for the project such as

capacitors, crystal oscillator, wires, male connector and circuit board were obtained
from the Electronic Storage Roomin the Electrical Department.

Figure 10 : Obtained PIC 16F877 microcontroller

3.3 Tools and Software

This project required the student to build the working prototype of the bipedal robot
To achieve this, several workshop tools are required to build the body ofthe robot
such as measurement tapes, screwdriver, pliers, saw, cutting tool and drill. The
printed circuit board (PCB) for the controller circuit of the robot was fabricated in
the PCB fabrication Lab and Electronic Lab was used to access several tools such as

multimeter, oscillator, power supply, welding tool and etc. The circuit PCB layout
was drawn using EAGLE layout editor version 4.13 and the program was compile
into the controller using Microchip MPLAB IDE version 7.40 software which is

available in the Microprocessor Lab.

14

CHAPTER 4

RESULT AND DISCUSSION

4.1 Bipedal Model Description

4.1.1 Robot Design andDegree ofFreedom

After considering all the movement needed from the biped locomotion and static
walking, the robot leg can be design and structured. There will be 10 main joints
connecting the whole robot leg at the torso, hip, knee and ankle as shown in
figure 11. The torso will link both torso joint for sideway movement There
would be 2separate links connecting to each hip joint In each leg, the hip joint
will be connected to the knee joint by a link at the thigh. The shank will link the
knee joint to the ankle joint Notice that there will be 2 joints in each ankle
which can be linked by a small body part. These 2 joints acts in different
direction, one for displacement to the front and the other is to the side to redirect
thecenter of gravity oftheupper body.

