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ABSTRACT

The objective of the project is to simulate the production of artificial diamonds in a

chemical vapor deposition (CVD) reactor. Diamond layers would form as layers on the

substrate in the reactor. The behavior of the production of artificial diamonds in the

reactor is not clear and a simulation of the process can provide valuable insight. The

project will cover the nucleation and condensation phases of the diamond formation

process in the CVD reactor.

The project deals with the deposition of carbon particles on a layer of substrate in a

manner that causes it to arrange itself to be diamond layers. The homogeneity of the

nucleation process is not considered as the main purpose it to produce a diamond layer

regardless ofhow homogenous the layer is in terms ofnuclei orientation.

The report starts with an introduction to the project, with an outline of the background,

problems statement and objectives of study. Then, a section that touched on the literature

review followed by the methodology of the project which covers the project activities,

key milestones and tools used. Lastly, the results and discussion of the project so far is

presented ending with the conclusion.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Diamonds are used in an array of fields including mechanical parts, cutting and

grinding, manufacturing, abrasives, coatings, heatsinks, jewellery and more. The unique

properties of diamonds are what makes it truly a valuable material. Diamonds are the

hardest material known to man and it also does not wear easily, has high thermal

conductivity and can tolerate high temperatures. Diamonds occur naturally in nature but

it needs the right conditions which are high temperature, high pressure and it may take

millions to billions ofyears to form.

Fast production of diamonds needs it to be produced synthetically or artificially in

controlled temperatures and pressures using the right methods. One of the methods is by

using Chemical Vapor Deposition (CVD) to from layers of diamond in a condition

controlled chamber.

The CVD method can produce various results for the thickness of the diamonds.

The thickness can depend on the temperature, pressure, gravity, chemical composition

and other variables. Experiments were carried out by researches to find the optimum

condition for diamond growth and there are still possibilities ofbetter conditions.

A model of the production of artificial diamonds using software will provide

insight of how is the situation in the reactor. It will show the CVD process more clearly

and show the situation in the reactor under various temperatures, pressures and chemical

composition hence provide a better understanding ofthe process.

The model developed for artificial diamond production consists of the nucleation

model where the diamonds forms the first seed on the substrate surface and the



condensation model where the diamond starts to grow from the nuclei. The models can

be used to simulate the formation in many CVD reactors.

1.2 Problem Statement

The formation of diamonds consumes an enormous amount of energy and time. In order

to use it industrially, diamonds should be made available in a shorter period of time.

Diamonds need to be produced artificially to cater the needs of the industry which uses it

as cutting materials, polishing materials, abrasives, and coatings.

In order to produce diamonds synthetically, chemical deposition techniques are

used. This technique uses high temperatures to form plasma which creates carbon in its

atomic state and deposits it onto the substrate to form the structure ofdiamonds in layers.

More layers will result in thicker diamonds.

Models of the production of artificial diamonds are developed to provide a better

understanding of the underlying processes and reactions. These models describe the

production process and can be used to find new ways and better parameters to optimize

the process of synthesizing diamonds.

1.3 Objective

The objectives ofthis project are as below:

• To develop a working simulation of the production of artificial diamonds

• To simulate the model and observe the results

• To find any parameters that might contribute to formation ofthick diamond layers

in through CVD process

The simulation focuses on the diamond layer condensation step that affects the growth

rate of the layer on the substrate. The objectives are proposed to be feasible in the time

frame that is available. A 3 dimensional reactor is drawn and meshed to study the



phenomena of carbon deposition. The subject of interest is to find any parameters that

can increase the deposition rate of carbon and at the same time maintain formation of

diamond layer with a flat surface.

In FYP 1, the majority of the work is done to simulate the process of carbon deposition to

form layers of diamond while in FYP 2, the parameters that might affect the deposition

rate is experimented upon to find the optimal parameters.

1.4 Scope of Study

The project comprises the study of the phenomena of carbon deposition to form

layers of diamond on a substrate. The system under study consists of a mixture of

methane and hydrogen in gaseous form with a concentration of 2 mol % methane. The

mixture is injected into the reactor from the inlet. The reactor is in a shape of a cylinder.

The mixture temperature and pressure is set to 500K and 10000 kPa. There are

many reactions that take place in a real deposition environment for this case. To simplify

it, only reactions that contribute to the deposition process are selected. They are as below:

2H2 <-> H2 + 2H

CH4 + H <-• CH3 + H2

CH3 + H ^ CH2 + H2

CH2+H^CH + H2

CH + H <-• C + H2

The process of carbon deposition consists of 2 crucial steps which are the nucleation and

condensation steps. For this project, more emphasis is given on the condensation part

while the nucleation part is not totally neglected.

The end result is expected to reveal parameters that can contribute to formation of thicker

diamond layers that are formed on the substrate.



CHAPTER 2

LITERATURE REVIEW

2.1 Diamonds

Diamonds are formed deep down in the earth's crust, more than 150km deep.

They are created through geologic processes in the mantle of the earth. The earth consists

of three concentric layers, namely, the core, mantle and crust. It takes millions to billions

of years for diamonds to form. The diamonds that are recently form dated back to 45

million years ago. Diamonds usually take more than 45 million years to come into

existence in their current form. Some diamonds are even one third of the age of the earth.

Diamond exhibit extraordinary physical properties with the most standing out

characteristic is its luster. The lustrous properties of diamonds make it one of the most

precious minerals known to man. It was formerly used as decorations for holy statues.

