
Universiti Teknologi PETRONAS (UTP) E-Learning and content

development

By

MAZLIN MOHD RAZALI

Dissertation submitted in partial fulfillment of

the requirement for the

Bachelor of Technology (Hons)

(Information and Communication Technology)

JAN2007

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Universiti Teknologi PETRONAS (UTP) E-Learning and content development

Approved by,

By

Mazlin Mohd Razali

A project dissertation submitted to the

Information and Corilmunication Technology Progranune

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION AND COMMUNICATION TECHNOLOGY)

UNIVERSIJI TEKNOLOGI PETRONAS

TRONOH, PERAK

Jan2007

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original

work is my own except as specified in the references and acknowledgements, and that the

original work contain herein have not to been undertaken or done by specified sources or person.

;,/
MAZLIN MOHD RAZALI

ABSTRACT

. paper describes about the implementation of open source and content development in UTP

~arning. As the technology evolves and the need for open source enviromnent arises, a new

digm is needed to allow E-Learning to move into this open source enviromnent. A few open

ce programs were analyzed and Moodie was chose as the most suitable open source to

:lop UTP's new E-Learning. Moodie appears to be one of the most user-friendly and flexible

1 source courseware products available and has excellent documentation, strong support for

rity and administration, and is evolving towards IMS/SCORM standards. SCORM was

:loped with the guidance of a large consortium of academic, technological and govermnental

nizations. SCORM is maintained by the Advanced Distributed Learning (ADL) Initiative.

objective of implementing open source and content development in developing UTP's E­

ning is mainly to help initiate an advance Information and Communication Technology

') enviromnent for student. Methodology of developing this project has already been defined

probably pose much similar with traditional information-development process. Tools

irement such as the Moodie software itself and other supportive software and hardware are

tified to develop this project.

I

ACKNOWLEDGEMENT

:t of all, praise goes to Allah S. W. T for giving the author the strength, skills, knowledge and

d health in completing the Final Year Project, titled Universiti Teknologi PETRONAS (UTP)

.earning and content development. Warmest gratitude to Mr. Saipunidzam bin Mahamad for

generosity, unwavering support and guidance during the long sessions of advice that make

author achieve the objectives meant to at the conception of this project. It was fortunate to

e worked with such a wonderful person. Thank You.

:pest appreciation goes to Mesiniaga, especially Mrs. Asmawiyah Amat Sajuri, which is

ly supportive person, giving good cooperation and giving such useful information and

felines regarding the information on content development that make the task manageable and

thwhile.

cia! thanks goes to the Final Year Project Coordinator, Mrs. Aliza Sarlan and committee for

their patient and understanding in guiding and assisting the author in this project. Not

~etting, all Computer Information System (CIS) lecturers for their valuable expertise, guide

support in completing this project. Your comments, suggestion and constructive criticism

lea real difference in the quality of this project. Thank You.

t but not least, sincere thanks to all the people who have been involved directly or indirectly

completing the Universiti Teknologi PETRONAS (UTP) E-Learning and content

~lopment. The contributions made throughout the development of this project really valuable

1e author.

in, thank you for your encouragement and continuous support.

ii

TOFFIGURES

' RE 1.0: Reason why use SCORM 10

liRE 3.0: Methodology of the project development 13

URE 4.0: Diagram on how SCORM works 18

URE 4.1: Highly generalized model of a Learning Management System (LMS) 19

URE 4.2: The SCORM as a collection specification 21

URE 4.3: Survey done by student UTP for MOODLE 26

URE 4.4: Survey done by student UTP for Content Development 27

iii

l'OFTABLES

lE 2.0: Difference between A Tutor, Claroline and Moodie 7

iv

TABLE OF CONTENT

HIFICATION

I TRACT

(NOWLEDGEMENT

fOFFIGURES

fOFTABLES

JLE OF CONTENT

.~PTER 1: INTRODUCTION

1.1. Background

1.2. Problem Statement

1.3. Objectives

1.4. Scope of Study

~PTER 2: LITERATURE REVIEW

2.1. E-Learning implementation using open source

2.1.1. Introduction

2.1.2. Open source system

2.1.3. Moodle

2.1.4. ATutor

2.1.5. Claroline

2.1.6. Conclusion

2.2. Content Development

2.2.1. What is SCORM?

2.2.2. Why SCORM?

v

1

11

iii

IV

v

1

2

2

2

4

4

6

7

8

8

8

9

9

10

IIAPTER3: METHODOLOGY

3.1. Phases of Project Development 13

3 .1.1. Planning Phase 14

3 .1.2. Analysis Phase 14

3 .1.3. Design Phase 15

3.1.4. Implementation Phase 15

3.2. Tools, Requirement and utilities 16

3.2.1. Moodie 16

3.2.2. Implement and development 16

3.2.3. Content Development 17

3.2.4. SCORM 17

IIAPTER4: RESULT AND DISCUSSION

4.1. Architecture 18

4.1.1. System Architecture 18

4.1.1.1. Content Development 19

4.1.1.1.1. sco 19

4.1.1.1.2. Content Package 20

4.1.1.1.3. Web-based and Script Enabled 20

4.1.1.1.4. SCORM 20

4.1.1.1.5. MOODLE 25

4.2. Project Survey 26

IIAPTERS: CONCLUSION 28

B:FERENCES 30

PPENDICES

vi

CHAPTERl

INTRODUCTION

.. 1. Background

Universiti Teknologi PETRONAS (UTP) is using Blackboard as their E-Learning.

nackboard is a learning management system (LMS) software partially owned by Microsoft. It

s popular software used around the world and licensed annually. Blackboard is very costly

vhere over $1 million spent each year on the Blackboard licenses. Other approach to reduce the

:ost of spending money for Blackboard licenses, UTP is developing E-Learning by using open

ource.

In general, open source refers to any program whose source code is made available for

:e or modification as users or other developers see fit. Historically, the makers of proprietary

,ftware have generally not made source code available. Open source software is usually

:veloped as a public collaboration and made freely available.

Other than that, open source is similar in idea to free software but slightly less rigid than

e free software movement. Users of open source software are generally able to view the source

1de, alter and re-distribute open source software. There is however less of an emphasis in the

1en source movement on the right of information and source code to be free and in some cases

mpanies are able to develop proprietary products based on open source ones.

