Ball Tracking Robot

TAN YENG LEE

FINAL YEAR PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering {Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright JANUARY 2012

CERTIFICATION OF APPROVAL

Ball Tracking Robot

By
Tan Yeng Lee

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved by,

B

P

(Mvr. Patrick Sebastian)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

January 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

N

TAN YENG LEE

ABSTRACT

Ball Tracking Robot is a project covering robotic, computer vision and image
processing, microcontroller, and data communication. It is programmed in such a
way that web camera will detect both ball and robot in the field, analyzing and
determining the position of the ball with reference to the robot, where this
information will be transmitted to the microcontroller. Microcontroller will receive

the data and the robot will move towards the location of the ball.

The objective of this project is to apply knowledge learnt in image processing and
microcontroller courses into practical. By using Matlab software, image captured by
webcam will be analyzed and the ball and robot will be detected. Next, vector
between ball and robot will be proc.e.ssed to determine the position of the ball with
reference to the robot. Finally,. output data will be transmitted to the MIiCToprocessor

to guide the robot towards the ball.

For image processing part, HSI colour detection is applied to differentiate the
targeted colour object from the surroﬁnding. Since we are dealing with vector and
direction, robot head position is vital for precise robot movement. For wireless data
transmission, parallel data radio frequency (RF) wireless transmission model is used
as medium for data to be transmitted from transmitter toreceiver located on the
robot. Microcontroller is programmed in the way that it will response to the data

received and direct the robot to move towards the ball.

TABLE OF CONTENTS

Title Page
ABSTRACT v
LIST OF FIGURES viii
ix
LIST OF TABLES
CHAPTER ! INTRODUCTION 1
1.1 Background of Study 1
1.2 Problem Statements 2
1.3 Objective 3
1.4 Scope of Study 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Circle Detection ' 4
2.2 Colour Detection 4
2.3 Wireless Data Transmission 5
2.4 Robot Movement Control 5
CHAPTER 3 METHODOLOGY 6
3.1 Matlab Analysis 6
3.1.1 Colour Detection 6
3.1.2 Noise Reduction 7
3.1.3 Position Identification and Direction Analysis 7
3.2 Serial Port Data Communication 8
3.2.1 Serial Port Communication 8
3.2.2 Serial Port Hardware Connection 9
3.2.3 Microcontroller Asynchronous Serial Data 9
Communication
3.3 Microcontroller Programming _ 10
3.3.1 Asynchronous Serial Data Communication 10
Configuration
3.3.2 Microcontroller C Language Programming 11
3.4 Tools | 11
3.5 Project Flow Chart 12
CHAPTER 4 RESULT AND DISCUSSION 13
4.1 Colour Detection 13
4.2 Vector Identification and Direction Analysis 16
43 Real Time Image Capturing 23
4.4 Serial Port Communication Testing 26
4.5 Wired Serial Port Data Transfer _ 29
46 Parallel Data Radio Frequency (RF) Wireless Transmission 31

Vi

CHAPTER 5 CONCLUSION AND RECOMMENDATION
5.1 Conclusion
5.2 Recommendation

REFERENCES

APPENDICES
Appendix A
Appendix B
Appendix C
Appendix D

“Appendix E

Serial Port Data Communication Connection

HSI Colour Detection Algorithm

Vector Identification & Direction Analysis Algorithm
PIC Code for Serial / Parallel Data Conversion

PIC Code for Motor Response

vii

33
33
34

35

36
36
37
38
41
43

LIST OF FIGURES

Page
1 Serial Port Diagram 8
2 Receive Status and Control Register (RCSTA) Register 9
3 #use rs232 [option] Command 10
4 HSI Colour Detection Algorithm Qutput Image 16
5 Noise Reduction Oufput Image 17
6 Ball and Robot Location Display in Command Windows 19
7 Analysis on Direction of The Ball from The Robot 20 -
8 Analysis on Position of Robot Head 20
9 Analysis on Direction The Robqt Move 22
10 Detected Ball and Robot Output Image 23
11 Vector of Ball from Robot Display in Command Windows 23
12 MATLAB Workspace Data 24
13 MATLAB Image Acquisition Hardware Information 25
4 MATLAB Video Preview 26
15 Real Time HSI Colour Detection Algorithm Output Image 27
16 Serial Port Configuration 28
17 Serial Port Configuration 29
18 Serial Port Transmit / Receive Testing 30
19 TX9902B RF Transmitter Pin Out 31
20 RX9926 RF Receiver Pin Out 33
21 Transmitter (Serial Port, MAX233, RF Transmitter) Schematic 34

viii

LIST OF TABLES

Table Page
1 HSI Colour Detection Algorithm Flow Chart 11
2 Vector Identification and Direction Analysis Flow Chart 15
3 Identification on Head of Robot Flow Chart - 18

4 Analysis on Direction The Robot Move Towards The Ball 21

CHAPTER 1
INTRODUCTION

1.1 Background of Study

Computer vision and image processing technology is widely used recently
for research and deﬁelopment purposes. An image, such as photograph or video
frame, is analyzed and processed with software to generate output either in image
form or other parameters. For instance, ball tracking robot relies heavily on image

processing to locate the position of ball so that robot is able to move towards it.

Ball tracking robot project can be broken down to two parts, The software
part is about the ball detection using software such as MATLAB, with specific
algorithms designed to locate and track a ball during the process. Based on these
algorithms, the system will accurately distinguish between stationary and moving
objects in a stream of video frames and is able to consistently detect which objects is
the targeted ball and robot. A webcam is placed on top of the field, facing down and
capturing the view of the field. The system should be able to detect both ball and
robot all the time, obtaining the direction for the robot movement precisely, and
transmit signal to move the robot towards the ball. Overall, knowledge of colour

filtering, edge detection, background subtraction is applied.

After analyzing the video frame and locating the position of both the ball and
the robot, instructions are generated in MATLAB to enable to lead the robot towards
the location-of the ball. On the other hand, a microcontroller is placed on the robot,
where it is programmed to read and run the program generated by MATLAB. In this
project, we can either use assembly language or C programming language to
program the microcontroller, but C programming is preferred, as it is easier to
understand and master. After the correct output signals are generated, the signals

will be sent to the robot using wireless connection.

1.2 Problem Statements

In sport based competitions, there is need to locate the exact position of the
ball. This is because it is hard for human eye to identify whether a soccer ball
crosses the goal line, or whether a baseball ball is pitched outside or inside the strike
zone. This leads to researches on implementing computer vision and image
processing in determining the location of the ball, with technology such as hawk eye
technology widely used in tennis games nowadays to calculate the outcome of the

ball landing accurately.

In even advanced category, many algorithms were written and tested to
detect and locate other specific objects, which contributing not only in sports, but
also others fields such as security and manufacturing. Later on, merely object
detection is not sufficient, as people request to have the system analyzing and
responses to the output results. Microcontrollers are brought in to complement with
the image processing, to be able to control the machines or robot to complete certain
tasks depending on the situation. Microcontrollers can be designed in such a way
that they are controlled manually, or automatically based on the data retrieved from
the programs itself. Applications of irhage processing and robot controlled manually
are bomb disarming robot and erhergéncy rescue robot, while plenty others products

are designed to run automatically, such as ball tracking robot.