Now, it is a very popular and everlasting jewelry item. It symbolizes status and wealth.

Besides jewelry, diamonds are also used industrially. They are used as cutting

materials, polishing materials, coatings, abrasives and heatsinks. This is attributed to the

remarkable physical property of diamonds which is to be the hardest material known to

man. It is rated 10 on the Mohs scale with 1 being the softest and 10 being the hardest.

The hardness ofdiamonds is due to its strong covalent bonding between its atoms.

Diamonds only consist of carbon atoms arranged in a variation of the face-centered cubic

crystal structure called a diamond lattice. This structure is very stable and can withstand

the stress in which it is currently used in application.



2.2 Industrial Diamonds

Diamonds consume an enormous amount of energy and time to be created. In

order to use it in daily life and industries, diamonds are needed fast and must be produced

in an economical manner. This became the driving force for researchers to produce

diamonds synthetically in the laboratory targeting a mass production process of industrial

grade diamonds.

Currently, diamonds are not being able to be produced commercially in a large

scale. This is due to the high temperature and high pressure of the process needed to form

diamonds. Diamonds need to be produced in the lab in a controlled chamber.

2.3 Artificial Diamonds

Research is underway in producing artificial diamonds in the laboratory. There

has been a lot of research in this field that resulted many routes to produce synthetic

diamonds. One of the current technology in producing artificial diamonds is through

Chemical Vapor Deposition (CVD) technique.

The CVD technique is chemical process used to produce high-purity, high

performance solid materials. In CVD, the substrate is exposed to gaseous molecules,

called precursor, and transforms it into a solid in the form of films on the substrate

surface.

There are many types of CVD techniques which differ in the way they are carried

out. They can be classified according to operating pressure, physical properties of the

vapor, plasma processing methods or any other ways that defines the CVD process.

Some of the most popular CVD techniques used in the production of artificial

diamonds are the microwave plasma-assisted CVD (MPCVD), plasma-enhanced CVD

(PECVD), hot filament CVD (HFCVD), moderate-pressure d.c. plasma CVD (MPCVD),

radio-frequency thermal plasma CVD (RFCVD) and high-gravity CVD (HGCVD).



2.4 Modeling of Artificial Diamond Production

In order to obtain a better understanding of the CVD processes in making

artificial diamonds, numerical models are developed to describe the mechanism of the

CVD. These models are developed and simulated using computational fluid dynamic

software in order to study the CVD process.

The simulation of the models will reveal conditions and situations in the process

that might help in improving the CVD technique. This includes the temperature, pressure,

inlet positioning, outlet positioning, chemical concentrations, substrate types, substrate

holders, gravity and many more parameters[l].

Modifications are done to the existing techniques and they are retested. The

results of the new experiments may be improved. The simulations can be used again to

refine the results obtained experimentally. The models provide insight in what is

happening in the reactors and we can study from it to get better results.

2.5 Nucleation Model

An enormous amount of effort has been put in to research on diamond films since

it has remarkable properties that are useful in many applications. Most of the research

focuses on understanding for preparation methods, mostly through chemical vapor

deposition techniques[2]. The goal of the research is to provide coating with high quality

by improving the properties. This can be achieved by increasing the nucleation density

and by reducing the roughness ofoptical diamond behavior.

High nucleation density can reduce the void formation at the substrate-coating

interface[3]. This will provide better adhesion of the diamond films to cutting tools. That

is why deeper understanding into the nucleation mechanism of diamond films during

chemical vapor deposition is important. The heterogeneous nucleation process with phase

change at the surface was widely studied on the basis of both thermodynamic and kinetic

arguments. Kinetic studies provide



• Evolution of the rate at which the new phase transforms

• The rate at which nucleation and surface coverage occur

The processes can be modeled by using rate equations. From here, we define:

Nd = the growth rate, the atom amount per unit time of the stable atomic clusters with

diamond substrate

Nh = the etching rate, the etching atom amount per unit time from the surface of the

clusters ofatomic hydrogen

Nm - the eating rate, the eating atom amount per unit time in the trapping region of the

cluster of the minute pits

N —the actual growth rate of the clusters

From here, the actual growth rate, N, can be described as follows in the kinetic equation:

N = Nd-Nm-NH (1)

By assuming the cluster is of a spherical coronary shape, the growth rate, N, can be

calculated:

( E -E >\
Nd =cp(2xrsin&)i^nmkjm exp -2 *- (2)

\ kT )

Where, a = the space between surface sites, r = the radius of the cluster, 0 = the contact

angle of the cluster, m = the mass of the adatom, k = the Boltzman constant, Ea = the

adsorption energy, Ed = the energy barrier to hopping between surface sites, p = pressure

in CVD, T = temperature in CVD

The area ofthe trapping region of the clusters is defined as %anr sin 6 in the equation.

For the derivation ofNh,

Rh = the etching rate, the atom per unit time and unit area

Then, Nh is as below:

NH =Inr1 (1 - cos0)RH (3)



The equation to obtain Nm is similar to that ofNd. It is as below:

(4)Nm=p(2xraDosm0)[2xR(t)a]sxp\^ E'
kT

Where, D0 = density of the minute pits per unit area, R(t) = average radius of the minute

pits

By substituting the equations (2),(3) and (4) into equation (1), the equation below is

obtained:

N = Nd-Nm-NH

N =

-[2xr2 (\-cos0)RH~j

ap(27zrsm0)(27imk)~1'2 exp K~Ed
kT

p(2xraDosm0)[2xR(t)a]exp\^ E*
\ kT

Simplifying the first two terms will result:

N=ap(27tmkyy2Qxp -* *- \[2xrsm0(l-2xaDQR(t)]-[2xr2(l-cos0)RH'] (5)
V kT

During CVD, the diamond critical nucleus is so large that its contained atomic

amount could reach several hundred carbon atoms on the Si substrate due to the large

formation energy of diamond critical nuclei[2]. The nucleation density of diamond films

on the smooth surface of Si substrates is always very low and seems to be equal to the

defect density of the Si substrate surface.