1

1.2. Problem Statement

Currently used E-Learning is costing UTP in term of paying for the Blackboard licenses.

Since UTP Blackboard license will be end soon, so UTP is moving to open source environment.

Open source offers a radically different and exponentially better software development model.

Companies can improve their products greatly and significantly increase their market share.

Overall, open source is good for everyone.

1.3. Objectives

1. To customize Moodie to suit UTP preferences.

2. To evaluate the implementation of Moodie using open source.

3. To implement SCORM in Moodie content development.

1.4. Scope of Study

The implementation ofUTP E-Learning is using Moodie, which is open source software

and e-learning platform. Moodie is a software package designed to help educators create quality

online courses. It is an open source web-based course management system designed based on the

principles of social pedagogy. Moodie produces Internet-based courses and websites; it requires

a web server with integrated PHP which is the scripting language and database support. Moodie

supplements the traditional face-to-face learning by providing online-classes, is user-friendly,

simple, efficient, compatible, easy to install on any platform that supports PHP. It requires an

underlying mySQL database. The entire Moodie system is managed by an admin user during

setup. The administrator is permitted to customize the site colors, fonts or layout to suit their

needs. The Moodie is then added with the required activity modules. The source code is easy to

modify to suit the student's needs.

2

For content development, basically, the author is developing a courseware as a learning

material for the e-Learning users of Universiti Teknologi PETRONAS (UTP). This courseware

will guide the user in the learning process. It can be accessed from the Content Management

System (CMS), Moodie. In order to develop the courseware to be interoperability, accessibility,

durability and reusability, the author will be implementing the Sharable Content Object

Reference Model (SCORM). SCORM is a suite of technical standards that enable web-based

learning systems to find, import, share, reuse, and export learning content in a standardized way.

3

CHAPTER2

LITERATURE REVIEW

2.1. E-LEARNING IMPLEMENTATION USING OPEN SOURCE

2.1.1. Introduction

Before we can intelligently discuss the advantage and disadvantages of open source and

differences between open source and proprietary software, we need to clarify what the term

really means. Many people equate open source with free of charge, but that's not necessarily the

case. Open source code can be and is the basis for products such as RedHat and dozens of other

commercial distributions of Linux that range in cost from a few dollars to a few thousand.

Open source also does not mean unlicensed. In fact, there are a whole slew of licenses

under which open source software is distributed. Some of the most popular include GPL the

GNU Public License, BSD, and the Mozilla Public License. The Open Source Initiative (OSI), a

non-profit corporation, has developed a certification process for licenses.

GPL refers to a type of open source license called the 'GNU General Public License'.

Copyright protects a creator's right to control copies and changes to a work, whereas the GPL

license protects a user's right to copy and change a work. The licenses for most software are

designed to take away your freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free software, to make sure

the software is free for all its users. This General Public License applies to most of the Free

Software Foundation's software and to any other program whose authors commit to using it.

4

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies of free

software that you receive source code or can get it if you want it, that you can change the

software or use pieces of it in new free programs; and that you know you can do these things. To

protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to

ask you to surrender the rights. These restrictions translate to certain responsibilities for you if

you distribute copies of the software, or if you modify it. For example, if you distribute a

program, you must give the recipients all the rights that you have. You must make sure that they,

too, receive or can get the source code. And you must show them these terms so they know their

rights. We protect your rights with two steps:

• Copyright the software,

• Offer you this license which gives you legal permission to copy, distribute and/or modify

the software.

Also, for each author's protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modified by

someone else and passed on, we want its recipients to know that what they have is not the

original, so that any problems introduced by others will not reflect on the original authors'

reputations. Finally, any free program is threatened constantly by software patents. We wish to

avoid the danger that redistributors of a free program will individually obtain patent licenses, in

effect making the program proprietary. To prevent this, we have made it clear that any patent

must be licensed for everyone's free use or not licensed at all.

5

2.1.2. Open source system

The name itself tells the story, open source software means the source code or the

programming often written in C, C++ or even assembler language is available to anyone who

wants it, and can be examined, changed and used to write additional programming. This is in

contrast to closed or proprietary software such as Microsoft Windows, for which the source code

is a closely guarded trade secret except when it's leaked to the public. Open Source is any

software whose license provides:

• Right to access the source code

• Right to modify it

• Right to copy it

The advantages of using the Open Source software to implement solutions are:

• Availability of the source code and right to modify it which reduces dependence on the

supplier and increases flexibility.

• There is no cost for license or for copies which allows the installation of the software in

as many computers as necessary without extra costs.

• Open Source products are used by many users which proves their quality.

• Additional support can be provided by many existing communities.

• The development is easy and technical support is usually immediate.

• The development of the software is based on a co-operative model which increases the

quality.

• Programmers are usually also users themselves so they take extra care to ensure the

quality and functionality of the software.

The disadvantages of using the Open Source software are there is no written guarantee of

the quality even though it is proved to be a high quality product. The developers are not liable for

any that the software might cause.

6

There is a lot of open source software in the market. Here are differences between

A Tutor, Claroline and Moodie:

MOODLE A Tutor Claro line

• most user-friendly and • Very few LMS' that • Has a broad user base

flexible open source support learning object but still have problem

• excellent documentation storage over some features

• strong security and • can import external • Similar to Moodie and

administration content in IMS/SCORM A Tutor alternatives

• evolving towards format

IMS/SCORM standards • many features and rates

• A strong envelopment highly for usability,

and user community including accessibility

for learners with

disabilities

TABLE 2.0: Difference between A Tutor, Claro line and Moodie

2.1.3. Moodie

Moodie is one of the most user-friendly and flexible open source courseware products

available. It has excellent documentation, strong support for security and administration, and is

evolving towards IMS/SCORM standards. The key to Moodie is that it is developed with both

pedagogy and technology in mind. It is a robust development and user community. It is also

great with languages although some development may be needed for robust handling ofMathML

and enhanced tracking features. Still, this program receives a high recommendation. Moodie is a

student-centered course management system designed to help educators who want to create

quality online courses. The software is used all over the world by universities, schools,

companies and independent teachers.