For ball tracking robot, challenges faced are problems related to occlusions,
shadows, and real time processing. Existing researches are done in such a way that
the webcam is placed on the robot, which gives user a first person viewpoint;
however in this project, the webcam will be placed on top of the field, just like a live
broadcast viewpoint, where the webcam captures the images continuously, detecting
both the ball and the robot, and lead the robot towards the ball. For robot games, it is
extremely vital for the correct vector calculation between ball and robot, as an error
in analysis will lead to huge different in robot response. This is because all the

decision makings are preprogramming and automated.

1.3 Objective

This report studies the methods and algorithms used for ball tracking as well as
locating the robot and calculating the distance between the two objects to achieve

the following objectives:
1. To accurately identify and locate the position of the ball and the robot.
2, To identify the vector between the ball and the robot precisely.

3. To transmit vector data to robot to intercept ball as it moves in target area

1.4 Scope of Study
The scope of the research works is summarized as follows in order to achieve the
objectives within the time frame and funds allocated:

1. The focus of the study is bésed on Ball Tracking Robot, where movihg the

robot towards the ball automatically is prioritized.

2. MATLAB software is used as the part of the image processing, where
algorithms are designed and tested to detect the ball and the robot.

3. After vector between the ball and the robot is calculated, data is programmed

so that it will be sent to the robot to move towards the ball automatically.

CHAPTER 2
LITERATURE REVIEW

2.1 Circle Detection

T. Orazio et al. [1] stressed on edge detection to detect and identify the ball from the
video frame. Circle Hough Transform (CHT) is implemented to find circular
patterns of a given radius R within an image. This edge algorithm can be formulated
~as convolutions applied to an edge magnitude image Circle detection operator
applied over all the image pixels produces a maximal value when a circle is detected
with a radius in the range {Ruin, Ruax]. Hongying Zhang, et al. [2] used Hough
transform to locate the possible center pixels of the balls. After the center of the ball
is targeted using Hough Transform, the entire ball can be easily computed using
weighted average of the center pixel with its 8-neighbourhood pixels about their

gray world normalization values.

2.2 Colour Detection

Xiao-Feng Tong et al. {3] showed that colour detection is another alternative for ball
detection. Field extraction can be .done with HSI (Hue, Saturation, and Intensity)
colour space. Those backgrouhd sections are set with dark colour. After field region
extraction, region analysis can be done with only the objects in it need to be
considered and examined. A coarse-to-fine search strategy is used to identify a
unique ball as well as the robot. Finally, colour evaluation is applied to get the
objects targeted. Jusoh, R.M. [4] captured single frame image every second in RGB
(Red, Green, and Blue) format. Image processing starts with color thresholding
where pixel values below the threshold value will be treated as black colour. Colour

thresholding can easily separate the targeted objects from its background.

23 Wireless Data Transmission

Manigandan, M et al. [5] focused on the implementation of a wireless Mobile
Robot control with Object detection based on coordinates and to process the images
using MATLAB. To transfer the data to mobile robot, serial port COM is used for
transferring the data generated from MATLAB based on the position of the detected
object byte by byte. Wireless control eh'minatés the constraint in distance between
the color object and robot for better tracking from remote location. The serial /
parallel binary data is received from the computer. ‘The data is transferred to the
microcontroller. The receiver receives the transmitted data and is sent to the decoder
IC. The decoder converts the serial data into parallel data and is transmitted to the
microcontroller. The microcontroller drives the motor to perform the function based

on data received.

2.4 Robot Movement Control

Alauddin Al-Omary [6] broke down the step by step instruction on how to control
the robot automatically based on the data programmed in microcontroller. With the
decision made, the robot can move forward, backward, or turn to left or right. The
robot can be programmed to stop in front of the ball automatically when it reached
the location of the ball, PIC 16F and 18F Series are example of microcontrollers that
can be used where we can either program it in assembly language or C programming

language.

CHAPTER 3
METHODOLOGY

This project can be categorized into three main parts:
1. Matlab Analysis
2. Serial Port Data Communication

3. Microcontroller Programming

3.1 Matlab Analysis

3.1.1 Colour Detection

Colour detection is preferred in this project as colour, when converted to digital
value, can be detected and identified clearly. HSI (Hue, Saturation, Intensity) image
is processed to further highlight the particular colour assigned to both robot and ball.
Compared to RGB (Red, Green, Blue), HSI works better for those looking for
specific colour that does not have matches in the datﬁbase, with the brightness and
dilution taken into account. With the knowledgé in image processing, HSI algorithm
can be constructed to detect certain colour range. For example, if the ball is green in
colour, we can easily locate the ball in the image captured by highlight pixel with
hue value range in between 120 £10% to be white, while other out of range pixels
black. (Noted: Hue value for pure green is 120, with the £10% as the tolerance for
the green colour to be recognized.) Same goes to the Saturation and Intensity, where

we can modify based on the dilution and brightness level.

3.1.2 Noise Reduction

After correctly setting the HSI range for the ball and robot to be recognized, there
will still be some noise inserted in the output image. Noise is the random unwanted
signal that might affect the quality of image processing. As a result, noise reduction
is a must in image processing to enhance the quality of the project. Most common
noise happened in webcam image/video capturing is the salt and pepper noise.

Erosion masking is applied to help to generate more accurate output result.

3.1.3 Position Identification and Direction Analysis

With two separate output results generated (one for the ball detection and the other
one for robot detection), the pfxel location for both ball and robot are recorded.
Those pixel location is important as they are used to determine which direction the
robot will move so that it can reach the ball. Six possible robot movements are
identified, where the robot can move forward, backward, left, right, or even 45
degree to front or back, -45 degree to front or back, and last but not least, stop when
it detect that the ball is a few pixel near the robot. In this project the time of the
robot movement is a non-factor as the web camera will get a snapshot continuously,
for example, every 3 seconds. Such real time data analysis allows us to be able to
exclude the delay time for the robot movement as long as we are able to identify the
location for ball and robot and manage to determine on which direction the robot
need to move to approach the ball. This algorithm is also applicable to both static
and moving ball. This is becaﬁse éMATLAB will always update the latest location of

the ball and robot, and will lead the robot towards the current location of'the ball.

3.2 Serial Port Data Communication
3.2.1 Serial Port Communication

Serial port communication is a common communication protocol used to interact
between MATLAB and microcontroller. Serial port is easier to implement as it
transmits multi-bit word bit after bit (when at any given moment only one bit will
pass). Wired and wireless serial port communication will be tested out before setting
up the whole transmission module. The common serial port used consists of 9 pins,

with function of each port shown below:

Pin | Signal Pin Signal
1 Déta Carrier Detect 6 Data Set Ready

2 Received Data 7 Request to Send

3 Transmitted Data 8 Clear to Send

4 Data Terminal Ready 9 Ring Indicator

5 Signal Ground

Figure 1: Serial Port Diagram

3.2.2 Serial Port Hardware Connection

Since this project requires communication between a microcontroller and a PC
(sending output which consists the direction for the robot to move toward the ball
| from MATLAB in PC to a microcontroller), differences between PC and
microcontroller need to be taken into consideration. PIC microcontroller has
Universal Synckronous Asynchronous Receiver Transmitter (USART) which
operates using CMOS logic levels changing between +5V and 0V to represent logic
1 and 0. However computer serial port (RS232C) on the other hand, operates in
different voltage levels. It represents logic 0 with -10V and logic 1 with +10V.
Direct connection between microcontroller USART pin to PC is not allowed due to
the defense in logic voltage level. As a result, _specially designed serial level
converter ICs such as MAX232 is used to convert signals from -10 to +10V received
from computer side into 0 and 5V which can be used with microcontrollers. The
schematic of this serial port data communication connection can be viewed in

Appendix A.

