
Travelling Salesman Problem using Prim Algorithm in High Performance

Computing

by

Wan Nurhafizah bt Wan Harun

Dissertation submitted in partial fulfillment of the

requirements for the

Bachelor of Technology (Hons)

(Infromation Communication & Technology)

JANUARY2007

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan
.(o

(S)~

"""" ,0\,

.I"\~'-) \) c..,~~\<..1 "'\"r"~

.,_~ ""'~"'.A "'"l.~"""".,.._\\..,--

CERTIFICATION OF APPROVAL

Travelling Salesman Problem using Prim Algorithm in High Performance

Computing

Approved by,

by

Wan Nurhafizah bt Wan Harun

A project dissertation submitted to the

Information Conununication Technology Program

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION COMMUNICATION TECHNOLOGY)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2007

CERTIFICATION OF ORIGINALITY

This is to certifY that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

111

ACKNOWLEDGMENTS

In the name of Allah s.w.t The Most Gracious and The Most Merciful

I am indebted and grateful to everyone who has provided both direct and indirect

assistance to the completion of this project.

First and foremost, I would like to dedicate my gratitude to my loving family for their

continuous support and encouragement. Mom, Dad, you are superheroes, thanks for

being there for me all the time.

I am greatly indebted to my project supervisor, Mr Izzatdin Abdul Aziz, who had

continuously monitored my progress during the course of the project and never shows a

sign of uninvited for my frequent show up in front of his office door. Without

constructive comments, advices and guidance this project will not be a success.

Last but not least, I would also like to give credit to Suriana, Nazmi, Marlinda, Hamidah

and Aida for their invaluable advice, comments and support.

IV

ABSTRACT

Thanks to the advances in wide area network technology and the low cost of computing

resources, High Performance Computing came into being and currently research area.

One incentive of High Performance Computing is to summative the power of widely

distributed resources, and provide non-trivial services to users. To achieve this goal an

efficient job scheduling algorithm system is an essential part of the High Performance

Computing. This preliminary report emphasizes on the basic terms of the efficient job

scheduling algorithm for traveling salesman problem in high performance computing. Job

scheduling algorithm will reduce the traffic between the processors and can help improve

resource utilization and quality of service. Traveling salesman problem is finding is the

shortest path connecting number of locations such as cities, visited by a traveling

salesman on his sales route. TSP has been used in The Two-Period Travelling Salesman

Problem Applied to Milk Collection in Ireland and Usefulness of Solution Algorithms of

the Travelling Salesman Problem in the typing of Biological Sequences in a Clinical

Laboratory Setting.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL

CERTIFICATION OF ORIGINALITY iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABBREVIATIONS viii

LIST OF FIGURES ix

CHAPTER I: INTRODUCTION

1.1 Background of Study 1

1.2 Problem Statement

1.21 Problem Identification 5

1.22 Significant of the Project 6

1.3 Objectives and Scope of Study 7

1.4 Project timeline 7

CHAPTER2: LITERATURE REVIEW 8

CHAPTER3: METHODOLOGY 13

vi

CHAPTER4:

CHAPTERS:

REFERENCES

APPENDIX

RESULT AND DISCUSSION

4.1 Result

4.2 Discussion

CONCLUSION AND RECOMMENDATION

vii

15

15

26

25

TSP

HPC

SIMD

MIMD

MPI

UTP

ABBREVIATIONS

Travelling Salesman Problem

High Performance Computing

Single Instruction Multiple Data Stream

Multiple Instruction-multiple Data Stream

Message Passing Interface

Universiti Teknologi Petronas

viii

LIST OF FIGURES

Figure 1.1 a Step 1 of 1

Figure 1.1 b Step 2 of2

Figure 1.1 c Step 3 of 3

Figure 1.1 d Step 4 of 4

Figure 1.2 Brute Force algorithm

Figure 1.3 Sequential computing

Figure 1.4 Parallel computing

Figure 3.1 Phases involved in evolutionary development approach

Figure 4.2 General MPI Program Structure

Figure 4.3 UML diagram

Figure 4.4 Data flow diagram

LIST OF TABLES

Table 4.1 Comparison between Prim's and Brute Force performance

ix

CHAPTER I

INTRODUCTION

1.1 Background of study

The popularity of the Internet and the availability of powerful computers

and high speed networks as low-cost commodity components are changing the way we

use computers today. These opportunities have led to the possibility of using

geographically distributed resources to solve large-scale problems in science,

engineering, science and commerce. This paradigm is known as grid computing.

To achieve the potential distributed resources, effective and efficient job

scheduling algorithms are fundamentally important. Job scheduling has the potential of

improving the application's overall performance by redistributing the workload among

the processing elements.

Scheduling algorithm can be broadly divided into two classes which are

time sharing and space sharing. Time sharing algorithms divide time and processor into

several discrete intervals or slot. These slots are then assigned to unique jobs. Hence,

several jobs at any given time can share the same compute resource. Space sharing

algorithms give the requested resources to a single job until the job completes execution.

"Mathematical problems related to the traveling salesman problem were

treated in the 1800s by the Irish mathematician Sir William Rowan Hamilton and by the

British mathematician Thomas Penyngton Kirkman. The picture below is a photograph of

1

Hamilton's Icosian Game that requires players to complete tours through the 20 points

using only the specified connections. " [1]

Traveling Salesman Problem has many algorithm can be applied on it but

the author only do the research in Prim's Algorithm and Brute Force Algorithm to be

applied in collapsing number. Prim's Algorithm is an algorithm in graph theory that finds

a minimum spanning tree for a connected weighted graph. Brute Force algorithm is

simply to calculate the total distance for every possible route and then select the shortest

one.

