
CERTIFICATION OF APPROVAL

Songs Search Using Human Humming Voice

by

Mohamad Ariff Bin Abdul Rahman

A project dissertatio11 submitted to the

Computer and Information Science Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (HONS)

(INFORMATION AND COMMUNICATION TECHNOLOGY)

Approved by,

(Mr Jale Ahmad)

UNIVERISTI TEKNOLOGI PETRONAS

TRONOH, PERAK

July2007

I

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

ii

ABSTRACT

The system is developed to find songs stored in the database using human humming

voice, whereby a sample of the humming voice is compared to songs stored in the

system. The main function of the system is to find songs only by humming to the

melody of the song. The scopes for this project are human humming voice, voice

capture in WA V format, songs database, and MIDI file comparing algorithm.

Methodologies used in this system are based on system analysis and design

methodology comprising planning, analysis, design and implementation. Java

programming language is used to build the system. The system has the functionality

of humming voice recording and algorithms comparing both humming voice and

song files in the system to fmd the right song. The intended result of this system is to

display the titles of the song and similarity percentage between humming voice

melody and songs in the system.

Keyword: Java programming language, human humming voice, voice recording,

comparing algorithm, user interface.

iii

ACKNOWLEDGMENT

Greatest praise is to Allah for his blessing, the Final Year Project entitled Songs

Search Using Human Humming Voice has completed as planned successfully. High

gratitude to supervising lecture Mr. Jale Ahmad for his wonderful guidance,

undivided support, generous help and enormous effort in making sure this project is

a success. Appreciations to internal and external examiners who were involved

during this two-semester project and lectures from Computer and Information

Science prograrmne for their best support.

Not to forget the support from Universiti Teknologi PETRONAS and colleagues and

friends who were always there to help when needed with undivided attention. Lastly

to any individuals who are involved directly or indirectly towards the process of

completing the project. May all your help and supports be blessed.

IV

TABLE OF CONTENT

CERTICFICATION. i

ABSTRACT. iii

ACKNOWLEDGEMENT iv

CHAPTER I: INTRODUCTION 1
1 Background of Study • 1
2 Problem Statement 1
3 Objectives 3
4 Scope of Study 5

CHAPTER2: LITERATURE REVIEW 7
1 Introduction • 7
2 Audio Capturing in Java 7
3 MIDIFile 8
4 JFugue: Java Music Programming Api Features 10
5 Akoff Sound Lab 13
6 Midomi 15
7 Singer Identification in Popular Music

Recordings Using Voice Coding Features 15
8 Music Recognition 15
9 WA V and MIDI Format 16
10 Levenshtein Distance . 19

CHAPTER3: METHODOLOGY/PROJECT WORK 23
1 Methodology . 23
1.1 Planning Phase. 23
1.2 Analysis Phase. 24
1.3 Design Phase . 27
1.4 Implementation Phase. 28

CHAPTER4: RESULTS AND FINDINGS. 33
1 System Process Flow . 33
2 User Interface . 33
3 Using the System 34

CHAPTERS: CONCLUSION AND RECOMMENDATION 36

REFERENCES 38

APPENDICES 40

LIST OF FIGURES

Figure 1.1 Process Flows in Song Search

Figure 2.1 AK.offMusic Composer- Recognition Dialog

Figure 3.1 System Use Case Diagram

Figure 3.2 System Main User Interface

Figure 3.3 System Result Display

Figure 4.1 System Interface

Figure4.2 Record Humming Field

Figure 4.3 Result Display

LIST OF TABLES

Table 2.1

Table 3.1

Levenshtein Distance Result

Levenshtein Distance Operation Result

4

13

26

27

32

34

35

35

20

31

CHAPTER!

INTRODUCTION

1. BACKGROUND OF STUDY

This is the dissertation for Final Year Project (FYP) of January and July 2007

Semester entitled "Songs Search Using Human Humming Voice". The purpose of

this project is to create a Java application system that finds a song stored in the

database by using human humming voice, whereby a melody sample of the

humming voice is compared to a portion of the song to find a match, regardless of

knowing the song information for example title and artist.

2. PROBLEM STATEMENT

2.1. Problem Identification

Finding the right song in a group of songs would not be difficult if the right title

or the singer or composer of the song is known. As all the songs are catalogued

with their own title and singer or composer name, it is easy to fmd the right

song requested.

Imagine having to have a tune of a song keeps playing in the mind with

knowing what is the title and who is the singer. It would be very hard to find

the song as no information of the song is known except for the partial tunes of

the song.

Therefore, this system provides the solution of finding a song in a database

using partial tunes of the song that matches the song. A user would record the

humming voice to the melody of the intended song to be search and the system

will capture the voice and compare it with the songs that are in the database.

1

Apart from that, among the problem faced during the development of the

systems are regarding the Java programming language and to identify how to

use the packages provided with the language.

Furthermore, problems that occur during the development of the system are

caused by humming voice. When humming voice is recorded, sometimes the

musical notes produce would get off course with the right pitch of a note. This

will cause the system to process the wrong melody and produce inaccurate

result.

Other problems faced during the development of this system is the converting

process of humming voice 'wav' format to 'midi' format as process to be done

is very intricate. Therefore for the development of the system, the part of

converting the humming voice will by done by a shareware system called

"Digital Ear".

2.2. Project Significance

This project is by mean to be developed to help the intended users by any

group. This system will be easy to be used with functions and user interface that

is simple. User would only need to hum to the melody of the song to be search

and wait for the system to produce the result.

Furthermore, the system will show result of similar songs to the melody

hummed by percentage making it easy for the user to get the best result and the

right song. The produced system shows how latest technology can be exploited

to help users in minimizing their effort and assist them in any way possible.

The system has achieved its objectives which are discussed in the next section

and further discussion on the development and technologies used to develop the

system can be found later in this dissertation report.

2

3. OBJECTIVES

3.1. Searching the Right Song

Main objective of this project is to produce a system, where user hums for the

song user would like to search in the song database. The system will then

matches the humming voice with song that has the same melody and search for

it.

The humming voice is recorded by the system into a 'wav' sound format. This

'midi' humming melody will be used by the system for comparison to the songs

stored in the system in order to fmd a match of both files.

3.2. Simplicity with Accurate Result

The system would accurately find the right song user intended to search with

minimal input from the user. User would only have to hum to song they would

like to search.

Apart from that, the system will display results of songs that matched the

humming melody by percentage to the similarity. This is to give the user the

ability to choose which song has the similarity to the intended song.

3.3. Effective and Less Time Consumption

The system would work effectively in searching for the song by cutting the time

taken by user with direct result instead of user scrolling to each of the songs to

find the intended one.

The system will display the results to the user and this helps the user to get the

information for example the title of the song with having to hear every song

stored in the system and listen to each songs to fmd a match for the intended

song.

3

3.4. How the System Works

Humming Converted
Voice into 'midi'

Recorded format
in "wav"

Stored and
Compared

Song in
'midi'
format

Song Information
Displayed/Song

Played

Figure 1.1: Process Flows in Song Search

Figure 1 shows the flow of the system. First, user of the system will hum to the

tune of intended song to be searched. The hum voice, recorded in the form of

'wav' format will be converted into 'midi' for before being stored. In the song

database, all the songs will be tagged to smaller portions and converted to 'midi'

file and then be compared with the 'midi' file of the users voice for matching the

right song.

The objectives set has been made as a guideline during the development of the

system so that the system function as it is intended to be and produce the right

result. These objectives also acts as a list of main functionality that the system

has where functions of the system are mainly about helping user in finding the

right song just by using humming melody that they know of.

4

4. SCOPE OF STUDY

The scopes of study for this project are the areas that will be studied to build the

system and these scopes are elaborated below

4.1. Voice (Human Humming Voice)

In this area, research were done on understand human voice especially

humming. This is to understand the ability of user to hum and the accuracy the

humming voice to produce the right pitch for a series of several music notes. In

this system, user is required to hum a portion of melody of a song that

comprises of several music notes.

The humming voice produced can just be considered as noises and when

recorded into the system, processes are needed to be done on how to recognize

the humming melody into a series of real musical notes for further processing.

Therefore, the accuracy of the humming voice is crucial in order to get accurate

result for the humming melody.

In producing the humming melody, which is the series of recognized musical

notes from the humming voice, the system uses a simple technique where it will

record the humming voice into a 'wav' sound format and converts it into 'midi'

sound format. Further discussion on what is 'midi' format and why 'midi'

format is used can be found in Chapter 2 and Chapter 3 of this report

consecutively.

4.2. Songs

The formats of the songs stored in they are all in 'midi' format and the system

will be as simple as only with one MIDI channel of musical instrument

involved. This format is used as the system is at the beginning of its

development and this is proven by the system that the functionality works by

using the format.