3.2.3 Microcontroller Asynchronous Serial Data Communication

Since there is no a full synchronization between the transmitter (PC), that sends the
data, and the receiver (microcontroller), that receives the data, asynchronous serial
data Communication is applied. As mentioned earlier, PIC microcontroller uses
Universal Synchronous Asynchronous Receiver Transmitter (USART) to
communicate with external components such as computer. Microcontroller can be
either transmitter, receiver, or both. However, in this project microcontroller
functions merely as receiver to get the direction input from the PC and response by
moving towards the robot, only Receive Status and control register (RCSTA) register

need to be enabled.

Figure 2: RCSTA Register

3.3 Microcontroller Programming

3.3.1 Asynchronous Serial Data Communication Configuration

For hardware serial data communication in PIC microcontroller, port C6 is assigned
for transmitter (TX) while port C7 is assigned as receiver (RX). Before that, RS232
(Recommended Standard 232) port is called with command #use rs232 foption].
RS232 topology is a point-to-point protocol mainly used for serial port
communication, The option for the PIC microcontroller #use rs232 [option]

command are as below:

Baud = x Set baud rate to x
XMIT = pin* Set transmit pin as pin*
RCV = pin* Set receive pin as pin*

PARITY = x Set parity to none (x=N), even (x=E) or odd(x=0)5

BITS = x Set data bits to x.

Associates a stream identifier to this RS232 port.
The identifier may be used with functions such as
| fputc ()

STREAM =
stream_name

Figure 3: #use rs232 Command
Example of hardware based #use rs232 command is provided:
#use RS232 (baud=9600, parity=N, xmit=PIN_C6, rcv=PIN_C7, stream=, bits=8§)

In our project, since PIC microcontroller functions only as receiver, only PORT C7

is needed.

10

3.3.2 Microcontroller C Language Programming

C language can be used to program a PIC microcontroller. In this project,
microcontroller will receive data sent by MATLAB and response toward the bali
based on the input received. PIC C Compiler software is used for programming
purpose. The program is built and compiled for error checking. After that a HEX file
will be generated. The HEX file can be loaded in PIC Simulator IDE to test its
functionality in simulation mode. With programmer we can load the HEX file into

microcontroller and can be tested in hardware.

34 Tool

Since this is a project combining both image processing and microcontroller
programming in robotic field, plus data communication in serial port data

communication, the list of the tools required is listed as below:

1. MATLAB 7.10.0 (R2010a)

2. Web Camera

3. Serial Port with MAX233 Chip
4. Radio Freqﬁency (RF) Transmitter / Receiver Module
5. Robot

6. PIC 16F877 Microcontroller

11

35

Project Flow Chart

Image is captured and éa:ved o ' ‘

Image is convetted o I-ISI Lmaga

1

Hu.e. Saturatmn and Inte:ns;.ty (HSI) valuc is mserted _

¥ nr'example:' yellow has Hue value around 40)

i
i
H
i
; i
; _— :

‘ Fmal output u:nage w1th targeted colour range in 1‘Iv‘\FfE[I’I‘E

- et o v S ——

Pmel w:thm desu:ed I-ISI range is hlghhghted as 1E\-’I—II’I’E
Pixel re1ected is marked as BI.ACK

i
|

.- None ta.rgeted colour range in BLACK

S

Erosmn is apphed to filter onut unnecessa.rv noise

TN S——— . P— - A g A Lt T

Position of ball with reference to robat is identified

: Posumn of the head of‘ robcft is identified

_Déu:a regarding direction of robot movement is generated |

g

: Data is sent to RF Transmxtter via senal pon and transmitted <
E

Datais detected recmved bv RF Rece;vﬂ pla.ced on robot :

i s g - - e e E—

i

Data is sent to PIC microcontroller
PIC mcrncontroller prompts rob ot to move towards ball

12

CHAPTER 4
RESULT AND DISCUSSION

4.1 Colour Detection

Accepted range of the HSI value will be highlighted. Those accepted pixel will be

changed to white colour while other rejected pixel will turn out to be black colour.

Table 1: HSI Colour Detection Algorithm Flow Chart

Image is captured and saved

N4

Hue, Saturation, and Intensity value is chosen

- (For example: yellow has Hue value around 40)

v

Tolerance for Hue, Saturation, and Intensity is set |

(For example: £10% for H, £50% for S and I)

v

Convert image to HSI image

v

Each pixel in HSI image is compared

with the desired HSI range

v

Pixel within desired HSI range is highlighted as WHITE

Pixel rejected is marked as BLACK

)

Final output image with targeted colour range in WHITE,

None targeted colour range in BLACK

13

Example of the HSI colour detection algorithm can be viewed in Appendix B.

Figure 4 shows an example where vellow colour detection algorithm is applied to
detect area which match the +10% tolerance of yellow colour. (Hue value for

yellow: 720)

HS! mage Delcted mage (Yol

Figure 4: HSI Colour Detection Algorithm Output Image

With the Hue value = 0.2 + 0.1 = 0.2*360 + 0.1*360 = 72 + 36. Those pixel with
hue value in the range of [72-36 72+36] = [36 108] will be accepted and marked as
while pixel. Other non-targeted pixel will be set as black colour. For information,
[36 108] is the colour range in between YELLOW and LIGHT GREEN. There will
always be some small non targeted areas that belong to those particular colour
ranges. As noticed, there are some small portion which also get accepted. We need
to get rid of this unwanted portion. One way to do it is to apply erosion method to

squeeze the white area to get more accurate center point.

Erosion is a great method to get rid of some small selected area (unnecessary noise).

14

The code is as below:

SE = strel(‘disk’,10);

g = imerode (I, SE);

subplot (1,2,1) ;imshow(I);title(‘'Original Detected Area’);
subplot (1,2, 2) ;imshow(g) ;title(‘Image after Erosion’);

The output image is shown in Figure 5 below:

Figure 5: Noise Reduction Output Image

Erosion ‘shrinks’ or ‘thins’ object in a binary image. With the structuring element
(SE) set by user, user can decide how much he/she would like to shrink the original
image. Based on codes provided above, a disk shape SE with radius of 10 pixels is
applied. It proves to be enough to delete those thin and random white spot notice on
the original colour detection image (right) with the image after erosion (left) clearly

show the exact location of the yellow ball.

Note: For real time image capturing and processing, more noise will appear.
Common noise such as salt and peppers noise can be filtered using median filter.

Thus, more filtering is needed for better data collection.

15

4.2 Vector Identification and Direction Analysis

With the same algorithm, robot can be detected by changing the hue value
accordingly. After getting both robot and ball detected, the direction need to be

analyzed and determined so that robot can move towards the ball.