How Prim's Algorithm works?

0

Figure 1.1 a Step 1 of 4

0

r.;;;:]
~~I

J-;;41
1_:.1

8

~a---@1
4 11

~ ~ 11
u41 [_:.1

4

Figure 1.1 b Step 2 of 4

2

r-;;]1
l_'J

~

r-;;u [_ [.u-s]

0 g

~s-@] ~

4 11

~ ~11
. I

lij71 [_Cj [:ill
4

Figure 1.1 c Step 3 of 4

0 8 7

~~7~

+
4 . 11~ u4111 ~71 g

t:.~ L~
4

17

~
17

Figure 1.1 d Step 4 of 4

These figures explained how Prim's Algorithm work. There are 9 destinations (figure 1.1

a) and it start with first node which is uO. User will compare the shortest path between ul

and u3 and u4 (figure 1.1 b) and it obviously shows that ul 's path is shorter than u3 soul

will be selected (figure 1.1 c). After that user will compare between shortest path between

u2, u3 and u4 and u3 is selected (figure 1.1 d). These processes will be evaluated until it

reaches the last destination which is u9.

3

How Brute Force Algorithm work?

[TO"w:i$hi;na]
0

Figure 1.2 Brute Force algorithm

~kashi \ r;:c--kal i Osaka

Figure 12 shows the 14 towns in Japan. The problem here is to find out which path is the

shortest path from Tokushima to Tottori. Using this algorithm, the user will evaluate the

entire path and calculate each route that he travels to reach Tottori. After go thru the

entire path, he will compare which route is the shortest path.

4

1.2 Problem Statement

1.21 Problem Identification

IN

• Current Travelling Salesman Problem is written in sequential, not in

parallel.

• It has not been proven yet which algorithm would work efficiently

with Travelling Salesman Problem running in High Performance

Computing.

problem

instructions

II I 1~
13 12 11

Figure 1.3 Sequential computing

Figure 1.3 shows the sequential computing where the problem will be assign to the

one CPU sequentially. All the jobs must be queued while waiting to be assigning to

the CPU. Only one problem can be assigned at a time.

Figure 1.4 Parallel computing

5

I~

1--
1~ ..
I~
"

Figure 1.4 explained how parallel computing works. Here, more than one problem

can be located because there is more than one CPU to process the job. The process of

handling the problem will be faster and more efficient compared to sequential.

1.22 Significant of the Project

This project will benefit to the people who involves in the industry,

science and technology because job scheduling algorithm will help them in

accelerating time to results, which allows for the provisioning of extra time and

resources to solve problems that were previously unsolvable.

This is because job scheduling can reduce the traffic between the

processors and can help improve resource utilization and quality of service.

6

1.30bjective of Study

• To conduct a study on Travelling Salesman Problem using Prim's and Brute

Force Algorithm.

• To implement Travelling Salesman Problem using Message Passing Interface.

• To implement the Travelling Salesman Problem in parallel.

1.4 Scope of Study

• Rock Cluster

• Linux

• Message Passing Interface

1.5 Project Timeline

This project is going to be conducted in two semester time. This project is

started with conducting studies, fact finding, and research in the first semester. The

studies and research is done mostly through books from the library and also from the

internet. The consultation hour with the supervisor also has helped the author a lot in

understanding the core element of this project. Refer to figure I .Sa and figure 1.5b.

7

CHAPTER2

LITERATURE REVIEW

2.1 Grid Computing

"Grid computing offers the power to address some of the world's most

challenging problems; for example, struggles to prevent cancer and cure smallpox, to

reliably predict earthquakes and global warming, and many others". [7]

Two key benefits of grid computing would enable these advances. First, grids

tie together varied systems together into a mega computer, and therefore, can apply

greater computational power to a task. Second, a grid virtualizes these varied resources,

so that applications for the grid can be written as if for a single, local computer, vastly

simplifYing the development needed for such powerful applications.

"A computational grid is a hardware and software infrastructure that

provides dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities." [8]

Grid computing is an emerging technology that enables large scale resource

sharing and coordinated problem solving within distributed, coordinated group; this is the

computational aspects of grids. Thus for the project, this fundamental element of grid

computing is going to help a lot in breaking down the massive computational task into

sub task to be performed by each slave node and at the same time controlled by the

master node.

8

2.2 Job Scheduling Algorithm

"Today, several of these algorithms have been implemented in both

commercial and open source job schedulers. Scheduling algorithms can be broadly

divided into two classes: time-sharing and space-sharing. Time-sharing algorithms

divide time on a processor g into several discrete intervals, or slots. These slots are then

assigned to unique jobs. " [2]

Several jobs at any given time can share the same compute resource.

Conversely, space-sharing algorithms give the requested resources to a single job until

the job completes execution. Most cluster schedulers operate in space-sharing mode.

2.3 Load balancing

"Dynamic load balancing aims to balance processor workloads at runtime

while minimizing inter-processor communication. " [3]

Dynamic load balancing can make the processor workloads balanced at

runtime while the interaction inter-processor can be reduce or in other words it will

reduce the traffic between the processors. Dynamic load balancing has become extremely

important in several applications like scientific computing, task scheduling, sparse matrix

computations, computations, parallel discrete event simulation, and data mining.

2.5 Message Passing Interface (MPI)

"Almost everything in MP I can be summed up in the single idea of message

sent- message received." [4]

9

The basic principle of MPI is that a multiple parallel processes work

concurrently toward a common goal using messages as their means of communicating

among each other. This is the mechanism of message-passing programming model.