High oriented diamond films are obtained from an epitaxial ratio of a few percent.

The subsequent diamond film quality will be better with increasing epitaxial ratio. The

ratio is difficult to increase due to the extreme complexity of the physical and chemical

substrate environment during the pretreatment step. The bias-enhanced nucleation (BEN)

step precedes in superimposing a discharge which is in contact with the substrate with a



d.c. glow discharge created by negative biasing of the substrate relative to the reactor

wall or relative to an additional anode located above the substrate.

The size and nature of the reactor, shape and size of substrate holder, electric field

distribution of microwave plasma and d.c. bias and the large synthesis parameter

variations such as nature and composition of the plasma producing gas mixture, substrate

temperature, microwave power, pressure ans bias conditions may lead to a high

dispersion of results in terms of diamond quality, epitaxial ratio, deposit homogeneity and

in terms of synthesis reproducibility.

The lack of result uniformity does not permit to clearly determine the main

mechanisms of diamond formation during the bias step and the multiple nucleation

models presented in the literature illustrate this dicersity. In BEN step for MPCVD

synthesis, the chemical and electrical behavior of the double discharge which has been

strongly studied and the substrate modifications submitted to these discharges that

interest many research groups and whose knowledge constitutes today a real stake foe the

optimization of this process.

Increasing homogeneity requires a strict control of the double-discharge. The d.c.

discharge homogeneity is directlylinked ti the microwave location over the substrate/

substrate holder system and to the electric-field distribution of the d.c.voltage. A graphite

electrode located above the substrate has been added to minimize the d.c. electric field

gradient near the substrate holder.

The distance between the substrate and the electrode must be chosen to avoid

microwave plasma disturbance. It can be qualitatively foreseen by calculating the electric

field distribution of the microwave inside the reactor when the microwave plasma is not



initiated yet. With a system with symmetry of revolution, the calculation of the

electromagnetic field in transverse magnetic modes is carried out with the relationship

below:

d_
dz

N s/1 d{rH,)'
e.r dz

+•

dr s.r dr I re

Where

c is the relative permittivity of the environment, v is the eigen frequency of the cavity and

c is the speed of light.

The presence of high microwave electric field at the extremities of the substrate

holder is visible in the figure below.

Electric Field fc.u) . :

Substrate

Figure 1: Microwave electric-field distribution in the reactor chamber[2]

This induces very strong point effects when the microwave plasma is switched on

and corresponds to the catching areas, usually observed when the microwave plasma is

ignited. Its homogeneity is all the more difficult than point effects exist.

Simulations of the microwave electric field distribution with various substrate

holder geometries show that point effects can be strongly decreased for particular

10



shapes[4]. Fig 3 shows the final configuration of the system substrate/substrate-holder

that minimizes the microwave plasma heterogeneity and favours the d.c. discharge

spreading over the substrate surface.

Below is the table of parameters used for the deposition of oriented diamond

crystals.

Time Heating

(5 min)

Etching

(3 min)

Bias

(30 s)

Growth

(20min/20hour)

Total pressure

(hPa)

13 13 13 13

Microwave power

(W)

300 300 300

Total flow rate

(seem)

400 400 400 190

Gas composition

(vol %)

100% (H2) 100%

H2

4% CH4

(inH2)

1 %CH4 (in H2)

Bias voltage (V) 0 0 -150 0

Temperature (K) 813 1073 1113 1073

Substrate Silicone (100) square of 10

x 10 mm2

Substrate-holder Molybdenum

Electrode Graphite = 30mm

Table I: Experimental parameters usedforthe deposition of orienteddiamond crytalsand films
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Figure 2: SEM micrographs[2]

Figure 2 shows the diamond deposites after (a) 20 min if growth step where white

circles point out some epitaxial crystals and (b) 20 hours of growth step. The selection of

epitaxial crystals at the expense of others, leading to a homogeneous surface mainly

constituted by epitaxied crystals is observed. The very short bias duration with low bias

voltage does not strongly modify the silicon substrate but sufficient to have nucleation

and orientation.

The homogeneity of the highly oriented diamond films can be improved by

increasing the localization and the stability of the double-discharge[5, 6] (d.c and

microwave). This improvement can be done by modifying the nature and the geometry of

the substrate-holder by increasing the electric field homogeneity associated to the d.c.

polarization.

2.6 Condensation Model

The condensation model is also known as the step growth model. This is where

the diamond increases in thickness after the nucleation step. The carbon atoms start to

deposit to form layers of diamond films on the nucleus which has formed on the surface

of the substrate[7]. The layers will continue on growing and this is modeled by equations.