First of all, save the pixel location of the location of ball and robot. Next, perform
normal subtraction to get the pixel difference between the ball and robot. Let robot
be the reference point, we can easily know which direction the ball is from the robot.
Finally, for each particular direction, different bit is generated to send to

microcontroller.

Assume yellow ball as the ball, while blue ball as the robot, perform the HSI colour
algorithm, 7 as the detected image for ball (yellow); while 7 as the detected image for
robot (blue). The detailed step by step instruction is shown in Table 3.

Table 2: Vector Identification and Direction Analysis Flow Chart

Location of ball is saved as [ballx bally]

Location of robot is saved as [robotx roboty]

v

Robot as reference point,

Perform the subtraction of xy point of robot from ball

xdiff = robotx - ballx;
ydiff = roboty - bally;

v

Based on the result of subtraction,

Determine the vector / direction of the ball from the robot

Vector Identification and Direction Analysis algorithm can be viewed in Appendix
C.

16

In command window:

“BTmmand Window

) New to MATLAB? Watch this Yideo, see Demos, or read Getting Started.

>> bally
bally =
94

>> robotx

robotx =
275

>> roboty

roboty =
410

>> redx

redx =
425

>> redy

redy =

fe 389

Figure 6: Ball and Robot Location Display in Command Windows

We determine the direction of the ball from robot by dir (direction), where we check
the x axis difference as well as y axis difference between ball and robot with robot

as reference.

From info in Figure 6, we notice that ball is located at [165 94] while robot is
detected at [275 410]. With y axis increases from left to right while x axis increases
from top to bottom, we can easily conclude that ball is on top left of the robot, on the
other hand. means that ball is located top left of the robot. (top left as in top left of

the webcam)

17

There are four possibilities for dir, as shown in Figure 7 below:

X axis _
xdiff > 0; xdiff > 0;
vdiff > 0; ydiff <= 0;
dir=1 dir=2

~ ¥ axis

xdiff <0; xdiff < Q;
ydiff > 0; - ydiff <= 0,
dir=3 | dir=4

Figure 7: Analysis on Direction of The Ball from The Robot

After determining the location of ball _from robot, we must then determine where the
‘head of the robot is facing. This is crucial as sometime the robot’s tail will face the
ball instead of its head. At that point, moving the robot forward is éctually pulling

* the robot further away from the ball. Thu_s two different colour sets are used to
determine the head and tail of the robot. In this project, the head of robot will be
covered by blue colour paper; while tail is covered with red colour paper. The same
algorithm is applied, only that this time the vector difference between blue colour
(robot head) and red colour (robot tail) is determined. The vector difference is

stored, and the four possibilities are shown in Figure 8 below:

X axis
Robot facing top left I Robot facing top right
of the webcam screen of the webcam screen
robotdir = 1 ' robotdir = 2 _
<« Y axis
Robot facing bottom [eft | Robot facing bottom right
of the webcam screen of the webcam screen
robotdir =3 robotdir =4

Figure 8: Analysis on Position of Robot Head

18

The step by step instruction on how to locate the position of robot head is shown in
Table 4.

Table 3: Identification on Head of Robot Flow Chart

J.ocation of robot head is saved as [robotx roboty]
Location of robot tail is saved as [redx redy|

v

Robot head {blue colour) as reference point,

Perform the subtraction of xy point of robot head from robot tail

xrobot = redx - robotx;
_yrobot redy - roboty;

v

Based on the result of subtraction,

Hi

Determine the position of robot head.

if {xrobot>Q) && {yrobot>0)
robotdir = 1; %robot facing top left corner
end

if (xrobot>0) && (yrobot<=Q}
robotdir = 2; %robot facing top right corner
end

if (xrcbot<=0} && (yrobot>0)
robotdir = 3; %robot facing bhottom left corner
end

if {xrobot<=0() && (yrobot<=0)
robotdir = 4; %robot facing boettom right corner
end

The position of the head of robot is vital as without identifying it, the robot might
move away {(oppostte) form the robot instead of moving towards it. This is because

all the image analyses are based on the webcam screen viewpoint.

19

A_s we know, we can set the robot to move on any of these_ six directions: forward,
forward left, forward right, backward, backward left; and backward right. The final

output, sig, which content the direction of robot movement is shown in Figure 9

below:

Move forward sig
=2
Move forward left sig Move forward right sig

N \/ N
Move backward left / wove backward right sig
=4

sig=16 _
Move backward
sig="5

Figure 9: Analysis on Direction The Rdbot Move

Table 4 shows the output of direction of robot (sig) with respect to the location of

ball from robot (dir) and the head of the robot facing (robotdir).

Table 4: Analysis on Direction The Robot Move Towards The Ball

robotdir dir=1 dir=12 dir=3 dir=4

2 3 6 G
1 .
Forward Forward Right | Backward Left Backward
1 2 5 4
2
Forward Left Forward Backward Backward Right
4 5 2 1
3
Backward Right Backward Forward Forward Left
5 6 3 2
4
Backward Backward Left | Forward Right Forward

20

Final result of the complete HSI algorithm (Detected ball and robot image) is shown

in Figure 10

gy gl Dolected Soma (2ol rrage (batl dar oo
‘ - .
"
1
miggnal HSV erecied Arzg (Jabat bine) image pebo! blos) afie: Erosion
Ovgnial Detected Avea (robot red) mage [obut red] ater Eresion

1) New to MATLAB? Watch this Video, see Damos, or read Getty

>> dir

dir =

1
robotdir

robotdir =

Figure 11: Vector of Ball from Robot Display in Command Windows

21

As shown in Figure 11, MATLAB manages to get dir *1°, which means the ball is
located on the top left of the robot (webcam view). This direction analysis works
perfectly as long as the ball and robot can be detected correctly.

Next, by analyzing the blue (head) and red (tail) cover on the robot, we get robotdir
= 2, which indicate the robot is facing top / top right on the screen. And finally. sig =
1 (move forward left) indicates that MATLAB manages to generate correct direction
of the robot to move towards the ball.

Overall, since the two algorithms works perfectly in selected image, the only
problem left is the unexpected image quality in real time image capturing. More
filters and more checking are needed to enhance the accuracy of the data collection.

The data generated by MATLAB throughout the image processing process is shown

in Figure 12:

) <4B0x640 double > -1 0
0 <4B0x640 double > 5.5511... 0.8487
1 <480x640 double > o 0.6000
1 1 1 1
0 [0.1500,0.6000,1] 01500 1
o [0.6000,0.6000,1] 0.6000 1
<Too .. [0.0500,0.6000,1] 0.0500 1
<480x640 double > o <4B0x640x3 uint8 > <T00 ... <Too..
<480x640 double > 1] <480x640=3 unt8> <Too... <Too,
<480x640 double > o <480x640x3 uints > <Too . <Too ..
<480x640 double > 1 1 1 1
480 480 1 1 1
640 &40 1 1 1
<480x640 double> 0 <480x640 double> 0 1
<480x640 double > o 425 425 425
<480:0640 double > 0 399 389 389
<480x640 double > 1 2 z 2
<480:x640 double > -1 275 275 575
<480x640 double > 0.0013 410 410 410
<480x640 double > 0 1 ; i
G a10m 3 3 3
0.4000 0.4000 [0.1000,0.4000,0.5000] ©.,1000 0,5000
3 <1x1 videoinput >
<4B0XE40:3 LinkB> <Too b 480 60
<480x640 double> * 0 110 110 1o
165 165 150 150 150
o4 94 640 640 640
<480%640 double> o 316 316 316
-21 21 21
Figure 12: MATLAB Workspace Data