Message-passing is probably the most widely used parallel programming model today.

"Message-passing model does not preclude the dynamic creation of tasks, the

execution of multiple tasks per processor, or the execution of different programs by

different tasks. However, in practice, most message-passing systems create a fixed

number of identical tasks at program startup and do not allow tasks to be created or

destroyed during program execution". [5]

These kinds of systems are said to implement a single program multiple data

(SPMD) programming model that is mentioned earlier. This is because each task

executes the same program but operates on different data. Based on the reviewed that has

be done on journals and book on MPI, it shows that in most MPI implementations, a

fixed set of processes is created at program initialization and one process is created per

processor.

However, as it is said that MPI does not preclude dynamic creation of tasks;

MPI processes may also execute different programs. Thus the MPI programming model

is sometimes referred to as multiple programs multiple data (MPMD) to distinguish it

from the SPMD model in which every processor executes the same program.

For this project, MPI is chosen to be implemented together with job

scheduling algorithm as there are seamless approach to parallel computing in C++ and

MPI available through books and online resources via the internet. The author

experiences in writing C++ program for some course project before is also the main

reason for choosing the MPI.

10

2.6 Parallel Computing

"Imagine a large hall/ike a theater, except that the circles and galleries go

right round through the space usually occupied by the stage. The walls of this chamber

are painted to form a map of the globe. A myriad of computers are at work upon the

weather of the part of the map where each sits, but each computer attends only to one

equation or part of an equation. The work each region is coordinated by an official of

higher rank. From the floor of the pit tall pillar rises to half of the height of the hall. It

carries a large pulpit on its top. In this sits the man in charge of the whole theater; he is

surrounded by several assistants and messengers. One of his duties is to maintain a

uniform speed of progress in all parts of the globe. He is like the conductor of an

orchestra in which the instruments are the slide rules and calculating machines .But

instead of waving a baton he turns a beam of blue light upon those who are behindhand. "

[6]

This prophetic quote describes quite accurately the many hardware and

software ingredients that make up a parallel computer. It refers to the term of multiple

instruction-multiple data type and involves decomposition as the mechanism of

partitioning the work load. The concepts of master node that synchronize and coordinate

the process as well as load balancing are also included in the quote.

"A parallel computer is a set of processors that are able to work cooperatively

to solve a computational problem."[5]

The main interest of parallel computing is that it offers the potential to

concentrate computational process; whether processors, memory, or VO bandwidth on

important computational process. It is important to note that the performance of a

computer depends directly on the time required to perform a basic operation and the

number of these basic operations that can be performed concurrently.

11

The time to perform a basic operation is limited by the clock cycle of the

processor that is the time required to perform the most primitive operation. One way to

overcome the decreasing clock cycle times is by incorporating multiple computers, each

with its own processor, memory and associated interconnection mechanism, which is

going to be implemented in this project.

"Parallel computing is a divide-and-conquer strategy". [3]

The idea of partitioning the work in parallel computing is for all processors to

keep busy and none remain idle. Parallel computing is a natural extension of tl!:e concept

of divide and conquer; we first begin with a problem that is need to be solved, then access

the available resources that can be used to solve the problem; which is the number of

processors that can be used, and attempt to partition the problem into manageable pieces

that can be executed concurrently by each processor.

"A popular taxonomy for parallel computers is the description introduced by

Michael Flynn in the mid-1960s of the programming model as single instruction -

multiple data stream (SJMD) or multiple instruction-multiple data stream (MJMD). "[2]

On a SIMD computer, each processor performs the same arithmetic operation

or stays idle during each computer clock, as controlled by a central control unit. SIMD

applies the concept of master node synchronizes and coordinates the whole process. On

the other hand, on a MIMD computer, each processor can execute a separate stream of

instructions on its own local data.

MIMD computers can have either shared memory or distributed memory.

Distributed memory means that memory is distributed among the processors, rather than

placed in a central location. Shared memory means all processors share access to a

common memory, typically via a bus or hierarchy of buses.

12

CHAPTER3

METHODOLOGY

This project would be completed phase by phase and for the system

development, the method applied is evolutionary approach development. The reason the

author has chosen this method is because for development of this kind of system, a

flexible choice of system development methodology is very important.

Traditional approach of system development methodology that needs to get

the development model mostly right early in a project is impossible for this project as this

project involves more than just one area of studies. There will be a lot of things need to

be considered that cannot be foreseen at the beginning of the project. Thus different

conditions and techniques would be evolved during project development phase from time

to time.

Evolutionary development is an iterative and incremental approach to system

development. The system will be delivered incrementally over time. Evolutionary

development is new to many existing professional developer, and many traditional

progranuners as well. Figure 1 illustrates the phases involved in evolutionary

development approach.

In the first phase which is specification, the author will get as much

information about this project title to meet the project specification. To get the

information, the author needs to do some research about this project. The author also

required to do a lot of reading in order to dig up more information.

13

At the development phase, the author will install the appropriate software in

order to develop the project. The system that will be developed is based in the

specification that the author has done before.

Specification Initial
Version

Outline
description Development Intermediate

versiOn

Validation Final version

Figure 3.1: Phases involved in evolutionary development approach

At the third phase, the author will do validation for the system that has been

developed to make sure whether the system meets the objective of the project or not.

Testing also will be done in this phase to overcome errors that might occur during the

development.

By developing the simple prototype in the beginning of project development,

new constraints and requirements could be identified. Currently the author is working on

the first prototype of the project that should be the end product for the first semester of

developing the project.