5

4.3. Sound Files Conversion

Sound files conversion method will be used to convert both humming voice

which is 'wav' format sound file 'midi' format sound file type. As for the

development of the system, this part of functions is done by an outsource

system as developing the system with this function involves lot of intricate

multimedia and sound progranuning.

4.4. Comparison Algorithm

The scope for this area is to study and find an algorithm that will compare two

'midi' files of the humming voice and the stored songs and find the similar

portion musical notes in order to have successful search of the song.

The process is done where the user humming voice is a 'midi' humming

melody which comprises of a series of musical notes. Next, the songs that are

already available in the system which are in 'midi' format will be compared to

the humming melody.

Since both the humming melody and songs stored in the system are in 'midi'

format, comparison algorithm is implemented to compare both melodies. This

is done by comparing every musical note of both melodies to find similarity.

Further discussion of what comparison algorithm used and how it is

implemented is in Chapter 2 and Chapter 3 of this report.

6

CHAPTER2:

LITERATURE REVIEW

1. INTRODUCTION

The main programming language that will be used in this project is Java

programming language. Therefore this chapter will be discussing the relevant works

there were done with similarities to the system and the technologies that can be

implemented. The available projects and systems are reviewed and analyzed in

order to understand the technologies. These technologies and systems will be

reviewed to help in development of the system.

2. AUDIO CAPTURING IN JAVA

Capturing refers to the process of obtaining a signal from outside the computer. A

common application of audio capture is recording, such as recording the

microphone input to a sound file. However, capturing isn't synonymous with

recording, because recording implies that the application always saves the sound

data that's coming in. An application that captures audio doesn't necessarily store the

audio. Instead it might do something with the data as it's coming in, such as

transcribe speech into text and then discard each buffer of audio as soon as it's

finished with that buffer.

Typical audio-input system in an implementation of the Java ™ Sound API consists

of:

a) An input port, such as a microphone port or a line-in port, which feeds its

incoming audio data into:

b) A mixer, which places the input data in:

7

c) One or more target data lines, from which an application can retrieve the

data.

Commonly, only one input port can be open at a time, but an audio-input mixer that

mixes audio from multiple ports is also possible. Another scenario consists of a

mixer that has no ports but instead gets its audio input over a network.

3. MIDIFILE

A MIDI file is a data file. It stores information, just like a text (ie, ASCII) file may

store the text of a story or newspaper article, but a MIDI file contains musical

information. Specifically, a MIDI file stores MIDI data, the data (ie, commands)

that musical instruments transmit between each other to control such things as

playing notes and adjusting an instrument's sound in various ways.

MIDI is binary data, and a MIDI file is therefore a binary file. It is not possible to

load a MIDI file into a text editor such as Notepad and view it. However, MIDI File

Disassembler/Assembler utility can be used to convert a MIDI file to readable text,

edit it in Notepad, and then convert it back to a MIDI file using the same software).

The MIDI file format was devised to be able to store any kind of MIDI message,

including System Exclusive messages, along with a timestamp for each MIDI

message. A timestamp is simply the time when the message was generated. Using

the timestamps, a sequencer can playback all of the MIDI messages within the MIDI

file at the same relative times as when the messages were originally generated. In

other words, a sequencer can playback all of the note messages, and other MIDI

messages, with the original "musical rhythms". A MIDI file can also store other

information relating to a musical performance, such as tempo, key signature, and

time signature. A MIDI me is therefore a generic, standardized file format designed

to store a "musical performance", and is used by many sequencers. A MIDI me

even has provisions for storing the names of tracks in a sequencer, and other

sequencer settings.

8

There are 3 different "Types" (sometimes called "Formats") of MIDI files. A Type 0

file contains only one track, and all of the MIDI messages (ie, the entire

performance) are placed in that one track, even if this represents many musical parts

upon different MIDI channels. A Type 1 file separates each musical part upon its

own track. Both Type 0 and 1 store one "song", "pattern", or musical performance.

A Type 2 file, which is extremely rare, is akin to a collection of Type 0 files all

crammed into one MIDI file. Type 2 is used to store a collection of songs or

patterns, for example, numerous drum beats. (If you need to convert a MIDI file to

the various Types, use my Midi File Conversion utility).

Besides sequencers, other software and hardware devices may use MIDI files. For

example, a patch editor may store an instrument's patch settings in a MIDI file, by

storing System Exclusive messages (received from the instrument) within the MIDI

file. In this case, the patch editor may not care about the timestamp associated with

each SysEx message.

9

4. JFUGUE: JAVA MUSIC PROGRAMMING API FEATURES

JFugue is full of interesting and useful features that let user experiment with music

like no other programming tool. It is a Java Music API that helps in programming

musical notes into coding. Among the features of JFugue are:

4.1. Create music using JFugue "MusicStrings", an easy and quick way to

specify musical notes and other events

• JFugue supports for all audible MIDI events and files. Any file that

can be played in MIDI, can be played in JFugue.

• Easily specify notes, chords, ties, instruments, key signatures,

controller events, percussion sounds, and more.

• Play the Music Strings directly from a program and save Music

Strings as text files, or save them into MIDI files.

4.2. Convert existing MIDI files into JFugue MusicStrings

• Read and understand any of created MIDI files.

• Manipulating musical patterns and snippets from existing MIDI files.

4.3. Manipulate Patterns of music

• JFugue's Pattern class lets several processes for example to change,

transform, or measure pieces of music

o Change octaves, scales, durations

o Replace notes, instruments, chords

o Mutate musical patterns to come up with a variety of related

sounds

• Patterns can be easily recombined, looped, and otherwise

manipulated

• Create factories of patterns to produce well-known rhythms, like

Rock or Swing beats

10

4.4. Easily and intuitively specify rhythms

• Type or generate rhythm sections easily. For example: "ooO' ooO' ooO'

000"', where "o" might represent a snare drum, "0" a bass drum, and'

a hi-hat

• Create layers of percussion sounds to be played on the same MIDI

channel

4.5. Support for Microtonal Music

• Easily create music like an Indonedian gamelan, or in an Indian classical or

Turkish style - all need is the frequency of the notes to be played. JFugue

manipulates MIDI events to do the rest

4.6. Send music to, or receive music from, other MIDI devices

• Send the Patterns or any MIDI files to MIDI keyboard or sequencer

• Record music into Patterns as played on the keyboard

• Develop music training software, or games that involve playing notes on

the MIDI device

4.7. Experience simplified use of MIDI

• One line of code to play any MIDI file (well, you'll have to manage any

exceptions)

• MIDI generated from JFugue Music Strings can be worked with like

any other MIDI sequence - add lyrics, track names, etc.

4.8. Anticipate musical events before they happen

• Easily set up JFugue to alert you before a musical event is frred

• Develop your own virtual instruments or interactive characters that need

to begin some animated action before the notes actually sound

11

4.9. Excellent architecture maps any Parser to any Renderer, allows for easy

and powerful reconfiguration

• A Parser converts data into musical events. Examples:

MusicStringParser, MidiParser

• A Renderer converts musical events into something that can be seen or

heard. Examples: MidiRenderer, MusicStringRenderer

• Create your own Parsers and Renderers, and easily use them in your

program!

o Create your own Parser to convert music from ABC format

o Create your own Renderer to turn musical events into

sheetmusic, or create a music-driven light show

o Create your own Parser and Renderer to support MusicXML

• Multiple Renderers can listen to an individual Parser

12

5. AKOFF SOUNDS LAB

5.1. AKoffMusic Composer Version 2.0

Tiris software is designed for recognition of polyphonic music from audio

source and its conversion to MIDI score. Now one can compose music without

MIDI keyboard and even without knowledge of notes or how to play musical

instruments. It is as easy as humming a tune into a microphone and Composer

will do the rest. Composer will take into consideration individual performance

style tracking note dynamics and pitch bends.

Figure 2.1: AKoffMusic Composer- Recognition Dialog

5.2. How AKoff Music Composer Works

Composer analyzes a stream of audio signals from pre-recorded WAVE files or

directly from audio input of your sound card in real-time. It can be sound from

microphone, linear input or audio CD.

Composer normally recognizes polyphonic music with one instrument or voice.

This means user won't get the appropriate results if they try to recognize many

instruments playing at the same time especially with drums. Composer

determines note dynamics and frequencies and translates this information into

MIDI events.

13

Composer doesn't automatically recognize the types of sounding instruments.

Moreover, human voice and instruments have various timbres and complicated

harmonic components; therefore recognition accuracy depends on concrete

instrument or singing style. Furthermore the recognition is inlluenced by quality

ofWAV recordings such as background noises and recording level.

The complicated mathematical algorithms of DSP (Digital Signal Processing)

require a great amount of calculations and consequently a fast computer. When

recognizing audio input in real-time, Composer only works reliably on Pentium

150 and higher processors. On weaker machines, the incorrect working or dead

halt of the program may occur, which is removed through pressing Ctrl-Alt-Del

keys.

