
Ball Tracking Robot

by

TANYENGLEE

FINAL YEAR PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

©Copyright JANUARY 2012

ii

Approved by,

~

CERTIFICATION OF APPROVAL

Ball Tracking Robot

By

Tan Yeng Lee

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

(Mr. Patrick Sebastian)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2012

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

TANYENGLEE

iv

ABSTRACT

Ball Tracking Robot is a project covering robotic, computer vision and image

processing, microcontroller, and data communication. It is programmed in such a

way that web camera will detect both ball and robot in the field, analyzing and

determining the position ofthe ball with reference to the robot, where this

information will be transmitted to the microcontroller. Microcontroller will receive

the data and the robot will move towards the location of the ball.

The objective of this project is to apply knowledge learnt in image processing and

microcontroller courses into practical. By using Matlab software, image captured by

webcam will be analyzed and the ball and robot will be detected. Next, vector

between ball and robot will be processed to determine the position of the ball with

reference to the robot. Finally, output data will be transmitted to the microprocessor

to guide the robot towards the ball.

For image processing part, HSI colour detection is applied to differentiate the

targeted colour object from the surrounding. Since we are dealing with vector and

direction, robot head position is vital for precise robot movement. For wireless data

transmission, parallel data radio frequency (RF) wireless transmission model is used

as medium for data to be transmitted from transmitter toreceiver located on the

robot. Microcontroller is programmed in the way that it will response to the data

received and direct the robot to move towards the ball.

v

TABLE OF CONTENTS

Title

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION
1.1 Background of Study
1.2 Problem Statements
1.3 Objective
1.4 Scope of Study

CHAPTER 2 LITERATURE REVIEW
2.1 Circle Detection
2.2 Colour Detection
2.3 Wireless Data Transmission
2.4 Robot Movement Control

CHAPTER 3 METHODOLOGY
3 .1 Matlab Analysis

3 .1.1 Colour Detection
3.1.2 Noise Reduction
3.1.3 Position Identification and Direction Analysis

3.2 Serial Port Data Communication
3.2.1 Serial Port Communication
3.2.2 Serial Port Hardware Connection
3 .2.3 Microcontro!ler Asynchronous Serial Data

Communication

3.3 Microcontroller Programming ·
3.3.1 Asynchronous Serial Data Communication

Configuration
3.3.2 Microcontroller C Language Programming

3.4 Tools
3.5 Project Flow Chart

Pa e

v

Vlll

ix

1
1
2
3
3

4
4
4
5
5

6
6
6
7
7

8
8
9
9

10
10

11

11
12

CHAPTER 4 RESULT AND DISCUSSION 13
4.1 Colour Detection 13
4.2 Vector Identification and Direction Analysis 16
4.3 Real Time Image Capturing 23
4.4 Serial Port Communication Testing 26
4.5 Wired Serial Port Data Transfer 29
4.6 Parallel Data Radio Frequency (RF) Wireless Transmission 31

vi

CHAPTER 5 CONCLUSION AND RECOMMENDATION 33
33
34

5.1 Conclusion
5.2 Recommendation

REFERENCES

APPENDICES
Appendix A
AppendixB
Appendix C
AppendixD
AppendixE

35

36
Serial Port Data Communication Connection 36
HSI Colour Detection Algorithm 37
Vector Identification & Direction Analysis Algorithm 38
PIC Code for Serial I Parallel Data Conversion 41
PIC Code for Motor Response 43

vii

LIST OF FIGURES

Figure Page

1 Serial Port Diagram 8

2 Receive Status and Control Register (RCSTA) Register 9

3 #use rs232 [option] Command 10

4 HSI Colour Detection Algorithm Output Image 16

5 Noise Reduction Output Image 17

6 Ball and Robot Location Display in Command Windows 19

7 Analysis on Direction of The Ball from The Robot 20

8 Analysis on Position of Robot Head 20

9 Analysis on Direction The Robot Move 22

10 Detected Ball and Robot Output Image 23

11 Vector of Ball from Robot Display in Command Windows 23

12 MATLAB Workspace Data 24

13 MATLAB Image Acquisition Hardware Information 25

14 MA TLAB Video Preview 26

15 Real Time HSI Colour Detection Algorithm Output Image 27

16 Serial Port Configuration 28

17 Serial Port Configuration 29

18 Serial Port Transmit I Receive Testing 30

19 TX9902B RF Transmitter Pin Out 31

20 RX9926 RF Receiver Pin Out 33

21 Transmitter (Serial Port, MAX233, RF Transmitter) Schematic 34

viii

LIST OF TABLES

Table Pa e

1 HSI Colour Detection Algorithm Flow Chart 11

2 Vector Identification and Direction Analysis Flow Chart 15

3 Identification on Head of Robot Flow Chart 18

4 Analysis on Direction The Robot Move Towards The Ball 21

ix

CHAPTER!

INTRODUCTION

1.1 Background of Study

Computer vision and image processing technology is widely used recently

for research and development purposes. An image, such as photograph or video

frame, is analyzed and processed with software to generate output either in image

form or other parameters. For instance, ball tracking robot relies heavily on image

processing to locate the position of ball so that robot is able to move towards it.

Ball tracking robot project can be broken down to two parts. The software

part is about the ball detection using software such as MATLAB, with specific

algorithms designed to locate and track a ball during the process. Based on these

algorithms, the system will accurately distinguish between stationary and moving

objects in a stream of video frames and is able to consistently detect which objects is

the targeted ball and robot. A webcam is placed on top of the field, facing down and

capturing the view of the field. The system should be able to detect both ball and

robot all the time, obtaining the direction for the robot movement precisely, and

transmit signal to move the robot towards the ball. Overall, knowledge of colour

filtering, edge detection, background subtraction is applied.

After analyzing the video frame and locating the position of both the ball and

the robot, instructions are generated in MATLAB to enable to lead the robot towards

the location of the ball. On the other hand, a microcontroller is placed on the robot,

where it is programmed to read and run the program generated by MATLAB. In this

project, we can either use assembly language or C progranuning language to

program the microcontroller, but C progranuning is preferred, as it is easier to

understand and master. After the correct output signals are generated, the signals

will be sent to the robot using wireless connection.

1

1.2 Problem Statements

In sport based competitions, there is need to locate the exact position of the

ball. This is because it is hard for human eye to identifY whether a soccer ball

crosses the goal line, or whether a baseball ball is pitched outside or inside the strike

zone. This leads to researches on implementing computer vision and image

processing in determining the location of the ball, with technology such as hawk eye

technology widely used in tennis games nowadays to calculate the outcome of the

ball landing accurately.

In even advanced category, many algorithms were written and tested to

detect and locate other specific objects, which contributing not only in sports, but

also others fields such as security and manufacturing. Later on, merely object

detection is not sufficient, as people request to have the system analyzing and

responses to the output results. Microcontrollers are brought in to complement with

the image processing, to be able to control the machines or robot to complete certain

tasks depending on the situation. Microcontrollers can be designed in such a way

that they are controlled manually, or automatically based on the data retrieved from

the programs itself. Applications of image processing and robot controlled manually

are bomb disarming robot and emergency rescue robot, while plenty others products

are designed to run automatically, such as ball tracking robot.

For ball tracking robot, challenges faced are problems related to occlusions,

shadows, and real time processing. Existing researches are done in such a way that

the webcam is placed on the robot, which gives user a first person viewpoint;

however in this project, the webcam will be placed on top of the field, just like a live

broadcast viewpoint, where the webcam captures the images continuously, detecting

both the ball and the robot, and lead the robot towards the ball. For robot games, it is

extremely vital for the correct vector calculation between ball and robot, as an error

in analysis will lead to huge different in robot response. This is because all the

decision makings are preprogramming and automated.