14

CHAPTER4

RESULT AND DISCUSSION

4.1 Result

Prim's Algorithm Brute Force Algorithm

Time Less time More time

Speed Faster Slower

Table 4.1 Companson between Pnm's and Brute Force performance

From the table above, it shows that Prim's algorithm is more efficient

compared to Brute Force algorithm because it is faster and in term of speed and required

less time.

4.2 Discussion

Recently, the author has done the study on Message Passing Interface.

Message Passing Interface is a specification for message passing libraries, designed to be

a standard for distributed memory, message passing, and parallel computing. The goal of

the Message Passing Interface simply stated is to provide a widely used standard for

writing message-passing programs. The interface attempts to establish a practical,

portable, efficient, and flexible standard for message passing.

15

MPI resulted from the efforts of numerous individuals and groups over the

course of a 2 year period between 1992 and 1994.

• 1980s - early 1990s: Distributed memory, parallel computing develops, as do a

number of incompatible software tools for writing such programs - usually with

tradeoffs between portability, performance, functionality and price. Recognition

of the need for a standard arose.

• April, 1992: Workshop on Standards for Message Passing in a Distributed

Memory Enviroument, sponsored by the Center for Research on Parallel

Computing, Williamsburg, Virginia. The basic features essential to a standard

message passing interface were discussed, and a working group established to

continue the standardization process. Preliminary draft proposal developed

subsequently.

• November 1992: - Working group meets in Minneapolis. MPI draft proposal

(MPil) from ORNL presented. Group adopts procedures and organization to form

the MPI Forum. MPIF eventually comprised of about 175 individuals from 40

organizations including parallel computer vendors, software writers, academia

and application scientists.

• November 1993: Supercomputing 93 conference- draft MPI standard presented.

MPI-2 picked up where the first MPI specification left off, and addressed topics

which go beyond the first MPI specification. The original MPI then became

known as MPI-1. MPI-2 is briefly covered later. It was finalized in 1996.

• Today, MPI implementations are a combination of MPI-1 and MPI-2. A few

implementations include the full functionality of both.

16

The reasons for using MPI:-

• Standardization - MPI is the only message passing library which can be

considered a standard. It is supported on virtually all HPC platforms.

• Portability - there is no need to modify your source code when you port your

application to a different platform which supports MPI.

• Performance - vendor implementations should be able to exploit native hardware

features to optimize performance.

• Availability - a variety of implementations are available, both vendor and public

domain.

l\IPI include file

Do work and make message passing calls

Terminate NIPI Enviromnent I
Figure 4.2 General MPI Program Structure

MPI uses objects called communicators and groups to define which collection

of processes may communicate with each other. Most MPI routines require you to specify

a communicator as an argument.

17

#include "mpi. h" - header file, it is required for all programs which make MPI library

call.

MP I !nit - Initializes the MPI execution environment. This function must be called in

every MPI program, must be called before any other MPI functions and must be called

only once in an MPI program. For C programs, MPI_Init may be used to pass the

command line arguments to all processes, although this is not required by the standard

and is implementation dependent.

MPI_Init(&argc,&argv)

MPI !NIT (ierr)

MP I_ Comm _size - Determines the number of processes in the group associated with a

communicator. Generally used within the communicator MPI_COMM_ WORLD to

determine the number of processes being used by your application.

MPI_Comm_size(comm,&size)

MPI_COMM_SIZE (comm,size,ierr)

MP I_ Comm _rank- Determines the rank of the calling process within the communicator.

MPI_Comm_rank(comm,&rank)

MPI COMM RANK (comm,rank,ierr)

MPI Abort- Terminates all MPI processes associated with the communicator. In most

MPI implementations it terminates ALL processes regardless of the communicator

specified.

MPI_Abort(comm,errorcode)

MPI ABORT (comm,errorcode,ierr)

MPI_Getyrocessor _name- Returns the processor name. Also returns the length of the

name. The buffer for "name" must be at least MPI MAX PROCESSOR NAME
- - -

characters in size. What is returned into "name" is implementation dependent - may not

be the same as the output of the "hostname" or "host" shell commands.

18

MPI_Get_processor_name(&name,&resultlength)

MPI GET PROCESSOR NAME (name,resultlength,ierr)

MP/_Initialize - Indicates whether MPI_Init has been called - returns flag as either

logical true (I) or false(O). MPI requires that MPI_Init be called once and only once by

each process. This may pose a problem for modules that want to use MPI and are

prepared to call MPI_Init if necessary. MPI_Initialized solves this problem.

MPI_Initialized(&flag)

MPI INITIALIZED (flag,ierr)

MPI_Wtime -Returns an elapsed wall clock time in seconds (double precision) on the

calling processor.

MPI _ Wtime ()

MPI WTIME ()

MPI_ Wtick- Returns the resolution in seconds (double precision) ofMPI_ Wtime.

MPI_Wtick ()

MPI WTICK ()

MPI_Finalize- Terminates the MPI execution environment. This function should be the

last MPI routine called in every MPI program - no other MPI routines may be called after

it.

MPI _Finalize()

MPI FINALIZE (ierr)

19

Example of the MPI program coding:

#include <stdio.h>
#include <mpi.h>

int
main(int argc, char *argv[])
{

int rank, size;

MPI Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello world! I am %d of %d\n", rank, size};

MPI Finalize () ;

return 0;

The author also had met Mr.Dani Adhipta to ask him to create an account for

the author to get an access to the UTP HPC Cluster. The author also had downloaded

putty software and installed it in order to get access to the UTP HPC Cluster.