7

2.1.4. ATutor

A Tutor is a promising system that provides good documentation, ease of installation, and

strong potential for development. While the user interface may not seem intuitive to many, the

overall functionality is good (and wide open/modular) and the development team is committed to

standards. The system is also install-friendly and receptive to new language versions.l. A Tutor is

one of very few LMS' that support learning object repositories. ATutor is very strong on

standards and can import external content in IMS/SCORM format. ATutor scores highly for

openness. It is written in a modular format. It has many features and rates highly for usability,

including accessibility for learners with disabilities.

2.1.5. Claroline

Has a broad user base but there are questions over particular features, such as the

gradebook, that are likely to be desirable by consortium partners. Claroline is similar to Moodie

and A Tutor alternatives. The development pathway indicates an increasing commitment to open

standards.

2.1.6. Conclusion

After all, Moodie is the best among all. Moodie's features are very rich where most of

A Tutor's and Claro line are more basic. Also, additional functionality offers much more in

Moodie than in others. It seems that A Tutor's and Claro line focus on accessibility takes away

some of the attention from enriching and adding of features. Some technical issues came up

during installation of A Tutor and Claroline, while Moodie installs and upgrades smoothly time

and again. Moodie appears much more comfortable and intuitive to navigate and work with than

A Tutor.

8

1.2. CONTENT DEVELOPMENT

Content development is the process of researching, writing, gathering, organizing, and

editing information for publication on web sites. Web site content may consist of text, graphics,

pictures, recordings, movies or other media assets that could be distributed by a hypertext

transfer protocol server, and viewed by a web browser.

1.2.1. What is SCORM?

SCORM, which stands for "Shareable Content Object Reference Model", is a standard

for developing, packaging and delivering high-quality training materials for online training

courses. SCORM was developed based on the concept of using a common e-learning standard to

modernize education and training courses. Now, with the SCORM standard, and more

specifically SCORM compliant platforms, you can find, import, share, reuse and export learning

contents through compliant web-based learning systems.

In short, SCORM is a set of technical standards that have been developed with the

specific purpose of enabling the reuse of Web-based learning content across multiple

environments and products. If your lesson content is SCORM compliant, then you can use the

content in any course management system or learning management system that supports

SCORM without having to make any modifications to the content. Additionally, the SCORM

standards allow your content to interface automatically with specific components of the course

management system. It's not unusual for people involved in authoring and developing online

courses to question the need and rationale for building SCORM-compliant courses.

9

1.2.2. Why SCORM?

SCORM is a compilation of technical specifications that enable interoperability,

accessibility and reusability of Web-based learning content. E-learning content and learning

management systems built to the SCORM specification allow for sharing of courses across

federal agencies and even with other entities, such as nongovermnental colleges and universities.

SCORM also allows for sharing of smaller pieces of e-learning courses, called learning

objects. Learning objects include course modules, book chapters, videos or even smaller, discrete

pieces of information. The result will be faster, more personalized learning experiences, e­

learning experts said. Those learning objects could also be easily incorporated into other e­

learning courses.

SCORM also allows courses to be updated without starting over. If the course has been

built to the SCORM specification, it's relatively inexpensive to change just the piece pertaining

to the decision, said Elliott Masie, president of the Masie Center, a Saratoga Springs, N.Y., and

e-learning think tank. There are significant benefits to adopting SCORM:

Why
SCORM?

Figure 1.0: Reason why use SCORM

10

• Reusability: Lowers costs because learning contents can be used many times.

SCORM incorporated contents can be easily incorporated into multiple applications,

allowing for learning contents to be easily modified and used by different tools and

platforms. For example, SCORM compliant learning contents produced by an authoring

tool such as Macromedia Flash can be reused, modified by another set of SCORM

compliant tools. This allows you to spend less effort in creating new contents from

scratch and focus more on incorporating existing contents to meet the specific needs.

• Accessibility: Increased access to learning information.

The SCORM standard offers you the ability to access learning contents from anywhere

and at anytime. It enables you to customize the delivery of your learning contents from

one remote location and deliver them too many other locations. It allows you to search,

identifY, access and retrieve contents that are widely distributed in SCORM compliant

repositories. This way, it is easier for learners to identifY, retrieve, and incorporate

valuable content from many trusted sources.

• Interoperability: Systems works efficiently together

SCORM provides an extension for compliant courseware and similar tools to

communicate under a common interface. With consistent content production

specifications, learning contents developed using one set of tools can be easily identified,

and launched with a different set of tools. In other words, SCORM compliant learning

contents can be authored and launched by any SCORM compliant authoring tools,

providing maximum flexibility.

11

• Durability: Learning contents will not easily become obsolete.

SCORM is becoming the technological standard for the e-Learning industry because

SCORM compliant contents are preserved and portable even when base technology

changes. This means learning contents do not need to go through a redesign or

redevelopment process, even when technology changes.

12

CHAPTER3

METHODOLOGY

3.1. PHASES OF PROJECT DEVELOPMENT

The methodology that will be use in this project contains many of the same elements as

traditional infonnation-development process. The four phases of the methodology follows:

1. Planning
-set project goal.

-analyzing the technical feasibility of the

project as well as the organizational
feasibility

2. Analysis
-process of gathering and

comparing information

about the open source and
Moodie

3. Design
- developing the design

strategy, the infrastructure!

design

4. Implementation
- test the reliability of the system
-user acceptance test

Figure 3.0: Methodology of the project development

13

3.1.1. Planning Phase

In the planning phase, goals for the project are set by choosing several factors. The goals

include anticipating and deciding on the target audience, purpose and objectives for the

information. Other than that, the tasks that will be involved are the project initiation where I need

to select the project topic and come out with a project proposal. Then, next task will be the

project management. This project management task includes analyzing the technical feasibility

of the project as well as the organizational feasibility.

After the analysis made, I will come out with the preliminary research work where I need

to study on several previous study made on the same project topic or scope of the system that I

will develop. This includes articles, journals, and surf for information in the internet or books on

the technology being used that is Open Source.