22

43 Real Time Image Capturing

In MATLAB, there is video / image capturing toolbox available for real time image
acquisition. The step by step procedure to enable the image acquisition toolbox is as
below (Figure 13):

@mwmwwmuummmwmmm. x

>> imaghwinfo
ans =

InstalledAdaptora: ('coreco’ ‘winvideo')
HATLABVersion: '7.10 (R2010a}'
ToolboxName: 'Image Acqguisicion Toolbox'
ToolboxVersion: ‘3.5 (R2010a) '

>> info=imaghwinfo (' winvideo')
info =

AdaptorDliName: [1x81 char]
AdaptorPllVersion: '3.5 (R2010a)°*
AdaprtorNeame: 'winvideo'
DeviceIDs: {[1])
DeviceInfo: [1x1 scruct]

»>> info=imaghwinfo ('winvideo' 1)
info =

DefaultFormat: 'RGBZ4_320x240'
DeviceFileSupported: O
DeviceName: ‘'Vimicro USBE PC Camera(ZCD30D1PL)*
DeviceID: 1
ObjectConstructor: 'videoinpuc('winvideo', 1}°'
SupportedFormacs: (1x12 cell)

fx >>

Figure 13: MATLAB Image Acquisition Hardware Information

Image Acquisition Hardware Information (imaghwinfo) allows us to check the
available web camera. Format for the device determine the size of the web camera

window.

23

Command Window o Dlaf

i_ 1 New to MATLAB? Watch this Yideo, see Demos, or read Getting Started.

>> vid = wvideoinput (invideo', 1)
Summary of Video Input Object Using 'Vimicro USB PC Camera(ZCO301PL) ‘.

Acquisition Source(s): inputl is available,

Acguisition Parameters: 'inputl' is the current selected source.
10 frames per trigger using the selected source.
'RGBZQ_I}ZO):Z‘ID' video data to be logged upon START.
Grabbing first of every 1 frame (s).
Log data TO 'memory’ on ctrigger.

Trigger Parameters: 1 '"immediacte’ ctrigger(s) on START.
Stacus: Waiting for START.
0 frames acquired since starting.

0 frames available for GETDATA.

>> preview(vid) Yirden Preview - winviden:1

B >

320x240 [[Waiting for START
== o

Figure 14: MATLAB Video Preview

In Figure 14, videoinput command start the summary of the video input (it 1s video

stream collection, with gefsnapshot command is needed to capture a single image).

In this case we notice that the web camera “Vimicro USB PC Camera’ is identified.

A video preview with exactly same size as the default format will pop out when

preview(vid) command is called.

With the HSI colour detection algorithm discussed in Section 7.1 applied, we

manage to get yellow ball detected area, but the quality is low as real time

processing always encounters unwanted noise.

24

Onginal mage iobehs Image Delacted Areas

Figure 15: Real Time HSI Colour Detection Algorithm Output Image

rgb2hsv command is light sensitive. Same object under different light coverage will
generate different hsv value, shown clearly in Figure 15. It makes image analysis
challenging. Web cam is not consistent as it might give too much noise or blur lens
focus. As a result, a higher pixel and better focus webcam is needed for image

quality improvement.

25

44

Serial port communication serves as the data transmission medium. A string of
character (8 bits) at a time. For testing purpose, Port 2 (Receive, RX) with Port 3

(Transmit, TX) is connected together. With the aid of AccessPort software, we can

Serial Port Communication Testing

detect the data transmitted and received via serial port.

First of all, we need to make sure the serial port setting is correct. Right click My
Computer, Properties, Hardware, Device Manager, Ports (COM & LPT), check the

available COM port.

~ Deyice Manager

- B FS 2HE 8 =28

[+ {3 Human Interface Devices
¥ () IDE ATAfATAPI controlers

7 Bluetooth Serial Port (COM4)
5 Bluetooth Serial Port (COMS)
3 Bluetooth Serial Port (COME)
7 Blustoath Serial Port (COM?) I
7 Biuetooth Serial Port {(COMS)
7 Blustooth Serial Port (COMI)
7 Communications Port {COM1
7 ECP Printer Port (LPT1) k
i+ ¥ Processors
i= €& 5C51 and RAID controllers
SCSIfRAID Host Cantroller
ST3TIGER SCSI Controller
= @ Sound, video and game controllers
@ Audio Codecs
©. Bluetooth AV/HS Audio
@ KxCam - virtual Camera

¥ & Keyboards | SystemPe

SysemResie | AuomsicUpdates |

@) Mice and other pointing devices | Generl | ComputerName | Hadwae | Advanced
® Modems
H %Mﬂs Device Manages
6 M Network adapters The Device Manages lists all the hardware devices nstalled
= ¥ Ports (COM &LPT) on your computer. Use the Device Manager to change the

g Bluetooth Serial Part (COM10) propesties of any device.

Bluetooth Serial Port (COM11) -

" Biuetooth Serial Port (COM12) | |__DeicebMmgn |

& Bluetooth Serial Port (COM13)

 Bluetooth Serial Port (COMS) Diivers

Driver Signing lets you make sure that installed drivers are
with Windows. Windows Uipdate lets you set up
how Windows connects to Windows Update for diivers.

| DiveiSignng | | Windows Update |
Hasdweare Profiles
Hardware profiles provide a way for pou o sel up and store
different hardware configurabions.
[HadwaeProfies |
[ook |[Cancel]! ook

) | prary Anchn Nrivers

Figure 16: Serial Port Configuration

Right click the preferred Serial Port (in this case, Communication Port, COM1),
choose Properties. Go to Port Setting. Record the detail of the baud rate, data bits,
parity, stop bits, and flow control. Those information need to be matched in Matlab

programming. Visual description is shown in Figure 17.

26

T Device Manager 2
Fie Action View Help

- B 28 28 8 =RE

i 4 Floppy disk drives
[# {3 Human Interface Devices
[# (=3 TDE ATAJATAPI controllers

‘General| Port Setly : ;
& Keyboards | General | Post Settings | Driver | Detads | Resources |

: Bk per soconct ST ~ |

% HB Network adapters — - —

= 7 Ports (COM&LPT) Diaticls &
5 Bluetooth Serial Port (COMIO) R - =X
5/ Bluetooth Serial Port (COM11) Pady. | None L]
5 Bluetooth Serial Port (COMIZ) _ -
5/ Bluetooth Serial Port (COM13) Stopbas 1 v
- Bluetooth Serial Port (COM3) L
- Bluetooth Serial Port (COM4) Flow contiol - None ~
Y Bluetooth Serial Port (COMS) p
. Biuetooth Serial Port (COMG)
7 Bluetooth Serial Port (COMT) [Advanced. | [Restote Defauits |
' Bluetooth Serial Port (COMB)
¥ Blustooth Serial Port (COMI)
7 Communications Port (COM1)
- ECP Printer Port (LPT1)

= . Sound, video and game controllers o |

@ Bluetooth AV/HS Audio
@i xxCam - Virtual Camera
L . oA

Figure 17: Serial Port Configuration

Note: Same configuration is needed in AccessPort software.