The author did some research on the prim's algorithm pseudocode and

discussed the pseudocodes with the supervisor, Mr. Izzatdin which one is the best

pseudocode to be used and implement in the project. Below is the pseudocode that has

been chosen.

Given a graph, G, with edges E of the form (vl, v2) and vertices V

dist : array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree
it

is closest to
i loop index
F list of finished vertices
U list or heap unfinished vertices

/* Initialization: set every distance to INFINITY until we discover a
way to
link a vertex to the spanning tree */
for i ~ 0 to lVI - 1

20

end

dist [i]
edge[i]

INFINITY
NULL

pick a vertex, s, to be the seed for the minimum spanning tree

/* Since no edge is needed to add s to the minimum spanning tree, its
distance
from the tree is 0 */
dist[s] ~ 0

while(F is missing a vertex)
pick the vertex, v, in U with the shortest edge to the group of

vertices in
the spanning tree add v to F

/* this loop looks through every neighbor of v and checks to see if
that

* neighbour could reach the minimum spanning tree more cheaply
through v

* than by linking through a previous vertex */
for each edge of v, (vl, v2)

if(length(vl, v2) < dist[v2])
dist[v2] ~ length(vl, v2)
edges[v2] ~ vl
possibly update U, depending on implementation

end if
end for

end while

21

Actor

Figure 4.3 UML diagram

Enter no of vertices

Enter no of adjacent
matrix

Enter elements of row

Compare the paths and
do the paths estimate

Print the adjacent
matrix

Print the path of the graph

Calculate time taken

Show time result

22

Admin

Enter no of vertices

n>=O

Enter the adjacent
matrix

Enter elements of row

Enter source of vertex

Print adjacent matrix

Print the path of
the adjacent
matrix ~m~nh

success

Calculate time taken

Figure 4.4 Data flow diagram

n<=O
Enter relevant data

fail

"'"'==------+! Terminate

Show time result

23

CHAPTERS:

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The idea of this project is to parallelize the Travelling Salesman Problem

using Prim algorithm instead the current TSP is in sequential. Apart from taking

advantage of merging grid architecture of grid computing technology, the implementation

of grid computing in this project is to catch up with the new technology in the IT field

that is considered as a major paradigm shift in distributed computing principles. As for

the author, parallel processing of Travelling Salesman Problem using Prim algorithm

using grid computing is not an easy project. However, with all the resources available,

the help of the supervisor and the right approach and methods that are going to be used,

this project should achieve all the project objectives and feasible within the time frame

given.

5.2 Recommendation

The future work recommended for this project will be to fmish the

parallelizing this system. It also recommended comparing all the algorithms that can be

fit with TSP and come out with the best algorithm. From this result, the author will do the

parallelizing part and most probably the result will be the best solution to find the TSP

best algorithm for TSP.

24

REFERENCES

[1] Travelling Salesman Problem History by Mr. William Cook, an overview available at:

http://www.tsp.gatech.edu/history/index.html, last accessed April 6, 2007

[2] Dell Power Solution Journal; Job Scheduling in HPC Cluster, by Saeed Iqbal, Rinku

Gupta and Yung-Ching Fang, February 2005.

[3] Portable Parallel Programming for the Dynamic Load Balancing of Unstructured Grid

Applications, by Rupak Biswas, Sajal K. Das, Daniel Harvey, and Leonid Oliker, November

2004.

[4] RSA and Public-key Cryptography by Richard A. Mollin, Chapman & Hall!CRC (2000)

[5] Parallel Computers and Computation by Ian Foster, an overview available at:

www-unix.mcs.anl.gov/dbpp/text/node6.htrnl

[6] Lewis F.Richardson, "Weather Prediction by Numerical Process (1922)

[7] IBM Systems Journal; Towards an Information Infrastructure for the Grid by S.

Bourbonnais, V. M. Gogate, L. M. Haas, R. W. Horman, S. Malaika, I. Narang, and V.

Raman, Volume 43, Number 4, 2004.

[8] IBM Systems Journal; Evolution of Grid Computing Architecture and Grid Adoption

Models, by J. Joseph, M. Ernest, and C. Fellenstein Volume 43, Number 4, 2004.

25

Table 1.5a Milestone for FYP a

No Detail/week ~. 4 5 6 7 8 9 10 11 12 13 14

1 Project work continue ~'!-· ---1----+--+----+---+-----!1-----+--+----+---+---

2 Submission proqress report 1 •

3 Project work continue

4 Submission proqress report 2 •

5 Seminar ~d-----
6 Proiect work continue • ,__ __
7 Pre-EDX •

8 Submission offinal report •

9 Oral presentation •

10 Submission of project dissertation •

Table 1.5b Milestone for FYP b

~-or

ACCEPIEP

(
START

\ ---~---)

5.1 Subnriso:ion -cf
Title' & Project

Synopsis

5.3 Selection of
Project Ti::les

5.4 Allocation d
Approvecl Proje<t

Tides

5.~ Submis:;ioo of
Preliminary

Rep crt:' Progreo:s

5.10 Seminar
(Optional)

5.5 Purcha=:e &
G:sageoi'

Resources and
Services

Figure 4.3 FYP flow process

Le-=n.tren.
Smdents (optionai),

CooJdiw.ator

C-oordi!lator.
FYP

Stadem<.
Coordinator,

FYP Committee

Studet"'
Ccordinti.~·Jr

SnJ=err:imr,
Coordinator

Studen:;_
Ccc.rdinato::.
Examiner

Student=>.
Supen·i~or,

Coordinator, Fr'P
Chairu.um

Apprond
Titles &

Supe-rvisor::

C:-::1
~

/
Prelimimuyi

Pr:o-gre-:;•;
R.eoort

Form G4i
Form 08

Form04/
Form GS

I

l\OIMEEI

5.7 Submission of
Prcgress Report:

/

R.EQL1REME)!T

Grod• F I MEET
R.EQLIRE

5.10 Seminar

j_
5.ll Projeet

Exhibition (Sem2)

j_
5. S Sub:mi<::;ion of

futerim/Final
Draft

l
Asse:::;-sment

J_

Figure 4.4 FYP flow process

ME)!T

Sn1de~r.