The gas-phase reaction mechanism is obtained using brute force sensitivity

analysis for various gas temperatures and hydrogen dissociation levels. Altogether there

are 37 reversible reactions and 15 species. As the table below:

12



Reaction Rate Constant

1 CH3 + CH3 + H2 *-+ C2H6 + H2 F(6.36xl041,-7.03,2.762)

2 CH3 + H + H2 «-* C4 + H2 F(1.6xlOz/,-3.0,0)

3 C2H4 + H + H2~C2H5 + H2 F(1.27xl025,-2.76,-0.054)

4 C2H2 + H+H2^C2H3 + H2 F(5.34 x 1021,-3.5,2.41)

5 CH4 + H+H2«->CH3 + H2 F(2.2xl04, 3.08,8.75)

6 CH3 + CH3 + H2 «-> C2H6 + H2 F(1.0xl016, 0,31.792)

7 CH3 + CH4 <-> C2H5 + H2 F(1.0xl0u,0,23)

8 C2H5 + H <- CH3 + CH3 F(1.0xl0l4,0,0)

9 C2H3 + H^C2H2 + H2 F(1.0xlOJ3,0,0)

10 C2H4 + H^C2H5 + H2 F(l.lxl014, 0,8.5)

11 C2H6 + H-hh.C2H5 + H2 F(5.4xl02, 3.5,5.21)

12 H + H+H2^H2 + H2 F(9.2xlOIb,-0.6,0)

13 CH3 + H^CH2 + H2 F(9.0xl01J, 0,15.1)

14 CH2 + H*-»CH+H2 F(1.0xl018,-1.56,0)

15 CH + H-~C + H2 F(1.5xl014,0,0)

16 CH + CH2 <-> C2H2 + H F(4.0xl013,0,0)

17 CH + CH3-~C2H3+H F(3.0xl0u,0,0)

18 CH +CH4 *-> C2H4 + H F(6.0xl0li,0,0)

19 C + CH3<->C2H2 + H F(5.0xl0u,0,0)

20 C + CH2*-»C2H + H F(5.0xl0u,0,0)

21 CH2 + CH3 «-* C2H4 + H F(3.0xl0u,0,0)

22 C2H + H2^C2H2 + H F(4.09xl05,2.39,0.864)

23 CH2(singlet) + CH4 <-» CH3 + CH3 F(4.0xl0u,0,0)

24 CH2(singIet) + H2 <-• CH3 + H F(7.0xl01J,0,0)

25 CH2(singlet) + H2 <-»• CH2 + H2 F(1.0xl0u,0,0)

26 CH2(singlet) + H «-» CH + H F(2.0xl014,0,0)

27 CH2 + CH2 <-> C2H2 + H2 F(4.0xlOIJ,0,0)

28 C2H2 + H2^C2H+H + H2 F(4.2xl016, 0,107)

29 C2H4 + H2 <-> C2H2 + H2 + H2 F(1.5xl0lb, 0,55.8)

13



30 C2H4 + H2 *•+ C2H3 + H + H2 F(1.4xl016, 0,82.36)

31 C2 + H2 <-> C2H + H F(4.0x 10s, 2.4,1)
32 C + CH *-*. C2 + H F(2.0xl0i4,0,0)

33 CH2 + H2*-»C + H2 + H2 F(1.3xl014,0,0)

34 CH2 + CH4 <-» CH3 + CH3 F(1.0xl0u,0,0)

35 CH2(singlet) + H <-> CH + H2 F(3.0xl0u,0,0)

36 CH3 + H2^CH2 + H + H2 F(1.0xl0lb, 0,90.6)

37 CH3 + H2^CH + H2 + H2 F(.0xl0l5,0,85)

Table 2: Reactions in carbon deposition to form diamond layer

A two-dimensional model of a hot filament chemical vapor deposition is

developed to study the gas phase and surface processes of diamond growth[8]. The gas

temperature, fluid flow, and species concentration fields were calculated by full transport

equations numerically. Catalytic chemistry at the surface of the filament was taken into

consideration for a more complete model formation[6]. The distribution of the atom

concentration and the gas temperature in a HFCVD reactor were obtained analytically.

Surface kinetics is used to derive the expressions for diamond growth rate and the

hydrogen atom destruction coefficient at the substrate. Brute force sensitivity analysis

was used to obtain the gas-phase reaction mechanism. The calculated results were then

compared with experimental data.

Diamond growth in hot-filament chemical vapor deposition (HFCVD) reactors

using intense numerical models is being studied here. Derivation of complex self

consistent models that describes the numerous processes occurring in HFCVD reactors is

very difficult[5]. Majority of the models used in this article are one-dimensional or

reduces to one dimension. However, a two-dimensional spatial modeling is required as

minimum. Simplified chemical reaction kinetics is used and the processes on the

substrate filament surfaces are not taken into account for two-dimensional models.

Surface processes, additional sources of hydrogen atoms at the filament surface and non-

one-dimensional effects are some of the complicated issues that need to be addressed in

developing a through model.

14



The temperature discontinuity at the filament was taken into account using

experimental data. Correct formulation of the boundary conditions is very important in

HFCVD reactor models. Additional source of H due to dissociation of H2 at the filament

must be included to explain the H-atom concentration and the sharp decrease in its

concentration as carbon mole fraction in the feed is increased. The results from the model

and from experiment that were carried out also suggest that the H-atom source on the

filament needs to be considered[9]. Decomposition of hydrocarbons on the filament

surface poisons the catalytic production of H-atom from H2 at the filament surface[10].

Rate of H-atom generation is not known. Methods that are used to determine the rate are

as below:

• From comparison of the kinetics of filament surface processes

• From comparison of the analytic and experimental H-atom distributions

• From 2D calculations with different rates Q to fit the calculated and measured H-

atom concentrations near the filament

• From experimental data

A simple kinetics of two reversible reactions on the filament surface are considered.