In Matlab, senial port connection is setup using obj = serial ('port')syntax. As
noticed, serial port is setup exactly the same with information stated in the
Communication Port (COM1) hardware. The code is as below:

inp = 3;

SerPIC = serial('coml'); 4<--change this appropriately
set (SerPIC, 'BaudRate'; 9600, 'DataBits', 8, 'Parity',

“fone',;, "8topBits'; 1, "FlowCoentrol', 'none');

fopen(SerPIC);

fprintf (SerPIC, "%c', inp);

fclose (SerPIC); %--close the serial port when done
delete (SerPIC);

clear SerPIC;

27

We can monitor data transmitted and received via AccessPort (Port 2, RX and Port
3, TX of serial port are connected.). Screenshot of the result collected from
AccessPort is shown in Figure 18.

Fie Edt View Montor Tods Operation Heb

Terminal

wo DE: 9

Monito

ey 8iD e

[19
20

(22
|23

|25

Time Function
[00000000) IRP_M|_CREATE
[0000C000) IRP_M)_CLOSE
[00000000) IRP_M|_CREATE
(00000000 1RP_M)_CLOSE
(06000000] IRP_M)_CREATE
{06000801] IRP_M)_CLOSE
[00000000] IRP_M]_CREATE
106000000 IOCTL SERIAL_SET_BAUD_PATE
{00000000] IOCTL SERIAL SET_UNE CONTROL
(00000000 IOCTL SERIAL SET_BAUD_PATE
100000000 IOCTL SERIAL SET_UNE_ CONTROL
[£0000000] 10CTL_SERIAL_SET_BAUD_PATE
|00000000] IOCTL_SERIAL_SET_LINE_CONTROL
00000000 HOCTL_SERIAL_SET_SAUD_RATE
{00000600] 10CTL SERIAL_SET_LINE_CONTROL
[00000000] IOCTL SERIAL SET.BAUD_RATE
[00000000) IOCTL SERIAL SET.LINE CONTROL
[00000000) 1OCTL SERIAL_SET_BAUD_RATE
[00000000) 1OCTL SERIAL SET_UINE CONTROL
[0G0000D0) (OCTL SERIAL SET_BAUD_RATE
(00000000 10CTL_SERIAL_SET_LINE_CONTROL
|00000000) IOCTL_SERIAL_SET_BAUD_RATE
[06000000) IOCTL SERIAL_SET_LINE_ CONTROL
[0G0D001 2] IRP_M) WRITE
[00000022] IRP_M)_CLOSE

Port Opened - MATLAB exe

Port Closed

Port Openad - MATLAS exe

Pore Cloged

Port Opened - MATLAS exe

Port Closed

Port Opened - MATLAB exe
Baud Rate: 9600

StopBies 1, Parity: Mo, Databas €
Baud Rate: 9600

ScopBins: |, Parity: Mo, DanBins 8
Baud Rate: 9600

StopBits |, Panty. Mo, DataBins 8
Baud Rate: 5600

SeopBits 1, Parity. Mo, Datalins B8
Baud Rate: 9600

SeogBits. 1, Parity. Mo, DataBis. 8
Baud Rate: $600

Stoglits: |, Parity: Ne, Datalins ©
Baud Rate: 9500

SeopBits 1, Parity. Mo, DataBns 8
Baud Rate’ 9800

StogBits 1, Parity No, Datalies 8
Length DDO1, Data 03

Port Closed

Figure 18: Serial Port Transmit / Receive Testing

Based on Matlab code shown above, we send an 8-bit character with value 3, which
1s 0x03 in hex. Matlab writes/transmits the data trough Port 3 (TX) and received by

Port 2 (RX). As we can see from line #24 in AccessPort, it manages to receive the
data carrectly.

28

4.5 Wired Serial Port Data Transfer

After making sure that Matlab can transmit the data correctly, the receiver side, PIC
microcontroller, needs to be configured to receive the serial port input. In
PIC16F877A, the USART (Universal Synchronous / Asynchronous Receiver
Transmitter) is utilized for asynchronous serial communication. A built in function

#use rs232 (foption]) can be applied to allow serial data communication.

The code for PIC microcontroller (receiver) is as below:

#include <16F877A.h>
#include <stdio.h>

#fuses HS, NOWDT

#use delay(clock=20000000)

#use RS232(baud=9600, parity=N, xmit=PIN C6é, rcv=PIN C7,
stream=COM1, bits=8}

char c¢;

#INT RDA
void receive isr()
{
c= 0;
output bit (PIN D2,1); // Indicateor of interrupt occurred
delay ms(1000);
o= fgetc(COM1) ;
delay ms (1000} ;

output _df(ec); // Port C as output for serial port data
received

}

void main()

{ . .
set_tris d(0x00);
output_d(0x00}
enable interrupts(INT RDA);
enable interrupts(global);

while (1)
{
}

29

The detail of the #use 75232 is based on the serial port communication, with Port C6

always acts as receiver while Port C7 as transmitter.

Interrupts is used so that whenever there is new data received, it will jump to the
interrupt loop, where LEDs on Port D2 will be turned on, indicating the data being
received (system interrupted). The data received will be in binary form, and it will

be shown as the output via port D, coded by output d(c) command.

Since PIC16F (TTL) operates with logic High (2V - 5V) and Low (0V - 0.8V) while
rs232 is not, MAX 233 chip is needed for PIC to interact with rs232. For rs232 in
between -15V to -3V, MAX 233 will convert the potential difference to 2V - 5V,
- with logic High (1); on the other hand, rs232 with 3V — 15V will be converted 10
logic Low (OV - 0.8V):

Afler receiving the data, PIC microcontroller will convert the serial data into 3-bit

parallel data based on the code provided in Appendix D.

30

4.6 Parallel Data Radio Frequency (RF) Wireless Transmission

As a result of financial limitation, parallel data RF transmitter and receiver modules
are used as the medium for the data output from PC serial port to be transmitted to
the received located on the robot. TX9902B, an 8-bit trinary address, 6-bit binary
data RF transmitter is paired with RX9926, an 8-bit trinary address, 4-bit binary data
RF receiver, The addresses on both transmitter and receiver need to be matched to

enable any wireless communication. In my project, those addresses are left floating.

There are only six possibilities for the robot to move, thus only THREE bits data
(000 for 0 while 110 for 6) are required. TX9902B will feed the 3-bit data through
data port DO (least significant bit), DI, and D2 (most significant bit). With
TX9902B turns on and off every time there is new data ready to be sent, the data can
be received by RX9926 receiver on the robot.

RX9926 can receive four bits data at a time, which is enough for this project. The
data reccived will be the same with the data on transmitter site, as long as both
addresses are same. Valid Transmission pin is available so that we can check the
transmission and connection between transmitter and receiver. For both transmitter

and receiver, 18cm wire is used as the antenna for the communication purpose.

The dimensions and pins out of TX9902B and RX9926 are shown in Figure 19 and
20.