Supenisor

SupeC1:i:::;or,
Coordinator

Stt.1dem=;.
Coocdiuotor_
Examlner

St•.>deu:o,
Coordiootor_
Examinen

Student=;.
Supen~i~;or

Supe~.:i::ar,

Coordinator.
Exat:lluer

Progres-:
Report

Fo!1ll OSi
Form O.S

Form -85/
Fonu -GS

[Form ;31

a;] m

/
Foilll G6i
Fcnn. 1)9

- ... ----

KOTMEET
REQt:IF.:H.IE:-TT MEET

I Gmd<F I REQ UIREMEKT

5.1! Oral
Pre=::euration

T
Amendment on

the Firuil Draf: '"
~·=tdi:ised

5.9 Submission
of Hard-Bound
Copy of ProJect

Di~;ertatcon

5.1.1 Grading of
ProJect

.. J •..

(
I

'· \..
END

Figure 4.5 FYP flow process

Stuclent:.::,
SuF•".i ;or,

Examinen. FYP
,:om:nlttee

Stuclem~~
Supe~·i=.;or,

Examine-r:;

Stuclem~.

Coordinator

Coordinator, fl'"P
Committee, Exam

T....~nit

Fol1!1 cO

Imerim.'
Di~sertatlo11

Fin.al Draft

3 Copies of
Pr~e~t

Dis:::ertation

#include<stdio.h>
#include<stdlib.h>
voidmainO
{
int graph[IS][JS],s[JS],pathestimate[15],mark[J5];
int num _of_ vertices,source,ij,u,predecessor[15];
int count=O;
int minimum(int aO,int mO,int k);
void printpath(int,in~int[]);
printf("\nenter the no.ofvertices\n11

);

scanf("%d",&num_of_vertices);
if(num_ of_ vertices<=O)
{
printf(11\nthis is meaningless\n");
exit(!);

}
printf("\nenter the adjacent matrix\n");

for(i= 1 ;i<=num _of_ vertices;i++)
{
printf("\nenter the elements ofrow %d\n",i);
for(j= 1 ;j<=num _of_ verticesj++)
{
scanf("%d" ,&graph[i] OJ);
}

}
printf("\nenter the source vertex\n");
scanf("%d" ,&source);
for(j= 1 j<=num _of_ vertices;j++)
{
mark0]9l;
pathestimateO]dJ99;
predecessorU]=O;
}
pathestimate[source]=0;

while(count<num _of_ vertices)
{
u=minimum(pathestimate,mark,num _of_ vertices);
s[++count]=u;
mark[u]~l;

for(i= 1 ;i<=num _of_ vertices;i++)
{
if(graph[u][i]>O)
{
if(mark[i]I~J)

{
if(pathestimate[i]>pathestimate[u]+graph[u][i])
{
pathestimate[i]~athestimate[u]+graph[u] [i];
predecessor[i]=u;
}
}
}

}
)
for(i=1 ;i<=num _of_ vertices;i++)
{
printpath(source,i,predecessor);
if(pathestimate[i] !dJ99)
printf(" ->(%d)ln" ,pathestimate[i]);
)
)
int minimum(int aO,int mO,int k)
{
intmi=999;
int i,t;
for(i=1 ;i<=k;i++)
{
if(m[i]!~l)

{

if(mi-[i])
{
mi~a[i];

t=i;
}
}}
return t;
}
void printpath(int x,int i,int p[])
{
printf\"\n");
if(i~)
{
printf("o/od" ,x);
}
else if(p[i]-)
printf("no path from o/od to %d",x,i);
else
{
printpath(x,p[i],p);
print£(" .. %d" ,i);
}
}

Ill C:\Documents and Settings\@loNg a.k.a f~a\My Documents\jan'o7\FVP II\prim3.exe - D X

#include <iostream>
#include <string>
#include <fstream>
#include <set>

using namespace std;

struct gData {
int vl;
intv2;
intw;

};

intmainO
{
ifstream ifp;
string fileRead;
inti=O;
gData ariayS[IOOO];
gData arrayF[l 000];
gData tmp;
char toss;

cout <<"Name of file to be read. 11 << endl;
cin >> ftleRead;

ifp.open(fileRead.c_strO);

if(!ifp.failO)
{
wbile(ifp >> arrayS[i].vl >>toss>> arrayS[i].v2 >>toss>> arrayS[i].w)

{
i++;

}
ifp.closeO;

}
else

cout <<"Error opening file."<< endl;

//sort so you don't have to check weight later
cout <<"Before sort: "<< endl;
for(int b ~ 0; b < i; b++)

coot<< "VI: "<< arrayS[b].vl <<" V2: 11 << arrayS[b].v2 <<" W: "<< arrayS[b].w <<emil;

for(intcnt= 0; cnt< i ~ 1; cnt++)
{

}

int min= cnt;
for(int sur= cnt + 1; sur< i; sur++)