During recognition the recorded notes are automatically shown on the graphic

keyboard. After recognition is stopped, user can play and adjust the obtained

melody. User can select the playback MIDI instrument, change octave and also

try to correct music scale or use Pitch Bend Control. Further user can add the

recorded track to the general list of MIDI tracks and then save the generated

MIDI file.

14

6. MIDOMI

Midomi is a system that is developed by Melodis Corporation to online user where

they provide service of searching the list of sons they have in the database. Midomi

is a music search tool powered by human voice. The favorite music in the songs

database is search using singing, humming, or whistling. No development

information on the system is provided by the company.

7. SINGER IDENTIFICATION USING VOICE CODING

This is a study done by Massachusetts Institute of Technology on singer

identification in popular music recording has a few similarities with the project. The

research presented in the paper attempted to automatically establish the identity of a

singer using acoustic features extracted from songs in a database of popular music.

As a first step, an untrained algorithm for automatically extracting vocal segments

from within songs is presented. Once these vocal segments are identified, they are

presented to a singer identification system that has been trained on data taken from

other songs by the same artists in the database.

8. MUSIC RECOGNITION

In a few words music recognition is mathematical analysis of an audio signal

(usually in WA V format) and its conversion into musical notation (usually in MIDI

format). This is a very hard artificial intelligence problem. For comparison, the

problem of recognition of scarmed text (OCR - Optical Character Recognition) is

solved with 95% accuracy - it is an average exactitude of recognition of the

programs of the given class. The programs of speech recognition already work with

70-80% accuracy, whereas the systems of music recognition work with 60-70%

accuracy but only for a single voice melody (one note at a time). For polyphonic

music the accuracy is even lower.

15

To create a MIDI file for a song recorded in WA V format a musician must

determine pitch, velocity and duration of each note being played and record these

parameters into a sequence of MIDI events. Music recognition software must do the

same things. Even for a single instrument song it is not a simple task, because a

W A V recording contains waveform signals and doesn't contain any music specific

data.

In general cases the variety of music timbres, harmonic constructions and transitions

make it impossible to create a mathematical algorithm for precise reconstruction of

a music score from the audio sources. It is hard to recognize audio data which

contains many instruments, drums and percussions or clipping signals, unstable

pitch sounds and background noises. Therefore it is a need to find a system that will

produce a MIDI material that represents the basic melody and chords of recognized

mUSlC.

9. WAV AND MIDI FORMATS

The difference between WA V and MIDI formats consists in representation of sound

and music. WA V format is digital recording of any sound (including speech) and

MIDI format is principally sequence of notes (or MIDI events). The relations are

approximately the same as between sounded speech and printed text.

A W A V file is the recording of a sound wave. It is the mix of all the given sounds

(instruments, voices, background noises) that could have been heard at the moment

of recording. Example of human voice recorded in W A V format, it could not be

edited to any note or change any instrument in music recorded in a W A V file. The

Standard Windows PCM W A V format contains only Pulse Code Modulation data

without compression. PCM format is the only kind that saves the entire wave

completely with no data loss.

There are many other formats for audio recording. They differ from each other by

compression algorithms and can be referred to one group. The conversion from one

16

format into another is very simple. There are many sound editors which allow one to

do this.

The following is a list of some audio formats with file extensions:

• Standard Windows PCM waveform (.WAV)

• Microsoft ADPCM waveform (.WA V)

• MPEG Layer (.MP2, .MP3)

• RealAudio (.RA)

• Sound Blaster voice file format (.VOC)

• MIDI format

MIDI files store MIDI messages, which are commands that tell a musical device what

to do in order to make music. For example, there is a MIDI message that tells a device

to play a particular note. There is another MIDI message that tells a device to change its

current "sound" to a particular patch or instrument. Etc. The MIDI file also stores

timestamps, and other information that a sequencer needs to play some "musical

performance" by transmitting all of the MIDI messages in the file to all MIDI devices.

In other words, a MID I file contains hundreds (to thousands) of instructions that tell one

or more sound modules (either external ones connected to your sequencer's MIDI Out,

or sound modules built into your computer's sound card) how to reproduce every single,

individual note and nuance of a musical performance.

A WAVE file stores a digital audio waveform. This data must be played back upon a

device with a Digital To Analog Converter (ie, DAC) such as a MIDI sampler (ie, the

AKAI SIOOO for example) or a computer sound card's DAC. There are no timestamps,

or other information concerning musical rhythms or tempo stored in a WAVE file.

There is only digital audio data. Typically, a WAVE file is used to store a looped,

single-pitched waveform (which a sampler transposes and plays back over a range of

MIDI note numbers), or a short, non-looped percussive sound or sound effect, or often a

digital audio recording (ie, stereo rnixdown) of some musical performance stored upon

your hard drive.

17

The only way to record and store a musical performance within a WAVE file is to

digitize the audio output of all instruments while they play that performance. The result

will be a typically large WAVE file that represents the digitized "sound" of all

instruments playing the musical piece in realtime. The act of doing such is often

referred to as "Hard disk recording" because the WAVE data usually has to be recorded

directly to a large Hard Drive while the DAC digitizes the performance.

A MIDI file allows easy editing of the individual musical parts, because each part is

usually assigned to its own MIDI channel, and it's easy to separate that part's MIDI data

from the other parts' MIDI data, based upon the MIDI channel in each MIDI message.

On the other hand, you can't easily separate the digital audio data of one instrument

from the digital audio data of another instrument, if the two were digitized

simultaneously into one WAVE file. For editing of individual musical parts, each part

should be digitized and stored in its own WAVE file. Due to the difficulties in

separating musical parts from a WAVE file, a conversion from WAVE format to MIDI

format is not too feasible, although the reverse is not a problem.

One benefit of a WAVE file is that its "sound" is not usually dependent upon the

playback device. A WAVE file should sound the same upon different equipment (with

reasonably similiar specs). On the other hand, a MIDI file can sound considerably

different upon different MIDI gear. This is because the MIDI file doesn't dictate what

means an instrument uses to produce its sound. The MIDI file may sound very different

upon an instrument that uses FM synthesis than it will sound upon an instrument using

"wavetable synthesis" (ie, looped, digital audio waveforms in ROM). But, standards

such as General MIDI seek to alleviate some of the discrepancies between MIDI

devices.

An MP3 file, like a WAVE file, stores digital audio data. So a MIDI file and an MP3

file are different in exactly the same way that a MIDI file and a WAVE file are

different. Indeed, a WAVE and MP3 file are two different ways of storing the exact

same type of data. The primary difference between a WAVE and MP3 file is that the

18

latter uses compression to squeeze the data down in size, resulting in a typically much

smaller file size.

10. LEVENSHTEIN DISTANCE

In information theory and computer science, the Levenshtein distance is a string

metric which is one way to measure edit distance. The Levenshtein distance

between two strings is given by the minimum number of operations needed to

transform one string into the other, where an operation is an insertion, deletion, or

substitution of a single character. It is named after Vladimir Levenshtein, who

considered this distance in 1965. It is useful in applications that need to determine

how similar two strings are, such as spell checkers.

For example, the Levenshtein distance between "kitten" and "sitting" is 3, since

these three edits change one into the other, and there is no way to do it with fewer

than three edits:

1. kitten--> sitten (substitution of's' for 'k')

2. sitten--> sittin (substitution of'i' for 'e')

3. sittin--> sitting (insert 'g' at the end)

It can be considered a generalization of the Hamming distance, which is used for

strings of the same length and only considers substitution edits. There are also

further generalizations of the Levenshtein distance that consider, for example,

exchanging two characters as an operation, like in the Damerau-Levenshtein

distance algorithm.

A commonly-used bottom-up dynamic programming algorithm for computing the

Levenshtein distance involves the use of an (n + 1) x (m + 1) matrix, where n and m

are the lengths of the two strings. This algorithm is based on the Wagner-Fischer

algorithm for edit distance.

19

This is pseudocode for a function LevenshteinDistance that takes two strings, s of

length m, and t of length n, and computes the Levenshtein distance between them:

int LevenshteinDistance(char s[l..m], chart[I..n])

II dis a table with m+ 1 rows and n+ 1 columns
declare int d[O .. m, O .. n]

fori from 0 tom
d[i, OJ:~ i

for j from 1 to n
d[O,j] :~ j

for i from 1 to m
for j from 1 to n

if s[i] ~ tU] then cost :~ 0
else cost := 1

d[i, j] :~ minimum(

return d[m, n]

d[i-l,j] +I, II deletion
d[i,j~l] + 1, //insertion
d[i-I,j~l] +cost II substitution

An example of the resulting matrix (the minimum steps to be taken are bold):

Table 2.1: Levenshtein Distance Result Table

k I t t e n

0 l 2 3 4 5 6

s l 1 2 3 4 5 6

i 2 2 1 2 3 4 5

t 3 3 2 1 2 3 4

t 4 4 3 2 1 2 3

I 5 5 4 3 2 2 3

n 6 6 5 4 3 3 2

g 7 7 6 5 4 4 3

The invariant maintained throughout the algorithm is that we can transform the

initial segment s[l..i] into t[l..j] using a mininlum of d[ij] operations. At the end,

the bottom-right element of the array contains the answer.