2

1.3 Objective

This report studies the methods and algorithms used for ball tracking as well as

locating the robot and calculating the distance between the two objects to achieve

the following objectives:

1. To accurately identify and locate the position of the ball and the robot.

2. To identify the vector between the ball and the robot precisely.

3. To transmit vector data to robot to intercept ball as it moves in target area

1.4 Scope of Study

The scope of the research works is summarized as follows in order to achieve the

objectives within the time frame and funds allocated:

I. The focus of the study is based on Ball Tracking Robot, where moving the

robot towards the ball automatically is prioritized.

2. MA TLAB software is used as the part of the image processing, where

algorithms are designed and tested to detect the ball and the robot.

3. After vector between the ball and the robot is calculated, data is programmed

so that it will be sent to the robot to move towards the ball automatically.

3

2.1 Circle Detection

CHAPTER2

LITERATURE REVIEW

T. Orazio et al. [1] stressed on edge detection to detect and identify the ball from the

video frame. Circle Hough Transform (CHT) is implemented to find circular

patterns of a given radius R within an image. This edge algorithm can be formulated

as convolutions applied to an edge magnitude image Circle detection operator

applied over all the image pixels produces a maximal value when a circle is detected

with a radius in the range [Rmin, Rmax]. Hongying Zhang, et al. [2] used Hough

transform to locate the possible center pixels of the balls. After the center of the ball

is targeted using Hough Transform, the entire ball can be easily computed using

weighted average of the center pixel with its 8-neighbourhood pixels about their

gray world normalization values.

2.2 Colour Detection

Xiao-Feng Tong et al. [3] showed that colour detection is another alternative for ball

detection. Field extraction can be done with HSI (Hue, Saturation, and Intensity)

colour space. Those background sections are set with dark colour. After field region

extraction, region analysis can be done with only the objects in it need to be

considered and examined. A coarse-to-fine search strategy is used to identify a

unique ball as well as the robot. Finally, colour evaluation is applied to get the

objects targeted. Jusoh, R.M [4] captured single frame image every second in RGB

(Red, Green, and Blue) format. Image processing starts with color thresholding

where pixel values below the threshold value will be treated as black colour. Colour

thresholding can easily separate the targeted objects from its background.

4

2.3 Wireless Data Transmission

Manigandan, M et a!. [5] focused on the implementation of a wireless Mobile

Robot control with Object detection based on coordinates and to process the images

using MATLAB. To transfer the data to mobile robot, serial port COM is used for

transferring the data generated from MATLAB based on the position of the detected

object byte by byte. Wireless control eliminates the constraint in distance between

the color object and robot for better tracking from remote location. The serial I

parallel binary data is received from the computer. The data is transferred to the

microcontroller. The receiver receives the transmitted data and is sent to the decoder

IC. The decoder converts the serial data into parallel data and is transmitted to the

microcontroller. The microcontroller drives the motor to perform the function based

on data received.

2.4 Robot Movement Control

Alauddin Al-Omary [6] broke down the step by step instruction on how to control

the robot automatically based on the data programmed in microcontroller. With the

decision made, the robot can move forward, backward, or tum to left or right. The

robot can be programmed to stop in front of the ball automatically when it reached

the location of the ball. PIC 16F and !SF Series are example ofmicrocontrollers that

can be used where we can either program it in assembly language or C programming

language.

5

CHAPTER3

METHODOLOGY

This project can be categorized into three main parts:

1. Matlab Analysis

2. Serial Port Data Communication

3. Microcontroller Programming

3.1 Matlab Analysis

3.1.1 Colour Detection

Colour detection is preferred in this project as colour, when converted to digital

value, can be detected and identified clearly. HSI (Hue, Saturation, Intensity) image

is processed to further highlight the particular colour assigned to both robot and ball.

Compared to RGB (Red, Green, Blue), HSI works better for those looking for

specific colour that does not have matches in the database, with the brightness and

dilution taken into account. With the knowledge in image processing, HSI algorithm

can be constructed to detect certain colour range. For example, if the ball is green in

colour, we can easily locate the ball in the image captured by highlight pixel with

hue value range in between 120 ± 10% to be white, while other out of range pixels

black. (Noted: Hue value for pure green is 120, with the ±10% as the tolerance for

the green colour to be recognized.) Same goes to the Saturation and Intensity, where

we can modify based on the dilution and brightness level.

6

3.1.2 Noise Reduction

After correctly setting the HSI range for the ball and robot to be recognized, there

will still be some noise inserted in the output image. Noise is the random unwanted

signal that might affect the quality of image processing. As a result, noise reduction

is a must in image processing to enhance the quality of the project. Most common

noise happened in webcam image/video capturing is the salt and pepper noise.

Erosion masking is applied to help to generate more accurate output result.

3.1.3 Position Identification and Direction Analysis

With two separate output results generated (one for the ball detection and the other

one for robot detection), the pixel location for both ball and robot are recorded.

Those pixel location is important as they are used to determine which direction the

robot will move so that it can reach the ball. Six possible robot movements are

identified, where the robot can move forward, backward, left, right, or even 45

degree to front or back, -45 degree to front or back, and last but not least, stop when

it detect that the ball is a few pixel near the robot. In this project the time of the

robot movement is a non-factor as the web camera will get a snapshot continuously,

for example, every 3 seconds. Such real time data analysis allows us to be able to

exclude the delay time for the robot movement as long as we are able to identify the

location for ball and robot and manage to determine on which direction the robot

need to move to approach the ball. This algorithm is also applicable to both static

and moving ball. This is because MATLAB will always update the latest location of

the ball and robot, and will lead the robot towards the current location of the ball.

7

3.2 Serial Port Data Communication

3.2.1 Serial Port Communication

Serial port communication is a common communication protocol used to interact

between MATLAB and microcontroller. Serial port is easier to implement as it

transmits multi-bit word bit after bit (when at any given moment only one bit will

pass). Wired and wireless serial port communication will be tested out before setting

up the whole transmission module. The common serial port used consists of 9 pins,

with function of each port shown below:

Pin Signal Pin Signal

1 Data Carrier Detect 6 Data Set Ready

2 Received Data 7 Request to Send

3 Transmitted Data 8 Clear to Send

4 Data Terminal Ready 9 Ring Indicator

5 Signal Ground

Ftgure 1: Senal Port Dtagram

8

3.2.2 Serial Port Hardware Connection

Since this project requires communication between a microcontroller and a PC

(sending output which consists the direction for the robot to move toward the ball

from MATLAB in PC to a microcontroller), differences between PC and

microcontroller need to be taken into consideration. PIC microcontroller has

Universal Synchronous Asynchronous Receiver Transmitter (USART) which

operates using CMOS logic levels changing between +5V and OV to represent logic

I and 0. However computer serial port (RS232C) on the other hand, operates in

different voltage levels. It represents logic 0 with -1 OV and logic 1 with + 1 OV.

Direct connection between microcontroller USART pin to PC is not allowed due to

the defense in logic voltage level. As a result, specially designed serial level

converter ICs such as MAX232 is used to convert signals from -10 to +I OV received

from computer side into 0 and 5V which can be used with microcontrollers. The

schematic of this serial port data communication connection can be viewed in

Appendix A.

3.2.3 Microcontroller Asynchronous Serial Data Communication

Since there is no a full synchronization between the transmitter (PC), that sends the

data, and the receiver (microcontroller), that receives the data, asynchronous serial

data Communication is applied. As mentioned earlier, PIC microcontroller uses

Universal Synchronous Asynchronous Receiver Transmitter (USART) to

communicate with external components such as computer. Microcontroller can be

either transmitter, receiver, or both. However, in this project microcontroller

functions merely as receiver to get the direction input from the PC and response by

moving towards the robot, only Receive Status and control register (RCSTA) register

need to be enabled.

AX~·.].~

Figure 2: RCSTA Register

9

3.3 Microcontroller Programming

3.3.1 Asynchronous Serial Data Communication Configuration

For hardware serial data communication in PIC microcontroller, port C6 is assigned

for transmitter (TX) while port C7 is assigned as receiver (RX). Before that, RS232

(Recommended Standard 232) port is called with command #use rs232 [option].