(1) is the recombination of an H atom on a hydrogen terminated surface site SH. (2) and

(-2) are the adsorption and desorption ofan H atom.

SH + H^±S*+H2 (6)

S*+H^±SH (7)

Diamond growth from methyl radical as the dominant diamond precursor was

proposed and the importance of H atoms, radical sites and chemisorbed CH2 groups in

the propagation of diamond growth was revealed. The probabilities of CH3 adsorption on

the dimer site, adjacent to the bridge site, as well as the filling of void sites are

proportional to the rate of formation of the radical site pairs. The growth rate G (in \im/h)

is obtained as below:

15



G-
clJTCH*

c2exp(U.6/RTs) +c3exp(73/RTs)+l +f(Ts,Tns)H2/H (8)

Equation (8) is the condensation model which describes the growth rate if the diamond

films and reports it in um/h.

A number of two-dimensional calculations are done for a set of reaction

parameters. For reactor of Hsu, the parameters are P=20Torr, TS=1100K, Tf=2600K,

CH4=1%, Rf=0.0125cm, Rft=1.3cm, temperature discontinuity at the filament Tf-Tnf is

900K. The rate of heterogeneous source Q is set at 1.6xl019 cm'1 s_1and Q/(2 n
Rf)=2xl020 cm'2 s"1 to make the H concentration near the substrate the same as in the

experiment. The mole fraction of H is 2.5 times lower than the model prediction. This is

due to the gas-phase reactions comparable with the heterogeneous source.The figure 1

below shows the representation of the two dimensional distributions of the gas

temperature and the gas velocity.

?50

*%^\\uu

\ * •

t *• *

l » •

It*

t *

SUBSTQftTE 2*0

UHAX=B3 c»i/c

renSubct=tiaO K

P=20 Torr
v.uiun

Figure 3: Gas temperature on the left and gas velocity on the right[l 1]

The real substrate size in the reactor is not known. The distribution of H, CH3,

C2H2, and CH4 for different points of x are shown in figure 2. The diffusion effects both

the z and x directions are significant in the transport of important species from near

filament to substrate.
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Figure 4: Gas phase distributions ofH, CH3, C2H2and CH411]

The variation in temperature is found out to have only a slight effect on the

calculated results. It is suggested that the C2 radical played an important role in the

growth mechanis. However, the C2 is not a dominant species. The new suggested

mechanism involves competitive growth by all the Ci radical species that are present in

the gas mixture close to the growing (100) diamond surface. In HFCVD reactors at high

temperatures or high CH4 concentrations, the concentration of the other Q radical species

near the growing diamond surface can become as high as -1012 cm"3 and may contribute

to the growth process.
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Figure 5: Mechanism ofcarbon deposition

In most growth models, abstraction of surface H atoms by gas phase atomic H are

the reactions which drive the chemistry of growth. 2 main types of radical sites on the

reconstructed (100)-(2xl) diamond surface which are mono radical sites and biradical

sites.

The growth rate contribution, G(um h"1) from CH3 is:

Gbi =3.8xl0-14rs05[C//3]i?2

Where T is substrate temperature, [CH33 in methyl gas phase concentration in cm"3 at

surface and R is fraction of monoradical sites.

For mono:

Gmon0 =3.8xlO-,47f[C#3]x;^^

And the total growth rate due to CH3 can now be expressed as

Where ka(Al) and ka(A3) refer to the rates of desorption of CH3 from Al and A3 sites.

R is the fractionof surface monoradical cites given by R-C*d!(C*d + CdH) where C*d and

CdH are the respective densities of open and hydrogen-terminated surface sites. This

fraction R mainly depends on the rate constants for the surface H abstraction and addition

reactions. R is obtained as
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i? = l/{l+0.3exp(3430/7;) + 0.1exp(-4420/r5)[^2]/[//]}

After the reaction of the condensation process is known, the optimal conditions for better

deposition of diamond particles should be looked into. The conditions include any aspect

of the parameters such as the concentration of species, temperature and pressure and also

power is applicable.

The diamond deposition rate at different power ratings is shown in the graph below.

17.5

17.0

•>?
16.5

1£ 16.0

_•

E

15.5

& 15.0

p 14 5

O
14.0

13.5

20kW
. —A — A

+ ,

"18kW
• -«

"16KW

• —• i

t
• i

• 1

0.0 0.5 1X> 13 2j0

Radial distance (cm)

2.5 3.0

Figure 6: Diamond growth rate with varying power ratings[10]

It can clearly be seen that the power rating of 20kW gives the highest deposition rate and

it can generally be said that a higher power rating will result in a higher deposition rate.

The higher power used will generate more C radicals which will be deposited on the

substrate. A graph below shows the C radicals concentration in a radial manner.
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Figure 7: Mole fraction of C radicals with varying power ratings[9]

The dissociation of C2, CH4 and other components is much easier when the power supply

used is much higher as it gives the necessary energy required for C radicals to form.

The morphology of the diamond layers is also important and needs to be taken into

consideration. The figures below shows the evolving morphology based on temperature

changes.
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Scanning electron micrographs for diamond structures: FBjh=(a) ISii'C: (hi 850C; (c i 9WC; (d) 1000-1 IOO=C.

Figure 8: Morphology of diamond layer[7]

From the morphology, the optimum condition is condition in figure c above. The size is

larger than a and b. The morphologytype of the diamond changes from c to d. Condition

c is better as it is a flat surface while d is edged and pointed.