20

This algorithm is essentially part of a solution to the Longest Common Subsequence

problem (LCS), in the particular case of 2 input lists.

10.1. Proof of Correctness

As mentioned earlier, the invariant is that we can transform the initial segment

s[l..i) into t[l..j] using a minimum of d[ij] operations. This invariant holds

since:

• It is initially true on row and column 0 because s[l..i] can be

transformed into the empty string t[l..O] by simply dropping all i

characters. Similarly, we can transform s[l..O] to t[l..j] by simply

adding all j characters.

• The minimum is taken over three distances, each of which is feasible:

o If we can transform s[l..i] to t[l..j-1] ink operations, then we

can simply add tO] afterwards to get t[l .. j) ink+ 1 operations.

o If we can transform s[l..i-1] to t[l..j] ink operations, then we

can do the same operations on s[l..i] and then remove the

original s[i) at the end in k+ 1 operations.

o If we can transform s[l..i-1] to t[l..j-1] ink operations, we

can do the same to s[l..i] and then do a substitution of tO] for

the original s[i] at the end if necessary, requiring k+cost

operations.

• The operations required to transform s[l..n] into t[l..m] is of course

the number required to transform all of s into all oft, and so d[n,m]

holds our result.

This proof fails to validate that the number placed in d[ij] is in fact minimal;

this is more difficult to show, and involves an argument by contradiction in

which we assume d[ij] is smaller than the minimum of the three, and use this

to show one of the three is not minimal.

21

10.2. Possible Improvements

Possible improvements to this algorithm include adapting the algorithm to use

less space, O(m) instead of O(mn), since it only requires that the previous row

and current row be stored at any one time. It can store the number of insertions,

deletions, and substitutions separately, or even the positions at which they

occur, which is always j. Further is by giving different penalty costs to

insertion, deletion and substitution. The initialization of d[i,O] can be moved

inside the main outer loop. This algorithm parallelizes poorly, due to a large

number of data dependencies. However, all the cost values can be computed in

parallel, and the algorithm can be adapted to perform the minimum function in

phases to eliminate dependencies.

10.3. Upper and Lower Bounds

The Levenshtein distance has several simple upper and lower bounds that are

useful in applications which compute many of them and compare them. These

include:

• It is always at least the difference of the sizes of the two strings.

• It is at most the length of the longer string.

• It is zero if and only if the strings are identical.

• If the strings are the same size, the Hamming distance is an upper

bound on the Levenshtein distance.

• If the strings are called s and t, the number of characters (not

counting duplicates) found ins but not intis a lower bound.

22

1. Methodology

CHAPTER3

METHODOLOGY/PROJECT WORK

The project is developed by several phases until the end of its completion. The

phases cover the research on available technologies to develop the system, analysis

and understanding of human voice, music pattern recognition and comparing

algorithm and the development of the system itself. The methodology used in the

development of the system is based on four phases of system analysis and design

which are planning, analysis, design and implementation.

1.1. Planning Phase

During the planning phase of the system development, objectives of the system

were identified to plan on what the functionalities that the system will have and

area to be focused on during the analysis.

As discussed in Chapter 1, the system objectives are:

a) Searching the Right Song

The functionality of the system is to search the right song from group

of songs by comparing to user's humming voice melody

b) Simplicity with Accurate Result

The system would be easy to use for user and the result produced by

the system is accurate by displaying the right song search by the user.

c) Effective and Less Time Consumption

User will find the system effective as it cuts users time instead of

listening to all songs intended to search manually, user would just let

the system do the work.

23

Once the objectives were identified, the next step was to analyze the feasibility

of the system through several areas technically, economically and development.

Analysis phase follows as the next stage of the development of the system.

1.2. Analysis Phase

In this phase, areas involving the system are identified where these are the

focus of the system. Information gathering were also done as discussed in

literature review. The areas involve the functionality that the system has and

process needed for the development of the system. These areas are discussed

below.

1.2.1. Technology

The system is developed using Java language which covers every aspect

and function that the system has. An example of the functions is the

recording of humming voice into 'wav' format and the displaying the

songs result. Apart from that, an algorithm is also being implemented for

the system's function of comparing the similarity of the humming voice

and the correct song.

Technologies implemented in this system are the technologies used to

develop a Java application. Among the packages of Java programming

used is the Java Sound API package which is used to record to user's

humming voice melody and Java JFugue package for the manipulation of

songs musical notes for comparison algorithm.

All of the technologies used doing the development of the program

involves writing source codes in Java programming language. The

beauty of this system is that, to implement the system to any computer,

hardware needed are a microphone, speaker and the Java enabled

computer.

24

1.2.2. Conversion 'wav' Format File to 'midi' Format File

Currently, the develop system is only capable of capturing humming

voice from and in-line microphone and save it into 'wav' form. The next

step of converting 'wav' file to 'midi' file is not possible at the moment

as it involves intricate process of sound and multimedia programming.

As discussed in Problem Statement of Chapter l, this function will be

done by already available program.

1.2.3. Human Voice

Analysis and studies were done in understanding the human voice

characteristic in the form of humming. Humming voice is studied to find

out the character of humming voice in order to understand and identify

the right pitch that is producing the right note. In the development of the

system, studies were done on how to capture the humming voice melody

recorded using a microphone connected to a computer.

For this project, the system records the humming voice melody from the

microphone and stores inside the system as a 'wav' humming melody.

This 'wav' melody will then be passed to other process in the system.

1.2.4. Songs Melody

In this part, songs melodies are the songs that are stored in the system for

comparison to the humming voice melody. These songs are in 'midi' file

format which in a 'midi' file, it contains a stream of musical notes which

are combined together to produce the song file.

The 'midi' format is chosen for the songs stored in the system because

'midi' file consists of musical notes and the arrangements of the musical

notes are what produce the song. Furthermore, this 'midi' file is easier to

be processed during the comparison process of the system.

25

1.2.5. Comparing Algorithm

It is vital to understand and find the algorithm of comparing the 'midi'

file of the hununing voice and the 'midi' files of the songs, in order to

have a successful search of songs in the database.

As discussed in the Literature review, the comparing algorithm used for

the system is the Levenshtein Distance. Further discussion on how the

algorithm is implemented is in the next section.

1.2.6. System Use Case Diagram

System

Figure 3.1: System Use Case Diagram

The use case diagram shown depicts how user interacts with the system. To operate

the system, user needs to record the humming voice melody using the system and

click the button for viewing the result.

26

1.3. Design Phase

The design phase of the system development involves the system design, the

user interface and what technologies are used for doing the design.

1.3.1. System User Interface

~-~~~ -~~~=~""'=""'=~""~~~~1'61'

D Song Search System Fmal Year ProJect Mohamad Anff Bm Abdul Rahman [5837} ~ ..Q_ J1

File to save: lrecordlng.wav II SaveWAVE II

Song Number 1:
Song Number2:
Song Number 3:
Song Number 4:

Mary Had A Little Lamb. midi 11.2%
Old MacDonald Had A Farm.midi
TWinkle Twinkle Little Star.mldl 5.1%
When The Saints Go Marching ln.midi

Figure 3.2:System Maio User Interface

8.3%

100.0%

Record
Humming
Field

Result
Field

The user interface of the system is divided into two parts which are:

I. Record Humming

2. Result

The system interface is developed using Java programming language.

Functionalities of the system is activated when the user click the buttons

available on the interface. Further discussion on how the users use the system is

in Chapter 4.

27

1.4. Implementation Phase

During this phase, activities done were the construction of the system that

involve code writing using Java language, the implementation of comparing

algorithm into coding and activities to realize the system. These activities are

discussed further in this section.

1.4.1. Humming Voice Capture Using Java Sound API

Capturing refers to the process of obtaining a signal from outside the

computer. This system captures audio from a microphone and when the

user save their humming voice, the system will save it as a wave file.

With the facilities that Java Sound API package provides, the system can

record user's hunnning voice and save it into 'wav' file. The following

codes are extracted from the system on the function of capturing

humming voice melody.

The codes in the box below shows how the system reads data from the
input channel which is the microphone and writes to the output stream

II defme the required attributes for our line and make sure a compatible line is supported.