RS232 topology is a point-to-point protocol mainly used for serial port

communication. The option for the PIC microcontroller #use rs232 [option]

command are as below:

Baud= x

XMIT =pin*

RCV =pin*

PARITY= x

BITS= x

STREAM=
stream_name

Set baud rate to x

Set transmit pin as pin*

Set receive pin as pin*

parity to none (x=N), even (x=E) or

Set data bits to x.

Associates a stream identifier to this RS232 port.
The identifier may be used with functions such as

utc

Figure 3: #use rs232 Command

Example of hardware based #use rs232 command is provided:

#use RS232 (baud=9600, parity=N, xmit=PIN_ C6, rev= PIN_ C7, stream=, bits=8)

In our project, since PIC microcontroller functions only as receiver, only PORT C7

is needed.

10

3.3.2 Microcontroller C Language Programming

C language can be used to program a PIC microcontroller. In this project,

microcontroller will receive data sent by MATLAB and response toward the ball

based on the input received. PIC C Compiler software is used for programming

purpose. The program is built and compiled for error checking. After that a HEX file

will be generated. The HEX file can be loaded in PIC Simulator IDE to test its

functionality in simulation mode. With programmer we can load the HEX file into

microcontroller and can be tested in hardware.

3.4 Tool

Since this is a project combining both image processmg and microcontroller

programming in robotic field, plus data communication in serial port data

communication, the list ofthe tools required is listed as below:

I. MATLAB 7.10.0 (R2010a)

2. Web Camera

3. Serial Port with MAX233 Chip

4. Radio Frequency (RF) Transmitter I Receiver Module

5. Robot

6. PIC 16F877 Microcontroller

11

3.5 Project Flow Chart

Image is captured and saved

Image is converted to HSI image

Hue, Saturation, and Intensity (HSI) value is inserted

(For example: yellow has Hue "'alue around 40)

Tolerance for Hue: Saturation,. and Intensity is set

(For example: ±10% for H, ±50% for S and D

Each pixel in HSI image is compared with HSI range

Pixel within desired HSI range is highlighted as V.'HITE

Pixel rejected is matked as BLACK

Final output image '"ith targeted colour range in V.'HITE,

None targeted colour range in BLACK

Erosion is applied to filter out unnecessary noise

__ •: .. - -- ----- -

Position of ball with reference to robot is identified

Position o.f the head of robot is identified

Data_regarding direction of robot movement is generated l
,_,_j

Data is sent to RF Transmitter via serial port and transmitted

Data is detected,. received by RF' Receiver placed on robot

Data is sent to PIC microcontroller

PIC microcontrolle!: prompts robot to move towards ball

12

4.1 Colour Detection

CHAPTER4

RESULT AND DISCUSSION

Accepted range of the HSI value will be highlighted. Those accepted pixel will be

changed to white colour while other rejected pixel will turn out to be black colour.

Table 1: HSI Colour Detection Algorithm Flow Chart

Image is captured and saved

Hue, Saturation, and Intensity value is chosen

(For example: yellow has Hue value around 40)

-~-

Tolerance for Hue, Saturation, and Intensity is set

(For example: ±10% for H, ±50% for Sand I)

~
Convert image to HSI image

~
Each pixel in HSI image is compared

with the desired HSI range

~
Pixel within desired HSI range is highlighted as WHITE

Pixel rejected is marked as BLACK

Final output image with targeted colour range in WHITE,

None targeted colour range in BLACK

13

Example of the HSI colour detection algorithm can be viewed in Appendix B.

Figure 4 shows an example where yellow colour detection algorithm is applied to

detect area which match the ± 10% tolerance of yellow colour. (Hue value for

yellow: 720}

HSllmage

Figure 4: HSI Colour Detection Algorithm Output Image

With the Hue value = 0.2 ± 0.1 = 0.2*360 ± 0.1 *360 = 72 ± 36. Those pixel with

hue value in the range of [72-36 72+36] = [36 108] will be accepted and marked as

while pixel. Other non-targeted pixel will be set as black colour. For information,

[36 108] is the colour range in between YELLOW and LIGHT GREEN. There will

always be some small non targeted areas that belong to those particular colour

ranges. As noticed, there are some small portion which also get accepted. We need

to get rid of this unwanted portion. One way to do it is to apply erosion method to

squeeze the white area to get more accurate center point.

Erosion is a great method to get rid of some small selected area (unnecessary noise).

14

The code is as below:

SE = strel('disk ' ,10);
g = imerode(I,SE);

subplot(1 , 2,1) ;imshow (I) ;title(' Original Detected Area ');
subplot(1 , 2, 2) ;imshow (g) ; title(' Image after Erosion ');

The output image is shown in Figure 5 below:

Original Detected Area Image aler Erosion

Figure 5: Noise Reduction Output Image

Erosion 'shrinks' or 'thins' object in a binary image. With the structuring element

(SE) set by user, user can decide how much he/she would like to shrink the original

image. Based on codes provided above, a disk shape SE with radius of 10 pixels is

applied. It proves to be enough to delete those thin and random white spot notice on

the original colour detection image (right) with the image after erosion (left) clearly

show the exact location of the yellow ball.

Note: For real time image capturing and processmg, more noise will appear.

Common noise such as salt and peppers noise can be filtered using median filter.

Thus, more filtering is needed for better data collection.

15

4.2 Vector Identification and Direction Analysis

With the same algorithm, robot can be detected by changing the hue value

accordingly. After getting both robot and ball detected, the direction need to be

analyzed and determined so that robot can move towards the ball.

First of all, save the pixel location of the location of ball and robot. Next, perform

normal subtraction to get the pixel difference between the ball and robot. Let robot

be the reference point, we can easily know which direction the ball is from the robot.

Finally, for each particular direction, different bit is generated to send to

microcontroller.

Assume yellow ball as the ball, while blue ball as the robot, perform the HSI colour

algorithm, I as the detected image for ball (yellow); while I as the detected image for

robot (blue). The detailed step by step instruction is shown in Table 3.

Table 2: Vector Identification and Direction Analysis Flow Chart

Location of ball is saved as [ballx bally]

Location of robot is saved as [robotx roboty]

Robot as reference point,

Perform the subtraction of xy point of robot from ball

xdiff = robotx - ballx;
ydiff = roboty - bally;

Based on the result of subtraction,

Determine the vector I direction of the ball from the robot

Vector Identification and Direction Analysis algorithm can be viewed in Appendix

c.

16

In command window:

Oll\nlilO n
1" New to MIIITlAB> Wlll:ch lhs ~ see Qcam, or read GettQ:! Slarted·

>> l:lallx

ballx •

165

>> bally

bally •

9"1

>> robot;x

robocx :

275

>> robocy

robot;y •

"110

>> r"dx

redx •

425

>> redy

redy •

389

Figure 6: Ball and Robot Location Display in Command Windows

We determine the direction of the ball from robot by dir (direction), where we check

the x axis difference as well as y axis difference between ball and robot with robot

as reference.

From info in Figure 6, we notice that ball is located at [165 94] while robot is

detected at [275 410]. Withy axis increases from left to right while x axis increases

from top to bottom, we can easily conclude that ball is on top left of the robot, on the

other hand, means that ball is located top left of the robot. (top left as in top left of

the webcarn)

17

There are four possibilities for dir, as shown in Figure 7 below:

xdiff> 0;
ydiff> 0;
dir= 1

X axiS

xdiff> 0;
ydiff< 0;
dir= 2

~-----+------'";,.. y a:xlS

xdiff<O;
ydiff> 0;
dir= 3

xdiff< 0;
ydiff<- 0;
dir= 4

Figure 7: Analysis on Direction of The Ball from The Robot

After determining the location of ball from robot, we must then determine where the

head of the robot is facing. This is crucial as sometime the robot's tail will face the

ball instead of its head. At that point, moving the robot forward is actually pulling

the robot further away from the ball. Thus two different colour sets are used to

determine the head and tail of the robot. In this project, the head of robot will be

covered by blue colour paper; while tail is covered with red colour paper. The same

algorithm is applied, only that this time the vector difference between blue colour

(robot head) and red colour (robot tail) is determined. The vector difference is

stored, and the four possibilities are shown in Figure 8 below:

xaxis
Robot facing top left t Robot facing top right

of the webcam screen I of the webcam screen

robotdir = 1 robotdir = 2
<E-~-----·-f-··--------4¥ axis

Robot facing bottom left Robot facing bottom right

of the webcam screen of the we beam screen

robotdir = 3 robotdir = 4

Figure 8: Analysis on Position of Robot Head

18

The step by step instruction on how to locate the position of robot head is shown in

Table 4.