f^ —| Torso joint j

-—1 Hip Joint |

—|Torso |

r

1 1J_
~~~~\ Thigh |

—1 KneeJoint j

—| shank |

s ^
—| Ankle Joint |

A —| Feet ]

Figure 11 : Joints and links ofthe robot leg

15



Referring to figure 11 the robot leg shall have 10 mechanical joints that will be
actuated by 10 servos and linked by 11 body part which are the torso, 2thighs, 2
shanks, 2 ankles and also the foot. To find the degrees offreedom ofthe bipedal

robot, Kutzbach-Gruebler's equation ofa planar mechanical linkage was used to

calculate the DOF, where totaljoints are 10and linksare 11;

m= mobility = Degree of Freedom

n = 11 = number of links (including a single ground link)

j = io=number ofmechanical joints (pin or slider joint)

m**3(n~l)~2j

w^ 10 DOFs

The robot legs shall be able to move in 5 degrees of freedom in each leg, as
shown in figure 12. Each leg must have 3DOFs respectively to the x-y plane at
the hip, knee and ankle joints. These 3joint in each leg will mostly used to shift
the displacement of the body forward. Meanwhile 2DOFs in y-z plane in each
leg at the torso and knee joint are use to shift the body sideway for balancing
purpose. As conclusion, the bipedal robot shall have total of 10 DOFs in x-y-z
planerespectively.

yi

yz

a a

y3

/*

Figure 12 : Degree offreedom inx-y-z plane

16



4.1.2 Mechanical

Ten servos and 1mm L-shape stainless steel frame were used to construct the

bipedal robot leg. The stainless steel was measured and divided into 11 parts
before it were cut, bended and shaped to fit accordingly to all the servos, links

and joints. The stainless steal frames that were formed were shown in figure 13.

Figure 13 : 1mm L-shape stainless steel frame

Figure 14 : 10 obtained Futaba S3001 servos

The entire stainless steal frame was then linked together with the obtained

Futaba servos as shown in figure 14 using screws, nuts and washers. All the
body parts was then assembled together to produce the bipedal robot prototype

as shown in figure 15and 16.

17



Figure 15 : Bipedal Leg Prototype (Front view)

Figure 16 : Bipedal Leg Prototype (Rear view)

18



4.1.3 Electrical

TUN TIOUT
T2IM T2CUT
RIOUT RUN
RiDUT R2III

€>

•*
MCLfWTHV

rawand
RA1/AHI
raj/an;

HS4fT0CKt

RA5SJ99M
RHr/RDWAN?
RF_1/WR*fiWe
RE/CSf/filff

OSEI/CLKIK
OSCI/CLKCUT

'M Rccmoso
RC1IT10SI

RC3/SCK
RDtl/PSPO
RDI/P3P1

(IIT/RBO

(>SP?yRD7
pspe/ftoa

PSPSIROS
PSF4/RD4

RWRC7
TORCS

SDO/RCS
3DURC4

RDS/PSP3
RD2/P5P2

t-J

•ptiiirtWP

MCLPS.TKv

pjeuvia
RAI'AMl
RM(flH2
RAMAN3
RM/TOCKI
RM/AN4
REDfRMfAHS
RF_IMjWAH6 •
RSiCS*«tll7

OSCUCLKIN
gSC2/CLKQUT
Rcomosra
RCIiTlOSI
rcz/ccci

RC3/SCK

RDI/PSPI

INT/RBD

PSP7/RD7
PSFSiRKi

P5P5'RD5
PSPWD4

RiURCT
TORC6

SDQIRCa
SD!'RC4

RP3IPSP3
rowpsp;

TlinSPiSWi

2d
iCD

2 3

ipfh

Figure 17 : Schematic board for controller with 2PIC 16F877

The controller circuit board utilized two PIC 16F877, one is known as Servo

Controller and the other isWalking Controller as shown infigure 17. The Servo

Controller is connected directly to the servos and handles the task ofcontrolling
the 10 servos. It will read the output instruction from the Walking Controller and
continuously update the position for each servo at atime. However the Walking
Controller will not have to worry about the PWM output controlling the servo

but instead focuses on walking timing and patterns that need to be achieved. To
comply with this condition, different clock timing for each PIC have to be
introduced because ifboth PICs have the same clock timings they were unable to
communicate with each other. Different clock timing will gift PIC2 enough time

to retrieve data from PIC1. A4 MHz crystal oscillator is installed to the Servo
Controller while the Walking Controller will use an 8 MHz oscillator. For the
receiver, MAX232 chip manufactured by MAXIM is used. The MAX232 is a
dual driver (transmitter and receiver) that includes acapacitive voltage generator
to supply standard Energy Information Administration (EIA)-232 voltage levels

19



from a single 5V supply. The receiver converts EIA-232 inputs to ±5V TTL or

CMOS levels, which to be sentto thecontroller from the computer.

Figure 18 : Circuit testing for PCB implementation

Figure 19 : Printed Circuit Board layout for the circuit schematic

The Printed Circuit Board layout as shown in Figure 19 was generated from the

schematic board, used to fabricate a Printed Circuit Board where the electronic
components will be installed and welded. The circuit was tested before
implementation on the printed circuit board as shown in Figure 18. The circuit
will bethen mounted onthebipedal robot and connects to theservos.

20



4.2 System Description

System controlling the bipedal robot is divided into two parts which are the Servo
Controller and the Walking Controller. The Servo Controller is connected directly to

the entire servos while generating Pulse Width Modulation to vary the servo

position. The Walking Controller selects the servo to be controlled and instruct the
servo to achieve the required angle orposition. This will produce a specialization in

each controller with each of them performing the previous stated task, shown in

Figure 20.

Walking
Controller

*

4-.-,,.— 1 Select servoL... ^

\/
P

PC | Positioning
V

Servo

Controller

IT

UUUL
PWM signal

Figure 20 : Walking Controller and Servo Controller association

With this arrangement, the Servo Controller will only have to focus on generating
the required PWM to the servo while the Walking Controller will only have to worry
about the walking gait. On the other hand by using this configuration, the
programming code will also be reduced significantly. This is due to elimination of
instruction seton servo selection, positioning andmemory allocation.

4.2.1 Servo Controller

Servos are control using pulse width modulation (PWM) to allocate the desired

position which is easy to produce by the microcontroller. Maximum pulse width
to control a servo is 2ms and the minimum pulse width of 1ms with the

frequency of 50Hz. Frequency of 50Hz will produce 20ms for each period. To
avoid overlapping among the servos, a 2ms pulse slot is always allocated for

21



each servo so that other servo pulse width will never overlap with each other

even if the pulse width for a servo does not reach 2ms. Meaning with a
maximum pulse width of2ms for each servo, there would be 18ms of idle pulse
width is divided to other nine servos with different time allocation. Figure 21

mayeasethe comprehension.

2ms

L
seru —i

serl _J

ser2-

r

ser3-

ser4_

ser5- r~

ser6-

...nser7 —

ser8-
n

ser9_
. 20ms „.. —»i<<

Figure 21 : PWM output from servo controller

This pattern is use so that one servo can be processed at atime and simplifies the
walking algorithm. With PWM, the duration of a pulse can be varies from 1ms

to 2ms to control the servo movement.

To achieve the PWM output from the controller, servo program was written as

shown in Figure 22 explaining the servo controller program flow. There are ten
globally declared variable servos 0to 9that stores the required servo position,
these variables are retrieves from the Walking Controller output and updated to
allocate the desired pulse width. The controller will update only one servo at a

22



single time. Programming on the servo PIC was finalized first before working on

the walking control PIC. In this project, the ranges ofmotion ofthe servo are not

the full 180 degrees but instead only 90 degrees.

23



Initialize microprocessor

Set servo register

Servo 1

Check servo 1 instruction
Allocate desired pulse width

Servo 2

Check servo 2 instruction
Allocate desired pulse width

Servo 3

Check servo 3 instruction

Allocate desired pulse width

i
Servo 4

Check servo 4 instruction

Allocate desired pulse width

t
Servo 5

Check servo 5 instruction

Allocate desired pulse width

I
Servo 6

Check servo 6 instruction

Allocatedesired pulse width

Servo 7

Check servo 7 instruction
Allocate desired pulse width

I
Servo 8

Check servo 8 instruction
Allocate desired pulse width

Servo 9

Check servo 9 instruction

Allocate desired pulse width

Servo 10

Check servo 10 instruction

Allocatedesired pulse width

_l

Servo Routine

Update oneservoat a time

Read instructio*(walking program)

Execute instruction (pulse width allocation)

* 4

j

Figure 22 : Servo controller program flowchart

24



4.2.2 Walking Controller

The control PIC will not have to worry about PWM controlling the servo but

instead focuses on walking timing and patterns that need to be achieved. The

controller indicates which servo to operate at a time and instruct the servo

controller what to do later. Figure 23 below shows the simplified flowchart for

walking controller.

START

inputvariable -number of steps

- Tilt to the right
- Left leg steps forward
- Right leg pushes back
- Tilt back to center

Tilt to the left

Right leg steps forward
Left leg pushes back
Tilt back to center

-Tilt to the right
- Left leg steps forward
- Right legpushes back
- Tilt back to center

1
END

Tilt to the left
Right legsteps to origin
Tilt back to center

Figure 23 : Flowchart for walking controller program

25



43 Discussion

43.1 Servo Controller C Program

By using this program code, the controller will read the data received from
PORT Cinput to determine which servo to be control at a single time and then
retrieve the desired position for the servo from PORT A. The Servos 0 to 9 are
set as integer variable servO to serv9 accordingly, which represent a 6 bit (64
levels) position value. This mean servo position value can be varies from 0to 63

levels.

mtservO^ei^l^e^^erv.S^e^^ervS.serve^ervT^eryS.servP;
void updateO //Update function

int ser pos; //Set servo and position as integer
ser=PORTC; //Read data from PORTC and determine servo
pos=PORTA; //Read data from PORT Afor position
if(ser==0){servO=pos;} //Select servo 0if0and put position value in servO
else in>r==l){servl=pos;} //Select servo 1if1and put position value in servl

//Select servo 2 if 2 andputposition value in serv2
//Select servo3 if 3 and put positionvaluein serv3
//Select servo4 if 4 and putpositionvaluein serv4
//Select servo 5 if 5 andputposition value in serv5
//Select servo 6 if 6 andputposition value in serv6
//Select servo 7 if 7 andputposition value in serv7
//Select servo 8 if 8 andputposition value in serv8
//Select servo 9 if 9 andputposition value in serv9

else if(ser=2){serv2=pos;}
else ifi>er==3){serv3=pos;}
else tf(ser=4){serv4=pos;}
else if(ser=5){serv5=pos;}
elseif(ser=6){serv6=pos;}
elseif(ser==7){serv7=pos;}
else if(ser=8){serv8=:pos;}
else ifi>er=9){serv9=pos;}

}

//Set integer

The next program code is the pulse width modulation generator for the Servo
Controller. The program will retrieve the input variable servO to serv9 and
calculate the pulse width to be given to the selected servo.

//servo 0

update();
dell=serv0*4;
del2=255-dell;

PORTB=0x80;
PORTT>0x00;
delay_us(980);
delayjis(dell);
delayus(dell);
delay_us(dell);

//Go to Update function
//Delay 1value (pulse duration delay)
//Delay 2 value (delay forneutral)

//Output to servo0 at RB7
//No output at HDRT D
//Minimum pulse width of 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1to delay the pulse width
//Use Delay I to delay thepulse width

26



delay_us(deil);
PORTB=OxOO;
PORTD=OxOO;
delay_us(del2);
delay_us(de!2);
delay_us(del2);
delay_us(de!2);

//Use Delay 1 to delay thepulse width
//No output to servo 0
//No output at PORT D
//Use Delay 2 to delay for0 amplitude
//Use Delay 2 to delay for0 amplitude
//Use Delay 2 to delay for0 amplitude
//Use Delay 2 to delay for0 amplitude

Figure 24 below simplify the configuration on how the program will determine
and locate pulse width for servo 0and servo 1. Note that dell which varies from
0to 1008 represent the enlarged input variable serO to serv9 that varies from 0to