AudioFormat format= formatControls.getFonnatO;
DataLine.Info info= new DataLine.Info(TargetDataLine.class,

format);

if (IAudioSystem.isLineSupported(info)) {
sbutDown("Line matching " + info + " not supported.");
return;}

try{
line= (fargetDataLine) AudioSystem.getLine(info);
line.open(format, line.getBufferSizeQ);

} catch (LineUnavailableException ex) {
shutDown(11Unable to open the line: " +ex);
return;

} catch (SecurityException ex) {
shutDown(ex.toStringQ);
//JavaSouod.showlnfoDialogO;
return;

} catch (Exception ex) {
shutDown(ex. toStringO);
return;

28

When the recording is done, the output stream is closed and the humming

voice melody is ready for playback or saves into 'wav' file. The coding

below shows how the recorded humming voice melody is saved into 'wav'

file.

public void saveToFile(String name, AudioFi!eFonnat.Type fileType) {

if (audiolnputStream =null) {

)

reportStatus("No loaded audio to save");
return;

) else if (file !~ null) {
createAudiolnputStream(file, false);

)

II reset to the beginnning of the captured data
try{

audioinputStream.resetO;
) catch (Exception e) {

reportStatus("Unable to reset stream"+ e);
return;

File file~ new File(fileName ~name);
try{

if(AudioSystem.write(audiolnputStream, fileType, file)= -I) {
throw new IOException("Problems writing to file");

)
) catch (Exception ex) { reportStatus(ex.toStringO);)
samplingGraph.repaintO;

When the 'wav' file of humming voice melody is available, an outside

program is use to convert the 'wave' into 'midi' file.

1.4.2. MIDI Files and JFugue

The next step is the processing of 'midi' file of humming melody and

songs 'midi' files stored in the system. Once the 'midi' files are ready,

the system will implement the JFugue processing for the purpose of

identifying the musical notes that creates the 'midi' files and convert the

musical notes into string.

29

The process done is by using 'Pattern' class provided in JFugue where

the 'midi' files are loaded into the system and converted into strings

which are the musical notes of the song. The box below shows the

example on how 'Pattern' class is implemented.

Player player ~new Player();

Pattern humming= new PatternQ;
String shumming;

try
{
humming= player.loadMidi(new File("humming.midi"));

shumming ~ humming.toStringO;
}

catch (Exception e)
{
System.err.println("File input error");

}

The some process is done to every 'midi' song stored in the system to get

the musical notes as these string are to be process in the comparing

algorithm.

1.4.3. Comparing Algorithm Using Levenshtein Distance

In this process, both the musical notes string of the humming voice

melody and all the musical note strings of the songs are compared. The

music string of humming voice will be compared one by one to all the

music strings of the song to find similarities of the song. The comparison

algorithm used for this process is based on Levenshtein Distance.

30

The box below shows the coding of how the Levenshtein Distance is

implemented as a function in the system. This function will be called

when the comparing process is needed.

public int ld(String s, String t) {
int n ~ s.lengthO;
int m ~ t.lengthO;

if (n = 0) return m;
if (m = 0) return n;

intOD d ~new int[n + l][m + I];

for (int i ~ 0; i <~ n; d[i][O] ~ i++);
for (intj ~ l;j <~ m; d[OJm ~ j++);

for (inti= 1; i <= n; i++) {
char sc ~ s.charAt(i-1);
for (intj ~I ;j ~ m;j++) {

int v ~ d[i-l][j-1];
if(t.charAt(j-1) !~ sc) v++;
d[i]UJ ~ Math.min(Math.min(d[i-l][j] + I, d[i]0-1] + I), v);

}
return d[n][m];
\

This is how Levenshtein Distance works and implemented into the

system. The table below shows humming voice melody notes of (C C G

G A A G) and being compared to song melody notes of (C C G A B E

F). The result of the comparison based on Levenshtein algorithm

produces 4 operastions whish means, 4 differences occurred with 4

different music notes for the comparison.

Table 3.1: Levensbtein Distance Operation Resnlt

c c G G A A G

c 0 1 2 3 4 5 6

c 1 0 1 2 3 4 5

G 2 1 0 1 2 3 4

A 3 2 1 1 2 3 4

B 4 3 2 2 2 3 4

E 5 4 3 3 3 3 4

F 6 5 4 4 4 4 4

31

The result produces which are 4 as an example showed is used to

calculate the percentage different of musical note string of the humming

voice melody to each of the 'midi' song stored in the database. When the

calculation is done, the system will display result to the user by

percentage of similarity to every song in the system.

Song Number 1.
Song Number 2·
Song Number 3:
Song Number 4:

Mary Had A Little Lamb.midi 11.2%
Old MacDonald Had A Farm.midi
Twinkle Twinkle Little Slar.midi 5.1%
When The Saints Go Marching ln. midi

Figure 3.3: System Result Display

32

8.3%

100.0%

CHAPTER4

RESULTS AND FINDING

1. SYSTEM PROCESS FLOW

User starts and record humming

System converts the humming voice from 'wav' format to
'midi' format

System matches the 'midi' humming voice to stored 'midi' songs

Result: Song Title Displayed

2. USER INTERFACE

The system provides a very simple and easy to use interface in order to minimize

the time consumption. User will have to click only three to four buttons and the

result will be displayed.

The user interface of the system is easy to be learn and attractive. The user interface

will be shown with screenshots and followed by how the system can be used by the

user.

33

File to save: jrecording.wav 1]. SaveWAVE jj Se~

Song Number 1:
Song Number 2·.
Song Number 3·
Song Number 4:

Mary Had A Little Lamb.mldi 11.2%
Old MacDonald Had A Farm.m'ldi
Twinkle Twinkle Utile Slar.midl 5.1%
When The Saints Go Marching ln.midi

Figure 4.1: System Interface

8.3%

100.0%

Result
Field

The user interface of the system is divided into two parts which are:

3. Record Humming

4. Result

3. USING THE SYSTEM

The first step that the users do to use the system is by recording the humming voice

to the melody of the song intended to be searched inside the system.

34

File to save: lrecordlng.wav II Sove WA,VE II Soar_ch_5on[I

Figure 4.2: Record Humming Field

In the record humming part, it is the step where user will record his/her humming

voice of a song. User will push the 'Record' button to start recording and push

'Stop' button once user finishes recording. The user can playback the recorded

humming voice and try recording again if not satisfY before proceeding to save the

file into 'wav' format inside the system.

Next, the user proceeds to having the result. When the 'Search Song' button is

clicked, the system will start processing the recorded humming voice. The system

will perform the comparing algorithm to find the exact song from database and

match it with the humming melody. Once the match occurred, the result will be

displayed in the result area with percentage of similarity of the humming voice

melody compared to every song in the system.

song Number 1:
song Number 2:
Song Number 3:
Song Number 4:

Mary Had A Little Lamb. midi 11.2%
Old MacDonald Had A Farm.midi
Twinkle Twinkle Utile Star.midi 5.1%
When The Saints Go Marching ln.midi

Figure 4.3: Result Display

35

8.3%

100.0%

CHAPTERS

CONCLUSION AND RECOMMENDATION

From the result of the development of the project, it is concluded that the development

of this system has met the objectives of its result as planned. Based on the objectives

that had been discussed earlier, the functions planned to be implemented to the system

has been tested and work successfully.

The system developed is found to be useful to the user as it helps user to find song just

by hununing to the melody of the song intended to be search instead of going to each an

every song in the system and play all the songs to find the right one.

The use of the system is easy and less time consumption and it is also capable to be

installed in any computer that has Java enviromnent. The use of java language for the

prograrmning development has also help to diversify the technology that can be used as

Java is expandable.

For the current system, it has rooms for improvement for example future work can be

done in several areas such like:

a) Hununing Voice Melody Capturing

In the future, more complex multimedia and sound progrannning can be

implemented into the system in order to have hununing that can be altered to

produce exact pitch similar to pitch of musical notes so that error on having

the wrong note will not occur.

36

b) 'wav' to 'midi' Conversion

The current system implemented the process by using an outside program to

convert 'wav' to 'midi' for humming voice melody. Therefore in the future

expansion can be done to this system so that the conversion takes place

inside the system.

c) Enhancement of Comparing Algorithm

This system uses Levenshtein Distance for comparing 'midi' file of

humming voice melody and the stored songs melody to find similarity of

both melodies. Future work on this aspect can focus on enhancing the

system capability to fmd songs with different key signature. In example is

that even though humming voice melody is hummed in C Major, it can be

compared to find similar song that is stored in D Minor or other key

signature.

It is hoped that the development of the system can help its users in any way possible. A

lot of efforts had been put on in realizing the project and it is also hoped that anyone

who encountered with this project whether a user or a developer, would benefit and gain

a lot of knowledge from the system.