Table 3: Identification on Head of Robot Flow Chart

Location of robot head is saved as [robotx roboty]

Location of robot tail is saved as [redx redy]

Robot head (blue colour) as reference point,

Perform the subtraction of xy point of robot head from robot tail

xrobot redx robotx;
yrobot = redy - roboty;

Based on the result of subtraction,

Determine the position of robot head.

if (xrobot>O) && (yrobot>O)
robotdir = 1; Ifr-obot facing top left co.tner

end

if (xrobot>O) && (yrobot<~O)

robotdir = 2; 'iirobot facing top right corne.r
end

if (xrobot<~O) && (yrobot>O)
robotdir = 3; 'i,robot facing bottom left corner

end

if (xrobot<~O) && (yrobot<~O)

robotdir = 4; irobot facing bottom right corner
end

The position of the head of robot is vital as without identifYing it, the robot might

move away (opposite) form the robot instead of moving towards it. This is because

all the image analyses are based on the webcam screen viewpoint.

19

As we know, we can set the robot to move on any ofthese six directions: forward,

forward left, forward right, backward, backward left; and backward right. The final

output, sig, which content the direction of robot movement is shown in Figure 9

below:

Move forward sig

=2
Move forward left sig

=1

Move backward left

sig = 6

Move forward right sig

=3

Move backward right sig

=4
Move backward

sig = 5

Figure 9: Analysis on Direction The Robot Move

Table 4 shows the output of direction of robot (sig) with respect to the location of

ball from robot (dir) and the head of the robot facing (robotdir).

Table 4: Analysis on Direction The Robot Move Towards The Ball

robotdir dir= 1 dir= 2 dir= 3 dir=4

2 3 6 5
1

Forward Forward Right Backward left Backward

1 2 5 4
2

Forward left Forward Backward Backward Right

4 5 2 1
3

Backward Right Backward Forward Forward left

5 6 3 2
4

Backward Backward left Forward Right Forward

20

Final result of the complete HSI algorithm (Detected ball and robot image) is shown

in Figure 10.

Figure 10: Detected Ball and Robot Output Image

omman n

c1) New to MATlAfP Watch this~ see Demos. or read < ~·

>> dJ.r

dir -

1

>> robotd1r

ro.botdir •

2

>> SiQ

1

Figure 11: Vector of Ball from Robot Display in Command Windows

21

As shown in Figure 11, MATLAB manages to get dir ·1 ', which means the ball is

located on the top left of the robot (webcam view). This duection analysis works

perfectly as long as the ball and robot can be detected correctly.

Next, by analyzing the blue (head) and red (tail) cover on the robot, we get robotdir

= 2, which indicate the robot is facing top I top right on the screen. And finally, slg =

1 (move forward left) indicates that MA TLAB manages to generate correct direction

of the robot to move towards the ball.

Overall, since the two algorithms works perfectly in selected image, the only

problem left is the unexpected image quality in real time image capturing. More

filters and more checking are needed to enhance the accuracy of the data collection.

The data generated by MATLAB throughout the image processing process is shown

in Figure 12:

\!]~ ~-.. !;,p 5eled: data to plot

Name . vu ""' Max
81 <480x640 <b.tlle> 0 *" <-480x610 dooJ>Ie> · I 0

82 <480x640 <b.tlle> 0 cP1 <-480x610 dooJ>Ie> 5.5511. .. 0 .8487

83 <480x640 <b.tlle> cfiS <-480x610 <bble> 0 0 .6000

Bert' <480x640 <b.tlle> ·I ~ I I

8dtfH <480x640 <b.tlle> 0 0.6000 hsvY .. [0.1500,0.6000,1] 0 .1500

8dff5 <480x640 <b.tlle> 0 0.600) hsvY .. I [0.6000,0.6000,1] 0 .6000

HSV <180x640x3 <b.tlle> <Too ... <Too .. hsvYal2 [0.0500,0.6000, I] 0 .0500

<480x640 <b.tlle> 0 ml <- 3 ..-t8> <Too ... <Too

II <480x640 <b.tlle> 0 m2 <180x640><3..-t8> <Too ... <Too

12 <480x640 <b.tlle> 0 rn3 <180x640><3 urt8> <Too ... <Too ...
0 <480x6-40 <b.tlle> I cu
M 480 480 480 CUI
N 6>10 6>10 6>10 CU2 I
R <480x640 <b.tlle> 0 red <-480x610 dooJ>Ie> 0 I
Rl <480x6-40 <b.tlle> 0 redx 125 1 25 1 25
R2 <480x640 <b.tlle> 0 I redy 399 389 389
R3 <480x6-40 <b.tlle> I I robotdr z 2 2
Riiv <480x640 <b.tlle> ·I 0 robotx 275 275 275
iifi1 <480x640 <b.tlle> [1.0013 0.9187 roboty 110 410 1 10
R<ilS <480x640 <b.tlle> 0 0.600)

I €JSE Sill I
<lXI siTel>

3 3
Tl 0.1000 0.1000 0.1000

TZ 0.4000 [1.4000 0.4000
tol [0.1000,0.4000,0.5000] 0 .1000 0.5000

T3 0.5000 0.5000 0.5000 €Jw! <IX I Yldeorp.t >

" <180x640x3..-t8> <Too .. <Too ... X 180 180 480

ball <480x6-40 <b.tlle> 0 I xdlf 110 110 110

balx 165 165 165 xrobot ISO ISO ISO

boly 91 91 91 y 640 640 640

IU <480x640 <b.tlle> 0 ydlf 316 3 16 3 16

yrdlot ·21 ·21 ·21

Figure 12: MATLAB Workspace Data

22

4.3 Real Time Image Capturing

In MATLAB, there is video I image capturing toolbox available for real time image

acquisition. The step by step procedure to enable the image acquisition toolbox is as

below (Figure 13):

<!) Now to MATlAI)> Wotc:h ths Ws::g. see ll!:mll:i. or reed r.cttm :;tort rd.

>> 111M:lqhwuU~o

ana •

In~colledAdop~or~: {'coreco• •v1nv1deo',
ftATLABVer~1on: '7.10 (RZOlOa)'

Too~oxName: ' Image Acqu~~1t1on Too~ox'
TooLboxVer~to~: '3.5 (R20t0a)'

>> J.o.t'o-UI'Illqhvinto(v1nvidf"o ')

1~0-

AdaptorDi~ame: [1xB1 char]
Adapt.orDllVer:~1on: '3.5 (R2010a) •

AdaptorName: • v1nv1deo'
0.-v>cf'Ills: ([\])

Devtr.etnt'o: [1.x1 !lcru~L]

in~o •

ft. »

Derauitforaet: •RCB21_320x240'
Dev1ceF1 l eSupport.ed: 0

Dev 1ceName: 'V1m1cro USB PC Camera (ZC0301PL)'
Devt.ceJD: 1

ObJ~ccCo~truet.or: 'v1~oinpue('w~nvtd~o·# 1)'
SuppocL~dFo~~e: (lx12 c~ll)

Figure 13: MATLAB Image Acquisition Hardware Information

X

Image Acquisition Hardware Information (imaqhwinfo) allows us to check the

available web camera. Format for the device determine the size of the web camera

window.

23

COfllll'Wind Window

f New to MATLAB> Watch thos~ see ll!iiJII:tL or read Gctrn!st«ted.