3.1.2. Analysis Phase

To develop the project, the process of gathering and comparing information about the

open source and Moodie will be done. Any queries about the information will be discussed for

further understanding. The tasks include developing analysis plan where here the requirements

gathering take place. The user requirements will be gathered in various ways such as surveys,

interview or discussions. The objectives of this requirement gathering is to ensure that the project

developed meet the user satisfaction as well as to see the factors that contributes to the system

development.

After the requirements gathering, the next task will be the use-case modeling. This

includes developing uses cases, structural model for example class diagram and developing the

behavioral model such as the sequence diagram. Those models and diagrams are used to

understand the system flow and also to determine the object and the interaction of the object with

each function. This also used as guidelines in developing the system afterwards.

14

3.1.3. Design Phase

In the design phase, the programming part takes place but before that, the first task that

needs to be completed is the system architectural design. This includes developing the design

strategy, the infrastructural design such as the system network model, the hardware and software

specifications and also the security plan for the system.

Then, the next task will be the user interface design which then followed by the

programming management. This will take quite some time as the building source code takes

place.

According to Moodie specification, there will be some requirements to be taken into

consideration. SCORM in content development is also collection of specifications that enable

interoperability, accessibility and reusability of web-based learning content. The design phase

also emphasizes the user interface of the content.

3.1.4. Implementation Phase

The system will be build using all the available tools. In developing the system, the author

uses the Macromedia Drearnweaver software to manipulate the index page which also known as

the landing page of the E-Leaming system. The author also will be using Macromedia Flash MX

software and SCORM as the standard for content development.

In this phase, testing also will be conducted to test the reliability of the system. Then, if

the management of changes will take place if there is any changes need to be made. Finally, the

system will be assessed and the study of the user acceptance will be made after the system is

completed and tested.

15

3.2. TOOLS, REQUIREMENT AND UTILITIES

3.2.1. Moodie

Moodie is primarily developed in Linux using Apache, MySQL and PHP also sometimes

known as the LAMP platform, but is also regularly tested with PostgreSQL and on Windows XP,

Mac OS X and Netware 6 operating systems. The requirements for Moodie are as follows:

• Web server software. Most people use Apache, but Moodie should work fine under any

web server that supports PHP, such as IIS on Windows platforms. PHP does impose

requirements on versions of web servers, however these are complex and the general

advice is to use the newest version possible of your chosen web server.

• PHP scripting language. PHP 5 is supported as of Moodie 1.4. From Moodie version 1.6,

the minimum version ofPHP will be 4.3.0.

• A working database server, MySQL or PostgreSQL are completely supported and

recommended for use with Moodie. MySQL is the choice for many people because it is

very popular, but there are some arguments in favour of PostgreSQL, especially if you

are planning a large deployment. The minimum version of MySql required for Moodie

1.5 is 3.23. Moodie 1.6 requires MySQL 4.1.16. The minimum version ofPostgreSQL is

7.4 and it is widely used with 8.0 and 8.1.

3.2.2. Implement and Development

• 64 MB RAM (recommended)

• 160MB free Fixed Disk

• Windows 98, ME, Windows NT, 2000, XP (Recommended)

16

3.2.3. Content Development

• Macromedia Flash MX

• Adobe Photoshop

• SCORM

3.2.4. SCORM

• Macromedia Dreamweaver MX

• SCORM Runtime Wrapper extension

• RELOAD (Reusable E-Learning Object Authoring and Delivery) Editor

17

4.1. ARCHITECTURE

4.1.1. System Architecture

Content

Content

CHAPTER4

RESULT AND DISCUSSION

Server

~~ ~ -

LMS

f
()
0 ,
0' s
3
<n
()

0

~

Cl.
g .
~.

0 •

~ ~
0

115
0

~

Client

API Adapter
(provided by LMS)

Browser

FIGURE 4.0: Diagram on how SCORM works

18

4.1.1.1. Content Development

4.1.1.1.1. sco

T esting,'Assessment
Service

Generalized
Learning Management

System_Model

Tracklno
Data

SCORM
Content

'-----"-._ (SCOs & Assets)
Browser

!Presentation)

.....

FIGURE 4.1: Highly generalized model of a Learning Management System (LMS)

E-Learning content is delivered as a single unit called a Sharable Content Object or SCO.

SCOs are independent, self-contained, transportable packages that represent the lowest level of

granularity that is tracked by a learning management system. In other words, SCOs are mini­

applications that when launched from an LMS report, among other things, one score and pass/fail

status. Your SCOs should contain all the necessary files required to function, have or require no

knowledge of any other SCO or external information, and as a matter of design, should remain

relatively small such that they can be easily reused.

19

And since the specification indicates that SCOs shall be transportable, you could infer

that they should also be platform independent, although this is not explicitly stated. Server

dependencies such as Coldfusion, Perl, ASP or server-based databases are problematic as a

particular LMS might be running on a server that does not have those services available. So

unless you are working in a tightly controlled internal environment, your SCOs should only be

using client-side technologies such as HTML, Flash and Javascript.

4.1.1.1.2. Content Package

Now before we get into the details of the SCO, realize that we must to be able to

transport it, even if that only means getting it from our desktop computer where we created it to

the server where our LMS is hosted. To do so, we use a Content Package. Going back to our wall

socket analogy, imagine that the content package is the box in which the toaster is packed and

transported. In reality, it is simply a single compressed file containing all the files such as html,

images, and flash swf, necessary for the SCO to function. The content package may contain more

than one SCO and a single manifest file which describes the contents of the package. The LMS

will use the manifest file to properly find and import each of the SCOs.

4.1.1.1.3. Web-Based and Script Enabled

While there is no specific requirement that learning management systems be web-based,

SCOs must be. This requirement gives developers a common platform, the web browser to

design and develop their content to function within, thereby removing unnecessary barriers to

compatibility and transportability. Of course, even with the current maturity of web-browsers,

they are not all created equal and SCORM makes no mention of a specification to be followed to

ensure web-browser compatibility. Compliance with the latest W3C standards however, is a safe

course of action to ensure compatibility with a wide range of current web-browsers.

20

And in order for a SCO to communicate data to and from the LMS as well as potentially

provide interactivity and quizzing functionality, it's going to require more than just client-side

HTML. SCORM specifies that SCOs use an ECMA Standards compliant scripting language to

communicate with the LMS. The most notable ECMA compliant language is one you've

probably heard of- JavaScript.