37

REFERENCES

1. Dennis A., Wixom B. H., Tegarden D., System Analysis and Design with UML

Version 2. 0, Second Edition, John Wiley & Sons, Inc., 2005

2. Paul J. 2007, Java How To Program, Upper Saddle River, New Jersey, Pearson

Prentice Hall

3. Bell, Doug. 2006, Java for Students, Harlow, England, Pearson Prentice Hall

4. Horstmann, Cay. 2005, Java Concepts, New Jersey, John Wiley & Sons

5. Miranda, Eduardo Reck. 2002, Computer Sound Design: Synthesis Techniques and

Programming, Oxford, Focal Press

6. McCarthy, Bob. 2007, Sound System: Designand Optimzation, Boston, Focal Press

7. MOT Press. 1999, The Csound Book: Perspectives In Software Synthesis, Sound

Design, Signal Processing And Programming, Cambridge, The MOT Press.

8. Java, Sun Microsystem. 24 October 2001, "JavaSound API Progranuner's Guide"

<http:/ ljava.sun.com/j2se/1.4.2/docs/guide/sound/progranuner _guide!mdex.html>

9. David Koelle, 2007, "Features: JFugue, Java API for Music Progranuning"

< http:/ /www.jfugue.org/features.html>

38

10. Kim, Youngmoo E. and Whitman, Brian. 2004. Singer Identification in Popular

Music Recordings Using Voice Coding Features

11. AKoff Sound Labs, 1998-2001, Wav to Midi Conversion

<http://www.ak.off.com/about.html>

39

A Voice-to-MIDI System for Singing Melodies with Lyrics
Naoki ltou and Kazushi Nishimoto

Japan Advanced Institute of Science
and Technology

1-1, Tatsunokuchi, Nomi, Ishikawa,
923-1292, Japan

Phone: +81 761511812

{ n-itou, knishi}@Jaist.ac.jp

ABSTRACT
[n this paper, we propose a robust Voice-to-MIDI 01 toM) system
with which a user can input MIDI sequence data by naturally
singing melodies with lyrics. A Voice-to-MIDI system translates
singing voices into digital musical data, i.e., MIDI sequence data.
Therefore. with such a system, users can input melodies intuitively,
which releases them from manual translating memorized melodies
into chromatic pitches. However, the quality of translation of
Jrd.inary Voice-to-MIDI systems is insufficient One of the most
~ignificant problems is the poor accuracy of the segmentation of
ootes. We solve this problem by employing '"rhythmic tapping"
:!oncurrently with singing. We examined the proposed method by
fle accuracy of the numbers of segmented notes and their pitches.
1\s a result, we confirmed that our system outperformed ordinary
Voice-to-MIDI systems. Thus, this system satisfies both of easy
md intuitive composition of MIDI sequence data and high
1ccuracy of translation of sung data into MIDI sequence data.

Categories and Subject Descriptors
~.5.5 [lnfonnation Interface and Presentation]: Sound and
ldusic Computing -Signal analysis, synthesis, and processing.

C:eneral Terms: Algorithms, Performance, Experimentation,
:Iuman Factors.

Keywords
Voice-to-MIDI, melody input, note segmentation, pitch
·ecognition, lyrics, tapping. FFf.

L. INTRODUCTION
)wing to improvement of computer power and technologies of
nusical information processing, computer-based music production
las become a very popular entertainment activity as a hobby.
Iowever, existing systems still require users a lot of musical
;nowledge and skills. As a result, not few people eventually give
lp using the systems before they enjoy music creation. To solve
his situation, in this paper, we propose a novel and robust Voice­
o-MIDI system with which even a user who has little musical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACE'07, June 13-15,2007, Salzburg, Austria
Copyright 2007 ACM 978·1·59593-640-0/07/0006 ... $5.00.

knowledge and skill can input MIDI (Musicallnstruments Digital
Interface) sequence data by naturally singing melodies with lyrics.

A Voice-to-MIDI system translates singing voices into digital
musical data, i.e., MIDI sequence data, which is used in computer­
based music production, for example, composition, transcription,
and ringing melodies for cell phones. With the Voice-to-MIDI
system, users can readily input the MIDI sequence data of any
melody into computers by simply singing the melody with a
microphone: the Voice-to-MIDI system automatically extracts
such acoustical characteristics as pitch, volume, and duration from
the smtg voice data and translates them into a time series of
musical notes for building music scores. Thus, users are freed
from manually translating their memorized melodies into
chromatic pitches.

However, there is a significant constraint in ordinary Voice-to­
MIDI systems: users must adhere to special ways of singing to
obtain reasonable results. For example, some Voice-to-MIDI
systems, e.g., [I] and [2], ask users not to expressively sing with
lyrics but to sing plainly with "ta ta ta ... " Expressively singing
causes many inaccurate translations. Thus, users are forced to sing
unnaturally. To allow users to exploit the Voice-to-MIDI system
more naturally and intuitively, they must be freed from unnatural
constraints. Such constraint has been incorporated into ordinary
Voice-to-MIDI systems that are mainly for achieving accurate
note segmentation. It is very difficult to accurately segment notes
from natural singing data. Furthennore, even if users sing with "ta
ta ta ... ,"errors remain.

We solve this segmentation problem by incorporating a "rhythm
tapping" function into our Voice-to-MIDI system. In other words,
we divorce handling of inputting separate notes from "singing."
Users of our system can naturally sing while concurrently
inputting the melody's rilythm by finger tapping. We examined the
proposed method for accuracy of the numbers of segmented notes
and pitches by comparing it with two Voice-to-MIDI products. As
a result, we confirmed that our system outperformed ordinary
Voice-to-MIDI systems. Additionally, we found that rhythm
tapping did not impose extra loads on users, in particular those
without experience perfonning musical instruments.

The rest part of this paper is organized as follows. Section 2
reviews related works and compares them with our proposed
system. Section 3 describes our proposed method and the
prototype system. Section 4 describes experiments to estimate our
proposed method and discusses its effectiveness by comparing it
with two Voice-to-MIDI products. Section 5 concludes this paper.

I 40
L _____ _

Aka Tombo (Red Dragonfly)

~ !, I I '!.£jJ J. 1A D r
Yu-ya ke ,, ,, k• - "'

0 wa ro to Mi ta no - wa -

'

Lyrics: Rofu Mild
Music: Kosaku Yamada

n J J I J
,, to " bo

tsu no hi - "'
I

Figure 1. Score of"Aka Tombo''

Figure 2. Sample translation result of"Aka tombo" by a product Voice-to-MIDI system.

Bach note in "Automatically obtained pitch sequence" is not quantized by beats or metrics.

All notes in ''Correct pitch sequence" were manually inputted by mouse.

~- RELATEDWORKS
:3] describes estimate pitch for an automatic scoring system by
Voice-to-MIDI. The system does not use a musical scale based on
tbsolute frequency position to pitch estimation, but instead uses a
;cale based on a singer's own musical scale. The target of the
;ystem is humming, not singing with lyrics. [4] is a commercial
>roduct to input MIDI sequence data with high precision for pitch
:ontours and expressions. Our target, however, is to input notes in
:hromatic precision for musical score making.

:!oncerning systems that treat the processing of voice/vocal signals
Ur inputting MIDI sequence data. [5] describes a system that
nputs MIDI sequence data by voice commands. But it also
equires musical ability and knowledge to input melodies.

Researches that generally treat the processing of vocal signals
include vocal detection [6], chorus detection [7][8], lyric
recognition [9], and so on. One research that integrated these
technologies, [I 0], automatically aligns acoustic musical signals
with textual lyrics. But it only extracts the vocal segments, not the
precise note information.

3. METHOD AND PROTOTYPE
3.1 Segmentation Failures of Ordinary Voice­
to-MIDI Systems
First, we examined how and why ordinary Voice-to-MIDI systems
cannot properly translate singing with lyrics into notes. Using a
Voice-to-MIDI product, the first author input the melody data of
"Aka Tombo" (a popular traditional Japanese children's song with

41

yrics by Rofu Mild and music by Kosaku Yamada) by singing its
yrics. Aka Tombo's score is shown in Figure 1. A sample of
ranslation results of an ordinal commercial Voice-to-MIDI system
s shown in Figure 2. Here, the top row shows the acoustic waves
1f the input sound melody data, the middle row shows the correct
1itch sequence manually input by mouse in a piano-roll format,
tnd the bottom row shows automatic translation results of the
.ung melody data into pitch sequence using the Voice-to-MIDI
1roduct. Note that the correct pitch sequence (the middle row) is
.hifted two octaves higher than their real pitches for viewing
:onvenience.

\.ccording to Fig. 2, the sample Voice-to-MIDI system failed to
egment many notes. For example, multiple notes were translated
nto only one note, while one note was translated into multiple
totes. These phenomena should relate to translation errors in
•rdinary systems. The translation process from singing data to
.11DI note data is hierarchical, and each step is chained: the
[Uality of the extracted or calculated data in the former steps
lirectly affects the quality of the latter steps. Therefore, if note
egmentation failed in the first step, it causes the failure of pitch
stimation in the next step, and finally, wrop_g notes are output.