>> v1d • vtd~oinpuc(

Summary ot Video Inpuc Objecc Using "VU.icro USB PC Camero(ZCOJOlPL) •.

Acqu1s1C1on Source(s): 1npuc1 1s avatlable.

Acqu1s~~1oo Pa~ame~ers: '1oputl' 1~ ~be curren~ se1ec~ed soucce4
10 trames p~r cr1gger uslog che sel~cc~d source.
'RGB24_320x210' video daca co be logged upon START.
Grabbing tirac ot evtry 1 trame(s).
Log da~a eo ·~ry' on cr1oger.

Tr1ooer Paramecers: 1 'tmmed1aee• er1ooer(s) on START.

>> prev1ew(vid)

ft. »

scacus: Valelno ror START.
0 frames acqu1red s1nce seart1ng.
0 trames availabl~ tor G!TDATA.

Figure 14: MATLAB Video Preview

--o-,x

X

I

In Figure 14, videoinput command start the summary of the video input (it is video

stream collection, with getsnapshot command is needed to capture a single image).

In this case we notice that the web camera 'Vimicro USB PC Camera' is identified.

A video preview with exactly same size as the default format will pop out when

preview(vid) command is called.

With the HSI colour detection algorithm discussed in Section 7. 1 applied. we

manage to get yellow ball detected area, but the quality is low as real time

processing always encounters unwanted noise.

24

llelectedA'm

Figure 15: Real Time HSI Colour Detection Algorithm Output Image

rgb2hsv command is light sensitive. Same object under different light coverage will

generate different hsv value, shown clearly in Figure 15 It makes image analysis

challenging. Web cam is not consistent as it might give too much noise or blur lens

focus. As a result, a higher pixel and better focus webcam is needed for image

quality improvement.

25

4.4 Serial Port Communication Testing

Serial port communication serves as the data transmission medium. A string of

character (8 bits) at a time. For testing purpose, Port 2 (Receive, RX) with Port 3

(Transmit, TX) is connected together. With the aid of AccessPort software, we can

detect the data transmitted and received via serial port.

First of all, we need to make sure the serial port setting is correct. Right click My

Computer, Properties, Hardware, Dev1ce Manager, Porls (COM & LPT), check the

available COM port.

Fie Action VIew ~

iEl Gi' Q [j !31 !I t't II a
• ~ Floppy <lsi<.._.
• AI tUnan lrie<foce Devices
+ ~IDE ATA/ATAPI anrolers
+ J Keyboards

fob and oltler poonbng dew:es
.... Modems
• ~ Mcdors
• .. Network ad!lpters
- ;/Puts (COM &.lPT)

,./lbtooth Serial Port (COM I D)
,';/lbtooth Senol Port (COMil)
;/lbtooth Serial Port (COMIZ)
)/lbtooth Serial Port (COMI3)
)/Blletooth Seroal Port (COMJ)
)llbtooth Serial Port (COM4)
.)/lbtooth Serlll Port (COMS)
;/lbtooth Serial Port (COM&)
;/ lbtooth Serial Port (COM7)
,;;/ Blletooth Seroal Port (COMB)
};:/lbtooth Serial Port (COM9)
.';{ Comnu1cabons Port (COM I
.)/ ECP Prrter Port (LPTI)

• • Processors
- • SCSI and RAID coroolers

• SCS!JRAID Host coma
(;• SnTJGER SCSI Clriroler

- e Solrd, VIdeo and game coroolers
f) Audo Codecs
f) lbtooth AV/HS Audo

~ KI(Cam • vrtuol Camera
f) I MMV /lAm Orlw.-<

~ - r.;-
,,. "'" r·"·r••ll" · _1 X

System Reslote A.Aomaloc Updales Remote

Adven:ed ~ General [~ Naroe Hatdware

OCMCeM~

:!i' The Oew:e Nanagooltsb .. lhe haodooaoe d!Mceo notaled
~ onvou~ UtelheOew:eNanage<l<>cl\angeltte

p!opertle$ ol al1' diMc:e_

Oll'tels

OIIYel Sig<w.g lets you moke tUe ~~~a~ .. staled '*'-• •e
~ wth \1/tndowt \1/tndowe u~ ~e~s you oet 1.41
'-\1/tndowe comects to \1/rdowt Updale lor Olvets.

.___o_"""'_s..=.~-=---'11 \1/ndowt Update

H•dooaoe lllolies PIOYide 11 """' lor }IOU to sel1.4> and stole
dlle<ent twdware cxrigu-attOnS

Hardwa~e Ptolileo

Figure 16: Serial Port Configuration

Right click the preferred Serial Port (in this case, CommunicatiOn Port, COMJ),

choose Properties. Go to Port Setting. Record the detail of the baud rate, data bits,

parity, stop bits, and flow control. Those information need to be matched in Matlab

programming. Visual description is shown in Figure 17.

26

Fie Action View ~

~ .. IE ~- li>lm !I~ ~~·

+ 0 IDE ATA/ATAPl <XIItrolers
+ -v- Keyboards
+ ... _, l'ke .,.., other poOltroo ~

• a.. Modems
+ tJ Mcri.ors
+ • Net..ark adapU<s
- Jl Ports(COM&LPT)

;/ !btooth SenaiPort (COM I D)
Ji' lbtooth Senal Port (COM II)
;/ I!Letooth Senal Port (COMI2)
;/!btooth Serial Port (COMIJ)
;/llluetooth Serial Port (COM3)
:/ llluetooth Serial Port (COM1)
;/lbtooth Serial Port (COMS)
;/llluetooth Senal Port (COM6)
;/ I!Letooth Serial Port (COM7)
,;/lbtoclth Serial Port (COMB)
;/ I!Letooth Serial Port (COM9)
;/ COIMUic4tlons Port (COM I)
.,:/ ECP Pmter Port (\PTI)

+ • Processors
- ~ SCSI and RAID controle<s
~ SCS!/RAID ttlst Controle<
~· ST3TIGER SCSI Controle<

- f) S<krd, VIdeo ord game controle<s
f) Audio Codecs
f) llluetoolh AV/t!S Audio
fl KKC11m • 'li'tual Qmera .. .

Oalabft 8 .,.

Pariy None "'

Stopbtt 1 "'

Flow conbol None ..,.

Advanced. II Reolllle Ooids I

ol(. I I eancet

Figure 17: Serial Port Configuration

Note: Same configuration is needed in AccessPort software.

In Matlab, serial port connection is setup using obj = serial (I port I) syntax. As

noticed, serial port is setup exactly the same with information stated in the

Communication Port (COMl) hardware. The code is as below:

inp = 3;

Ser PIC = ser 1al (;on);
set (SerPIC, 1

1 9600 ,
f , 1 ts' I l 1 '

fopen(SerPIC);
f p r i ntf (SerPIC, 1 c 1

, inp);
fclose(SerPIC) ;
d elete(SerPIC);
c l ea r

< -charge th1s appropriat ely
'DataB1tS 1

, 8 , Jrlty 1
,

.:rol 1
, 'nc) ;

~- -close the se r 1al port when d o ne

27

We can monitor data transmitted and received via AccessPort (Port 2, RX and Port

3, TX of serial port are connected.). Screenshot of the result collected from

AccessPort is shown in Figure 18.