63 (amplification of 4). To maintain a 2ms period gap between each servo,
output bit 0will be delay 4times by 255-dell, represent by del2.

+5

ServO
0 -

+5
Servl

0 -

1ms minimum

width pulse
A

Varies

ms1 to 2ms

k :
r- y 1

del1x4

1ms + del1x4

r

•

de

^r
f* 2ms p

gs

enoa w

P

12x4

Figure 24 :Servo Controller pulse width modulation generator

27



4.3.2 Walking Controller C Program

Figure 25 : Servo variable representation on the bipedal robot

Figure 24 shows the servo variable representation for each servo located at the
bipedal robot. The program below is for tilting purpose which is to put the center
of gravity of the whole robot body into either one foot. The tilt process only
involves 4 servos which are serO, ser4, ser5 and ser9. These servos will shift the

body of the robot to the side, either right or left. To tilt to the left, serO and ser 9
current pulse widths will be reduced to rotate the shaft of the servo in
anticlockwise direction. Meanwhile ser4 and ser5 current pulse width will be

increased to rotate the shaft ofthe servo inclockwise direction. Actions on these

4 servos will shift the torso ofthe robot body to the left resulting the left foot to

accumulate the center ofgravity ofthe robot. Like wise for tilting to the right,
the process will be the same but only with the opposite shaft rotation direction.

void ser0459(int op,int del)

{
ifi>p='+•)

{
ser0=ser0-del;
ser4=ser4+del;
ser5=ser5+del;
ser9=ser9-del;

}
else if(op=--*)

{
serO=serO+del;
ser4=ser4-del;
#er5=ser5-del;
ser9=ser9+del;

}

//ser0459 function for tilt
//set integer opfor operation and del for level

//select if operation is+ or tilttotheleft

//decrease currentservo0 position by del level
//increase current servo 4 position by del level
//increase currentservo5 position by del level
//decrease currentservo9 position by del level

//select if operation is - or tiltto theleft

//increase current servo 0 position by del level
//decrease current servo 4 position by del level
//decrease current servo 5 position bydel level
//increase current servo 9 position bydel level

28



The next program is to keep the feet and torso at the same plane or parallel to
each other, even if the leg is lift up. This action isvery important for the robot to

have smooth landing during walking by directing the foot to be parallel to the

ground. This routine will be updated every time when servo 6 and servo 7

moves.

void serv8()

{
signed pos6,pos7,temp;
pos6=sc6-ser6;
pos7=sc7-ser7;
temp=sc8;
temp=temp+pos7+pos6;
ser8=temp;

}

//serv8 routine

//signed integer pos6,pos7 andtemp
//pos6 is servo 6 center position - current position
//pos7 isservo 7 center position - current position
//temp is servo 8 center position
//calculatetemp for changes
//servo 8 position equal to tempvalue

The next program is written to command the left leg for bending or stretching.
To bend the leg, servo 6 pulse width will be increase by 1 level and servo 7's
pulse width will be decrease by 2 levels. This action will rotate the servo 6's
shaft to clockwise direction and servo 7 shaft to anticlockwise direction which

resulting the left leg to bend. Different rotation direction of the servos will make
the leg to stretches back to normal. The program is also applied to the right leg
with different servo selection.

void bleft(int dir)

{
ifpr^'-')

{
ser6=ser6+l;
ser7=ser7-2;

serv8();
}

else i^diT—V)

{
ser6=ser6-l;
ser7=ser7+2;
serv8();

}

//bleft routine forbend to leftandset variable direction

//Select if to shorten the legif variable input is -ve sign

//increase currentservo6 position by 1 level
//decline current servo 7 position by2 level
//Call serv8 routine

//Select if to stretches legif variable input is +vesign

//decrease current servo 6 position by 1 level
//increase currentservo6 position by 2 level
//Call serv8 routine

4.3.3 Computer Instruction C Program

This Cprogram is the main program for the user instruction to the robot, and
will be execute using the MPLAB. The program will ask the user to select 6

29



available actions for the robot to achieve by inputting a number ranging 1 to 6

using the keyboard. If the input is4, 5or6 the program will further ask the user

to enter the number of steps to betaken bytherobot ranging from 1to 9 steps.

printf?"\nSeIect action:");
do{

act=getc();
j while (act HO' && act !='2' && act !='3' && act !='4'&& act !='5'&& act !='6'&& act

WT&& act !='8'&& act !='9');
printf("%c\r",act);

iftact—'O'MbendC-'̂ O^);}
else if(act=T){bend<'+',90,6);}
elseif(act='2'){tilt(,-',90,5);}
else iftact^'KtiltO+'^O^);}
else ifl^act^^')

{
prinnX"\nFast waik\r");
printf("\nNumbeF of steps :");

do{
s^getcO;
}while (act !=T&& act K2'&&act !='3'&&act !='4'&&act !='5'&&act

^'Aftact M7'&& act !='8'&&act K9');
printf("%c\r",s);
s=convert(s);
walk(30,s,4);

}
else ifl^act='5')

{
printfCViMedwalkV");
printf("\nNumber ofsteps :");
do{

s=getc();
}while (act !='1'&& act !='2'&&act !='3'&&act !='4'&&act !='5'&&act

K6'&&act !=7'&& act !='8'&&act H9');
printfC%c\r\s);
s=convert{s);
walk(60,s,4);

}
else ifl;act='6')

{
printf(n\nSlow walk\r");
printft"\nNumber of steps:");
do{

s=getcO;
}while (act !=T&& act !='2'&&act !='3'&&act !='4'&&act !='5'&&act

!='6'&&act !=*&& act K8'&&act K9');
printfl:n%c\r",s);
s=convert(s);
walk(250,s,5);
}
elseifl;act=V){resetO;}
else {sendO;}
} while (TRUE);

}

30



CHAPTER 5

CONCLUSION AND RECOMENDATION

The twentieth century was a period ofradical change from almost every aspect of
scientific discoveries. Increasingly cheap and compact computing power, however,

has made two-legged robots more feasible. Throughout the project student are
required to do a lot of research related to bipedal robot, make a lot of decision in
choosing suitable material and equipment and also anticipate in design process. At
the end of the project, the bipedal robot can be used to investigate the theories of
bipedal walking and can contribute to more advance studies on humanoid robot.

As recommendation due to this project breakdown, several different approaches
needed to be taken toward this project completion. To avoid failure ofthe controller
circuit, each servo motor needed to be initially tested at each joints before
integrating it all together one by one. The student also needed to understand clearly
the operation of the servo before designing the servo controller. This project
methodology has to be revised for a better outcome. As an additional
recommendation a single microcontroller can be used instead of two to produce the
same output, by storing the servo selection and position data in the controller
temporary registers. The bipedal robot's 6bits servo positioning resolution can also
be refine to have a much improve and smooth walking gait. Further development,

would be designing it to be autonomous with addition of sensors and camera. After
it had become an autonomous walker (able to walk on any surface), next we can add
a remote controller so that the robot can be controlled remotely while the robot deal
with obstacles. In the future, human can be replaced by machine that can move like
human and such robot can spare human life by doing harmful task or work in the

most horrible surroundings.

31



REFERENCES

[1] Harprit Sandhu, (1997). "An Introduction to Robotics". Nexus Special
Interest Ltd, Nexus House, Boundary way, Hemel Hempstead, England.

[2] Saeed b Niku, (2001). "Introduction to Robotics, Analysis, System,
Application". Prentice Hall Inc, Upper Saddle River, New Jersey.

[3] Arthur G. Erdman, George N. Sandor, (1984). "Mechanism Design: Analysis

andSynthesis". Prentice-Hall.

[4] Barnett, Cox and O'Cull, (2004), "Embedded C Programming and the
Microchip PIC\ 1st Edition, Thomson Delmar Learning

|5] Mazidi, M.A, McKinlay, R.D., Causey, D., (2008), "PIC Microcontroller
and Embedded Systems". Pearson Prentice Hall.

[6J Huang, (2005). "PIC Microcontroller: An Introduction to Software and
Hardware Interfacing". Thomson Delmar Learning.

[7] Muhamad Aidil Jazmi, (2006). "Microprocessor 2 Project Technical
Report'. Institute Technology ofPetronas, Perak, Malaysia.

(http://aidilj.tripod.com/)

[8] Erik V. Cuevas, Daniel Zaldivar, Raul Rojas, (2005). "Bipedal Robot
Description Technical Report". Freie Universitat Berlin, Institut fiir
Informatik Takustr, Berlin, Germany, Universidad de Guadalajara Av.

Revolution, Guadalajara, Mexico.

(http://page.mi.fu-berlin.de/~zaldivar/files/tr-b-04-19.pdf)

[9] (2007)."Asimo the World Most Advance Robot".
(http://www.asimo.honda.com)

[10] (2003-2007). "Kondo robot"

(http://www.kondo-robot.com)

[11] (2007)."Futaba Standard Analog Servo"

(http://www.fiitaba-rc.com/servos/index.htrnl)

32



[12] (2005-2007). "Bipedalism" (http://en.wikipedia.org/wiki/Biped)

[13] (2005-2007). "Mechanical linkage".

(http://en.wikipedia.Org/wiki/Linkage_%28mechanical%29#References)

[14] (2007). "What a Servo: A Quick Tutorial"

(http://www.seattlerobotics.org/guide/servos.html)

[15] Ben Fry and Casey Reas, (2001-2007). "Processing".

(http://processing.org/reference/index.html)

33



APPENDICES

APPENDIX A- PROJECT GANTT CHART

APPENDK B- BIPEDAL ROBOT SCHEMATIC BOARD

APPENDIX C- FUTABA S3001 STANDARD SERVO SPECIFICATION

APPENDIX D- PIC16F877 DATA SHEET

APPENDIX E-MAX232I DUAL DRIVERS/RECEIVERS DATA SHEET

APPENDIX F- SERVO CONTROLLER CPROGRAM

APPENDIX G- WALKING CONTROLLER CPROGRAM

APPENDIX H- COMPUTER INSTRUCTION CPROGRAM

34



N
o

.
D

et
a

il
/W

e
e
k

Pr
oj

ec
tW

or
k

C
on

tin
ue

-R
et

ri
ev

e.
al

ln
ee

de
d

co
m

po
ne

nt

-D
es

ig
n

an
d

bu
ild

th
e

bi
pe

da
lr

ob
ot

pr
ot

ot
yp

Su
bm

iss
io

n
of

Pr
og

re
ss

Re
po

rt-
1

Pr
oj

ec
tW

or
k

C
on

tin
ue

-D
es

ig
nt

he
sc

he
m

ati
cc

irc
ui

tf
or

co
ntr

oll
er

-F
ab

ric
at

e
th

e
pr

in
te

d
ci

rc
ui

tb
oa

td
co

nt
ro

lle
r

Su
bm

is
si

on
of

Pr
og

re
ss

R
ep

or
t2

5
Pr

oj
ec

tw
or

k
co

nt
in

ue
-C

on
tin

ue
on

th
e

pr
og

ra
m

m
in

g
co

de
-B

ui
ld

an
d

co
m

pi
le

th
e

pr
og

fa
m

m
in

g
co

de
to

th
e

co
nt

ro
lle

r
_

_
_

Su
bm

is
si

on
of

D
is

se
rta

tio
n

Fi
na

lD
ra

ft

O
ra

lP
re

se
n

ta
ti

o
n

8
Su

bm
iss

io
n

of
Pr

oj
ec

tD
is

se
rta

tio
n

P
ro

ce
ss

*
1 w o a n H

> h
e

ft
w

j£
§

H H
»

n
>



APPENDIX B

BIPEDAL ROBOT SCHEMATIC BOARD

"CI (J 1! c

S! I) II II

<*•

T

"U

S £ k <£ if i"s: ^ !£ £ 2-! ¥ =£ :^ S > ^ ^- &•

: e ir u. a. cc si" e

siiTsriss^s

^,444^1 ~M"E.i^ffiiab

£ S:£ S:sece a: i g:r7: £ £_ S^ £ £

•a =i. * t— :-_

-i t a a 2 £ :S OCi &SJ

3^

i— t—

: o uj

n ^R

IHHH

36



APPENDIX C

FUTABA S3001 STANDARD SERVO SPECIFICATION

O

&'-

Ts.s

20

S300, : ,S— *™ - >"^r^S^-i'Z
delivering sufficientamps.

FEATURES: Single Top Ball Bearing, 3-pole motor, same mounting as S148 and
S9201 (individual rectangular grommets),

SPECS:

Length : 1.6" (41mm)

Width : 0.8" (20mm)

Height : 1.4" (35mm)

Weight :1.6oz(45.1g)

Torque :33 oz-in at 4.8V 42 oz-in. at 6V

Transit : 0.28 sec/60° @4.8V .22 sec/60° @6V

37



APPENDIX D

PIC 16F877 DATA SHEET

38



APPENDIX E

MAX232I DUAL DRIVERS/RECEIVERS DATA SHEET

39



©
Appendix D

Microchip PIC16F87X
28/40-pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

• PIC16F873 • PIC16F876

PIC16F874 PIC16F877

Microcontroller Core Features:

• High-performance RISC CPU
• Only 35 single word instructions to learn
• All singlecycle instructions exceptforprogram

branches which are two cycle

• Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

• Up to8Kx14words ofFLASH Program Memory,
Up to368 x 8 bytes ofData Memory (RAM)
Up to 256x 8 bytes ofEEPROM data memory

• Pinout compatible to the PIC16C73B/74B/76/77
• Interrupt capability (upto 14sources)
• Eight level deep hardware stack
• Direct, indirect and relative addressing modes
• Power-on Reset (POR)
• Power-up Timer(PWRT) and

Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC

oscillator for reliable operation
• Programmable code-protection
« Power saving SLEEP mode

• Selectable oscillator options
• Low-power, high-speed CMOS FLASH/EEPROM

technology

• Fullystatic design
• In-Circuit Serial Programming™ (ICSP)via two

pins
• Single 5V In-Circuit Serial Programming capability
- In-Circuit Debugging via two pins
• Processor read/write access to program memory

• Wide operating voltage range: 2.0V to 5.5V
• High Sink/Source Current: 25 mA
• Commercial and Industrial temperature ranges

• Low-power consumption:
- < 2 mA typical @ 5V, 4 MHz
- 20 uAtypical @3V, 32 kHz
- < 1 uAtypical standby current

© 1999 Microchip Technology Inc.

Pin Diagram

PDIP

MCTrTVpp/THV -
RA0/AN0 -

RA1/AN1 -

RA2/AN2/VREF- -

RA3/AN3A/REF+ -

RA4/T0CKI -

RA5/AN4/SS -

RE0/RD/AN5 •

RE1/WR/AN6 •

RE2/CS/AN7

Vdd-

Vss .

OSC1/CLKIN •

OSC2/CIKOUT

RCOmOSO/TICKI

RC1/T10SI/CCP2

RC27CCP1

RC3/SCK/SCL

RDD/PSPO

RD1/PSP1

r i w 40 3

r. 2 39 3

r 3 38 3

L 4 37 3

L" 5 36 J

c 6 35 3

c
*»
f-

34 3

r B 33 J

L 9
00

32 3

r 10 31 3

ri 11 00
u.

30 3

i 12 <D 29 J

c 13
o

28 3

L 14
Q.

27 J

I. 15 26 J

C 16 25 3

r 17 24 3

r 18 23 3

r 19 22 3

c 20 21 3

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

• VSS

RD7/PSP7

RD6/PSP6

RD5^SP5

RD4/PSP4

RC7/RX/DT

RcemucK

. RC5/SDO

RC4/SDI/SDA

. RD3/PSP3

• RD2/PSP2

Peripheral Features:

• TimerO: 8-bit timer/counter with 8-bit prescaler
• Timer!: 16-bit timer/counter with prescaler,

can be incremented during sleep via external
crystal/clock

• Timer2:8-bit timer/counter with 8-bit period
register, prescaler and postscaler

• Two Capture, Compare, PWM modules
- Capture is 16-bit, max. resolution is 12.5ns
- Compare is16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit

• 10-bit multi-channel Analog-to-Digital converter

• Synchronous Serial Port (SSP) with SPI™ (Master
Mode) and l2C™ (Master/Slave)

• Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI) with 9-bitaddress
detection

• Parallel Slave Port (PSP) 8-bitswide, with
external RD, WRand CS controls(40/44-pin only)

• Brown-out detection circuitry for
Brown-out Reset (BOR)

DS30292B-page 1



PIC16F87X
Appendix D

Pin Diagrams

DIP, SOIC

MCTRTVPP/THV'

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3/VREF+

RA4fT0CKI

RA5/AN4/S5
Vss

OSG1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RCin"10Sl/CCP2

RC2/CCP1

RC3/SCK/SCL

QFP

(JO
So
p tfl

ttLCC

O

= o. a. a. a. S2Q; o
(o d. a. o. a. g) P t

QOOQOOUO
ITICKKECCirZ

twmm

PLCC

RA4/T0CKI
RA5/AN4/SS
RE0/RP/AN5
RE1/WR/AN6
RE2/CS/AN7

VDD

Vss
OSC1/CLKIN

OSC2/CLKOUT
RC0/T1OSOAT1CK1

NC

+ • >
III Ui J.

ZZ2Z| OO

£££2eg32££l22

iiiMilna

PIC16F877
PIC16F874

•C10
•C 11
•C12
-C13
•C 14
-C 15
•C16

C 17,'co u>o t- cn «•* «i <gk ;

39 3-
383-
37 3-
36 3-
35 3-
343-
33 3-
32 3-
313-
303

UUUUUUUUUUU

tmmw
cM'--JO'-iNm<OitO
Q.0.OQ.J1-Q.Q.QC1OZ

o

RB3/PGM
RB2
RB1
RBO/INT
VDD

VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7/RX/DT

RC7/RWDT
RD4/PSP4

RD5/PSP5
RD6/PSP6
RD7/PSP7

VSS

VDD

RBO/INT
RB1

RB2
RB3/PQM

fa
•or

-UXL

•ax

-r~n-

-t=ET

-ac s
-or 9

-•x 10
'(=n 11

iN«-OBlt r«- <D K> *J

33 3XH
32H3-

JX3-

!••

IO-

ID-

NC
ROVT10SO/T1CKI
0SC2/CLK0UT
OSC1/CLKIN
Vss

Vdd
RE2/AN7/CS

RE1/AN6/WR
RE0/AN5/RD
RA5/AN4/SS
RA4T0CKI

DS30292B-page 2

PIC16F877
PIC16F874

31

30

29

28

27XO-
26XC3-
25H3-
24H=3-
23DZD-

csico-3-inioh-cocno*-^!

MUM)
zz£goo£g?Si£

m to > S S

I

© 1999 MicrochipTechnology Inc.



PIC16F87X

Key Features
PICmicro™ Mid-Range Reference

Manual (DS33023)
PIC16F873 PIC16F874 PIC16F876 PIC16F877

Operating Frequency DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz

Resets {and Delays) POR, BOR
(PWRT,OST)

POR, BOR
(PWRT, OST)

POR, BOR
(PWRT,OST)

POR, BOR
(PWRT, OST)

FLASH Program Memory
(14-bit words)

4K 4K 8K 8K

Data Memory (bytes) 192 192 368 368

EEPROM Data Memory 128 128 256 256

Interrupts 13 14 13 14

I/O Ports Ports A,B,C Ports A,B,C,D,E Ports A,B,C Ports A,B,C,D,E

Timers 3 3 3 3

Capture/Compare/PWM modules 2 2 2 2

Serial Communications MSSP, USART MSSP, USART MSSP, USART MSSP, USART

Parallel Communications —
PSP — PSP

10-bitAnalog-to-Digital Module 5 input channels 8 input channels 5 input channels 8 input channels

Instruction Set 35 Instructions 35 Instructions 35 Instructions 35 Instructions

© 1999 MicrochipTechnology Inc.
DS30292B-page 3



PIC16F87X *,"n*D

Table of Contents
5

1.0 Device Overview * '
2.0 MemoryOrganization •
3.0 I/O Ports .,
4.0 Data EEPROM and FLASH Program Memory ^
5.0 TimerO Module ' 51
6.0 Timerl Module - „
7.0 Timer2 Module „
8.0 Capture/Compare/PWM (CCP) Module(s)
9.0 Master Synchronous Serial Port(MSSP) Module
10.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) •
11.0 Analog-to-Digital Converter (A/D) Module
12.0 Special Features of the CPU
13.0 instruction Set Summary U5
14.0 Development Support 151
15.0 Electrical Characteristics 173
16.0 DC and ACCharacteristics Graphs and Tables
17.0 Packaging Information 183
Appendix A: Revision History 1B3
Appendix B: Device Differences 183
Appendix C: Conversion Considerations 185
Index - -jgi
On-Line Support ^g3
Product Identification System -

To Our Valued Customers

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register atour Worldwide Web site at:

http://www.microcliip.com
You can determine the version of adata sheet by examining its literature number found on the.bottom "»""«""*an* W*
The last character of the literature number is the version number, e.g., DS30000A is verswn Aof document DS30000.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Errata

An orrata sheet mav exist for current devices, describing minor operational differences (from the data sheet) and recommended

sion ofsilicon and revision ofdocumentto which itapplies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip's Worldwide Web site; http://www.microchip.com
• Your localMicrochip sales office(see last page)
• The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277
When contacting asales office or the literature center, please specify which device, revision of silicon and data sheet (include liter
ature number) you are using.

Corrections to this Data Sheet
We constantly strive to improve the quality of all our products and documentation. We have spent agreat deal of time to ensure
SSTocumSiHs correct. HoweveV, we realize that we may have missed afew things. If you find any .nformahon that »missing
or appears in error, please:
• Fill outand mail inthereader response form in theback ofthis datasheet.
• E-mailusatwebmaster@microdiip.com.

We appreciate your assistance in making this a better document. __„___^_ „_^_

n„nnnnm , © 1999Microchip Technology Inc.
DS30292B-page 4



1.0 DEVICE OVERVIEW

This document contains device-specific information.
Additional information maybe found inthe PICmicro™
Mid-Range Reference Manual, (DS33023), which may
be obtained from your local Microchip Sales Represen
tative or downloaded from the Microchip website. The
Reference Manual should be considered a comple
mentary document tothis datasheet,andishighly rec
ommended reading for a better understanding of the
device architecture and operation of the peripheral
modules.

PIC16F87X

There are four devices (PIC16F873, P1C16F874,
P1C16F876 and PIC16F877) covered by this data
sheet. The PIC16F876/873 devices come In 28-pin
packages and the PIC16F877/874 devices come in 40-
pin packages. The28-pin devices do not have a Paral
lel Slave Port implemented.

The following two figures are device block diagrams
sorted by pin number; 28-pin for Figure 1-1 and 40-pin
for Figure 1-2. The 28-pin and 40-pin pinouts arelisted
in Table 1-1 and Table 1-2, respectively.

FIGURE 1-1: PIC16F873 AND PIC16F876 BLOCK DIAGRAM

Device Program
FLASH

Data Memory Data

EEPROM

PIC16F873

PIC16F876

4K

8K

FLASH
Program
Memory

Program 14 ;
Bus

SL
Instruction reg

AZ
Instruction ,.
Decode & rC=U-

Control

192 Bytes 128 Bytes

368 Bytes 256 Bytes

13

=7^

Program Counter <J

8 Level Stack
(13-bit)

RAMAddr(1) ffi 9
/AddrMUX \

7 if If Indirect
, JI 8K AddrDirect Addr

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

FSRreg

-=£j STATUS regfc^

3,
3 fT
\ MUX /

Timing
SC=^ Generation ^^

Watchdog
Timer

OSC1/CLKIN
OSC2/CLKOUT

TimerQ

Data EEPROM

TimeM

CCP1.2

Brown-out

Reset

In-Circuit
Debugger

Low-voltage
Programming

RBCTR VDD, vss

Timer2

Synchronous
Serial Port

Note 1: Higher order bits are from theSTATUS register.

© 1999 Microchip Technology trie.

10-bit A/D

USART

PORTA

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/T0CKI
RA5/AN4/S5

RBO/INT

RB1

RB2

RB3/PGM

RB4

RB5

RB6/PGC

>3 RB7/PGD

RC0/T1OSO/T1CKI
RC1/T10S1/CCP2

RC2/CCP1

XI RC3/SCK/SCL
RC4/SD1/SDA

RC5/SDO
rc6/tx/ck

RC7/RX/DT

DS30292B-page 5



PIC16F87X

FIGURE 1-2: PIC16F874 AND PIC16F877 BLOCK DIAGRAM

Note 1: Higher orderbits are from the STATUS register.

DS30292B-page 6

Appendix D

RAO/ANO

RA1/AN1

RA2/AN2/VREF-
RA3/AN3A/REF+

RA4/T0CKI_
RA5/AN4/SS

RBO/INT

RB1

RB2

RB3/PGM

RB4

RB5

RB6/PGC

RB7/PGD

RComoso/ncKi
RC1/T10SI/CCP2

RC2/CCP1

rc3/sck/scl
rc4/sdi/sda

rcs/sdo
RC6/TX/CK
RC7/RX/DT

<^>|g3 RD7/PSP7:RDG/PSP0

•-HS REO/AN5/RD

-—H^ RE1/AN6/WR

"-*E3 RE2/AN7/CS

© 1999 Microchip Technology Inc.



PIC16F87X

TABLE 1-1: PIC16F873 AND PIC16F876 PINOUT DESCRIPTION

Pin Name
DIP

Pin#

sotc

Pin#

t/O/P

Type

Buffer

Type
Description

OSC1/CLK1N 9 9 I ST/CMOS*3* Oscillator crystalinput/external dock source input.

OSC2/CLKOUT 10 10 0 Oscillator crystal output. Connects tocrystal orresonator in crystal
oscillatormode. In RC mode, the OSC2 pinoutputs CLKOUT
which has 1/4the frequencyofOSC1,and denotes the instruction
cycle rate.

MCLR/VPP/IHV 1 1 l/P ST Master clear(reset) input or programming voltage input or high
voltage testmode control. This pin isanactive low reset tothe
device.

PORTA is a bi-directional I/O port.

RAO/ANO 2 2 I/O TTL RAOcan also be analog inputO

RA1/AN1 3 3 I/O TTL RA1 can also be analog input!

RA2/AN2/VREF- 4 4 I/O TTt RA2 can also be analog input2or negativeanalog reference
voltage

RA3 can also be analog input3 or positive analog reference
RA3/AN3/VREF+ 5 5 I/O TTL

voltage

RA4/T0CKI 6 6 I/O ST RA4can also be the dock inputto the TimerO module.Output
is open drain type.

RA5/SS/AN4 7 7 I/O TTL RA5 can also be analog input4 orthe slaveselectforthe
synchronous serial port.

PORTB is a bi-directional I/Oport. PORTB can be software
programmed forinternal weakpull-up onallinputs.

RBO/INT 21 21 I/O TTL/ST*1' RBOcan also be the external interrupt pin.

RB1 22 22 I/O TTL

RB2 23 23 I/O TTL

RB3/PGM 24 24 I/O TTL RB3 can also be the low voltage programming input

RB4 25 25 I/O TTL Interrupt on change pin.

RB5 26 26 I/O TTL Interrupt on change pin.

RB6/PGC 27 27 I/O TTL/ST<2> Interrupt onchange pin or In-Circuit Debugger pin. Serial
programmingclock.

RB7/PGD 28 28 I/O TTL/ST<2> Interrupt onchange pin orIn-Circuit Debugger pin. Serial
programming data.

PORTC is a bi-directional I/O port.

RC0/T1OSO/T1CKI 11 11 I/O ST RCO can also be the Timerl oscillator output or Timerl dock

RC1/T10SI/CCP2 12 12 I/O ST RC1 canalsobetheTimerl oscillator input or Capture2 input/
Compare2 output/PWM2 output.

RC2/CCP1 13 13 I/O ST RC2 can alsobe theCapturel input/Comparel output/PWM1
output.

RC3/SCK/SCL 14 14 I/O ST RC3 canalsobethesynchronous serial clock input/output for
bothSPIand !2C modes.

RC4/SDI/SDA 15 15 I/O ST RC4 can also be the SPJ Data in (SPI mode) or

data I/O (l2C mode).

16 16 I/O ST RC5 can also be the SPI Data Out (SPI mode).

RC6/TX/CK 17 17 I/O ST RC6 can also be the USART Asynchronous Transmit or
Synchronous Clock.

RC7/RX/DT 18 18 I/O ST RC7 can also be the USART Asynchronous Receive or
Synchronous Data.

Vss 8,19 8,19 p —
Ground reference for logic and t/O pins.

VDD 20 20 p _ Positive supply for logic and I/O pins.

Legend: I = input 0 = output
— = Not used

l/0 =

TTL =

input/output