0-00 0.02 0.04 0.06 0.08

Distance from substrate ]em]

0.10

Figure 9: Concentration of components vs distance from substrate[9]
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The graph shows the species profile for a system that has an inlet of CH4/H2 of 2%. The

profile is taken at the sampling line which is located near the surface of the substrate. The

temperature of the substrate is maintained at 1200K.

The most desirable condition is that the C radicals are high in concentration when

it is nearing the deposition area. As the distance from substrate reduces, the concentration

of C radicals should decrease. This shows a successful deposition on the substrate. The

deposition rate is better when the concentration of the C radicals decrease drastically

when it reaches the substrate surface which shows that the C radicals are deposited on the

substrate. The C radicals decreasing as it gets nearer to the substrate shows that it is

participating in other radical reactions.

C2H6 contributes to the formation of CH3 as it decreases. Radical reactions take

place at the surface of the substrate CH3, CH4 and C2H4. This is why the concentration of

these species are higher at the surface of the substrate. The reactions at the surface are

radical reactions that are reversible and they produce radicals of C and H and at the same

time deposit C radicals on the surface.

The inlet temperature is more than 3500 K and it reduces as it reaches the surface

of the substrate. This quenching effect eases condensation reactions to happen so that

more C radicals will form diamonds on the surface.
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CHAPTER 3

METHODOLOGY

3.1 Project Activities

1

xx
2

xx
3

xx
4

xx
5

6

7

•Collect Data

•Reactions involved

•Reaction parameters

•Model of nucleation step

•The nucleation model is confirmed

•Integrate into model

•Model of diamond growth step

•The diamond growth model is confirmed

•Integrate into model

•Simulation of models

•Run simulation

•Modify simulation

•Parameters are modified

•Find parameters giving best results

•Run simulation

•The modified parameters are used in the second run

•Able to see better formation of diamond layers

•Post-processing of data

•Collect results

•Interpret results

1. The project starts with critical literature review of the production of diamonds

artificially.
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2. Then, the literature review is focused into general scopes of artificial diamond

production. This includes the start of the diamond formation, the growth of the

diamond, the kind ofreactors used and the controlled parameter values.

3. The literature review will give insight and guidance in developing the models to

describe the production of artificial diamonds.

4. Models of the nucleation step of the diamond on the substrate are developed

based on the literature review done on the topic.

5. The nucleation model is compared to the existing models developed in other

literatures.

6. Models of the diamond growth step are developed based on the literature review

done on the topic.

7. The diamond growth model is compared to the existing models developed in the

literatures.

8. Simulations of the models are done using computational fluid dynamics software

to obtain results and the results are compared to experimental data.

9. Modifications are done to the model to produce results that fit the experimental

results.

10. Modified parameters are used for the simulation and the simulation is done again.

11. Post-processing is done from the obtained data.

3.2 Key Milestones

1. Completion of literature review to a certain extent

2. Development ofartificial diamond production models

3. Simulations of the artificial diamond production models

4. Enhancing the simulations by making it as close as possible to experimental

reaction data.

5. Development of a time dependent simulation so that the behavior of the carbon

deposition process can be studied.

6. Post processing the data obtained from the time dependent simulation.
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3.3 Gantt Chart

Final Year Project 1

Title/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Literature Review

i.Nucleation Model

ii. Condensation Model

ProgressReport (3rd Sept)
Seminar(3rd Sept)
Calculations

Modelling
Simulation

Modifications

Interim Report (1st Nov)
Oral Presentation (1st Nov)

Final Year Project 2

Title/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project Work Continues
Progress Report
Project Work Continues
Submission ofDraft Report
Submission ofDissertation(soft bound)
Submission ofTechnical Paper
Oral Presentation

Submission ofDissertation(hard bound)
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3.4 Tools

The tools required in order to complete this project are:

• Computer with decent computing power

• ANSYS FLUENT computational fluid dynamics software

• FLUENT GAMBIT

The main tool required in this project is the computational fluid dynamics (CFD)

software. The simulation is handled through a systematic procedure line out in the

methodology section. However for all CFD software, a basic procedure can be applied.

Briefly during pre-processing, the geometry of the problem is first defined. The reactor

where the process takes place is drawn and meshed. The physical modeling, boundary

conditions and other properties are further specified. The simulation is started and solved

iteratively. Lastly the results are analyzed.

FLUENT GAMBIT is used to draw and mesh the 3 dimensional computational domains

for the problem. The simulation which is done to study the formation of diamond layers

is done using FLUENT.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

The schematic diagram of a CVD reactor is as below.

Rotating
Disk

inlet

\

Y/////////A
^
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V Outlet

Figure 10: Schematic diagram of reactor

The conditions of the reactor is as below:

Feed inlet: Methane (80 seem)

Hydrogen (4000 seem)

Temperature: 1023 K

Pressure 10 000 Pa

The schematic diagram of the CVD reactor is modeled in FLUENT Gambit. The surfaces

of the reactor are set as wall type except for the inlet and outlet of the reactor. The

parameters and operating conditions are set in FLUENT.
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The mesh of the CVD reactor after it is imported into FLUENT is as below.