1 .
3

" ~

~

7

II

9
10
II
1::
u ...
15
16
17
18

lu' £"u.Porl -"'lnttcH t OM1 · t 'rtf I

(COOOCOOO)IFJI.Ml.CREAT£
(OOOOGOOO) IP.P.~LCL<Y-E

(000%00ll) IP.P.Nj_CP..EATE
(OOOOOUOllJ lrJI.14J_CLO!.l
(OOOOOOOO) IFJ>.Nj_CWTE
(QOOOOOOIJIVP.NJ_CL05t
(OCOOO<!OO) IPP.NJ.C~Tf

(Ot'OOOOOO) IOCn_srr~.tU£TJIAOO.P.AT£

(000:!00001 IOCTl_W'I.tL.SCT.W<E.COtflT.Ol
(00000000) IOCTl.!.ETI•L.SC' BAUO.r.ATE
(CuOJOOOOJ IOCT'I....!.EI'JAL.~C' .UNt...COHTF'O~

(00000000) IIXT\JUJAL.~Er .BAIJD'.tA TE
(Ct 000000) IOCT\..~U'JAL.~[l.Uut_COHT1(()L

[OOOOOOOOJ IOCT\.UIIIAI_S[T~UO.'AlE

ICOOOOOOO) IOCTL~fFJAUtT.UIJt.COill'P.Ol

(COOOCnOOl IOCl\..!D'IAI_S[T JIAUO.P.A T[
[COOOCOOOJ IOCTl.WIIL.S £T.UI~ c 0 IIT'P.Ol
(00000000) IOCTl.WilL.!.CT.BIUO.P.AT[
(00000000 I 'OCTl.!.EP IAU ET. UN(. c C HTJ:Ol
(OOOOCOOJ) •OCTl.!.ErJ&t_SET.BAUO.RAlE

)OOOOOOOOJ •OCTt_!.!J.IAt_~ET.U~CCIIw.ol

)OOOOOOOlJ •OCTUU'IAL.~ET.t.AUO.'.AU

JCOOOOOOOJ •OCTLm1AU£T.U~COIITJ!Ol
1000~01 ZJ I ~'-~J.W!tl'i[
JCOOOCOZZI r.P.~I.CLCY.E

Oa-:a(Hu)

Fl:tt~~ntd •lot&Tl.A!I nt
Fl:<tC ou;l

Fl:rt ~tntd • IotA TLAB t<t

Fl:tt 0 oua
Pl:r t ()pt ntd • MAT LAII ut
PortCioua
P\:;ol~rnd·lo4AT\Aeut

Daud FAt• !600

Stod~.J ' · Pwotv Pl), 0 •~311:ts e
8)Ud htt 9600
!.to(£ru I, Pwlt', IJ), Oa':\lltt 8
IIJ<JO r••• 9600
l.~r-~ I, Parol\ II), lla~lll.U II