=TTL input

P = power
ST = Schmitt Trigger input

Note 1: This buffer s a Schmitt Trigger in jut when cor figured as the external interrupt,

2: This buffer s a Schmitt Trigger in jut when useid in serial proc ramming mode.

3: This buffer s a Schmitt Trigger insut when cor figured in RC cscillatormode and a CMOS inputotherwise.

DS30292B-page 7



PIC16F87X Appendix D

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

Pin Name

0SC1/CLKIN

OSC2/CLKOUT

MCLR/Vpp/THV

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3/VREF+

RA4/T0CKI

RA5/SS/AN4

RBO/INT

RB1

RB2

RB3/PGM

RB4

RB5

RB6/PGC

RB7/PGD

RC0/T1OSO/T1CKI

RC1/T10S1/CCP2

RC2/CCP1

RC3/SCK/SCL

RC4/SD1/SDA

RC5/SDO

RC6/TX7CK

RC7/RX/DT

DS30292B-page 8

DIP

Pin#

13

14

33

34

35

36

37

38

39

40

15

16

17

18

23

24

25

26

PLCC

Pin#

14

15

36

37

38

39

41

42

43

44

16

18

19

20

25

26

27

29

QFP

Pin#

30

31

19

20

21

22

23

24

9

10

11

14

15

16

17

32

35

36

37

42

43

44

l/O/P

Type

l/P

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Buffer

Type

ST/CMOS*4'

ST

TTL

TTL

TTL

TTL

ST

TTL

TTL/ST<1>

TTL

TTL

TTL

TTL

TTL

TTL/ST'2*

TTL/ST<2>

ST

ST

ST

ST

ST

ST

ST

ST

Description

Oscillator crystal input/external clocksource input.

Oscillator crystaloutput.Connects to crystalor resonator in
crystal osdllator mode. In RC mode, OSC2 pin outputs CLK-
OUTwhich has 1/4 the frequency of OSC1, and denotes the
instrudion cycle rate.

Master clear(reset) input or programming voltage input or high
voltage test modecontrol. This pinisan active low reset to the
device.

PORTA is a bi-directional I/O port.

RAO can also be analog inputO

RA1 can also be analog inputl

RA2can also be analog input2or negative analog
reference voltage

RA3can also be analog inputs or positiveanalog
reference voltage

RA4 can also be the clock input to the TimerO timer/
counter. Output is open drain type.

RA5 can also be analog input4 or the slave select forthe
synchronous serial port.

PORTBis a bi-directional I/O port. PORTBcan be software
programmed forinternal weakpull-up on all inputs.

RB0 can also be the external interrupt pin.

RB3 can also be the lowvoltage programming input

Interrupt on change pin.

Interrupt on change pin.

Interrupt onchangepin or In-Circuit Debugger pin. Serial
programming clock.

Interrupt onchange pin or In-Circuit Debugger pin. Serial
programming data. __

PORTC is a bi-diredional I/O port.

RC0 can also be the Timerl oscillatoroutput or a Timerl
clock input.

RC1 can also be the Timerl oscillator input or Capture2
input/Compare2output/PWM2 output.

RC2 can also be the Capturel input/Comparel output/
PWM1 output.

RC3can also be the synchronousserialclockinput/output
for both SPI and l2Cmodes.

RC4 can also be the SPI Data In (SPi mode) or
data I/O (fc mode).

RC5 can also be the SPI Data Out
(SPI mode).

RC6 can also ba the USART Asynchronous Transmit or
Synchronous Clock.

RC7 can also be the USART Asynchronous Receive or
Synchronous Data.

Legend- I=input O=output I/O - input/output P- power
—=Notused TTL =TTL input ST = Schmitt Trigger input

Note 1: This buffer isa Schmitt Trigger input when configured as an external interrupt.
2- This buffer isa Schmitt Trigger input when used in serial programming mode.
3: This buffer is a Schmitt Trigger input when configured asgeneral purpose I/O and aTTL input when used in the Parallel Slave

Portmode(for interfacing to a microprocessor bus).
4: This buffer isa Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

© 1999 Microchip Technology Inc.



PIC16F87X

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

Pin Name
DIP

Pin#

PLCC

Pin#

QFP

Pln#

WO/P

Type
Buffer

Type
Description

PORTDis a bi-diredional I/Oport or parallel slave port when
interfacing to a microprocessor bus.

RDO/PSPO 19 21 38 I/O ST/TTL<3>

RD1/PSP1 20 22 39 I/O ST/TTL<3>

RD2/PSP2 21 23 40 I/O ST/TTL<3>

RD3/PSP3 22 24 41 I/O ST/TTL<3)

RD4/PSP4 27 30 2 I/O st/ttl!3>

RD5/PSP5 28 31 3 I/O ST/TTL*3'

RD6/PSP6 29 32 4 I/O ST/TTL*3'

RD7/PSP7 30 33 5 I/O STArTL'3'
PORTE is a bi-directional I/O port.

RE0/RD7AN5 8 9 25 I/O ST/TTL<3> RE0 can also be read control for the parallel slave port, or
analog input5.

RE1/WR/AN6 9 10 26 I/O ST/TTL*3> RE1 can also be write control for the parallel slave port, or
analog inputs.

RE2/CS/AN7 10 11 27 I/O ST/TTL<3> RE2 can also be select control for the parallel slave port,
or analog input7.

VSS 12,31 13,34 6,29 p —

Ground reference for logic and I/O pins.

VDD 11,32 12,35 7,28 p —
Positivesupply for logicand I/O pins.

NC

"

1,17,28,
40

12,13,
33,34

— Thesepins are notinternally connected. Thesepinsshould be
left unconnected.

O=output I/O = input/output P = power
—= Not used TTL = TTL input ST=Schmitt Trigger input

isa Schmitt Trigger input when configured as an external interrupt,
isa Schmitt Trigger input when used in serial programming mode.
is aSchmitt Trigger input when configured asgeneral purpose I/O and aTTL input when used in the Parallel Stave
(for interfacing toa microprocessor bus),
is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

Legend: I = input

Note 1: This buffer

2: This buffer
3: This buffer

Port mode

4: This buffer

© 1999 MicrochipTechnology Inc.
DS30292B-page 9



PIC16F87X Appendix D

NOTES.

DS30292B-page 10 © 1999 Microchip Technology Inc.



2.0 MEMORY ORGANIZATION
There are three memory blocks in each of these
PICmicro MCUs. The Program Memory and Data
Memory have separate buses so that concurrent
access can occur and is detailed in this section. The
EEPROM data memory block is detailed in
Section 4.0.

Additional information on device memory may be found
in the PICmicro™ Mid-Range Reference Manual,
(DS33023).

2.1 Program Memory Organization

The PIC16F87X devices have a 13-bit program counter
capable of addressing an 8K x 14 program memory
space. The PIC16F877/876 devices have 8K x 14
words ofFLASH program memory andthePIC16F873/
874 devices have 4K x 14. Accessing a location above
the physically implemented address will cause a wrap
around.

The reset vector is at OOOQh and the interrupt vector is
at 0004h.

FIGURE 2-1: PIC16F877/876 PROGRAM
MEMORY MAP AND STACK

PC<12:0>

CALL, RETURN

RETFIE, RETLW

13

=5*

On-Chlp

Program

Memory

Stack Level 1

Stack Level 2

Stack Level 8

Reset vector

Interrupt Vector

PageO

Pagel

Page2

Page 3

© 1999 Microchip Technology Inc.

000oh

0004h

0005h

07FFh

0800h

OFFFh

lOOOh

17FFh

isooh

IFFFh

PIC16F87X

FIGURE 2-2: PIC16F874/873 PROGRAM
MEMORY MAP AND STACK

PC<12:0>

CALL, RETURN

RETFIE, RETLW

On-Chip

Program -^
Memory

Stack Level 1

Stack Level 2

Stack Level 8

Reset Vector

Interrupt vector

PageO

ooo oh

K3=

0004h

0005h

07FFh

OBOOh

OFFFh

lOOOh

IFFFh

DS30292B-page 11



PIC16F87X

2.2 Data Memory Organization

The data memory is partitioned into multiple banks
which contain the General Purpose Registers and the
Special Function Registers. BitsRP1(STATUS<6>) and
RPO (STATUS<5>) are the bank select bits.

RP1:RP0 Bank

00 0

01 1

10 2

11 3

Each bank extends up to 7Fh (128 bytes). The lower
locations of each bank are reserved for the Special
Function Registers.Above the Special Function Regis
ters are General Purpose Registers, implemented as
static RAM. All implemented banks contain Special
Function Registers. Some "high use" Special Function
Registers from one bank may be mirrored in another
bank for code reduction and quicker access.

Note: EEPROMData Memorydescription can be
found in Section 4.0 of this Data Sheet

2.2.1 GENERAL PURPOSE REGISTER FILE

Theregister file can beaccessed either directly, or indi
rectly throughthe FileSelect Register FSR.

DS30292B-page 12

Appendix D

© 1999 Microchip Technology Inc.



FIGURE 2-3: PIC16F877/876 REGISTER FILE MAP

Indirectaddr.**1
TMRO

PCL

STATUS

FSR

PORTA

PORTB

PORTC

PORTD m

PORTE <1>

PCLATH

INTCON

PIR1

PIR2

TMR1L

TMR1H

T1CON

TMR2

T2CON

SSPBUF

SSPCON

CCPR1L

CCPR1H

CCP1CON

RCSTA

TXREG

RCREG

CCPR2L

CCPR2H

CCP2CON

ADRESH

ADCONO

General
Purpose
Register

96 Bytes

BankO

OOh

01h

02h

03h

04h

05b

06h

07h

08h

09h

OAh

OBh

OCh

ODh

OEh

OFh

10h

11h

12h

13h

14h

15h

16h

l7h

18h

19h

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

20h

7Fh

Indirect addr.^

OPTION REG

PCL

STATUS

FSR

TRISA

TRISB

TRISC

TRISD <1>

TRISE<1>

PCLATH

INTCON

PIE1

PIE2

PCON

SSPCON2

PR2

SSPADD

SSPSTAT

TXSTA

SPBRG

ADRESL

ADCON1

General
Purpose
Register
80 Bytes

accesses

70h-7Fh

Bankl

80h

81h

82h

83h

84h

85h

86h

87h

88h

89h

8Ah

8Bh

8Ch

8Dh

8Eh

8Fh

90h

91 h

92h

93h

94h

95h

96h

97h

98h

99h

9Ah

9Bh

9Ch

9Dh

9Eh

9Fh

AOh

EFh

FOh

FFh

Indirect addr.^

TMRG

PCL

STATUS

FSR

PORTB

PCLATH

INTCON

EEDATA

EEADR

EEDATH

EEADRH

General
Purpose
Register
16 Bytes

General
Purpose
Register
80 Bytes

accesses

70h-7Fh

Bank 2

Unimplemented data memory locations, read as '0'.
* Not a physical register.

Note 1: These registers are notimplemented on 28-pin devices.
2: These registers are reserved, maintain these registers clear.

© 1999 MicrochipTechnology Inc.

100h

101h

102h

103h

104h

105h

106h

107h

108h

109h

10Ah

10Bh

10Ch

10Dh

10Eh

10Fh

110h

111h

112h

113h

114h

115h

116h

117h

118h

119h

11 Ah

11Bh

11Ch

11Dh

11Eh

11Fh

120h

16Fh

170h

17Fh

PIC16F87X

File
Address

Indirect addr.'**
OPTION REG

PCL

STATUS

FSR

TRISB

PCLATH

INTCON

EECON1

EECON2

Reserved'2*

Reserved*2'

General
Purpose
Register
16 Bytes

General
Purpose
Register
80 Bytes

accesses

70h -7Fh

Bank 3

180h

181h

182h

183h

184h

185h

186h

187h

188h

189h

18Ah

18Bh

18Ch

18Dh

18Eh

18Fh

190h

191h

192h

193h

194h

195h

196h

197h

198h

199h

19Ah

19Bh

19Ch

19Dh

19Eh

19Fh

1A0h

1EFh

1F0h

1FFh

DS30292B-page 13



PIC16F87X
Appendix D

FIGURE 2-4: PIC16 F874/873

OOh

01h

02h

03h

04h

05h

06h

07h

08h

09h

OAh

OBh

OCh

ODh

OEh

OFh

10h

11h

12h

13h

14h

15h

16h

17h

18h

19h

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

20h

7Fh

REGISTER Fl LEMAP

80h

81b

82h

83h

84h

85h

86h

87h

88h

89h

8Ah

8Bh

8Ch

8Dh

8Eh

8Fh

90h

91 h

92h

93h

94h

95h

96h

97h

98h

99h

9Ah

9Bh

9Ch

9Dh

9Eh

9Fh

AOh

. FFh

100h

101h

102h

103h

104h

105h

106h

107h

108h

109h

10Ah

10Bh

10Ch

10Dh

10Eh

10Fh

110h

120h

16Fh

170h

17Fh

A
File

ddress

180h

181h

182h

183h

184h

185h

186h

187h

188h

189h

18Ah

18Bh

18Ch

18Dh

Indirect addr.tt Indirect addr.*** Indirectaddr.'*' Indirectaddr.***

TMRO OPTION REG TMRO OPTION REG

PCL PCL PCL PCL

STATUS STATUS STATUS STATUS

FSR FSR FSR FSR

PORTA TRISA

PORTB TRISB PORTB TRISB

PORTC TRISC

PORTD l1> TRISD <1>

PORTE i1' TRISE'1>

PCLATH PCLATH PCLATH PCLATH

INTCON INTCON INTCON INTCON

PIR1 P1E1 EEDATA EECON1

PIR2 PIE2 EEADR EECON2

TMR1L PCON EEDATH Reserved® 18Eh

TMR1H EEADRH Reserved*2' 18Fh

T1CON
190h

TMR2 SSPCON2

T2CON PR2

SSPBUF SSPADD

SSPCON SSPSTAT

CCPR1L

CCPR1H

CCP1CON

RCSTA TXSTA

TXREG SPBRG

RCREG

CCPR2L

CCPR2H

CCP2CON

ADRESH ADRESL

ADCONO ADCON1 1A0h

General
Purpose
Register

96 Bytes

General
Purpose
Register

96 Bytes

accesses

20h-7Fh

accesses

AOh - FFh

1EFh

1F0h

1FFh

Bankl Bank 2BankO

Untmplemented datamemory locations, read as '0'.
* Not a physical register.

Note 1: These registers are not implemented on28-pin devices.
2: These registers are reserved, maintain theseregisters clear.

DS30292B-page 14
© 1999 MicrochipTechnology Inc.



• Meet or Exceed TIA/EIA-232-F and ITU
Recommendation V.28

• Operate With Single 5-VPower Supply
• Operate Up to 120 kbit/s

• Two Drivers and Two Receivers

• +30-V Input Levels

• Low Supply Current... 8 mA Typical
• Designed to be InterchangeableWith

Maxim MAX232

• ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)

• Applications
TIA/EIA-232-F

Battery-powered Systems
Terminals