H A
Dimensions & Pin-out k‘ 1

/

iz Rose = S80K
Wtor PT2272 ducodar

on the recaiver side 18 mm

Figure 19: TX9902B RF Transmitter

31

L3

ANT ¥ Use Rosc = 3.3M 3¢ mm
far PT2262 encader

an the trangmitter .’0 +
O side AN
* 03

E—
Rosc D2

+

ol

; o
; 24.5mm
680K plteh @ =o Address pins

e o Lstem T AAAAAAAA

: GRp e “—Io 76543210

VT =0 R pmen e e e

v =1° (615l [@R ER)

€ =0 t cacacaraczaacstn |

Each address pin can 3ssume one of the 3 possible logic states.
i.e. 1 tagic high (R}, logic tow (L) or foating (o connection)
The module is supplied with all the address pins epen.

Figure 20: RX9926 RF Recetver

The schematic diagram of the transmitter side 15 as below:

AL
i

v

£ i ‘ |
-
! B
4 4
{ ‘s 1
. N i T
N P
L el
E 9

Figure 21: Transmitter (Serial Port, MAX233, RF Transmitter) Schematic

Serial Port pin 3 (TX) is connected to pin 4 (R1IN} of MAX233 chip. Pin 3
(R10UT) of MAX233 is then connected to Port C7 (RX) in PIC microcontroller.

32

CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The algorithm for HSI colour detection as well as direction analysis for robot to
move towards the ball is constructed and tested on different set of images. Real time
processing is challenging as the surrounding light effect and web camera resolution
quality will result in different image capture. There are more random and unwanted
noises in real time image processing, and filtering need to be done from time to time

to filter out those unnecessary signals.

Data transmission to transmit processed data from MATLAB to microcontroller is
vital. This is because the data is required so that the robot embedded with
microcontroller can response and move towards the ball. Serial data communication
is preferred as it is simple to be implemented. Wired data transmission is tested to

make sure the data can be transmitted via serial port.

Radio frequency (RF) transmitter and receiver modules are used as medium for
wireless data communication. Serial data transmitted from serial port is converted to
parallel data by PIC microcontroller, and the parallel data is transmitted wirelessly to
the RF receiver placed on the robot. Another PIC microcoﬁtroller located on the
robot will then response with the data received, prompting the robot to move

towards the ball.

33

_PIC microcontroller is programmed in the way it will analyze data received, and
response based on the programming code written. Microcontroller will be

programmed in C programming language.

5.2 Recommendation

The project' proposed can still be improved in many ways. The following will

discuss about aspects that can be improved:-

e Serial USB wireless data transmission module such as XBEE is
recommended for better and more stable wireless data communication. This
is because serial port data transmission is slower compared to USB data

transmission.

o For the object detection algorithm, colour detection algorithm proposed is
one of the techniques used. There are still other suggestions such as shape
detection, field extraction, or combination of both. Object detection
algorithm can be further enhanced with surrounding factors such as light

taken into consideration to come out with more accurate image analysis.

e Microcontroller section can be improved with more decision makings such
as speed of robot, controlled by Pulse Width Modulation (PWM), and angle
of robot movement so that robot can move towards the targeted ball faster

and smoother.

34

(1}

2]

[3]

[4]

[5]

[6]

[7]

[8]

- REFERENCES

T. Orazio, N. Ancona, G. Cicirelli and M.Nitti, “4 ball detection algorithm for real
soccer image sequences”, 16th Int’l Conf. on Pattern Recognition, Quebec, Canada,
Aug. 2002, pp: 210-213.

Hongying Zhang, et al., "Ball Detection Based on Color Information and Hough
Transform", 2009 International Conference on Artificial Intelligence and

Computational Intelligence, pp. 393-397.

Jusoh,. R.M., "dpplication of Vision Target Localization for Mobile Robot "
Research and Development, 2006. SCOReD 2006. 4th Student Conference
on Digital Object Identifier, pp. 144 - 146.

Xiao-Feng Tong; Han-Qing Lu; Qing-Shan Liu, "An effective and fasi soccer
ball detection and tracking method " in Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference on

Volume; 4

Manigandan, M.; Malathi, G.; Madhavi, N., "Wireless vision based moving
object tracking robot through pferceptual color space” , Emerging Trends in
Robotics and Communication Technologies (INTERACT), 2010
International Conference on Digital Object Identifier, Page(s): 20 - 25

Al-Omary, A., "Autonomous object seeking robot based on FPGA and a
single chip microcontroller ", Computer and Communication Engineering

(ICCCE), 2010 International Conference on Digital Object Identifier:,
Page(s): 1-6

Online PIC Serial Communication Tutorial

<http:/f'www.meuexamples.com/PIC-Serial-Communication.php>

National Semiconductor, October 1999

<http://www.national.com/ds/DS/DS14C232.pdf>

35

APPENDICES

APPENDIX A

Serial Port Data Communication Connection

—

»

5

PYY.Y.

r,_u__._,__
‘.

1y

36

RN

\YYYY

APPENDIX B
HSI Colour Detection Algorithm

clc;
clear all;
close all;

a = imread(’'kb.ipg’);

hsvVal = (0.2,1,1}; % HSV wvalue for ball = yellow
hsvvall = [0.6,1,1]; % HSV wvalue for robot = blue

tol = [6.1,0.5,0.5]; % telerance for the HIS value, +-
0.1 in HUE

HSV = rgbZhsv(a);

% find the difference between reguired and real Hue(H) value:
diffH = abs(HSV(:,:,1} — hsvval (1)),

{M,N,t} = size (HSV);
Il = zeros(M,N); I2 = zeros(M,N); I3 = zeros{M,N);

Tl = tol(l);
Il{ find{(diffH < T1)) = 1;

if {(length(tol)>1)

¥ find the difference bDetween reguired and real Saturation(s)
valnuea: .

diffs = abs(HSV(:,:,2) — hsvVal(2))};

T2 = tol(2);

I2(find(diffs < T2) }) = 1;

1f (length{tel)}>2)

% find the difference hetween required and real Intensity(I)

value:
difv = HSV(:,:,3) — hsvVal(3);
T3 = tol(3);
I3(find(difv < T3)) = 1;
I = I1.*12.*%13;
else
I = I1.*12;
end
else
I = 11;
End
subplet(1,3,1) ;imshow(a) ;jtitle{ 'Original Image’); %

originai image

subplot (1,3,2) ;imshow (HSV) ;title (‘H5I Image’);
image

subplot (1,3,3) ;imshow(l) ;title('Detected Image
(Yellow) ') ; & Detected aresa

op

rgbZhsv

37

APPENDIX C
Vector Identification & Direction Analysis Algorithm

S5E = strel('disk',5);
ball = imerode(I,SE);
blue = imerode (B, 8E);
red = imerode(R,3E);
ballx = 0; bally = 0; robotx = 0;
out = 0; outl = 0; out2=0;
for x=1:M
for y=1i:N
if out==0
if balli(x,y) ==1
ballx = x;
bally = y;
out=1;
end
end
if outi==
if blue{x,y) == 1
ropotx = %;
ropety = y;
outl=1i;
end
end
if outz==
1f red(x,y) == 1
redx = x;
redy = y;
out2=1;
end
end
end
end
% 4 possible directions where the
reference
xdiff =0; ydiff =0;
xdiff = robotx - ballx;

ydiff = robety - bally;
if xdiff>0
if ydiff>0
dir = 1;
end
if ydiff<=0
dir = 2;
end
end
if xdiff <=0
if ydiff>0