llaud Patt '600
5-totf:IU I, F'WI!\ U). l)a•lllu C

Dwdf:att '600
!.to;fi's l , l'lrlt\ 'h. Or:311u 8
lhudhtt 9600
!.toeer.s I. Pw1t\" Ill, Oa:all:ts 8
8:wo F m · 9600
~~' I.Par•t¥ I IJ,IIli!~U a
11~•0 ~ltt !I oliO

~~~' 1, Par ltV II>, lla~4" a 
LcrQ1t, OJOI,D••• OS 
I'Qrt 00Hc1 

Figure 18: Serial Port Transmit I Receive Testing 

Based on Matlab code shown above, we send an 8-bit character with value 3. which 

is Ox03 in hex. MatJab writes/transmits the data trough Port 3 (TX) and received by 

Port 2 (RX). As we can see from line #24 in AccessPort, it manages to receive the 

data correctly. 

28 



4.5 Wired Serial Port Data Transfer 

After making sure that Matlab can transmit the data correctly, the receiver side, PIC 

microcontroller, needs to be configured to receive the serial port input. In 

PIC16F877A, the USART (Universal Synchronous I Asynchronous Receiver 

Transmitter) is utilized for asynchronous serial communication. A built in function 

#use rs232 ([option}) can be applied to allow serial data communication. 

The code for PIC microcontroller (receiver) is as below: 

#include <16F877A.h> 
#include <stdio.h> 
#fuses HS, NOWDT 
#use delay(clock~20000000) 

#use RS232(baud~9600, parity~N, xmit~PIN_C6, rcv~PIN_C?, 
stream~COM1, bits~S) 

char c; 

#INT RDA 
void receive isr() 
{ 

c= 0; 
output_bit(PIN D2,1); 
delay_ms (1000); 

II Indicator of interrupt occurred 

c~ fgetc(COM1); 
delay_ms (1000); 

output_d(c); 
received 

II Port Cas output for serial port data 

} 

void main() 
{ 

} 

set_tris_d(OxOO); 
output_ d (OxOO); 
enable_interrupts(INT_RDA); 
enable_interrupts(global); 

while (1) 
I 
} 

29 



The detail of the #use rs232 is based on the serial port communication, with Port C6 

always acts as receiver while Port C7 as transmitter. 

Interrupts is used so that whenever there is new data received, it will jump to the 

interrupt loop, where LEDs on Port D2 will be turned on, indicating the data being 

received (system interrupted). The data received will be in binary form, and it will 

be shown as the output via port D, coded by output d(c) command. 

Since PIC16F (TTL) operates with logic High (2V- 5V) and Low (OV- 0.8V) while 

rs232 is not, MAX 233 chip is needed for PIC to interact with rs232. For rs232 in 

between -15V to -3V, MAX 233 will convert the potential difference to 2V- 5V, 

with logic High (1); on the other hand, rs232 with 3V- 15V will be converted to 

logic Low (OV- 0.8V): 

RS~2'32 TTL 
_...,;, ____ ·-~.;...;..., __ ..... --.... --~--,;,.----,.;..~-~""'"-------...,;,~-~--·-·-·~,;,.-----,;.._~"!"'---

... 1SV .,.3V <c:> 
+3V·.·•;•.••···•+l5V <~> 

+2V +SV <-> 
OV ;·,: .. •+0.8V <•> 

1 
0 

After receiving the data, PIC microcontroller will convert the serial data into 3-bit 

parallel data based on the code provided in Appendix D. 

30 



4.6 Parallel Data Radio Frequency (RF) Wireless Transmission 

As a result of financial limitation, parallel data RF transmitter and receiver modules 

are used as the medium for the data output from PC serial port to be transmitted to 

the received located on the robot. TX9902B, an 8-bit trinary address, 6-bit binary 

data RF transmitter is paired with RX9926, an 8-bit trinary address, 4-bit binary data 

RF receiver. The addresses on both transmitter and receiver need to be matched to 

enable any wireless communication. In my project, those addresses are left floating. 

There are only six possibilities for the robot to move, thus only THREE bits data 

(000 for 0 while 110 for 6) are required. TX9902B will feed the 3-bit data through 

data port DO (least significant bit), Dl, and D2 (most significant bit). With 

TX9902B turns on and off every time there is new data ready to be sent, the data can 

be received by RX9926 receiver on the robot. 

RX9926 can receive four bits data at a time, which is enough for this project. The 

data received will be the same with the data on transmitter site, as long as both 

addresses are same. Valid Transmission pin is available so that we can check the 

transmission and connection between transmitter and receiver. For both transmitter 

and receiver, 18cm wire is used as the antenna for the communication purpose. 

The dimensions and pins out ofTX9902B and RX9926 are shown in Figure 19 and 

20. 

Dimensions & Pinoo()Ut 

U$e Rose = 6BOK 
*for P.T221l dt:«tdu 

on the ntteiver slde 

Figure 19: TX9902B RF Transmitter 

31 

18mm 



* Use Rose "' 3.3M 
~.~ mm 

ANT 
far PT2262 encoder 
an the tran•rnltler AN.P side 

D3 0 
D2 0 Address pins 
Dl 0 

DO 0 
AAAAAAAA 
76543210 GND 0 H Oc::::lc::::lr"-.:"'OOr::JCJ 

VT 0 @@]@@[QJ[QJ[QJ[QJ 
Vee a l CJ.C':'Jor:-:.c.::::c::lCJr:::J 

Each address pin can assume one ot the 3 possible loglc state:___j 
i.e. : logic high {H}, logic lnw (L) or floatin9 (no connection) 
The module is supplied with all the address pins open. 

Figure 20: RX9926 RF Receiver 

The schematic diagram of the transmitter side is as below: 

24.5mm 

'···---~ 

"·····----.. ~ 

0 .-.-.----_. ___ -_-· __ .-_-.• _·-_-_-. -- . . .. 
----- . -
- ' --' ·---

. .. ·-

. . 

.·' ,-

. 
-'---_ .+ iLL*-3 -, 

•••••• ·····-· ' / '-----r----==1-· n ·1 ::::J 
& 1 I I 

Figure 21: Transmitter (Serial Port, MAX233, RF Transmitter) Schematic 

Serial Port pin 3 (TX) is connected to pin 4 (RUN) of MAX233 chip. Pin 3 

(Rl OUT) of MAX233 is then connected to Port C7 (RX) in PIC microcontroller. 

32 



CHAPTERS 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The algorithm for HSI colour detection as well as direction analysis for robot to 

move towards the ball is constructed and tested on different set of images. Real time 

processing is challenging as the surrounding light effect and web camera resolution 

quality will result in different image capture. There are more random and unwanted 

noises in real time image processing, and filtering need to be done from time to time 

to filter out those unnecessary signals. 

Data transmission to transmit processed data from MATLAB to microcontroller is 

vital. This is because the data is required so that the robot embedded with 

microcontroller can response and move towards the ball. Serial data communication 

is preferred as it is simple to be implemented. Wired data transmission is tested to 

make sure the data can be transmitted via serial port. 

Radio frequency (RF) transmitter and receiver modules are used as medium for 

wireless data communication. Serial data transmitted from serial port is converted to 

parallel data by PIC microcontroller, and the parallel data is transmitted wirelessly to 

the RF receiver placed on the robot. Another PIC microcontroller located on the 

robot will then response with the data received, prompting the robot to move 

towards the ball. 

33 



PIC microcontroller is programmed in the way it will analyze data received, and 

response based on the programming code written. Microcontroller will be 

programmed in C programming language. 

5.2 Recommendation 

The project proposed can still be improved in many ways. The following will 

discuss about aspects that can be improved:-

• Serial USB wireless data transmission module such as XBEE is 

recommended for better and more stable wireless data communication. This 

is because serial port data transmission is slower compared to USB data 

transmission. 

• For the object detection algorithm, colour detection algorithm proposed is 

one of the techniques used. There are still other suggestions such as shape 

detection, field extraction, or combination of both. Object detection 

algorithm can be further enhanced with surrounding factors such as light 

taken into consideration to come out with more accurate image analysis. 

• Microcontroller section can be improved with more decision makings such 

as speed of robot, controlled by Pulse Width Modulation (PWM), and angle 

of robot movement so that robot can move towards the targeted ball faster 

and smoother. 

34 



REFERENCES 

[!] T. Orazio, N. Ancona, G. Cicirelli and M.Nitti, "A ball detection algorithm for real 

soccer image sequences", 16th lnt'l Conf. on Pattern Recognition, Quebec, Canada, 

Aug. 2002, pp: 210-213. 

[2] Hongying Zhang, et a!., "Ball Detection Based on Color Information and Hough 

Transform", 2009 International Conference on Artificial Intelligence and 

Computational Intelligence, pp. 393-397. 

[3] Jusoh, R.M., "Application of Vision Target Localization for Mobile Robot" 

Research and Development, 2006. SCOReD 2006. 4th Student Conference 

on Digital Object Identifier, pp. 144 - 146. 