Figure 11: Mesh of reactor

For the first simulation test only one reaction is taken into consideration which is as

below:

C_s + CH, + H2 -» C + C_s + 3H2

The mesh of the reactor is imported into FLUENT. The materials, boundary conditions,

operating conditions and reactions are set in FLUENT. The simulation is run for 200

calculations at first without reaction and 250 calculations after that with reactions. The

convergence result is as below.
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Figure 12: Convergence of simulation

The convergence shows that the values of the calculation are approaching a constant

value. There are two peaks as each peak shows the beginning of a calculation. The first

peak is the calculations without reaction while the other peak shows the convergence of

the calculations with reactions. The calculations are done in two steps because it will be

easier to converge and come to a solution.

Contours of Surface Deposition Rate of c (kgfm2-s)

Figure 13: Contours of deposition rate of carbon
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Figure 4 shows the results after the calculations are complete. The red color shows that

the deposition rate is high while the blue color shows that the deposition rate is low and

nearly zero. From the results, it can be seen that the deposition rate ishighest at the center

of the deposition surface. This is expected as the precursor is fed at the center through the

top ofthe reactor and moves radially outwards.

The diamond deposition is highest at the center. It also means that the layer of the

diamonds will be thicker. The diamonds will condense at the center and lesser at the

edges of the reactor surface.

Opo Hion
Rale

c
ikgAn2 »

Stslaee ObbosHoii Rate of c

am aw due n

Position (m)
B1I D«

Figure 14: Depositionrate vs radial position

A plot of the deposition rate versus the radial position of the reactor surface shows the

exact same results. The deposition rateat the surfacecenter is 1.09e03 kg/m -s

The reactions that are to be included for the next simulation stage are as the following:

2H2^H2 + 2H

CH, + H *•* CH3 + H2

CH3 + H *-* CH2 + H2
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CH2+H*-»CH + H2

CH + H <-* C + H2

The results for the initial simulation with the reactions above is as below

*1
Contous of Solace Deposition Rate of c (kg/m2-s)

Figure 15: Contours ofdeposition rate for multiple reactions

The rotational speed of the plate was experimented upon and the results are as below:

Rotational Speed (rad/s) Carbon Deposition Rate Countour

20

Contour cf Surfaredeposition Rateofc{kgftiC-s}
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80
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32



100

120

140

160

Cctfoi«tfS«fK*OepoaficiiRsteorc<fcg*n2*)

Contours o( Surface DeposWon Rate of c (WrC-sl

Contours of Sufirce DeposWon Rate ofc Qg*n2-5)

IIMI

i mux

ssetor

SfiBMTC

5su»07

JSSHJ7

orattfg

Contours of Surface Deposition Rats ofc r*gihi2-5t

33



180

n

Contains of Surface Deposition Rate ofc ftg»«2-sj
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Contours of Sufece Deposition Rate oFe (fcg*rC-5j

Below is a plot ofthe deposition rate for eachrotational speedofthe plate:

2E-Q6 -

Figure 16: Deposition rate vs radial distance from center
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4.2 Discussion

The reactions involved in carbon deposition to form diamonds are much more

complicated than the proposed reactions to be included but not all the reactions have

parameters that are readily available and studies show that the proposed reactions from

one study to another study vary in the formation of side-products[9]. However, the

proposed reactions are the basic reactions for most of the studies that have been carried

out.

However, the newly included reactions are not easy to simulate together as the reactions

are in series and reversible. The parameters of each reaction vary from one another like

the activation energy and reaction rates.

The real complication is to make the reactions take place as the parameters may not be

optimal for the set temperature and pressures. The temperatures pressures are set in

range based on a study done by J.M. Larson et al. and most of other studies done coincide

within this range.

The result for deposition rate of carbon can clearly be seen to increase as the rotational

speed of the plate increases. A higher rotational speed will cause the points further from

the center of the plate to have a higher velocity. This lets the gas reactants move faster

relative to the center. The center on the other hand is slower in velocity. This enables the

deposition rate to increase at the center causing the diamond layer to be thicker at the

center ofthe plate.

The slight drop in deposition rate after the center as can be seen at point 0.005 m from the

center is caused by the unevenness of the diamond layer. The thick center causes it to be

at a higher platform and the moving gas phase have insufficient time to react with the

substrate after the center (at 0.005 m) and results in a drop in deposition rate.
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Although, the deposition rate increases with rotational speed, the aim is not only to

achieve the highest deposition rate. It is to encourage the formation of diamond layers

that are structurally strong.

The unevenness of the diamond layer can cause many problems including the formation

of cracks and weak points if the layer is subjected to high stress. Uneven layers will

restart the nucleation process on the diamond layer which will then make the surface

much more uneven.

Uneven surfaces of the diamond layers can also be attributed to multiple nucleation

points throughout the deposition process. Multiple nucleation sites will cause the new

crystals to form in different orientations. Points along where independent nuclei growth

meet will form layers of diamond that is not homogenous.

Homogeneity is the condition where the diamond growth orientations are in the same

directions. A homogenous diamond layer exhibits higher tensile strength and minimal

defects or cracks.

From the results of this simulation, the rotational speed of 70 rad/s shows that it has an

even distribution of carbon deposition rate. Although this does not guarantee the

homogeneity of the diamond layer, it is has a higher chance of being homogenous

compared to the others.

Bothdeposition rate andevenness of the diamond layerare important and the parameters

of the reactor should be set to create these attributes. The dimension of the reactor may

also be one of the factors that contribute to these attributes.