0 alleviate this problem. most ordinary Voice-to-MIDI systems
sk users to sing in a discrete "ta ta ta" manner to detect the
~oundaries of notes more accurately. Indeed, accuracy improves if
ser sang in a "ta ta ta" manner. however, accuracy is still
1sufficient, and so users are forced to sing mmaturally. A method
) required that accurately segments notes from naturally sung
1elody data.

1.2 Prototype System Setup
Ve attempt to solve this problem with a very simple method:
oncurrently inputting note segmentation information of melody
lith singing. Note segmentation infonnation is generated by the
1ythmic tapping ofbutton(s), e.g., the key(s) of a PC keyboard or
f an MIDI musical instrument. Figure 3 shows the differences
etween the ordinary and proposed methods. Our proposed
tethod not only accurately segments the notes but also avoids
rong influences from noise, e.g., coughing and talking voices.

he input data are acoustic singing voice data and rhythm tapping
ata. The sampling quality of singing voices is 44.1 KHz with 16
it monaural quality. We use the push-down and release timings
f one specified key of the MIDI keyboard as rhythm tapping data;
•e use the input timings of MIDI note on message and note off
tessage. Output is a sequence of chromatic note names between
2 and G4 (A4 = 440 Hz). The output note names are figured in
~al-time (online processing). At present, the prototype does not
Litput complete MIDI sequence data; only pitch sequence is
Litput. However, it is easy to obtain note length data by using the
•ythm tapping data.

l experiments, this prototype can record the timings of the push­
Jwn and release of the key, the time series of instantaneous
itches (pitch contour), and the input of singing waves. The base
~velopment environment is Microsoft Visual C#2005. A DLL
10dule of instantaneous pitch calculation was built by using
isual C++2005, and the sound recording part is built on
irectSound.

gure 4 shows the computation process flow in the prototype
'Stem. When the user pushes down a key (inputting ·~MIDI note-

IQrdinary Voice-to-MIDij

Singing with lyrics
+Concurrent rhythm tapping of

melody with singing

The region for one note is defmed
from key-down to key-up

Figure 3. Comparison of ordinary Voice-to-MIDI and our
proposed methods

Figure 4. Flow of note name estimation

on" data) as rhythmic tapping, the system starts to extract
instantaneous pitches from the stream of the acoustical recordings
for making pitch contour until the user releases the key (inputting
"MIDI note-off' data). Instantaneous pitch is calculated by the
Short Time Fourier Transform (S1FT) method for each frame
whose size is 4096 samples and the SIFT interval is 512 samples.
Each instantaneous pitch is obtained at cent precision by

42

fable l. Numbers of correct answers for note name tasks,
obsolute pitch tasks, and interval tasks

Note name Abs. oitch Interval
sul>iect A 5 3 3

B 0 0 0

c 5 2 2
D 5 0 0
E 5 I I
F 5 I 3

nterpolation of spectrum [11] and mapped to a corresponding bin
Jf a semitone. For each bin of a semitone, the nwnbers of mapped
nstantaneous pitches are counted. Finally, when releasing the key,
.he system looks for a bin where the number of mapped
nstantaneous pitches is maximum, decides the corresponding
;emitone is the pitch of the period, and output its chromatic note
tame.

t EXPERIMENTS
fo estimate the effectiveness of the proposed Voice-to-MIDI
nethod, we conducted user studies. We compared our prototype
;ystem with two Voice-to-MIDI products: XGworks ST [1]
:YAMAHA. Co., Ltd.) and SingerSongWriter Lite5 [12]
JNTERNET. Co., Ltd.). This section describes the experiment
Jrocedure and results and discusses the advantages and problems
>f the proposed method.

U Procedure
1\.s subjects, we employed six male students at the authors'
nstitute. The following are the musical experiences of each
;object:

1\.. Electric organ for nine years

:3. None

Piano for five years and guitar for ten

D. None

~. Drums and guitar for five years

~. Voice, guitar, bass, and drums for eight years

Before the experiment, we first examined their musical knowledge
md ability using the list of questions below.

L. Note name task: while pointing to a keyboard key we asked
the subjects: "what note is output when this key is hit?"

~. Absolute pitch task: we asked for the note of a tone to which
subjects listened without being able to see which key we hit.

;. Interval task: we asked the subjects to sing relative pitch
against a given tone. For example. we presented a C tone and
asked them to sing a note that is a perfect 5th higher.

t Tapping task: we asked the subject to sing "Ware wa
Uminoko" (I am a son of the sea), a very popular traditional
Japanese song while tapping the melody's rhythm.

11te tapping task checked the fundamental ability of concurrent
ringing and tapping. All subjects could concurrently perform them.

Shure SM58

Behringer

MX802
Mixer

Processing
system

Output
content

XGworksST
SingerSong
Writer LiteS

MIDI sequence data

Our prototype
system

A series of
note name

Figure S. Signal routing diagram from the inputs to the
outputs for experiment

We provided five questions for each task except for the tapping
task. Table 1 shows the results for all subjects.

Table 1 indicates that subjects A and C might have absolute pitch
recognition. while subjects B and D did not have sufficient
musical ability due to their lack of musical experience. Although
the target users of our proposed method are mainly non-skillful
users in pitch recognition, we employed not only non-skillful
subjects but also relatively skillful individuals in pitch recognition
for a complete evaluation of our method.

All experiments were conducted in a soundproof room. Figure 5
shows a snapshot of the experiment. We prepared three PCs so
that each Voice-to-MIDI system ran on an independent PC. The
input singing data from the microphone were distributed to each
PC. In addition, the tapping data (push-down and release key
information of a MIDI keyboard for note segmentation
information) were fed to the PC on which our system ran. Namely.
the two baseline systems (XGworks ST and SingerSongWriter
Lite 5) only dealt with singing data, while our proposed system
dealt with both singing and tapping data. XGworks ST is equipped
with configuration menus for translation algorithms. We set the
target range of notes between E2 and G4 and turned off the
"quantizing" and set precedence scale as a diatonic mode.
SingerSongWriter Lite5 is not equipped with any configuration
menus.

The set piece for this experiment was "Aka Tombo" (See Section
3.1 and Figure 1), which consisted of 31 notes. This piece is very
popular in Japan, and since all subjects knew it very well, they had
no difficulty singing it However, we also let the subjects listen to
the song on CD three times. Then each subject sang the melody
three times and concurrently tapped its rhythm while singing at his

43

Table 2 Results of experiment

Tntervar
M.iss- o~-

ple
.w ... ~.u precision (%)

mg o I 2 3 4 5 6 7 8 9 10 II 12 I
0~~

~~--~~~~~~-4~~~~-~~~~~-~~~+-~-~0~+-~--~--~~0~1~0~--~;~;~~~·~!
~ 2 «

D

!,I
E

,..
F

5 1'

~ The sum of the numbers from "Interval 0" to ''Missing'' is always 93 notes.

~ "Precision (%)" = (the number of ''Interval 0") /93 * 100

>wn tempo. We did not specifY a key. Subjects were allowed to
:ee the printed lyrics while singing, although we did not show
hem a musical score throughout the experiment. Finally, we asked
hem to answer questionnaires.

1.2 Results
7Ve evaluated two aspects for the measurement of the quality of
ranslations: accuracy of pitch discrimination and nwnber of
ecognized notes. To purely evaluate the perfonnance of the
Voice-to-MIDI systems, we must clearly distinguish whether pitch
liscrimination failure was caused by subject or system mistakes.

-lence, the first author, who has musical experience including
hree years of chorus and 18 years of musical composition,
nanually decided chromatic pitches for every note by listening to
he acoustical singing waves of all experiments to obtain actual
:ung data sets. If impossible to decide only one note name for a
:ertain tone, all candidate note names were selected. We evaluated
he accuracy of pitch discrimination by comparing the actual sung
lata sets with the automatic translation results of each system on a
ime line. We classified each recognized note by pitch interval
1etween the recognized note and the corresponding actual note
nd counted the notes for all classes. Each subject sang 31 notes
vith no missing notes as well as extra notes in each attempt: a
otal of 93 notes were input three times by the singing of each
object.

lable 2 and Figure 6 show the results of the number of classified
totes. There are 17 categories: chromatic intervals :from 0 to 12
md over 12, and three more categories, i.e., "Multiple,"
Missing," and "Extra." "Multiple" is where one correct note was
ecognized as multiple notes; "Missing" is where a correct note

was not recognized; "Extra" is where an unexpected note not
included in the actual sWig data set was recognized, but it does not
include cases of "Multiple." "Precision," shown in the upper left
of Table 2 and Fig. 6, is calculated by dividing the numbers from
the ''pitch interval is 0" category by the actual note total, i.e., 93.