[4] Xiao-Feng Tong; Han-Qing Lu; Qing-Shan Liu, "An effective and fast soccer 

ball detection and tracking method " in Pattern Recognition, 2004. ICPR 

2004. Proceedings of the 17th International Conference on 

Volume: 4 

[5] Manigandan, M.; Malathi, G.; Madhavi, N., "Wireless vision based moving 

object tracking robot through perceptual color space" , Emerging Trends in 

Robotics and Communication Technologies (INTERACT), 2010 

International Conference on Digital Object Identifier, Page(s): 20- 25 

[6] Al-Omary, A., "Autonomous object seeking robot based on FPGA and a 

single chip microcontroller ", Computer and Communication Engineering 

(I CCC E), 2010 International Conference on Digital Object Identifier:, 

Page(s): 1 - 6 

[7] Online PIC Serial Communication Tutorial 

<http://www.incuexamples.com/PIC-Serial-Communication.php> 

[8] National Semiconductor. October 1999 

<http://www.national.com/ds/DS/DS14C232.pdf> 

35 



APPENDICES 

APPENDIX A 

Serial Port Data Communication Connection 

~-------, 

I -+----t 

l ___ · __ j 

36 



APPENDIXB 

HSI Colour Detection Algorithm 

clc; 
clear all; 
close all; 

a = imread( 1bb.jpg'); 
hsvVal ~ [0.2,1,1]; 
hsvVal1 ~ [0.6,1,1]; 
tol ~ [0.1,0.5,0.5]; 
0.1 _in HUE 

HSV ~ rgb2hsv(a); 

% 

~ 

HS'V value foL 
Hc•<r 
'0 v value fox-
toleTance for 

l)all ~ yeLioh' 
l:>)lJOt ~ blue 
the HIS value 1 

~- find the difference between requiLed and real Ifue (JJ) value: 
diffH ~ abs (HSV(:,:, 1) - hsvVal (1)); 

[M,N, t] ~ size (HSV); 
Il zeros(M,N); I2 = zeros(M,N); I3 zeros (M, N) ; 

Tl ~ to1(1); 

Il ( find (diffH < T1) 1; 

if (length(to1)>1) 

+-

~- find the difference 1Jet1veen required and zeal Saturation (S) 
value: 

diffS ~ abs(HSV(:,:,2) - hsvVa1(2)); 
T2 ~ tol (2); 
I2 ( find (diffS < T2) ) I; 
if (length (to1)>2) 

·% find the difference bet~;.reen required a_nd real Intensi ry (I) 
value: 

else 

End 

difV ~ HSV(:,: ,3) - hsvVal (3); 
T3 ~ to1(3); 
I3( find(difV < T3) ) ~ 1; 
I 

else 
I 

end 

I = Il; 

Il.*I2.*I3; 

Il.*I2; 

subplot ( 1, 3, 1) ; imshow (a) ; title ( 10riginal Image') ; 
oLiginal image 
subplot (1,3,2) ;imshow(HSV) ;title ( 1HSI Image'); 
image 
subplot(1,3,3);imshow(I);title( 1Detected Image 
(Yellow) '); % Detected area 

37 

% 

% rgb2bsv 



APPENDIXC 

Vector Identification & Direction Analysis Algorithm 

SE = strel('disk' ,5); 
ball= imerode(I,SE); 
blue= imerode(B,SE); 
red= imerode(R,SE); 

ballx ~ 0; bally ~ 0; robotx 
out 0; outl = 0; out2=0; 

fo.r x=l:M 
for y~1:N 

if out==O 
if ba1l(x,y) 1 
ballx = x; 
bally ~ y; 
out=l; 
end 

end 

if outl==O 
if blue(x,y) 1 
robotx ~ x; 
roboty ~ y; 
outl=l; 
end 

end 

if out2~~o 
if red(x,y) 1 
redx ~ x; 
redy ~ y; 
out2=1; 
end 

end 
end 

end 

e::o.sion 

0; roboty=O; redx=O; redy=O; 

~ 4 possible directions where the ball is locatea with robot as 
reference 
xdiff ~o; ydiff ~o; 
xdiff = robotx - ballx; 
ydiff ~ roboty - bally; 
if xdiff>O 

end 

if ydiff>O 
dir = 1; 

end 
if ydiff<~o 

dir = 2; 
end 

if xdiff <~o 
rf ydiff>O 

38 



end 

dir 3; 
end 

if ydiff<=O 
dir = 4; 

end 

\!~here the head of Lobot is facing? 
xrobot = redx - robotx; 
yrobot = redy - roboty; 
robotdir = 0; 

tail (red) - head (blue) 

if (xrobot>O) && (yrobot>O) 
robotdir = 1; Srobot facing top left corner 

end 

if (xrobot>O) && (yrobot<=O) 
robotdir = 2; ~robot facing top right corner 

end 

if (xrobot<=O) && (yrobot>O) 
robotdir = 3; S:robot facing bottom left 

end 

if (xrobot<=O) && (yrobot<=O) 
robotdir = 4; :~-robot facing Eight: 

end 

!i_: Getting direction for robot to m::rve tm·Jards the ball 
sig = 0; 
if robotdir == 1 

if dir == 1 
sig = 2; 

end 
if dir == 2 

move fonJard 

sig = 3; S forward right 
end 
if dir == 3 

5 ig = 6; 
end 
if dir == 4 

backward left 

sig = 5; ~' backward 
end 

end 

if robotdir == 2 
if dir == 1 

sig = 1; 
end 
if dir -- 2 

sig = 2; 
end 
if dir -- 3 

sig = 5; 
end 
if dir -- 4 

(~ move fon·Ja:rd 

fon.Jard 

backward 

left 

39 



sig 4; i backward right 
end 

end 

if robotdir == 3 
if dir == 1 

sig = 4; move bachJard right 

end 

if 

end 

end 
if dir == 2 

sig = 5; z, bach<Iard 
end 
if dir == 3 

sig = 2; ~ forward 
end 
if dir == 4 

sig = 1; 
end 

robotdir -- 4 
if dir -- 1 

sig = 5; 
end 
if dir -- 2 

sig = 6; 
end 
if dir -- 3 

sig = 3; 
end 
if dir -- 4 

sig = 2; 
end 

fonJard left 

" move backward 

'.~ backward left 

·;; forward J:ight 

" fon.,;ard 

subplot(3,3,1) ;imshow(a) ;title( 1 0riginal 1
); 

subplot(3,3,2);imshow(I);title('Original Detected Area (ball) 1
); 

subplot (3, 3, 3); imshow (ball) ;title ( 1 Image (ball) after Erosion 1 ); 

subplot(3,3,4) ;imshow(HSV);title('Original HSV' I; 
subplot(3,3,5) ;imshow(B) ;title('Original Detected Area (robot 
blue) 1

); 

subplot(3,3,6);imshow(blue);title('Image (robot blue) after 
Erosion 1

); 

subplot(3,3,8);imshow(R);title('Original Detected Area (robot red) 1
); 

subplot ( 3, 3, 9) ; imshow (red) ; title ( 1 Image (robot red) after Eros ion 1 
) ; 

40 



APPENDIXD 

PIC Code for Serial/ Parallel Data Conversion 

#include <16F877A.h> 
#include <stdio.h> 
#fuses HS, NOWDT 
#use delay(clock~20000000) 

#use RS232(baud-9600, parity-N, xmit-PIN_C6, rcv-PIN_C7, stream-COM1, 
bi ts-8) 

char c; 

#INT_RDA 
void receive isr() 
{ 

c= 0; 
output_bit(PIN_D3,1); 
delay_ms(1000); 
c- fgetc(COM1); 
delay_ms (1000); 

if (c-~6) 
{ 

output_bit(PIN_D2,1); 
output_bit(PIN_D1,1); 
output_bit(PIN_DO,O); 
delay_ms (1000); 
} 

else if (c--5) 
{ 
output_bit(PIN_D2,1); 
output_bit(PIN_D1,0); 
output_bit(PIN_D0,1); 
delay_ms (1000); 
} 

else if ( c--4) 
{ 
output_bit(PIN_D2,1); 
output_bit(PIN_Dl,O); 
output_bit(PIN_DO,O); 
delay_ms (1000); 
} 

else if (c--3) 
{ 
output_bit(PIN_D2,0); 
output_bit(PIN_D1,1); 
output_bit(PIN_DO,l); 
delay_ms (1000); 
} 

else if (c--2) 
{ 
output_bit(PIN_D2,0); 
output_bit(PIN_D1,1); 

41 



} 

output_bit(PIN_DO,O); 
delay_ms (1000); 
} 

else if (c~~1) 
( 

output_bit(PIN_D2,0); 
output_bit(PIN_D1,0); 
output_bit(PIN_D0,1); 
delay_ ms ( 1000) ; 
} 

else 

output_bit(PIN_D2,0); 
output_bit(PIN_D1,0); 
output_bit(PIN_DO,O); 
delay_ms (1000); 
} 

void main() 
I 

} 

set_tris_d(OxOO); 
output_d(OxOO); 
enable_interrupts(INT_RDA); 
enable_interrupts(global); 

while (1) 
( 
} 

42 



APPENDIXE 

PIC Code for Motor Response 

#include <16F877A.h> 
#include <stdio.h> 
#fuses HS, NOWDT 
#use delay(clock~20000000) 

#define bitO 
#define bit1 
#define bit2 

#define ml 1 
#define ml 2 
#define m2 1 
#define m2 2 

void straight() 
I 

PIN C6 
PIN D5 
PIN D6 

PIN C3 //left 
PIN CO //left 
PIN C5 //right 
PIN C4 //right 

output_bi t (m1_1, 0) ;/I left 
output_bit(m1_2,1);//left 
output_bi t (m2_1, 0); I /right 
output_bit(m2_2,1);//right 
} 

void reverse () 
I 
output_bit(m1_1,1);//left 
output_bi t (m1_ 2, 0); I I left 
output_bit(m2_1,1);//right 
output_bit(m2_2,0);//right 
} 

void right() 
I 
output_bi t (m1_1, 0); 
output_bit(m1_2,1); 
output_bit(m2_1,0); 
output_ bit (m2_2, 0); 
} 

void left() 
I 
output_ bit (m1_1, 0); 
output_ bit (m1_2,0); 
output_ bit (m2 _1, 0); 
output_bit(m2_2,1); 
} 

void revright () 
I 
output_bit(m1_1,1); 
output_bit(ml_2,0); 
output_bit(m2_1,0); 
output_ bit (m2_2, 0); 
} 

43 



void rev left() 
I 
output_ bit (ml_l,O); 
output_ bit (m1_2, 0); 
output_ bit (m2_1,1); 
output_ bit (m2_2,0); 
} 

void stop() 

output_ bit (ml_l,O); 
output_bit(m1_2,0); 
output_ bit (m2_1,0); 
output_ bit (m2_2,0); 
} 

void main() 
I 

set_tris_d(Ox60); II Port D5, D6 as input, others are output 
set_tris_c(Ox40); II Port C6 as input, others are output 
output_bit(PIN_CO,O); 
output_ bit (PIN_C1,0); 
output_bit(PIN_C2,0); 
output_bit(PIN_C3,0); 
output_bit(PIN_C4,0); 
output_bit(PIN_C5,0); 

setup_timer_2(T2_DIV_BY_4,255, 1); 
setup_ccpl(CCP_PWM); 
setup_ccp2{CCP_PWM); 

while (1) 
I 

if(input(bit2) && input(bit1) && !input(bitO)) 
I 

} 

revleft();delay_ms(2000); 
stop() ;delay_ms (1000); 

llsig ~ 6 

else if(input(bit2) && !input(bit1) && input(bitO)) 
I 

} 

reverse();delay_ms(2000); 
stop();delay_ms(1000); 

I I sig ~ 5 

else if(input(bit2) && !input(bit1) && !input(bitO)) 
I 

} 

revright();delay_ms(2000); 
stop();delay_ms(1000); 

II sig ~ 4 

else if(!input(bit2) && input(bit1) && input(bitO)) 
I 

} 

right();delay_ms(2000); 
stop();delay_ms(1000); 

II sig ~ 3 

else if (!input(bit2) && input(bit1) && !input(bitO)) 
I 

44 



} 

} 

straight();delay_ms(2000); II sig ~ 2 
stop() ;delay_ms (1000); 

else if(!input(bit2) && !input(bit1) && input(bitO)) 
{ 

} 

left();delay_ms(2000); 
stop() ;delay_ms (1000); 

else 
{ 

II sig ~ 1 

stop();delay_ms(2000); II sig ~ o 
} 

45 