4.1.1.1.4. SC:()ItrVl

BOOK 1:
TheSCORM
Overview

SCORM

BOOKS: The
SCORM Run Time

Launch, Commumcati<in APIIfrom AICC)

FIGURE 4.2: The SCORM as a collection specification

SCORM is a set of specifications that describes:

• How to create Web-based learning content that can be delivered and tracked by

different SCORM-compliant learning management systems.

• What a SCORM-compliant learning management system must do in order to properly

deliver and track SCORM-compliant learning content.

21

The SCORM specification is actnally a set of specifications profiles based on various

other industry standards and specifications. The SCORM specification does not cover all aspects

of a learning enterprise; for example, it does not specify how tracking information is stored and

what reports are generated, what pedagogical or training models should be used, or how learner

information is compiled.

SCORM is a collection of specifications adapted from multiple sources to provide a

comprehensive suite of e-learning capabilities that enable interoperability, accessibility and reuse

of Web-based learning content. A SCORM-compliant learning management system (LMS) is a

system that:

• Can accept any SCORM compliant content as described and make it available to users of

the LMS. SCORM does not specify how this is done, but conformance requires that a

documented process exist to do it. Some LMS automate the process of publishing the

content to make it available to the learners. Others require manual copying of files and

possibly the manual tweaking of database tables.

• Deliver the content to a Ieamer, by providing a runtime environment within which it

launches the content. The content is always launched in a web browser window. The

runtime environment must meet certain technical requirements defmed by the SCORM

specification and conformance requirements document.

The SCORM specification does not require that the LMS user interface behave in any

particular way, except for the fact that the user must be able to choose and launch any SCO

designed by an item in the content orgauization.

What a LMS does with the tracking information that may be communicated by a SCO is

also not specified by SCORM. Obviously, often the reason to have a LMS in the first place is to

collect this tracking information and use it for learning management or reporting purposes, but

whether and how to do this is left to the LMS implementers and vendors to decide.

22

Note that although SCORM was designed primarily to support content delivery and

tracking through a web server, it does not require the use of the internet or even of a network. It

is possible to have a SCORM implementation that uses a closed intranet. You may even have

purely local, offiine implementation. For example, with an offiine runtime environment, you

should be able to play SCORM compliant content on a laptop or workstation with no network

connection whatsoever. The offline runtime component may or may not include a "mini-LMS"

capable of recording tracking information. Such an implementation may perhaps include

synchronization with a server-based LMS when a mobile computer is reconnected to a network.

How to do this is however beyond the scope of SCORM.

A Web-based learning object that can be included in a package for delivery by a SCORM

compliant learning management system as an individual activity is called a Shareable Content

Object (SCO). In practice, SCO come in two main flavors:

• A minimal SCO. This is HTML content or a service that can be launched in the browser

window, and uses the SCORM Application Program Interface (API) for minimal

communication with the learning management system. An LMS can track the time

between the lannch and the normal termination of such an object. Most generic content

that can be launched in a browser window, but does not contain links to another learning

object, can usually be turned into a SCO by "wrapping" it into a SCO. This could be an

HTML page, an Adobe Acrobat file, or a text file. A collection of HTML pages is also

acceptable, as long as they only link to each other and not to other learning objects.

• A data-enabled SCO. This is like a basic SCO, but also uses the SCORM API to get or

send data to the LMS. The data may include tracking data, learner information.

In order to implement SCORM-compliant learning objects and SCOs it is useful to

understand a little bit of the runtime environment in which they will be used. To distinguish this

runtime service from the rest of the LMS and its login, authentication, storage and reporting

services, we will refer to the runtime environment and the processes that manage it as the

runtime service. The distinction between LMS and runtime service can be useful because an

LMS and the user experience may have.

23

The runtime service can be implemented in part on the Ieamer's computer and in the other

part on the server side. In an offline situation, the server side of the environment is emulated by

an application that runs on the Ieamer's computer. The Ieamer's computer of the runtime service:

• Is provided by the LMS;

• Is implemented as a Web page or frameset in a browser window;

• Presents some necessary runtime user interface components to the Ieamer, such as a table

of content and/or navigation buttons;

• Launches learning objects in a "stage window" that is either part of the frameset, or a

separate window that it creates as needed;

• Includes an API object instance named "API" that can be found and called by JavaScript

• Is generated or regenerated as needed by the server side.

The server side of the runtime service and the rest of the learning management system are

completely invisible to the scripts in SCORM learning objects. The user interface components of

the runtime service, such as a table of content or navigation buttons, are also completely invisible

to SCORM learning objects. How the Ieamer's computer of the runtime service is implemented,

and how it communicates with the server are totally invisible to the content. The only parts of the

runtime service with which a SCORM learning object can detect and communicate are:

• The stage window

• The API adapter

• The functions provided by the API adapter

The learning objects are specifically prohibited from navigating to other learning objects

within the stage window. Only the runtime service can load another learning object in the stage

window. The runtime service uses the content organization defined in the content package as its

guide to manage navigation between learning objects.

24

4.1.1.1.5. Moodie

• Moodie should run on the widest variety of platforms

The web application platform that runs on most platforms is PHP combined with

MySQL, and this is the environment that Moodie has been developed.

• Moodie should be easy to install, learn and modify

The PHP scripting language is easy to get into if you've done any programming using any

other scripting language. PHP is also easy to install and is widely available to the point

that most web hosting services provide it as standard.

• It should be easy to upgrade from one version to the next

Moodie knows what version it is as well as the versions of all plug-in modules and a

mechanism has been built-in so that Moodie can properly upgrade itself to new versions

• It should be modular to allow for growth

Moodie has a number of features that are modular, including themes, activities, interface

languages, database schemas and course formats. This allows anyone to add features to

the main code base or to even distribute them separately.

25

4.2. Project Survey

A survey about MOODLE and content development of the project was conducted.