Modems

Computers

MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047I - FEBRUARY 1969 - REVISED OCTOBER2002

MAX232 ... D, DW, N, OR NS PACKAGE
MAX232I... D, DW, OR N PACKAGE

(TOP VIEW)

]VCC
]GND
]T10UT
jRUN
]R10UT
]T11N
JT2IN
] R20UT

description/ordering information

The MAX232 isa dual driver/receiver that includes a capacitive voltage generator tosupply EIA-232 voltage
levels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V TTL/CMOS levels. These
receivers have atypical threshold of 1.3 Vand atypical hysteresis of 0.5 V, and can accept±30-V inputs. Each
driver converts TTL/CMOS input levels into EIA-232 levels. The driver, receiver, and voltage-generator
functions are available as cells inthe TexasInstruments LinASIC™ library.

ORDERING INFORMATION

TA PACKAGEt
ORDERABLE

PART NUMBER

TOP-SIDE

MARKING

0DCto70°C

PDIP (N) Tube MAX232N MAX232N

SOIC (D)
Tube MAX232D

MAX232
Tape and reel MAX232DR

SOIC (DW)
Tube MAX232DW

MAX232
Tape and reel MAX232DWR

SOP (NS) Tape and reel MAX232NSR MAX232

-40°Cto85°C

PDIP (N) Tube MAX232IN MAX232IN

SOIC (D)
Tube MAX232ID

MAX232I
Tape and reel MAX232IDR

SOIC (DW)
Tube MAX232IDW

MAX232I
Tape and reel MAX232IDWR

t Packaae drawinas , standard packi ng quantities, thermal data, symbolization, and PCB design

guidelines are available at www.ti.com/sc/package.

Please be aware thai an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at theend ofthis datasheet.A

LinASIC is a trademark of Texas Instruments.
Copyright ©2002,TexasInstruments Incorporated

PRODUCTION DATA intonation it current at of nUMwHon dak.
Products conform tospecHfcaflcm pertheterms olTewsInstruments
standard warranty. Production processing does notnecessarily mdude ^r Texas

Instruments
POST OFFICE BOX 6553D3 • DALLAS.TEXAS 75265



lX232, MAX232I
AL EIA-232 DRIVERS/RECEIVERS

10471 - FEBRUARY 1989 - REVISEDOCTOBER2002

jic diagram (positive logic)

T1IN
11

Function Tables

EACH DRIVER

INPUT

TIN

OUTPUT

TOUT

L

H

H

L

H = high level, L = low
level

EACH RECEIVER

INPUT

RIN

OUTPUT

ROUT

L

H

H

L

H = high level, L = low
level

T2IN
10

•o4

R10UT
12

R20UT

14
TIOUT

T20UT

13
R1IN

R2IN

^ Texas
Instruments

POST OFFICEBOX655303 • DALLAS, TEXAS 75265

Appendix E



MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047I- FEBRUARY 1989-REVISED OCTOBER 20Q2

absolute maximum ratings over operating free-air temperature range (unless otherwise notedjt
Input supply voltage range, Vcc (see Note 1) -0-3 Vto 6V
Positive output supply voltage range, Vs+ Vcc - 0.3 Vto 15 V
Negative output supply voltage range, Vs_ ~0-3 Vto -15V
Input voltage range, V|: Driver -0.3Vto Vcc +0.3 V

Receiver ±30v
Output voltage range, V0:T1 OUT, T20UT V^-0.3 Vto VS+ +0.3V

R10UT, R20UT -0.3 Vto VCc + 0-3 V
Short-circuit duration: T10UT, T20UT ^"SiS
Package thermal impedance, 8JA (see Note 2): Dpackage 73°C/W

DW package 57°C/W
Npackage 67°C/W
NS package 64°C/W

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds --•-• 260°C
Storage temperature range, Tstg • "65°c to 150°c

t Stresses beyond those listed under"absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device atthese or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage valuesare with respecttonetwork ground terminal.
2. The package thermal impedance iscalculated in accordance with JESO 51-7.

recommended operating conditions ^___

vcc Supply voltage

V|H High-level input voltage (T1INT2IN)

V|L Low-level input voltage (T1IN, T2IN)

R1IN, R2IN Receiver input voltage

TA Operating free-air temperature
MAX232

MAX232I

MIN NOM MAX

4.5 5.5

0.8

±30

70

-40 85

UNIT

V

°c

electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 3 and Figure 4)

PARAMETER

'CC Supply current

TEST CONDITIONS

VCC = 5.5 V,
Ta = 25°C

All outputs open,

$Ali typical values are at Vcc - 5 Vand Ta - 25°C.
NOTE 3: Testconditionsare C1-C4 = 1 ijF at Vcc = 5 V± 0.5 V

^ Texas
Instruments

POST OFFICE BOX655303 • DALLAS. TEXAS 75265

MIN TYP* MAX UNIT

10 mA



LX232, MAX232I
IAL EIA-232 DRIVERS/RECEIVERS

J047I - FEBRUARY 1989- REVISED OCTOBER 2002

Appendix E

DRIVER SECTION

ctrical characteristics over recommended ranges of supply voltage and operating free-air
nperature range (see Note 3)

PARAMETER

!H High-level outputvoltage

iL Low-level output voltage*
Output resistance

3§ Short-circuit output current
Short-circuit input current

TEST CONDITIONS

T10UT.T20UT RL= 3kfltoGND

T10UT,T20UT RL= 3kfltoGND

T10UT, T20UT VS+= VS- ~ °- Vp = ±2 V
T10UTT20UT VCC = 5.5 V, Vp = 0

T1IN.T2IN V|-0

MIN TYpt MAX UNIT

-7

300 a

±10 mA

200 uA

Itypical valuesare at Vcc = 5V.Ta =25°C. ...._._,*,..* i •„ „nle algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage
vels only.
at more than one outputshould be shorted at a time.
TE3: Testconditionsare C1-C4 - 1 uF at Vcc = 5 V± 0.5 V.

ritching characteristics, VCc =5V, TA =25°C (see Note 3)
PARAMETER

* Driver slew rate

t(t) Driver transition region slewrate

Data rate

TEST CONDITIONS

RL = 3 kil to 7 kO,
See Figure 2

See Figure 3

One TOUT switching

MIN TYP MAX UNIT

30 V/us

V/us

120 kbit/s

TE3: Testconditions are C1-C4 = 1 u.F at Vcc = 5 V±0.5 V.

RECEIVER SECTION

metrical characteristics over recommended ranges of supply voltage and operating free-air
mperature range (see Note 3)

PARAMETER

3H High-level outputvoltage

3L Low-level output voltage*
Receiver positive-goinginput

T+ threshold voltage
Receiver negative-going input

T_ threshold voltage

^vs Input hysteresis voltage
Receiver input resistance

R10UT, R20UT

R10UT, R20UT

R1IN, R2IN

R1IN.R2IN

R1IN, R2IN

R1IN.R2IN

TEST CONDITIONS MIN TYPT MAX UNIT

l0H=-1mA 3.5

Iql - 3.2 mA 0.4

VCC = 5V, Ta = 25°C 1.7 2.4

VCC= 5V, TA= 25°C 0.8 1.2

VCC = 5V

VCC = 5. TA= 25°C

0.2 0.5

kii

ill typical values are at Vcc-5 V,Ta = 25°C. , - .._- JA u .* i • u.™he algebraic convention, in which the least positive (most negative) value is designated minimum, is used in the data sheet for logic voltage
jvels only.
)TE 3: Test conditions are C1-C4 = 1 uF at Vcc = 5 V ± 0.5 V.

Pitching characteristics, Vcc=5V, TA =25°C (see Note 3and Figure 1)
PARAMETER

>LH(R> Receiver propagation delay time, low- tohigh-level output
»HL{R) Receiver propagation delay time, high- to low-tevel output
)TE3: Testconditions are C1-C4 = 1 |iF at Vcc = 5 V± 0.5 V.

^r Texas
Instruments

POSTOFFICE BOX 655303• DALLAS, TEXAS 75265

TYP UNIT

500 ns

500 ns



MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047I-FEBRUARY 1989 - REVISED OCTOBER 2002

PARAMETER MEASUREMENT INFORMATION

Pulse
Generator

(see Note A)

Input

Output

vCc

R1IN

or

R2IN

R10UT

or

R20UTps
Rl.sl.3kQ

See Note C

10%

-T*

CL=50PF
_L (see Note B)

TEST CIRCUIT

<10rts -*\ K- —•I k-<10ns

| 5^90% 90%^

W— 500 ns

tpHL-l* H \*—H—tpLH

1.5v\ 1.5 V if
WAVEFORMS

3V

0V

Vqh

vol

NOTES: A. The pulse generator has the following characteristics: Zrj =50 Q, duty cycle <, 50%.
B. C|_ includes probe andjigcapacitance.
C. Alldiodes are 1N3064 or equivalent.

Figure 1.Receiver Test Circuit and Waveforms for tpm_ and tPLH Measurements

^ Texas
Instruments

POST OFFICEBOX655303 • DALLAS, TEXAS 75265



0(232, MAX232I
IAL EIA-232 DRIVERS/RECEIVERS

30471- FEBRUARY 1989 - REVISED OCTOBER 2002

PARAMETER MEASUREMENT INFORMATION

T1IN or T21N r^ T10UT or T20UT

Appendix E

Pulse
Generator

(see Note A) 0=
EIA-232 Output

Rl
CL * 10 pF
(see Note B)

TEST CIRCUIT

^10 ns —r>! k— <10ns

Input
10%

90% 90%
50% 50% iil°2L

— 3V

— 0V

5us

tPHL H H
\* H tPLH

Output

90%

.10% 10%

90%

£
-•I i*~ *tlh

VOH

Vol

tTHL"^ *~

H-LH ^HL
WAVEFORMS

)TES: A. The pulse generator hasthe following characteristics: Zrj=50Si, duty cycle <, 50%.
B. Ci_ includes probe and jigcapacitance.

Figure 2.Driver Test Circuit and Waveforms for tpHi_ andtPLH Measurements (5-ns Input)

>
Pulse

Generator
(see Note A)

EIA-232 Output

3kH Cl = 2.5 nF

510 ns

Input

Output

TEST CIRCUIT

—r>i k— <10ns

90% 90%

10%J2T1'5V 15VX10%
M 20 US M

3V

-3v\ =3£X_
SR =

6 V

*THL or *TLH

3V

WAVEFORMS

)TEA: Thepulse generator hasthefollowing characteristics: Zq =50 Q, duty cycle <50%.

V0H

vol

Figure 3.Test Circuit andWaveforms fortTHL andtxLH Measurements (20-|xs Input)

^r Texas
Instruments

POST OFFICE BOX655303 • DALLAS, TEXAS75265



Cbypass =1 ^F

MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047I - FEBRUARY 1989 - REVISED OCTOBER 2002

APPLICATION INFORMATION

5V

16

1
VCC

C3t ^ 1̂

CI
-n

1uF 3
C1t

C1-

C2+

C2-

VS*

Vg-

-»>8.5V

-t>-8.5V

C2 ^ 1 uF 5 ^ 1u.F
c*l

From CMOS or TTL

To CMOS or TTL

t C3 can be connectedto Vcc or GND-

OV

I 15
GND

14

JT
13

JT

Figure 4. Typical Operating Circuit

^ Texas
Instruments

POST OFFICE BOX 655303 • DALLAS,TEXAS 75265

EIA-232 Output

EIA-232 Output

EIA-232 Input

EIA-232 Input



Appendix E

IMPORTANT NOTICE

TexasInstruments Incorporated and its subsidiaries (Tl) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latestrelevant information before placing
orders and should verifythat such information is current and complete. All products are sold subject to Tl's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent Tl
deemsnecessary tosupport this warranty. Except where mandated bygovernment requirements, testing ofall
parameters of each product is not necessarily performed.

Tlassumes no liability forapplications assistance or customerproduct design.Customersare responsible for
their products and applications using Tl components. Tominimize the risks associated withcustomer products
and applications, customers should provide adequate design and operating safeguards.

Tldoes notwarrantor represent that any license,eitherexpress or implied, isgranted underanyTlpatent right,
copyright, mask workright, or otherTI intellectualpropertyrightrelatingto any combination,machine.or process
inwhich Tlproducts orservicesare used. Information published byTlregarding third-party productsorservices
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use ofsuch information may requirea licensefrom a third partyunderthe patents or other intellectual property
of the third party,or a license from Tl under the patents or other intellectualproperty of Tl.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by ail associated warranties, conditions, limitations, and notices. Reproduction
ofthis information withalteration is an unfairand deceptive business practice. Tl is not responsible or liablefor
such altered documentation.

ResaleofTlproducts orserviceswith statementsdifferent from or beyond the parameters stated byTl forthat
product or service voids all expressand any implied warranties forthe associated Tl product or service and
is an unfairand deceptive business practice.Tl is not responsibleor liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright © 2002, Texas Instruments incorporated



APPENDIX F

SERVO CONTROLLER C PROGRAM

//Servo program

#include <16f877 h> //Standard Include for 16F877 Chip
tffuses HS,NOPROTECT,NOWDT!NOBROWNOUT,NOLVP
#nsedelay(clock=4000000) //Delay clock is 4Mhz*U!tC ww,^ ^ //port a _s HFJ]e Address 05H« ]n »Bank 0"

//Port Bis"File Address 06H" in"Bank 0"
//PortC is"File Address 07H" in"Bank 0"

ffoyte rv* i" - « //Port Dis "File Address 08Hn fa "Bank °"
^define ALL OUT 0 //Constant toset data direction register tooutput
#define ALLJN OxFF //Constant to set data direction reg.ster to input
int servO,servl Jserv2!serv3Jserv4,serv5Jseiv6Jserv7,serv8,serv9; //Set integer

#bytePORTA=5
#bytePORTB =6
#bytePORTC = 7
#bytePORTD=8

void updateO
{
int ser,pos;
ser=PORTC;
pos=PORTA;
it(ser=0){servO=pos;}
else if{ser=l){servl=pos;}
else if(ser=2){serv2=pos;}
else if(ser=3){serv3=pos;}
else if(ser=4){serv4=pos;j
elseif(ser=5){serv5=pos;}
else ifi>er=6){serv6=pos;}
else ii(sei=7){serv7=T>os;}
else irTser=8){serv8=DOs;}
else if(ser=9){serv9=pos;}
}

mainO {

intdell,del2;

setjris_A(ALLJN);
set_tris_C(ALLJN);
set_tris_B(ALL_OUT);
setjris_D(ALL_OUT);