{
if(arrayS[snr].w < arrayS[min].w)

{

}

trnp~ arrayS[min];
arrayS[min]~ arrayS[sur];
arrayS[sur] ~tmp;

cout << "After Sort: " << endl;
for(intj = O;j < i;j++)
cout << "Vl: "<< arrayS[j].vl <<" V2: "<< arrayS[j].v2 <<" W: "<< arrayS[j].w << endl;

cout << endl;

//make and set and put first edge w/ smallest weight inside
inta~o;

set<int> mySet;
//chose 1st vertex
mySet.insert(arrayS [a]. vI);
mySet.insert(arrayS [a]. v2);
int wTotal ~ arrayS[a].w;

arrayF[a] ~arrayS[a];

moop through entire array
for(a~ I; a< i; a++)
{

//ifneither V connects to existing V
if((mySet.count(arrayS[a].vl) ~ 0) && (mySet.count(arrayS[a].v2) ~ 0))

{
//don't use. keep looking

}
//ifboth are in it
else if((mySet.count{arrayS[a].vl) ~I) && (mySet.count(arrayS[a].v2) ~ 1))

{
//don't create a cycle, but...
cout << 11throw out larger weight:"<< end!;
for(int I~ 0; I< a; I++)

{
coot<< "ArrayS weight:"<< arrayS[a].w <<" ArrayF Weight:"<< arrayF[l].w << endl;
//check for corresponding point
int cyclePoint;
if(mySet.count(arrayS[a].vl)~ I)

{
cyclePoint = arrayS[a].vl;

}
else if(mySet.count(arrayS[a].v2) ~I)

{
cyclePoint ~ arrayS[a].v2;

}
//if either V matches the cycle point
if((arrayF[l].vl ~ cyclePoint) II (arrayF[l].v2 ~ cyclePoint))

{
//and if the new weight is less than the old weight
if(arrayS[a].w < arrayF[l].w)

{
cout <<"Found one"<< endl;
coot<< "Weight:"<< arrayF[I].w<<" "<< arrayS[a].w <<end!;
//the old spot is replaced with the new spot & weight
arrayFDl ~arrayS[a];

coot <<"Array F: "<< arrayF[l].vl <<" "<< arrayF[l].v2 <<"ArrayS: "<<arrayS[a]. vi <<" "<< arrayS[a].v2 <<
end!;

wTotal ~ (wTotal- arrayS[l].w) + arrayS[a].w;
}

//ifthe new weight is greater than the old weight, nothing changes
}

}

!!if one is in it
else if((mySet.count(arrayS[a].vl) ~I) II (mySet.count(arrayS[a].v2) ~ 1))
{
if(mySet.count(arrayS[a].vl) ~ 1)

{
//add other V
mySet.insert(arrayS [a]. v2);
arrayF[a] ~ arrayS[a];
wTotal ~ wTotal + arrayS[a].w;

}
else if(mySet.count(arrayS[a].v2) ~I)

{

}

//add other V
mySet. insert(arrayS [a]. v 1);
arrayF[a] ~arrayS[a];
wTotal = wTotal + arrayS[a].w;

for(set<int>::const_jterator it= mySetbeginO; it!= mySet.endO; it++)
{
cout <<"My set "<<*it<< end!;

)
cout <<"Final weight "<< wTotal <<end!;

cout <<"Final array: "<< endl;
for(int t ~ 0; t < i; t++)

{
if((arrayF[t].vl 1~ 0) II (arrayF[t].v2 1~ 0))
{
cout<< "Vl: "<< arrayF[t].vl << 11 V2: "<< arrayF[t].v2 <<" W: "<< arrayF[t].w << endl;

)

return 0;
)

#include<iostream.h>
class dijkstra
{
private:
int graph[l5][15];
int set[l5],predecessor[15],mark[l5],pathestimate[l5];
int source;
int num_of_vertices;

public:
int minimumO;
voidreadQ;
void initializeO;
void printpath(int);
void algorithmO;
void outputO;
};
void dijkstra::readO
{
cout<<"enter the number ofvertices\n";
cin>>num _of_ vertices;
while(num_of_vertices<=O)

cout<<''\nthis is meaningless,enter the number carefully\n";

cin>>num ~of_ vertices;

cout<<''enter the adjacent matrix:\n";
for(int i=l ;i<=num _of_ vertices;i++)
{
cout<<"\nenter the weights for the row\n"<<i;
for(int j= l;j<=num _of_ verticesj++)
{
cin»graph[iJO];
while(graph[iJm<o)
{
cout<<''\nu should enter the positive valued weights only\nenter the value again\n";
cin»graph[i][j];
}
}

}
cout<<''\nenter the source vertex\n";
cin>>source;
}

void dijk:stra::initializeQ
{
for(int i= l;i<=num _of_ vertices;i++)
(
mark[i]9l;
pathestimate[i]=999;
predecessor[i}=O;
}
pathestimate[source]=0;
}
void dijkstra::algorithmO
(
initializeQ;
int count=O;
inti;
intu;

while(count<num _of_ vertices)
(
u=minimumO;
set[++count]91;
mark[u]~I;
for(i:= 1 ;i<=num _of_ vertices;i++)

{
if(graph[u][i]>O)
{
if(mark[i]!~J)