Ten Universiti Teknologi Petronas (UTP) students, who already tested the project,

participated. The survey basically covers whether the MOODLE and the project content

development of the project are user-friendly or not, interactivity, functionality and

usability. The survey results are shown as below:

MOODLE Survey

user·frlendly lnteractivlty functionality usability

Figure 4.3: Survey done by student UTP for MOODLE

For average Moodle survey chart, participants for the survey are averaging 3.0

rating point to the level of user friendly of the Moodle program; while for interactivity of

the Moodle, the participants' average rating is 4.0. For functionality and usability, the

participants averaged 4.5 and 2.5 rating point respectively.

26

6

Content Development Survey

5

4

3

2

user-friendly interactivity functionality usability

Figure 4.4: Survey done by student UTP for Content Development

For average content development survey chart, the participants scored an

averaged 3.5 rating point on whether or not the content development is user friendly to

them. A similar average of 4.0 rating point was calculated for interactivity and

functionality of the content development. Lastly for usability, the participants rated an

average 3. 0 point.

27

CHAPTERS

CONCLUSION

In conclusion, the main focus for this report is to develop a new version of e-leaming by

using open source software which is Moodie software. Proper comparisons with others open

source software and also ongoing and very detailed development process and methodology

executed in order to make sure that Moodie will serve its purpose as UTP new breed of e­

learning. This report also did focus on content development for theE-Learning. SCORM is used

as a standard for proper communication between LMS and content. All tools requirement are

identified for development and implementation of Moodie and content development.

We've also covered regarding Sharable Content Objects can be summarized as follows:

• SCOs are mini-applications containing the content itself.

• SCOs are self-contained and transportable - all required files are included and

compressed into a single content package.

• Content packages contain a single manifest file and may contain more than one SCO.

• SCOs are web-based and script-enabled - consisting of HTML, Javascript and any other

client-side technology (images, Macromedia Flash, etc).

• SCOs are the smallest level of granularity tracked by an LMS - they report, among other

things, only one score and status.

28

Lastly, we've examined the SCO and its general operation, the API and how it provides

the communications portal between the LMS and the SCO and the manifest file and how it

facilitates the importation of the SCO into the LMS. In other words, we've only scratched the

surface. To fully understand SCORM and its functionality, you should download the full

specification from the ADL's website and get familiar with it. Begin working with our sample

content package and study as many other SCORM compliant SCOs as you can. The code is all

client-side, so you will be able to open it with a basic text editor such as Notepad.

29

REFERENCES

[1] Joan Van Duzer, Instructional Technologist College of Professional Studies Humboldt

State University. A Comparison of Satisfaction with Online Teaching and Learning

Tools.

[2] Bruce Perens, June, 1997, "Open Source Definition." (http://www.opensource.org/)

[3] "Journal of An Open Source software evaluation model with a case study on Course

Management Systems", Tilburg University, Karin van den Berg, August 2005

[4] Analysis Of RFP Fore-Learning System, A software engineer perspective, By Huzaifa

Al Nahas June 2003

[5] Anders Berggren1
, Daniel Burgos2

, Josep M. Fontana3
, Don Hinkelman4

, Vu Hung5
,

Anthony Hursh6
, Ger Tielemans7 Moodie Community Learning Design Book Study Group

[6] Christos Bouras, Computer Engineering and Informatics Department, University of

Patras, GR-26500 Rion, Patras, GREECE, Research Academic Computer Technology

Institute,

[7] Postion Statement from Singapore, Lim Kin Che, Chairman, Learning Standards

Technical Committee, 5 Oct 2005

[8] Brent Lee And Frank Fucile From Malaspina University-College

[9] eLab Report, By Luca Botturi November 2004

[10] Firouz Anaraki Director, Network Operation Center College of Internet Distance

Education Assumption University of Thailand, Developing an Effective and Efficient

eLearning Platform Using Open Source Software

[11] The eLearning Guild™ Advisory Board Ruth Clark, Conrad Gottfredson, John Hartnett,

Bill Horton, Kevin Moore, Eric Parks, Brenda Pfaus Marc Rosenberg, Allison Rossett

[12] Short listing of Learning Management System software, Part I of LMS Evaluation Open

Source e-Learning Enviroument and Community Platform Project, Richard Wyles, 15

March2004

[13] Sum Total Standards Projects, 2003-2005 by Sum Total Systems, Inc

[14] Severna Park, Maryland, USA© 2007 ICS Learning Group

30

APPENDIX A

Project Timeline

Name : Mazlin Mohcl Razali
10:4640

Final Year Project- Unlversltl Teknologl PETRONAS (UTP} E-Leamlng implementation using open source and content development
Project Timeline • 2006/2007

Tuk
I Planning

BrainstoiTillng
Prepare Project Proposal
Project Proposal Due

l:oocumentatlons & Presentation

Preliminary Report
Preliminary Report due
Interim Report
Interim Report due
Prepare Weekly Report
Oral Presentation Phase !

jRe~WJarch

Open Source System
MOODLE
Content DeV9Iopment
SCORM

User Interface
System Design
System Development

I resting

Unit Testing
System Integration Testing
User Acceptance Testing

j:Finel Report & Pre~W~natlon

Final . ·~.­
Final Oral

Duration StartDate EndDate

4 da a 2718/2006 30/812006
2 da a 30/812006 1/8/2006
0 davs 21812006 21812006

291812006 31912006
619/2006 61912006
241912006 311 012006
411012006 4110/2006
2/8/2006 20/1012006

16/101200 19/1012006

72 de 318J2006 1511 012008
30 da 1/912006 15/1012008
45 da a· 119/20G8 1511012008

180 da 1/11/2008 301412007

45 da a 151912006 3111012008
60 de 1/1112006 31/1212006
120 da s 1/112007 30/412007

1/112007 311312007
11412007 7/412007
8/412007 151412001

/512007 31/512007
/6/2007 11612007

~
+'-'+"'!

)ctober

211511E

s ~

APPENDIXB

API Wrapper Source Code

I***
** FileName: APIWrapper.js
** This file is part of the ADL Sample API Implementation intended to provide
** an elementary example of the concepts presented in the ADL Sharable
** Content Object Reference Model (SCORM) .
••
** The purpose in wrapping the calls to the API is to (1) provide a
** consistent means of finding the LMS API implementation within the window
**hierarchy and (2) to validate that the data being exchanged via the
**API confonns to the defined CMI data types.