A reactor with a larger inlet may make the supply of reactants more distributed on the

entire plate. A more distributed supply may allow the rotational speed to be increased

hence increasing deposition rate without affecting the evenness and homogeneity of the

diamond layer.
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5.1 Conclusion

CHAPTER 5

CONCLUSION

The results so far show the deposition of diamond on substrate in a reactor is

possible. The addition of more reactions contribute to make it more realistic. The added

reactions complicate the convergence criteria but result in a better simulation of the

carbon deposition process.

Experimental work has only be done for stationary reactors and from this project,

it can be seen that a reactor with a moving plate can result in a carbon deposition process

that gets higher as the rotational speed is increased.

However, the homogeneity of the layer and the topology of the layer would be

severely bad. Uneven surfaces would form and nucleation will start in random

orientations. This will ultimately cause the diamond layer formed to be structurally weak

along the lines where the orientations of the diamond meet. Cracks would form much

easier as there are lots of weak points present in the diamond structure.

The best rotational speed that should be used is the one that balances the

deposition rate and uniformity of the layer of diamond that is formed. For this set of

parameters, it is clear that 70 rad/s will be adequate to form the diamond layer that is

required.

The limit of 70 rad/s may be due to the inlet size and distribution of the initial gas

phase that is exposed to the plate. Increasing the inlet area may offer a more distributed

reactant exposure to the plate. This may allow the rotational speed to be cranked up

higher to result in a higher deposition rate overall with uniformity and homogeneity.
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5.2 Recommendation And Future Works

Recommendation and future work to improve the efficiency and to gain better

insigt of the project are stated as follows:

• Increase inlet area to see relationship with uniformity ofdeposited diamonds on

substrate layers.

• Run a time dependent simulation to find out the initial nucleationprocesson the

substrate layers through time.
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APPENDICES

Nucleation model

Nd is analyzed if it correctly gives the units

kg

r \

/Nd=mx
pf'S2

m*kg

i*) kgx % „ exp
s'-K

X
X

N; =
kg2*m
~7^k

m*kg
_ s2 _ numberofatoms

i\ kg»m fVZ
^s»

/

For the derivation ofNh,

Rh = the etching rate, the atom per unit time and unit area
Then, Nh is as below:

NH =2nr2 (1 - cos0)RH (3)
Units for Nh is as below

NH = m x
s»m* s

The equation to obtain Nm is similar to that ofNd- It is as below:

2 atom atom

Nm =p{2nraD0 sm0)[27rR(t)a]exp
kT

Where, D0 = density of the minute pits per unit area
R(t) = average radius of the minute pits

Units for Nm are as below:

/
JV_ =

iV =

kg

v

x mxmx

m*s I m *m

2 2
m 's

~Y \x(mxm)exp

x
x

(4)

-1/2The closest that I have achieved to get is as below by adding the term (2?tmk)
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iV* =
kg

x mxmx

m»s

kg-
_ w2»^2 __ ^0?M

iV =

kg
m3'tn2 J

kgx
kg*m2
~7^K

x(/KX/w)exp

r \

/

€*

By substituting the equations (2),(3) and (4) into equation (1), the equation below is
obtained:

N~Nd-Nm-NH

N =
-1/2 _[ Ea-EJ_

1 AT
ap(2jtrsm0)(27tmkyl,z exp -* />(2*raZ>„ sin6»)[2^i?(0«]exp ~^~ "

^ £T

-[2ffr2(l-cos0)l?ff]

Simplifying the first two terms will result:

N=̂ (2^rsm6')expf^^-Y(2^^)-I/2 -2^(/)tf£>0]-2;rr2 (l-cos0)RH

Condensation model

Below are representations of the equations:
Vtp = -V(pv)

Vl(pu) = -V(puv)-V2P+VWz+pg

V,(pv) = - V(pxuv)- VXP + VW,

Vr (ps) =-V(pev)- PVzu -PVxv-VQ, -V(£ /y,)

where

Vy=d/dy,y = t9z,x

V(pv) =d(pu)/dz +d(pv)/dx
p is the density ofthe gas
g is the gravitational force

v= (w, v)ris the velocity vector
P is a scalar pressure

Wz=(2pVzu,M(Vxu+Vzv))T
Wx={p{Vxu +Vzv),2pVxvf

(=i
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p. - p(T) is the gas viscosity

e is specific energy and h is the enthalpy

Qx —(~XVZT,-AVXT)T1>A = X{T) is thethermal conductivity, T is thegas temperature, nj
and mi are the Ith component concentration and mass, Si and Ljni are the production and
loss rates in gas-phase chemical reactions. jt - (~N2mkmiDikVXi) /p- DjVInT is the
mass diffusion flux ofthe Ith component in the molecular hydrogen . Xi=ni/N,Djk and Dj
are the binary molecular diffusivities of species i and k and the thermal diffusion
coefficient respectively. N is the gas concentration.
The growth rate G (in jim/h) is obtained as below:

Gss c\JTmCH%
c2Qxp(U,6/RTs)+c3Qxp(73/RTs)+l+f(Ts,Ttls)H2/H

CH3, H2 and H are the concentrations in cm"3 of methyl, atomic and molecular hydrogen
near the substrate

R=l.9873x10-3 kcal(mol K)_1
Ts and Tns are the substrate temperature and the gas temperature near the substrate.
cl=3.84xl0-14

c2=0.0089

c3=0.204

f = c4exp(-l.5RTs)+c5(~5.2/ RTs)+c6cxpi~8.S/ RTs)+c7exp('l2.5/ RTS)

c4-0.0021

c5=0.016

c6=0.1

c7=0.23
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