{
if(pathestimate[i]>pathestimate[u]+graph[u][i])
{
pathestimate[i]~athestimate[u]+graph[u][i];
predecessor[i]=u;
)
)
)
)
)

void dijkstra::printpath(int i)
{
cout<<endl;
if(i=source)
{
cout<<source;
)
else if(predecessor[i]=O)
cout<<"no path from "'<<source<<" to "<<i;
else
{
printpath(predecessor[i]);
cout<<'' .. "<<i;
)
)
void dijkstra::outputO
{
for(int i=l;i<=num_of_vertices;i++}
{
printpath(i);
if(pathestimate[i]!~99)

cout<<"->("<<pathestimate[i]<<")\n";
)
cout<<endl;
)
int dijkstra::minimumO
{
int min=999;
int i,t;
for(i= 1 ;i<=num _of_ vertices;i++)
{
if(mark[i]!~J)
{
if(min:=pathestimate[i])
{
min=pathestimate[i];
Fi·
)
)
)
return t;
)
void rnainO
{
dijkstra s;
s.readO;
s.algorithmO;
s.outputO;
)

#ifhdefBOOST_GRAPH_MST_PRIM_HPP
#define BOOST_ GRAPH_ MST _PRIM_ HPP

#include <functional>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/dijkstra _ shortest_paths.hpp>

namespace boost {

namespace detail {
II this should be somewhere else in boost...
template <class U, class V> struct _project2nd {

V operatorQ(U, V v) const { return v;)
);

}

namespace detail {

II This is Prim's algorithm to calculate the Minimum Spanning Tree
II for an undirected graph with weighted edges.

template <class Graph, class P, class T, class R, class Weight>
inline void
prim_ mst_impl(const Graph& G,

{

}

typename graph_ traits<Graph>::vertex _descriptor s,
const bgl_named_params<P,T,R>& params,
Weight)

typedef typename property_ traits<Weight>::value _type W;
std::less<W> compare;
detail::__project2nd<W,W> combine;
dijkstra _shortest_paths(G, s, params.distance _compare(compare).

distance_ combine(combine));

} II namespace detail

template <class VertexListGraph, class DijkstraVisitor,
class PredecessorMap, class DistanceMap,
class WeightMap, class IndexMap>

inline void
prim_ minimum _spanning_ tree
(const VertexListGraph& g,

{

typename graph_ traits<VertexListGraph>::vertex _descriptor s,
PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
lndexMap index_ map,
DijkstraVisitor vis)

typedef typename property _traits<WeightMap>::value _type W;
std::less<W> compare;
detail::_project2nd<W,W> combine;
dijkstra _shortest_paths(g, s, predecessor, distance, weight, index_ map,

compare, combine, std::numeric_limits<W>::max:Q, 0,
vis);

template <class VertexListGraph, class PredecessorMap,
class P, class T, class R>

inline void prim_ minimum _spanning_ tree
(const VertexListGraph& g,
PredecessorMap p_map,
const bgl_named_params<P,T,R>& params)

{
detail::prim_mst_impl
(g,
choose _param(get_param(params, root_ vertex_ tO), *vertices(g).first),
parmns.predecessor _ map(p _map),
choose_ const_pmap(get_param(params, edge_ weight), g, edge_ weight));

template <class VertexListGraph, class PredecessorMap>
inline void prim_ minimum _spanning_ tree
(const VertexListGraph& g, PredecessorMap p _map)

{
detail::prim _ mst_ imp I

(g, *vertices(g).fust, predecessor_ map(p _map).
weight_map(get(edge_weight, g)),
get(edge_weight, g));

} // namespace boost

#endif II BOOST_ GRAPH_ MST _PRIM_ HPP

Pseudocode for Prim Algorithm

Given a graph, G, with edges E of the form (vl, v2) and vertices V

dist : array of distances from the source to each vertex
edges: array indicating, for a given vertex, which vertex in the tree
it

is closest to
i loop index
F list of finished vertices
U list or heap unfinished vertices

/* Initialization: set every distance to INFINITY until we discover a
way to
link a vertex to the spanning tree */
for i ~ 0 to !VI - 1

end

dist[i] INFINITY
edge[i] ~NULL

pick a vertex, s, to be the seed for the minimum spanning tree

/* Since no edge is needed to add s to the minimum spanning tree, its
distance
from the tree is 0 */
dist[s] ~ 0

while(F is missing a vertex)
pick the vertex, v, in U with the shortest edge to the group of

vertices in
the spanning tree add v to F

/* this loop looks through every neighbor of v and checks to see if
that

* neighbor could reach the minimum spanning tree more cheaply
through v

* than by linking through a previous vertex */
for each edge of v, (vl, v2)

if(length(vl, v2) < dist[v2])
dist[v2] ~ length(vl, v2)
edges[v2] = vl
possibly update U, depending on implementation

end if
end for

end while

~~
Category:

-v Session
Logging

v Terminal
Keyboard
Bell
Features

v Window
Appearance
Behaviour
Translation
Selection
Colours

"' Connection
Data
Proxy
Telnet
Rlogin

~ SSH
Serial

About)

PuTTY Configuration

Basic options for your PuTTY session

·Specify the destination you want to connect to·-

Host Name (or IP address) ;__Po::rt=---~

'--~~~~~~~__j l'-22 _ ___]
Connection type:
0:::.: Raw (.; Telnet Rlogin 131 SSH Serial

·Load, save or delete a stored session-

Saved Sessions

Default Settings

Close window on exit:

!(Load
I '·-

I
I

Save I ~..._
l1.:· Delete I .. ,
'

<:>Always <::, Never 131 Only on clean exit

,I ...
I

./

)
·'

Open 1 1, Cancel .__::.::.::.:c__ . .' ,__::::.:::.::.:__.