delay_ms(10);
//initialize servo centerposition
serv0=37;

servl=37;
serv2=37;
serv3=37;
serv4=37;
serv5=37;
serv6=37;
serv7=27;
serv8=37;
serves?;
delay_ms(10);

do{

//Update function

//Setservo andposition as integer
//Read data from PORTC and determine servo
//Read datafrom PORT Aforposition
//Select servo 0if0and put position value in servO
//Select servo 1if1and put position value in serv1
//Select servo 2if2and put position value in serv2
//Select servo 3if3and put position value in serv3
//Select servo 4if4 and put position value inserv4
//Select servo 5if5and put position value inservS
//Select servo 6if6and put position value in serv6
//Select servo 7 if7and put position value inserv7
//Select servo 8if8and put position value in serv8
//Select servo 9if9and put position value in serv9

//Set integer delay 1and delay 2

//Setallbits(byte) inPortAto input
//Setallbits(byte) inPort C to input
//Setallbits(byte) in PortB to output
//Setallbits(byte) in PortDto output

//Default center position for servo 0
//Default center position forservo 1
//Default center position for servo 2
//Default centerposition forservo 3
//Default centerposition forservo4
//Default center position forservo 5
//Default center position forservo 6
//Default center position forservo 7
//Default centerposition forservo8
//Default center position for servo 9

//pulse width modulation generator

//servo 0

updateO;
dell=serv0*4;
del2=255-dell;

PORTB=0x80;
PORTD=0x00;
delay_us(980);

//Goto Update function
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)

//Output to servo 0 atRB7
//No outputat PORTD
//Minimum pulse width of 0.98ms

40



delay_us(dell);
delay_us(dell);
delay_us(dell);
delay_us(dell);

PORTB=OxOO;
PORTD=OxOO;
delay_us(del2);
delay_us(del2);
delay_us(del2);
delay_us(de!2);

//servo 1

updateO;
dell=servl*4;
del2=255-dell;
PORTB=0x40;
PORTTX)x00;
delay_us(980);
delay_us(dell);
delay_us(dell);
delay_us(dell);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay_us(dei2);
delay_us(del2);
delay_us(del2);

//servo 2

updateO;
dell=serv2*4;
del2=255-dell;

PORTB=0x20;
PORTD=0x00;
delay_us(980);
delayjis(dell);
delay_us(dell);
delay_us(dell);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay_us(de!2);
delay_us(del2);
delayj*s(del2);

//servo 3

updateO;
dell=serv3»4;
del2=255-dell;

PORTB=0xl0;
PORTD=0x00;
delay_us(980);
delay_us(dell);
delay_us(dell);
delayjus(dell);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay„us(del2);
delay_us(del2);
delay_us(de!2);

//servo 4
update();
dell=serv4*4;
del2=255-dell;

//Use Delay 1todelay thepulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//No outputto servo0
//Nooutput at PORT D
//Use Delay 2 todelay for 0amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2todelay for 0 amplitude
//Use Delay 2todelay for 0 amplitude

//Goto Update function
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)
//Output to servo 1 atRB6
//Nooutputat PORT D
//Minimum pulse width of 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//Nooutputto servo 1
//No outputat PORTD
//Use Delay 2 todelay for 0 amplitude
//Use Delay 2todelay for 0 amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2todelay for 0 amplitude

//Goto Update fiinction
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)

//Output toservo 2 atRB5
//Nooutputat PORT D
//Minimum pulse width of 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//Nooutputto servo2
//Nooutputat PORT D
//Use Delay 2todelay for 0 amplitude
//Use Delay 2todelay for 0 amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2todelay for 0amplitude

//Goto Update function
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)

//Output to servo3 atRB4
//Nooutputat PORT D
//Minimum pulsewidthof 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//Nooutputto servo 3
//Nooutputat PORT D
//Use Delay 2todelay for 0 amplitude
//Use Delay 2 todelay for 0 amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2todelay for 0 amplitude

//Goto Update function
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)

41



PORTB=0x08;
PORTT>OxOO;

delay_us(980);
delay_us(dell);
delay_us(dell);
delay_us(dell);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;

delay_us(del2);
delay_us(del2);
delay_us(del2);
delayjis(del2);

//servo 5

updateO;
dell=serv5*4;
del2=255-dell;
PORTB=0x04;
PORTD=0x00;

delay_jis(980);
delay_us(dell);
delay_us(dell);
delay_us(dell);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay_us(del2);
delay_us(del2);
delay_us(del2);

//servo 6
update();
dell=serv6*4;
del2=255-dell;

PORTBH3x02;
PORTD=0x00;
delay_us(980);
delay_us(dell);
delay_us(dell);
delay_us(dell);
delay_us(dell);

PORTB=OxOO;
PORTDKtxOO;
delay_us(del2);
delay_us(del2);
delay_us(del2);
delay_us(del2);

//servo 7

updateO;
dell=serv7*4;
del2=255-dell;

PORTB=0x01;
PORTD=0x00;
delay_us(980);
delay_us(dell);
delay_us(dell);
delay_us(dell);
delay__us(de!l);

PORTB=0x00;
PORTD=0x00;
delay_us(del2);
delay_us(del2);
delay_us(del2);
delay_us(del2);

//Output toservo 4 atRB3
//No output at PORT D
//Minimum pulsewidth of 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//Nooutputto servo 4
//Nooutput at PORT D
//Use Delay 2todelay for 0 amplitude
//Use Delay 2todelay for 0amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2todelay for 0 amplitude

//Goto Update function
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)
//Output to servo 5 atRB2
//No outputat PORTD

//Minimum pulse width of 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//No outputto servo5
//No outputat PORTD
/AJse Delay 2 todelay for 0 amplitude
//Use Delay 2todelay for 0amplitude
//Use Delay 2 todelay for 0 amplitude
//Use Delay 2todelay for 0amplitude

//Goto Update function
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)

//Output toservo 6 atRB1
//Nooutput at PORT D
//Minimum pulse width of0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//Nooutput to servo 6
//No outputat PORTD
//Use Delay 2todelay for 0 amplitude
//Use Delay 2todelay for 0amplitude
//Use Delay 2 todelay for 0 amplitude
//Use Delay 2 todelay for 0amplitude

//Goto Updatefunction
//Delay 1value (pulse duration delay)
//Delay 2 value (delay for neutral)

//Output to servo 7 atRBO
//No outputat PORTD
//Minimum pulse widthof 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//No outputto servo7
//No outputat PORTD
//Use Delay 2 todelay for 0 amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2 todelay for 0 amplitude
//Use Delay 2 todelay for 0amplitude

42



//servo 8

updateO;
dell=serv8*4;
del2=255-dell;

PORTB=0x00;
PORTD=0x80;
delay_us(980);
delay_us(dell);
delay_us(dell);
delay_us(dell);
delayjus(dell);

PORTB=0x00;
PORTD=Ox00;

delay_us(del2);
delay_us(del2);
delay_us(del2);
delay_us(del2);

//servo 9

updateO;
dell=serv9*4;
del2=255-dell;

PORTB=0x00;
PORTD=0x40;
delay_us(980);
delay_us(dell);
delay__us(dell);
delay_us(dell);
delay_us(dell);

PORTB=0x00;
PORTD=0x00;
delay_us(de!2);
delay_us(del2);
delay_us(de!2);
delay_us(del2);

} while(TRUE);

)

//Goto Updatefunction
//Delay 1value (pulse duration delay)
//Delay 2value (delay for neutral)

//No outputat PORTB
//Output toservo 8 at RD7
//Minimum pulse width of 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//NooutputatPORTB
//No outputto servo8
//Use Delay 2 todelay for 0 amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2todelay for 0amplitude
//Use Delay 2todelay for 0 amplitude

//Goto Update function
//Delay 1value (pulse duration delay)
//Delay 2 value (delay for neutral)

//No outputat PORTB
//Output toservo 0 atRD6
//Minimum pulsewidth of 0.98ms
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width
//Use Delay 1todelay the pulse width

//Nooutputat PORTB
//Nooutputto servo 9
//Use Delay 2 todelay for 0amplitude
//Use Delay 2 todelay for 0amplitude
//Use Delay 2todelay for 0amplitude
//Use Delay 2todelay for 0amplitude

//Endless routines (non stopoperation)

43



APPENDIX G

WALKING CONTROLLER C PROGRAM

//Walking program

#include <16f877.h> //Standard Include for 16F877 Chip#S7HSrSROTECT,NOWDT,NOBROWNOUT,NOLVP
#usedelay(clock=8000000) /fDd^ao^f^zlK t „»*„<,
#use rs232(baud=9600, xmit=PTN_AO, nw-PINjM) "Srt5»®» . _.
#hvte PORTB - 6 Wort Bis "File Address 06H" m"Bank 0
#bvte PORTO =8 //Port Dis "File Address 08H" in "Bank 0"
EneALLOUTO //Constant to set data direction register to outputS£^i^WP //Constanttosetdatadirectionregistertomput
//Set integer for servos output variables for position (level)
intser0,serl,ser2,ser3,ser4,ser5,ser6,ser7,ser8,ser9;

//Set adjusted servo center position (6 bits, 0-63 level ^^,^fj*».37)

//put values onto buses/transmit toservo controller ..^
void output(int serv,int posi) //Output function for variables servo and position

PORTD=serv; //PORTD output isservo selection
PORTB=posi; //PORTB output is servo position
delay_ms(2);' //Delay for 2ms

>

//put default value to servo registers/stand straight

void resetO //Reset function for defau,t center Position
la0=seXi. //Servo 0center position is 37 (from default set values)
serl=sci' //Servo 0center position is 37
ser2=sc2: //Servo ° center Position is 37
ser3=sc3- //Servo 0center position is 37
getf-w*- //Servo 0center position is 27
ser5=sc5: //Serv0 ° center P0^0"is 37
ser6=sc6: //Serv0 ° Mnter P°sition is 37ser7=sc7' //Servo 0center position is 37
ser8=sc8: //Servo ° center Position is37
ser9=sc9; //Servo 0center position is 37
}

//calls the routine which send data/servos move as registers value
//update one servo at atime with 2ms gap between each (at output function)

voidsendO //Send function

iltn„tfn «*rv //Call output function (put position value for servo 0)
2i Sh • //Call output function (put position value for servo 1)
S'Siv //Call output function (put position value for servo 2

nStserfV //Call output function (put position value for servo 3)
™2 4Sv //Call output function (put position value for servo 4
»SsSv //Call output function (put position value for servo 5)
°2K //Call output function (put position value for servo 6)
«2?Sv //Call output fonction (put position value for servo 7)
2S^iv //Call output function (put position value for servo 8
out?ut(9,ser9)l //Ca11 outPut fimction <P* position value f°r SCrV° *
}

//returns thedecimal value from ascii character
//variable value isinput character to be insert by user (number oisteps)

int convertrint value) "variable convert is result
{

Su^lresultM);} //ifinput variable is 0, result is decimal value 0
!rTvIe=T){relult=i;} Minput variable is 1, result is decimal value 1

44



iiYyalue '̂21)(result^;)
if(value='3'){result=3;}
if(value='4'){result=4;}
if(value='5'MresuU=5;}
if(value='6'){result=6;}
if(value='7'){result=7;}
if(value='8'){result^;}
if(value='9'){result=9;}
return result;

}

//position of servo 0,4,5, and 9because position are dependent
//•+'tilt left,'-'tilt right

//ifinput variable is2,result is
//if input variable is3, result is
//ifinput variable is4,result is
//ifinput variable is5,result is
//ifinput variable is6,result is
//if input variable is7, result is
//ifinput variable is8,result is
//ifinput variable is9, result is
//return result as reply

decimal value 2
decimal value 3
decimal value 4
decimal value 5
decimal value 6
decimal value 7
decimal value 8
decimal value 9

voidser0459(int op,int del)

{
iffop='+')

{
serO=serO-del;
ser4=ser4+del;
ser5=ser5+del;
ser9=ser9-del;

}
else ifXop3"-')

{
serO=serO+del;

ser4=ser4-del;
ser5=ser5-del;
ser9=ser9+del;

//ser0459 function for tilt
//set integer op for operation and del for level

//select ifoperation is+ortilttothe left

//decrease current servo 0position bydel level
//increase current servo 4position by del level
//increase current servo 5position bydel level
//decrease current servo 9 position by del level

//select ifoperation is-ortilt tothe left

//increase current servo 0 position bydel level
//decrease current servo 4 position bydel level