**
** This is just one possible example for implementing the API guidelines for
** runtime communication between an LMS and executable content components.
** There are several other possible implementations.

**
**Usage: Executable course content can call the API Wrapper
** functions as follows:
••
** javascript:
••
** ••
••
*'
**

var result = doLMSinitializeO;
if(result !=true)
{

II handle error
}

** authorware
•• result:= ReadURL("javascript:doLMSinitializeQ", 1 00) ..
***I
var ~Debug= false; II set this to false to tum debugging off

II and get rid of those annoying alert boxes.

II Define exception/error codes
var ~No Error= 0;
var ~GeneralException = 101;
var ~ ServerBusy = 1 02;
var ~InvalidArgumentError = 201;
var ~ElementCannotHaveChildren = 202;
var ~ ElementlsNotAnArray = 203;
var ~ Notlnitialized = 30 l;
var ~ NotlmplementedError = 40 I;
var _JnvalidSetValue ~ 402;
var ~ ElementlsReadOnly = 403;
var ~EiementlsWrite0nly=404;
var ~IncorrectDataType = 405;

//local variable definitions
var apiHandle = null;
var API = null;
var findAPITries = 0;

!***
**Function: doLMSinitializeO
**Inputs: None
**Return: CMIDoolean true if the initialization was successful, or
** CMIBoolean false if the initialization failed.

"
**Description:
** Initialize communication with LMS by calling the LMSlnitialize
** function which will be implemented by the LMS.
***I
function doLMSinitializeO
{

var api "" getAPIHandleO;
if(api ~null)
{

}

alert("Unable to locate the LMS's API Implementation.\nLMSinitialize was not successfuL");
return "false";

var result= api.LMSinitialize('' 11
);

if (result.toStringO !~ "true")
{

var err= ErrorHandlerO;
)

return resulttoStringQ;
)
/***
** Function doLMSFinishO
** Inputs: None
** Return: CMIBoolean true if successful
** CMIBoolean false if failed.
**
** Description:
** Close communication with LMS by calling the LMSFinish
**function which will be implemented by the LMS
***!
function doLMSFinishO
{

)

var api ~ getAPIHandleO;
if (api ~null)
(

)

alerWUnable to locate the LMS's API Implementation.\nLMSFinish was not successful. 11
);

return 11false'';

else
(

II call the LMSFinish function that should be implemented by the API

var result= api.LMSFinish('"');
if (result.toStringO != "true11

)

{
var err= ErrorHandlerQ;

)

return result.toStringQ;

/***
**Function doLMSGetValue(name)
** Inputs: name R string representing the cmi data model defined category or
** element (e.g. cmi.core.student_id)
**Return: The va1ue presently assigned by the LMS to the cmi data model
** element defined by the element or category identified by the name
** input value.
*'
** Description:
**Wraps the call to the LMS LMSGetValue method
***/
function doLMSGetVaJue(name)
{

var api = getAPIHandle();
if(api~null)

{
alert(11Unable to locate the LMS's API Implementation.\nLMSGetValue was not successful.");
return 11

";

else
{

var value= api.LMSGetValue(name);
var errCode ~ api.LMSGetLastErrorQ.toStringQ;
if(errCode != _NoError)
{

II an error was encountered so display the error description
var errDescription = api.LMSGetErrorString(errCode);

alert("LMSGetValue("+name+") failed. \nn+ errDescription);
return'"';

else
{

return value.toStringQ;
}

}
}
/***
**Function doLMSSetValue(name, value)
** Inputs: name -string representing the data model defined category or element
** value -the value that the named element or category will be assigned
**Return: CMIBoolean true if successful
** CMIBoolean false if failed.

'*
**Description:
** Wraps the call to the LMS LMSSetValue function
***/
function doLMSSetValue(name, value)
{

}

var api = getAPIHandleO;
if(api ~null)
{

}

alert("Unable to locate the LMS's API lmplementation.\nLMSSetValue was not successful.");
return;

else
{

var result= api.LMSSetValue(name, value);
if(result.toStringO !="true")
{

}
}

var err= ErrorHandlerO;

return;

/***
**Function doLMSCommitO
**Inputs: None
** Return: None

'*
**Description:
** Call the LMSCommit function
***/
function doLMSCommitO
{

}

var api ~ getAPIHandleO;
if(api~null)

{

}

alert("Unable to locate the LMS's API Implementation.\nLMSCommit was not successful.");
return "false";

else
{

var result= api.LMSCommit("");
if(result !="true'')
{

}
}

var err= ErrorHandlerO;

return result.toStringQ;

!***
** Function doLMSGetLastErrorO
** Inputs: None
**Return: The error code that was set by the last LMS function call

**
** Description:
** Call the LMSGetLastError function
***/
function doLMSGetLastErrorO
{

}

var api ~ getAP!HandleO;
if(api ~null)
{

}

alert("Unable to locate the LMS's API Implementation.\nLMSGetLastError was not successful.");
//since we can't get the error code from the LMS, return a general error
return_ GeneralError;

return api.LMSGetLastError().toString();

/***
**Function doLMSGetErrorString(errorCode)
** Inputs: errorCode - Error Code
** Return: The textual description that corresponds to the input error code
**
** Description:
**Call the LMSGetErrorString function
**!
function doLMSGetErrorString(errorCode)
{

}

var api = getAPIHandleO;
if(api~null)

{
alert("Unable to locate the LMS's API Implementation.\nLMSGetErrorString was not successful.");

}

return api.LMSGetErrorString(errorCode). toStringO;

!***
**Function doLMSGetDiagnostic(errorCode)
** Inputs: errorCode- Error Code(integer format), or null
**Return: The vendor specific textual description that corresponds to the
** input error code
••
**Description:
** Call the LMSGetDiagnostic function
***!
function doLMSGetDiagnostic(errorCode)
{

var api = getAPIHandleO;
if(api~null)

{
alert("Unable to locate the LMS's API Implementation.\nLMSGetDiagnostic was not successful.");

}

return api.LMSGetDiagnostic(errorCode). toStringO;
}
!***
** Function LMSislnitializedO
** Inputs: none
**Return: true if the LMS API is currently initialized, otherwise false
**
**Description:
**Determines if the LMS API is currently initialized or not.
***!
function LMSislnitializedO
{