4.3 Discussion
According to Fig. 6, the precision of pitch discrimination of our
prototype is much higher than others for all subjects. The average
precision scores for our prototype are 65.9% and 24.0% for
XGworks ST and 10.2% for SingerSongWriter LiteS. There are
significant differences at the 0.1% rate between our prototype and
XGworks ST and our prototype and SingerSongWriter LiteS by
two-tailed t-test. In the ''Missing" category, the numbers of
missing notes of our prototype are less than others for all subjects.
There are significant differences at the 0.1% rate between our
prototype and XGworks ST and our prototype and
SingerSongWriter LiteS by two-tailed t-test There are no notes in
the "Extra" for our prototype. Fundamentally, extra notes cannot
be input by our system unless the subjects input extra taps. Thus,
these results clearly demonstrate that our proposed method is
promising as a practical Voice-to-MIDI system that allows users
to naturally sing melodies with lyrics.

However, some problems remain in our method. The number of
"Missing" notes of Subject E is relatively large because Subject E
did not tap the boundaries of legato notes. There are many "1
octave" error estimations (included in the "12 semitone" category).
These errors reflect the poor performance of the algorithm in
extracting instantaneous pitches. lbis problem can be easily
solved by replacing it with an already established more
sophisticated pitch extraction algorithm, e.g., cepstrum analysis,

44

ll"
&!l>ject A

Ill Prop g 80 Precision OXGW
'0 70 Prop.: 55.91% I!ISSW r· · XGW: 35.48%

" SSW: 8.60% r 40
30

20

10

0

~ <;. "' " 'b "' ~ , ...
Interval (semi-tones)

- Classification category

ll '
~ '

"S '

o Sllqi~t C_
•Prop ·--

0 ~ Precisi~~
·. .. OXGW

0 1:'--c- Prop.: 70.97% IIIISSW
XGW: 29.03%] :: ' :: 20

10

ll"
~ 80

'a 70

j :~
f "

30

20

10

- . SSW:
_·

&!l>jeotE

2.15% . ·.-·.
- -

. ·

.
u· :c m1

\>.0,\:,'\'b"'~'\, '\.•'-lfA'
Interval (semi-tones) ' .;,·.$'~~*;,~·<it"-

- Classification category

..

1-------:· Preci~ion •Prop
OXGW

1------" Prop.: 53.76%
; .

I!IISSW
~XGW: 9.68% ..
SSW: 15.05%

. :- _.-· _:

lm ..n ..
.. . = nun~~ _m

+"-
\>. 'l"' '\ 'b"',~,,, +~":,.P.o$"

Interval (semi-tones) '~~ .. ~.:> ~
- Classification category

ll"
0 80

= 'a 70

~ 60

1"
f" 30

20

10

ll" g 80

'a: 70

~60
.g,.

•Prop
OXGW
Ill SSW

\>. ., " '\ "' "' .._r;:,
Interval (semi-tones)

- Classification category

iiUl>ject D ===========r=c==9
'-----'---'---~---'-----'1 Ill Prop

OXGW
Iii SSW

f
a .. .-~~~~~----~~--~~~
30~-~~~----~--------~~--~-----;l--
20

10

\>. ':> b '\ 'b "' 0 \- -'-- .14> -·· ~
Interval (semi-tone~ ' ' .;.·~~~.$'~""' o/

-Classification category

0 •_Subiect_F
ll ' g 80

•Prop

~ 70

~ 60
.g,.

f
a "

30

20

-Pre~isi~n
-------'Prop.: 87.10%
----XGW: 17.20%
-------' ssw: 7 .53%

..

II

.
OXGW
l!iiSSW

.

··-10

0 .IQ;JILII
r;:, ' '\o "' \>. <;. "'" 'b "1,0, ... ""+!{'«<'

Interval (semi-tones) ' '..#~.pi$ o/

-Classification category

Figure 6. Results of the experiment for each subject

inear Predictive Coding and S1RA!GHT[l3]. Despite the
nadequacy of the algorithm for instantaneous pitch extraction, our
1roposed method achieves high quality in both estimation of the
.ccuracy of pitch discrimination and the number of recognized
LOtes. Tiris suggests the extremely high potential of our proposed
o.ethod.

1inally, we enumerate some comments from subjects about our
1rototype system. Four subjects who have musical experience
orrunented as follows:

'1 confused the timings of tapping."

"It was slightly difficult to tap along with the rhythms of the
melody."

"I didn't know whether I could sing correctly because the
system provided no feedback."

)- ''To keep the tempo, I hit the key where there are no note
boundaries."

These comments suggest that it might be difficult for those with
musical experience to tap along with the melody's rhythm because
they are apt to tap the "tempo" out of habit.

In contrast, two subjects without musical experience commented
as follows:

)- "Because I could sing while tapping the same melody's
rhythm. I didn't feel any discomfort."

»- "I usually don't sing while tapping, but I felt that it made
singing easier."

Thus, those with little musical experience accepted our proposed
method. Voice-to-MIDI systems were originally designed for

45

hose with little or no musical experience; normal musical
nstruments are more useful for people with musical experience.
fherefore, we conclude that the design of our proposed method is
·easonable because people with little or no musical experience
tccepted concurrent tapping without much discomfort.

;. CONCLUSION
N'e proposed a robust Voice-to-MIDI method by singing melodies
vith lyrics while concurrently tapping the rhythm of melodies.
rbe experiment results showed that in our proposed method, the
tccuracy of pitch discrimination and the number of recognized
Lotes is more accurate. For the accuracy of pitch discrimination,
1ur prototype is 1.5-5.0 times higher than ordinary systems.
\ccording to comments from subjects, although those who can
1lay musical instruments tend to have difficulty tapping along
vith the melody's rhythm, subjects who cannot play any
nstrument relt the melody rhythm tapping is not difficult and
LCtually preferred it. The proposed method archived high accuracy
vith an additional "not so hard" task to input note segments, i.e.,
hythm tapping, as well as freed the users from singing in an
mnatural manner. Thus, this system satisfies both of easy and
ntuitive composition of MIDI sequence data and high accuracy of
ranslation of sung data into MIDI sequence data. Therefore, we
onclude that the proposed method is a promising method for
Toice-to-MIDI systems. You can find some sample MIDI
equence data composed by our prototype system at:
1ttp://www Jaist.ac.jp/-n-itou/

n the future, we would like to adopt more sophisticated
lgorithms to extract fundamental pitches and estimate note names.
Ve also want to adopt the prototype for songs with non-Japanese
vrics.

i. ACKNOWLEDGMENTS
'his research was partially supported by the Ministry of Education,
cience, Sports and Culture, Grant-in-Aid for Scientific Research
C), 16500580,2004

' REFERENCES
l] YAMAHA Corp., XGworks ST,

http://www.yamaha.co.jp/product/syodtrnfp/cmp/xgwstw/inde
x.html

[2] Media Navigation,Inc., Hanauta Musician 2,
http://medianavi.co.jp/productlhana2/hana2.html

[3] Jun, S., Takeshi, M., Masanobu, M. and Masuzo, Y.,
Automatic Scoring of Melodies Sung by Humming. Tech.
Rep. Musical Acoust. Acoust Soc. Jpn., Vol.23, No.5,
pp.95-100, 2004.

[4] Epinoisis Software, Digital Ear, http://www.digital­
ear.com/digital-ear/index.asp

[5) Lloyd A. S., Eline F. C., Brian L. S., A Speech Interface for
Building Musical Score Collections. Proceedings of the fifth
ACM conference on Digital libraries, 2000.

[6] Goto, M., SmartMusicKIOSK: music listening station with
chorus-search function. Proc.ofthe 16th annual ACM symp.
on User interface software and technology (UIST), 2003.

[7] Goto, M., A Chorus-Section detection Method for Musical
Audio Signals. Proc. of IEEE lntl. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2003.

[8] Tzanetakis, G., Song-specific bootstrapping of singing voice
structure. Proc. of the lntl Conf on Multimedia and Expo
(ICME), 2004.

[9] Wang, C. K., Lyo, R. Y. and Chiang, Y.C., An Automatic
Singing Transcription System with Multilingual Singing
Lyric Recognizer and Robust Melody Tracker. Proc. of
EUROSpeech, 2003.

[10) Ye, W., Min-Yen, K., Tin L. N., Arun S. and Jun Y.,
LyricAlly: automatic synchronization of acoustic musical
signals and textuaJlyrics. Proc. of the 12th annual ACM intL
conf on Multimedia (MULTIMEDIA), 2004.

[11] Yuichiro, H. and Seiji, 1., Frequency Identification by
Complex Spectrum. Soc. Inst. And Cont. Engineering.,
pp.718-723, 1983.

[12] INTERNET .Co.,Ltd., SingerSongWriter LiteS,
http://www.ssw.co.jp/products/ssw/win/sswlt50w/index.html

[13) Hideki, K., Harnhiro, K., Alain de C. and Roy D.P., Fixed
Point Analysis of Frequency to Instantaneous Frequency
Mapping for Accurate Estimation of FO and Periodicity ,
Proc. EUROSPEECH'99, Volume6, 2781-2784,1999.

46