//decrease current servo 5position bydel level
//increase current servo 9 position bydel level

!

Lrv8 and servl routines automatically check for values so that the torso and feet are parallel
//this routines will makes the feet horizontally parallel totorsoSa7u^ Routines! Do not manually set ser8 and serl Except for special occasions
void serv80

{
signed pos6,pos7,temp;
pos6=sc6-ser6;
pos7=sc7-ser7;
temp=sc8;
temp=temp+pos7+pos6;
ser8=temp;

}
void servl{)
{
signed pos3,pos2,temp;
pos3=sc3-ser3;
pos2=sc2-ser2;
temp=scl;
temp=temp+pos2+pos3;
serl=temp;

//routine to bendleftleg,nota convention
//'-' to make it shorter,'*' it stretches

voidbleftrintdir)

{
irrdir='-')

{
sero=ser6+l;
ser7=ser7-2;

servSO;

}
else if(dir='+')

{
ser6=ser6-l;
ser7=ser7+2;

servSO;

}
}

//likewise for right leg

//serv8 routine

//signed integer pos6,pos7 and temp
//pos6 is servo 6center position - current position
//pos7 is servo 7center position - current position
//temp isservo 8 center position
//calculatetemp for changes
//servo 8position equal totemp value

//servl routine

//signed integer pos3,pos2 and temp
//pos3 is servo 3center position - current position
//pos2 is servo 2center position - current position
//temp isservo 1center position
//calculatetemp for changes
//servo 1position equal totemp value

//bleft routine for bend toleft and set variable direction

//Select iftoshorten the leg ifvariable input is-ve sign

//increase current servo 6 position by 1 level
//decline current servo7 position by2 level
//Call serv8 routine

//Select iftostretches leg ifvariable input is+ve sign

//decrease current servo 6 position by1level
//increase current servo 6 position by2 level
//Call serv8 routine

45



void bright(int dir)
{
if(dir='-')

{
ser3=ser3-l;
ser2=ser2+2;

servl ();

}
else if(dir='+r)

{
ser3=ser3+l;
ser2=ser2-2;

servlO;
}

\

//'-' to bend,'+' to unbendlegs

void bend(int dir,int dela,int j)

{
inti;
for(i=l;i<^;++i)

{
bleft(dir);
bright(dir);
sendO;
delay_ms(dela);

}

}

if- to tiltright,'+' to tiltleft
void tiltrint dir,int dela,intj)

!
inti;
for(i=l;i<=j;++i)

{
ser0459(dir,l);
sendO;
delay_ms(dela);
>

//bright function for bend to right and set integer direction

//Select iftoshorten leg ifvariable input is- vesign

//decrease current servo 3position by1level
//increase current servo2 position by 1 level
//Call servl routine

//Select iftostretches leg ifvariable input is+ve sign

//increase current servo 3 position by1level
//decline current servo 2 position by1level
//Call servl routine

//bendfunction for legbending
//variable dir(+ve if stretch, -ve ifshorten)
//variable dela for hold time (control speed)
//variable j for magnitude

//set integer i
//do for j times (depend onmagnitude)

//Callbleftroutine andputvariable dir
//Call bright routine and put variable dir
//Call send function
//hold for variable dela ms

//tilt function for tilting process
//variable dir for direction (+ve ifleft, -ve ifright)
//variable delaforholdtime(speed)
//variable j for magnitude

//set integer i
//do for j times (depend on magnitude)

//Call ser0459 routine and use input variable dir
//Call send function
//hold for input variable dela inmillisecond

//walking routine
//walk(speed, number ofsteps, tilt magnitude)

void walk(int del,int steps,int ti)
I
int i;
intk;
//slight forward movement ofupper torso
for(i=l;i<=5;++i)

{
ser6=ser6+l;
ser3=ser3-l;

sendO;
delay_ms(del);
}

Hold current position
sc6=ser6;
sc3=ser3;

//walk routine, setvariable for delay, steps and tilt

//do for 5times (for smooth movement do1by1)

//decrease servo6 position by 1 level
//increase servo 3 position by1level
//Call send function
//holdfor delvariablein millisecond

//new servo 6 center position value
//new servo 3 center positionvalue

//first step, tilt tothe right, left leg steps forward
//START

//tilt toright toput right feet into center ofgravity
tiltf'-' del tiV //canti!tfunction

1 ' ' ;' //insert variable -vesign totilttoright, del and tilt

//bend leftlegtoriseleftfeet forfirststep

46



for (r=H<=12;++i) //do until 12 times(for smooth movement)
bleftCj) //call bleft function and give -ve sign
sen(j(Y ' //call send function
delayjms(del); //hold for variable del value in milliseconds

//stretches back the left leg
//the thigh stretches back for only 2/3 oforigin
//the left shank stretches toorigin and the left leg became straight.
for (i=l i<=8;++i) /ldo wtii 8t>mes(for smooth movement)

ser6=ser6-1 - //decrease servo 6position by 1level
ser7=ser7+3; //increase servo 7position by 3levels
Serv8(); ' //call serv8 routines

//meanwhiletherightlegpushesbackwardtoshifttheentirebodytofront
if(i=ll=3|i==5||i=7) //do *me same time for every 2'

ser3=ser3+l; //increase servo 3position by 1level
servi(); //call servl routines

senavy //call send function
delay ms(del); //hold for variable del in milliseconds
I

//tiltback tocenter with leftfoot kept upfront
tilt! '̂ del,ti); //ca11 tm fun^00 <+ve value t0 tut t0 left)
//tiltto theleft, right legsteps forward
for(k=l;k<-steps;-H-k) //Do until reaches number of steps

//tilt to left toputleft feet into center ofgravity
tiltC+' del tiY //calltiit functionv ' //insert variable+ve sign totiltto left, del and tilt

//stretches backleft leg to normal

for (i=l -i<=4;++i) //do m(a 4^me^foT smooth movement)
ser6=ser6-l; //decrease servo 6position by 1level
serv80- ' //call serv8 routines

//bendrightlegto riserightfeet
brightC-'); //call bright function and give -ve sign
sem](y ' //call send function
delayjns(del); //hold for variable del value in milliseconds
)

//more rise on the right feet
for (i=l i<=8;++i) //do until 8times(for smooth movement)

if(i>0&&i<5) //do for everv count 110 4<0<i<5)
ser3=ser3-l; //decrease servo 3position by 1level

ser3=ser3-l; //decrease servo 3position by 1level
ser2=ser2+l; //increase servo 2position by 1level
servl(); ' //call servl routines
senavy* //call send function
delay 'ms(del); //hold for variable del value in milliseconds
}

//stretches back the right leg
//the thigh stretches back for only 50% oforigin
//the right shank stretches to origin and the right leg became straight.

for (i=li<=8;++i) //do unul 8«nies(for smooth movement)
ser3-ser3+l; //increase servo 3position by 1level
ser2=ser2-2;' //decrease servo 2position by 2level
ssrvlQ; //call servl routines

//left leg pushes backward toshift the entire body tofront
ifr_i=:l||i=3|ji=5||i=7) //do at the same time for every 2interval

ser6=ser6-l; //decrease servo 6position by 1level

47



serv8();

}
sendO;
delay_jns(del);

}

//call serv8 routines

//call send function
//hold forvariable delvalue inmilliseconds

//tilt back tocenter with right foot kept upfront
tilt('-',del,ti); //call tilt function

//tilt tothe right, left leg steps forward

//tilt to right to put right feet into center ofgravity
tiltC-',del,ti);

//stretches back right legto normal
for(i=l;i<=4;++i)

{
ser3=ser3+l;

servlO;

bleft('-');
sendO;
delay ms(del);
}

//more rise on the left feet
for(i=l;i<=8;++i)

i
if(i>0&&i<5)

{
ser6=ser6+l;

}
ser6=ser6+l;
ser7=ser7-l;

serv80;
send();
delay_ms(del);

!

//insert variable -vesign totilt toright, del and tilt

//call tilt function
//insert variable -ve sign to tilttoright, del and tilt

//dountil 4 times(for smooth movement)

//increase servo 3 position by 1 level
//call servl routines

//bend leftlegto riseleftfeet
//call bleftfunction andgive -ve sign
//call send function
//hold forvariable del value inmilliseconds

//dountil 8 times(for smooth movement)

//doforevery count 1to4 (0<i<5)

//increase servo 6 position by 1level

//increase servo 6 position by1level
//decrease servo 7 position by1level
//call serv8 routines
//call send function
//hold forvariable delvalue inmilliseconds

//stretchesback the left leg
//me thigh stretches back for only 50% oforigin
//the left shank stretches to origin and the right leg became straight.

for(i=l;i<=8;++i)
{
ser6=ser6-l;
ser7=ser7+2;

serv8();

//dountil 8 times(for smooth movement)

//decrease servo 6 position by1 level
//increase servo 7 position by2 level
//call serv8 routines

//right leg pushes slightly forward to maintain center of gravity
it?i=l||Mi|i-=51|i=7)

{
ser3=ser3+l;

servl0;
}

sendO;
delay_ms(del);

!

//tiltback tocenter with leftfoot kept upfront
tilt('+',del,ti);

//doat the same timeforevery 2 interval

//increase servo3 position by 1level
//call servl routines

//call send function
//holdforvariable delvaluein milliseconds

//stop routine with left legatfront

//tilt toleft toput left feet into center ofgravity
tiitC+',del,ti);

//stretches back left leg to origin
for(i=l;i<=4;++0

{

//call tilt function
//insert variable +vesign to tiltto left, delandtilt

//call tilt function
//insert variable +ve sign totilttoleft, del and tilt

//dountil 4 times(for smooth movement)

48



ser6=ser6-l;

serv80;

//bend right legto riseright feet
bright('-');
sendO;
delay_ms(del);

}

//more rise on the right feet
for(i=l;i<=4;++i)

{
ser3=ser3-l;

servl0;
send();
delayjms(del);

}

//decrease servo6 position by 1 level
//call serv8 routines

//call bright function and give -ve sign
//call send function
//hold forvariable delvalue in milliseconds

//dountil 4 times(for smooth movement)

//decrease servo 3 position by1level
//call servl routines
//call send function
//hold forvariable delinmilliseconds

//stretchesback the right leg//the right thigh stretches for only 50% of origin but became parallel to left leg
//the left shank stretches to origin and the left leg became straight

for(i=l;i<=4;++i)
{
bright('+');
sendO;
delay_ms(del);
}

//tilt back tocenter with both feet atorigin
tilt('-',del,ti);

//done positioning

for(i=l;i<=5;++i)

//slight backward movement ofupper torso to itorigin
j=s , . //decrease servo 6 position by I level

SertS+1- //increase servo 3position by 1level
ha //Call send function

SayWl); //h°,d fOT ^ Variabie ^mUHseCOnd
S

sc6=ser6;
sc3=ser3;

}

//do until 4 times(for smooth movement)

//call send function
//do atthe same time for every 2 interval

//call tilt function
//insert variable -vesign totilttoright, del and tilt

//dofor5 times(for smooth movement)

//newservo6 centerposition
//new servo 3 center position

49



APPENDIX H

COMPUTER INSTRUCTION C PROGRAM

mainO {

int i,s;
int act;

set tris_B(ALL_OUT)
seftrisJXALZpUT)
set_tris_C(ALL_OUT)
set_tris_E(ALL_OUT)

resetO;
delay_ms(1000);
sendO;
do{
i=0;
s=0;

//ask user to select action
//ifinput is0; the robot will bend the leg
//if input is1; the robot will stretch the leg
//if input is 2; the robot will tilt the leg to the right
//ifinput is3; the robot will tilt the leg to the left
//if input is 4; ask user to enter number ofstep (1-9) for fast walk
//if input is 5; ask user to enter number of step (1-9) for medium walk
//if input is 6; ask user to enter number ofstep (1-9) for slow walk

printfC'NnSelect action:");
do{

}while (actCS&& act !-2' && act H3' && act !-4'&& act !='5'&& act !='6<&& act
i='7'&&act !='8'&&act !='9');

printf("%cV",act);

iftact—'O'KbendC-'̂ O^);}
else if(act='l'){bend('+',90,6);}
elseif(act='2'){tiltC-,,90,5);}
else if(act='3'){tilt('+',90,5);}
else if(act^='4')

printf("\nFast walkV*);
printf("\nNumber ofsteps:");

do{

fwhiMact !='!'&& act K2'&&act !='3'&&act !='4'&&act !='5'&&act
!="6'&&act !=7'&&act H'8'&&act !='9');
printfT%c\r",s);
s=convert(s);
walk(30,s,4);

}
else itXact^'5*)
{
printf("\nMed walkV);
printf("\nNumber ofsteps :");
do{

fwhifeiact Kl'&& act !='2'&&act !='3'&&act N4'&&act H5'&&act
!='6'&&act H7'&& act!='8'&&act !='9');
printfT%c\r",s);
s^^onvertts);
walk(60,s,4);

}
else if(act='6')

printf("\nSlow walk\r");
printf("\nNumber ofsteps:");

50



do{

}while (act !=T&& act !='2'&&act !='3'&&act H'4'&&act !='5'&&act
H6'&&act !='7'&& act K8'&&act !="9');
printf("%c\rn,s);
s=convert(s);
walk(250,s,5);

}
else if(act=,r')!resetO;}
else !send();}
} while(TRUE);
}

51