% oercsion

roboty=0; redx=0; redy=0;

ball i1s locatzd with robhot

38

as

dir = 3;
end

if ydiff<=0
dir = 4;
end
end

% Where the head of rcbot is facing?

xrobot = redx - robotx; % tail {red) -~ head (biue!}
vrobot = redy - roboty;

robotdir = 0;

if (xrobot>0) && {(yrobot>0)
robotdir = 1; %robot facing top left corner
end

if (xrobot>0) && {yrobot<=0)
robotdir = 2; %robet facing top right corner
end

if {xrobot<=0) && (yrocbot>0)
rebotdir = 3; %robot facing bottom left
end ’

if (xrobot<=0) && {yrobot<=0()

robotdir = 4; %robot facing right
end

% Getting direction for robot to move towards the ball

sig = 0;
if robotdir ==
if dir == 1
sig = 2; % move forward
end
if dir == 2
sig = 3; % forward right
end
if dir == 3
sig = 6; % backward left
end
if dix == 4
sig = 5; % backward
end
end
if robeotdir == 2
if dir == 1
sig = 1; % move forward left
end
if dir == 2
sig = 2; % forward
end
if dir == 3
sig = 5; % backward
end
if dir ==

39

sig = 4; % backward right

=]

if robotdir ==

if dir == 1
sig = 4; % move backward right
end
if dir == 2
sig = 5; % backward
end
if dir == 3
sig = 2; % forward
end
if dir == 4
sig = 1; % forward left
end
end
if robotdir == 4
if dir == 1
sig = 5; % move hackward
end
if Qir == 2
sig = 6; % backward left
end
if dir == 3
sig = 3; % forward right
end
if dir == 4
sig = 23 % forward
end

end

subplot (3, 3,1);imshow(a) ;title('Original');

subplot (3,3,2);imshow (I} ;title('Original Detected Area (ball)'):;
subplot (3,3,3);imshow(ball);title('Image (ball) after Erosion');
subplot (3, 3,4) ;imshow (HSV) ;title('Original HSV'};

subplot (3, 3,5) ;imshow (B) ;titie('Original Detected Area (robot
blue)');

subplot (3,3, 6);imshow(blue);title (' Image (robot blue) after
Erosion'y;

subplet (3,3,8);imshow (R} ;title ('Original Detected Area (robot red)');
subplot (3, 3,9) ;imshow(red) ;title (' Image (robot red) after Erosion');

40

APPENDIX D
PIC Code for Serial / Parallel Data Conversion

#include <I6F877A.h>
#include <stdio.h>

#fuses HS, NOWDT

#use delay (clock=20000000)

#use RS23Z2(baud=9600, parity=N, xmit=PIN C6, rcv=FIN C7, stream=COMI,
bits=8)

char c;

#INT _RDA
void receive isr{)
{
o= 0
output_bit(PIN D3,1);
delay ms (1000} ;
c= fgetc(COM1);
delay ms (1000} ;

if (c==6)

{

cutput bit(PIN D2,1);
ocutput bit (PIN D1,1);
output bit (PIN D0,0):;
delay ms{(1000);

} .

else if (c==5)

{
output bit (PIN D2,1);
output _bit (PIN DI1,0};
cutput_bit (PIN D0,1};
delay ms{(1000);

}

else 1f (c==4)

{

output_bit(PIN D2,1);
output bit (PIN D1,0);
output_bit (PIN D0,0);
delay ms(1600);

!

else if (g==3)

{
output _bit (PIN D2,0);
output_bit(PIN D1,1);
output bit(PIN DO,1);
delay _ms(1000);

}

else 1f (c==2)

{
output_bit (PIN D2,0);
output_bit (PIN D1,1);

41

}

output_bit (PIN D0,0) ;
delay ms(1000);
}

else if (c==1)

{

output bit(PIN D2,0);
output bit (PIN D1,0);
output bit (PIN DQ,1);
delay ms(I1000);

}

else

{

output bit(PIN D2,0);
output bit (PIN DI1,0);
output bit(PIN D0,0);
delay ms (1000},

}

void mainf()

{

set tris d(0x00};

ocutput d(0x00);

enable interrupts(INT RDA);
enable interrupts (glcbal);

while(l)
{
}

42

APPENDIX E
PIC Code for Motor Response

#include <16F877A.h>
#include <stdio.h>

#fuses HS, NOWDT

#use delay(clock=20000000)

#define bit0 PIN Cé
#define bitl PIN D5
#define bitZ PIN D6

#define ml1_1 PIN C3 //left
#define ml1 2 PIN CO //left
#define m2_1 PIN C5 //right
#define m2_2 PIN C4 //right

void straight()

{
output_bit(ml_1,0);//left
output bit{ml_2,1);//left
output bit(m2 1,0);//right
output bit(m2 2,1);//right
}

veid reverse()

{
output_bit(ml_1,1);//left
output bit(ml 2,0) s/ /left
output bit(m2_1,1);//right
output bit(m2 2,0);//right
}

void right ()

{

cutput bit(mli 1,0),
output bit(mi_2,1);
cutput bit(m2 1,0);
output bit(mz 2,0);
}

vold left()

{

output_bit(ml 1,0},
output _bit(ml_2,0);
output_bit(m2 1,0);
output bit(m2 2,1);
}

void revright ()

{

output bit(ml_1,1};
output_bit (ml_2,0};
cutput bit(mZz _1,0);
output bit(m2_2,0);
}

43

void revieft()

{

output _bit(ml_1,0);
output _bit(ml 2,0);
output_bit(m2 1,1);
output_bit(m2 2,0} ;
}

void stop()

{

output_bit(ml 1,0);
output bit(ml 2,0);
output bit(m2 1,0};.
output_bit(m2 2,0};

}

void main()

{ .
set tris d(0x60); // Port D5, D6 as input, others are cutput
set _tris c(0x40}; // Port C6 as input, others are output

output bit (PIN C0,0):
output bit (PIN C1,0);
output bit (PIN C2,0);
output bit (PIN C3,0);
output_bit (PIN C4,0);
output bit (PIN C5,0);

setup timer 2(T2 DIV BY 4,255, 1};
setup ccpl (CCP_PWM) ;
setup_ccp2 (CCP_PWM) ;

while (1)
{
if(input(bit2) && input(bitl) && !input(bitl))
{ :
revleft () ;delay ms(2000); //sig = 6
stop ()} /delay ms(1000);
}
else if(input(bit2) && !input(bitl) && input(bit0))
{
reverse() ;delay ms {2000} ; // sig = 5
stop () :delay ms(1000);
}
else if(input(bit2) && !input(bitl) && !input(bit0))
{
revright () ;delay ms(2000); // sig = 4
stop () ;delay ms{(1000);
}
else if(!input(bit2} && input{bitl) && input(bitd))
{ _
right () ;delay ms(2000) ; // sig =3
stop() ;delay ms (1000);
}

else if (!input({bit2) && input(bitl) && !input(bit0)})
{

44

straight();delay ms(2000); // sig = 2
stop () ;delay ms(10060);
}

else if(!input(bit2) && !input(bitl) && input(bit0))
{
left () ;delay ms{2000); /7 sig = 1
stop(};delay ms(1000);
}

else

{
stop ()} ;delay ms(2000); /7 sig = 0
}

45