II there is no direct method for determining if the LMS API is initialized
II for example an LMSislnitialized function defined on the API so we'll try
II a simple LMSGetValue and trap for the LMS Not Initialized Error

var api ~ getAP!HandleO;
if(api ~null)
{

}

alert("Unable to locate the LMS's API Implementation.\nLMSislnitializedO failed.");
return false;

else
{

var value= api.LMSGetValue("cmi.core.student. name");
var errCode = api.LMSGetLastErrorQ.toStringQ;
if(errCode = _Notlnitialized)
{

return false;
)
else
{

return true;
)

)
)
I***
**Function ErrorHandlerO
** Inputs: None
**Return: The current value of the LMS Error Code ..
**Description:
** Determines if an error was encountered by the previous API call
** and if so, displays a message to the user. If the error code
**has associated text it is also displayed.
***I
function ErrorHandlerO
{

var api ~ getAPIHandle();
if(api =null)
{

)

alert("Unable to locate the LMS's API Implementation.\nCannot determine LMS error code.");
return;

II check for errors caused by or from the LMS
var errCode = api.LMSGetLastErrorQ.toStringQ;
if (errCode t~ _No Error)
{

II an error was encountered so display the error description
var errDescription = api.LMSGetErrorString(errCode);

ifLDebug=true)
{

)

errDescription += "\n";
errDescription += api.LMSGetDiagnostic(null);
II by passing null to LMSGetDiagnostic, we get any available diagnostics
II on the previous error.

alert(errDescription);
)

return errcode;
}
I**
** Function getAPIHandleO
** Inputs: None
**Return: value contained by APIHandle
** Description:
** Returns the handle to API object if it was previously set,
**otherwise it returns null
***I
function getAPIHandleO
{

if(apiHandle =null)
{

apiHandle ~ getAPIO;
)

return apiHandle;
}
/***
**Function findAPI(win)
** Inputs: win- a Window Object
**Return: If an API object is found, it's returned, otherwise null is returned
**
** Description:
**This function looks for an object named API in parent and opener windows
***/
function findAPI(win)
{

}

while ((win.API =null) && (win. parent!= null) && (win. parent!= win))
{

}

findAPITries++;
//Note: 7 is an arbitrary number, but should be more than sufficient
if(findAPITries > 7)
{

}

alert("Error finding API -- too deeply nested.");
return null;

win= win. parent;

return win.API;

/***
**Function getAPI()
** Inputs: none
** Return: If an API object is found, it's returned, otherwise null is returned
**
** Description:
** This function looks for an object named API, first in the current window's
** frame hierarchy and then, if necessary, in the current window's opener window
** hierarchy (if there is an opener window).
***/
function getAPIO
{

}

var theAPI ~ findAPI(window);
if((theAPI =null) && (window.opener !=null) && (typeof(window.opener) !="undefined"))
{

theAPI = findAPI(window.opener);
}
if(theAPI ~null}
{

alert(uUnable to find an API adapter");
}
return theAPI

APPENDIXC

ScoFunctions Source Code

<html>
<head>
<script type="text/javascript" Janguage="JavaScript">

var API"" null; I* SCORM API *I

/*look up through the frameset hierarchy for the SCORM API *I
function findAPI(win)
{

while ((win.API ~null) && (win. parent!~ null) && (win. parent !~win))
{

win = win.parent;
}
API = win.API;

/* init the SCORM API */
function initAPI(win)
{

}

I* look for the SCORM API up in the frameset */
findAPI(win);

I* if we still have not found the API, look at the opener and it's frameset */
if ((API~ null) && (win.opener !~null))
{

findAPI(win.opener);

</script>
<tit1e></title>
</head>

<body onLoad="initO" onUnload="fmish011>

</body>
</html>

APPENDIXD

Screenshot

Chapter 1 - Software Engineering

File View Control Help

• To 1ntrcduc:e Software En~1neering & to expla'n lls
importance.

• To answers some FAQs about SoHware Eng•neering

To introduGe ethical & prcfe-sslonal iS$UeS and to
explain why H•ey are of concern to Software
Engineers.

Paga 1 I I

Objective Page

• FAQs about Sonware Engineering.

• ProfeS$ion~l and (:llhical respons'bility

l'a!fll 1 I 1

Topic Cover

What is software?
• Computer programs ami associated

documentation
- requirements. dP:!Sign mod!:!ls 1!. vser rnanuals.

• Sof!ware products may be <.!eve loped for a
parlicular cvstom!lr or may be developed for a
genoral marko1.

• Software produ~ts rna~ be
Generic (de~elopl!{llo be $Old to a range of
dllfrmmt custumers e.g. PC suftw~;ue svch as
Excel or Word.)
Custom {developed for n single customer
accordit1g to their specifi<.:ation.]

• New sol:waro can be ~:teated by
developing new programs.
conf,gunng !lener.c wftware s~stems

- musing existing software.

Paoo 1 I 11

FAQ about Software Engineering

()Macromcdli1 Flash PI<:Jycr 6 ";';~

• Software Engineering i~volves wider rm;po~sib.lities
than simply U1e application of tech~ical skills.

• Softl.varo Engineers must behave lr; an ho~est and
ethically t!lsponsible way if the~ ate to be respl:'cted
as prole.ss•onals.

• Ethical b~havruur is more than s;r!1ply- upti:.Jl(liog t!•a
law.

Professional and Ethical Responsibility

(#Mauomed1a Flash Player 6 "' !j~

• Software engin~ring •s an engineering disc,plitl!! that Is
concerned wllh 1111 aspects of software production.

• Sollware products consist ol developed programs and
associated documentation. Essential product altlibutes
are 1naintainability, depen<Jability, efficiency and usability

• Tl1e soft\vare process consists of <Jctlvl11es th<ll are
hwol~ed in devr;~k.lplog soflwart: products. Basic acti~ities
me soflware spe~ilicaUon, de·•elopmen!, vohdation and
evolution.

• Methods are organised ways ol producmg soltware.
They InClude suygestionslor the prol'ess 10 be followe<J,
H•e nolalions to be used. rules govern•ng 1~1e syste1n
descnptions which are produced and des1gn gwdel!nes.

Summary

